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Deception is the act of spreading a false belief through communication or actions, which

is commonly used among people in situations where motives differ. Being able to perform

such act is because of an ability called Theory of Mind. This is the ability to reason

about the mental content of others, which often happens naturally in people. Higher

orders Theory of Mind enable reasoning about how others use this ability. Such ability

is used by people to get an idea of what someone’s intentions are when that person

performs a certain action. Using this principle a prediction of future actions can be

made, which is a key aspect of deception. In competitive negotiation settings, it is

expected that higher orders of Theory of Mind enable the agent to look further into the

negotiation process that in turn can lead to a higher payoff through deception. This

thesis explores the conditions needed for deceptive behaviour to emerge and which order

Theory of Mind enables deceptive behaviour in computational agents using a mixed-

motive interaction environment. An environment called Colored Trails is built to achieve

this. The environment enables the agents to negotiate with each other using various

proposals. Here, the agents have partial information about each others preferences

which allows for the investigation of deceptive behaviour for different orders of Theory

of Mind.
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Chapter 1

Introduction

Deception is usually seen as a human characteristic involving complex interactions

and thought processes using different areas in the brain[3]. Some behaviour is deceptive

if it makes someone perform an action that is better for yourself, given that other options

were available that would have lead the receiver to choose a different action. Deceiving

someone implies changing that persons beliefs, subsequently the decisions that will be

made are based on those beliefs. However, having inaccurate beliefs does not always

mean that deception has occurred. Different scenarios are possible where this holds,

an example is where a persons’ action does not depend on a certain inaccurate belief

that has been induced by the deceiver. Ones beliefs may be inaccurate due to poor

observation of the environment, wrong reasoning about the observation or some other

factors that the deceiver is not responsible for.

When interacting with someone, people tend to reason about the mental content of

that person which includes beliefs, desires and intentions. Reasoning about a persons

behaviour and the above mentioned mental content is called Theory of Mind (ToM)[4].

Using Theory of Mind a person can make better predictions of how someone will react

at a certain situation. Reasoning about a persons’ mental content requires the so-called

first-order Theory of Mind. An example could be: ”Person A knows that person B

wants to get some food”, where person A is using first-order ToM. This technique is

also used to reason about the Theory of Mind of others which enables a person to get

an idea of how someone is interpreting the behaviour of others including himself, this is

seen as higher-order ToM. An example of a second-order ToM reasoning is: ”Person A

knows that person B knows that person A is hungry”. Unlike lying, if a person wants to

deliberately deceive someone, he needs to have a mental model of how his behaviour is

seen by the addressed party. Therefore Theory of Mind is necessary in order to achieve

deception that is specifically aimed at that person [5][6]. Of course there exist other

forms of deception, where a person is able to deceive someone without the need for

1



Introduction 2

reasoning about that persons mental content, which is called unintentional deception.

This form of deception will not be discussed here as it is outside the scope of this study.

1.1 Research Outline

There exist many different forms of deception where each conceal the truth in some

way. This study focuses mainly on deception in the form of lying by omission[7] and

implicit deception[8]. Such type of deception involves telling most of the truth, how-

ever leaving some important information out that change the perception of the situation

completely, while only using actions. In order to investigate how such behaviour emerges

in computational agents and what the conditions are that allow it to happen, an envi-

ronment is needed that allows for cooperative as well as deceptive behaviours. For this

purpose a simulated environment called Colored Trails is implemented in the form of

a mixed-motive game[9] with incomplete information. By using such environment the

agents have the freedom to find different strategies, including deceptive ones. However in

order for deceptive behaviour to emerge the agents need to have incomplete information

about some aspects of the environment. This enables the agents to make assumptions

about those aspects and reason about how the opponent perceives them. This reasoning

process can be done by inferring the other players’ value-function, or in other words by

modelling his behaviour using observation and reasoning about his mental processes,

which is introduced here as Theory of Mind. The value function can be seen as function

that tries to find the best solution using a scoring function as seen from opponents’ point

of view. However, this value-function of some other player depends strongly on the be-

haviour of yourself, which happens through your value-function. So inferring someones

mental processes which are inferring yours leads to an infinite regress[10]. This is solved

here by using the idea of Bounded rationality [11][12] to constrain the depth of reasoning

in other player as modelled by the agent, which describes that when someone makes

decisions, his rationality is limited to the cognitive limitations of his mind and will not

exceed the scope of the decision problem.

By using Theory of Mind the agents can mislead their opponent by giving false infor-

mation, or try to cooperate by revealing that information. Within this game the agent is

able to strategically deceive an opponent by changing his beliefs about the environment

or the game state. In order to achieve this, the agent needs a model that represents

opponents beliefs, desires and intentions. The agent can exploit incomplete information

that is available to the opponent using this model, by performing an action that results

in opponent acting to the agents’ advantage.
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Research Question Under what conditions can deception emerge in computational

agents using Theory of Mind? In this study a mixed-motive environment will be used,

which enables the agents to choose from competitive or cooperative actions. Intuitively

agents will have incomplete information as deception relies on some information being

unavailable to the receiving party. Representing mixed-motive situations is done using

Colored Trails (CT) framework, originally designed by Grosz and Kraus[13]. Colored

Trails is a board game consisting of colored tiles that is played by two or more people

or agents. Two agents are implemented in this research, a proposer that initiates the

communication and a responder that reacts to his actions. The framework is explained

more in-depth in 3.1.

1.2 Research Steps

First step towards answering the research question involves a one-shot negotiation

game, where players can trade colored chips in order to advance towards the goal. Both

players have the incentive to trade chips with each other because the initial distribution

of chips of each player does not allow them to reach the goal. After the trade is completed

the distribution of the chips is final. This approach relies on the deceiver having complete

information about the game state as opposed to the responder that has incomplete

information. Here, to achieve deceptive behaviour the focus lies in hidden information

or obscuring of real information by the deceiver. Having access to and being able to

change several aspects of the environment, prior to being observed by the other player,

gives the deceiver an opportunity to come up with a deceptive solution that will make

the other player form inaccurate beliefs about the game state. This is often seen in

conjuration of magic tricks. Prior to starting a magic trick, the magician prepares the

environment that will enable him or her to successfully deceive a spectator. In this

one-shot game the deceiver needs to make a model of his opponent and predict his

behaviour in order to successfully find deceptive moves. Simulation experiments are

performed on cases where an agent has prior access to the environment and cases where

both agents have the same amount of information. This is done to make a comparison

between the performance of the agents using complete information as opposed to one

having incomplete information. The results are then compared using two sample t-

tests to show whether there is a significant difference between the scores of the agents.

Further, significance testing using Pearson correlation[14] is performed to show whether

the results have a significantly positive or a negative correlation.

The above mentioned approach is chosen to get an idea of how the environment is

used by the deceiver in order to get a higher payoff and why having more information is

important. However this approach is too trivial where the deceiving agent cannot lose
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given a right environment, as will be shown later on. Subsequently this research is used

as a stepping stone towards a game where both agents have incomplete information,

which is the information about each others chip sets. Giving both players incomplete

information about the game state gives both agents an opportunity to change the beliefs

of the other player, and thereby deceiving him [5][15].

