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Abstract

The final stage in the creation of a Bose-Einstein condensate (BEC)
is trapping and compressing in a strong magnetic trap. When the spin
of an atom changes, it is lost from this magnetic trap. To be able to
do experiments with varying atom spin, one can use an optical dipole
trap, which traps atoms independent of their spin. This thesis presents
a far red-detuned optical dipole trap, which is characterized by trapping
BEC’s. Furthermore, an approach to rapidly scan this trap is presented,
creating a ’quasi-2D’ potential. With this potential we attempt to create
a horizontal sheet of condensed atoms, where the depth of the sheet of
atoms is smaller than the range of the spin dynamics. This would enable a
unique visualization of the spin dynamics using spin-dependent imaging.
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1 Introduction

In 1995, a new state of matter was shown experimentally for the first time:
the Bose-Einstein condensate (BEC). Eric Cornell and Carl Wieman were the
first to create a BEC using rubidium atoms [1], followed in the same year by
Wolfgang Ketterle using sodium atoms [2]. A BEC is formed by cooling a dilute
gas of bosons to almost absolute zero temperature. At a certain critical tem-
perature, the wavefunctions of the individual particles overlap to form a single
quantum-mechanical state. The BEC is often referred to as the fifth state of
matter, besides solid, liquid, gas and plasma.

To perform experiments based on the spin of the atoms in a BEC, a spin-
independent trap is needed to hold the BEC. This thesis presents a red-detuned,
focused Gaussian laser beam, which traps atoms relying on the induced dipole
moment. This dipole moment interacts with the light field itselfs, pushing atoms
towards higher intensities. These traps have a low optical excitation and are
spin-independent. The theory of optical dipole traps is described in chapter 2.
The optical setup used to create the trap is shown in chapter 3. The optical
dipole trap is characterized by imaging the expansion of trapped BEC’s. These
expansion measurements and the trap characteristics are discussed in chapter 4.

Using spin-dependent imaging (SDI) [3], the spin-dynamics of a BEC can be
visualized. By rapidly scanning the optical dipole trap, we attempt to create
a quasi-2D horizontal sheet of BEC atoms. If the depth of the sheet of atoms
is smaller than the range of the spin-dynamics, all the spin-dynamics happen
in the horizontal direction of the sheet. The dynamics can be visualized using
SDI. The scanning of the optical dipole trap is discussed in chapter 5. Finally,
a conclusion and outlook are presented in chapter 6.
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2 Theory

This chapter describes the theory of optical dipole traps in subsection 2.1, fol-
lowed by the theory of trapped Bose-Einstein condensates in subsection 2.2.
Equations from this chapter are used in chapter 4 to characterize the optical
dipole trap.

2.1 Optical dipole trapping

Optical dipole trapping is based on the interaction of an atomic electric dipole
moment with far-detuned light. This mechanism is much weaker than both
magnetic and radiation-pressure trapping. An optical dipole trap is not limited
by light-induced mechanisms present in radiation-pressure traps and is - under
appropiate conditions - independent of the sub-level of the electronic ground
state [4].

A light field E induces an atomic dipole moment p in an atom, which oscillates
at a driving frequency ω. In complex notation we have

E(r, t) = êẼ(r)(e−iωt + eiωt), (1)

p(r, t) = êp̃(r)(e−iωt + eiωt), (2)

with ê the unit polarization vector. The dipole moment amplitude and light
field amplitude are related by

p̃ = αẼ (3)

where α is the complex polarizability. The induced dipole moment interacts
with the light field. The interaction potential of the induced dipole moment is
given by

U = −1

2
〈pE〉 = − 1

2ε0c
Re(α)I. (4)

The brackets denote a time-average and I = 2ε0c|Ẽ|2 is the field intensity.
Following from the equation of motion of the driven oscillation, the polarizability
can be written as

α = 6πε0c
3 Γ/ω2

0

ω2
0 − ω2 − i(ω3/ω2

0)Γ
(5)

where Γ is the on-resonance damping rate and ω0 the transition frequency. Using
the expression for the polarizability of the atomic oscillator, equation (4) can
be written as

U = −3πc2

2ω3
0

(
Γ

ω0 − ω
+

Γ

ω0 + ω

)
I(r). (6)
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The trap depth Û is defined as Û = |U(r = 0, z = 0)|. The detuning is defined
as ∆ ≡ ω − ω0. For ∆ < 0, or ”red” detuning, the dipole potential is negative.
This means that the light field attracts atoms, with a potential minimum at the
highest intensity. Therefore, the focus of a red detuned laser beam is a stable
trap for atoms.

