
Association rules for grammar inference

Alejandro Barredo Arrieta

21st June 2018

1 Introduction
In the last ten-twenty years, grammar inference has become an important topic for AI research as a path to
explore natural language processing as opposed to linguistics. The aim is to extract the rules of a grammar
from examples of the language, allowing to generalize the underlying rules and unveiling its use for language
correction and understanding.

Picture the moment in which a machine is able to tell us if a sentence is correct from every perspective
(orthographically, grammatically and within the context). Such an ability could empower machines with the
task of "teaching" (helping self teaching humans) with the arduous job of learning a new language or even
improving their own by allowing a continuous feedback over what the user writes, without the need of another
human. Another beautiful use of this kind of knowledge could be the improvement of automatic text readers
that extract information. It could upgrade such information by means of a more thorough knowledge of what
and how it is written. Language may be natural or not, but this research focuses on natural languages because
of the complexity they convey. However, inference techniques can be used to extract the grammar rules from
synthetic communication protocols as well. There are many language (grammar) acquisition theories that focus
on empirical observations, trying to answer how children learn their surrounding grammar based on the small
set of sentences they have listened to. Although this seems to be a very interesting path to follow, it reduces
the possibilities brought to us by the Internet and big data.

Employing huge amounts of data may work on our behalf, allowing the implementation of broadly less com-
plex algorithms to achieve the same results. Furthermore, humans tend to understand the concepts represented
by words in a communication environment, i.e. a door is a noun, and this may be encoded into the algorithm
easing its job of inferring such syntactic categories. However this may not be useful in every application, since it
demands a thorough understanding of the language being used before hand. Another issue that may be argued
is the lack of understanding that algorithms have compared to humans, the ability of introducing such knowl-
edge into the code could be the way to go. However, there is much discussion around the ability of computers
to include semantics, since they are just symbol manipulators. Although in this situation the machine is not
intended to understand, but to have some model that represents what humans call semantics.

Prior to start discussing the research that we will be looking at to steer our own, the different categories where
languages could be located must be mentioned. Languages can be built from regular or context-free grammars,
the former is linearly regular and has a finite alphabet along with a maximum length for its sentences, contrarily,
the later is formed by an infinite set of symbols (alphabet) and it is not linearly regular. There has been a
heated discussion around the context-freeness of natural language grammars since the 70s. Furthermore, the
invention of context free grammars ([Cho02]) was an attempt to categorize natural language grammars but it
has not lived up to its purpose. In our study, we will be treating written natural language as a regular grammar
thank to the work done in [Shi85] to dissolve the discussion around it, since nothing has been said after it to
place natural languages as context-free languages.

The most common feature present in the majority of the studies involves the construction of a DFA (Deter-
ministic Finite state Automata) as the central issue. There have been many different attempts to build such
DFAs and many give good results under some circumstances. Some of the approaches come from the use of
Genetic algorithms as the main tool to build the DFA, others use Neural Networks to achieve the job while
there are other that used recursive algorithms based on machine learning concepts. Another common procedure
shown in the studies is the use of positive and negative examples in order to build up that DFA. However,
there is some discussion about the type of examples needed to build a good DFA (minimum state DFA or
canonical DFA). This article covers the steps and concepts found in the literature and tries to sketch a different
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perspective to tackle the issues. In the second section, the concepts and terminology needed for understanding
the techniques are presented. In section 3, the techniques known to be somehow successful are shown. In section
4, the sketch of the idea proposed is explained. In section 5, the reasons to consider such a proposal a promising
one are explored. In section 6, the results are discussed and finally in section 7 conclusions are shown.

2 Terminology and concepts
The syntax of a language is usually ruled by the grammar laws involved in such language. These rules along
with the available dictionary are the ones in charge of creating correct sentences within the language. Grammar
inference is the tool used to infer such rules from the use of the language itself. It is usually defined as the
process of learning a target grammar from a set of labeled examples (sentences). The task of grammar inference
is usually modeled as the induction of an automata that respects the underlying rules of the language.

2.1 Regular grammar inference
Given a finite set of positive examples and a finite (possibly empty) set of negative examples of sentences that
belong to the target language, find the regular grammar G∗ that is equivalent to the target grammar G. There
are different ways to represent a regular grammar, this choice comes as a design point. It can be represented as a
set of production rules, a regular expression, a deterministic finite state automaton (DFA) or a non-deterministic
finite state automaton (NFA). Most of the related studies have chosen DFAs as the representational structure
due to its powerful characteristics: they are easy to understand, there exists a unique minimum state DFA
corresponding to any regular grammar, there exist efficient polynomial algorithms for operations with DFAs
(minimization, equivalence testing, inclusion testing ...), and are easily implementable in the hardware world.

2.2 Formal grammars
A formal grammar is a 4-tuple G = (VN , VT , P, S) where VN is the set of non-terminals, VT is the set of
terminals, P is the set of rules and S ∈ VN is a special symbol called start symbol. The production rules are of
the form α→ β where α, β are sentences over the alphabet (VN ∪VT ) and α contains at least one non-terminal.
Valid sentences of the language are sequences of terminal symbols VT and are obtained by repeatedly applying
the production rules as it is covered next. To summarize, a formal grammar is a set of rules to create strings.
When writing a new sentence, it starts by adding a start symbol. Then applying the rules of the grammar
more symbols are added until a non-terminal is placed. Every sentence that can be formed like this conform
the language of the grammar.

2.3 Lattice of partitions
During the article, a lattice of partitions of possible DFA is mentioned. Such lattice is formed as follows. First
the Maximal canonical automaton (MCA) is built from the set of positive examples available to the learner. A
maximal canonical automaton is a DFA that accepts every string in the positive set and no other. This MCA
allows for a path from a start state to an accepting state for every sentence in the set.
The lattice of possible grammars is built by merging the states of this MCA forming partitions. Each partition
is an element of the lattice. The language represented by any of these partitions is a superset of the language
of the positive set. Hence, successive merging generates more general languages.
Each element of the lattice corresponds to a FSA constructed by taking as states those cells found in the
partition. Then, the start state is the same as that from the MS+ . The accepting states are those that contain
one or more accepting states of MS+ . The alphabet is the same as in the sample set and the transition function
is defined on the basis of the transitions in MS+ . The lattice of possible grammars is ordered by the grammar
cover relation, meaning that each grammar that follows another into a higher level contains its predecessor.
The more specific or equal (MSE) test can be performed easily by just comparing the cells in the partitions.
The image shown in 1 tries to illustrate the concept of a lattice of partitions from a four element set. In the
image, coarser partitions are linked to finer ones by lines going down.
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Figure 1: Lattice of partitions

2.4 Inference of Context Free Grammars
Context Free Grammars (CGF) represent the next level of abstraction after regular grammars in the Chomsky
hierarchy of formal grammars. A CGF is a formal language grammar G = (VN , VT , P, S) where the production
rules are of the form: A → α where A ∈ VN and α ∈ (VT ∪ VN )∗. Most work in inference of context free
grammars has focused on learning the standardized Chomsky Normal form (CNF) of CFG in which the rules
are of the form A → BC or A → a where A,B,C ∈ VN and a ∈ VT . The example grammar for simple
declarative English language sentences is in CNF. Given a CFG G and a string α ∈ V ∗

T we are interested in
determining whether or not α is generated by the rules of G and if so, how it is derived.
A parse tree graphically depicts how a particular string is derived from the rules of the grammar. The non-leaf
nodes of a parse tree represent the non-terminal symbols. The root of each sub-tree together with its children
(in order from left to right) represents a single production rule. Parse trees provide useful information about
the structure of the string or the way it is interpreted. Often, in learning context free grammars, parse trees
obtained from example sentences are provided to the learner. Parse trees simplify the induction task since they
provide the learner with the necessary components of the structure of the target grammar.
The theoretical limitations that concern regular grammar inference also relate to context free grammar inference
since the set of regular grammars is included in the set of context free grammars.