Having incomplete information may induce deceptive strategies that either maximize

own given score or minimize the score of the opponent. Getting a better idea about the

incomplete information is done by frequent communication between the agents during a

single game. Making sure that the opponent gets the wrong idea about that information

gives the deceiving agent an advantage, because having more information is crucial

in mixed-motive interaction games as will be shown from the results of the first case

study described above. For this purpose the second case study utilizes a repeated-game

scenario, where the agents communicate at every turn. During such communication

phase both players negotiate on a trade until they reach some sort of agreement. Through

communication both agents are able to reveal or obscure some information that is hidden

to the other player. In this scenario there is a proposing agent that initiates the trade

at every turn, and the responding agent can either accept, decline or make a counter

proposal. After the communication phase both agents are advanced one step towards

the goal, if possible. Agents having different orders of Theory of Mind are able to

reason about the other agents’ mental states differently, and thus achieving different

scores through either deception or cooperation. This behaviour is studied by performing

simulation experiments using different orders of Theory of Mind agents. The significance

of the differences in scores are then again compared using two sample t-tests. Further,

by defining what deception is in this model it can be shown which orders of ToM agents

are able to achieve this and what are the conditions needed for it to occur. Recognizing

the occurrence of a deceptive behaviour is defined in Chapter 4.7 and 6.1.11.

1.3 Hypotheses about Deception

Because first approach uses a first-order ToM agent that has complete information

about the opponent and environment, it is expected that he will create a model of

the opponent that is identical to the actual one. This leads to deceptive moves that

always result in the agent gaining a higher score than his opponent, given the right

environment. Because a zero-order ToM agent cannot model opponents beliefs and

intents, it will not be used as a proposer for this approach. In the second approach both

agents have incomplete information about the game state, so both agents have to rely

on their beliefs when proposing a trade. Because higher orders of Theory of Mind enable

the agents to predict the behaviour of agents that are using lower orders of Theory of
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Mind, the expected result is these agents obtaining a higher score through deception

and cooperation, given the right distribution of chips. For equal orders of Theory of

Mind agents the outcome is expected to be the same as if they were zero-order Theory

of Mind agents. This is because both agents will try to make sure that the other models

his chip set incorrectly. Once an agent discovers that his beliefs are incorrect he will

be forced to rely his initial zero-order beliefs. Using those beliefs the agent will not

consider opponents beliefs anymore and thus play as a zero-order ToM agent. The

above-mentioned expectations are described formally in the hypotheses below:

Hypothesis H1 Deceptive behaviour results in a overall higher score for that

agent than the score he would obtain with cooperation.

Hypothesis H2 First-order ToM agents with complete information will gener-

ally receive a much higher score than agents with incomplete information.

Hypothesis H3 First-order ToM agents are able to deceive Zero-order ToM

agents.

Hypothesis H4 Equal orders ToM agents play as if they were Zero-order ToM

agents.

Hypothesis H5 Equal orders of ToM deceive each other roughly equally often.



Chapter 2

Related Work

Deceptive behaviour in computational agents and reasoning about reasoning are

widely studied topics, especially in AI. A deceptive action can occur in different forms,

because there exist many approaches to changing someone’s belief. De Rosis et al.[16]

study deceptive actions through direct communication. In this setting, the deceiver is

trying to deceive the other agent by convincing him of the falsity of a certain fact. This

model uses Bayesian networks[17] to represent beliefs and probabilities to other beliefs.

Using this system, the probability of a belief being true can be decreased or increased by

manipulating some other belief that is connected to it. In this model, the deceiver uses

his beliefs to represent the beliefs of his communication partner. This method however

does not consider the other agent having different beliefs, which is often the case.

GOLEM Another study by De Rosis, Castelfranchi and Falcone focuses on deception

through actions in a blocks world environment called GOLEM [18]. Because the agents

have to build structures using shared blocks, both agents have conflicting goals which

can lead to deception. Planning is done using the information known about the other

agent. The agents in GOLEM do not possess second order reasoning about reasoning

of other agents, so they don’t know how the other agent will react or interpret their

action. This means that they only might accidentally deceive the other agent instead

of deliberately. The goals, plans and beliefs of others are not accessible to an agent so

in order to achieve deceptive behaviour, the agents need to form models of other agents

mental states. Similar to GOLEM this work considers deception through actions, or

non-verbal mechanisms.

PsychSim Pynadath & Marsella developed a simulation tool for modeling multi-agent

interactions called PsychSim [19], where the agents make decisions using their own beliefs

6
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together with the beliefs about other agent’s beliefs. Occurring changes in the world and

acquired knowledge about the game make the agents update their beliefs. This means

that the agents can influence each others beliefs based on actions.

Level-n Theory In behavioral economics, reasoning about reasoning of others is mod-

elled through different techniques such as cognitive hierarchies[20] or level-n theory[21].

These models represent an agents complexity as the maximum iterated reasoning steps

that are available to the agent. Here a level-n agent models all other agents as exactly

level-n-1 agents. This assumption cannot be made when considering repeated game set-

tings, where the agents can change their levels of reasoning. To infer the mental states of

others in such game scenarios the agents can make use of Theory of Mind, which is first

formulated by Premack & Woodruff [4]. This ability helps understanding the behaviour

of others and therefore helps predicting the following actions.

Dynamic iterated reasoning The agents described in the second case study use The-

ory of Mind similar to dynamic iterated reasoning models, where the agents adjust their

level of reasoning based on the behaviour of others. These similar models include game

theory of mind[10] and weighted attraction learning[22]. The latter uses Belief-based

models, which allows the players to choose different strategies that have high expected

payoffs based on the beliefs that are formed by prior observation of others. The agents

in this study have a similar behaviour where expected payoffs are formed based on prior

observations of others, however reasoning about others’ beliefs, intents and desires play

a big role in forming those expected payoffs.



Chapter 3

Background

This chapter covers some background knowledge and tools that are used for this

study.

3.1 Colored Trails

A widely used framework that allows for complex multi-agent interactions that in-

volves modeling and learning of decision making is called Colored Trails framework

(CT)[23][24]. This test-bed is developed with the intent to investigate the decision mak-

ing process in multiple computational agents and people. CT is a board game that can

be played by people or agents which consists of colored squares. Every player has its

own piece on the board and a goal he or she has to reach. Further each player has

colored chips that can be used to traverse through the board. A chip of appropriate

color needs to be handed in to make a move onto a neighbouring square that shares the

color with the chip. When a player does not posses the right chips to reach the goal he

or she can initiate a trade with other players. The other player can accept the trade or

refuse. The score is then computed based on the players distance away from the goal

and the amount of chips in his possession. The complexity of the game can be adjusted

by increasing the amount of squares or colors, adjusting the scoring function, changing

goal conditions or observability of the board. An example of the game can be seen in

Figure 3.1, where both players are indicated by letters A and B on the board and their

chip sets below. The numbering in each colored box shows the amount of chips a player

has in his possession.

Due to unavailability of Colored Trails framework on http://www.eecs.harvard.edu/

ai/ct the decision is made to create an own version of the framework that is suitable

8
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for the purposes of this research using new tools and data structures. The mathematical

model of this framework will be discussed in-depth in the next chapter.

Figure 3.1: A two player CT game, where a player A has offered a yellow chip to
trade for a white chip that is owned by the B player. The player A needs a white chip

to reach the goal.