The intensity of a focused Gaussian laser beam along the z-axis is given by:

I(r, z) =
2P

πw(z)2
exp

(
−2

r2

w(z)2

)
, (7)

with P the laser power, r the radial distance and w(z) the waist, which can be
written as

w(z) = w0

√
1 +

(
z

zR

)2

. (8)

Here w0 is the beam waist of the focus and zR = πω2
0/λ, the Rayleigh length.

When the thermal energy of the trapped atoms is much smaller than the trap
depth Û , the extension of the atoms in both the radial and axial direction is
small compared to the beam waist and Rayleigh length. The optical potential
can be well aproximated by a cylindrically symmetric harmonic oscillator. This
potential can be written as:

U(r, z) ≈ −Û

[
1− 2

(
r

w0

)2

−
(
z

zR

)2
]

. (9)

A trapped atom oscillates in this potential with the following radial and axial
frequencies:

ωρ =

√
4Û

mw2
0

, (10) ωz =

√
2Û

mz2R
. (11)

2.2 Trapped Bose-Einstein condensates

The groundstate wavefunction of a Bose-Einstein condensate is defined as ψ(r, t) =
ψ(r)e−iµt, where the groundstate energy is described by µ, the chemical poten-
tial of the condensate. This state is described by the following equation,

ih̄
dψ

dt
= − h̄2

2m
∇2ψ + U(r)ψ + Ũ |ψ|2ψ, (12)

known as the Gross-Pitaevskii equation [5]. Here |ψ|2 is the density, Ũ =
4πh̄2a/m describes the effect of two-body collisions and a is the scattering
length.
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For a trapped condensate in the limit of strong interactions (nŨ � h̄ωx,y,z),
equation (12) can be simplified by neglecting the kinetic term. In this limit,
known as the Thomas-Fermi limit, the density is described by:

nc(r) = max

(
µ− U(r)

Ũ
, 0

)
. (13)

The bottom of a dipole trap potential can be approximated as being harmonic.
So we can describe condensates in the bottom of a trap by a parabolic density
profile:

nc(r) =
15

8π

N∏3
i=1 xi,c,0

max

(
1−

3∑
i=1

x2i
x2i,c,0

, 0

)
. (14)

In this equation xi,c,0 are the half-lengths of the trapped condensate where the
density goes to zero. The half-length of the condensate in the z-direction (or
axial direction) is related to the axial trap frequency by:

ωz =

√
2µ

mx2z,c,0
. (15)

From the chemical potential of a harmonically confined condensate in the Thomas-
Fermi approximation, the relation between the radial trap frequency and the
chemical potential is derived [5]:

ωρ =

√
(2µ)5/2

15h̄2m1/2N0ωza
, (16)

where N0 is the number of atoms in the condensate, which can be determined
by using absorption imaging. The half-length of the condensate in the axial
direction, xz,c,0, can also be determined by taking images of the condensate.
The remaining parameter µ, the chemical potential, follows from the complete
conversion of chemical potential to kinetic energy [6], such that

µ =
1

2
mv2. (17)

By taking images of condensates at different expansion times, the expansion
velocity vexp can be determined. We can use this in equation (17) to calculate
the chemical potential µ. Now everything is known to determine both ωz and
ωρ via equations (15) and (16). These can then be compared with the expected
trap frequencies using equations (10) and (11). This is done in chapter 4.
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3 Experimental setup

This chapter describes the experimental setup used to create Bose-Einstein con-
densates in section 3.1. In section 3.2 the setup of the optical dipole trap used
to trap the BEC’s is described.

