# History of the Mercator projection 

Marc Vis<br>Supervisor: Jan Hogendijk

Bachelor thesis Mathematics
June 2018

## Preface

The Mercator projection is one of the most well-known projections, and nearly everyone has probably seen a map in this projection, e.g. in an atlas or as wall map (maybe without noticing or recognizing it as such though). Although often criticized nowadays, mainly because of the distortion in the areas towards the pole (leading to reactions like: "I didn't realize Greenland is that large!"), it has been of immense value in the past, especially for navigation at sea. Also many of the sea charts used nowadays still make use of the Mercator projection.

The concept behind the Mercator projection seems pretty straightforward, and the projection itself rather simple, especially when compared to several of the more recently developed projections. However, as we will see in this thesis, after the first map in this projection was developed by Mercator, more than a century passed until the mathematics underlying the projection was fully understood and proved.

The thesis is written in such a way that people with some basic knowledge in calculus should be able to follow.

Chapter 1 starts with an introduction about the historical context in which the Mercator projection was developed. In chapter 2, formulas for the Mercator projection are derived from a modern perspective. Chapter 3 then follows with an overview how Mercator created his map in the $16^{\text {th }}$ century. Chapter 4 is about the first more mathematical description of Mercator's map provided by Wright. Chapter 5, finally, briefly touches upon the influence that Mercator's map had on the development of mathematics, and discusses an inconsistency in literature with regard to the role of Henry Bond.

Most of this thesis is based on secondary literature by modern scholars. Chapter 4, however, also contains a small analysis which I did to analyze the accuracy of the method that Wright used. Furthermore, figures and tables for which no source is provided were created by the author of this thesis. As far as we are aware, the remarks on the mathematician Henry Bond in chapter 5 have not appeared before in the literature.

## Contents

1 Introduction ..... 3
2 The Mercator projection from a modern perspective ..... 5
3 How did Mercator define his projection? ..... 9
4 Tables of meridional parts ..... 12
4.1 Wright ..... 12
4.2 Table of Wright recomputed ..... 15
4.3 Comparing Wright's table of meridional parts with the modern values ..... 19
4.4 Comparing tables of meridional parts of different people ..... 19
5 The mystery of Henry Bond ..... 22

## 1 Introduction

Geography and navigation were very important in the time of Mercator (i.e. $16^{\text {th }}$ century). Many European countries were exploring the world, creating colonies, and trading. Knowing the ship's position was important. The latitude could be relatively easy determined by measuring the altitude of either the pole star or the sun (at noon, and using tables with the declination of the sun for every day of the year). Longitude was much more difficult, and required accurate time measurement, a place with known longitude, so that one could measure e.g. local noon, and one could then compare the difference in time with the reference location. Each hour difference equals 15 degrees longitude. The (mechanical) clocks available around that time were not accurate enough though, making it a challenge for seamen to know the exact location of their ship (Katz 1998, pp. 393-394). These difficulties made the availability of good maps even more important for navigation at sea, since maps could potentially tell how different places were located relative to each other, and therefore how far and in which direction one had to go to reach a certain destination.

The first maps simply used a rectangular grid of parallels and meridians, using the same scale for both of them (Katz 1998, p. 396). The name we use nowadays for this projection is 'Plate Carrée projection' (Snyder \& Voxland 1989). See figure 1(c) for an impression how meridians and parallels are located relative to each other within this projection. In the literature of the $16^{\text {th }} / 17^{\text {th }}$ century several different names were used to refer to maps in the Plate Carrée projection, e.g. the plaine or ordinary Sea-chart (Norwood 1645) or the general or common Sea-Chart (Wright 1657). However, although commonly used around these times, maps with this projection had some disadvantages in the sense that the projection tends to distort shapes and directions (Snyder \& Voxland 1989). These distortions made that people sometimes had so little confidence in the maps that they preferred the safer alternative of first sailing to the desired latitude, and from there continue in Eastern or Western direction until the destination was reached, also if this route would be (much) longer and more time consuming (Katz 1998, p. 394), (Wright 1657, pp. B-B2).

Pedro Nunes investigated the lines if one would keep following a constant compass bearing, called 'loxodromes' or 'rhumb lines', and discovered that these lines spiral around the globe towards the poles (Katz 1998, p. 396). Note that loxodromes are in general not the shortest route between two places. The shortest route between two places is always lying on the great circle that is going through both places. Only the loxodromes that make an angle of $0^{\circ}$ or $90^{\circ}$ with the equator are great circles themselves. Loxodromes were important for navigation, because it was convenient if one could just find the bearing between starting point and destination, and follow the same direction with the compass throughout the whole journey (Snyder 1997, p. 45). As such, following a loxodrome was a good compromise between the shortest route and a safe route. However, since the Plate Carrée projection distorts angles, loxodromes were not represented by straight lines on the common Sea-Chart. It was Mercator who then created the first map where loxodromes were represented by straight lines (Katz 1998, p. 397). Figure 1 shows 7 loxodromes starting from the point with spherical coordinates $(0,0)$ in positive longitudinal and latitudinal direction on a sphere $1(\mathrm{a})$, on the Mercator projection 1(b) and the Plate Carrée projection 1(c).


Figure 1: Loxodromes (red lines) visualized on the globe, on the Mercator projection and on the Plate Carré projection

## 2 The Mercator projection from a modern perspective

As we have seen in the previous chapter, the Mercator projection was developed as improvement of the common sea chart. Both are so-called cylindrical projections, i.e. in both cases the Earth is projected onto a cylinder, which is then 'cut open' and 'unrolled' to a flat sheet. Thereby the assumption is made that the earth has the shape of a perfect sphere. The sphere is inscribed into a hollow cylinder that is open at both ends, in such a way that the equator of the sphere coincides with the cylinder (see figure 2(a)). In other words, the intersection of the sphere and the cylinder is exactly the equator.


Figure 2: Cylindrical projection

To derive the Mercator projection, imagine that the sphere grows, and as soon as a point of the surface of the sphere coincides with the cylinder, it sticks to the surface, which is then the projection of that point. How the growing is done exactly will be made clear later on (but the basic concept is to make sure that for each point the scaling factor in latitude is the same as the scaling factor in longitude. Wright already used a similar description in 1599 , where he speaks about the swelling of a bladder, in every point as much in longitude as in latitude (Wright 1599, p.C3)). The equator touches the cylinder already from the beginning, and hence, has its true scale on the projection surface of the cylinder. The point where the cylinder touches the spherical coordinates $(0,0)$ of the surface of the sphere will be the origin of the coordinate system on the cylinder, and the intersection with the sphere will serve as $x$-axis. The x -coordinates correspond to the longitudes on the equator of the sphere, so they go from $-180^{\circ}$ till $180^{\circ}$, whereby the points with $-180^{\circ}$ and $180^{\circ}$ coincide (at least until the cylinder has been cut open). While the sphere is growing, points on a meridian, say with longitude $\lambda$, will make contact with the cylinder on a point straight above the point on the x -axis with x -coordinate $\lambda$, i.e. meridians on the sphere will be represented by straight lines on the cylinder, perpendicular to the equator. Hence, the x-coordinate of the projection of a point depends only on the longitude that it had on the sphere and not on its latitude.

Although we didn't specify in detail yet how the growing is done exactly, it will be done in such a way that for each point the distance to the projected equator on the cylinder will only depend on the latitude and not on its longitude. In other words, two points with the same latitude will be projected at the same distance from the equator. So each parallel on the sphere will be projected as a circle on the cylinder which is parallel to the equator. It follows that (after the cylinder has been cut open along the $180^{\circ}\left(=-180^{\circ}\right)$ meridian and 'flattened') parallels on the sphere will be projected as straight lines parallel to the equator. As a result the Mercator projection plots meridians and parallels as straight lines that intersect at right angles.

Now we get to the point where we will make clear how the growing/scaling will be applied exactly. The goal is to make sure that loxodromes will be represented by straight lines on the map. Since loxodromes are those lines on a globe which cross each meridian under the same angle, and we saw that the way the projection was defined so far makes that meridians are parallel lines on the map, it follows that loxodromes will be straight lines on the map if and only if in each point on the map angles on the map correspond to angles on the sphere, i.e. the projection needs to be conformal, i.e. (locally) there are no shape distortions. (Note that there are also conformal projections where meridians are not parallel and loxodromes will therefore not be straight lines).

Since parallels and meridians are perpendicular, they form a basis, i.e. every line can be described as linear combination of longitude and latitude. If longitude and latitude have the same scale factor in each point (which may differ from point to point though), every line will be scaled similar 'in horizontal and vertical' direction, and therefore preserve its angle.

Consider the radius of a parallel at latitude $\phi$. On the sphere the radius of this parallel is $\cos (\phi)$ times the length of the equator (see the red lines in figure 3). On the cylinder, however, the circumference is always the circumference of the cylinder, i.e. the length of the equator. So on the map the distance between two meridians at latitude $\phi$ is enlarged by a factor $1 / \cos (\phi)=\sec (\phi)$. To make sure that the map is conformal, the same scale needs to be applied in each point in 'vertical' direction as well.


Figure 3: Scaling factor

So we now know the scaling factor at each individual latitude, but we are actually interested in the overall scaling factor between the equator and a certain latitude $\phi$, because then we can easily calculate the distance between the equator and latitude $\phi$ by multiplying the distance that a similar arc would have at the equator
with the overall scaling factor. This overall scaling factor can be calculated by taking the integral over the scaling factors at each latitude:

$$
\begin{equation*}
\int_{0}^{\alpha} \sec \phi d \phi \tag{1}
\end{equation*}
$$

Assume for example that one degree on the equator has a distance $g$ on the map, and that there are $a$ degrees in between the equator and latitude $\alpha$. Then the distance from the equator to latitude $\alpha$ on the Mercator map would be $a \cdot g \cdot \int_{0}^{\alpha} \sec \phi d \phi$.