Initially for this study the game was implemented as a one-shot game, which means

that after the trade is accepted or rejected the configuration of the chips is final and

the agents are advanced towards the goal as far as possible and subsequently the score

is computed. This setting comprises of one proposing agent that searches for optimal

moves and corresponding proposals that will increase his and possibly the other agents’

score and then proposes a trade. Further the game implements a responding agent that

either accepts or declines the offer made by the other agent. This one-shot setting allows

for investigation of agents’ behaviour and deception when presented the proposing agent

with complete information about the game and the other with incomplete information.

Colored Trails framework is very useful when investigating agents interaction through

non-verbal mechanisms, because the outcome of the agents depends strongly on each

others’ actions. However more interactions between the agents give a better chance to

explore the workings of Theory of Mind and deception. In order to achieve this, the

framework needs to implement a repeated-game. In this setting the agents interact

with each other at every turn, while both having incomplete information about the

environment. This incomplete information here is in the form of hidden chip sets, where

both agents have initially no information about each others chips. During the interaction

step the proposing agent can offer just one chip to exchange with one other, unlike the

previous one-shot scenario. The responding agent can either accept, decline or make
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a counter proposal. In case of the latter the roles of the agents are reversed and the

previous proposer becomes a responder, having the same options to accept, decline or

make a counter proposal. By interacting with each other in such way the agents reveal

information about their chip sets to their trading partner, whether it is cooperatively

or deceivingly depends on the environment, distribution of chips and the other agents’

behaviour. This setting allows for emergence of deceptive behaviour instead of forced

deceptive behaviour, as implemented in one-shot scenario. At the end of a turn the

agents are advanced one square towards the goal along their shortest paths, given that

they have the appropriate chips. If an agent lacks the right chips to advance to a

neighbouring tile, he will stay at his position. Staying at the same position for five turns

results in losing the game. In this scenario deception occurs when the deceiving agent

successfully changes the beliefs of the other agent which results in that agent performing

an action that is more advantageous for the deceiver. An agent can change opponents’

beliefs in multiple ways, namely changing the beliefs about the chips in possession or

changing the belief about what the intents, beliefs and desires of that agent are.

3.2 Theory of Mind

In order to achieve deception one must place himself in the opponents position and

reason about how he would interpret your actions. This ability to reason about others’

unobservable mental states such as beliefs, intentions, goals or desires is called Theory

of Mind (ToM)[4]. Without such ability a person would only be able to reason about

the behaviour of others, which is the observable content like someone performing an

action. This is often seen as having zero-order ToM. Understanding that someone else

has a different perspective is nothing new for humans, as this is a natural ability[4][25].

The use of higher-orders of ToM such as second-order allows a person to reason about

how someone else is reasoning about someone. This recursive usage of Theory of Mind

is believed to be a human ability, comparing to other animals. The emergence of social

cognition in humans is explained by the Machiavellian intelligence hypothesis[25], which

states that because of social cognition people can use deception and social manipulation

to obtain an evolutionary advantage. Theory of Mind however, is still a theory because

every human has only the ability to reason about the existence of its own mind and

cannot inspect the mind of another person through introspection. The philosophical

aspects, namely the Philosophy of Mind, will not be discussed here as it is outside the

scope of this study.

In artificial intelligence, the ToM allows an agent to access or mimic another agents’

mental state and reason about it[1]. There are different orders of ToMs, such as single-

order ToM that can represent what another agent is thinking. However, second-order
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ToM can not only represent the behaviour of single-order ToM but can also model what

another agent thinks about someone else (including himself). The way a second-order

ToM agent models the mental states of other agents can be seen in Figure 3.2. Here each

model the agent A creates at first ToM level represents the beliefs of the other agents

B and C. The models in the second ToM level represent the beliefs about the beliefs of

agents B and C, creating a recursive tree structure.

Figure 3.2: Multi-level hierarchy of other agents’ models constructed by a second-
order ToM agent. From The Great Deceivers: Virtual Agents and Believable Lies[1]

It has been shown that in most mixed-motive interaction games a higher-order ToM

agent has a superior performance over its lower counterpart[26][27]. This is because

agents using higher-orders of ToM are able to look further into the negotiation process

and thereby make predictions of their opponents behaviour.

3.3 Path Planning

To navigate through some virtual environment such as a CT grid, an agent needs to

have an ability of path planning. The most obvious path from the start position to the

goal is the shortest path, that is available with the configuration of colours the agent

owns. A path planning algorithm that considers this can be made using simple A-star

algorithm[28]. Using this algorithm a set of possible shortest paths is computed, and

for each path the chips are determined that are needed in order to take this path. The

best path is chosen based on the beliefs, desires and intentions of the agents. Using

his beliefs an agent is able to reason about whether the chips are obtainable from the

opponent through trading, which he needs to take a certain path. If the agent believes

that the opponent does not have the needed chip he will try to find other paths towards

the goal. The general model of navigation on the board is given in chapter 4.5.
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3.4 Deception Theory

Understanding the nature of deception helps with implementing and exploring decep-

tive behaviour in agents. The workings of deception or difference between perception-

supported belief and the expectation based on memory is best described by studying

the conjuration of magic tricks. Giving the opponent a false perception-supported belief

in this project is inspired from conjuration of magic tricks[2], as the magician tries to

hide some information or some real outcome from the observer. Simulating a process

of a magic trick where some information is only available to the deceiving agent creates

two parallel event sequences as seen in Figure 3.3. The method event sequence is the

one that is understood only by the deceiving agent, which will be only revealed after

the game ends. That gives the agent more knowledge than his opponent, which can

be used to predict an action the opponent is going to make. While an another agent

is not easily fooled through perceptual and attentional fallibility that is often used by

magicians, there exist different approaches such as hidden information.

Handling with deception, whether perceived or actual, is explained by Interpersonal De-

ception Theory[6]. This theory focuses on the communication part between the sender

and receiver as a whole rather than each individually. It explains the human behaviour

when lying or when being lied to in a general way. IDT’s model of deception is designed

while keeping humans in mind however, the theory can be generalized for machine in-

telligence or agents.

Figure 3.3: Two event sequences in a magic trick, effect event sequence is what
is believed by the observer and method event sequence is what is believed by the
magician (which is the actual truth) from The Construction of Impossibility: Logic-

Based Analysis of Conjuring Tricks[2]
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Model

To explore how deception occurs using Theory of Mind, a specific test-bed is devel-

oped that resembles Colored Trails framework in terms of the environment and agents

interactions. Colored Trails focuses on interactions between agents, where interactions

are in the form of negotiation. Here the reasoning processes, performance and the choices

the agents make can be analyzed and compared. The game is played by two agents on

a 4 by 4 grid consisting of 4 colours, however the implementation allows for different

game variants. For the purpose of simplicity this study focuses on the above mentioned

configuration. Each coloured square on the board is randomly placed, which makes the

amount of unique configurations of the board 416. On that board a random position for

the goal is chosen. Each players goal is to get as close to the goal tile as possible by

moving to a horizontally or vertically adjacent tile repeatedly. The initial positions for

the players are selected randomly as long as they are not adjacent to the goal square. In

both one-shot and repeated game variants the distances between both players and the

goal are equal to make sure no player has a positional advantage. This study focuses on

interactions between two players, and scenarios consisting of more players will not be

discussed here.

