
History of the Mercator projection

Marc Vis

Supervisor: Jan Hogendijk

Bachelor thesis Mathematics
June 2018



Preface

The Mercator projection is one of the most well-known projections, and nearly everyone has probably seen
a map in this projection, e.g. in an atlas or as wall map (maybe without noticing or recognizing it as such
though). Although often criticized nowadays, mainly because of the distortion in the areas towards the pole
(leading to reactions like: ”I didn’t realize Greenland is that large!”), it has been of immense value in the
past, especially for navigation at sea. Also many of the sea charts used nowadays still make use of the
Mercator projection.

The concept behind the Mercator projection seems pretty straightforward, and the projection itself rather
simple, especially when compared to several of the more recently developed projections. However, as we
will see in this thesis, after the first map in this projection was developed by Mercator, more than a century
passed until the mathematics underlying the projection was fully understood and proved.

The thesis is written in such a way that people with some basic knowledge in calculus should be able to
follow.

Chapter 1 starts with an introduction about the historical context in which the Mercator projection was de-
veloped. In chapter 2, formulas for the Mercator projection are derived from a modern perspective. Chapter
3 then follows with an overview how Mercator created his map in the 16th century. Chapter 4 is about
the first more mathematical description of Mercator’s map provided by Wright. Chapter 5, finally, briefly
touches upon the influence that Mercator’s map had on the development of mathematics, and discusses an
inconsistency in literature with regard to the role of Henry Bond.

Most of this thesis is based on secondary literature by modern scholars. Chapter 4, however, also contains
a small analysis which I did to analyze the accuracy of the method that Wright used. Furthermore, figures
and tables for which no source is provided were created by the author of this thesis. As far as we are aware,
the remarks on the mathematician Henry Bond in chapter 5 have not appeared before in the literature.
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1 Introduction

Geography and navigation were very important in the time of Mercator (i.e. 16th century). Many European
countries were exploring the world, creating colonies, and trading. Knowing the ship’s position was im-
portant. The latitude could be relatively easy determined by measuring the altitude of either the pole star
or the sun (at noon, and using tables with the declination of the sun for every day of the year). Longitude
was much more difficult, and required accurate time measurement, a place with known longitude, so that
one could measure e.g. local noon, and one could then compare the difference in time with the reference
location. Each hour difference equals 15 degrees longitude. The (mechanical) clocks available around that
time were not accurate enough though, making it a challenge for seamen to know the exact location of their
ship (Katz 1998, pp. 393-394). These difficulties made the availability of good maps even more important
for navigation at sea, since maps could potentially tell how different places were located relative to each
other, and therefore how far and in which direction one had to go to reach a certain destination.

The first maps simply used a rectangular grid of parallels and meridians, using the same scale for both of
them (Katz 1998, p. 396). The name we use nowadays for this projection is ’Plate Carrée projection’ (Sny-
der & Voxland 1989). See figure 1(c) for an impression how meridians and parallels are located relative
to each other within this projection. In the literature of the 16th/17th century several different names were
used to refer to maps in the Plate Carrée projection, e.g. the plaine or ordinary Sea-chart (Norwood 1645) or
the general or common Sea-Chart (Wright 1657). However, although commonly used around these times,
maps with this projection had some disadvantages in the sense that the projection tends to distort shapes and
directions (Snyder & Voxland 1989). These distortions made that people sometimes had so little confidence
in the maps that they preferred the safer alternative of first sailing to the desired latitude, and from there con-
tinue in Eastern or Western direction until the destination was reached, also if this route would be (much)
longer and more time consuming (Katz 1998, p. 394), (Wright 1657, pp. B-B2).

Pedro Nunes investigated the lines if one would keep following a constant compass bearing, called ’loxo-
dromes’ or ’rhumb lines’, and discovered that these lines spiral around the globe towards the poles (Katz
1998, p. 396). Note that loxodromes are in general not the shortest route between two places. The shortest
route between two places is always lying on the great circle that is going through both places. Only the
loxodromes that make an angle of 0◦ or 90◦ with the equator are great circles themselves. Loxodromes
were important for navigation, because it was convenient if one could just find the bearing between starting
point and destination, and follow the same direction with the compass throughout the whole journey (Snyder
1997, p. 45). As such, following a loxodrome was a good compromise between the shortest route and a
safe route. However, since the Plate Carrée projection distorts angles, loxodromes were not represented by
straight lines on the common Sea-Chart. It was Mercator who then created the first map where loxodromes
were represented by straight lines (Katz 1998, p. 397). Figure 1 shows 7 loxodromes starting from the point
with spherical coordinates (0,0) in positive longitudinal and latitudinal direction on a sphere 1(a), on the
Mercator projection 1(b) and the Plate Carrée projection 1(c).
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(a) Globe (b) Mercator projection

(c) Plate carrée projection

Figure 1: Loxodromes (red lines) visualized on the globe, on the Mercator projection and on the Plate Carrée projection
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2 The Mercator projection from a modern perspective

As we have seen in the previous chapter, the Mercator projection was developed as improvement of the
common sea chart. Both are so-called cylindrical projections, i.e. in both cases the Earth is projected onto
a cylinder, which is then ’cut open’ and ’unrolled’ to a flat sheet. Thereby the assumption is made that the
earth has the shape of a perfect sphere. The sphere is inscribed into a hollow cylinder that is open at both
ends, in such a way that the equator of the sphere coincides with the cylinder (see figure 2(a)). In other
words, the intersection of the sphere and the cylinder is exactly the equator.

(a) Inscribed sphere (b) Coordinates on cylinder (c) Cylinder flattened

Figure 2: Cylindrical projection

To derive the Mercator projection, imagine that the sphere grows, and as soon as a point of the surface of
the sphere coincides with the cylinder, it sticks to the surface, which is then the projection of that point.
How the growing is done exactly will be made clear later on (but the basic concept is to make sure that for
each point the scaling factor in latitude is the same as the scaling factor in longitude. Wright already used
a similar description in 1599, where he speaks about the swelling of a bladder, in every point as much in
longitude as in latitude (Wright 1599, p.C3)). The equator touches the cylinder already from the beginning,
and hence, has its true scale on the projection surface of the cylinder. The point where the cylinder touches
the spherical coordinates (0,0) of the surface of the sphere will be the origin of the coordinate system on
the cylinder, and the intersection with the sphere will serve as x-axis. The x-coordinates correspond to the
longitudes on the equator of the sphere, so they go from −180◦ till 180◦, whereby the points with −180◦

and 180◦ coincide (at least until the cylinder has been cut open). While the sphere is growing, points on
a meridian, say with longitude λ, will make contact with the cylinder on a point straight above the point
on the x-axis with x-coordinate λ, i.e. meridians on the sphere will be represented by straight lines on the
cylinder, perpendicular to the equator. Hence, the x-coordinate of the projection of a point depends only on
the longitude that it had on the sphere and not on its latitude.
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Although we didn’t specify in detail yet how the growing is done exactly, it will be done in such a way
that for each point the distance to the projected equator on the cylinder will only depend on the latitude
and not on its longitude. In other words, two points with the same latitude will be projected at the same
distance from the equator. So each parallel on the sphere will be projected as a circle on the cylinder which
is parallel to the equator. It follows that (after the cylinder has been cut open along the 180◦ (= −180◦)
meridian and ’flattened’) parallels on the sphere will be projected as straight lines parallel to the equator.
As a result the Mercator projection plots meridians and parallels as straight lines that intersect at right angles.