2.5 Finite State Automata
A deterministic finite state automata is a quintuple A = (Q, δ,Σ, q0, F ) where, Q is a finite set of states, Σ is a
finite alphabet, q0 ∈ Q is the start state, F ⊆ Q is the set of accepting states, and δ is the transition function:
Q×Σ→ Q. δ(q, a) denotes the state reached when the DFA in state q reads the input letter a. A state d0 ∈ Q
such that ∀a ∈ Σ, δ(d0, a) = d0 is called a dead state. The extension of δ to handle input strings (concatenations
of symbols in Σ)is standard and is denoted by δ∗.δ ∗ (q, α)denotes the state reached from q upon reading the
string α. A string α is said to be accepted by a DFA if δ ∗ (q0, α) ∈ F . Strings accepted by the DFA are said to
be positive examples of the language of the DFA. The set of all strings accepted by the DFA A is its language,
L(A). On the contrary, strings not accepted by the DFA are negative examples of the language of the DFA.
The language of the DFA is called a regular language. DFA can be represented by state transition diagrams.
A non deterministic state automaton (NFA) is defined just like the DFA except that the transition function
maps values from Q× Σ→ 2Q, this is, the resulting state after a certain input letter can be more than one.
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Regular grammar inference is a hard problem in that regular grammars cannot be correctly identified from
positive examples alone [Gol67]. Furthermore, it has been shown that there exists no efficient learning algorithm
for identifying the minimum state DFA that is consistent with an arbitrary set of positive and negative examples
[Gol78]. Efficient algorithms for identification of DFA assume that additional information is provided to the
learner. This information is typically in the form of a set of examples S that satisfies certain properties or a
knowledgeable teachers responses to queries posed by the learner. To exemplify the concept of a deterministic
finite state automata the next figure shows the diagram of a simple DFA where we see that from an state, under
a certain input, there is only a deterministic change of states that happens.

Figure 2: Deterministic finite state automata

2.6 Stochastic Finite State Automata
A stochastic finite state automaton SFA is defined as A = (Q,Σ, q0, π) where Q is the finite set of N states
(numbered q0, q1, q2, ..., qN−1), Σ is the finite alphabet, q0 is the start state, and π is the set of probability
matrices. pij(a) is the probability of transition from state qi to qj on observing the symbol a of the alphabet. A
vector of N elements πf represents the probability that each state is an accepting state. The language generated
by a SFA is called a stochastic regular language and is defined as L(A) = ω ∈ Σ∗|p(ω) 6= 0, the set of sentences
that have non-zero probability of being accepted by the SFA. If we compare this automata with the one before,
the difference is that this time the state changing is managed by a probability distribution as shown in figure 3.

Figure 3: Stochastic Finite State Automata

2.7 Hidden Markov Models
Hidden Markov Models (HMM) are the widely used generalizations of stochastic finite state automata where
both the state transitions and the output symbols are governed by probability distributions. HMMs have been
successful in speech recognition and cryptography. Formally a HMM is comprised of a finite set of states
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Q, a finite alphabet Σ, a state transition probability matrix A (NxN), where aij represents the probability
of reaching state qj from the state qi, an observation symbol probability matrix B (NxN) where Bij is the
probability of observing the symbol σj in the state qi and the initial state probability matrix π (Nx1) where
πi is the probability of the model for starting in state qi. In comparison with SFAs, the symbols in HMMs are
associated with individual states and not with transitions. HMMs satisfy the Markovian property which states
that the probability of the model being in a particular state at any given time depends only on the state it was
in at the previous instant. Further, since each symbol is associated with possibly several different states, given
a particular symbol is not possible to directly determine the state that generated it. It is for this reason that
these Markov Models are referred to as hidden. The probabilistic nature of HMMs makes them suitable for
their use in processing temporal sequences. For example, in the case of speech recognition, a separate HMM
is created to model each word of the vocabulary. Given an observed sequence of sounds, one then determines
the most likely path of the sequence through each model and selects the word associated with the most likely
HMM. As before, we try to exemplify a HMM with the figure 4.

Figure 4: Hidden Markov Model

2.8 Search Space
Regular grammar inference can be formulated as a search problem in the space of all finite state automata
(FSA). Clearly, the space of all FSA is infinite. One way to restrict the search space is to map a set of positive
examples of he target DFA to a lattice of FSA which is constructed as follows [PC78]. Initially, the set of
positive examples is used to define a prefix tree automaton (PTA). The PTA is a DFA with separated paths
from the start state leading to an accepting state for each string in S+. The PTA accepts only sentences in
S+. Hence the lattice is the set of all partitions of the set of states of the PTA together with a relation that
establishes a partial order on the elements. Each element on the lattice is called a quotient automaton and is
constructed by merging together the states that belong to the same block of the partition. Then the universal
DFA is obtained by merging all the states of the PTA into a single state that is the most general element of the
lattice. General procedures start with either the PTA or the universal DFA and use search operators such as
state merging and state splitting to generate new elements within the search space.
By mapping the positive examples to a lattice of FSA, we reduce the search space into a finite space. Only if
the set of positive examples is structurally complete, we can assure that the minimum state DFA equivalent to
the target is included in the lattice.
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2.9 Version Space
A version space can be defined to be the set of all generalizations consistent with a given set of instances. This
is just a set, with no other structure and no associated algorithm. However, a version space strategy is also
a particular induction technique, based on a compact way of representing the version space. The central idea
of the version space strategy is that the space of generalizations defined by the representation language can be
partially ordered by generality. In other words, an algorithm that follows a version space strategy is one that
checks a set of previously formed hypotheses by means of positive and negative examples.

3 Known techniques for Regular grammar inference
This section covers the known techniques available in the literature to infer regular grammars from languages.
Different approaches to tackle the problem are presented, such as: Search problems, Membership query based
algorithms and Neural network based algorithms.
First of all, two higher order groups should be differentiated: approaches to infer regular grammars and methods
to infer context-free grammars. Subsections 3.1 to 3.5 cover those algorithms related with regular grammar
retrieval, leaving the rest for context-free grammars. However, between the first 5 algorithms that are mentioned
we encounter another two clear subgroups. One that intends to include some type of "knowledge" (symbolic
approach) into the algorithm by means of a teacher to which the learner can pose questions. The other type
uses a more obscure approach in which the algorithm includes no knowledge whatsoever.
The former methods are presented in the first two subsections, the later techniques are covered in the last
three subsections. The first method presented uses a well know technique for maximum descriptive subgroup
discovery exported to grammar inference by building two starting states, one allowing everything in the available
examples and the other none. Then it is refined until they reach a result that matches both states. The second
method is based on the hypothesis testing approach. The algorithm is able to create hypotheses and the teacher
is able to refute or approve them. The last three methods of the first group (regular grammars) cover the aspect
of using genetic algorithms, recurrent neural networks and and ordered depth first search through the lattice of
partitions available. The last subgroup referring to context-free grammars is not clearly divided into the same
two groups as the previous approaches. All of the techniques shown for context-free grammars follow the second
group of the regular grammar techniques that have been already introduced, those not including knowledge in
the algorithm.

3.1 Bi-directional Search using Membership queries
This method [PH93][PH96] assumes that a structurally complete set of positive examples is presented to the
learner along with a teacher that can answer membership queries (whether a sentence corresponds to the target
grammar). The lattice is represented using two sets of finite state automata. One is a set (S) of the most
specific FSA which is initialized to the PTA. The other is a set (G) of the most general FSA which is initialized
to the universal DFA obtained by merging all the states of the PTA. This representation is gradually refined by
eliminating those elements of the lattice that are found to be inconsistent with the observed data. At each step
two automata (one from each set) are selected and compared for equivalence. If they are not equivalent, the
shortest string proposed by one of the automaton but not the other is shown to the teacher. If the response of the
teacher is negative, the FSAs in S that accept such sentence are removed from the set, and the FSAs in G that
accept the sentence are specialized by splitting their states until the FSA does not accept the sentence. Overall,
the membership queries serve their purpose to generalize the elements in S and specialize the elements in G,
bringing them closer together. Although this method guarantees convergence, the speed of such convergence is
not fixed and in a worst case scenario can be exponential in the size of the PTA. However, the authors mentioned
in this section also propose a iterative algorithm to overcome the unavailability of structurally complete sets of
positive examples in "real life" induction learning contexts. In this case, they follow the same idea as before but,
each time the learner finds no member to be discarded, the teacher proposes new examples. With these new
examples the learner needs to update the lattice and restart the process of candidate elimination. Whenever the
example set represents a structurally complete set of examples, the iterative aspect of the algorithm is ended.
Algorithm

1. Set S = P0 and G = PEm−1.

2. While there exists an element Pi ∈ S and Pj ∈ G such that the corresponding FSA Mi 6= Mj pick the
shortest string ∈ L(Mi − Mj) or L(Mj − Mi) and pose the query y ∈ L(G)? Based on the teacher’s
response modify Θ as described below.
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3. Return the FSA corresponding to the partition to which the search of the lattice (Ω) converges

Candidate Elimination

1. If y is a positive example:

(a) Remove any Partition Pk ∈ G for which the corresponding FSA Mk rejects y.