In this study Colored Trails is defined using the following variables: A, C, P , G, cti, c
t
j ,

posti, pos
t
j and f . Table below shows the definitions of each variable:

4.1 Board

The board in the game is defined as a grid with a certain width and height that

correspond to the amount of columns and rows respectively. Each square on the board,

here named a tile, has its own colour, position and a set of neighbours N . The colours

on the board are chosen from a known set of colours and placed randomly on each

13
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Table 4.1: Colored Trails variables representation

A Set of agents {i, j} playing the game

C Set of possible chip set distributions

P Set of possible positions on the board: rows × columns

G Goal location on the board G ∈ P , same for both agents

cti Agents’ i chip set at time t, where cti ∈ C

ctj Agents’ j chip set at time t, where ctj ∈ C

posti Agents’ i position on the board at time t, where posti ∈ P

postj Agents’ j position on the board at time t, where postj ∈ P

f Score function that takes an input s: ct × post × G → R, where ct ∈ C and
post are agents’ i or j chip set and position at time t and the function returns
a real number R

tile on the board. Because the first one-shot game approach of this study involves

information that is unavailable to the responding agent, each tile has two properties

namely observed colour and actual colour. During repeated-game scenarios the tiles

only have one property which is the actual colour, because the amount of information

each agent has is the same. After initialization process the proposing agent has access

to the board before it will be observed by the other agent. In case of repeated-game

scenario both observed colour and actual colour are the same for both agents, ensuring

that no agent has more information available to him initially.

4.2 Chipsets

The agents negotiate trades of colored chips with each other, where the chips are

distributed among the players in such way that it ensures that no player can reach the

goal without trading. The shortest distance to the goal is not guaranteed, even after

trading. When making a proposal, the agents may assign any value to the requested and

offered chips, given that the game scenario allows it. During initialization, each colour

is added randomly to the empty chip set a certain amount of times, with a minimal

value of 0 and a predefined maximum value. This maximum value is (width·height)
c , where

c is the amount of colours on the board and width and height represent the amount of

squares in x and y direction respectively. If a player is able to reach the goal with the

resulting chip set, and thus does not require trading, a chip corresponding to a random

tile along that path towards the goal is removed from the chip set. The last step of

initialization is checking whether using both players’ chip sets combined will lead both
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of them to the goal. If that is not the case, then the chips that are lacking are added

to the chip set. The resulting sets of chips allow for both agents to reach the goal after

trading, which means that cooperation should be expected besides deception.

4.3 Players

During the initialization players are assigned random positions on the board, given

that it is at least one square away from the goal and have the same distance to the goal.

The agents can make observations of the board at any time, which allows them to see

the goal position and the observed colours on each tile. Initially, each player is assigned

a role of a proposer or responder where a proposer always initiates the trading process

and responder reacts to his proposal. Both agents can observe their own chip sets and

form beliefs about the chips needed to reach the goal. This is done by calculating the

paths towards the goal and the chips needed to take that path. The chips that an

agent is lacking are the ones he needs to trade with his trading partner, given that he

believes that those chips are owned by the other agent. Those beliefs are formed based

on his observation of the game. In one-shot case study the agent is able to observe

opponents’ chip set directly, whereas in repeated game the beliefs are formed through

repeated communication and observation of opponents responses or requests. Further,

the agents can represent their opponents beliefs and behaviour using Theory of Mind.

Depending on the order of ToM, an agent can make a model of his opponent. This is

done by observing the position of an agent on the board and his chip set. This chip

set can either be known in case of a complete information game or approximated if the

scenario uses incomplete information. Because the goal location is the same for both

players, a non-zero-order ToM agent can form beliefs about opponents intentions given

the above mentioned information.

At any time, an agent can compute his score using knowledge about his chip set, his

position and the goal position. The scoring function used for this is explained in the

next section.

4.4 Scoring Function

Both agents use the same function that assigns scores to them. The outcome of the

function depends on a constant initial base score of the player, distance from the player

to the goal, the goal score and the amount of chips that are in possession. This function

is defined for an agent i as follows:
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f i(s) = Bi
score + gi(s) +

∑
c∈Chipset

(cweight · Colweight), (4.1)

where Bi
score is the initial score assigned to the player, cweight and Colweight are chip

weights and colour weights respectively. The chip weight is a constant that is assigned

during the initialization. Colour weights are variable and get their values based on the

occurrence of that colour on the board. Lower amounts of colours on the board have a

higher weight. The weights enable the agents to try to gather as many chips as possible,

while trading the chips that have a lower weight. This ensures that the agents would

not trade all their chips, but rather look for more optimal solutions. For repeated-game

scenario both chip weights and colour weights are initialized as 0, which means that the

scoring is computed only based on the initial score and the distance from the goal. This

is done because in a repeated game the agents advance one step towards the goal at each

time, handing in an appropriate chip. If such chip would have a weight then the agent

would have no incentive to hand in his chip, as it will lower his score while he is not at

the goal. Computing the score based on the initial score and the distance from the goal

is denoted in the above equation as function gi(s), which is defined as follows:

gi(s) =

Gweight if Manhattan(posi, posgoal) = 0

Dweight ·Manhattan(posi, posgoal) otherwise

(4.2)

Here, the Gweight represents the constant goal weight and Dweight is a negative con-

stant distance weight. This distance weight ensures that a player would receive a higher

score if he would advance one step towards the goal and a lower score if he would move

away from the goal, as the Manhattan distance would decrease or increase. The distance

towards the goal is computed by Manhattan distance, which only allows for movements

in horizontal and vertical direction, excluding the diagonal moves as shown in Equation

4.3. If that distance equals to 0 then the player is at the goal and will thereby receive

the goal weight. If the player is at least 1 step away from the goal then the function

gi(s) will result in the amount of steps away from the goal multiplied by the negative

distance weight.

Manhattan(posi, posgoal) =
∥∥∥posix − posgoalx

∥∥∥+
∥∥∥posiy − posgoaly

∥∥∥ (4.3)
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4.5 Moving on the Board

The agents navigate along the board using their chip sets and the scoring function.

If the colour of a neighbouring square is present in the chip set and advancing on it

yields the highest score, the agent will move onto it. If moving on a square does not

increase the score, the agent can still move onto it if that results in increase in score for

movements that will follow after. Because both case studies are performed in different

game environments, namely repeated and one-shot, movement on the board differs from

step by step to immediate route towards the goal. However, the core functionality of

the path planning method in both environments is not dissimilar. Making a decision to

advance towards the goal onto a neighbouring square, given a players’ current chip set,

is shown in the equation below.

max
n∈N

f(n) > f(pos) if ncolor ∈ Chipset (4.4)

Here, N is the set of neighbouring squares and pos represents the current position

of the player. For each neighbouring tile that result in same score, the agents repeat

the process around their neighbours. An example is shown in figure 4.1, where agent i

has four options to move onto the neighbouring tiles. Moving on tile number 2 is not

possible given agents’ i chip set, because he lacks an orange chip. Moving on tile number

1 gives the highest score among the possible movements, however other possible routes

towards the goal need to be considered as well which include tiles 3 and 4.