The integral can be calculated as follows (note that in the derivation $\phi$ will be in radians):

$$
\int \sec (\phi) d \phi=\int \frac{d \phi}{\cos (\phi)}
$$

Multiplying numerator and denominator by $\cos (\phi)$ gives:

$$
\int \sec (\phi) d \phi=\int \frac{\cos (\phi) d \phi}{\cos ^{2}(\phi)}
$$

This can be rewritten using the equality $\cos ^{2}(\phi)+\sin ^{2}(\phi)=1$ :

$$
\int \sec (\phi) d \phi=\int \frac{\cos (\phi) d \phi}{1-\sin (\phi)^{2}}
$$

Substitution of $u$ for $\sin (\phi)$ can now be used. Since $\frac{d u}{d \phi}=\sin ^{\prime}(\phi)=\cos (\phi)$, i.e. $d u=\cos (\phi) d \phi$ we get:

$$
\int \sec (\phi) d \phi=\int \frac{d u}{1-u^{2}}
$$

Then, since $1-u^{2}=(1+u)(1-u)$ :

$$
\int \sec (\phi) d \phi=\int \frac{d u}{(1+u)(1-u)}
$$

Using $1=\frac{1}{2}(1-u)+\frac{1}{2}(1+u)$ gives

$$
\begin{aligned}
\int \sec (\phi) d \phi & =\int\left(\frac{\frac{1}{2}(1-u)+\frac{1}{2}(1+u)}{(1+u)(1-u)}\right) d u \\
& =\int\left(\frac{\frac{1}{2}}{(1+u)}+\frac{\frac{1}{2}}{(1-u)}\right) d u \\
& =\frac{1}{2} \int \frac{1}{(1+u)} d u+\int \frac{1}{(1-u)} d u
\end{aligned}
$$

Now using that $\int \frac{1}{(1+u)} d u=\ln |1+u|+C$ and $\int \frac{1}{(1-u)} d u=-\ln |1-u|+C$ gives

$$
\int \sec (\phi) d \phi=\frac{1}{2}(\ln |1+u|-\ln |1-u|)+C
$$

Substituting $u=\sin (\phi)$ back gives:

$$
\int \sec (\phi) d \phi=\frac{1}{2}(\ln |1+\sin (\phi)|-\ln |1-\sin (\phi)|)+C
$$

Since $\ln a-\ln b=\ln \frac{a}{b}$ :

$$
\int \sec (\phi) d \phi=\frac{1}{2} \ln \left|\frac{1+\sin (\phi)}{1-\sin (\phi)}\right|+C
$$

Combining the equalities $\sin (\phi)=-\cos \left(\phi+\frac{\pi}{2}\right)=-\cos \left(2\left(\frac{\phi}{2}+\frac{\pi}{4}\right)\right)$ and $\cos (2 \phi)=1-2 \sin ^{2}(\phi)$ gives $\sin (\phi)=$ $-1+2 \sin ^{2}\left(\frac{\phi}{2}+\frac{\pi}{4}\right)$, which can then be used to continue as follows:

$$
\begin{aligned}
\int \sec (\phi) d \phi & =\frac{1}{2} \ln \left|\frac{2 \sin ^{2}\left(\frac{\phi}{2}+\frac{\pi}{4}\right)}{2-2 \sin ^{2}\left(\frac{\phi}{2}+\frac{\pi}{4}\right)}\right|+C \\
& =\frac{1}{2} \ln \left|\frac{\sin ^{2}\left(\frac{\phi}{2}+\frac{\pi}{4}\right)}{\cos ^{2}\left(\frac{\phi}{2}+\frac{\pi}{4}\right)}\right|+C \\
& =\frac{1}{2} \ln \left|\tan ^{2}\left(\frac{\phi}{2}+\frac{\pi}{4}\right)\right|+C \\
& =\ln \left|\tan \left(\frac{\phi}{2}+\frac{\pi}{4}\right)\right|+C
\end{aligned}
$$

Latitudes $\phi$ are within the interval $\left[-\frac{1}{2} \pi, \frac{1}{2} \pi\right]$. From $\lim _{\phi \rightarrow \frac{1}{2} \pi} \tan \left(\frac{\pi}{4}+\frac{\phi}{2}\right)=\infty$ and $\lim _{\phi \rightarrow-\frac{1}{2} \pi} \ln \left|\tan \left(\frac{\pi}{4}+\frac{\phi}{2}\right)\right|=$ $-\infty$, it follows that the poles cannot be shown on the map when using the Mercator projection. For latitudes of $\phi$ within the interval $\left(-\frac{1}{2} \pi, \frac{1}{2} \pi\right)$ it holds that $0<\frac{\phi}{2}+\frac{\pi}{4}<\frac{1}{2} \pi$, and from that it follows that the tangent is always positive, and the absolute value brackets can therefore be removed.

So finally we get for latitude $\alpha$ :

$$
\int_{0}^{\alpha} \sec (\phi) d \phi=\ln \tan \left(\frac{\alpha}{2}+\frac{\pi}{4}\right)-\ln \tan \left(\frac{\pi}{4}\right)=\ln \tan \left(\frac{\alpha}{2}+\frac{\pi}{4}\right)
$$

This brings us to the definition of the Mercator projection as is common nowadays, where $R$ depends on the scaling factor of the map, i.e. $R$ is the radius of the so-called generating globe:

$$
\begin{gather*}
x=R \lambda  \tag{2}\\
y=R \ln \tan \left(\frac{\pi}{4}+\frac{\phi}{2}\right) \tag{3}
\end{gather*}
$$

Note that there is sometimes the misconception that the Mercator projection is the projection one would get by putting a light in the center of the earth that projects the earth on the cylinder. However, this would result in $y=\tan (\phi)$, and is therefore not the same as the Mercator projection.

An interesting detail worth mentioning is that logarithms were only discovered around 1615-1620 and therefore unknown in the time of Mercator (see also chapter 5).

## 3 How did Mercator define his projection?



Source: https://commons.wikimedia.org/wiki/File:Mercator_1569_world_map_composite.jpg
Figure 4: Mercator's world map (1569)
Gerhardus Mercator (1512-1594), born as Gerhard Kremer, studied philosophy and theology at the University of Louvain. It was only after his studies that he started to get more acquainted with mathematics and astronomy. Besides his knowledge in these fields, as well as in geography, he had also artistic talents (calligraphy and engraving), which he used for making globes, maps and scientific instruments (Kish 1975).

After Pedro Nunes had shown in 1537 that loxodromes are different from great circles, and spiral towards the poles (Katz 1998, p. 396), Mercator drew loxodromes on a globe he produced in 1541 (Krücken \& Milz 1994). However, globes were not very practical for navigation at a ship (not only because the curved surface makes measurements harder, but also because maps could, in contrary to globes, be at sufficiently large scales (Katz 1998, p. 396)). In 1569 Mercator then published his famous world map named "Nova et Aucta Orbis Terrae Descriptio ad Usum Navigantium Emendate Accommodata" ("New and more complete representation of the terrestrial globe properly adapted for use in navigation") using a new projection, which is since then known as the Mercator projection (Krücken \& Milz 1994).

In the decades after 1569 many copies of Mercator's map were sold (the map had 14 years of copyright). Nowadays, of only 3 copies it is known that they still exist (known as the 'Paris', 'Rotterdam' and 'Basel' versions). Furthermore there are reprints of a Breslau version, from which it is not clear if the original still exists (Krücken \& Milz 1994).

Little is known about how Mercator produced his map. Besides the text on the map itself, there are no other sources by Mercator himself about (the production of) the map. However, from the legends on the map one gets the impression that Mercator knew exactly what he was doing. He mentions that one of the goals is to project the sphere in such a way on the map that places are located correctly in latitude, longitude, as well as direction and distance in comparison with each other. To do that, he writes that he has gradually increased the degrees of latitude towards the poles in proportion to the increase in length of the parallels relative to the equator, and he furthermore mentions that the poles cannot be visualized on the map, since their latitudes would reach infinity (Krücken \& Milz 1994).

Several studies have been carried out in which different hypotheses of how Mercator could have made his map have been analyzed (see e.g. Nordenskiöld (1889) for such a study, or Kyewski (1962) for an overview of studies). Many of those studies include an error assessment where the accuracy of the 'mesh' on one of the still existing copies of Mercator's map is compared with the exact values which the hypothesized method would theoretically result in.

One such a hypothesis is that Mercator calculated a table with distances between parallels in a way Wright did, and which is discussed in more detail in the next chapter. However a more likely scenario probably is that Mercator made use of (available) tables of rhumbs, as suggested by (a.o.) Gaspar \& Leitão (2014). Tables of rhumbs usually contained a standard set of rhumb lines corresponding to the main compass directions, including the rhumbs which are crossing the meridians at angles of $11.25^{\circ}(\mathrm{EbN}), 22.5^{\circ}(\mathrm{ENE}), 33.75^{\circ}$ (NEbE), $45^{\circ}(\mathrm{NE}), 56.25^{\circ}(\mathrm{NEbN}), 67.5^{\circ}(\mathrm{NNE})$ and $78.75^{\circ}(\mathrm{NbE})$ (see also figure $1(\mathrm{a})$ ). For each rhumb line, the table contains a series of coordinates (which most likely were calculated using a method based on spherical triangles), whereby coordinates were provided at equal intervals of latitude or equal intervals of longitude. (See figure 5 for an example of such a table, where the coordinates are given with an interval of $1^{\circ}$ longitude).

With the help of such a table, one could proceed as follows. First draw the equator and the (equally spaced) meridians. Select a rhumb line, and draw a straight line starting in the origin and making an angle with the meridians that corresponds to the specific rhumb line. For each coordinate pair in the rhumb table, say $(\lambda, \phi)$, the longitude $\lambda$ can be easily linked to a specific point at the equator. From there, move straight up until reaching the rhumb line. The point where the line is crossing the rhumb line has latitude $\phi$, and a horizontal line can be drawn representing that latitude. After this procedure has been applied to all coordinates in the rhumb table, parallels are drawn on the map with a resolution similar to that of the rhumb table. (Tables of rhumbs using equal intervals of longitudes can be used in a similar way, though this would require some interpolation).

If this method has been applied correctly, all other rhumb lines, when plotted on the map based on the coordinates in their rhumb tables, should also appear as straight lines. This could be used to double check if the stretching of the latitudes had been applied correctly.

Noteworthy is that not only the correct scaling of meridians and parallels was important for practical usage of Mercator's map. As important was that the content of the map, e.g. countries, cities and ports, were placed correctly on the map, and Mercator states this clearly as the second important goal for creating his map. For this part Mercator was dependent on other sources, and he has used several other maps and sources to construct the content of the map itself (Krücken \& Milz 1994, p. 20). The importance of this second goal
also follows from a discussion by (Norwood 1645, p.13), who mentioned that some people had as little trust in maps with the Mercator projection as they had in the common Sea-Chart. Not because the parallels, meridians or rhums would be inaccurate, but because if content was transferred from the common Sea-Chart, errors in there were copied as well.