(b) Minimally generalize any partition Pl ∈ S if Ml does not accept y till the FSA corresponding to the
generalization accepts y. Retain only those partitions in S that are MSE some partition in G.

(c) Remove any element from S that is MGE some other element in S.

2. If y is a negative example

(a) Remove any partition Pk ∈ S for which the corresponding FSA Mk accepts y.

(b) Minimally specialize any partition Pl ∈ G if Ml accepts y till the FSA corresponding to the spe-
cializations do not accept y. Reatin only those partitions in G that are MGE some partition in
S.

(c) Remove any element from G that is MSE some other element in G.

3.2 The L* Algorithm
Similar to the method shown before, this one also uses a teacher that allows the algorithm to evaluate queries
and check for grammar equivalences. The L∗ algorithm infers a minimum state DFA corresponding to the
target with the help of a minimally adequate teacher [Ang87]. The authors present in this paper the concept of
minimally adequate teacher. Such a teacher conveys two abilities. One is the capacity to answer a membership
query with a yes or no (MEMBER()). The other is the ability to answer a conjecture describing a a regular set.
The Teacher has to be able to evaluate the equivalence between the regular set and the unknown language and
give a counterexample if it is not.
Unlike the approaches described so far the L∗ algorithm does not search a lattice of FSA. Instead it constructs
a hypothesis DFA by posing membership queries to the teacher. The learner maintains a table where the rows
correspond to the states of the hypothesis DFA and the columns correspond to suffix strings that distinguish
between pairs of distinct states of the hypothesis. In the table, each state is labeled by the string that led to
such state. The start state is always labeled with λ and the states reached from these start states are labeled in
alphabetical order (a, b, c...). The column label is used to map the states that would be reached from such states
after reading the label of the column. Membership queries are composed by chaining row labels and column
labels. The intersection cells are numbered with a one or a zero representing the acceptance of such a string.
States are presumed to be equivalent whenever all the entries for their corresponding rows are identical. When
facing two states are not equivalent because of a symbol, the table is enlarged adding a column to distinguish
the two states. If the learner is not able to further distinguish any two states, it poses a equivalence query to
the teacher to test if the hypothesis is equivalent to the target grammar. If the answer is yes, the learner returns
the current hypothesis as the result. However, when the teacher answers no, it also provides a counterexample
that is accepted by the target DFA and not by the hypothesis or vice-versa. This addition modifies the columns
and rows of the learner, producing a new process of membership queries and specification followed by another
equivalence query. Such process will continue until the teacher responds with a yes to the equivalence test.
Algorithm

1. Initialize S and E to λ

2. Ask membership queries for λ and each a ∈ A.

3. Construct the initial observation table (S,E,T).

Repeat

4. While(S,E,T) is not closed or not consistent:

(a) If (S,E,T) is not consistent

• find s1 and s2 in S, a ∈ A, and e ∈ E s.t.
• row(s1) = row(s2) and T(s1 · a · e) 6= T (s2 · a · e)
• add a · e to E.
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• extend T to (S ∪ S ·A) · E using membership queries.

(b) If(S,E,T) is not closed.

• find s1 ∈ S and a ∈ A s.t.
• row(s1 · a) is different from row(s) for all s ∈ S,
• extend T to (S ∪ S ·A) · E using membership queries.

5. Once (S,E,T) is closed and consistent, let M = M(S,E,T)

6. Make the conjecture M

7. if the Teacher replies with a counterexample t, then

• add t and all its prefixes to S

• extend T to (S ∪ S ·A) · E using membership queries.

Until the Teacher responds yes to the conjecture M

8. Halt and Output M

3.3 Randomized Search
As opposed to the previous ones, this technique falls into the second group mentioned in the description. It
does not contain knowledge. However, the transformation and operations done within the method had been
sculpted with knowledge about the problem. Genetic algorithms are also another approach to explore a search
space [Hol92]. They usually work by evolving a randomly generated population based on the survival of the
fittest principle of Darwinian evolution. A unique codification of the individuals in the search space is created
(chromosomes). A fitness function is designed to asses the quality of an individual. In each generation, a
selection of individuals is taken based on some model (the fittest get to mate or randomly choose from the
population ...). Then, mating takes place using crossover functions designed to inherit the most important
features (fitness-wise) of the parents to their children (i.e. if some part of the chromosome of an individual is
highly rewarded by the fitness function, the crossover function should not try to change such part). Finally,
mutation functions can also be used to alter the chromosomes (mutations are small variations that are applied
to the individuals, thought for introducing some variation into an otherwise stable system with the intention of
exploring a bigger chunk of the search space).
[DMV94] The learner is given a set of positive and negative examples (S = S+∪S−). A PTA is constructed from
the positive examples. The initial population is a random selection of elements from the set of partitions of the
set of states of the PTA. Each element of the initial population is thus a quotient automaton belonging to the
lattice of FSA constructed from the PTA. The fitness function considers the number or states and the number
of mis-classifications in the S− as variables. In each generation a sub-population is randomly selected based
on their fitness for reproduction applying structural mutation and structural crossover. Structural mutation
involves randomly selecting an element from one of the existing blocks of the partition and randomly assigning
it to one of the other blocks or creating a new block. Structural crossover involves choosing one block at random
from each parent and both offspring inherit the block obtained by merging the selected ones. The remaining
blocks for the offspring are obtained by taking the difference of the blocks of the partitions corresponding to the
parents that were not chosen above with the common block inherited by both offspring. The offspring generated
are valid partitions belonging to the lattice. These are added to the original population. a fitness-proportionate
selection scheme that assigns high probability to individuals with higher fitness is used to randomly select the
population for the next generation.
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Figure 5: Genetic algorithm structure

3.4 Connectionist Methods
Following the previous approach this one also falls inside the non-knowledge group. Connectionist methods use
neural networks to infer grammars. Their power resides on their ability to work with much more smaller sets
and their scalability to bigger cases. Most connectionist language learning approaches specify the learning task
in classical terms, for example using an automaton to parse grammatically correct sentences of the language
and then implement these using a suitable neural network architecture such as recurrent neural networks RNN.
Connectionist methods train a NN to fit the example set and then they extract the DFA from the inner
structure generated in the neural network. As shown in [GCM+91], they exploit a recurrent neural network
to achieve results. The main characteristic distinguishing RNN from normal NNs is that the formers exhibit
a dynamic behavior. Their input neurons work in a sequential way instead of a simultaneous one capturing a
time dependent flow, as in sentences. Throughout their paper, they present a method to extract a DFA from
the inner structure of the RNN. Following the assumption that once the RNN has learnt the grammar, it has
also partitioned the state space into fairly well-separated distinct regions. To achieve the resulting DFA they
divide the neuron state space into q equal in size partitions, and each dimension of the partitioned state space
into q equal size partitions again so resulting in a qN equal N-dimensional volumes partitioning each neuron’s
state space. The paper, shows that there is a partition q such that, given a specific one of these partitions P0,
the locus of points in P0 will map under g into another locus that is completely contained within one other
single partition P1, and by repeating this process they manage to find the DFA inside the trained RNN.
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Figure 6: RNN Architecture

3.5 Ordered Depth-First Search with Backtracking
This technique is the last one related to regular grammar inference and it also goes along the lines of the last
method which did not have knowledge within the algorithm. The regular positive and negative inference RPNI
algorithm performs an ordered depth first search of the lattice guided by the set of negative examples S− and
in polynomial time identifies a DFA consistent with a given sample S = S+ ∪ S− [OG92]. Furthermore if S
happens to be a superset of a characteristic set for the target DFA, then the algorithm is guaranteed to return
a canonical representation of the target DFA. A characteristic set of examples S = S+ ∪ S− is such that S+

is structurally complete with respect to the target and S− prevents any two states of the PTA of S+ that are
not equivalent to each other from being merged together. The algorithm first constructs a PTA for S+. The
states of the PTA are numbered in standard order as follows: The set of strings that lead from the start state
to each individual state of the PTA is determined. The strings are sorted in lexicographic order. Each state is
numbered based on the position of the corresponding string in the sorted list. The algorithm initializes the PTA
to be the current solution and systematically merges the states of the PTA to identify a more general solution
that is consistent with S.

