
TWIN-Bachelorthesis

The Hilbert scheme of points

Nicolas Rühling

supervised by
Dr. Martijn Kool

June 13, 2018

Contents

1 Ideals of points in the plane 2
1.1 Combinatorics and monomial ideals 3
1.2 Flat families and flat limits 4

2 Connectedness 5

3 The tangent space of Hd
n and Haiman arrows 9

4 Algorithm to determine dimension of tangent space at mono-
mial ideals 13

5 Experimental results 17

6 Appendix 19

Introduction

The Hilbert Scheme of points Hilbn(Cd) = Hd
n is a so-called parameter or

moduli space where a point in Hd
n is determined by a configuration of n

points in Cd. It is a fundamental concept in algebraic geometry and finds
applications in a wide range of mathematics, among others string theory,
the theory of symmetric functions1 knot theory. In this thesis we will study
Hd
n using algebraic as well as combinatorial methods. We will mostly treat

the case when those points lie in the complex plane, thus when d = 2, to
give examples and provide intuition about its geometry. This can be seen
as a special case since H2

n is a smooth and irreducible variety of dimension
2n (Thm. 17). Another main result is that Hd

n is connected for arbitrary d
(Prop. 11).
The structure of the thesis follows Chapter 18 from [MS05], in particular
sections 18.1, 18.2 and 18.4. That means our focus lies on points in the
Hilbert scheme that correspond to monomial ideal which allows us to apply
combinatorial methods. However, we deviate in some occasions. We skip
the formal construction of the Hilbert scheme as a quasiprojective variety.

1We highlight in particular the work of Mark Haiman who used the Hilbert scheme
of points to prove the Macdonald positivity conjecture for Macdonald polynomials. See
section 18.3 in [MS05] for an introduction and further references.

1

In section 1.2 we show what it means for a scheme to be flat; an essential
notion in the general theory of Hilbert schemes. In section 2 we provide an
explicit method to find a rational curve inside the Hilbert scheme of points.
In section 3 we connect the theory of Haiman arrows from [MS05] to a more
general result about the tangent space of the Hilbert scheme of points (Thm.
14) and use this to demonstrate the notion of a module homomorphism. Fur-
thermore we have implemented the theory of Haiman arrows in Python to
compute the tangent space at a monomial ideal in the Hilbert scheme over
C3 or C4. An explanation of the program and a short example on how to
use it are given in section 4. The full code can be found in the Appendix in
Listings 4, respectively 5. In section 5 we present some experimental results
found with the help of the program.
As prerequesites some basic knowledge of commutative algebra and algebraic
geometry is recommended. A nice introduction to these subjects on under-
graduate level can be found in [CLO97]. However, anyone who has studied
ring theory before will be able to follow through most of the text. A more
advanced, but general, treatment of commutative algebra can be found in
[Eis95] and [AM16].

1 Ideals of points in the plane

Let C[x, y] be the ring of all polynomials in x and y. As a set we can define
H2
n as follows.

H2
n = {I ⊆ C[x, y] | I ideal with dimC(C[x, y]/I) = n} .

That is H2
n contains all the ideals I such that the quotient ring C[x, y]/I has

dimension n as a vector space over C.
First we want to get a feeling for how the points of the Hilbert scheme look
like. When we have n points P1 = (x1, y1), P2, ..., Pn ∈ C2 that are all dif-
ferent from each other, the corresponding ideal I of functions vanishing on
these points is generated by products of (x− xi) and (y − yi) for 1 ≤ i ≤ n.
This is a radical ideal and therefore the set {P1, ..., Pn} is a classical algebraic
variety.
On the other hand some or all of the points could overlap. The correspond-
ing ideal I is then said to carry a non-reduced scheme structure. The most
”special” case of non-reduced schemes is when we only consider the origin

2

with multiplicity n. The corresponding ideal will then be generated by mono-
mials and that allows us to use combinatorial methods. We will present the
combinatorial background first and then briefly explain what it means for a
scheme to be flat.

1.1 Combinatorics and monomial ideals

We will start off with some definitions.

Definition 1. A monomial in C[x, y] is a product xayb with a, b ∈ N. An
ideal I ⊆ C[x, y] is called a monomial ideal if it is generated by monomials.

Definition 2. A partition λ of n is a nonincreasing list of positive numbers
λ1 ≥ λ2 ≥ ... ≥ λk such that

∑
λi = n and λk 6= 0. A Young diagram is a

box diagram such that starting from the bottom the i-th row consists of λi
boxes and the rows are left aligned. For example the diagram

corresponds to the partition 4 + 2 + 1 of 7.

We can give the boxes coordinates a ∈ N2 to make a distinction between
boxes in λ and boxes outside of λ. We can further make a connection between
monomial ideals and partitions and use that connection to represent the
monomial ideals pictorally.
Recall that per definition if we take any element x ∈ I, with I ⊆ C[x, y] an
ideal, and multiply with an arbitrary polynomial f ∈ C[x, y] we again get an
element of the ideal, thus xf ∈ I. Considering the coordinates a = (a1, a2) as
exponents of a monomial xa1ya2 , boxes outside of λ correspond to monomials
in Iλ and boxes inside of λ span the C-vector space of the quotient C[x, y]/Iλ.

Example 3. Take a look at the partition 4 + 2 + 1 of n = 7 again. The
ideal is I4+2+1 = 〈x4, x2y, xy2, y3〉. The ideal corresponds to boxes to the top
and to the right of the box diagram below. As a C-vector space the quotient

3

C[x, y]/I is spanned by {1, x, x2, x3, y, yx, y2}. These are exactly the boxes
of the partition.

Remark 1. When d is arbitrary the terminology slightly changes. In three
dimensions we speak of plane partitions or staircase diagrams. In higher
dimensions of multipartitions.