| The fourtbrumbe from the Equinoctiall. |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Ther ramber if $\left\{\begin{array}{l}\text { Vorthceff, Northweff: } \\ \text { Soutbeaff, }\end{array}\right.$ Southreff. |  |  |  |  |  |
| Lon. Latits | Lon! Latha | Lsat Latty $L$ | Lin $\mid$ Latte: | Lon. $L$ | Le |
| T | Degide.Mu | Sex De in D | De. De.Ait | Def. De.Mi | De |
| 1 | 3172935 | 615150 | 915555 | 121766 | 15191.47 |
| 2) 1 | $321 \div 0 \quad 27$ | 6215233 | 229717 | 1221725 | 15210156 |
| 2 | $35 / 31$ 16 | 631538 | 9.6740 | 12277639 | 15.182 |
| 4) 35 | 3412 | $64: 345$ | $9+153$ | 124759 | 151 |
| 545 | 35133 | 6s $515+20$ | 9515825 | 125177 | 15518220 |
| 6155 | 3135 | $6695+55$ | 26158 4 | 12617720 | $156 \mid 8228$ |
| 76 | 371344 | 675520 | 97698 | $1 2 7 \longdiv { 7 3 }$ | 15782 ${ }^{16}$ |
| 817 | 381:5:9 | $6515 \leq 3$ | 28 69 | 1280746 | 15813243 |
| ${ }^{4} 85$ | 3916 | 6. $1 / 630$ | 295950 | 120)17 58 | 15982 |
| 10.95 | 4C1:7 5 | $7 \mathrm{Cb7}$ ? ${ }^{\text {t }}$ | 100,70 11 | $12 \mathrm{Cl} 7^{11}$ | 1603258 |
| 11105 | 41375 | 715741 | 1017031 | 1317823 | 151836 |
| 121154 | 42,88 40 | $72 / 5813$ | 102705 | 13278835 | 1628313 |
| 13125 | 4313927 | 7358441 | 10317110 | (33) 7846 | $1 \mathrm{I}_{3}$ (3) 30 |
| 141351 | 44,40 1: | 7459151 | 10,77120 | 1347858 | $15 ; 183 \quad 27$ |
| 151449 | 4510,58 | 7515946 | 1051714 | 1351799 | 15588333 |
| 161547 | $46 \mid 14$ | 7050161 | $106 / 27$ | 1367921 | $16 \times 18340$ |
| 1711645 | $47 \mid+2{ }^{28}$ | 77150 | $\overline{107 / 2} \cdot 2$ | 1377932 | $16783{ }^{163}$ |
| $18 \mid 1742$ | $48+317$ | 7815114 | 10877242 | 1881794 | 16:183 53 |
| 101835 | 491 13 38 | 7961 | 10973 | 13917953 | 169835 |
| $20 \mid 1936$ | $501 \pm 421$ | $80 \mid 62$ I1 1 | 11073 | 401803 | $17013+6$ |
| 212032 | $51+5$ | 8152301 | 1117335 | 1418014 | 1713 9 |
| $22 \mid 2128$ | 52146 | 825361 | 122735 | 1421802+ | 172134 |
| $23^{2} 224$ | $531+544$ | $8_{3} 1333$ | 11374 | 143183 | 17334-24 |
| 2423 19 | $54+725$ | $845_{5}{ }^{3}$ | 11474.25 | T44180 43 | $1748+29$ |
| $25^{2}+14$ | 551+8 | 8554261 | 1157441 | 14518053 | 17588435 |
| 26.25 | 56148 | $865+51$ | 116174 | 166\| ${ }_{1}$ | 17684 |
| 2725 <br> 28126 | $5 7 \longdiv { 4 9 }$ | $87 / 5{ }^{9} 17$ | 11777512 | 1478112 | 17718446 |
|  | 55850 | -885541 | 118775 | 14888121 | 17884 |
| 2912750 30128 | 595041 | 18966 | 10.154 | 1493130 | $17918+57$ |
| 30128 |  | 9036 36 | 12075 | 15018138 | 18085 |

Figure 5: The first page of a table with coordinates of the $4^{\text {th }}$ rhumb (Wright 1599 , p. n.d.)

## 4 Tables of meridional parts

### 4.1 Wright

Edward Wright (1561-1615) was the first who gave an explicit (mathematical) description of the Mercator projection, and explained how maps with this projection could be computed. Wright was a mathematician and cartographer, and in his early years he had joined some expeditions by ship. The experiences he gained during these expeditions probably inspired him to write his major work "Certaine Errors in Navigation" ( $1^{\text {st }}$ version published in 1599 , $2^{\text {nd }}$ version in 1610 and a $3^{\text {rd }}$ version (by Joseph Moxon) in 1657) (Wallis 1975).

In his book Wright criticizes the common Sea-Chart, which was commonly used for navigation in those days, stating that it has some fundamental errors, consisting of errors in direction as well as in distance. Wright mentions that directions might be wrong by several points on a compass, and distances had the tendency to be (significantly) overestimated (Wright 1657, p.B).

Consider for example the distance between two places both located at $60^{\circ}$ latitude, and $1^{\circ}$ of longitude apart from each other. Since $\cos (60)=0.5$, the distance between those two places is only half of the distance between two places that are $1^{\circ}$ apart from each other at the equator. However, by using the common seachart, the distance between meridians was considered to be equal to the distance that it has at the equator, and therefore the distance at $60^{\circ}$ North would be overestimated by a factor two, and even more further North.

Wright uses a similar example in a way that nicely shows how people were struggling with the common sea chart in those times, using figure 6. In short, he reasons as follows (Wright 1599, p.B2). Assume that one is sailing from D to B , around the parallel located $60^{\circ}$ North, where B is located North-East of D, and their difference is one degree in latitude. Then on the common sea chart the distance DC is one degree as well. However, in reality it is only half a degree. So if DC is only half a degree, B should actually be located at A. But CA has a distance on the map of 2 degrees. According to the direction from D to B it follows that D should be located at E (with a distance EC of two degrees), but the chart only shows half the distance.


Figure 6: Example of the error made at $60^{\circ}$ latitude (Wright 1599, p.B2)

The Mercator map avoided such errors by increasing the distance between the parallels towards the poles, and was therefore a huge improvement. It was not clear though, how such a map could be constructed, or more precisely, how much the distance between each of the parallels should be exactly. Wright explains that at each point of latitude, the meridians need to be (locally) stretched by a factor $\sec (\phi)$ (see the graph in figure 7(a) for the relation between the latitude and the 'stretching factor' $\sec (\phi)$ ). However, it was not straightforward how to translate this knowledge into exact distances between parallels. Nowadays we know, as we have seen in the previous chapter, that in order to get the overall scaling factor between the equator and a certain latitude, one needs to take the integral of the secant (e.g. the gray area under the graph in figure 7 (a) represents the total scaling factor for the distance between the equator and the $60^{\circ}$ parallel). However, the integral calculus, and in particular the integral of the secant, was not known yet by that time (Katz 1998, p.416-417, 468). Wright explains how a table with (approximations of) these distances can be calculated.

The table that Wright produced has a resolution of 1 minute of latitude, i.e. for each minute $\alpha$ in between the equator and the pole, Wright calculated the distance from the equator. Since there are 90 degrees in between the equator and the pole, each consisting of 60 minutes, this resulted in a table with a total of 5400 distances. To approximate the distance between the equator and latitude $\alpha$, Wright divided the distance in $n$ parts $\Delta \phi$, i.e. $n \cdot \Delta \phi=\alpha$. For $\Delta \phi$ he used a value of one minute.

Wright did not calculate the secant values himself, but used a table which provided secant values at a resolution of 1 minute. The secant values are slightly different from the secant values we use nowadays, in the sense that they were $10,000,000$ times as large, i.e. $\operatorname{Sec}(x)=L \cdot \sec (x)$, where the notation $\operatorname{Sec}(x)$ is used for the secant values as used by Wright, the notation $\sec (x)$ for the secant values we use nowadays, and furthermore $L=10,000,000$.

The method that Wright used for calculating the distances can be formulated in modern notation as follows:

$$
\begin{equation*}
D(\alpha)=\sum_{k=1}^{n} \operatorname{Sec}(k \cdot \Delta \phi)=\sum_{k=1}^{n} L \cdot \sec (k \cdot \Delta \phi) \tag{4}
\end{equation*}
$$

This can be interpreted as the distance from the equator to latitude $\alpha$ if one minute at the equator has a length of $10,000,000$. Note that for each interval ( $\left.\phi_{n-1}, \phi_{n}\right]$ Wright assumed the secant to be constant and equal to $\operatorname{Sec}\left(\phi_{n}\right)$. See figure 7(b) for a visualization of the method.

Distances from the equator to latitude $\phi$, like these calculated by Wright, were called 'meridional parts', and a table listing these distances a 'table of meridional parts'.

In the passage of "Certaine errors in Navigation" shown in figure 8, Wright explains how he proceeded. (See also table 1 for a small summary). He writes that the secant of one minute equals $10,000,000$, which is indeed $L \cdot \sec \left(1 \cdot \frac{1}{2} \cdot \pi / 5400\right)$ (note that 1 minute corresponds to $\frac{1}{2} \cdot \pi / 5400$ radians), and used as the approximation for the distance from the equator to the first minute. He continues by adding the secant of 2 minutes, which equals $10,000,002$, giving a total distance from the equator to the second minute of $10,000,000+10,000,002=20,000,002$. The secant of 3 minutes equals $10,000,004$, giving a total distance from the equator to the third minute of $20,000,002+10,000,004=30,000,006$, and so on.

As follows from the last part of the passage in figure 8, Wright was aware that his method resulted in an overestimation. The overestimation can also be clearly seen from figure 7 (b). Since $\sec (\phi)$ is a monotoni-


Figure 7: Secant

As in the table following, we make the diftance of each $\mathrm{Pa}-$ raliel from other, to be one minute : and we fuppofe the face between any two Parallels each next to other in the pianilphare no contein to many parts as the lecans anfwerable to the dittance of the furtheft of thofe two Parallels from the e Equinoctial, and fo by perpecual addition of the fecans of each minute so the fum compounded of all the former fecants, I make the whole table. As for example, the lecans of one minute is $10,000,000$. which alfo fheweth the fection of one minure of the Meridian from the eEquinoctial in the nauticall planifphare. Whereunto adde the fecans of 2 . minures that is 10 , 000,002 , the fum is $20,000,002$. which theweth the feetion of the fecond minute of the Meridian from the $e \pm$ quixootial, in the planilphare : to this fum adde the fecans of 3. minutes, which is $10,000,004$, the fium will be $30,000.006$, which fheweth the fection of the thitd minute of the Meridian from the Equinoctial: and fo forth in all the reft : faving that in this table we have of purpofe onitted in every fecans the 3 firf ciphers next the right hand: not only for the eafier, but alio for the truer making of the table, becaufe that indeed, at every point of latitude, a minute of the Meridian in this nautical planilphare, hath fomewhat leffe proportion to a minute of the Parailel adjoyning towards the Æquinottial, then the fecans of that Parallels latitude hath to the whole fine.