3.6 The Alergia Algorithm for Learning SFA
For the first method treating context-free grammars we have Alergia. [CO94] Carrasco and Oncina developed
this algorithm for inferring deterministic stochastic finite state automatas (DSFA). A DSFA is a SFA where for
each state qi ∈ Q and symbol a ∈ Σ exists at most one state qj such that pij(a) 6= 0. Alergia is based on a state
merging approach and is quite similar to the RPNI algorithm for inference of DFA. A prefix tree automaton
PTA is constructed from the given set of positive examples S+ and its states are numbered in standard order.
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The initial probabilities π and πf are computed based on the relative frequencies with which each state and
transition of the PTA is visited by the examples in S+. A quadratic loop merges the states of the PTA in order.
However unlike the RPNI algorithm where the states merged were controlled by a set of negative examples
S−, Alergia merges states that are considered to be similar in terms of their transition behavior (described by
the states reached from the current state) and their acceptance behavior (described by the number of positive
examples that terminate in the current state). The determination of similarity is statistical in nature and is
controlled by a parameter which ranges between 0 and 1. The probabilities π and πf are re-computed after
each state merge. The algorithm is guaranteed to converge to the target stochastic finite state automaton in
the limit when a complete sample is provided. The worst case of Alergia is cubic in the sum of the lengths of
examples in S+.

3.7 Bayesian Model Merging Strategy
Stolcke and Omohundro present a more general approach to the HMM learning problem. Their approach is
a Bayesian model merging strategy [SO94] which facilitates learning the HMM structure as well as the model
parameters from a given set of positive examples. The first step constructs an initial model comprising of
a unique path from the start state q1 to a final state qf for each string in the set of positive examples S+.
This is similar to the PTA constructed by the Alergia algorithm for learning SFA. The initial probabilities are
assigned as follows: The probability of entering the path corresponding to each string from the start state is
uniformly distributed. Within each path the probability of observing the particular symbol at each state and
the probability of taking the outgoing arc from the state are both set to 1. Next, a state merging procedure is
used to obtain a generalized model of the HMM. At each step the set of all possible state merges of the current
model Mi are considered and two states are chosen for merging, such that, the resulting model Mi maximizes
the posterior probability Pr(Mi+1|S+) of the data. By Bayes’s rule, Pr(Mi+1|S+) = Pr(Mi+1)Pr(S+|Mi+1).
Pr(Mi+1) represents the model’s prior probability. Simpler models have a higher prior probability. The data
likelihood Pr(S+|Mi+1) is determined using the Viterbi path for each string in S+. The state merging procedure
is stopped when no further state merge results in an increase in the posterior probability.

3.8 Learning CFG Version Spaces
VanLehn and Ball [VB87] proposed a version space based approach for learning CFG. Given a set of labeled
examples, a trivial grammar that accepts exactly the set of positive examples can be constructed. Again this is
similar to the PTA constructed by several regular grammar inference algorithms. A version space is defined as
the set of all possible generalizations of the trivial grammar that are consistent with the examples. Since the
set of grammars consistent with a given presentation is infinite it becomes necessary to restrict the grammars
included in the version space The reducedness bias restricts the version space to contain only reduced grammars
(i.e. grammars that are consistent with a given sentences but no proper subset of their rules is consistent
with the given sentences). A further problem in the case of CFG is that the more general than relationship
which determines if two grammars G1 and G2 are such that L(G1) ⊇ L(G2) is undecidable. This problem
is circumvented by denning a derivational version space (i.e. a version space based on unlabeled parse trees
constructed from positive sentences). The idea is to induce partitions on the unlabeled nonterminal nodes of
the parse trees. The derivational version space is a union of all the grammars obtained from the unlabeled parse
trees. FastCovers is an operation based on the partitions of the sets of nonterminals determines the partial order
among elements of the derivational version space. Then, each new positive example causes the version space
to expand by considering the new parse trees corresponding to the example. Each negative example causes the
grammars that accept the negative example to be eliminated from the version space. The FastCovers relation
which is a variant of the grammar covers property is used to prune those grammars in the version space that
covers the grammar accepting the negative example. This approach solves small induction problems completely
and provides an opportunity for incorporation of additional biases to make the learning tractable in the case of
larger problems.

3.9 NPDA with Genetic Search
Lankhorst [Lan95] presented a scheme for learning nondeterministic pushdown automata (NPDA) from labeled
examples using genetic search. Push down automata PDA are recognizing devices for the class of context free
grammars just as FSA are recognizing devices for regular grammars. A PDA comprises of a FSA and a stack.
The extra storage provided by the stack enables the PDA to recognize languages such as palindromes which
are beyond the capability of FSA. Lankhorst’s method encodes a fixed number of transitions of the PDA on
a single chromosome. Each chromosome is represented as a bit string of a fixed length. Standard mutation
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and crossover operators are used in the genetic algorithm. The fitness of each chromosome which represents a
NPDA is a function of three parameters training accuracy, correct prefix identification and residual stack size.
The training accuracy measures the fraction of the examples in the training set that are correctly classified.
PDA that are able to parse at least a part of the input string correctly are rewarded by the correct prefix
identification measure. A string is said to be accepted by a PDA if after reading the entire string either the
FSA is in an accepting state or the stack is empty. The residual stack size measure assigns higher fitness to
PDA that leave as few residual symbols on the stack as possible after reading the entire string.

3.10 Deterministic CFG with Connectionist Methods
Das et al. [DGS92] proposed an approach for learning deterministic context free grammars using recurrent
neural network push down automata (NNPDA). This model uses a recurrent neural network similar to the one
described before in conjunction with an external stack to learn a proper subset of deterministic context free
languages. Moisl [Moi92] adopted deterministic push down automata (DPDA) as adequate formal models for
general natural language processing (NLP). He showed how a simple recurrent neural network can be trained to
implement a finite state automaton which simulates the DPDA. Using a computer simulation of a parser for a
small fragment of the English language Moisl demonstrated that the recurrent neural network implementation
results in a NLP device that is broadly consistent with the requirements of a typical NLP system and has
desirable emergent properties. The NNPDA consists of a recurrent neural network integrated with an external
stack through a hybrid error function. It can be trained to simultaneously learn the state transition function
of the underlying push down automaton and the actions that are required to control the stack operation. In
addition to the input and state neurons the network maintains a group of read neurons to read the top of the
external stack and a single non-recurrent action neuron whose output identifies the stack action to be taken
(i.e. push pop or no-op). The complexity of this PDA model is reduced by making the following simplifying
assumptions. The input and stack alphabets are the same, the push operation places the current input symbol
on the top of the stack and transitions are disallowed. These restrictions limit the class of languages learnable
under this model to a finite subset of the class of deterministic context free languages. Third order recurrent
neural networks are used in this model where the weights modify a product of the current state, the current input
and the current top of stack to produce the new state and modify the stack. During training, input sequences
are presented one at a time and the activations are propagated until the end of the sequence is reached. This
NNPDA model is capable of learning simple context free languages such as anbn and parenthesis. However,
the learning task is computationally intensive. The algorithm does not converge for more non-trivial context
free languages as anbncbmam.