1.2 Flat families and flat limits

An important concept in algebraic geometry and in the theory of Hilbert
schemes is that of flatness. As discussed in the beginning, any point I ∈ H2

n

corresponds to a configuration of n points in C2. This is the essence of a flat
family. We will not delve further into the algebraic geometry background,
but demonstrate the concept of a flat family for an easier example. For more
information about the general definition and proof of existence of the Hilbert
scheme we refer the interested reader to [Gro61] and [Leh04].
Let B = Spec(C[t]) be the affine line in the variable t and consider the
following map

Z ⊆ C2 ×By
B .

Since B is an algebraic variety, it holds that Z is B-flat if and only if for
all closed points t ∈ B, the length of Zt is constant. We further say that B
parametrizes Z. In the language of ideals the above translates to

Z is B − flat ⇐⇒ dimC(C[x, y][t]/IZt) = constant, ∀t ∈ C[t] .

Example 4. This time we will consider three points approaching each other.
We let one point be fixed at the origin and let the other two move along the
axes. Our points are

(0, 0) (t, 0) (0, t) .

4

The corresponding ideals are

〈x, y〉 〈x− t, y〉 〈x, y − t〉 .

The ideal of the union of the three points is given by the product of the ideals

〈x3 − x2t, x2t+ xyt− xt2, x2y, xyt, x2y − xyt, xyt+ y2t− yt2, xy2, y3 − y2t〉 .

We look at the limit as t goes to zero. If we just set t = 0 we get the following
ideal

〈x3, x2y, xy2, y3〉

which is a colength 6 ideal and so the product is not a flat family. In fact it
follows from Lemma 8 that the flat limit at the origin should be

〈x2, xy, y2〉 ,

which is indeed an ideal of colength 3. This flat limit is an example of a non-
reduced scheme. We can interpret it as carrying infinitesimal information
about the direction where the points came from. It is interesting to note that
the Young diagram of the partition corresponding to the flat limit resembles
the initial configuration of points. We will make this more precise in Lemma
8.

2 Connectedness

While in general not much is known of Hd
n, there is one ”nice” property it

possesses: connectedness. In this section we will prove this. Although we
only deal with the case d = 2, the proof holds for arbitrary d.
The general idea is that we can connect any ideal in H2

n to a monomial ideal
by a rational curve inside the Hilbert scheme. It follows then that to every

5

partition belongs a configuration of n points in C2. By moving these points
continuously we can go from one monomial ideal to another and thus connect
any two ideals.
First we will provide a method to ”degenerate” an ideal I such that we get a
rational curve Ĩt inside the Hilbert scheme that connects I to its initial ideal
Ĩ0.
Let ω : Z2 → Z be an integral weight function. For convenience of notation
we think of ω as a function on monomials, and if m = xa, we write ω(m) ∈ Z
in place of ω(a). Given f ∈ C[x, y] we write inω(f) for the sum of all terms
of f that are maximal with respect to ω. If I is an ideal we write inω(I) for
the ideal generated by inω(f) for f ∈ I. Since ω is a partial order this does
not necessarily give us a monomial ideal. Let C[x, y][t] be a polynomial ring
in the variable t over C[x, y] (the coefficients are polynomials in x and y).

For any f ∈ C[x, y] we define f̃ ∈ C[x, y][t] as follows. Write f =
∑
cimi,

with mi the monomials and 0 6= ci ∈ C. Let b = max ω(mi), and set

f̃ = tbf(t−ω(x)x, t−ω(y)y) .

We see that f̃ is inω(f) plus t times a polynomial in t, x and y. Setting
t to zero thus gives us the the initial term of f with respect to the weight
function ω. For any ideal I ⊂ C[x, y] let Ĩt be the ideal in C[x, y][t] generated

by {f̃ | f ∈ I}. Then it follows that C[x, y][t]/(〈t〉+ Ĩt) ∼= C[x, y]/inω(I).

Remark 2. With the above procedure the ideal Ĩ0 is not necessarily monomial
since we can have ties between two or more terms. However, according to
Exercise 15.12 in [Eis95] there exists an integral weight function such that
we can simulate a total order for a finite amount of pairs of monomials. That
means if we have an ideal I = 〈f1, ..., fm〉 with a finite amount of generators
we can always find an integral weight function that will give us a monomial
ideal Ĩ0 which corresponds to the initial ideal of I with respect to the total
order. In that case it further follows that Ĩt is generated by the f̃1, ..., f̃m (see
Lemma 5).

Lemma 5. Let < be a total monomial order. If f1, ..., fm ∈ I are chosen so
that in<(f1), ..., in<(fm) generate in<(I), then f̃1, ..., f̃m generate Ĩ.

Proof. It is evident that 〈f̃1, ..., f̃m〉 ⊆ Ĩ. Furthermore, for any t ∈ C, the

leading terms of the f̃i (as polynomials of x and y) with respect to the term
order < are the generators of the colength n ideal in<(I). Thus colength

6

(〈f̃1, ..., f̃m〉) ≤ n. It is sufficient to check this pointwise for every t and
therefore

Ĩ = 〈f̃1, ..., f̃m〉 .

Lemma 6. Every point I ∈ Hn is connected to a monomial ideal by a rational
curve.

Proof. We first choose a a total monomial order <. The polynomial ring is
Noetherian. Thus every ideal I ∈ C[x, y] is finitely generated and we can

apply the above procedure (see Remark 2). This gives a flat family Ĩt of

ideals parametrized by t. The points Ĩt form a rational curve2 which lies
completely in Hn. When we set t = 1 we get back the original ideal and
when t = 0 we get the initial ideal, which is a monomial ideal. The flatness
follows from Theorem 15.17 in [Eis95].