Now we get to the point where we will make clear how the growing/scaling will be applied exactly. The goal
is to make sure that loxodromes will be represented by straight lines on the map. Since loxodromes are those
lines on a globe which cross each meridian under the same angle, and we saw that the way the projection
was defined so far makes that meridians are parallel lines on the map, it follows that loxodromes will be
straight lines on the map if and only if in each point on the map angles on the map correspond to angles on
the sphere, i.e. the projection needs to be conformal, i.e. (locally) there are no shape distortions. (Note that
there are also conformal projections where meridians are not parallel and loxodromes will therefore not be
straight lines).

Since parallels and meridians are perpendicular, they form a basis, i.e. every line can be described as linear
combination of longitude and latitude. If longitude and latitude have the same scale factor in each point
(which may differ from point to point though), every line will be scaled similar ’in horizontal and vertical’
direction, and therefore preserve its angle.

Consider the radius of a parallel at latitude φ. On the sphere the radius of this parallel is cos(φ) times the
length of the equator (see the red lines in figure 3). On the cylinder, however, the circumference is always
the circumference of the cylinder, i.e. the length of the equator. So on the map the distance between two
meridians at latitude φ is enlarged by a factor 1/cos(φ) = sec(φ). To make sure that the map is conformal,
the same scale needs to be applied in each point in ’vertical’ direction as well.

Figure 3: Scaling factor

So we now know the scaling factor at each individual latitude, but we are actually interested in the overall
scaling factor between the equator and a certain latitude φ, because then we can easily calculate the distance
between the equator and latitude φ by multiplying the distance that a similar arc would have at the equator
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with the overall scaling factor. This overall scaling factor can be calculated by taking the integral over the
scaling factors at each latitude:

∫
α

0
secφdφ (1)

Assume for example that one degree on the equator has a distance g on the map, and that there are a degrees
in between the equator and latitude α. Then the distance from the equator to latitude α on the Mercator map
would be a ·g ·

∫
α

0 secφdφ.

The integral can be calculated as follows (note that in the derivation φ will be in radians):∫
sec(φ)dφ =

∫ dφ

cos(φ)

Multiplying numerator and denominator by cos(φ) gives:∫
sec(φ)dφ =

∫ cos(φ)dφ

cos2(φ)

This can be rewritten using the equality cos2(φ)+ sin2(φ) = 1:∫
sec(φ)dφ =

∫ cos(φ)dφ

1− sin(φ)2

Substitution of u for sin(φ) can now be used. Since du
dφ

= sin′(φ) = cos(φ), i.e. du = cos(φ)dφ we get:∫
sec(φ)dφ =

∫ du
1−u2

Then, since 1−u2 = (1+u)(1−u): ∫
sec(φ)dφ =

∫ du
(1+u)(1−u)

Using 1 = 1
2(1−u)+ 1

2(1+u) gives

∫
sec(φ)dφ =

∫ ( 1
2(1−u)+ 1

2(1+u)
(1+u)(1−u)

)
du

=
∫ ( 1

2
(1+u)

+
1
2

(1−u)

)
du

=
1
2

∫ 1
(1+u)

du+
∫ 1

(1−u)
du

Now using that
∫ 1

(1+u)du = ln |1+u|+C and
∫ 1

(1−u)du =− ln |1−u|+C gives∫
sec(φ)dφ =

1
2
(ln |1+u|− ln |1−u|)+C

Substituting u = sin(φ) back gives:
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∫
sec(φ)dφ =

1
2
(ln |1+ sin(φ)|− ln |1− sin(φ)|)+C

Since lna− lnb = ln a
b : ∫

sec(φ)dφ =
1
2

ln
∣∣∣∣1+ sin(φ)
1− sin(φ)

∣∣∣∣+C

Combining the equalities sin(φ)=−cos(φ+ π

2 )=−cos(2(φ

2 +
π

4 )) and cos(2φ)= 1−2sin2(φ) gives sin(φ)=
−1+2sin2(φ

2 +
π

4 ), which can then be used to continue as follows:

∫
sec(φ)dφ =

1
2

ln

∣∣∣∣∣ 2sin2(φ

2 +
π

4 )

2−2sin2(φ

2 +
π

4 )

∣∣∣∣∣+C

=
1
2

ln

∣∣∣∣∣ sin2(φ

2 +
π

4 )

cos2(φ

2 +
π

4 )

∣∣∣∣∣+C

=
1
2

ln
∣∣∣∣tan2(

φ

2
+

π

4
)

∣∣∣∣+C

= ln
∣∣∣∣tan(

φ

2
+

π

4
)

∣∣∣∣+C

Latitudes φ are within the interval [−1
2 π, 1

2 π]. From lim
φ→ 1

2 π
tan(π

4 +
φ

2 ) = ∞ and lim
φ→− 1

2 π
ln
∣∣∣tan(π

4 +
φ

2 )
∣∣∣=

−∞, it follows that the poles cannot be shown on the map when using the Mercator projection. For latitudes
of φ within the interval (−1

2 π, 1
2 π) it holds that 0 < φ

2 +
π

4 < 1
2 π, and from that it follows that the tangent is

always positive, and the absolute value brackets can therefore be removed.

So finally we get for latitude α:∫
α

0
sec(φ)dφ = ln tan(

α

2
+

π

4
)− ln tan(

π

4
) = ln tan(

α

2
+

π

4
)

This brings us to the definition of the Mercator projection as is common nowadays, where R depends on the
scaling factor of the map, i.e. R is the radius of the so-called generating globe:

x = Rλ (2)

y = R ln tan(
π

4
+

φ

2
) (3)

Note that there is sometimes the misconception that the Mercator projection is the projection one would get
by putting a light in the center of the earth that projects the earth on the cylinder. However, this would result
in y = tan(φ), and is therefore not the same as the Mercator projection.

An interesting detail worth mentioning is that logarithms were only discovered around 1615-1620 and there-
fore unknown in the time of Mercator (see also chapter 5).
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3 How did Mercator define his projection?