Figure 8: Certain Errors In Navigation (Wright 1657, p.12)

| Minute | Distance | Secant |
| ---: | ---: | ---: |
| 1 | $10,000,000$ | $10,000,000$ |
| 2 | $20,000,002$ | $10,000,002$ |
| 3 | $30,000,006$ | $10,000,004$ |

Table 1: Summary of example provided by Wright
cally increasing function on the interval $\left[0, \frac{1}{2} \pi\right]$, and Wright used the secant value at the upper end of each minute interval as estimation for the whole interval, the area under the graph, and therefore the approximation of the distance to the equator, would be overestimated. Wright decided to omit the last three digits in his calculations, which, as well as for making the calculations slightly easier, would partly compensate for the overestimation. As a result he basically produced his table using a value of 10,000 for the scaling factor $L$, thereby always rounding values down (see equation 5).

$$
\begin{equation*}
D(\alpha)=\sum_{k=1}^{n}\lfloor\operatorname{Sec}(k \cdot \Delta \phi) / 1,000\rfloor=\sum_{k=1}^{n}\lfloor L \cdot \sec (k \cdot \Delta \phi)\rfloor \tag{5}
\end{equation*}
$$

Figure 9 shows the first page of the table as published in Wright (1657). The first line of the header contains the number of degrees. The first column further subdivides the degrees into minutes. For each degree there are two columns. The first column contains the meridional parts, whereas the second column contains the difference between two consecutive meridional parts, which is basically the secant multiplied by 10,000 (Wright 1657). Note that the table starts with the distance of latitude $0^{\circ}$ to the equator, i.e. 00,000 . The following three records for minutes 1,2 and 3 correspond to those in table 1 , except that the last three digits have been omitted.

In Wright (1599), Wright already intended to publish the same table which in the end was published in Wright (1657). However, although he had carried out the exact same calculations, he decided to publish only the meridional parts for every $10^{\text {th }}$ minute, and to omit two more digits of every value.

### 4.2 Table of Wright recomputed

To get an impression of how accurate Wright calculated his table, I have recomputed the table which he published in the 1657 version of his book. Thereby I applied the same method as he did, using equation 5 , with the only difference that I used the version based on the modern secant. By doing so, not only the inaccuracies of Wright's calculations, but also the inaccuracies in the meridional parts resulting from possible inaccuracies in the secant values could be analyzed. Since Wright actually included the differences between meridional parts in his table, i.e. the values for $\operatorname{Sec}(\phi)$, these could be easily compared with the values based on $L \cdot \sec (\phi)$. Figure 10 shows the first part of the reproduced values, corresponding to the first page of the table of meridional parts shown in figure 9. Marked in gray are the differences between the table in Wright (1657) and the recomputed table.

In total I could identify 213 errors in the table (see Appendix). On a total of 5400 minutes in between equator and pole, this corresponds to 4 percent of all minutes, whereby the error can be either in the value of the secant or the meridional part itself. (Note that values which could not be read due to the quality of the copy of the book were assumed to be correct). The errors which were identified can be roughly subdivided into the following categories (between brackets the number of occurrences within each category are given):

- Typographical and/or 'local' calculation errors, i.e. values that do not effect any other values in the table (121).
- Inaccuracies of the secant values, affecting the meridional parts (35).
- Calculation errors in the meridional parts which affect all further values 'in the direction of the poles' (57).


Figure 9: First page of the table of meridional parts in (Wright 1657, p.14)

|  | 0 Degr. |  | 1 Degr. |  | 2 Degr. |  | 3 Degr. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 㶪 | Equal parts of a Merid. | Difference of equ. par. | Equal parts of a Merid. | Difference of equ. par. | Equal parts of a Merid. | Difference of equ. par. | Equal parts of a Merid. | Difference of equ. par. |
| 0 | 0 | 10,000 | 600,012 | 10,001 | 1,200,196 | 10,006 | 1,800,749 | 10,013 |
| 1 | 10,000 | 10,000 | 610,013 | 10,001 | 1,210,202 | 10,006 | 1,810,762 | 10,013 |
| 2 | 20,000 | 10,000 | 620,014 | 10,001 | 1,220,208 | 10,006 | 1,820,776 | 10,014 |
| 3 | 30,000 | 10,000 | 630,015 | 10,001 | 1,230,214 | 10,006 | 1,830,790 | 10,014 |
| 4 | 40,000 | 10,000 | 640,016 | 10,001 | 1,240,220 | 10,006 | 1,840,804 | 10,014 |
| 5 | 50,000 | 10,000 | 650,017 | 10,001 | 1,250,226 | 10,006 | 1,850,818 | 10,014 |
| 6 | 60,000 | 10,000 | 660,018 | 10,001 | 1,260,232 | 10,006 | 1,860,832 | 10,014 |
| 7 | 70,000 | 10,000 | 670,019 | 10,001 | 1,270,238 | 10,006 | 1,870,846 | 10,014 |
| 8 | 80,000 | 10,000 | 680,020 | 10,001 | 1,280,244 | 10,006 | 1,880,860 | 10,014 |
| 9 | 90,000 | 10,000 | 690,022 | 10,002 | 1,290,251 | 10,007 | 1,890,875 | 10,015 |
| 10 | 100,000 | 10,000 | 700,024 | 10,002 | 1,300,258 | 10,007 | 1,900,890 | 10,015 |
| 1 | 110,000 | 10,000 | 710,026 | 10,002 | 1,310,265 | 10,007 | 1,910,905 | 10,015 |
| 12 | 120,000 | 10,000 | 720,028 | 10,002 | 1,320,272 | 10,007 | 1,920,920 | 10,015 |
| 13 | 130,000 | 10,000 | 730,030 | 10,002 | 1,330,279 | 10,007 | 1,930,935 | 10,015 |
| 14 | 140,000 | 10,000 | 740,032 | 10,002 | 1,340,286 | 10,007 | 1,940,950 | 10,015 |
| 5 | 150,000 | 10,000 | 750,034 | 10,002 | 1,350,293 | 10,007 | 1,950,966 | 10,016 |
| 16 | 160,000 | 10,000 | 760,036 | 10,002 | 1,360,300 | 10,007 | 1,960,982 | 10,016 |
| 17 | 170,000 | 10,000 | 770,038 | 10,002 | 1,370,307 | 10,007 | 1,970,998 | 10,016 |
| 18 | 180,000 | 10,000 | 780,040 | 10,002 | 1,380,315 | 10,008 | 1,981,014 | 10,016 |
| 19 | 190,000 | 10,000 | 790,042 | 10,002 | 1,390,323 | 10,008 | 1,991,030 | 10,016 |
| 20 | 200,000 | 10,000 | 800,044 | 10,002 | 1,400,331 | 10,008 | 2,001,046 | 10,016 |
| 21 | 210,000 | 10,000 | 810,046 | 10,002 | 1,410,339 | 10,008 | 2,011,063 | 10,017 |
| 22 | 220,000 | 10,000 | 820,048 | 10,002 | 1,420,347 | 10,008 | 2,021,080 | 10,017 |
| 23 | 230,000 | 10,000 | 830,050 | 10,002 | 1,430,355 | 10,008 | 2,031,097 | 10,017 |
| 24 | 240,000 | 10,000 | 840,052 | 10,002 | 1,440,363 | 10,008 | 2,041,114 | 10,017 |
| 25 | 250,000 | 10,000 | 850,055 | 10,003 | 1,450,371 | 10,008 | 2,051,131 | 10,017 |
| 26 | 260,000 | 10,000 | 860,058 | 10,003 | 1,460,380 | 10,009 | 2,061,148 | 10,017 |
| 27 | 270,000 | 10,000 | 870,061 | 10,003 | 1,470,389 | 10,009 | 2,071,166 | 10,018 |
| 28 | 280,000 | 10,000 | 880,064 | 10,003 | 1,480,398 | 10,009 | 2,081,184 | 10,018 |
| 29 | 290,000 | 10,000 | 890,067 | 10,003 | 1,490,407 | 10,009 | 2,091,202 | 10,018 |
| 30 | 300,000 | 10,000 | 900,070 | 10,003 | 1,500,416 | 10,009 | 2,101,220 | 10,018 |
| 31 | 310,000 | 10,000 | 910,073 | 10,003 | 1,510,425 | 10,009 | 2,111,238 | 10,018 |
| 32 | 320,000 | 10,000 | 920,076 | 10,003 | 1,520,434 | 10,009 | 2,121,257 | 10,019 |
| 33 | 330,000 | 10,000 | 930,079 | 10,003 | 1,530,443 | 10,009 | 2,131,276 | 10,019 |
| 34 | 340,000 | 10,000 | 940,082 | 10,003 | 1,540,453 | 10,010 | 2,141,295 | 10,019 |
| 35 | 350,000 | 10,000 | 950,085 | 10,003 | 1,550,463 | 10,010 | 2,151,314 | 10,019 |
| 36 | 360,000 | 10,000 | 960,088 | 10,003 | 1,560,473 | 10,010 | 2,161,333 | 10,019 |
| 37 | 370,000 | 10,000 | 970,091 | 10,003 | 1,570,483 | 10,010 | 2,171,352 | 10,019 |
| 38 | 380,000 | 10,000 | 980,095 | 10,004 | 1,580,493 | 10,010 | 2,181,372 | 10,020 |
| 39 | 390,000 | 10,000 | 990,099 | 10,004 | 1,590,503 | 10,010 | 2,191,392 | 10,020 |
| 40 | 400,000 | 10,000 | 1,000,103 | 10,004 | 1,600,513 | 10,010 | 2,201,412 | 10,020 |
| 41 | 410,000 | 10,000 | 1,010,107 | 10,004 | 1,610,523 | 10,010 | 2,211,432 | 10,020 |
| 42 | 420,000 | 10,000 | 1,020,111 | 10,004 | 1,620,534 | 10,011 | 2,221,452 | 10,020 |
| 43 | 430,000 | 10,000 | 1,030,115 | 10,004 | 1,630,545 | 10,011 | 2,231,473 | 10,021 |
| 44 | 440,000 | 10,000 | 1,040,119 | 10,004 | 1,640,556 | 10,011 | 2,241,494 | 10,021 |
| 45 | 450,000 | 10,000 | 1,050,123 | 10,004 | 1,650,567 | 10,011 | 2,251,515 | 10,021 |
| 46 | 460,000 | 10,000 | 1,060,127 | 10,004 | 1,660,578 | 10,011 | 2,261,536 | 10,021 |
| 47 | 470,000 | 10,000 | 1,070,131 | 10,004 | 1,670,589 | 10,011 | 2,271,557 | 10,021 |
| 48 | 480,000 | 10,000 | 1,080,135 | 10,004 | 1,680,600 | 10,011 | 2,281,579 | 10,022 |
| 49 | 490,001 | 10,001 | 1,090,140 | 10,005 | 1,690,612 | 10,012 | 2,291,601 | 10,022 |
| 50 | 500,002 | 10,001 | 1,100,145 | 10,005 | 1,700,624 | 10,012 | 2,301,623 | 10,022 |
| 51 | 510,003 | 10,001 | 1,110,150 | 10,005 | 1,710,636 | 10,012 | 2,311,645 | 10,022 |
| 52 | 520,004 | 10,001 | 1,120,155 | 10,005 | 1,720,648 | 10,012 | 2,321,667 | 10,022 |
| 53 | 530,005 | 10,001 | 1,130,160 | 10,00 | 1,730,660 | 10,012 | 2,331,690 | 10,023 |
| 54 | 540,006 | 10,001 | 1,140,165 | 10,005 | 1,740,672 | 10,012 | 2,341,713 | 10,023 |
| 55 | 550,007 | 10,001 | 1,150,170 | 10,005 | 1,750,684 | 10,012 | 2,351,736 | 10,023 |
| 56 | 560,008 | 10,001 | 1,160,175 | 10,005 | 1,760,697 | 10,013 | 2,361,759 | 10,023 |
| 57 | 570,009 | 10,001 | 1,170,180 | 10,005 | 1,770,710 | 10,013 | 2,371,782 | 10,023 |
| 8 | 580,010 | 10,001 | 1,180,185 | 10,005 | 1,780,723 | 10,013 | 2,381,806 | 10,024 |
| 59 | 590,011 | 10,001 | 1,190,190 | 10,005 | 1,790,736 | 10,013 | 2,391,830 | 10,024 |