Example 7. Take I = 〈x2 − xy, xy2, y3 − y2〉 and choose lexicographic or-
der3. We find the following weight function ω = (2, 1) which simulates the
monomial order for I. Applying ω to the first generator f1 = x2−xy, we get

ω(x2) = 4

ω(xy) = 3 ,

thus f̃1 = t4(t−4x2 − t−3xy) = x2 − txy. The other generators become

f̃2 = xy2

f̃3 = y3 − ty2 .

It follows that the rational curve is given by

Ĩt = 〈x2 − txy, xy2, y3 − ty2〉 .

For the limit t = 0 we have Ĩ0 = 〈x2, xy2, y3〉 which is indeed the initial ideal
of I with respect to lexicographic order and lies in H5.

2Also called a Gröbner degeneration
3That is 1 < x < xy < ... < x2 < x2y < ... < x3 < ...

7

The next Lemma is a preparation for Lemma 10 and states an interesting
fact about the relation between partitions, monomial ideals and radical ideals.

Lemma 8. There is a bijection between partitions λ of n and monomial ideals
I ⊆ C[x, y] of colength n. Further given a partition λ and considering the
exponent vectors (h, k) on monomials xhyk outside Iλ as n points in N2 ⊆ C2

gives us a radical ideal I ′λ whose flat limit at the origin is Iλ for every term
order.

Proof. The first statement is evident from looking at the figures given in
section 1.1. The radical ideal I ′λ is called the distraction of Iλ. Suppose
Iλ = 〈xa1yb1 , ..., xamybm〉 and consider the polynomials

fi = x(x− 1)(x− 2) · · · (x− ai + 1)y(y − 1) · · · (y − bi + 1) .

First we prove that the fi generate I ′λ. We have 〈f1, ..., fm〉 ⊆ I ′λ because
the polynomials fi vanish at the given points (aj, bj) and we have colength
(〈f1, ..., fm〉) ≤ n because the leading terms of the fi are the generators of
the colength n ideal Iλ. Therefore

I ′λ = 〈f1, ..., fm〉 .

From the definition above we further see that when expanding fi there will
be a term xaiybi . We claim that this is the initial term of fi for every term
order. Then it is easy to see that any Gröbner degeneration (I ′λ)t constructed
as above will have the flat limit (I ′λ)0 = Iλ.
To prove the claim assume that there was a term xrys of fi and a term order
where xrys > xaiybi . From the way we defined fi, it must hold that r and s
are smaller or equal than ai and bi and that at least one of them is strictly
smaller. Per definition of a term order ′1′ is the least element and multiplying
by the same monomial on both sides preserves the order. Consider

1 < xai−rybi−s ,

multiplying by xrys gives

xrys < xaiybi ,

which is a contradiction. This proves the claim.

8

Example 9. Take the partition λ = 3 + 2. The ideal is I3+2 = 〈x3, x2y, y2〉
where the elements of I3+2 correspond to the boxes outside the partition.
Clearly I3+2 lies in H5. The distraction is given by

I ′3+2 = 〈x(x− 1)(x− 2), x(x− 1)y, y(y − 1)〉 .

The zero set of each generator is a union of lines, the zero set of the distraction
is the intersection of these lines and it can easily be seen that this gives a set of
five points. Our radical ideal I ′3+2 thus lies in H5 as well. Note the similarity
of the partition and the point configuration of the distraction below.

Lemma 10. For every partition λ of n, the point Iλ ∈ Hn lies in the closure
of the locus (SnC2)◦ of all radical ideals in the Hilbert scheme Hn.

Proof. Take the distraction I ′λ. The ideal (I ′λ)t constructed as in the proof
of Lemma 6 is radical for each t 6= 0. Hence Iλ = (I ′λ)0 lies in the closure of
(SnC2)◦.

Proposition 11. The Hilbert scheme Hn is connected

Proof. Take any two points I and J in Hn. We go from I to its initial
monomial ideal Iλ and then to its distraction I ′λ. Similarly we go from J
to its initial monomial ideal Jµ and then to its distraction J ′µ. Now I ′λ and
Jµ are radical ideals of n points in C2 and we connect the two ideals by
continuously moving one point configuration into the other.

3 The tangent space of Hd
n and Haiman ar-

rows

In this section we will show how one can calculate the tangent space at points
of Hn

d that correspond to monomial ideals. The following theory has been
developed by Mark Haiman and makes use of combinatorial methods. We
will again start with the case d = 2 but this holds for arbitrary d.

9

Definition 12. Given a partition λ, a Haiman arrow is an arrow whose tail
lies in a box rs /∈ λ and whose head in a box hk ∈ λ. The head is allowed to
lie in boxes with h < 0 or k < 0 but those arrows are set to zero. Further it
is permitted to translate arrows vertically or horizontally as long as the head
stays in the partition and the tail outside of the partition. Two arrows that
can be moved into each other belong to the same equivalence class and are
considered equal.

Example 13. The following three box diagrams all represent the same par-
tition: λ = 8 + 7 + 5 + 4 + 3 + 1. The two arrows in the left diagram lie
in the same equivalence class. The middle diagram shows two different and
valid arrows. The arrows in the right diagram are all equal but zero, since
the head can cross the axis while the tail stays outside the partition.

For a derivation of the Haiman arrows see [MS05]. The interesting part
of the above definition is that the number of different arrows (or equivalence
classes) not set to zero is equal to the dimension of the tangent space at a
point in the Hilbert scheme. This follows directly from the derivation given
in [MS05]. In what follows we will connect the theory of Haiman arrows
to another, more general result about the Hilbert scheme of points and its
tangent space.

Theorem 14. The tangent space of Hilbn(Cd)(= Hn
d) is isomorphic as C-

vector space to HomC[~x](I,C[~x]/I).