Source: https://commons.wikimedia.org/wiki/File:Mercator_1569_world_map_composite.jpg
Figure 4: Mercator’s world map (1569)

Gerhardus Mercator (1512 - 1594), born as Gerhard Kremer, studied philosophy and theology at the Uni-
versity of Louvain. It was only after his studies that he started to get more acquainted with mathematics
and astronomy. Besides his knowledge in these fields, as well as in geography, he had also artistic talents
(calligraphy and engraving), which he used for making globes, maps and scientific instruments (Kish 1975).

After Pedro Nunes had shown in 1537 that loxodromes are different from great circles, and spiral towards
the poles (Katz 1998, p. 396), Mercator drew loxodromes on a globe he produced in 1541 (Krücken &
Milz 1994). However, globes were not very practical for navigation at a ship (not only because the curved
surface makes measurements harder, but also because maps could, in contrary to globes, be at sufficiently
large scales (Katz 1998, p. 396)). In 1569 Mercator then published his famous world map named ”Nova et
Aucta Orbis Terrae Descriptio ad Usum Navigantium Emendate Accommodata” (”New and more complete
representation of the terrestrial globe properly adapted for use in navigation”) using a new projection, which
is since then known as the Mercator projection (Krücken & Milz 1994).

In the decades after 1569 many copies of Mercator’s map were sold (the map had 14 years of copyright).
Nowadays, of only 3 copies it is known that they still exist (known as the ’Paris’, ’Rotterdam’ and ’Basel’
versions). Furthermore there are reprints of a Breslau version, from which it is not clear if the original still
exists (Krücken & Milz 1994).

9



Little is known about how Mercator produced his map. Besides the text on the map itself, there are no other
sources by Mercator himself about (the production of) the map. However, from the legends on the map one
gets the impression that Mercator knew exactly what he was doing. He mentions that one of the goals is to
project the sphere in such a way on the map that places are located correctly in latitude, longitude, as well as
direction and distance in comparison with each other. To do that, he writes that he has gradually increased
the degrees of latitude towards the poles in proportion to the increase in length of the parallels relative to the
equator, and he furthermore mentions that the poles cannot be visualized on the map, since their latitudes
would reach infinity (Krücken & Milz 1994).

Several studies have been carried out in which different hypotheses of how Mercator could have made his
map have been analyzed (see e.g. Nordenskiöld (1889) for such a study, or Kyewski (1962) for an overview
of studies). Many of those studies include an error assessment where the accuracy of the ’mesh’ on one of
the still existing copies of Mercator’s map is compared with the exact values which the hypothesized method
would theoretically result in.

One such a hypothesis is that Mercator calculated a table with distances between parallels in a way Wright
did, and which is discussed in more detail in the next chapter. However a more likely scenario probably
is that Mercator made use of (available) tables of rhumbs, as suggested by (a.o.) Gaspar & Leitão (2014).
Tables of rhumbs usually contained a standard set of rhumb lines corresponding to the main compass direc-
tions, including the rhumbs which are crossing the meridians at angles of 11.25◦ (EbN), 22.5◦ (ENE), 33.75◦

(NEbE), 45◦ (NE), 56.25◦ (NEbN), 67.5◦ (NNE) and 78.75◦ (NbE) (see also figure 1(a)). For each rhumb
line, the table contains a series of coordinates (which most likely were calculated using a method based on
spherical triangles), whereby coordinates were provided at equal intervals of latitude or equal intervals of
longitude. (See figure 5 for an example of such a table, where the coordinates are given with an interval of
1◦ longitude).

With the help of such a table, one could proceed as follows. First draw the equator and the (equally spaced)
meridians. Select a rhumb line, and draw a straight line starting in the origin and making an angle with the
meridians that corresponds to the specific rhumb line. For each coordinate pair in the rhumb table, say (λ,φ),
the longitude λ can be easily linked to a specific point at the equator. From there, move straight up until
reaching the rhumb line. The point where the line is crossing the rhumb line has latitude φ, and a horizontal
line can be drawn representing that latitude. After this procedure has been applied to all coordinates in the
rhumb table, parallels are drawn on the map with a resolution similar to that of the rhumb table. (Tables
of rhumbs using equal intervals of longitudes can be used in a similar way, though this would require some
interpolation).

If this method has been applied correctly, all other rhumb lines, when plotted on the map based on the coor-
dinates in their rhumb tables, should also appear as straight lines. This could be used to double check if the
stretching of the latitudes had been applied correctly.

Noteworthy is that not only the correct scaling of meridians and parallels was important for practical usage
of Mercator’s map. As important was that the content of the map, e.g. countries, cities and ports, were
placed correctly on the map, and Mercator states this clearly as the second important goal for creating his
map. For this part Mercator was dependent on other sources, and he has used several other maps and sources
to construct the content of the map itself (Krücken & Milz 1994, p. 20). The importance of this second goal
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also follows from a discussion by (Norwood 1645, p.13), who mentioned that some people had as little
trust in maps with the Mercator projection as they had in the common Sea-Chart. Not because the parallels,
meridians or rhums would be inaccurate, but because if content was transferred from the common Sea-Chart,
errors in there were copied as well.

Figure 5: The first page of a table with coordinates of the 4th rhumb (Wright 1599, p. n.d.)
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4 Tables of meridional parts

4.1 Wright

Edward Wright (1561 - 1615) was the first who gave an explicit (mathematical) description of the Mercator
projection, and explained how maps with this projection could be computed . Wright was a mathematician
and cartographer, and in his early years he had joined some expeditions by ship. The experiences he gained
during these expeditions probably inspired him to write his major work ”Certaine Errors in Navigation” (1st

version published in 1599, 2nd version in 1610 and a 3rd version (by Joseph Moxon) in 1657) (Wallis 1975).

In his book Wright criticizes the common Sea-Chart, which was commonly used for navigation in those
days, stating that it has some fundamental errors, consisting of errors in direction as well as in distance.
Wright mentions that directions might be wrong by several points on a compass, and distances had the ten-
dency to be (significantly) overestimated (Wright 1657, p.B).

Consider for example the distance between two places both located at 60◦ latitude, and 1◦ of longitude apart
from each other. Since cos(60) = 0.5, the distance between those two places is only half of the distance
between two places that are 1◦ apart from each other at the equator. However, by using the common sea-
chart, the distance between meridians was considered to be equal to the distance that it has at the equator,
and therefore the distance at 60◦ North would be overestimated by a factor two, and even more further North.

Wright uses a similar example in a way that nicely shows how people were struggling with the common sea
chart in those times, using figure 6. In short, he reasons as follows (Wright 1599, p.B2). Assume that one
is sailing from D to B, around the parallel located 60◦ North, where B is located North-East of D, and their
difference is one degree in latitude. Then on the common sea chart the distance DC is one degree as well.
However, in reality it is only half a degree. So if DC is only half a degree, B should actually be located at
A. But CA has a distance on the map of 2 degrees. According to the direction from D to B it follows that D
should be located at E (with a distance EC of two degrees), but the chart only shows half the distance.