3.11 Stochastic CFG
The success of HMM in a variety of speech recognition tasks forces one to ask if the more powerful stochastic
context free grammars (SCFG) could be employed for speech recognition. The advantages of SCFG lie in
their ability to capture the embedded structure within the speech data and their superior predictive power in
comparison with regular grammars as measured by prediction entropy. The Inside-Outside [LY90] algorithm
can be used to estimate the free parameters of a SCFG. Given a set of positive training sentences and a SCFG
whose parameters are randomly initialized the inside-outside algorithm first computes the most probable parse
tree for each training sentence. The derivations are then used to reestimate the probabilities associated with
each rule and the procedure is repeated until no significant changes occur to the probability values. Prior to
invoking the inside-outside algorithm one must decide on some appropriate structure for the SCFG. Stolcke and
Omohundro’s Bayesian Model merging approach can be used for learning both the structure and the associated
parameters of the SCFG from a set of training sentences. This approach is analogous to the one for HMM
induction described earlier. New sentences are incorporated by adding a top level production from the start
symbol S. Model merging involves merging of nonterminals in the SCFG to produce a more general grammar
with fewer nonterminals and chunking of nonterminals where a sequence of nonterminals is abbreviated using
a new nonterminal. A powerful beam search which explores several relatively similar grammars in parallel is
used to search for the grammar with the highest a-posteriori model probability.
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4 Why is a new approach needed
There is mainly a reason that supports the approaches most people are taking to tackle grammar inference until
now. Automatas are incredibly good structures to be implemented in hardware and this can bridge the gap to
real time usability. However the inference of grammar rules from the actual symbols used in the language is
not as useful at it seems when facing natural language, since words have two different meanings in a sentence.
One is the grammatic meaning (syntactic function) and the other is the actual word meaning (semantic). Our
approach tries to use the former part of the symbols to extract the rules of the grammar, as opposed to the
previous techniques that used the later one to infer them. Keep in mind that we are not trying to supplant the
DFA approach but to change the way the rules for such DFA are obtained. Hence the process of deciding if a
sentence is part of the grammar could be the same as in the methods shown before. When in previous techniques
they tried to infer the rules, they could be having the same grammatic rules formed by different symbols ("el
caballo esta sentado"/"la perra esta de pie"), introducing a lot of redundancy in the final result. With our
approach this redundancy is deleted but the richness of different symbols will not be lost thank to the parallel
implementation of a graph containing the symbols that had appeared. Furthermore, the utilization of syntactic
rules will allow us to use much less complex methods to obtain the rules. To exemplify this, assume that in a
text of one thousand words, we have one hundred unique words. If we calculate all the word-wise combinations
for those 100 words, we reach the million permutations quite fast. However, by reducing that set to just 12
syntactic rules (if we consider just the first level of detail) then the combinations decrease a lot allowing for
much simpler methods as classical data mining techniques like association rules. The utilization of association
rules for grammar inference is the innovation brought by this study to the field of grammar inference. The
procedure is explained in the following sections.

5 Association Rules for regular grammar inference
As mentioned in the last section. This new approach to grammar inference comes hand in hand with the inclu-
sion of a syntactic translation of the language examples been used to infer the grammar.

This study falls into the category of symbolic AI since it does not center its functioning around an optimiza-
tion problem. The algorithm presented in this article makes use of a knowledge representation of the language
explored and a set of heuristic rules and procedures to apply that knowledge to a new sentence with the purpose
of correcting it.

For the knowledge representation, the algorithm includes for types of relations intended to mimic the inner
relations of the language observed. These for representations are formed by a graph for the function to word
relations, a cluster for the word-to-word relations, a forest to represent the structures explored and a set of
association rules to represent the generation rules of the language. These representations are populated by
exploring language examples (sentences) and then harvested while trying to correct a new sentence.

Following the representations, the algorithm is formed by five main parts that run sequentially. A first sec-
tion in charge of checking the existence of a structure, followed by the check for punctuations in the sentence,
followed by the gap retriever (gap is where the error is) and the gap corrector and finishing with the sentence
filler. These parts will be explained in depth further in the article.

In the next subsections the algorithm is explained by first reviewing the knowledge representation and then
reviewing the sentence corrector itself.

5.1 Knowledge representation
5.1.1 Graph

As previously mentioned, the graph is the model in charge of representing the function-to-word relations found
in the explored text. This model is based on a simple directed graph. Directed graphs [BJG08] are a set of
vertices connected by edges, where these edges have a direction associated with them. The graph we will be
using for the algorithm is a simple directed graph which implies that there will not be more than one edge
connecting two nodes and that no node will have a loop in it.
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The creation of the graph itself is quite straightforward. First, the terminal nodes are created which contain
the syntactic rules (12 for the first level). Then whenever a new word is presented to the algorithm, a new node
is created, this time connected to its terminal node (syntactic function) by means of a directed edge pointing
towards the word. Whenever an already seen word is presented to the algorithm, the node representing such
word is found and its edge is updated by adding a plus one to its weight. Apart from the edges linking syntactic
functions to words, there will also be edges between word nodes. Their direction will follow the flow of the
sentence.

This representation will allow us to build a syntactic translator that will be used on the first steps of the
algorithm when we need to retrieve the syntactic translation of the natural language sentence. Moreover, this
representation also models the distribution of appearance of a certain word. This distribution can be obtained
from the weights of the edges of the words. The edges can be used to show the distribution of the words of the
explored text, the distribution of words within a syntactic function, or in the case of words belonging to two
different syntactic functions, the distribution for that word within syntactic functions.

The figure below shows an example of a digraph created following the method explained after observing a
few sentences.

Figure 7: Graph of word-to-function relations

The graph shown in fig. 7 shows the word-to-function relations of a few sentences created by following the
method explained before.

5.1.2 Cluster

To complete the representation of the explored text a bit more, we created a model in charge of representing
the type of words that appear one after another. This model helps in the retrieval of words when we intend to
fill a gap with a word.

The cluster is represented programmatically as a two dimensional matrix with syntactic functions as rows and
columns. Then, in each of the cells of such matrix another two dimensional matrix is inserted. this new matrix
consists of three columns and as much rows as apparitions in the explored text. The indices of the cells are
the ones representing the syntactic functions of the two words in the cluster (column = first word, row = sec-
ond word). The third cell of the inner matrix is the syntactic function following the previously mentioned words.
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As with the graph, this representation is populated by exploring examples of the target language. Whenever a
word is found, its syntactic functions is retrieved, along with the syntactic function of its previous word. These
two functions point to a certain cell in the cluster. Then, inside that cell, a new row is created where the first
and second word are placed followed by the syntactic function of the next word in the example.

This representation is in charge of suggesting a word whenever the algorithm is trying to fill a sentence with
new words. In order to generate that suggestion, the algorithm tries to constraint as much as possible the
cluster’s output. This means, that we could ask for every word in the cluster maintaining that the first word
is a verb , the second is a noun and the third is an adjective. Furthermore, we can look for noun suggestions
that have "es" as the initial verb and followed the previous constraint. The figure below shows an example of
the population of such a knowledge model.

Figure 8: Matrix of word-wise relations

Fig. 8 shows a sample of the data the cluster stores after reading sentences.

5.1.3 Forest

As we introduced before, the next knowledge model included in the algorithm is based in a forest. This forest
holds the syntactic structures that have been found in the explored text.

A forest is built up of trees. A tree, in graph theory, is usually an undirected graph in which any two vertices
are connected by exactly one path. In this algorithm’s case, every tree is a rooted tree (directed graph) in which
all branches point away from the root itself. Hence, the root of each of the trees in this forest represents the
first symbol of the syntactic structure of one of the sentences found in the explored text. All these trees are
collected inside a forest that holds every syntactic structure found in the explored text.

This knowledge representation is the one the algorithm will check when trying to discover if a new presented
sentence has an allowed syntactic structure. This action falls inside the existence function that we will mention
further in the article. In order to be able to process every part of the existence function, the algorithm stores
two different forests, one retrieved from sentences in a froward manner (with common prefixes) and the other
retrieved from the sentences in a backward manner (with common suffixes).