3.1 Creating Bose-Einstein condensates

The creation of BEC’s starts with melting sodium in an oven to create a beam
of sodium atoms. These atoms are first slowed down in a Zeeman slower before
being trapped in a Magneto-Optical Trap in the experimental chamber. The
final step in the process is evaporative cooling in a strong magnetic trap to reach
the critical temperature and form a Bose-Einstein condensate.

3.1.1 Oven

The first step in the process of creating a BEC is melting 20 - 30 grams of solid
sodium in a stainless steel oven. The oven consists of two chambers. The first
chamber contains the sodium and is heated to 300-315◦C. It is connected to the
second chamber by a 6 mm diaphragm, creating a beam of sodium atoms which
passes into the second chamber. The second chamber has a temperature of ap-
proximately 100◦C, just above the sodium melting point and another diaphragm
of 10 mm which connects to the vacuum system. The atoms with the largest
divergence are removed by this last diaphragm. The collimated beam passes
through another 12 mm diaphragm before it enters the Zeeman slower. The
flux of sodium atoms coming out of the oven is approximately 5 · 1012 atoms/s.

3.1.2 Zeeman slower

The resulting atomic beam from the oven has a most probable velocity of ap-
proximately 600 m/s, with a spread described by the Maxwell-Boltzmann distri-
bution. The Magneto-Optical Trap (MOT), however, has a capture velocity of
around 50 m/s. The atoms are decelerated with a Zeeman slower using the mo-
mentum transfer of photons from an opposing laser beam. To keep the laser on
the resonance frequency, the Doppler-shift due to the atoms velocity is compen-
sated with a Zeeman shift induced by an inhomogeneous magnetic field along
the direction of the atomic beam.

3.1.3 Magneto-Optical Trap (MOT)

The slowed atoms are captured in the Magneto-Optical Trap (MOT) in the
experimental chamber. It consists of three orthogonal red detuned (δ = −1.5Γ)
laser beams, which are reflected back in the opposing directions, ensuring cooling
in all directions. The laser beams are combined with a spatially dependent
magnetic quadrupole field. The magnetic field induces a Zeeman shift in the
atoms, which increases radially from the center. Atoms moving away from the
center are now more likely to absorb a photon and are pushed to the center.
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The resulting temperature of the cloud of atoms in the MOT is approximately
200 µK.

3.1.4 Magnetic Trap

To reach the limit where the atoms form a BEC evaporative cooling in a mag-
netic trap (MT) is used. In the MOT, the atoms are equally divided among
three magnetic sub-states (Fg = 1,mf = −1, 0, 1). The MT only traps the
mf = −1 state atoms, a third of the total number of atoms in the MOT. To
increase this fraction, the atoms are spin-polarized by a strong magnetic field
and pumped to the mf = −1 state before being transferred to the MT. The
next step is forced evaporative cooling using a radio-frequency (RF) field. The
field spin flips atoms with the highest energy from the (Fg = 1,mf = −1) to
the (Fg = 1,mf = 0, 1) state, removing them from the trap. By removing the
highest energy atoms, the remaining atoms reach the critical temperature of ≈1
µK, forming a BEC.

3.2 Optical dipole trap setup

3.2.1 Optical setup

Figure 1 shows the setup used for creating an optical dipole trap. A 5 watt in-
frared laser1 beam (1064 nm) passes through a telescope consisting of a +40mm
and a +50mm lens for collimation and a small beam expansion. The resulting
beam width is slightly smaller than the active aperture size of the AOM2 it
passes next.

The driver of the AOM is connected to two arbitrary waveform generators3,
one controlling the AOM frequency and one controlling the AOM amplitude.
After passing a +50mm lens behind the AOM the 0-th order is directed into a
beam dump, whilst the 1-th order is picked off near the focus using a D-shaped
mirror. The +50mm lens in combination with the +500mm lens expands the
beam with a factor of 10. The beam is finally focused into the experimental
chamber using a +300mm lens, resulting in a waist size of approximately 11 µm
and a Rayleigh length of 357 µm. The final lens is mounted on a stage to be
able to adjust the distance from the experimental chamber and therefore the
z-position of the focus in the chamber. The focus can be imaged onto a CCD
camera using the folding mirror behind the final lens.