Figure 6: Example of the error made at 60◦ latitude (Wright 1599, p.B2)
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The Mercator map avoided such errors by increasing the distance between the parallels towards the poles,
and was therefore a huge improvement. It was not clear though, how such a map could be constructed, or
more precisely, how much the distance between each of the parallels should be exactly. Wright explains
that at each point of latitude, the meridians need to be (locally) stretched by a factor sec(φ) (see the graph
in figure 7(a) for the relation between the latitude and the ’stretching factor’ sec(φ)). However, it was not
straightforward how to translate this knowledge into exact distances between parallels. Nowadays we know,
as we have seen in the previous chapter, that in order to get the overall scaling factor between the equator
and a certain latitude, one needs to take the integral of the secant (e.g. the gray area under the graph in figure
7(a) represents the total scaling factor for the distance between the equator and the 60◦ parallel). However,
the integral calculus, and in particular the integral of the secant, was not known yet by that time (Katz 1998,
p.416-417, 468). Wright explains how a table with (approximations of) these distances can be calculated.

The table that Wright produced has a resolution of 1 minute of latitude, i.e. for each minute α in between
the equator and the pole, Wright calculated the distance from the equator. Since there are 90 degrees in
between the equator and the pole, each consisting of 60 minutes, this resulted in a table with a total of 5400
distances. To approximate the distance between the equator and latitude α, Wright divided the distance in n
parts ∆φ, i.e. n ·∆φ = α. For ∆φ he used a value of one minute.

Wright did not calculate the secant values himself, but used a table which provided secant values at a res-
olution of 1 minute. The secant values are slightly different from the secant values we use nowadays, in
the sense that they were 10,000,000 times as large, i.e. Sec(x) = L · sec(x), where the notation Sec(x) is
used for the secant values as used by Wright, the notation sec(x) for the secant values we use nowadays, and
furthermore L = 10,000,000.

The method that Wright used for calculating the distances can be formulated in modern notation as follows:

D(α) =
n

∑
k=1

Sec(k ·∆φ) =
n

∑
k=1

L · sec(k ·∆φ) (4)

This can be interpreted as the distance from the equator to latitude α if one minute at the equator has a length
of 10,000,000. Note that for each interval (φn−1,φn] Wright assumed the secant to be constant and equal to
Sec(φn). See figure 7(b) for a visualization of the method.

Distances from the equator to latitude φ, like these calculated by Wright, were called ’meridional parts’, and
a table listing these distances a ’table of meridional parts’.

In the passage of ”Certaine errors in Navigation” shown in figure 8, Wright explains how he proceeded.
(See also table 1 for a small summary). He writes that the secant of one minute equals 10,000,000, which
is indeed L · sec(1 · 1

2 · π/5400) (note that 1 minute corresponds to 1
2 · π/5400 radians), and used as the

approximation for the distance from the equator to the first minute. He continues by adding the secant
of 2 minutes, which equals 10,000,002, giving a total distance from the equator to the second minute of
10,000,000+ 10,000,002 = 20,000,002. The secant of 3 minutes equals 10,000,004, giving a total dis-
tance from the equator to the third minute of 20,000,002+10,000,004 = 30,000,006, and so on.

As follows from the last part of the passage in figure 8, Wright was aware that his method resulted in an
overestimation. The overestimation can also be clearly seen from figure 7(b). Since sec(φ) is a monotoni-
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(a) 1/cos(φ) (b) Approximation by Wright

Figure 7: Secant

Figure 8: Certain Errors In Navigation (Wright 1657, p.12)

Minute Distance Secant
1 10,000,000 10,000,000
2 20,000,002 10,000,002
3 30,000,006 10,000,004

Table 1: Summary of example provided by Wright
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cally increasing function on the interval [0, 1
2 π], and Wright used the secant value at the upper end of each

minute interval as estimation for the whole interval, the area under the graph, and therefore the approxima-
tion of the distance to the equator, would be overestimated. Wright decided to omit the last three digits in
his calculations, which, as well as for making the calculations slightly easier, would partly compensate for
the overestimation. As a result he basically produced his table using a value of 10,000 for the scaling factor
L, thereby always rounding values down (see equation 5).

D(α) =
n

∑
k=1
bSec(k ·∆φ)/1,000c=

n

∑
k=1
bL · sec(k ·∆φ)c (5)

Figure 9 shows the first page of the table as published in Wright (1657). The first line of the header contains
the number of degrees. The first column further subdivides the degrees into minutes. For each degree there
are two columns. The first column contains the meridional parts, whereas the second column contains the
difference between two consecutive meridional parts, which is basically the secant multiplied by 10,000
(Wright 1657). Note that the table starts with the distance of latitude 0◦ to the equator, i.e. 00,000. The
following three records for minutes 1, 2 and 3 correspond to those in table 1, except that the last three digits
have been omitted.

In Wright (1599), Wright already intended to publish the same table which in the end was published in
Wright (1657). However, although he had carried out the exact same calculations, he decided to publish
only the meridional parts for every 10th minute, and to omit two more digits of every value.

4.2 Table of Wright recomputed

To get an impression of how accurate Wright calculated his table, I have recomputed the table which he
published in the 1657 version of his book. Thereby I applied the same method as he did, using equation 5,
with the only difference that I used the version based on the modern secant. By doing so, not only the in-
accuracies of Wright’s calculations, but also the inaccuracies in the meridional parts resulting from possible
inaccuracies in the secant values could be analyzed. Since Wright actually included the differences between
meridional parts in his table, i.e. the values for Sec(φ), these could be easily compared with the values based
on L · sec(φ). Figure 10 shows the first part of the reproduced values, corresponding to the first page of the
table of meridional parts shown in figure 9. Marked in gray are the differences between the table in Wright
(1657) and the recomputed table.

In total I could identify 213 errors in the table (see Appendix). On a total of 5400 minutes in between
equator and pole, this corresponds to 4 percent of all minutes, whereby the error can be either in the value
of the secant or the meridional part itself. (Note that values which could not be read due to the quality of the
copy of the book were assumed to be correct). The errors which were identified can be roughly subdivided
into the following categories (between brackets the number of occurrences within each category are given):

• Typographical and/or ’local’ calculation errors, i.e. values that do not effect any other values in the
table (121).

• Inaccuracies of the secant values, affecting the meridional parts (35).