Figure 4.1: An example of possible movements available to agent i, given his initial
chip set. The resulting chip sets are shown below the initial chip set, for each movement
respectively. Moving onto tile 2 is not allowed because the player lacks the required

chip.
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4.6 Interaction between Agents

Depending on his role, an agent has to either make a proposal or respond to the given

proposal. In both cases the agents make decisions about which action is best to perform.

This decision making process relies on agents beliefs and the information available to

him. This information includes other players’ chip set and colours on the game board.

Subsections below describe a basic decision making mechanism when performing the

stated actions.

4.6.1 Making a proposal

When making a proposal, player i considers his model of the opponent, denoted as

j′. The model is represented as a new player that has the same position on the board

and the same chip set as agent j. This chip set can either be known, if player i has

complete information about the game, or approximated. The latter case applies to an

incomplete information game, where both agents don’t know about each others chip

sets. Using this knowledge about opponents chip set and the given board, player i can

make a prediction of both scores he and the opponent can obtain given that his proposal

is accepted. This predicted value is denoted here as Expected Value (EV). Using the

response function of the modelled player j, player i can predict whether a proposal will

be accepted or not. The precision of the prediction depends on how well player j is

modelled by player i, which in term relies on precision of the approximated chip set.

Given the current position, a prediction of the score for agent i at time t is computed

as follows:

EV i(p, c
t
i, c

t
j′) =

f i(c
t+1
i ) if Responsej′(p, c

t
i, c

t
j′) = accept,

f i(cti) otherwise,
(4.5)

where p is some proposal, ci and cj′ ∈ C are the chip sets of player i and j′ respectively.

Here C denotes all possible chip sets. The score for the given new chip set is computed

if player j′ accepts the offer, otherwise the current score is taken.

4.6.2 Responding to a proposal

Upon receiving a proposal, player j observes his own chip set and the board. If

accepting the proposal will result in the best possible score while being higher than

current score, and the requested chips are present in his chip set, player j will accept the
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proposal. Finding the best proposal is done by looking at the opponents’ approximated

chip set. If this chip set allows for a better proposal, player j will decline the current

proposal. The general response function at time t is defined as follows:

Responsej(p, c
t
i, c

t
j) =

accept if f j(ct+1
j ) > f j(ctj) and f j(ct+1

j ) > f j(cmax),

decline otherwise,

(4.6)

where cmax is a chip set containing maximum chips given the game state. This vari-

able is obtained by combining both chip sets of agents i′ and j. Using this combination

of chip sets the agent can find the best possible score. The scores are computed given

the current position of the player. Note that i′ is modelled by player j.

4.7 Finding Deceptive Moves

Changing the beliefs of a player happens through different actions. If that player

chooses to take an action that yields him a lower outcome than some other action that

was available to him before the change in his beliefs, the player can be considered as

deceived. This is only true if the player would have chosen the better action if his

beliefs were not changed. Thus in order to find out when deception occurs, some agents’

beliefs need to be inspected before and after a change occurs. However, just lowering

a players’ beliefs does not necessarily mean that deception has occurred. If that player

happens to have incorrect beliefs about the game state, correcting them by decreasing

his options would not be considered a deceptive move. Similarly if that player would

have chosen a lesser action in the first place, regardless of the change in his beliefs, then

no deception has occurred. This means that besides looking at a players’ beliefs, in

order to find deceptive moves one also needs to know the intentions of that player as

well. The models for recognizing deception in one-shot and repeated games are shown

in chapters 5 and 6.

4.8 Finding Cooperative Moves

Because this is a mixed-motive setting, cooperation besides competition between the

agents is expected. This is because the agents adjust their strategies based on the en-

vironment and the behaviour of the opponent. Recognizing cooperation is done in a

similar way as recognizing deception. Having better options to chose from than initially
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known can be the result of a cooperative action. An action is cooperative if it results

in both players gaining a higher outcome. This happens when a player changes his

trading partners beliefs in such way that it benefits both players. By cooperating with

each other through bargaining the game essentially becomes a multi-objective maximiza-

tion problem, with variable objective weights depending on the orders of ToM and the

adaptability of the agents. However some situations may arise where cooperation can

be followed by deception. This happens when the deceiver first wants to increase the

overall maximum scores and subsequently take the largest piece for himself. The models

for recognizing cooperation in one-shot and repeated games are shown in chapters 5 and

6.



Chapter 5

Case Study 1: One-Shot Games

This chapter describes the approach used for investigation of Hypothesis 1 and 2,

namely whether deceptive behaviour results in a overall higher score than cooperative

behaviour and whether first-order ToM agents with complete information in general

receive a higher score than agents with incomplete information. Investigating these

hypotheses gives further insights into deception and why an agent needs some hidden

information in order for deception to occur. Additionally, the goal of this case study is

to show how the agents communicate with each other through non-verbal mechanisms.

The environment used for this is configured as a one-shot game. Reason for choosing a

one-shot game scenario is to restrict the roles of both agents and their communication

steps, which allows for a closer investigation of their individual behaviours. Such game

scenario consists of one communication phase, where agent A makes a proposal to trade

certain chips and player B either accepts the proposal or declines it. If the proposal

is accepted then the resulting distribution of chips becomes final. The players then

approach the goal as closely as possible by handing in chips of appropriate colour that

corresponds to a tile the player steps on. The final score is computed once the players

cannot advance any further. The next sections describe the model and simulation results

for one-shot approach. Further, this approach is a stepping stone towards the next case

study described in Chapter 6.

5.1 Model

This section describes a specific model for this case study, expanding on the general

model introduced in the previous chapter. The agent i that takes the role of a deceiver

initially has access to the game board. Using information about position and the chip

set of his opponent agent i can decide to change the appearance of certain tiles in such

21
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way that it benefits him. Because the configuration of the game allows for cooperative

behaviour, allowing both agents to reach the goal, agent i can decide not to change

the tiles. However, in some cases changing the tiles results in a higher score for agent

i because he would give away less chips during the trading process. Subsequently the

information about the board that becomes available to the other agent then might be

false complete, which means that the information may appear as complete to that agent

while in reality it is not, giving him a false perception-supported belief. This splits the

game in two event sequences as described in chapter 3.4, namely effect event sequence

that is believed by agent j and method event sequence that is known to deceiving agent

i. Using their complete information about the environment, which includes own and

opponents’ chip set, the goal location and the colour of the tiles, both agents can find

shortest paths towards the goal.

5.1.1 Navigation in One-Shot Games

Before finding the shortest paths towards the goal, the chip sets of both agents are

combined. For each neighbouring tile from the initial position of the player is checked

whether the combined chip sets allow for movement onto that tile. If it does then the

tile is added to the path. This sub-path is then inserted into a priority queue[29] data

structure. Priority queue allows for finding the minimum or maximum value in O(1)

constant time and insertions and deletions in O(log n) time. This is very useful because

insertions and deletions happen often. The minimum and maximum values of a path

are determined based on the chip weights that build up that path. The path that has

a minimum value in the priority queue is taken first and the process is repeated around

the last position on that path. If a position that is added to the path equals the goal

position then the path is removed from the queue and inserted into a set of possible

paths. Similarly, if each neighbouring position around a tile is not reachable because

the agent lacks the required chips then the path is removed from the queue as it does

not lead to the goal. One step of this process is shown in figure 4.1, where the possibly

reachable neighbours are added to the partial path which in turn is inserted into the

priority queue. Using the priority queue data structure provides a sorted set of paths,

starting with a path with the least cost. The algorithm terminates when the specified

amount of paths is found. Then, for each path the needed chip set can be computed.