As with the other representations, this one is filled in a quite straightforward manner. When exploring the
text, every time a new sentence is found, its syntactic structure is retrieved. This structure is then compared
with the ones in the forest. If the are no similar trees in the forest the structure is added as a tree to the forest.
However, if there is another tree that shares a prefix with the sentence been explored, the new sentence’s suffix
will be added to that tree as a branch that extends from the common prefix. The figure shown below shows an
example of the population of this representation.
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Figure 9: Forests to keep track of existing structures. (both forests represent the same three sentences)

Fig. 9 shows how three example structures are included in the forest showing both methods. One using
extension of an already existing tree and the other showing the inclusion of a brand new tree in the forest.

5.2 Association Rules
This representation is the most important one for our research. Although all of the previous ones are needed,
this way of representing the generation rules of the Spanish language is new in the field. As mentioned in
the introduction of this section, the feasibility of a method such as Association rules is due to the inclusion of
syntactic functions as the single unit of study as opposed to using just the word.
Before analyzing the method used to extract the syntactic rules, lets learn a bit about how syntactic functions
work in Spanish language.

5.2.1 Syntactic functions

In our research, the target language is written Spanish. As syntactical theory explains, sentences are not just
sequences of words set randomly. Sentences convey a meaning as a result of matching words to a certain order,
ruled by their syntactical meaning [BGR09].

Lets see, how the usual process of syntactic analysis works:
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Figure 10: Syntactic Analysis of a sentence

mod → Modifier det → Determinant pobj → Regime supplement
circ → Circumstantial complement subj → Subject cc → Coordination
case → Clitic relationship

Table 1: Meanings of the word relations in fig 10

As shown in fig. 10 the process of a syntactic analysis of a sentence, can be a bit tricky. However, the result
explains the task of each word in the sentence. As stated before, inferring the underlying pattern that a sentence
has is our primary goal, and to achieve so, let transform this typical syntactic analysis into a matrix. In order to
make this translation, we will not be using the actual relations between the words, but the syntactical function
of each of the words.

1 nada pronoun
2 haber verb
3 en preposition
4 el determinant
5 mundo noun
6 ,
7 ni conjunction
8 hombre noun
9 ni conjunction
10 diablo noun
11 ni conjunction
12 cosa noun
13 alguna adjetive indef.
14 ,
15 que conjunction
16 ser verb
17 para preposition
18 mí pronoun
19 tan adverb
20 sospechoso adjective
21 como adverb
22 el determinant
23 amor noun
24 ,
25 pues conjunction
26 este pronoun
27 penetrar verb
28 el determinant
29 alma noun
30 más adverb
31 que relative pronoun
32 cualquiera determinant
33 otro determinant
34 cosa noun

Table 2: Syntactic representation of the words (The third column represents an item in the database

Keep in mind that for the sake of simplicity in the research we used just the first level of syntactic functions
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in the Spanish language. This means that we have not included other eight levels of depth that would clearly
improve the accuracy of our model to what humans use.

5.2.2 Grammar generation rules

As we mentioned before, the grammar generation rules that we will try to obtain for this algorithm are in
essence association rules extracted from the data-set of sequences (sentences) of syntactic functions as shown
above.

Once we obtain the observed data set, a sequence mining algorithm will be used to extract, first frequent
item-sets and then, association rules from these frequent item-sets. First thing to note before attempting this
process is that the patterns we are trying to mine from such a data-set are sequences and no simple items in a
transaction. Hence, order relations are essential when mining sequences. There are many well know algorithms
to mine frequent sequences in Data Mining. In general sequence mining problems can be classified as string
mining which are typically based on string processing algorithms and item-set mining which are typically based
on association rule learning.

String mining, is usually considered as a problem in which a relatively limited alphabet is used but quite
long sequences are explored. Some well known algorithms for this purpose are GSP, FreeSpan, PrefixSpan, etc.
However, this algorithms do not allow for different size gaps on their public implementations. Hence, we decided
to use another approach to sequence mining introduced in [FVNN08]. This time the author introduced in the
algorithm the ability to modify the size of the gap needed to consider an item-set a sequence.

By using his implementation which is a variation of prefix span with time constraints, we tried to explore
different sizes of gaps with the intention of including relations in our knowledge representation that were not
just direct relations in the text. However, we did not manage to find anything that was useful for our research.

The utilization of the obtained association rules is not as straightforward as the usage of the previous models.
First we need to introduce the situation in which such association rules are used. Association rules are used
in this algorithm when the generation of a syntactic rule is needed to fill a sentence. For this purpose, we
pull from our representation of the grammar generation rules and retrieve a syntactic function that better fits
(ordered by confidence) our situation. Confidence in association rules is the rule set by the user when retrieving
them that represents the amount of times a rule has appeared against the amount of times its precedent has
appeared in the database. This means, the confidence of a rule of type X -> Y is the amount of times such
rule appears from the set of every sequence in which X appears with items following it. This been said, the
association rules retrieved in for this model will always follow that X -> Y structure, however, X and Y can be
sequences themselves and not only single items.

Whenever we are trying to guess a new syntactic structure for a slot in a sentence, we will be following these
steps: First, the size of the sequences of both sides of the error are measured and the biggest one is chosen.
Then, we look in the database for an association rule matching the biggest possible sequence of the selected
side of the error (ordered by confidence). When an association rule is found, the syntactic rule to fit the error
is generated and the new sentence is checked for existence. If the new sentence is correct, the process is ended.
If it is not correct, the next matching association rule is chosen to generate the syntactic rule. To choose from
a set of different size association rules, we will look first for the ones with bigger precedent and consequent.
Then, between rules of the same size, is the confidence that dictates the order of application. If none of the
association rules generates a function that leads to a correct sentence that sentence is taken to be impossible
to correct.

5.3 The Algorithm
The algorithm is composed by six inner sections that process different parts of the correction process. Each
of these six parts pulls information from one or many of the knowledge representations that we have already
mentioned to fulfill its task. The overall idea of the algorithm is shown in the following figure.
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Figure 11: Algorithm’s work-flow

As shown in the fig. 11, the first part of the algorithm is that of retrieving the syntactic translation of the
new sentence. This gives pass to the existence function to check if the sentence needs to be corrected. Then,
when the sentence is wrong, it is passed to the punctuation checker function to check for punctuations and call
the algorithm recursively for the cases in which we find more than one punctuation. Once we have assured that
the sentence left is a sentence with just one punctuation, we send the sentence to the gap retriever. The gap
retriever finds the error in the sentence by means of a process explained later and returns the obtained error
to the next function to correct it. Once it is corrected, the sentence then goes to the final step in which it is
refilled with new words to match the new functions introduced.

5.3.1 First part: Syntactic translation

As we stated over the article, this algorithm uses mainly syntactic functions to work with Spanish sentences.
Usually, written sentences are not in their syntactic form, thus a translation must be done to achieve what the
algorithm needs.

For this purpose, the algorithm has two methods to proceed. The first one is actually part of the algorithm,
the second one is a patch that is used sometimes until the explored text is big enough to have every word in
the vocabulary in it.

The first way of retrieving the syntactic translation of a sentence is by pulling information from the directed
graph we explained before. In order to achieve this, each time a word is found, we pull the parent of such word
in the algorithm (syntactic function). If the word is in two different syntactic functions, we first look if in the
previous and latter words we encounter similar syntactic functions in the graph, if we do, then that function is
the one chosen. If we do not find differences between the surrounding functions in any of the two words, then
we select a weighted random pick from both functions with the weights of the edges.
It is clear that it may happen that we do not have the word that must be translated due to the amount of text
we have explored in the knowledge creation phase of the algorithm. To solve that problem we use the second
method. In this second method we made use of the GCP (Google Cloud Platform) which has a natural language
API to retrieve many things from an inputted word or sentence as its syntactic tags. In the case we do not have
a certain word in the graph, that word’s syntactic function was retrieved by means of GCP and then inputted
to the graph as a new node with its connection to the syntactic function.
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This two methods can work together to avoid fails in the work-flow of the algorithm. Take note that when
it is said that the new word (translated by GCP) is included in the graph, it is only included as a single node
with its edge coming from the syntactic function. It will not be linked to any other word in the graph since
without the validation of that sentence been correct we cannot include the sentence in the graph.