• Calculation errors in the meridional parts which affect all further values ’in the direction of the poles’
(57).
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Figure 9: First page of the table of meridional parts in (Wright 1657, p.14)
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Figure 10: Recomputed values corresponding to the first page of the table of meridional parts in Wright (1657)
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The errors contained in the first category might not seem very exciting at first sight. It is not always clear,
however, if an error is simply a typo or a calculation error. Since the errors are ’local’ in the sense that
they do not affect any other values in the table, it seems rather likely that they are simply typos. Errors
in the secants might have occurred when copying them from their source, while in some or another way
the correct value was used for the actual calculation of the meridional part. There are a couple of errors in
the meridional part, however, which are less likely to be typos. An example is given in figure 11(a). The
meridional part of 25◦18′ is 15,698,733. Adding the secant of 25◦19′ which has a value of 11,062 (note
that the outlining of the table is somewhat unfortunate, by which it might falsely appear that 11,062 belongs
to 25◦18′ instead of 25◦19′) resulted in 15,709,805, where 15,709,795 would be the correct value. In this
case there are two digits involved, making it more likely to be a computation error then two typos in the
same number. However, in that case one might expect that the error, once introduced, will affect all further
values. Surprisingly though, the next meridional part has a value of 15,720,858, which is the correct sum
of 15,709,795 and 11,063 (the secant of 25◦20′). One can wonder what has happened exactly. It is not
likely that Wright made another calculation error, which exactly compensated for the previous one. Errors
like these could potentially give us some insight in the way Wright calculated his table.

(a) Typographic or calculation error? (b) Error affecting all further values

Figure 11: Examples of errors in table of meridional parts (Wright 1657, p.14-30)

The second category, consisting of inaccuracies in the values of the secants, can tell us something about
the quality of the secants data used by Wright. For all except four of the cases where there is a difference
between the secants that were used by Wright and the values based on the modern secants, the (absolute)
difference is only 1. In modern units this is equal to a difference of only 0.0001. From the four cases where
differences are larger, three of them occur within 3 degrees from the pole, a region where secant values ’are
changing rapidly’. In case the errors in the secants were already present in the data which Wright used,
they can possibly be of help to identify from which source Wright used the secants. Unfortunately, a quick
investigation has not resulted in a match yet.

The last category with calculation errors in the meridional parts which affect all further values is potentially
the most severe one, since errors might accumulate and affect the usefulness of the table, especially for us-
age in the polar regions. However, most of the errors are so small that they have hardly any effect at all, and
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errors partly cancel each other out. The (by far) largest error made is an error of 100,000 and occurs around
the 87th degree. Compared to the value of the meridional part, which is 124,078,381, the relative error
is less than 0.001. Figure 11(b) shows an example where the value in red, 23,390,837, is one hundred too
large. Since this value is used to calculate the meridional parts further down in the table, all those meridional
parts inherit the error.

Overall most of the errors can be ignored with regard to the accuracy of the table. Some of the typos result
in significantly different values, but many of them somehow ’break the pattern’ (e.g. a meridional part be-
coming smaller instead of larger), and an attentive user of the table might notice the error and be warned to
not blindly trust it.

Interestingly it seems that more errors occur on the first line of a page than one would expect based on a
random distribution of the errors (i.e. 10 times, where the expected value is 3.6).

4.3 Comparing Wright’s table of meridional parts with the modern values

In the previous chapter I have analyzed the accuracy of the calculations carried out by Wright. However,
for reproducing his table I used a similar method as Wright had used, i.e. approximating the integral of the
secant by a finite sum. A more interesting question is how accurate his method actually was compared to
the modern solution. Therefore, in this chapter Wright’s method will be compared with the meridional parts
which I calculated using equation 6, with L = 10,000, c = 10800

π
a conversion factor from radians to minutes

(and φ in radians).

y = L · c · ln tan(
π

4
+

φ

2
) (6)

Figure 12(c) shows the difference between the approximation of equation 5 and equation 6. Since Wright
consistently overestimated the integral by assuming for each interval (φn−1,φn] the secant to be constant
and equal to Sec(φn) it is remarkable that the differences are negative for lower latitudes. However, the
negative values are the result of cutting of the last three digits instead of rounding the values. This effect
was intended by Wright to compensate (at least partly) for the overestimation. Figure 12(a) clearly shows
that for lower latitudes, where secants only slightly differ between minutes, the way Wright rounds results
even in an underestimation. For medium to higher altitudes, where secants change more rapidly from minute
to minute, Wright’s way of rounding hardly has any effect on the values anymore (see as example figure
12(b)), and the overestimation inherent to his method becomes larger and larger. Around 75 degrees the
overestimation has reached a total of about 12,000. Compared to the length of 10,000 that 1 degree has
at the equator, the overestimation might seem rather significant. However, when looking at the relative
difference by dividing the difference of equation 5 and 6 by equation 6 it becomes clear that the errors are
rather minor (see figure 12(d)).

4.4 Comparing tables of meridional parts of different people

After Wright many more people have generated tables with meridional parts, partly making use of different
methods. Table 2 shows a selection of them, where only the meridional part for every fifth degree is given,
as well as two parallels very close to the pole. Furthermore, for each column with meridional parts, the
differences with the values calculated using equation 6 is given in the column directly right of it. The last
two columns, finally, provide values based on the common sea-chart as a comparison. Note that, since most
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(a) Effect of rounding down (1) (b) Effect of rounding down (2)

(c) Difference (d) Relative difference

Figure 12: Wright’s method compared to real solution
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Distance
from

equator

ln tan(φ

2 +
π

4 ) Wright
(1599)1

Snellius
(1624)2

Norwood
(1645)3

Wright
(1657)4

Sir Jonas
Moore
(1681)5

Mendoza
(1809)6

Common
Sea-Chart

0◦ 0 - - - - 0.00 0.00 0.0000 0.0000 0.0 0.0 0.00 0.00 0.0 0.0
5◦ 300.38150 300.4 0.0 300.3796 -0.0019 300.36 -0.02 300.3694 -0.0121 300.4 0.0 300.38 0.00 300.0 -0.4