Here we denote by HomC[~x](I,C[~x]/I) the space of all C[~x]-module homo-
morphisms I → C[~x]/I. For a proof of the Theorem see [Leh04].
Let I be a point in Hn

d . It is sufficient to look at arrows starting at minimal
generators of I. Denote an arrow by cuv with v,u ∈ Nd exponent vectors of
monomials such that xv /∈ I and xu ∈ I. By abuse of notation we will let cvu
also be a function I → C[~x]/I. We will initiate the function as follows

cvu(xu) = xv

10

Since we want this function to be a C[~x]-module homomorphism, it must
hold that

cuv(af) = a · cuv(f) ,

for all f ∈ I and a ∈ C[~x]). Using this condition we can extend cuv linearly
to all of I. Further when extending to xw we need to check whether

wi + vi < wi for any 1 ≤ i ≤ d , (1)

because that means the head of the arrow has crossed one of the axes and in
that case cvu(xw) = 0.

As stated above the number of equivalence classes of Haiman arrows gives
the dimension of the tangent space at a point in the Hilbert scheme. We give
the following result without proof but provide two examples of functions cvu:
one that corresponds to a valid arrow, and one that does not.

Proposition 15. HomC[~x](I,C[~x]/I) has a C[~x]-basis given by the C[~x]-
module homomorphisms cuv that correspond to Haiman arrows.

Example 16. Consider the ideal I = 〈x2, xy, y2〉. As a C-vector space the
quotient C[x, y]/I is spanned by {1, x, y}. There are six different arrows ac-
cording to Definition 12: c0201, c

02
10, c

11
01,c

11
10,c

20
01 and c2010.

The function representing the arrow from y2 to y is c0201. Per definition
c0201(y

2) = y. We can extend this to other elements of I, e.g. xy2

c0201(xy
2) = x · c0201(y2) = x · y = 0 mod I,

but also

c0201(xy
2) = y · c0201(xy).

It must follow that c0201(xy) = 0. This coincides with the theory of Haiman.
Starting from y2 it is not possible to move the tail of the arrow to xy. There-
fore the function takes the value 0 in the point xy. We can apply the same
reasing to xy2. It is not possible to move the tail of the arrow to that point
because then the head would lie in xy which is outside the partition. So
c0201(xy

2) = 0.
Let’s consider the arrow y2 → 1. In the above notation c0200. We can move this

11

arrow one to the right and then one to the bottom to push its head under-
neath the ”x-axis”. With Definition 12 this arrow is thus equal to zero and
does not correspond to a valid arrow. As a C[x, y]-module homomorphism
we have

c0200(xy
2) = x · c0200(y2) = x · 1 = x ,

but also

c0200(xy
2) = y · c0200(xy) = y · 0 = 0 .

In the second case we have 1+0 < 2 and thus c0200(xy) = 0 (see equation (1)).
This is a contradiction and therefore this arrow does not represent an element
of HomC[x,y](I,C[x, y]/I). Again this is in agreement with the definition of
the Haiman arrows and Proposition 15.

Remark 3. When determining the dimension of the tangent space it is of
course much easier to use the theory from Definition 12. The example above
serves mainly to illustrate Proposition 15

Being able to calculate the dimension of the tangent space we can say
something about the smoothness of the Hilbert scheme. When d = 2, there
is the following result

Theorem 17. The Hilbert scheme Hilbn(C2) is a smooth and irreducible
complex algebraic variety of dimension 2n.

Proof see Thm. 18.7 in [MS05].
However, unlike connectedness, this does not hold for arbitrary d. In general
for n > d ≥ 3 the Hilbert scheme is not smooth. The next example illustrates
this when d = 3 and n = d+ 1.

Example 18. H3
4 contains a smooth subvariety of dimension d ·n = 12 that

contains all radical ideals. From Lemma 10 it follows that the monomial
ideals lie in the closure of this smooth subvariety. For H3

4 to be smooth,
it is therefore necessary that the tangent space at any monomial ideal has
dimension equal to 12
Take the monomial ideal I = 〈x2, y2, z2, xy, xz, yz〉. The quotient C[x, y, z]/I
is a C-vector space of dimension 4. For each of the six minimal generators
of I we can find 3 different arrows that are not zero. The six valid arrows
for the generators z2 and yz are depicted below. By symmetry we can just

12

multiply that number by three to obtain the total number of valid arrows.
The dimension of the tangent space is thus 18. It follows that I is a singular
point and H3

4 is not smooth.

4 Algorithm to determine dimension of tan-

gent space at monomial ideals

We have implemented the theory from Definition 12 in Python to computa-
tionally determine the dimension of the tangent space of the Hilbert scheme
at any monomial ideal in C3 or C4. In this section we will explain how the
program works for monomial ideals in H3

n. The corresponding code can be
found in the Appendix in Listing 4. For monomial ideals in H4

n the program
works very similar with the only exception that a fourth variable t is added.
The code can be found in Listing 5. Anyone just interested in calculating
the dimension at a given monomial ideal, can follow the example given in
Listing 1.
In addition to calculating the dimension of the tangent space, the two pro-
grams can also find all plane-, respectively multi partitions in three and four
dimensions. However, this only works in a reasonable time for up to n ≈ 10.
We will not explain the functions behind that part of the program but give
an example of code to find all partitions, their minimal generators as ideals