With this chip set the goal location can be reached. The algorithm for finding optimal

paths is shown in the Appendix section B. This algorithm essentially uses a repeated

form of the equation given in 4.4, where partial paths are ordered in the priority queue

based on the score they yield.
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5.1.2 Agents

In this case study the agents have different amount of information available to them to

show the importance of having complete information about the environment as opposed

to incomplete information. The deceiving agent i has the role of a proposer, starting

the trade process in every game. Further, he has an ability to change the appearance of

the tiles on the board before the actual game is started. The changed colour on a tile

becomes the observed colour, whereas the actual colour is hidden from the other agent

j. Having access to the actual colour information gives the agent i an advantage over

the other player. However in order to deceive the opponent, agent i needs to change the

tiles and make a proposition in such way that it does not become suspicious to agent j.

Proposition and response functions are explained in-depth in section 5.1.4.

Before proceeding to change the tiles agent i makes a model of his opponent, agent j,

based on his observation. Because agent i has information about the other players’ chip

set and position on the board, he can make a perfect representation of his opponent.

Finding the right tiles to change is done by first computing the best paths towards the

goal. These paths are the shortest paths to the goal given that a player has both chip

sets as shown in the previous subsection. Agent i then determines which chips he lacks

in order to take one of the best paths. The chips that are not needed for that path can

be used for changing the colours of tiles, here denoted as C∗. First the neighbouring

tiles N around the goal are taken, and ordered by the Manhattan distance to the goal

posgoal:

∀n ∈ Ngoal, Ngoal′ = OrderBy( min
n∈Ngoal

∥∥∥Manhattan(posnx, pos
goal
x )

∥∥∥) (5.1)

Subsequently, for each of the given tiles a recursive Depth First Search[30] around its

neighbours is used to check which tile can be changed into a certain colour. By looking

at the response function of the modelled agent j′, agent i can determine whether his

proposal will be accepted for a newly changed board:

ChangeColour(N) =

ncolour = cl ∗ ifResponsej′(p, ci, cj′) = true

ChangeColour(Nn′) otherwise,
(5.2)

where cl∗ ∈ C∗, p is the proposal that requests the colours needed to reach the

goal and offers the colours that are not needed to player i. If the modelled player
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j′ declines the offer then the recursion starts around the ordered neighbours of the

last position. This method is an approximation of Breadth First Search, which can’t

be used in recursive functions. It results in tiles being checked first around the goal.

Using the response function of the modelled opponent, player i can find a layout of the

board and the corresponding trading chips that will yield him the best path towards the

goal, thus maximizing his score. However once a right tile is found the agent needs to

backtrack through his previous changes because some of these changes are unnecessary

for obtaining the chips needed from the opponent. This is seen in figure 5.1, where figure

5.1 A shows the state directly after a tile is found that will be used to force the opponent

into making a wrong decision and 5.1 B is the state after backtracking. The green line

in A shows the best path for player j.

Figure 5.1: Changed tiles on the board, small coloured tiles are the observed colours
and the ones behind is the actual colour. Figure A shows the conditions at the time
when the last tile is changed that will yield a desired outcome for the deceiving agent i.
Figure B shows the state after backtracking, where the pink observed colour is removed.

This shows that the tile is not relevant for the desired outcome to happen.

5.1.3 Forcing deceptive moves

While changing the tiles, agent i tries to find which additional chips he should request

in order to attain a higher score while making sure that agent j is not able to reach the

goal. The paths towards the goal computed by agent j are based on his beliefs about

the tile colours on the board. Because agent j can only observe the apparent colour of

the tiles instead of the real colour, his predicted paths can be different from the actual

paths towards the goal. Keeping that in mind agent i can find a proposal that agent

j is willing to accept. This is done by first computing the opponents shortest paths
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towards the goal, given that he has information about the real colours on the board.

Subsequently agent i adds one chip needed to take the paths to the set of chips that he

will request, if agent j has such chip in his set. Upon revealing the actual colours of the

tiles after the trade is finished, agent j might not be able to reach the goal. This shows

that agent i has a preference of deception over cooperation. However, if a game scenario

does not allow for deceptive behaviour due to an unlucky distribution of colours on the

board and chip sets, then cooperation is chosen instead. In such case the agent will try

to find a proposal that increases both agents’ scores.

5.1.4 Interaction Between Agents

In this game scenario agent i is assigned the role of proposer and j responder. Because

both agents have complete information about each others preferences through visible

chip sets only one communication step is needed. This step consists of player i making

a proposal based on the information he obtained previously when changing the colours

on the board. Responding agent j accepts the offer that strictly increases his own score,

unless the agent finds that the offer does not coincide with his beliefs about the given

board configuration.

Making a proposal

Agent i requests the chips he needs in order to take one of the best paths that resulted

through changing the tiles on the board. Similarly if there are no tiles changed the

agent looks trough best paths that he can take towards the goal. In both cases agent i

considers opponents best possible paths. Both sets of best paths are here denoted as Bi

and Bj′ for agents i and j′ respectively. The agent i then considers the chip set needed

to take the first best path Bi → cbesti and the chip set his opponent needs for his best

path Bj′ → cbestj′ . Because best path set contains ordered elements, the first element

contains the most desired path. Requesting the desired chips is done as follows:

Request(chip) if chip /∈ ci AND chip ∈ cj′ , ∀chip ∈ cbesti , ∀chip /∈ cbestj′ (5.3)

Agent i requests the chip given that he does not have it in his chip set and according

to that agents belief agent j does. Further, that chip has to occur in the chip set that

agent i needs to take the best path while not being in agents’ j best path chip set.

Offering chips to player j is done in a similar way, namely:
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Offer(chip) if chip ∈ ci AND chip /∈ cj′ , ∀chip ∈ cbestj′ ,∀chip /∈ cbesti (5.4)

Responding to a proposal

Upon receiving a proposal agent j considers the possibility that his opponent is trying

to deceive him. In order to make a decision of accepting the offer, agent j verifies the

offer and rejects it if one of the following rules does not hold:

• Offered chips cannot be empty, otherwise there is nothing for agent j to gain

from the trade.

• Requested chips need to occur in agents’ j chip set, the agent namely

cannot make a trade with chips he does not have.

• Opponent can not reach the goal without trading, otherwise this would

contradict the game mechanics where both agents are not able to reach the goal

without trading.

• Agent j can not reach the goal without trading, contradiction of game

mechanics, same as previous item

• Requested chips need to form at least one path towards the goal, out of

all paths that become available to the opponent given that the trade is accepted,

at least one need to contain all of the requested colours.

• Agent j gets a higher score after the trade is accepted, agent j cannot

accept proposals that decrease his score.

5.2 Examples

This section shows two examples of one-shot games, where the proposing agent i

initially changes the tiles. The colours on the board and the players’ chip sets are

randomly chosen, while restraining the condition that both players cannot reach the

goal by themselves.