10◦ 603.06958 603.0 -0.1 603.0618 -0.0078 603.06 -0.01 603.0475 -0.0221 603.1 0.0 603.07 0.00 600.0 -3.1
15◦ 910.46058 910.4 -0.1 910.4428 -0.0178 910.44 -0.02 910.4325 -0.0281 910.5 0.0 910.46 0.00 900.0 -10.5
20◦ 1225.13905 1225.1 0.0 1225.1068 -0.0323 1225.14 0.00 1225.1292 -0.0099 1225.1 0.0 1225.14 0.00 1200.0 -25.1
25◦ 1549.99521 1550.0 0.0 1549.9434 -0.0518 1549.98 -0.02 1549.9878 -0.0074 1550.0 0.0 1549.99 -0.01 1500.0 -50.0
30◦ 1888.37542 1888.4 0.0 1888.2980 -0.0774 1888.32 -0.06 1888.3768 0.0014 1888.4 0.0 1888.38 0.00 1800.0 -88.4
35◦ 2244.28684 2244.3 0.0 2244.1764 -0.1104 2244.24 -0.05 2244.3047 0.0179 2244.3 0.0 2244.29 0.00 2100.0 -144.3
40◦ 2622.69019 2622.8 0.1 2622.5374 -0.1528 2622.60 -0.09 2622.7559 0.0657 2622.7 0.0 2622.69 0.00 2400.0 -222.7
45◦ 3029.93920 3030.0 0.1 3029.7320 -0.2072 3029.82 -0.12 3030.1271 0.1879 3030.0 0.1 3029.94 0.00 2700.0 -329.9
50◦ 3474.47287 3474.6 0.1 3474.1919 -0.2810 3474.30 -0.17 3474.6045 0.1316 3474.5 0.0 3474.47 0.00 3000.0 -474.5
55◦ 3967.96611 3968.2 0.2 3967.5943 -0.3718 3967.74 -0.23 3968.1879 0.2218 3968.0 0.0 3967.97 0.00 3300.0 -668.0
60◦ 4527.36776 4527.7 0.3 4526.8678 -0.5000 4527.06 -0.31 4527.7106 0.3428 4527.4 0.0 4527.37 0.00 3600.0 -927.4
65◦ 5178.80819 5179.3 0.5 5178.1250 -0.6832 5178.42 -0.39 5179.3079 0.4997 5178.8 0.0 5178.81 0.00 3900.0 -1278.8
70◦ 5965.91787 5966.7 0.8 5964.9560 -0.9619 5965.20 -0.72 5966.6811 0.7632 5966.0 0.1 5965.92 0.00 4200.0 -1765.9
75◦ 6970.33899 6971.5 1.2 - - 6969.60 -0.74 6971.5485 1.2095 6970.3 0.0 6970.34 0.00 4500.0 -2470.3
80◦ 8375.19700 8377.3 2.1 - - 8373.60 -1.60 8377.3416 2.1446 8375.20 0.00 4800.0 -3575.2
85◦ 10764.62104 10769.6 5.0 - - - - 10769.6200 4.9990 10764.7 0.1 10764.62 0.00 5100.0 -5664.6

89◦50′ 22459.25656 22622.3 163.0 - - - - 22623.2506 163.9940 22458.0 -1.3 22459.26 0.00 5390.0 -17069.3
89◦59′ 30374.96343 - - - - - - 32348.5279 1973.5645 30364.3 -10.7 30374.96 0.00 5399.0 -24976.0

Table 2: Meridional parts from different sources

of the authors used different units, values have been transformed to a value relative to one minute at the
equator where needed.

Without going into too much detail about the exact methods that were used, one can clearly observe some
differences in the meridional parts. Where we have seen that Wright’s method resulted (at least for the higher
altitudes) in an overestimation, both the methods of Snellius and Norwood tend to result in underestimated
values. Furthermore, both Snellius and Norwood did not specify values for the highest altitudes, possibly
being aware of increasing inaccuracies for these regions (or simply to reduce the computational efforts, since
values for regions so far to the north were of little practical use). The table of meridional parts published by
Sir Jonas Moore is very accurate, and has only some minor inaccuracies for the highest altitudes. Although
it is not stated explicitly how the values in the table were calculated, equation 3 was known to Sir Jonas
Moore (Moore 1681, p. 208). It is therefore likely that he used this method, although it is not clear in that
case why the last values in the table are less accurate. According to (Bathe 1915), Moore used the secant of
the mean of each interval instead of the upperbound as Wright did, and furthermore he used a resolution of
0.1 to calculate the meridional parts. Also in that case the last values in the table should be more accurate.
Moore’s table has been in use till the 19th century. The extremely accurate values in Mendoza’s table are
a result of using the method based on the logarithmic tangents to calculate the meridional parts (Wallis 1685).

Overall one can clearly observe that meridional parts, as calculated by the different people, are in general
rather accurate up to about 85◦, after which, depending on the method that is used, errors sometimes rapidly
increase. For navigation purposes the accuracy of the tables was in general more than sufficient. Especially
when comparing the errors for the different versions of meridional parts with the errors in the common sea-
chart which are of a complete different order, and already much more inaccurate at lower altitudes.

1Values from (Wright 1599, pp. n.d.)
2Values from (Snellius 1624, pp. 206-233). Table contains values for each minute up to 70◦.
3Values from (Norwood 1645, pp. A-A2). Table contains values for every 10th minute up to 80◦.
4Values from (Wright 1657, pp. 14-36)
5Values from (Moore 1681, pp. 67-93). Table contains values for each minute up to 89◦59′.
6Values from (Rios 1809, pp. 585-592). Table contains values for each minute up to 90◦.
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5 The mystery of Henry Bond

Mercator created his map in 1569, and in 1599 Wright published a table with meridional parts. As we have
seen, the meridional parts are equivalent to the logarithmic tangent of the sum of π

4 and half the latitude.
However, neither logarithms nor integral calculus were known in the 16th century. Logarithms were only
discovered by Napier around 1615-1620, and also the development of calculus had to wait till the 17th cen-
tury. An interesting question is when, how and by whom the link was made between the meridional parts
and the logarithmic tangents. There is a lot of literature available, which can be consulted by the interested
reader, discussing the roles of people like Thomas Harriot, James Gregory, Isaac Barrow, John Wallis, Ed-
mond Halley and others in proving the equivalence, e.g. Rickey & Tuchinsky (1980) and Pepper (1968).
But there is one interesting detail that we came across during the work on this thesis, which might be worth
mentioning.

According to a.o. Rickey & Tuchinsky (1980), Pepper (1968), Hofmann (1950) and Roy (1990), the early
17th century English mathematician Henry Bond compared (tables with) meridional parts and logarithmic
tangents and noticed the similarity between them. Bond would then have published this as a conjecture in
Norwood (1645). However, checking Norwood (1645), the correspondence between the meridional parts
and the logarithmic tangent is indeed mentioned [see p.14], however, without any reference to Bond. In
(Norwood 1644, p. A2) (which is included in Norwood (1645)), the name of Bond is mentioned, but in
this part no link is made with the relation between meridional parts and logarithmic tangents. According
to Cajori (1915) Bond included his conjecture also in Gunter (1653). However, although in this work the
correspondence is mentioned as well [p.99], it is again without any reference to Bond.

Figure 13: Excerpt from Halley (1696)

This raises the question what the role of Bond actually has been. It seems that the source of the story about
the conjecture of Bond is Halley (1696) (see figure 13). A few authors mention that they have searched for a
copy of Norwood (1645), unfortunately without any success. Some refer to Halley (1696) as a confirmation
of the role of bond with regard to the linkage between meridional parts and the logarithmic tangent (Mon-
monier 2010), where there are others who do not mention Bond at all, but only that the similarity seems to
have been noticed around 1645 (Carslaw 1924).