Behind the experimental chamber a +200 mm lens focuses the beam into a
beam dump. A glass plate splits a part of this focused beam and images it onto
another CCD camera. This camera is used to determine the (x, y) position of
the laser focus in the chamber. By using fluorescence of the atomic cloud, its

1IPG Photonics YLM-5-LP-SC
2ISOMET M1135-T80L-3
3Agilent 33509B
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Figure 1: Schematic of the optical dipole trap setup

position can also be imaged onto the camera through the same lens. Using this
method, the focus of the laser beam can be adjusted and overlapped with the
atomic cloud.

3.2.2 Scanning

By varying the AOM frequency with the arbitrary waveform generator, the
deflection angle of the first order is varied. This results in a translation of the
focus in the experimental chamber. The AOM frequency is scanned from 60 - 110
MHz, resulting in a scanning width of ∼ 10w0 in the experimental chamber. A
time-averaged potential is created by scanning over 15 points with a frequency
of 20 kHz. Each point consists of an approximately Gaussian profile, with a
spacing of ∼ 0.7w0. For each point the amplitude is corrected using the second
arbitrary waveform generator, in order to create a uniform ‘sheet potential’.
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4 Stationairy Trap

Before trying to create a sheet potential by scanning the AOM frequency, we
have to look at the stationairy trap. Section 4.1 covers the beam quality with a
determination of the waist size. The measurements done to determine the trap
frequencies are discussed in section 4.2. The results of these measurements and
a comparison to theory are found in section 4.3. A discussion of these results
is found in section 4.4. Measurements to characterize the dipole trap using
thermal clouds above the transition temperature are found in Appendix A2.

4.1 Beam quality

After optimizing the optical setup, the beam waist is measured as a function of
position. With this we determine the waist size of the focus w0 and the beam
quality factor M2 as defined in Ref [7]. The size of the focus is in agreement with
calculations that were done before building the optical setup and M2 is close to
1. However, there is astigmatism due to the birefringent crystal in the AOM.
Figure 2 shows the horizontal and vertical waist size as a function of position,
with w0 determined from fitting equation (8). The horizontal and vertical foci
are separated by a distance of approximately 240 micrometers.

Figure 2: Beam waist as function of position with fit values.
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Figure 3 is an image of the optical dipole trap in a cloud of thermal (non-
condensed) atoms. The laser beam is red-detuned, so the atoms are attracted
towards the light field. This results in a higher density of atoms in the optical
trap, visualized by the darker blue color.

Figure 3: Optical dipole trap in a cloud of thermal atoms, the pixel size is 3.75 µm.

4.2 BEC expansion

In order to characterize the trap, we can trap a BEC and release the surrounding
atoms by switching of the MT (figure 4).

Figure 4: A BEC in the optical dipole trap, the pixel size is 3.75 µm.
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After turning of the dipole trap itself, the BEC expands due to the conversion
of chemical potential to kinetic energy. After Time-Of-Flight (TOF) times of
0, 1, 2, 4, 6, 8, 12, 24, 32 ms we take an image of the condensate. Due to the
destructivity of absorption imaging, a new condensate has to be formed for each
image. Figure 5 shows one of these images, taken after a TOF of 6 ms.

Figure 5: A BEC after 6 ms TOF.

By fitting a Thomas-Fermi density distribution model to each image, the radius
in the radial direction can be determined. In order to characterize the trap,
measurements are done at 4 different laser powers; 9.3 mW, 13.8 mW, 19.0 mW
and 24.6 mW. All images can be found in Appendix A, where each column of
images represents a different laser power and each row a different TOF. For each
of the columns we can calculate the expansion velocity vexp.

15



4.3 Results

The Thomas-Fermi radius can be plotted as a function of time to estimate the
expansion velocity vexp for each laser power. Figures 6.1-6.4 show these plots
for each of the series of measurements.

6.1) xρ,c,0 as function of TOF for P=9.3 mW 6.2) xρ,c,0 as function of TOF for P=13.8 mW

6.3) xρ,c,0 as function of TOF for P=19.0 mW 6.4) xρ,c,0 as function of TOF for P=24.6 mW
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With this velocity, we can use equation (17) to calculate the chemical potential
of the optical dipole trap. Table 1 shows the values for each laser power.