13

and the corresponding dimensions of the tangent space. In this way the most
singular points of Hd

n can be found. The results of this are listed in section
5. The code that needs to be inserted in the program can be found in Listing
3 and can be used for both programs.
The program is structured as follows. First the monomial ideal is entered and
assigned to a variable. Preferably only the minimal generators of the ideal
are listed. There are two ways to do this. Either as a list of strings or as a
list of 3-tuples. While the first is the most convenient, the program actually
works with 3-tuples so we need to convert it with a function convertIdeal.
The three coordinates are denoted x, y and z.
Take for example the ideal I = 〈x2, y2, z2, xy, xz, yz〉. As a list of strings we
would it enter it as [”x2”, ”y2”, ”z2”, ”xy”, ”xz”, ”yz”]. As a list of tuples
we have [[2,0,0],[0,2,0],[0,0,2],[1,1,0], [1,0,1],[0,1,1]].
In the next step we need to determine the corresponding plane partition. A
function createPartition, taking as an argument the monomial ideal in tuple
form, will be called for this purpose. This function works as follows: First
the maximum x, y and z values from all generators of I are determined and a
(hyper)rectangle of boxes is created. The numbers of boxes in each direction
correspond to the maximum values in those directions. In the program this
(hyper)rectangle is a list of 3-tuples. Then all boxes that do in fact not lie in
the partition are removed. For this we have a for-loop running through all
generators of I and three nested for-loops, one per direction, running from
the generator to the maximum values, removing boxes that lie in the positive
direction of the generators. The function returns a list of 3-tuples which is
the desired partition.
Then a function arrows is called, taking as arguments the partition just gen-
erated and the monomial ideal. It is sufficient to only check arrows starting
at minimal generators. In the first step the function creates all possible ar-
rows from minimal generators to boxes in the partition and stores them in
a variable all arrows. Formally an arrow in the program is a list of two 3-
tuples, the tail and the head. Then the first arrow of all arrows is selected
and is stored in a variable a class which is its equivalence class. The goal
is to find all arrows that belong to that equivalence class. Starting with the
initial arrow, the function recursively determines if the arrow can be moved.
A function moveArrow tries translating the arrow one unit in the positive
and negative x, y and z direction and stores all moves that are valid accord-
ing to Definition 12 in a variable waiting list. To avoid infinite recursions
only moves (which are in fact arrows as well) that are not yet stored in the

14

Listing 1: Calculating the dimension of the tangent space at I = 〈x, y, z〉2 ∈
H3

4 . For convenience several values of interest are printed on the screen. The
code below needs to be inserted at the end of the program in Listing 4 to
properly work! For the output generated by the program see Listing 2.

1 mon_id = ["x2", "xy", "y2","xz", "yz", "z2"]

2 mon_ideal = convertIdeal(mon_id)

3 partition = createPartition(mon_ideal)

4

5 print("Partition: ", partition)

6 print("Colength ideal (=n): ", len(partition))

7 print("d*n: ", len(partition)*3)

8

9 arrows = arrows(partition, mon_ideal)

10 print("Number of arrows: ", len(arrows))

Listing 2: Output of code in Listing 1 when inserted at the end of Listing 4

1 Partition: [[0, 0, 0], [0, 0, 1], [0, 1, 0], [1, 0, 0]]

2

3 Colength ideal (=n): 4

4 d*n: 12

5 Number of arrows: 18

equivalence class or in the waiting list can be added to that variable. Fur-
thermore arrows which have crossed any of the axes will not be added to
waiting list. Instead if such an arrow is encountered, the value 0 is inserted
at the beginning of the list a class. Once the recursion has ended, all arrows
that are in the equivalence class and were in the initial list of all arrows are
removed from all arrows. If the initial value of the list a class is not zero,
it is in fact a valid arrow and will be added to a list equiv classes. Then, as
long as there are elements left in all arrows, this process gets repeated. In
the end the list equiv classes will be returned by the function arrows. The
number of elements in equiv classes is the dimension of the tangent space
of the Hilbert scheme at the monomial ideal.

15

Listing 3: Finding all plane-, respectively multi partitions for n = 8. Then
the minimal generators of the corresponding ideals and the dimension of their
tangent spaces are determined. Per partition the dimension of the tangent
space, the number of minimal generators of the corresponding ideal, the list
of the partition and the list of the minimal generators is put in a list ’lst’.
The code below can be used for both programs but needs to be inserted at
the end to properly work!

1

2 partitions = findAllPartitions(8)

3 min_gen = []

4 for p in partitions:

5 min_gen.append(findMinGen(p))

6

7 tangent_space = []

8 for i in range(len(partitions)):

9 tangent_space.append(arrows(partitions[i], min_gen[i]))

10

11 dim = [len(tan) for tan in tangent_space]

12 num_gen = [len(gen) for gen in min_gen]

13 lst = sorted(list(zip(dim, num_gen, partitions, min_gen)))

14

15 l = lst[-1]

16

5 Experimental results

An open question in the study of Hilbert schemes of points is to find the
most singular point of Hilbn(Cd), that is the ideal I for which the dimension
of the tangent space HomC[~x](I,C[~x]/I) is maximal. This is a question of
looking at monomial ideals and thus a combinatorial one. In this section we
will present some experimental results.
For 2 ≤ n ≤ 12 we have generated all possible plane partitions and their
corresponding minimal generators and tangent space dimensions (for larger
n this calculation takes too long on an ordinary computer).
For 2 ≤ n ≤ 9 we have generated all possible multipartitions in four dimen-
sions and their corresponding minimal generators and tangent space dimen-
sions. The results can be found in the table below
The first conjecture one could make is that the most singular monomial ideal
is the one with most minimal generators. However, when n = 8 one finds the
following counterexample.

Example 19. We have d = 3 and n = 8. The ideals with most generators
are

〈x, xz, yz2, y2z, x2, y3, z4〉 and 〈xy, xz2, yz2, x2, z3, y3〉 .

Each of them has seven minimal generators. At both points the tangent
space of the Hilbert scheme has dimension 32. However, the point in H3

8

given by

I = 〈x2, xy, y2, xz2, yz2, z4〉 ,

has only 6 minimal generators, but the dimension of the tangent space is 36.

Remark 4. In three dimensions there exists a generating function for the
number of plane partitions, sometimes referred to as the MacMahon function

∞∏
k=1

1

(1− xk)k
= 1 + x+ 3x2 + 6x3 + 13x4 + 24x5 +

This is in agreement with the values listed in Table 1.