Example 1 Consider the board layout shown in Figure 5.2 A, where agent i is the

proposer and j the responder. Both players’ respective chip sets are shown below. Here

the agents have different ways of reaching the goal by cooperating with each other, as

seen from their chips. However before a cooperative move is considered, agent i first
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Figure 5.2: Two states of the game where A is the initial board with both players’
initial distributions of chips and B is the state of the game after agent i changed the

tile. Figure B also shows the paths towards the goal as computed by both agents.

looks for solutions that will only result in himself reaching the goal. In order for the

proposal being accepted by the opponent, agent i needs to change the tiles on the board

in a strategic way. The chips that are not needed to take his best path are used to

achieve this. The agent recursively changes the tiles around the goal. After changing a

tile, agent i tries to find a proposal that agent j is willing to accept. This is done by

making proposals to the modelled agent j, which is constructed by agent i using the

information available to him. Once the proposal is accepted and the real colours on

the board are revealed the responding agent should be unable to reach the goal. If a

board configuration does not allow for such behaviour then agent i makes a cooperative

proposal, which allows for both agents to reach the goal. Figure 5.2 B shows the state of

the game after agent i found a tile to change, where the red line indicates the best path

for agent j and blue line for agent i. After the tiles are changed on the board, agent i

makes a proposal to trade chips with his trading partner.

Figure 5.3 A shows the proposal made by agent i, requesting the colour pink that

is needed to take his best path towards the goal. Note that in this case the requested

colour is also the colour the agent concealed. By offering only one white chip the agent

makes sure that agent j cannot reach the goal after the real colours on the board are

shown. If agent i would have offered two white chips in return, agent j would accept that

offer too. However then the agent would be able to take the path that goes through the

three white squares and thus reaching the goal. Similarly agent i could also reach the

goal by requesting one brown chip and offering a white in return. However in doing so
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Figure 5.3: A shows the proposal made by agent i, where the requested colour is also
the colour the agent concealed. The state in B shows the game after agent j accepted
the proposal, receiving a high perceived score and a low actual score after the real

colour on the board is revealed.

agent j would also be able to reach the goal, which would make the trade a cooperative

one.

The scores are computed after the trade is completed, as shown in Figure 5.3 B. Here

the first score shown for agent j is his perceived score, given that the changed colour

would have been the actual colour on that tile. The second score indicates the actual

score agent j received. Because agent i changed his opponents’ beliefs in such way that

it only benefits himself, it can be concluded that deception has occurred.

The alternative scenario of the above example is shown in figure 5.4, where agent i

did not have a chance to change the tiles on the board. Because now both agents have

complete information about the whole game agent i cannot make a deceptive proposal

as agent j would not accept it. So the only way to increase his score is by making a

cooperative proposal which results in both agents reaching the goal.

Example 2 The following example shows how agent i uses the changed colour to his

advantage by making what appears to be a good trade. Figure 5.5 A shows the initial

conditions of the game. Concealing the yellow tile next to the goal makes sure that

agent j now believes he needs an orange tile instead of a yellow one in order to reach the

goal. Agent i does not need a yellow chip in order to reach the goal unlike the previous

example, where the agent changed the tile colour because he needed that colour to reach

the goal while making sure his opponent could not. Here the agent changes the colour
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Figure 5.4: Alternative scenario where agent i did not change the tiles on the board.
A shows the proposal made by agent i, which is a cooperative move because it enables
agent j to reach the goal as well. The state in B shows the game after agent j accepted

the proposal and both agents received a high score.

just to make sure that his opponent cannot reach the goal. Because agent i now has to

offer an orange chip he is unable to take the most direct path towards the goal so he

considers other paths, which can be longer.

Figure 5.5: Two states of the game where A is the initial board with both players’
initial distributions of chips and B is the state of the game after agent i changed the tile.
Figure B also shows the paths towards the goal as computed by both agents. Taking a
longer path over a shorter one by concealing the appropriate colour is a deceptive move

that agent i prefers over the cooperative one
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Figure 5.6 shows proposal made by agent i, where he requests three chips in exchange

for one orange. Because this offer is not suspicious to agent j, according to the response

rules shown in 5.1.4, he will accept it. Because reaching the goal has a bigger priority

to agent j than getting a higher score than his opponent he is willing to give more

chips in return for less. If he would decline the offer then the score he would receive

is significantly less than otherwise. Note that agent i needs to propose such trade that

after the actual colours on the board are revealed there would be no new paths possible

towards the goal for agent j. Accepting the offer presented in figure 5.6 results in a

perceived score of 1200 for agent j and the score of 1400 for agent i. After revealing

the actual colours the score of agent j becomes 500 and thus he has been successfully

deceived.

Figure 5.6: Proposal made by agent i after he changed the tile on the board. Here,
the agent requests more chips than he offers. Both agents will be able to reach the goal

after the proposal is accepted, given the observable board by the agent j

Again, the alternative example where both agents cooperate is shown in figure 5.7.

Here agent i makes an almost identical proposal, however instead of offering the orange

chip he offers a yellow one. This ensures that agent j is able to reach the goal as well.

Note that in this scenario there are multiple proposals possible, one of which is requesting

one orange chip and offering two yellow chips. In doing so both agents will be able to

reach the goal, however this proposal results in a lower score than the proposal shown

above and therefore will not be chosen by agent i.
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Figure 5.7: Alternative scenario where agent i is not able to change the colours on
the board. Here the only way to reach the goal is by cooperation.

5.3 Parameters

This section describes the parameters used for running the simulations. These pa-

rameters are ordered according to their implementation functions:

Board

Dimensions of the board are chosen as 4 x 4 where 4 colours are randomly distributed

among each tile. Reason for choosing such dimensions and the amount of colours is to

reduce the computational resources. The implementation however allows for generaliza-

tion onto larger boards containing more colours.

Agents

For the purpose of investigating the workings of Theory of Mind agents and interactions

between them, both agents use first-order ToM reasoning. In order to find the right

offer, a proposer needs to attribute mental content to his opponent which includes his

beliefs, goal and intentions. Using this information the proposer can adjust the board in

such way that his offer becomes attractive to his opponent. The opponent however needs

first-order reasoning too in order to form beliefs about the offer that he has received. If

the offer does not coincide with the belief about the environment and proposers’ inten-

tions, then the offer is rejected. Reasoning about proposers’ intentions implies the need

for Theory of Mind beyond the zero-order.
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Chip sets

Because the amount of colours in the game is 4, the maximum amount of a certain colour

in a chip set becomes 4 as seen in chapter 4.2. The same chip set rules still hold for

both agents, where they cannot reach the goal given their initial distributions of chips.

Scoring

Four parameters in the scoring function are defined as follows:

1. Goal weight, set to 500 to ensure that both players have incentive to move towards

the goal as it increases the score the most.

2. Distance, set to -50, the penalty a player receives for each square away from the

goal along the Manhattan distance.

3. Chip weight, set to 50 to ensure that each player will try to get the largest piece for

himself. Otherwise the players would trade all chips that they don’t need against

just a few that they need.

4. Base score, set to 500 to prevent from agents having negative scores.

The above parameters are used to run simulations for two different scenarios, namely

one where the agent i is able to change the tiles and another where he cannot change

the tiles.

5.4 Simulation Results

For the simulations a 1000 different game boards with agents’ chip sets were gen-

erated. The agents played on those boards a total of 10 times, making the amount of

runs 10000. The decision was made to use this amount of runs in order to minimize

the occurrence of coincidental outcomes that might be influential during the analysis.