Figure 10: Recomputed values corresponding to the first page of the table of meridional parts in Wright (1657)

The errors contained in the first category might not seem very exciting at first sight. It is not always clear, however, if an error is simply a typo or a calculation error. Since the errors are 'local' in the sense that they do not affect any other values in the table, it seems rather likely that they are simply typos. Errors in the secants might have occurred when copying them from their source, while in some or another way the correct value was used for the actual calculation of the meridional part. There are a couple of errors in the meridional part, however, which are less likely to be typos. An example is given in figure 11(a). The meridional part of $25^{\circ} 18^{\prime}$ is $15,698,733$. Adding the secant of $25^{\circ} 19^{\prime}$ which has a value of 11,062 (note that the outlining of the table is somewhat unfortunate, by which it might falsely appear that 11,062 belongs to $25^{\circ} 18^{\prime}$ instead of $25^{\circ} 19^{\prime}$ ) resulted in $15,709,805$, where $15,709,795$ would be the correct value. In this case there are two digits involved, making it more likely to be a computation error then two typos in the same number. However, in that case one might expect that the error, once introduced, will affect all further values. Surprisingly though, the next meridional part has a value of $15,720,858$, which is the correct sum of $15,709,795$ and 11,063 (the secant of $25^{\circ} 20^{\prime}$ ). One can wonder what has happened exactly. It is not likely that Wright made another calculation error, which exactly compensated for the previous one. Errors like these could potentially give us some insight in the way Wright calculated his table.


Figure 11: Examples of errors in table of meridional parts (Wright 1657, p.14-30)
The second category, consisting of inaccuracies in the values of the secants, can tell us something about the quality of the secants data used by Wright. For all except four of the cases where there is a difference between the secants that were used by Wright and the values based on the modern secants, the (absolute) difference is only 1 . In modern units this is equal to a difference of only 0.0001 . From the four cases where differences are larger, three of them occur within 3 degrees from the pole, a region where secant values 'are changing rapidly'. In case the errors in the secants were already present in the data which Wright used, they can possibly be of help to identify from which source Wright used the secants. Unfortunately, a quick investigation has not resulted in a match yet.

The last category with calculation errors in the meridional parts which affect all further values is potentially the most severe one, since errors might accumulate and affect the usefulness of the table, especially for usage in the polar regions. However, most of the errors are so small that they have hardly any effect at all, and
errors partly cancel each other out. The (by far) largest error made is an error of 100,000 and occurs around the $87^{\text {th }}$ degree. Compared to the value of the meridional part, which is $124,078,381$, the relative error is less than 0.001 . Figure 11 (b) shows an example where the value in red, $23,390,837$, is one hundred too large. Since this value is used to calculate the meridional parts further down in the table, all those meridional parts inherit the error.

Overall most of the errors can be ignored with regard to the accuracy of the table. Some of the typos result in significantly different values, but many of them somehow 'break the pattern' (e.g. a meridional part becoming smaller instead of larger), and an attentive user of the table might notice the error and be warned to not blindly trust it.

Interestingly it seems that more errors occur on the first line of a page than one would expect based on a random distribution of the errors (i.e. 10 times, where the expected value is 3.6).

### 4.3 Comparing Wright's table of meridional parts with the modern values

In the previous chapter I have analyzed the accuracy of the calculations carried out by Wright. However, for reproducing his table I used a similar method as Wright had used, i.e. approximating the integral of the secant by a finite sum. A more interesting question is how accurate his method actually was compared to the modern solution. Therefore, in this chapter Wright's method will be compared with the meridional parts which I calculated using equation 6 , with $L=10,000, c=\frac{10800}{\pi}$ a conversion factor from radians to minutes (and $\phi$ in radians).

$$
\begin{equation*}
y=L \cdot c \cdot \ln \tan \left(\frac{\pi}{4}+\frac{\phi}{2}\right) \tag{6}
\end{equation*}
$$

Figure 12(c) shows the difference between the approximation of equation 5 and equation 6. Since Wright consistently overestimated the integral by assuming for each interval ( $\phi_{n-1}, \phi_{n}$ ] the secant to be constant and equal to $\operatorname{Sec}\left(\phi_{n}\right)$ it is remarkable that the differences are negative for lower latitudes. However, the negative values are the result of cutting of the last three digits instead of rounding the values. This effect was intended by Wright to compensate (at least partly) for the overestimation. Figure 12(a) clearly shows that for lower latitudes, where secants only slightly differ between minutes, the way Wright rounds results even in an underestimation. For medium to higher altitudes, where secants change more rapidly from minute to minute, Wright's way of rounding hardly has any effect on the values anymore (see as example figure 12(b)), and the overestimation inherent to his method becomes larger and larger. Around 75 degrees the overestimation has reached a total of about 12,000 . Compared to the length of 10,000 that 1 degree has at the equator, the overestimation might seem rather significant. However, when looking at the relative difference by dividing the difference of equation 5 and 6 by equation 6 it becomes clear that the errors are rather minor (see figure 12(d)).

### 4.4 Comparing tables of meridional parts of different people

After Wright many more people have generated tables with meridional parts, partly making use of different methods. Table 2 shows a selection of them, where only the meridional part for every fifth degree is given, as well as two parallels very close to the pole. Furthermore, for each column with meridional parts, the differences with the values calculated using equation 6 is given in the column directly right of it. The last two columns, finally, provide values based on the common sea-chart as a comparison. Note that, since most


Figure 12: Wright's method compared to real solution

| Distance from equator | $\ln \tan \left(\frac{9}{2}+\frac{\pi}{4}\right)$ | $\begin{aligned} & \hline \text { Wright } \\ & (1599)^{1} \end{aligned}$ |  | $\begin{aligned} & \hline \text { Snellius } \\ & (1624)^{2} \end{aligned}$ |  | $\begin{aligned} & \hline \text { Norwood } \\ & (1645)^{3} \end{aligned}$ |  | $\begin{aligned} & \text { Wright } \\ & (1657)^{4} \end{aligned}$ |  | Sir Jonas Moore $(1681)^{5}$ |  | Mendoza $(1809)^{6}$ |  | Common Sea-Chart |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $0^{\circ}$ | 0 | - | - | - | - | 0.00 | 0.00 | 0.0000 | 0.0000 | 0.0 | 0.0 | 0.00 | 0.00 | 0.0 | 0.0 |
| $5^{\circ}$ | 300.38150 | 300.4 | 0.0 | 300.3796 | -0.0019 | 300.36 | -0.02 | 300.3694 | -0.0121 | 300.4 | 0.0 | 300.38 | 0.00 | 300.0 | -0.4 |
| $10^{\circ}$ | 603.06958 | 603.0 | -0.1 | 603.0618 | -0.0078 | 603.06 | -0.01 | 603.0475 | -0.0221 | 603.1 | 0.0 | 603.07 | 0.00 | 600.0 | -3.1 |
| $15^{\circ}$ | 910.46058 | 910.4 | -0.1 | 910.4428 | -0.0178 | 910.44 | -0.02 | 910.4325 | -0.0281 | 910.5 | 0.0 | 910.46 | 0.00 | 900.0 | -10.5 |
| $20^{\circ}$ | 1225.13905 | 1225.1 | 0.0 | 1225.1068 | -0.0323 | 1225.14 | 0.00 | 1225.1292 | -0.0099 | 1225.1 | 0.0 | 1225.14 | 0.00 | 1200.0 | -25.1 |
| $25^{\circ}$ | 1549.99521 | 1550.0 | 0.0 | 1549.9434 | -0.0518 | 1549.98 | -0.02 | 1549.9878 | -0.0074 | 1550.0 | 0.0 | 1549.99 | -0.01 | 1500.0 | -50.0 |
| $30^{\circ}$ | 1888.37542 | 1888.4 | 0.0 | 1888.2980 | -0.0774 | 1888.32 | -0.06 | 1888.3768 | 0.0014 | 1888.4 | 0.0 | 1888.38 | 0.00 | 1800.0 | -88.4 |
| $35^{\circ}$ | 2244.28684 | 2244.3 | 0.0 | 2244.1764 | -0.1104 | 2244.24 | -0.05 | 2244.3047 | 0.0179 | 2244.3 | 0.0 | 2244.29 | 0.00 | 2100.0 | -144.3 |
| $40^{\circ}$ | 2622.69019 | 2622.8 | 0.1 | 2622.5374 | -0.1528 | 2622.60 | -0.09 | 2622.7559 | 0.0657 | 2622.7 | 0.0 | 2622.69 | 0.00 | 2400.0 | -222.7 |
| $45^{\circ}$ | 3029.93920 | 3030.0 | 0.1 | 3029.7320 | -0.2072 | 3029.82 | -0.12 | 3030.1271 | 0.1879 | 3030.0 | 0.1 | 3029.94 | 0.00 | 2700.0 | -329.9 |
| $50^{\circ}$ | 3474.47287 | 3474.6 | 0.1 | 3474.1919 | -0.2810 | 3474.30 | -0.17 | 3474.6045 | 0.1316 | 3474.5 | 0.0 | 3474.47 | 0.00 | 3000.0 | -474.5 |
| $55^{\circ}$ | 3967.96611 | 3968.2 | 0.2 | 3967.5943 | $-0.3718$ | 3967.74 | -0.23 | 3968.1879 | 0.2218 | 3968.0 | 0.0 | 3967.97 | 0.00 | 3300.0 | -668.0 |
| $60^{\circ}$ | 4527.36776 | 4527.7 | 0.3 | 4526.8678 | -0.5000 | 4527.06 | -0.31 | 4527.7106 | 0.3428 | 4527.4 | 0.0 | 4527.37 | 0.00 | 3600.0 | -927.4 |
| $65^{\circ}$ | 5178.80819 | 5179.3 | 0.5 | 5178.1250 | -0.6832 | 5178.42 | -0.39 | 5179.3079 | 0.4997 | 5178.8 | 0.0 | 5178.81 | 0.00 | 3900.0 | -1278.8 |
| $70^{\circ}$ | 5965.91787 | 5966.7 | 0.8 | 5964.9560 | -0.9619 | 5965.20 | -0.72 | 5966.6811 | 0.7632 | 5966.0 | 0.1 | 5965.92 | 0.00 | 4200.0 | -1765.9 |
| $75^{\circ}$ | 6970.33899 | 6971.5 | 1.2 | - | - | 6969.60 | -0.74 | 6971.5485 | 1.2095 | 6970.3 | 0.0 | 6970.34 | 0.00 | 4500.0 | -2470.3 |
| $80^{\circ}$ | 8375.19700 | 8377.3 | 2.1 | - | - | 8373.60 | -1.60 | 8377.3416 | 2.1446 |  |  | 8375.20 | 0.00 | 4800.0 | -3575.2 |
| $85^{\circ}$ | 10764.62104 | 10769.6 | 5.0 | - | - | - | - | 10769.6200 | 4.9990 | 10764.7 | 0.1 | 10764.62 | 0.00 | 5100.0 | -5664.6 |
| $89^{\circ} 50^{\prime}$ | 22459.25656 | 22622.3 | 163.0 | - | - | - | - | 22623.2506 | 163.9940 | 22458.0 | -1.3 | 22459.26 | 0.00 | 5390.0 | -17069.3 |
| $89^{\circ} 59^{\prime}$ | 30374.96343 | - | - | - | - | - | - | 32348.5279 | 1973.5645 | 30364.3 | -10.7 | 30374.96 | 0.00 | 5399.0 | -24976.0 |

Table 2: Meridional parts from different sources
of the authors used different units, values have been transformed to a value relative to one minute at the equator where needed.