5.3.2 Second part: Existence function

This second method of the algorithm receives a sentence in both forms as an input. What this method does
internally is quite simple. It only checks if the sentence exists in the knowledge retrieved from the explored
text. For that, it looks in the forest for a tree that is equal to that of the new sentence. This function can also
tell if the structure appears as a subtree of one of the trees in the forest.

To tell if a new structure is a subtree of an existing one, we only considered full subtrees from the start or
the end of the existing structure. This means that the algorithm only checks subtrees that are equal to a part
of the starting or the ending of an existing tree, and it does not look into the trees itself. The reason to do this
is that we look for prefix or suffixes that already exist in the forest and not random chunks in the trees. This
comes from the idea that if we have an error in a sentence, the left-most part of that sentence before the error,
or the right-most part of that sentence after the error can be seen as prefixes or suffixes in other sentences. To
achieve this we have the earlier mentioned two forests. The forward retrieved forest to check for prefixes and
the backward retrieved forest to check fro suffixes.

Figure 12: Existence function’s work-flow

As shown in the fig. 12, this function returns three outputs. It will return a one if the structure exists as a
whole tree in the forest, a minus one if it exists as a subtree in the forward or the backward forest. And a zero
if it does not exists as none of the two before.

5.3.3 Third part: Punctuation checker

To follow with the correction, we first check for the punctuations the sentence has. Any sentence must have a
mandatory punctuation that goes in the end of the sentence, but many times, we use punctuation to connect
different chunks of a sentence and that is way we include this method in the algorithm.

The combination of punctuations that we can include in a sentence and still be correct makes impossible for
the algorithm to have all those combinations as individual structures from the explored text. To avoid that, we
cut the sentences after those punctuations to check each chuck as a single sentence and group them together
in the end. To achieve that, this method includes recursivity, it calls the whole algorithm again, this time
inputting just the chunk it has retrieved from the original sentence as the new sentence.

5.3.4 Fourth part: Gap retriever

This fourth method of the algorithm is the one in charge of finding the error within the sentence. To approach
this problem we used the existence function again.
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We first create a matrix of two row vectors filled with zeros and the same length as the sentence to be
checked. The upper vector will contain the forward check and the vector in the bottom the backward check.
The forward and backward checks are the process of one by one inputting the subsentence (from the start/back
to a certain position) to the existence function and filling that position in the vector with the output of the
existence function.

Figure 13: Gap retriever’s work-flow

The fig. 13 shows the resulting matrix of a process like the one explained above. What the resulting matrix
tells us is which parts of the sentence we are trying to check actually exit as a prefix or suffix in the algorithm.
The minus ones represent that the subsentence from the closest side to that position is included as a prefix/suffix
in the algorithm. This matrix allows us to find the place in which the error resides. The part of the matrix in
which we find the zeros is where the error is. For now on, the error will be called the gap since is the gap of
non minus ones that we need to fill in order to correct the sentence.

5.3.5 Fifth part: Gap corrector

This method follows the gap retriever, and it tries to correct the gap by different means. Heuristically we came
to realize that errors were different based on the properties of the gap. A gap of a single space means that a
wrong word was put there, instead a bigger size error may imply that a combination of words were not correct
(order-wise) or that the error is actually a three word size error.

Based on the size of the error we treat it with three different methods. For errors of size one, we try to fill the
gap by simply pulling from association rules and getting the best matching association rule to fill it. If the new
sentence does not exist, we will use the next best matching association error and so on. Recall the method we
used to find the best matching association error form the section in which we explained them (association rules).
If the error is bigger that one but smaller that four, we first try to permute the words in the error to check if
there exists a permutation that does exist. If not, we follow by filling the error again with association rules.
Finally if the error is bigger than four, we directly fill it with association rules without attempting permutations.
The following diagram shows the scheme of the algorithm and its work-flow.

Figure 14: Gap corrector’s work-flow
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5.3.6 Sixth part: Is correct

The last part of the algorithm attempts to fill the corrected sentence with words where the new syntactic
functions have been put. For that, the algorithm retrieves the set of words from the cluster explained in the
previous section. From that cluster, the algorithm is able to generate a list of words that may go in a certain
position. These words are linked to the weights its edges have in the graph. In order to select a word for a
position, a weighted random guess is performed using as weights the edges of the words.

Figure 15: Is correct’s work-flow

6 Results
There is an inherent complication when assessing the performance of this type of algorithms (language related)
since language can be seen as correct in many aspects influenced by subjectivity. To tackle that problem, it has
been decided to create two test procedures, one in which subjectivity has been completely removed and another
in which just comprehensiveness is contemplated.

In this section we will start by discussing the data used for the experiments. Although the ideal situation
would be having uncountable published works as the input data from which the algorithm would acquired its
knowledge, that procedure on its own can be very difficult. In order to test our algorithm we decided to use
[TMR08] given to us by the University of Catalonia with sentences retrieved from published newspaper articles
in Spanish. Then we will follow with the in depth explanation of the examples and the results brought by
them to finish with the conclusions extracted from those results. The actual sentences used in the examples are
shown in the appendix with the intention of leaving the article easy to read and not having many pages with
just Spanish sentences and their corrections.

6.1 Data observation
Before starting to code the algorithm it is our diligent responsibility to check how well the database represents
the language at stake. Spanish language is a complex language in which rules reign over exceptions. At least,
maybe more than for other languages. That was one of our first premises to aboard this study. This sections
tries to summarize some simple statistics to describe the characteristics of the database [TMR08] we have.

Keep in mind that this database will never represent Spanish language as a whole. As mentioned by the
authors of the database, they collected sentences from articles in journals and newspapers. This constraints our
database towards a more serious vocabulary and construction. However, our purpose with this exploration is
just to check that there is nothing that catches our eye as being wrong inside the Spanish language.

For the statistics, we covered the distributions (histograms) of some of the characteristics that we deemed
interesting: sentence length and grammatical type apparition by sentence.
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Figure 16: Length and Punctuation apparition histograms in the database.

The image above 16 shows that the average length of sentences in Spanish is around the thirties. And that
its distribution resembles the normal distribution. For the Punctuation appearance, the distribution is closer
to Pareto, reflecting that the most typical thing is for a sentence to have one two or three punctuation marks.

Figure 17: Noun and Adjective apparition histograms in the database.

The image above 17 shows the average apparition of Nouns doubles the average of Adjectives. And that
its distribution resembles a normal distribution again. For the Adjective apparition again, the distribution is
closer to Pareto, reflecting that the most typical thing is for a sentence to have none or a couple adjectives per
sentence.
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Figure 18: Verb and Adverb apparition histograms in the database.

The image above 18 shows the average apparition of Verbs doubles the average of Adverbs, while they are
around half of the previous grammatical types. Verbs distribution resembles a normal distribution again with
the detail of an almost non appearing zero. For the Adverb apparition again, the distribution is closer to Pareto,
reflecting that the most typical thing is for a sentence to have none or a couple adverbs per sentence.

Figure 19: Determiner and Pronoun apparition histograms in the database.

The image above 19 shows that the apparition behavior of Determiners follows that of Noun. However, this
seems logical since determiners are what introduce nouns in a sentence. Determiner’s distribution resembles a
normal distribution again. For the Pronouns, the distribution is closer to Pareto again, reflecting that the most
typical thing is for a sentence to have none or a couple adverbs per sentence.
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Figure 20: Conjunction and Preposition apparition histograms in the database.

The image above 20 shows that the apparition behavior of Prepositions follows that of Noun. However, this
seems logical since prepositions are used to create dependencies between words, usually with Nouns. Conjunc-
tion’s distribution resembles a Pareto distribution again. Being zero and one apparition the most common.
Also logical since they are used to concatenate different sections in the same sentence.