Table 1: Chemical potential of optical dipole trap

Laser power µ

9.3 mW 10.4 kHz
13.8 mW 15.2 kHz
19.0 mW 11.5 kHz
24.6 mW 10.4 kHz

With the chemical potential, equations (15) and (16) can be used to determine
the trap frequency for each image. By taking the average over these images, we
find the average radial and axial trap frequencies, 〈ωz〉 and 〈ωρ〉, which are listed
in table 2. We can compare these values to the values resulting from equations
(10) and (11), using the same values for the laser power and w0 = 10.8 µm, the
average of the horizontal and vertical foci. These values, ωz and ωρ, are also
listed in table 2.

Table 2: Measured and calculated trap frequencies of optical dipole trap

Laser power 〈ωz〉 ωz 〈ωρ〉 ωρ

9.3 mW 2π · 18.1 Hz 2π · 20.6 Hz 2π · 1207.0 Hz 2π · 927.8 Hz
13.8 mW 2π · 27.4 Hz 2π · 25.1 Hz 2π · 1516.7 Hz 2π · 1130.1 Hz
19.0 mW 2π · 28.0 Hz 2π · 29.4 Hz 2π · 2099.0 Hz 2π · 1326.1 Hz
24.6 mW 2π · 30.4 Hz 2π · 33.5 Hz 2π · 1641.3 Hz 2π · 1508.9 Hz

For a part of the images, the optical density of the condensate is low enough
to determine the number of atoms. At 9.3 mW and 13.8 mW this was the case
after 8 ms TOF, whilst for 19.0 mW and 24.6 mW the atoms could be counted
after 4 ms TOF. Table 3 lists the average number of atoms over these images.

Table 3: Average number of atoms in dipole trap

Laser power 〈N〉
9.3 mW 1.35 · 106

13.8 mW 1.59 · 106

19.0 mW 4.15 · 105

24.6 mW 3.72 · 105
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4.4 Discussion

The axial trap frequencies determined from the BEC expansion measurements
correspond well to the theoretical values for the optical dipole trap (Table 2).
The values found for the radial trap frequencies, however, are higher than ex-
pected. One possible explanation for this is the fringe pattern that we see in
the BEC during expansion. In the images of P=9.3 mW in Appendix A, we
clearly see a fringe pattern emerging at TOF=2 ms. This pattern is visible at
all laser powers and remains during the entire expansion, possibly accelerating
the expansion in the radial direction. The origin of these fringes are suspected
to be the inward flow of atoms from both ’ends’ of the dipole trap interfering
and forming the pattern. A slower transfer from the MT to the dipole trap had
no effect in reducing the effects of this fringe pattern.
The number of atoms in the trap seems to decrease when the laser power is
increased (Table 3). This can be explained by increasing three-body losses at
higher intensities. The decreasing number of atoms in turn explain why the
chemical potential of the condensate does not increase for higher laser powers.
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5 Scanned Trap

Section 5.1 introduces the scanning method. The optimization algorithm is
explained in section 5.2, followed by the results in section 5.3. These results are
discussed in section 5.4.

5.1 Scanning

By rapidly scanning the focus, we attempt to create a uniform sheet potential.
We do this by scanning over 15 points with ∼150 mW of laser power, with a
spacing between the points of approximately 0.7·w0. With a scanning frequency
of 20 kHz, the atoms see a time-averaged potential. The scanned trap is imaged
on the camera with the folding mirror. When we set the AOM amplitude
constant at the maximum value and scan the frequency from 60 to 110 MHz,
we observe the image shown in figure 7 on the camera.

Figure 7: Camera image of scanned focus at constant amplitude

The width of the scan is approximately 30 pixels, which is equal to 112.5 µm
≈ 10 · w0. If we make a cut through pixel-row 186, we see the intensity profile
shown in figure 8.
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Figure 8: Intensity profile of pixel-row 186

5.2 Optimization

To create a quasi-2D sheet of BEC atoms, we have to create a homogeneous
potential. This will obviously not work with a constant amplitude, as the AOM
efficiency decreases as the deflection angle increases. We compensate this effi-
ciency loss by increasing the AOM amplitude for larger deflection angles and
lowering the amplitude in the center of the scan. As a starting point, we take
an image of each of the 15 individual points in the scan. Figure 9 shows the
result of this at a constant amplitude.