17

H3
n H4

n

max dim # min gen # part max dim # min gen # part

n

2 6 3 3 8 4 4

3 9 3 6 12 5 10

4 18 6 13 22 7 26

5 21 6 24 40 10 59

6 24 6 48 44 10 140

7 29 6 86 48 10 307

8 36 7 160 57 11 684

9 43 6 282 62 10 1464

10 60 8 500

11 60 10 859

12 63 10 1479

Table 1: Dimensions of the most singular points (max dim) in Hd
n for d = 3, 4,

together with the number of minimal generators the corresponding ideals
have and the number of different plane-, respectively multi partitions.

18

6 Appendix

Listing 4: Pythoncode to calculate dimension of tangent space at a monomial
ideal in Hilbn(C3). For further explanation see section 4.

"""

Write e.g. the monomial (x^2 y^3 z) as "x2y3z"

The program can calculate the dimension of the tangent space at a

monomial ideal in the Hilbert scheme of points over C^3 and all

possible plane partitions for a given n.

"""

def convertIdeal(strIdeal):

"""

Input: monomial ideal with monomials as strings

Output: List of 4-tuples (exponent vector format)

e.g. ["x2", "y", "z", "t"] -->

[[2,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]

"""

ideal = []

for mon in strIdeal:

ideal.append(convMonomial(mon))

return ideal

def convMonomial(mon):

"""

Input: monomial ideal as strings

Output: 4-tuple (exponent vector format)

example see convertIdeal

"""

triple = [0,0,0]

xpos = mon.find("x")

ypos = mon.find("y")

zpos = mon.find("z")

if xpos != -1:

try:

triple[0] = int(mon[xpos+1])

except:

19

triple[0] = 1

if ypos != -1:

try:

triple[1] = int(mon[ypos+1])

except:

triple[1] = 1

if zpos != -1:

try:

triple[2] = int(mon[zpos+1])

except:

triple[2] = 1

return triple

def tupleProduct(list1, list2):

"""

Input: two lists

Output: List of 2-tuples

[a1,...,an] and [b1,,...,bn] --> [[a1,b1],...,[an,bn]]

"""

lst = []

for item1 in list1:

for item2 in list2:

lst.append([item1, item2])

return lst

def isPartition(partition):

"""

Input: List of 4-tuples (multipartition)

Output: Boolean

checks whether a list of 4-tuples is a valid multipartition

"""

for block in partition:

for i in range(3):

b = list(block)

if b[i] != 0:

b[i] += (-1)

if b not in partition:

return False

20

return True

def createPartition(ideal):

"""

Input: List of 4-tuples (monomial ideal in exponent vector

format)

Output: List of 4-tuples (multipartition)

creates the multipartition corresponding to a monomial ideal

"""

xmax = max([mon[0] for mon in ideal])

ymax = max([mon[1] for mon in ideal])

zmax = max([mon[2] for mon in ideal])

partition = []

for x in range(xmax):

for y in range(ymax):

for z in range(zmax):

partition.append([x,y,z])

for i in ideal:

for x in range(i[0], xmax):

for y in range(i[1],ymax):

for z in range(i[2],zmax):

if [x,y,z] in partition:

partition.remove([x,y,z])

if isPartition(partition):

return partition

else:

raise ValueError("Not a partition")

def isValidMove(arrow, partition):

"""

Input: arrow, Tuple of 4-tuple

partition, List of 4-tuples

Output: Boolean

Checks whether an arrow is a valid Haiman arrow

21

"""

if arrow[0] not in partition and arrow[1] in partition:

return True

elif arrow[0] not in partition and any(n < 0 for n in arrow[1]):

return True

elif arrow[0] in partition:

return False

def moveArrow(arrow, partition):

"""

Input: arrow, Tuple of 4-tuple

partition, List of 4-tuples

Output: list of two 4-tuples (arrows)

gives all possible moves in the x-,y-,z- and t-direction.

"""

moves = []

xp = [[arrow[0][0] + 1, arrow[0][1], arrow[0][2]], [arrow[1][0]

+ 1, arrow[1][1], arrow[1][2]]]

if isValidMove(xp, partition):

moves.append(xp)

yp = [[arrow[0][0], arrow[0][1] + 1, arrow[0][2]],

[arrow[1][0], arrow[1][1] + 1, arrow[1][2]]]

if isValidMove(yp, partition):

moves.append(yp)

zp = [[arrow[0][0], arrow[0][1], arrow[0][2] + 1],

[arrow[1][0], arrow[1][1], arrow[1][2] + 1]]

if isValidMove(zp, partition):

moves.append(zp)

if arrow[0][0] != 0:

xm = [[arrow[0][0] - 1, arrow[0][1], arrow[0][2]],

[arrow[1][0] - 1, arrow[1][1], arrow[1][2]]]

if isValidMove(xm, partition):

moves.append(xm)

if arrow[0][1] != 0:

22

ym = [[arrow[0][0], arrow[0][1] - 1, arrow[0][2]],

[arrow[1][0], arrow[1][1] - 1, arrow[1][2]]]

if isValidMove(ym, partition):

moves.append(ym)

if arrow[0][2] != 0:

zm = [[arrow[0][0], arrow[0][1], arrow[0][2]-1],

[arrow[1][0], arrow[1][1], arrow[1][2]-1]]

if isValidMove(zm, partition):

moves.append(zm)

return moves

def arrows(partition, ideal):

"""

Input: partition, List of 4-tuples

ideal, list of 4-tuples

Output: list of two 4-tuples (equivalence classes of arrows)

Determines all different equivalence classes of Haiman arrows.