Without going into too much detail about the exact methods that were used, one can clearly observe some differences in the meridional parts. Where we have seen that Wright's method resulted (at least for the higher altitudes) in an overestimation, both the methods of Snellius and Norwood tend to result in underestimated values. Furthermore, both Snellius and Norwood did not specify values for the highest altitudes, possibly being aware of increasing inaccuracies for these regions (or simply to reduce the computational efforts, since values for regions so far to the north were of little practical use). The table of meridional parts published by Sir Jonas Moore is very accurate, and has only some minor inaccuracies for the highest altitudes. Although it is not stated explicitly how the values in the table were calculated, equation 3 was known to Sir Jonas Moore (Moore 1681, p. 208). It is therefore likely that he used this method, although it is not clear in that case why the last values in the table are less accurate. According to (Bathe 1915), Moore used the secant of the mean of each interval instead of the upperbound as Wright did, and furthermore he used a resolution of 0.1 to calculate the meridional parts. Also in that case the last values in the table should be more accurate. Moore's table has been in use till the $19^{\text {th }}$ century. The extremely accurate values in Mendoza's table are a result of using the method based on the logarithmic tangents to calculate the meridional parts (Wallis 1685).

Overall one can clearly observe that meridional parts, as calculated by the different people, are in general rather accurate up to about $85^{\circ}$, after which, depending on the method that is used, errors sometimes rapidly increase. For navigation purposes the accuracy of the tables was in general more than sufficient. Especially when comparing the errors for the different versions of meridional parts with the errors in the common seachart which are of a complete different order, and already much more inaccurate at lower altitudes.

[^0]
## 5 The mystery of Henry Bond

Mercator created his map in 1569 , and in 1599 Wright published a table with meridional parts. As we have seen, the meridional parts are equivalent to the logarithmic tangent of the sum of $\frac{\pi}{4}$ and half the latitude. However, neither logarithms nor integral calculus were known in the $16^{\text {th }}$ century. Logarithms were only discovered by Napier around 1615-1620, and also the development of calculus had to wait till the $17^{\text {th }}$ century. An interesting question is when, how and by whom the link was made between the meridional parts and the logarithmic tangents. There is a lot of literature available, which can be consulted by the interested reader, discussing the roles of people like Thomas Harriot, James Gregory, Isaac Barrow, John Wallis, Edmond Halley and others in proving the equivalence, e.g. Rickey \& Tuchinsky (1980) and Pepper (1968). But there is one interesting detail that we came across during the work on this thesis, which might be worth mentioning.

According to a.o. Rickey \& Tuchinsky (1980), Pepper (1968), Hofmann (1950) and Roy (1990), the early $17^{\text {th }}$ century English mathematician Henry Bond compared (tables with) meridional parts and logarithmic tangents and noticed the similarity between them. Bond would then have published this as a conjecture in Norwood (1645). However, checking Norwood (1645), the correspondence between the meridional parts and the logarithmic tangent is indeed mentioned [see p.14], however, without any reference to Bond. In (Norwood 1644, p. A2) (which is included in Norwood (1645)), the name of Bond is mentioned, but in this part no link is made with the relation between meridional parts and logarithmic tangents. According to Cajori (1915) Bond included his conjecture also in Gunter (1653). However, although in this work the correspondence is mentioned as well [p.99], it is again without any reference to Bond.

> It was firft difcovered by chance, and as far as I can learn, firft publifht by Mr. Henry Bond, as an addition to Norvoods Epitome of Navigation, about 50 Years fince, that the Meridian Line wDas Analogous to a Scale of Logaritbmick Tangents of balf the Complements of the Latitudes. The difficulty to prove

Figure 13: Excerpt from Halley (1696)
This raises the question what the role of Bond actually has been. It seems that the source of the story about the conjecture of Bond is Halley (1696) (see figure 13). A few authors mention that they have searched for a copy of Norwood (1645), unfortunately without any success. Some refer to Halley (1696) as a confirmation of the role of bond with regard to the linkage between meridional parts and the logarithmic tangent (Monmonier 2010), where there are others who do not mention Bond at all, but only that the similarity seems to have been noticed around 1645 (Carslaw 1924).

Collections like the Early English Books Online (accessed June 10, 2018) make it easier nowadays to check for original sources. More research is needed to investigate if Bond played a role in discovering the link between the meridional parts and the logarithmic tangents, and in case Bond was not involved, who else first noticed the similarity. However, one thing is for sure, many people were involved in unraveling the mathematics behind the Mercator projection, which has all in all taken more than a century to be fully understood and proved.

## References

Bathe, J. (1915), Zur Geschichte der Tafeln der Meridionalteile, ES Mittler \& Sohn, Berlin.
Cajori, F. (1915), 'On an integration ante-dating the integral calculus', Bibliotheca Mathematica, 3rd series 14, 312-319.

Carslaw, H. (1924), 'The story of mercators map', The Mathematical Gazette 12(168), 1-7.
Early English Books Online (accessed June 10, 2018), ‘EEBO', http: / /eebo.chadwyck.com.
Gaspar, J. A. \& Leitão, H. (2014), 'Squaring the circle: how Mercator constructed his projection in 1569', Imago Mundi 66(1), 1-24.

Gunter, E. (1653), The Works of Edmund Gunter: Containing the Description of the Sector, Crossstaff, and Other Instruments; With a Canon of Artificial Sines ... Together with a New Treatise of Fortification, Whereunto is Now Added the Further Use of the Quadrant ... By Samuel Foster ... The Third Edition, F. Eglesfield, London (Available via EEBO).

Halley, E. (1696), 'An easie demonstration of the analogy of the logarithmick tangents to the meridian line or sum of the tangents, with various methods for computing the same, to the utmost exactness', Philosophical Transactions (1683-1775) 19, 202-214.

Hofmann, J. E. (1950), Nicolaus Mercator (Kaufmann) : sein Leben und Wirken, vorzugsweise als Mathematiker, Vol. Jg. 1950, Nr. 3 of Abhandlungen der Mathematisch-Naturwissenschaftlichen Klasse, Akademie der Wissenschaften und der Literatur Mainz, Akademie der Wissenschaften und der Literatur, Wiesbaden.

Katz, V. (1998), A History of Mathematics: An Introduction, Katz Series, Addison-Wesley.
Kish, G. (1975), Mercator, Gerardus (or Gerhard Kremer), in C. C. Gillispie, ed., 'Dictionary of scientific biography', Vol. 9, p. 309-310, Charles Scribner's Sons, New York.

Krücken, W. \& Milz, J. (1994), Gerhard Mercator Weltkarte ad usum navigantium, Duisburg 1569: verkleinert reproduziert nach dem Originaldruck der Universitätsbibliothek Basel, Mercator-Verlag, Duisburg.

Kyewski, B. (1962), Über die mercatorprojektion, in 'Gerhard Mercator, 1512-1594 : Festschrift zum 450.Geburstag', Vol. 6, p. 115-130, Werner Renckhoff, Duisburg-Ruhrort.

Monmonier, M. (2010), Rhumb lines and map wars: A social history of the Mercator projection, University of Chicago Press.

Moore, J. (1681), A new Systeme of the Mathematicks, Robert Scott, London (Available via EEBO).
Nordenskiöld, A. E. (1889), Facsimile-Atlas to the early history of cartography, with reproductions of the most important maps printed in the 15. and 16. centuries, Norstedt, Stockholm.

Norwood, R. (1644), A triangular canon logarithmicall. Or, A Table of Artificial Sines and Tangents, and the Complements Arithmetical of Sines, Supplying the Use of Secants. To Radius 10,00000 and to Every Degree and Minute of the Quadrant., London (Available via EEBO).

Norwood, R. (1645), Norwood's Epitome: Being the Application of the Doctrine of Triangles, in Certain Problems, Concerning the Use of the Plain Sea-chart, and Mercator's Chart. Being the Two Most Usual Kinds of Sailing. With a Table of Artificial Sines and Tangents, and the Complements Arithmetical of Sines, Supplying the Use of Secants. To Radius 10,00000, and to Every Degree and Minute of the Quadrant. Also the Logarithms of Absolute Numbers from 1 to 2000 ; with a Table of the Right Ascension and Declination of the Sun, and Certain Principal Fixed Stars: with Other Tables Useful in Navigation. Whereunto is Added, the Farther Use of the Forenamed Tables, in Questions of Navigation, Astronomy and Geography: as Also an Universal Almanak. The Last Edition, Newly Revised and Corrected. By Richard Norwood, Reader of the Mathematicks, London (Available via EEBO).

Pepper, J. V. (1968), 'Harriot's calculation of the meridional parts as logarithmic tangents', Archive for history of exact sciences 4(5), 359-413.

Rickey, V. F. \& Tuchinsky, P. M. (1980), 'An application of geography to mathematics: History of the integral of the secant', Mathematics Magazine 53(3), 162-166.

Rios, J. d. M. (1809), A complete collection of Tables for Navigation and Nautical Astronomy, London (Available via EEBO).

Roy, R. (1990), 'The discovery of the series formula for $\pi$ by Leibniz, Gregory and Nilakantha', Mathematics Magazine 63(5), 291-306.

Snellius, W. (1624), Tiphys Batavus, Leiden (Available via EEBO).
Snyder, J. (1997), Flattening the Earth: Two Thousand Years of Map Projections, University of Chicago Press.

Snyder, J. P. \& Voxland, P. M. (1989), 'An album of map projections US Geological Survey professional paper 1453', US Government Printing Office .

Wallis, D. (1685), 'A letter from the reverend Dr Wallis, professor of geometry in the University of Oxford, and fellow of the Royal Society, London, to Mr. Richard Norris, concerning the collection of secants; and the true division of the meridians in the sea-chart', Philosophical Transactions (1683-1775) 15, 11931201.