Figure 9: Individual scanning points at maximum amplitude
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An algorithm fits a Gaussian to each of these points to determine the position
of each of the peaks. The algorithm tries to create a flat potential by moving
the peaks (with a limit of 1 pixel in each direction) and changing the amplitude.
The first iteration of this algorithm is shown in figure 10. The red dots indicate
the intensity on the pixels of the camera before the optimization. The black dots
are the new intensities on the pixels and the black curves are the Gaussian fits
to the corrected amplitudes at the newly chosen positions. These black curves
add up to the red line. So the algorithm tries to put the black dots on the red
line, optimizing the flatness of the sheet potential.

Figure 10: First iteration of the optimization algorithm. Red dots indicate the inten-
sity on the camera pixels before optimization, the black dots after optimization. The
black curves are Gaussian fits to the new peaks at the new positions. The red line is
the sum of these black curves.

After roughly 10-15 iterations, the algorithm fails to improve the potential fur-
ther. The amplitude and frequency configuration of each iteration is saved, so
we can choose the best configuration and reload it in the arbitrary waveform
generators. If we for instance reload the 13th iteration, which is shown in figure
11, we have a resulting line intensity on the camera shown in figure 12.
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Figure 11: 13th iteration of the optimization algorithm.

Figure 12: Line intensity on camera using the 13th iteration of the optimization
algorithm.

The intensity variations are still on the order of ∼5%, which is too large for a
smooth potential. The BEC will therefore spread in the individual peaks of the
potential. To see what the result of such a potential is on a BEC, we used the
- relatively flat - configuration iteration shown in figure 13 and imaged this on
the atoms.
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Figure 13: Configuration used on the BEC in images 14 and 15.

5.3 Results

Figures 14 and 15 show images of a BEC in the scanned dipole trap. In figure
14 the MT was switched off for 20 ms before taking the image, whilst in figure
15 it was off for 150 ms before taking the image.

Figure 14: BEC in scanned optical dipole trap 20 ms after switching off the MT
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Figure 15: BEC in scanned optical dipole trap 150 ms after switching off the MT

5.4 Discussion

As seen in chapter 4, the trap frequencies are sufficient to trap a BEC. We
furthermore see that both the width and speed of the scan are sufficient to
create a wide quasi-2D sheet of BEC atoms. But due to a too large variation in
the intensity profile of the sheet potential, the BEC will not distribute evenly
throughout the potential. The optimization algorithm fails to find a set of
scanning amplitudes and frequencies that will result in a uniform potential.
Possible improvements to achieve a quasi-2D BEC are discussed in chapter 6.
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6 Conclusion & Outlook

We are able to repeatedly trap and hold BECs in the stationairy optical dipole
trap. The trap frequencies determined by expanding these BECs from the trap
correspond well to theoretical predictions. The measured radial trap frequencies
are slightly higher than the calculated values. This might be explained by the
observed fringe pattern in the expanding BEC. A slower transfer from the MT
to the dipole trap did not resolve this fringe pattern.

By scanning the AOM frequency, we attempted to create a uniform sheet po-
tential. The scanning is fast enough and reaches a width of ∼ 10 ·w0. We have
more than enough laser power to scan over the number of points necessary to
create a flat potential, which is already shown in Ref [8]. However, the sheet
trap has too large intensity variations to create an evenly distributed quasi-2D
BEC.

More measurements are needed to explain the fringe pattern that appears in
the expanding BEC. There might be a way to prevent these fringes in the BEC
when the cause is known. This would enable a more accurate characterization
of the dipole trap. The cause of these fringes might also interfere with the op-
timization of the sheet potential.