"""

all_arrows = tupleProduct(ideal,partition)

equiv_classes = []

while all_arrows:

a = list(all_arrows[0])

a_class = [a]

waiting_list = [a]

while waiting_list:

b = list(waiting_list[0])

waiting_list.pop(0)

valid_moves = moveArrow(b, partition)

for move in valid_moves:

if move not in a_class and move not in waiting_list:

a_class.append(move)

if not any(n < 0 for n in move[1]):

waiting_list.append(move)

elif any(n < 0 for n in move[1]):

a_class.insert(0,0)

for arrow in a_class:

if arrow in all_arrows:

23

all_arrows.remove((arrow))

if a_class[0] != 0:

equiv_classes.append(a_class)

return equiv_classes

def findMinGen(partition):

"""

Input: partition, List of 4-tuples

Output: list of 4-tuples (minimal generators of monomial ideals

corresponding to multipartition)

"""

min_gen = []

for b in partition:

for i in range(3):

a = list(b)

a[i] += 1

if a not in partition:

for j in range(3):

neighbor = list(a)

neighbor[j] = neighbor[j] - 1

if neighbor not in partition and neighbor[j] >=

0:

break

if j ==2 and a not in min_gen:

min_gen.append(a)

return min_gen

def nextBlock(partitions, current, n):

"""

Input: partitions, List of List of 4-tuples (all

multipartitions already found)

current, 4-tuple (coordinate of the current block in the

multipartition)

n, integer for which multipartitions are to be determined

Output: List of List of 4-tuples (all multipartitions already

found)

determines all possible blocks when "building" a partition

"""

for block in current:

24

for i in range(3):

new_block = list(block)

new_block[i] += 1

if new_block not in current:

new_part = sorted(current + [new_block])

if isPartition(new_part):

if len(new_part) == n:

if new_part not in partitions:

partitions.append(new_part)

else:

partitions = nextBlock(partitions, new_part,

n)

return partitions

def findAllPartitions(n):

"""

Input: n, integer for which multipartitions are to be determined

Output: List of List of 4-tuples (all multipartitions already

found)

Finds all multipartitions for a given n. Starts with the block

at the origin

and expands the multipartition recursively in all directions

until it has n blocks.

"""

partitions = []

current_partition = [[0,0,0]]

partitions = nextBlock(partitions, current_partition, n)

return partitions

Listing 5: Pythoncode to calculate dimension of tangent space at a monomial
ideal in Hilbn(C4). For an explanation see section 4.

"""

Write e.g. the monomial (x^2 y^3 z t^2) as "x2y3zt2"

The program can calculate the dimension of the tangent space at a

monomial ideal in the Hilbert scheme of points over C^4 and all

possible multi partitions for a given n.

"""

25

def convertIdeal(strIdeal):

"""

Input: monomial ideal with monomials as strings

Output: List of 4-tuples (exponent vector format)

e.g. ["x2", "y", "z", "t"] -->

[[2,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]

"""

ideal = []

for mon in strIdeal:

ideal.append(convMonomial(mon))

return ideal

def convMonomial(mon):

"""

Input: monomial ideal as strings

Output: 4-tuple (exponent vector format)

example see convertIdeal

"""

triple = [0,0,0,0]

xpos = mon.find("x")

ypos = mon.find("y")

zpos = mon.find("z")

tpos = mon.find("t")

if xpos != -1:

try:

triple[0] = int(mon[xpos+1])

except:

triple[0] = 1

if ypos != -1:

try:

triple[1] = int(mon[ypos+1])

except:

triple[1] = 1

if zpos != -1:

try:

triple[2] = int(mon[zpos+1])

except:

triple[2] = 1

if tpos != -1:

26

try:

triple[3] = int(mon[tpos+1])

except:

triple[3] = 1

return triple

def tupleProduct(list1, list2):

"""

Input: two lists

Output: List of 2-tuples

[a1,...,an] and [b1,,...,bn] --> [[a1,b1],...,[an,bn]]

"""

lst = []

for item1 in list1:

for item2 in list2:

lst.append([item1, item2])

return lst

def isPartition(partition):

"""

Input: List of 4-tuples (multipartition)

Output: Boolean

checks whether a list of 4-tuples is a valid multipartition

"""

for block in partition:

for i in range(4):

b = list(block)

if b[i] != 0:

b[i] += (-1)

if b not in partition:

return False

return True

def createPartition(ideal):

"""

Input: List of 4-tuples (monomial ideal in exponent vector

format)

Output: List of 4-tuples (multipartition)

27

creates the multipartition corresponding to a monomial ideal

"""

xmax = max([mon[0] for mon in ideal])

ymax = max([mon[1] for mon in ideal])

zmax = max([mon[2] for mon in ideal])

tmax = max([mon[3] for mon in ideal])

partition = []

for x in range(xmax):

for y in range(ymax):

for z in range(zmax):

for t in range(tmax):

partition.append([x,y,z,t])

for i in ideal:

for x in range(i[0], xmax):

for y in range(i[1],ymax):

for z in range(i[2],zmax):

for t in range(i[3], tmax):

if [x,y,z,t] in partition:

partition.remove([x,y,z,t])

if isPartition(partition):

return partition

else:

raise ValueError("Not a partition")

def isValidMove(arrow, partition):

"""

Input: arrow, Tuple of 4-tuple

partition, List of 4-tuples

Output: Boolean

Checks whether an arrow is a valid Haiman arrow

"""

if arrow[0] not in partition and arrow[1] in partition:

return True

elif arrow[0] not in partition and any(n < 0 for n in arrow[1]):

return True

elif arrow[0] in partition:

28

return False

def moveArrow(arrow, partition):

"""

Input: arrow, Tuple of 4-tuple

partition, List of 4-tuples

Output: list of two 4-tuples (arrows)

gives all possible moves in the x-,y-,z- and t-direction.