Wallis, P. (1975), Wright, edward, in C. C. Gillispie, ed., 'Dictionary of scientific biography', Vol. 14, p. 513-515 of Dictionary of Scientific Biography, Charles Scribner's Sons, New York.

Wright, E. (1599), Certaine errors in navigation, Valentine Sims, London (Available via EEBO).
Wright, E. (1657), Certaine errors in navigation detected and corrected, Joseph Moxton, London (Available via EEBO).

## Appendix

| Degrees | Minutes | Secant (calculated) | $\begin{aligned} & \text { Meridional } \\ & \text { part } \\ & \text { (calculated) } \end{aligned}$ | $\begin{gathered} \text { Secant } \\ \text { (Wright) } \end{gathered}$ | $\begin{gathered} \text { Meridional } \\ \text { part } \\ (\text { Wright }) \end{gathered}$ | Local error secant | Local error meridional part | Accumulating error secant | Accumulating error meridional part | Accumulated error |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 49 | 10001 | 490001 | 10001 | 490000 |  | -1 |  |  | 0 |
| 0 | 50 | 10001 | 500002 | 10001 | 500000 |  | -2 |  |  | 0 |
| 0 | 51 | 10001 | 510003 | 10001 | 510000 |  | -3 |  |  | 0 |
| 0 | 52 | 10001 | 520004 | 10001 | 520000 |  | -4 |  |  | 0 |
| 0 | 53 | 10001 | 530005 | 10001 | 530000 |  | -5 |  |  | 0 |
| 0 | 54 | 10001 | 540006 | 10001 | 540000 |  | -6 |  |  | 0 |
| 0 | 55 | 10001 | 550007 | 10001 | 550000 |  | -7 |  |  | 0 |
| 0 | 56 | 10001 | 560008 | 10001 | 560000 |  | -8 |  |  | 0 |
| 0 | 57 | 10001 | 570009 | 10001 | 570000 |  | -9 |  |  | 0 |
| 0 | 58 | 10001 | 580010 | 10001 | 580000 |  | -10 |  |  | 0 |
| 0 | 59 | 10001 | 590011 | 10001 | 590000 |  | -11 |  |  | 0 |
| 1 | 57 | 10005 | 1170180 | 10005 | 16170180 |  | 15000000 |  |  | 0 |
| 2 | 50 | 10012 | 1700624 | 10012 | 1709624 |  | 9000 |  |  | 0 |
| 3 | 8 | 10014 | 1880860 | 10014 | 1888860 |  | 8000 |  |  | 0 |
| 3 | 29 | 10018 | 2091202 | 10018 | 2091201 |  | -1 |  |  | 0 |
| 3 | 41 | 10020 | 2221452 | 10021 | 2221452 | 1 |  |  |  | 0 |
| 3 | 44 | 10021 | 2251515 | 10001 | 2251515 | -20 |  |  |  | 0 |
| 3 | 45 | 10021 | 2261536 | 12021 | 2261536 | 2000 |  |  |  | 0 |
| 3 | 46 | 10021 | 2271557 | 12021 | 2271557 | 2000 |  |  |  | 0 |
| 3 | 47 | 10022 | 2281579 | 11002 | 2281579 | 980 |  |  |  | 0 |
| 4 | 25 | 10030 | 2662551 | 10039 | 2662551 | 9 |  |  |  | 0 |
| 4 | 52 | 10036 | 2923400 | 10036 | 2923300 |  | -100 |  |  | 0 |
| 5 | 16 | 10042 | 3174375 | 10052 | 3174375 | 10 |  |  |  | 0 |
| 6 | 36 | 10066 | 3968634 | 10066 | 3968934 |  | 300 |  |  | 0 |
| 7 | 36 | 10089 | 4583349 | 10889 | 4583349 | 800 |  |  |  | 0 |
| 7 | 38 | 10089 | 4593438 | 10089 | 4543438 |  | -50000 |  |  | 0 |
| 7 | 38 | 10089 | 4603527 | 10099 | 4603527 | 10 |  |  |  | 0 |
| 7 | 46 | 10092 | 4674163 | 10092 | 4674136 |  |  |  | -27 | -27 |
| 8 | 44 | 10117 | 5260219 | 10117 | 5260193 |  | 1 |  |  | -27 |
| 9 | 0 | 10124 | 5422150 | 10124 | 5422133 |  |  |  | 10 | -17 |
| 10 | 4 | 10156 | 6071112 | 10156 | 6071098 |  | 3 |  |  | -17 |
| 10 | 16 | 10163 | 6203186 | 30163 | 6203169 | 20000 |  |  |  | -17 |
| 10 | 20 | 10164 | 6233677 | 10165 | 6233661 |  |  | 1 |  | -16 |
| 10 | 34 | 10172 | 6376035 | 10172 | 6379019 |  | 3000 |  |  | -16 |
| 11 | 0 | 10187 | 6640705 | 10187 | 6640679 |  |  |  | -10 | -26 |
| 11 | 8 | 10191 | 6722219 | 10191 | 6722219 |  | 26 |  |  | -26 |
| 11 | 58 | 10222 | 7232549 | 10222 | 7232323 |  | -200 |  |  | -26 |
| 13 | 35 | 10287 | 8227191 | 10287 | 8227169 |  | 4 |  |  | -26 |
| 16 | 46 | 10444 | 10206470 | 10443 | 10206443 |  |  | -1 |  | -27 |
| 18 | 1 | 10515 | 10992412 | 10515 | 10992383 |  |  |  | -2 | -29 |
| 19 | 4 | 10580 | 11656913 | 10580 | 21656884 |  | 10000000 |  |  | -29 |
| 19 | 31 | 10609 | 11942977 | 10609 | 11912948 |  | -30000 |  |  | -29 |
| 19 | 53 | 10633 | 12176655 | 10633 | 12176636 |  | 10 |  |  | -29 |
| 20 | 0 | 10641 | 12251121 | 10641 | 12251292 |  |  |  | 200 | 171 |
| 21 | 47 | 10768 | 13396486 | 10768 | 12396657 |  | -1000000 |  |  | 171 |
| 22 | 13 | 10801 | 13676909 | 10801 | 13677070 |  | -10 |  |  | 171 |
| 22 | 14 | 10803 | 13687712 | 10803 | 13687873 |  | -10 |  |  | 171 |
| 22 | 15 | 10804 | 13698516 | 10804 | 13698677 |  | -10 |  |  | 171 |
| 22 | 45 | 10844 | 14034084 | 100844 | 14034255 | 90000 |  |  |  | 171 |
| 23 | 7 | 10873 | 14262124 | 10873 | 14262275 |  |  |  | -20 | 151 |
| 23 | 26 | 10898 | 14468960 | 10898 | 14499111 |  | 30000 |  |  | 151 |
| 24 | 15 | 10967 | 15004692 | 10967 | 15094843 |  | 90000 |  |  | 151 |
| 24 | 18 | 10972 | 15037603 | 10972 | 15037854 |  | 100 |  |  | 151 |
| 25 | 19 | 11062 | 15709644 | 11062 | 15709805 |  | 10 |  |  | 151 |
| 25 | 28 | 11076 | 15809271 | 11076 | 15809432 |  | 10 |  |  | 151 |


| Degrees | Minutes | Secant (calculated) | $\begin{aligned} & \text { Meridional } \\ & \text { part } \\ & \text { (calculated) } \end{aligned}$ | $\begin{gathered} \text { Secant } \\ \text { (Wright) } \end{gathered}$ | $\begin{gathered} \text { Meridional } \\ \text { part } \\ (\text { Wright }) \end{gathered}$ | Local error secant | Local error meridional part | Accumulating error secant | Accumulating error meridional part | Accumulated error |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 27 | 24 | 11263 | 17104833 | 11263 | 17104964 |  |  |  | -20 | 131 |
| 29 | 5 | 11444 | 18262857 | 11448 | 18262988 | 4 |  |  |  | 131 |
| 29 | 18 | 11466 | 18400332 | 11466 | 18400403 |  | -60 |  |  | 131 |
| 30 | 36 | 11617 | 19300613 | 11617 | 19300734 |  |  |  | -10 | 121 |
| 30 | 39 | 11625 | 19347101 | 11425 | 19347222 | -200 |  |  |  | 121 |
| 31 | 14 | 11695 | 19743568 | 11695 | 19743699 |  | 10 |  |  | 121 |
| 31 | 15 | 11697 | 19755265 | 11697 | 19755396 |  | 10 |  |  | 121 |
| 31 | 34 | 11736 | 19977896 | 11736 | 19678017 |  | -300000 |  |  | 121 |
| 32 | 37 | 11872 | 20721577 | 11872 | 20721702 |  |  |  | 4 | 125 |
| 33 | 57 | 12055 | 21678642 | 12055 | 21687767 |  | 9000 |  |  | 125 |
| 33 | 59 | 12059 | 21702758 | 12059 | 21720883 |  | 18000 |  |  | 125 |
| 34 | 37 | 12151 | 22162783 | 12150 | 22162907 |  |  | -1 |  | 124 |
| 35 | 5 | 12220 | 22503997 | 12220 | 22504221 |  |  |  | 100 | 224 |
| 36 | 13 | 12394 | 23340907 | 12394 | 23341133 |  |  |  | 2 | 226 |
| 36 | 17 | 12405 | 23390511 | 12405 | 23390837 |  |  |  | 100 | 326 |
| 36 | 22 | 12421 | 23464997 | 12521 | 23465323 | 100 |  |  |  | 326 |
| 36 | 29 | 12437 | 23539578 | 12437 | 22539904 |  | -1000000 |  |  | 326 |
| 36 | 52 | 12499 | 23826370 | 12499 | 23226696 |  | -600000 |  |  | 326 |
| 37 | 48 | 12658 | 24543390 | 12648 | 24543716 | -10 |  |  |  | 326 |
| 38 | 6 | 12707 | 24759017 | 12707 | 24659343 |  | -100000 |  |  | 326 |
| 39 | 10 | 12898 | 25578402 | 12898 | 25578738 |  | 10 |  |  | 326 |
| 39 | 11 | 12901 | 25591303 | 12901 | 25591639 |  | 10 |  |  | 326 |
| 39 | 44 | 13003 | 26018756 | 13003 | 26019072 |  | -10 |  |  | 326 |
| 39 | 45 | 13006 | 26031762 | 13006 | 26032078 |  | -10 |  |  | 326 |
| 40 | 11 | 13089 | 26371034 | 13089 | 2637136 |  | -23734224 |  |  | 326 |
| 40 | 31 | 13154 | 26633489 | 13154 | 26633842 |  |  |  | 27 | 353 |
| 40 | 38 | 13177 | 26725656 | 13177 | 26729009 |  | 3000 |  |  | 353 |
| 40 | 42 | 13190 | 26778395 | 13190 | 26778648 |  |  |  | -100 | 253 |
| 41 | 59 | 13452 | 27804137 | 13452 | 27804380 |  |  |  | -10 | 243 |
| 42 | 0 | 13456 | 27817593 | 13456 | 27817839 |  | 3 |  |  | 243 |
| 42 | 38 | 13592 | 28331554 | 13592 | 28331807 |  |  |  | 10 | 253 |
| 42 | 40 | 13599 | 28358749 | 13599 | 28358902 |  |  |  | -100 | 153 |
| 42 | 52 | 13647 | 28535872 | 13646 | 28536025 | -1 |  |  |  | 153 |
| 43 | 33 | 13797 | 29084806 | 13797 | 29084969 |  | 10 |  |  | 153 |
| 43 | 42 | 13835 | 29222986 | 13839 | 29223139 | 4 |  |  |  | 153 |
| 43 | 43 | 13839 | 29236825 | 13835 | 29236978 | -4 |  |  |  | 153 |
| 44 | 50 | 14101 | 30158887 | 14100 | 30159039 |  |  | -1 |  | 152 |
| 45 | 0 | 14142 | 30300119 | 14142 | 30301271 |  | 1000 |  |  | 152 |
| 45 | 58 | 14386 | 31127493 | 14386 | 31127635 |  |  |  | -10 | 142 |
| 46 | 0 | 14395 | 31156279 | -9999 | 31156423 |  |  |  | 2 | 144 |
| 46 | 36 | 14554 | 31677421 | 14554 | 31677545 |  |  |  | -20 | 124 |
| 46 | 39 | 14567 | 31721109 | 14567 | 31721133 |  |  |  | -100 | 24 |
| 47 | 56 | 14925 | 32856576 | 14925 | 32856595 |  |  |  | -5 | 19 |
| 48 | 19 | 15037 | 33201188 | 15037 | 33201227 |  |  |  | 20 | 39 |
| 49 | 23 | 15361 | 34173963 | 15361 | 34173102 |  | -900 |  |  | 39 |
| 49 | 35 | 15423 | 34358697 | 15423 | 34358733 |  |  |  | -3 | 36 |
| 49 | 44 | 15471 | 34497746 | 15471 | 34487782 |  | -10000 |  |  | 36 |
| 50 | 39 | 15771 | 35356982 | 15771 | 35357028 |  |  |  | 10 | 46 |
| 51 | 8 | 15935 | 35816799 | 15936 | 35816846 |  |  | 1 |  | 47 |
| 52 | 44 | 16520 | 37390755 | 16420 | 37390802 | -100 |  |  |  | 47 |
| 52 | 49 | 16546 | 37456900 | 16546 | 57456947 |  | 20000000 |  |  | 47 |
| 53 | 14 | 16706 | 37872622 | 16706 | 3772669 |  | -34100000 |  |  | 47 |
| 53 | 19 | 16739 | 37956251 | -9999 | 37959298 |  | 3000 |  |  | 47 |
| 53 | 49 | 16938 | 38461489 | 16948 | 38461546 |  |  | 10 |  | 57 |