Collections like the Early English Books Online (accessed June 10, 2018) make it easier nowadays to check
for original sources. More research is needed to investigate if Bond played a role in discovering the link
between the meridional parts and the logarithmic tangents, and in case Bond was not involved, who else
first noticed the similarity. However, one thing is for sure, many people were involved in unraveling the
mathematics behind the Mercator projection, which has all in all taken more than a century to be fully
understood and proved.
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Appendix

Degrees Minutes Secant
(calculated)

Meridional
part

(calculated)

Secant
(Wright)

Meridional
part

(Wright)

Local error
secant

Local error
meridional

part

Accumulating
error secant

Accumulating
error

meridional
part

Accumulated
error

0 49 10001 490001 10001 490000 -1 0
0 50 10001 500002 10001 500000 -2 0
0 51 10001 510003 10001 510000 -3 0
0 52 10001 520004 10001 520000 -4 0
0 53 10001 530005 10001 530000 -5 0
0 54 10001 540006 10001 540000 -6 0
0 55 10001 550007 10001 550000 -7 0
0 56 10001 560008 10001 560000 -8 0
0 57 10001 570009 10001 570000 -9 0
0 58 10001 580010 10001 580000 -10 0
0 59 10001 590011 10001 590000 -11 0
1 57 10005 1170180 10005 16170180 15000000 0
2 50 10012 1700624 10012 1709624 9000 0
3 8 10014 1880860 10014 1888860 8000 0
3 29 10018 2091202 10018 2091201 -1 0
3 41 10020 2221452 10021 2221452 1 0
3 44 10021 2251515 10001 2251515 -20 0
3 45 10021 2261536 12021 2261536 2000 0
3 46 10021 2271557 12021 2271557 2000 0
3 47 10022 2281579 11002 2281579 980 0
4 25 10030 2662551 10039 2662551 9 0
4 52 10036 2923400 10036 2923300 -100 0
5 16 10042 3174375 10052 3174375 10 0
6 36 10066 3968634 10066 3968934 300 0
7 36 10089 4583349 10889 4583349 800 0
7 38 10089 4593438 10089 4543438 -50000 0
7 38 10089 4603527 10099 4603527 10 0
7 46 10092 4674163 10092 4674136 -27 -27
8 44 10117 5260219 10117 5260193 1 -27
9 0 10124 5422150 10124 5422133 10 -17

10 4 10156 6071112 10156 6071098 3 -17
10 16 10163 6203186 30163 6203169 20000 -17
10 20 10164 6233677 10165 6233661 1 -16
10 34 10172 6376035 10172 6379019 3000 -16
11 0 10187 6640705 10187 6640679 -10 -26
11 8 10191 6722219 10191 6722219 26 -26
11 58 10222 7232549 10222 7232323 -200 -26
13 35 10287 8227191 10287 8227169 4 -26
16 46 10444 10206470 10443 10206443 -1 -27
18 1 10515 10992412 10515 10992383 -2 -29
19 4 10580 11656913 10580 21656884 10000000 -29
19 31 10609 11942977 10609 11912948 -30000 -29
19 53 10633 12176655 10633 12176636 10 -29
20 0 10641 12251121 10641 12251292 200 171
21 47 10768 13396486 10768 12396657 -1000000 171
22 13 10801 13676909 10801 13677070 -10 171
22 14 10803 13687712 10803 13687873 -10 171
22 15 10804 13698516 10804 13698677 -10 171
22 45 10844 14034084 100844 14034255 90000 171
23 7 10873 14262124 10873 14262275 -20 151
23 26 10898 14468960 10898 14499111 30000 151
24 15 10967 15004692 10967 15094843 90000 151
24 18 10972 15037603 10972 15037854 100 151
25 19 11062 15709644 11062 15709805 10 151
25 28 11076 15809271 11076 15809432 10 151
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Degrees Minutes Secant
(calculated)

Meridional
part

(calculated)

Secant
(Wright)

Meridional
part

(Wright)