"""

moves = []

xp = [[arrow[0][0] + 1, arrow[0][1], arrow[0][2], arrow[0][3]],

[arrow[1][0] + 1, arrow[1][1], arrow[1][2], arrow[1][3]]]

if isValidMove(xp, partition):

moves.append(xp)

yp = [[arrow[0][0], arrow[0][1] + 1, arrow[0][2], arrow[0][3]],

[arrow[1][0], arrow[1][1] + 1, arrow[1][2], arrow[1][3]]]

if isValidMove(yp, partition):

moves.append(yp)

zp = [[arrow[0][0], arrow[0][1], arrow[0][2] + 1, arrow[0][3]],

[arrow[1][0], arrow[1][1], arrow[1][2] + 1, arrow[1][3]]]

if isValidMove(zp, partition):

moves.append(zp)

tp = [[arrow[0][0], arrow[0][1], arrow[0][2], arrow[0][3] + 1],

[arrow[1][0], arrow[1][1], arrow[1][2], arrow[1][3] + 1]]

if isValidMove(tp, partition):

moves.append(tp)

if arrow[0][0] != 0:

xm = [[arrow[0][0] - 1, arrow[0][1], arrow[0][2],

arrow[0][3]], [arrow[1][0] - 1, arrow[1][1],

arrow[1][2], arrow[1][3]]]

if isValidMove(xm, partition):

moves.append(xm)

if arrow[0][1] != 0:

ym = [[arrow[0][0], arrow[0][1] - 1, arrow[0][2],

29

arrow[0][3]], [arrow[1][0], arrow[1][1] - 1,

arrow[1][2], arrow[1][3]]]

if isValidMove(ym, partition):

moves.append(ym)

if arrow[0][2] != 0:

zm = [[arrow[0][0], arrow[0][1], arrow[0][2]-1,

arrow[0][3]], [arrow[1][0], arrow[1][1], arrow[1][2]-1,

arrow[1][3]]]

if isValidMove(zm, partition):

moves.append(zm)

if arrow[0][3] != 0:

tm = [[arrow[0][0], arrow[0][1], arrow[0][2], arrow[0][3] -

1], [arrow[1][0], arrow[1][1], arrow[1][2], arrow[1][3]

- 1]]

if isValidMove(tm, partition):

moves.append(tm)

return moves

def arrows(partition, ideal):

"""

Input: partition, List of 4-tuples

ideal, list of 4-tuples

Output: list of two 4-tuples (equivalence classes of arrows)

Determines all different equivalence classes of Haiman arrows.

"""

all_arrows = tupleProduct(ideal,partition)

equiv_classes = []

while all_arrows:

a = list(all_arrows[0])

a_class = [a]

waiting_list = [a]

while waiting_list:

b = list(waiting_list[0])

waiting_list.pop(0)

valid_moves = moveArrow(b, partition)

30

for move in valid_moves:

if move not in a_class and move not in waiting_list:

a_class.append(move)

if not any(n < 0 for n in move[1]):

waiting_list.append(move)

elif any(n < 0 for n in move[1]):

a_class.insert(0,0)

for arrow in a_class:

if arrow in all_arrows:

all_arrows.remove((arrow))

if a_class[0] != 0:

equiv_classes.append(a_class)

return equiv_classes

def findMinGen(partition):

"""

Input: partition, List of 4-tuples

Output: list of 4-tuples (minimal generators of monomial ideals

corresponding to multipartition)

"""

min_gen = []

for b in partition:

for i in range(4):

a = list(b)

a[i] += 1

if a not in partition:

for j in range(4):

neighbor = list(a)

neighbor[j] = neighbor[j] - 1

if neighbor not in partition and neighbor[j] >=

0:

break

if j == 3 and a not in min_gen:

min_gen.append(a)

return min_gen

def nextBlock(partitions, current, n):

"""

Input: partitions, List of List of 4-tuples (all

31

multipartitions already found)

current, 4-tuple (coordinate of the current block in the

multipartition)

n, integer for which multipartitions are to be determined

Output: List of List of 4-tuples (all multipartitions already

found)

determines all possible blocks when "building" a partition

"""

for block in current:

for i in range(4):

new_block = list(block)

new_block[i] += 1

if new_block not in current:

new_part = sorted(current + [new_block])

if isPartition(new_part):

if len(new_part) == n:

if new_part not in partitions:

partitions.append(new_part)

else:

partitions = nextBlock(partitions, new_part,

n)

return partitions

def findAllPartitions(n):

"""

Input: n, integer for which multipartitions are to be determined

Output: List of List of 4-tuples (all multipartitions already

found)

Finds all multipartitions for a given n. Starts with the block

at the origin

and expands the multipartition recursively in all directions

until it has n blocks.

"""

partitions = []

current_partition = [[0,0,0,0]]

partitions = nextBlock(partitions, current_partition, n)

return partitions

32

References

[AM16] Michael Atiyah and Ian Macdonald. Introduction to Commutative
Algebra. Addison-Wesley series in Mathematics. Westview Press,
2016, pp. 1–31.

[CLO97] David Cox, John Little, and Donal O’Shea. Ideals, varieties, and
algorithms: An introduction to computational algebraic geometry
and commutative algebra. second. Undergraduate Texts in Math-
ematics. New York: Springer-Verlag, 1997.

[Eis95] David Eisenbud. Commutative Algebra, with a view toward alge-
braic geometry. Vol. 150. Graduate Texts in Mathematics. New
York: Springer-Verlag, 1995, pp. 345–347.

[Gro61] Alexander Grothendieck. “Techniques de construction et théorémes
d’existence en géométrie algébrique IV : les schémas de Hilbert”.
In: Séminaire Bourbaki 221 (1960/61), pp. 249–276.

[Leh04] Manfred Lehn. “Lectures on Hilbert schemes”. In: CRM Proceed-
ings & Lecture Notes 38 (2004). (Lectures at the Workshop on Al-
gebraic Structures and Moduli Spaces. CRM Montréal, Juli 2003.),
pp. 4–6.

[MS05] Ezra Miller and Bernd Sturmfels. Combinatorial Commutative
Algebra. Vol. 227. Graduate Texts in Mathematics. New York:
Springer-Verlag, 2005, pp. 355–363, 368–373.

33