Figure 21: Number and Interjection apparition histograms in the database.

Finally, 21 shows that nor numbers nor Interjections are very used in this database. This follows from what
we see, since it is advised to avoid numbers when writing in Spanish. Interjection on the other hand express
emotions, and usually are not part of serious writings as the ones we have at hand.

6.2 Experiments
This subsection presents the experiments done in the data previously explored. As mentioned before, these
experiments try to cover every aspect of the algorithm. we will first start by introducing a subjective test in
which the intention is just to check the comprehensiveness of the corrected sentences to be able to make an
assessment of the strengths and weaknesses of the algorithm. Following that, we will present an objective test
in which we ask the algorithm to correct synthetic errors. Then, as a third experiment we tried to use the
algorithm as a text classifier and check if it could be possible to contemplate the idea of using it as a classifier.
Finally we show the usability of the algorithm as a software that may help non Spanish users in writing Spanish
sentences.
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6.2.1 Experiment 1: Subjective

As stated before, from this first experiment is hard to tell if the algorithm is doing right or at least how much is
doing right, since there is not objective metrics to look at. However, since we are developing an algorithm that
works with Natural Language and such languages are very complex and their correctness is very subjective,
we decided to try this first experiment as a test to get a feeling of the strengths and weaknesses of the algorithm.

For this experiment we asked nine non Spanish speakers to write sentences in Spanish. Among the users, we
have people from very different nationalities and many different levels of knowledge of the Spanish language.
This means that the errors in the sentences will be very different from one another and that as are errors made
from people in very different levels, these errors will be very complex in their structure.

We managed to achieve around thirty sentences. The mean length of the sentences is around fifteen words
since the users with lowest level of Spanish were not able to construct long sentences.
Original sentence :
" Me -> llamo -> Jordan -> , -> soy -> frances -> , -> y -> vivo -> en -> bilbao -> desde -> hace -> 2 ->
meses -> . "
Original structure :
" Pronoun -> Verb -> Noun -> Punctuation -> Verb -> Adjective -> Punctuation -> Conjunction -> Verb
-> Preposition -> Noun -> Preposition -> Verb -> Number -> Noun -> Punctuation " .

Algorithms answer:
Corrected sentence :
" Me -> llamo -> Jordan -> , -> soy -> frances -> , -> y -> vivo -> en -> bilbao -> . "
Corrected structure :
" Pronoun -> Verb -> Noun -> Punctuation -> Verb -> Adjective -> Punctuation -> Conjunction -> Verb
-> Preposition -> Noun -> Punctuation " .

Humans answer:
Corrected sentence :
" Me -> llamo -> Jordan -> , -> soy -> frances -> y -> vivo -> en -> bilbao -> desde -> hace -> 2 -> meses
-> . "
Corrected structure :
" Pronoun -> Verb -> Noun -> Punctuation -> Verb -> Adjective -> Punctuation -> Conjunction -> Verb
-> Preposition -> Noun -> Preposition -> Verb -> Number -> Noun -> Punctuation " .

Our feeling from this experiment is that the algorithm performs quite well for errors of size less than four.
When the size of the error is bigger than four, it is quite difficult for the algorithm to maintain the meaning of
the sentence since the filling of the corrected sentence is done word-wise.

6.2.2 Experiment 2: Objective

This experiment was derived from the first experiment with the intention to assess the objective performance
of the algorithm in the parts we thought it was strong. This means that we created four tests in which we
tried to asses the performance for each of the error sizes we deemed interesting. These error sizes are one, two,
three and four. Within these size errors we chose to take the first two sizes as actual errors (the word in that
position is wrong) and the two left as ordering errors. This decision was steered by the fact that if errors of size
three-four are wrong, then the filling will quite easily end up with a non matching sentence.

For the tests, we obtained 200 sentences from a newspaper (El País). In the case of the errors of size one, we
randomly choose a random position in the sentence and changed the word in that position to another picked
randomly. For the case of errors of size two we did the same thing but we choose two words together in a
random position of the sentence and we filled with two random words. For the case of three-four size errors
we choose a random position and we permuted the words in that position choosing a permutation that is not
correct. The following table shows the results of this experiment.
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Figure 22: Results of correction of synthetic errors (M1: corrected sentence equal to original, M2: corrected
sentence is accepted in Spanish language

As shown in the table, the results indicate that the algorithm performs well in errors of size one and two.
However its performance decreases greatly when the error size is increased. Something to note from this
experiment is that, our permutation attempt seems to have problems when selecting a suitable correcting. That
could be due to not having any way of ordering the possible permutations, allowing the algorithm to find other
permutations that are also allowed first.

6.2.3 Experiment 3: Text classification

For the third experiment, we decided we wanted to test if the algorithm had enough information in it to differ-
entiate between text types. By text type we mean texts from different sources in which the writing style clearly
differs.

This time, we collected ten articles from three different sources. First source is that of El Pais, Spanish
newspaper which in our perspective should resemble the text used to feed the algorithm quite a bit. The second
source is La Gaceta, another Spanish newspaper, this time a much more extremist newspaper with a different
tint in its articles and a much smaller reader population. This second source should still be somewhere inside the
knowledge of the algorithm since it is a newspaper but we expect it to be less representative of the knowledge
the algorithm has. Finally the third source comes from Quora. Quora is a web-based Newspaper-type platform
in which people is allowed to post their articles without a publisher reviewing them.

For the experiment, we inputted each of the sentences of each of the articles to the algorithm and we noted if
the algorithm thought if the sentence was corrected or not. The table below, shows the results of this experiment.

Figure 23: Classification results for third experiment

As shown in the table above, the results show that there is a great difference between the texts that have been
published from those that have not. In the fig 23 we see that there is a gap between the two newspapers and
Quora. That gap amounts to a 50% difference in the worst situation. This results could imply that algorithms
like this could be used to classify texts. Another approach to this problem would be to train this model with
articles of a single newspaper. This could lead to have a classifier that differentiates articles that are from that
newspaper.

6.2.4 Experiment 4: Real time sentence writing help

This last experiment shows a possible utilization of an algorithm like this. Although there is not much to show
since it is a practical attempt, the output of that example clearly showed that an algorithm like this could easily
help people in their task of learning and writing in a foreign language, Spanish specifically.
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First, the user was asked to write a sentence in Spanish, when he did not know how to follow or if what he
wrote was right, that was inputted to the algorithm. Then, the algorithm would correct it. If an error was
found, the user is able choose from the set of corrections the algorithm has found to be correct in order to keep
the meaning of the sentence. After that, with a small modification of the algorithm, it would also propose a set
of functions to continue the sentence (pulling from the association rules as we explained earlier) for the user to
choose from. Once a function is selected, the algorithm looks for the words in the cluster matching the actual
situation and it will propose a set of words for the user to choose from.

The main problem this usage has is that, if the user does not know Spanish, the set of possibilities proposed
to him must be translated or accompanied by a brief explanation in English for example.

Although there is nothing to show in this experiment, since it is really hard to show in paper something that
has no clear output. This last experiment shows that the usage of the knowledge representations created in this
paper can actually be used for different separated tasks to help humans in writing Spanish. How well it does at
it is something that should be studied in depth.

7 Conclusion
In this study we have revisited grammar inference with a difference to every other study published. Here we
claimed the power of using syntactic rules as the key component for grammar inference in Spanish. We used
Association rules as the Grammar-Generation-Rules from the language extracted from a sequence database
(newspaper sentences in Spanish). We created three other knowledge representations to aid these association
rules for checking, translating and suggesting new words for a sentence. Two of them are based in graph theory.
The forest, keeps track of existing structures and the graph, keeps track of the relations between words and
functions in the explored text and a matrix keeps track of pair-wise word relations in the explored text.

All in all, we managed to obtain an algorithm that achieved a 78.250% accuracy when correcting size one
random errors in a natural language experiment.

Clearly there are things that must be improved. Increase the amount of text explored by automating the
process of retrieval of valid text. Deepen the levels of syntactic rules that we use for the analysis of the text,
allowing for a much more complex understanding of it.
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