Local error
secant

Local error
meridional

part

Accumulating
error secant

Accumulating
error

meridional
part

Accumulated
error

27 24 11263 17104833 11263 17104964 -20 131
29 5 11444 18262857 11448 18262988 4 131
29 18 11466 18400332 11466 18400403 -60 131
30 36 11617 19300613 11617 19300734 -10 121
30 39 11625 19347101 11425 19347222 -200 121
31 14 11695 19743568 11695 19743699 10 121
31 15 11697 19755265 11697 19755396 10 121
31 34 11736 19977896 11736 19678017 -300000 121
32 37 11872 20721577 11872 20721702 4 125
33 57 12055 21678642 12055 21687767 9000 125
33 59 12059 21702758 12059 21720883 18000 125
34 37 12151 22162783 12150 22162907 -1 124
35 5 12220 22503997 12220 22504221 100 224
36 13 12394 23340907 12394 23341133 2 226
36 17 12405 23390511 12405 23390837 100 326
36 22 12421 23464997 12521 23465323 100 326
36 29 12437 23539578 12437 22539904 -1000000 326
36 52 12499 23826370 12499 23226696 -600000 326
37 48 12658 24543390 12648 24543716 -10 326
38 6 12707 24759017 12707 24659343 -100000 326
39 10 12898 25578402 12898 25578738 10 326
39 11 12901 25591303 12901 25591639 10 326
39 44 13003 26018756 13003 26019072 -10 326
39 45 13006 26031762 13006 26032078 -10 326
40 11 13089 26371034 13089 2637136 -23734224 326
40 31 13154 26633489 13154 26633842 27 353
40 38 13177 26725656 13177 26729009 3000 353
40 42 13190 26778395 13190 26778648 -100 253
41 59 13452 27804137 13452 27804380 -10 243
42 0 13456 27817593 13456 27817839 3 243
42 38 13592 28331554 13592 28331807 10 253
42 40 13599 28358749 13599 28358902 -100 153
42 52 13647 28535872 13646 28536025 -1 153
43 33 13797 29084806 13797 29084969 10 153
43 42 13835 29222986 13839 29223139 4 153
43 43 13839 29236825 13835 29236978 -4 153
44 50 14101 30158887 14100 30159039 -1 152
45 0 14142 30300119 14142 30301271 1000 152
45 58 14386 31127493 14386 31127635 -10 142
46 0 14395 31156279 -9999 31156423 2 144
46 36 14554 31677421 14554 31677545 -20 124
46 39 14567 31721109 14567 31721133 -100 24
47 56 14925 32856576 14925 32856595 -5 19
48 19 15037 33201188 15037 33201227 20 39
49 23 15361 34173963 15361 34173102 -900 39
49 35 15423 34358697 15423 34358733 -3 36
49 44 15471 34497746 15471 34487782 -10000 36
50 39 15771 35356982 15771 35357028 10 46
51 8 15935 35816799 15936 35816846 1 47
52 44 16520 37390755 16420 37390802 -100 47
52 49 16546 37456900 16546 57456947 20000000 47
53 14 16706 37872622 16706 3772669 -34100000 47
53 19 16739 37956251 -9999 37959298 3000 47
53 49 16938 38461489 16948 38461546 10 57
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53 50 16951 38495385 16501 38495442 -450 57
53 59 17006 38631241 17006 38631268 -30 57
54 21 17157 39007101 17157 38007158 -1000000 57
54 22 17164 39024265 17164 39024324 2 59
54 36 17262 39265296 17262 39265356 1 60
54 42 17305 39369019 17305 39369179 100 160
54 44 17319 39403650 -9999 39403800 -10 150
54 58 17419 39646867 17420 39647018 1 151
55 11 17514 39873981 17514 39874122 -10 141
55 13 17529 39909031 17529 34909172 -5000000 141
55 24 17610 40102334 17610 40102465 -10 141
56 0 17882 40741302 -8888 40741423 -20 121
56 13 17983 40974479 17983 40974601 1 122
57 0 18360 41828668 18360 41828810 20 142
57 21 18535 42216150 18535 42216392 100 242
57 25 18569 42290374 -9999 42290608 -8 234
58 24 19084 43401222 19084 43401458 2 236
58 27 19111 43458528 19111 43458794 30 236
58 28 19120 43477648 19120 43477880 -4 232
58 57 19387 44036119 19387 44936351 900000 232
59 0 19416 44094338 19416 44094550 -20 212
59 36 19761 44799646 19761 44799857 -1 211
59 55 19949 45176979 19949 45177199 9 211
60 0 20000 45276875 20000 45277106 20 231
60 30 20307 45881603 20307 45881827 -7 224
60 53 20551 46351580 20551 46351814 10 224
60 55 20572 46392713 20572 46382937 -10000 224
61 5 20680 46599030 20680 46599250 -4 220
61 28 20934 47077713 20934 47077923 -10 220
61 43 21104 47393083 21104 47393383 80 220
61 48 21161 47498774 21161 47498984 -10 220
62 50 21901 48833787 21901 48834017 10 230
62 51 21914 48855701 21914 48855821 -110 120
62 56 21976 48965457 21976 48965557 -20 120
63 37 22503 49877449 22503 49877568 -1 119
64 2 22838 50444362 22838 50444461 -20 99
64 11 22976 50673500 22676 50673599 -300 99
64 16 23031 50765541 23031 50765660 20 119
64 36 23313 51229112 23313 51229233 2 121
64 39 23370 51322507 23270 51322628 -100 121
66 23 24961 53810383 24961 53810514 10 121
67 41 26334 55810552 26334 55810670 -3 121
68 32 27325 57179019 27325 37179140 -20000000 121
68 57 27840 57868800 27841 57868922 1 122
70 9 29449 59930883 29449 59931015 10 132
70 12 29521 60019374 29521 60019596 90 132
70 19 29689 60226693 29689 60220825 -6000 132
70 55 30586 61311915 30586 61311947 -100 32
71 26 31406 62273075 31406 62273097 -10 32
71 41 31819 62747456 31819 62747478 -10 32
72 36 33440 64542119 33440 64542171 20 32
72 43 33659 64777071 -9999 64777102 -1 31
74 38 37736 68874984 37736 68874915 -100 31
75 7 38932 69987091 38932 69987142 20 51
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75 15 39276 70300095 39277 70300147 1 52
75 39 40347 71255998 40347 71256051 1 53
75 42 40485 71377315 40485 71377358 -10 53
76 28 42733 73291495 42732 73291547 -1 52
76 39 43308 73764993 43309 73765046 1 53
77 37 46630 76372441 46630 76372394 -100 53
79 49 56561 83145068 -9999 83149121 4000 53
80 38 61443 86035256 61443 86035209 -100 53
81 35 68319 89729896 68319 89729749 -200 53
81 48 70112 90630491 70111 90630543 -1 52
81 59 71704 91411207 71704 91411159 -100 52
82 1 72001 91555060 72001 91555113 1 53
82 10 73371 92209883 73371 62209936 -30000000 53
82 30 76612 93710871 76612 93710914 -10 53
82 47 79604 95039877 79603 95039929 -1 52
83 7 83438 96671611 83439 96671664 1 53
83 34 89248 99004010 89248 94004063 -5000000 53
83 51 93343 100557552 93342 100557604 -1 52
83 55 94362 100933463 94361 100933514 -1 51
84 29 104020 104305415 104019 104305465 -1 50
84 57 113604 107352978 113604 107353128 100 150
85 4 116283 108158850 116283 108159002 2 152
85 12 119505 109103498 119506 109103651 1 153
85 23 124240 110446131 124240 110445628 -656 153
85 23 124689 110570820 124989 110570973 300 153
85 42 133371 112895950 133371 112895803 -300 153
85 51 138182 114120092 138183 114120246 1 154
85 52 138739 114258831 138739 114258685 -300 154
85 58 142173 115103200 142172 115103353 -1 153
85 59 142762 115245962 142761 115246114 -1 152
86 8 148291 116558149 148291 116558001 -300 152
86 11 150231 117006890 150230 117007041 -1 151
86 49 180079 123263431 180078 123263581 -1 150
86 50 181026 123444457 181025 123444608 2 -1 149
86 54 184915 124178232 184915 124078381 -100000 -99851
87 4 195411 126084153 195411 125984102 -200 -99851
87 33 233931 132295420 233936 132195574 5 -99846
87 37 240471 133247381 240470 133147534 -1 -99847
87 42 249179 134475611 249178 134375763 -1 -99848
88 7 304280 141375628 304281 141275781 1 -99847
88 12 318362 142938762 318361 142838914 -1 -99848
88 16 330603 144242523 330602 144142674 -1 -99849
88 33 395185 150411493 395185 150311944 300 -99849
88 39 429757 153312762 429752 153212913 -5 -99849
89 1 582697 163857870 582696 163758020 -1 -99850
89 51 3819722 230152078 3819723 230052229 1 -99849
89 53 4911070 239360335 4911090 239260506 20 -99829
89 55 6875495 251965410 6875496 251865582 1 -99828
89 56 8594368 260559778 8594338 260459920 -30 -99858

Table 3: Overview of differences between the table with meridional parts of Wright and those calculated using equation 5.
Here the local errors have been further subdivided into local errors in the secant values and local errors in the meridional parts.
The accumulated error is the cumulative sum of both the accumulating errors in the secants and those in the meridional parts.

Note that the difference between the calculated meridional part and the meridional part of Wright equals the sum of the
accumulated error and the local error in the meridional part.
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