$\left.\begin{array}{|r|r|r|r|r|r|r|r|r|}\hline \text { Degrees } & \text { Minutes } & \begin{array}{c}\text { Secant } \\ \text { (calculated) }\end{array} & \begin{array}{c}\text { Meridional } \\ \text { part }\end{array} & \begin{array}{c}\text { Secant } \\ \text { (Wright) }\end{array} & \begin{array}{c}\text { Meridional } \\ \text { part } \\ \text { (calculated) }\end{array} & & \begin{array}{c}\text { Local error } \\ \text { secant }\end{array} & \begin{array}{c}\text { Local error } \\ \text { meridional } \\ \text { part }\end{array} \\ & & & & \begin{array}{c}\text { Accumulating } \\ \text { error secant }\end{array} & \begin{array}{c}\text { Accumulating } \\ \text { error } \\ \text { meridional }\end{array} & \begin{array}{c}\text { Accumulated } \\ \text { error }\end{array} \\ \text { part }\end{array}\right]$

| Degrees | Minutes | Secant (calculated) | Meridional part (calculated) | Secant <br> (Wright) | Meridional part (Wright) | Local error secant | Local error meridional part | Accumulating error secant | Accumulating error meridional part | Accumulated error |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 75 | 15 | 39276 | 70300095 | 39277 | 70300147 |  |  | 1 |  | 52 |
| 75 | 39 | 40347 | 71255998 | 40347 | 71256051 |  |  |  | 1 | 53 |
| 75 | 42 | 40485 | 71377315 | 40485 | 71377358 |  | -10 |  |  | 53 |
| 76 | 28 | 42733 | 73291495 | 42732 | 73291547 |  |  | -1 |  | 52 |
| 76 | 39 | 43308 | 73764993 | 43309 | 73765046 |  |  | 1 |  | 53 |
| 77 | 37 | 46630 | 76372441 | 46630 | 76372394 |  | -100 |  |  | 53 |
| 79 | 49 | 56561 | 83145068 | -9999 | 83149121 |  | 4000 |  |  | 53 |
| 80 | 38 | 61443 | 86035256 | 61443 | 86035209 |  | -100 |  |  | 53 |
| 81 | 35 | 68319 | 89729896 | 68319 | 89729749 |  | -200 |  |  | 53 |
| 81 | 48 | 70112 | 90630491 | 70111 | 90630543 |  |  | -1 |  | 52 |
| 81 | 59 | 71704 | 91411207 | 71704 | 91411159 |  | -100 |  |  | 52 |
| 82 | 1 | 72001 | 91555060 | 72001 | 91555113 |  |  |  | 1 | 53 |
| 82 | 10 | 73371 | 92209883 | 73371 | 62209936 |  | -30000000 |  |  | 53 |
| 82 | 30 | 76612 | 93710871 | 76612 | 93710914 |  | -10 |  |  | 53 |
| 82 | 47 | 79604 | 95039877 | 79603 | 95039929 |  |  | -1 |  | 52 |
| 83 | 7 | 83438 | 96671611 | 83439 | 96671664 |  |  | 1 |  | 53 |
| 83 | 34 | 89248 | 99004010 | 89248 | 94004063 |  | -5000000 |  |  | 53 |
| 83 | 51 | 93343 | 100557552 | 93342 | 100557604 |  |  | -1 |  | 52 |
| 83 | 55 | 94362 | 100933463 | 94361 | 100933514 |  |  | -1 |  | 51 |
| 84 | 29 | 104020 | 104305415 | 104019 | 104305465 |  |  | -1 |  | 50 |
| 84 | 57 | 113604 | 107352978 | 113604 | 107353128 |  |  |  | 100 | 150 |
| 85 | 4 | 116283 | 108158850 | 116283 | 108159002 |  |  |  | 2 | 152 |
| 85 | 12 | 119505 | 109103498 | 119506 | 109103651 |  |  | 1 |  | 153 |
| 85 | 23 | 124240 | 110446131 | 124240 | 110445628 |  | -656 |  |  | 153 |
| 85 | 23 | 124689 | 110570820 | 124989 | 110570973 | 300 |  |  |  | 153 |
| 85 | 42 | 133371 | 112895950 | 133371 | 112895803 |  | -300 |  |  | 153 |
| 85 | 51 | 138182 | 114120092 | 138183 | 114120246 |  |  | 1 |  | 154 |
| 85 | 52 | 138739 | 114258831 | 138739 | 114258685 |  | -300 |  |  | 154 |
| 85 | 58 | 142173 | 115103200 | 142172 | 115103353 |  |  | -1 |  | 153 |
| 85 | 59 | 142762 | 115245962 | 142761 | 115246114 |  |  | -1 |  | 152 |
| 86 | 8 | 148291 | 116558149 | 148291 | 116558001 |  | -300 |  |  | 152 |
| 86 | 11 | 150231 | 117006890 | 150230 | 117007041 |  |  | -1 |  | 151 |
| 86 | 49 | 180079 | 123263431 | 180078 | 123263581 |  |  | -1 |  | 150 |
| 86 | 50 | 181026 | 123444457 | 181025 | 123444608 |  | 2 | -1 |  | 149 |
| 86 | 54 | 184915 | 124178232 | 184915 | 124078381 |  |  |  | -100000 | -99851 |
| 87 | 4 | 195411 | 126084153 | 195411 | 125984102 |  | -200 |  |  | -99851 |
| 87 | 33 | 233931 | 132295420 | 233936 | 132195574 |  |  | 5 |  | -99846 |
| 87 | 37 | 240471 | 133247381 | 240470 | 133147534 |  |  | -1 |  | -99847 |
| 87 | 42 | 249179 | 134475611 | 249178 | 134375763 |  |  | -1 |  | -99848 |
| 88 | 7 | 304280 | 141375628 | 304281 | 141275781 |  |  | 1 |  | -99847 |
| 88 | 12 | 318362 | 142938762 | 318361 | 142838914 |  |  | -1 |  | -99848 |
| 88 | 16 | 330603 | 144242523 | 330602 | 144142674 |  |  | -1 |  | -99849 |
| 88 | 33 | 395185 | 150411493 | 395185 | 150311944 |  | 300 |  |  | -99849 |
| 88 | 39 | 429757 | 153312762 | 429752 | 153212913 | -5 |  |  |  | -99849 |
| 89 | 1 | 582697 | 163857870 | 582696 | 163758020 |  |  | -1 |  | -99850 |
| 89 | 51 | 3819722 | 230152078 | 3819723 | 230052229 |  |  | 1 |  | -99849 |
| 89 | 53 | 4911070 | 239360335 | 4911090 | 239260506 |  |  | 20 |  | -99829 |
| 89 | 55 | 6875495 | 251965410 | 6875496 | 251865582 |  |  | 1 |  | -99828 |
| 89 | 56 | 8594368 | 260559778 | 8594338 | 260459920 |  |  | -30 |  | -99858 |

Table 3: Overview of differences between the table with meridional parts of Wright and those calculated using equation 5. Here the local errors have been further subdivided into local errors in the secant values and local errors in the meridional parts. The accumulated error is the cumulative sum of both the accumulating errors in the secants and those in the meridional parts. Note that the difference between the calculated meridional part and the meridional part of Wright equals the sum of the accumulated error and the local error in the meridional part.


[^0]:    ${ }^{1}$ Values from (Wright 1599, pp. n.d.)
    ${ }^{2}$ Values from (Snellius 1624, pp. 206-233). Table contains values for each minute up to $70^{\circ}$.
    ${ }^{3}$ Values from (Norwood 1645, pp. A-A2). Table contains values for every $10^{\text {th }}$ minute up to $80^{\circ}$.
    ${ }^{4}$ Values from (Wright 1657, pp. 14-36)
    ${ }^{5}$ Values from (Moore 1681, pp. 67-93). Table contains values for each minute up to $89^{\circ} 59^{\prime}$.
    ${ }^{6}$ Values from (Rios 1809, pp. 585-592). Table contains values for each minute up to $90^{\circ}$.