Currently, the optimization algorithm of the scan is altered in order to decrease
the variations in the intensity profile. There is also room for improvement in
the beam quality. The M2 values are close to 1, but can be further decreased
to improve the Gaussian beam profile. Another possible improvement is to
compensate for the astigmatism that results from the birefringent crystal in the
AOM with a cylindrical lens.
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A Appendix

A.1 Time-Of-Flight expansion of BEC’s

TOF=0 ms, P=9.3 mW TOF=0 ms, P=13.8 mW TOF=0 ms, P=19.0 mW TOF=0 ms, P=24.6 mW

TOF=1 ms, P=9.3 mW TOF=1 ms, P=13.8 mW TOF=1 ms, P=19.0 mW TOF=1 ms, P=24.6 mW

TOF=2 ms, P=9.3 mW TOF=2 ms, P=13.8 mW TOF=2 ms, P=19.0 mW TOF=2 ms, P=24.6 mW

TOF=4 ms, P=9.3 mW TOF=4 ms, P=13.8 mW TOF=4 ms, P=19.0 mW TOF=4 ms, P=24.6 mW
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TOF=6 ms, P=9.3 mW TOF=6 ms, P=13.8 mW TOF=6 ms, P=19.0 mW TOF=6 ms, P=24.6 mW

TOF=8 ms, P=9.3 mW TOF=8 ms, P=13.8 mW TOF=8 ms, P=19.0 mW TOF=8 ms, P=24.6 mW

TOF=12 ms, P=9.3 mW TOF=12 ms, P=13.8 mW TOF=12 ms, P=19.0 mW TOF=12 ms, P=24.6 mW

TOF=16 ms, P=9.3 mW TOF=16 ms, P=13.8 mW TOF=16 ms, P=19.0 mW TOF=16 ms, P=24.6 mW
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TOF=24 ms, P=9.3 mW TOF=24 ms, P=13.8 mW TOF=24 ms, P=19.0 mW

TOF=32 ms, P=9.3 mW TOF=32 ms, P=13.8 mW TOF=32 ms, P=19.0 mW
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A.2 Measurements above the transition temperature

A.2.1 Temperature

To further investigate the behavior of the optical trap, images were taken of the
expansion of a thermal cloud above the BEC transition temperature. This was
done at laser powers of 155 mW, 233 mW, 326 mW, 424 mW and 521 mW.
The images were taken after a TOF interval of 0 ms, 3 ms, 6 ms, 9 ms, 12 ms
and 15 ms after turning off the optical trap. By fitting a Gaussian distribution,
the radius of the thermal cloud in the radial direction was determined. The
temperature of the thermal cloud was calculated by fitting the following equation
[5]:

σx(t) =

√
σ2
x,0 +

KBT

m
t2, (18)

with σx(t) the radius at a TOF time t, σx0 the radius at TOF = 0 (a free pa-
rameter in the fit) and T the temperature. The results of these measurements
are found in figures 16.1 - 16.5, the resulting temperatures as function of laser
power are found in figure 16.6.

16.1) σx as function of TOF for P=155 mW 16.2) σx as function of TOF for P=233 mW
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16.3) σx as function of TOF for P=326 mW 16.4) σx as function of TOF for P=424 mW

16.5) σx as function of TOF for P=521 mW 16.6) Temperature T as function of laser power

As the number of particles in the trap increases for higher powers, the measured
width in the radial direction also increases. We also note that σx(t) is smaller
than the waist size w0. This is due to the atoms being trapped in the bottom
of the potential, having a small radial and axial extension compared to the trap
dimensions.
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A.2.2 Number of particles

Figures 17.1 - 17.5 show the number of atoms as function of the time-of-flight
(TOF). Figures 17.6 and 17.7 show the number of atoms as function of laser
power at TOF=0 ms and TOF=12 ms. We see that the number of particles
in the trap at TOF=0 ms increases when the laser power is increased, but at
TOF=12 ms we are left with fewer particles if we increase the laser power. The
number of trapped atoms is larger for higher laser powers, but they are lost
faster in the expansion. This can be explained by the increase of three-body
losses at higher intensities.

17.1) Number of atoms as function of TOF for P=155 mW 17.2) Number of atoms as function of TOF for P=233 mW

17.3) Number of atoms as function of TOF for P=326 mW 17.4) Number of atoms as function of TOF for P=424 mW
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17.5) Number of atoms as function of TOF for P=521 mW 17.6) Number of atoms as function of power at TOF=0 ms

17.7) Number of atoms as function of power at TOF=12 ms
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