The same amount of runs with same board configurations were performed on a scenario

where the proposer could not change the colours on the board, in order to compare the

performance of both agents and investigate the significance of having complete infor-

mation as opposed to incomplete information. Here the proposer is denoted by i and

responder by j. For simplicity, the game scenario where the proposer is able to change

the tiles is denoted by g1 and scenario in which both agents have the same amount of

information in which proposer could not change the tiles is denoted by g0. Table 5.1

shows the average scores and standard deviations of all runs for agents playing both

scenarios.
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f i f j σi σj
g0 1274 1265 54.3 47.1
g1 1299 1036 70.0 307.8

Table 5.1: Average scores f and standard deviations σ agents received when playing
a 1000 generated games 10 times for scenarios g0 and g1. Both scenarios use the same

1000 boards for consistency.

The results show a slight increase in score for agent i when he can change the tiles

on the board. This ability is also associated with a strong decrease in score for agent

j. For game scenario g0, where the agents are cooperating, the values of the scores lie

closely together because agent i tries to find proposals that are advantageous for both

agents. The reason for a slightly higher average score for agent i is because his ability

to make proposals that sometimes result in a higher score even when both agents reach

the goal, as seen from the last part of Example 2 in 5.2. A large difference in scores

when agents play scenario g1 can be explained by the difference in information. Because

agent i has more information about the board he can use that to his advantage and

make a proposal which might seem advantageous for an agent lacking the additional

information. The increase in score between g0 and g1 is relatively small for agent i

because when both agents cooperate they are able to reach the goal and thus receiving a

high score. In case of g1 a deceptive move is not always possible which means that agent

i has to make a cooperative move. Board configurations that do allow for deceptive

proposals to occur result in agent i reaching the goal, thus receiving equal score if he

would cooperate. However, before making a proposal the agent looks for additional

routes from his opponent towards the goal. To make sure that his opponent cannot

reach the goal in any other way after accepting the proposal, agent i requests additional

chips. Upon doing so he needs to fool agent j into thinking that he needs those chips

himself in order to reach the goal, which is done by changing more tiles on the board.

This leaves agent i with more chips and thus gaining a higher score. The average amount

of deceptions for all runs is 0.289 which means that deception occurs on average once in

three to four board configurations. Taking the difference in scores between scenarios g0

and g1 for agent i and dividing by the amount of deceptions gives an average increase

in score per deception of 85.5. Because each chip is set to have a weight of 50 in the

scoring function, agent i receives on average 1.7 chips more at each deceptive trade.

The average decrease in score per deception for agent j can be calculated in a similar

way, by taking the difference in scores for both scenarios and dividing by the amount of

deceptions. This gives an average decrease of 762.6 for each successful deception. The

reason for such large number is because when a deceptive proposal is accepted the agent

j is unable to reach the goal thus receiving a much lower score that he would otherwise.

Table 5.1 shows the standard deviations of the scores the agents received during the

simulations. For game scenario g0 the table shows that the scores are tightly spread
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around the mean where agent i has a slightly larger spread. The values in this table

correlate with the average scores obtained by the agents. The large σj value in g1

is explained by the drastic decrease in score upon a successful deception, which also

explains the value for σi where agent i receives a slightly higher score than a scenario

where no deception has happened.

5.5 Hypotheses Test

The significance of the scores between the proposer and responder is tested by per-

forming t-tests on the obtained data. The subsections below show the hypotheses tests

for both environments g0 and g1 using the two sample t test. The reason for choos-

ing parametric tests is because the information about the population and the mean of

the samples is known, which includes the set of obtained scores of the agents. Addi-

tionally the output of the scores follows a distribution, namely a maximum score that

can be obtained to a minimum score. Using these assumptions it is expected to obtain

more accurate results than using a nonparametric test, which does not assume a certain

distribution.

5.5.1 Two sample t-test for g0

The first significance hypothesis is performed on the scenario g0 where the proposer

is not able to change the tiles initially. The obtained population variances are similar

for agents i and j namely σ2i = 2949, 65 and σ2j = 2222, 88, so the t-test performed here

will assume equal variances using two tailed distribution. As seen from the box plot

in Figure 5.8 the data from each sample looks quite symmetric, meaning that a null

hypothesis H0 can be stated as follows: H0 : µi − µj = 0. This shows that there is no

difference between the scores of agents i and j. For clarification H1 : µi − µj 6= 0 is

added which denotes the significant difference between the scores.

The equation below shows the pooled variance s2 obtained from population variances

of both agents, with degrees of freedom df = 1000− 1, here denoted as n:

s2 =
(ni − 1)σ2i + (nj − 1)σ2j

(ni − 1) + (nj − 1)
=

(1000− 1) · 2949, 65 + (1000− 1) · 2222, 88

(1000− 1) + (1000− 1)
= 2586, 29

(5.5)
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Figure 5.8: Box plot of scores the proposer and responder obtained playing scenario
g0 where no tiles were changed initially

Standard deviation of both sets is obtained from pooled variance as follows: σ =
√

2586, 3 = 50, 9. Now the t value is obtained by using the pooled variance, the means

and the df :

t =
(x̄i − x̄j)− (µ̄i − µ̄j)

s2
√

1
ni

+ 1
nj

=
(1274, 45− 1264, 65)− 0

2586, 29
√

1
1000 + 1

1000

= 0, 085 (5.6)

Taking the alpha level 0,05 (5%) with sample size of 1000 the obtained t-value from

the t-value table is 1,962. Using statistical software the p-value can be obtained from

the t-value obtained above. The p-value is 0, 93 > 0, 05 and t-value 0, 085 < 1, 962, so
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we accept the null hypothesis H0 and thus conclude that there is no significant difference

between the scores obtained by agents i and j for game scenario g0.

Note that the above approach considers equal variances. Because the variances of both

samples are not quite equal another method can be used, namely the t-test with un-

equal variances. The equation is shown below, which does not consider pooled variance

anymore but only the individual variances:

t =
(x̄i − x̄j)− (µ̄i − µ̄j)√

σ2
i
ni

+
σ2
j

nj

=
(1274, 45− 1264, 65)− 0√

2949,70
1000 + 2222,88

1000

= 4, 31 (5.7)

In order to obtain the p-value we need to approximate the degrees of freedom using

the Welch-Satterthwaite equation[31]:

n ≈

(
σ2
i
ni

+
σ2
j

nj

)2

σ4
i

n2
i

(
ni−1

) +
σ4
j

n2
j

(
nj−1

) =

(
2949,70
1000 + 2222,88

1000

)2

54, 34

10002 · 999
+

47, 14

10002 · 999

≈ 1963 (5.8)

Now the p-value obtained using the above t-value is 1, 71 · 10−5 < 0, 05 and the t-

value 4, 31 > 1, 962 so the null hypothesis H0 is rejected. Thus according to the unequal

variance t-test there is significant difference between the scores obtained by the agents.

5.5.2 Two sample t-test for g1

The following significance hypothesis is performed on the scenario g1 where the pro-

poser is able to change the tiles initially. The obtained population variances are dissimilar

for agents i and j namely σ2i = 4901, 78 and σ2j = 94744, 44, so the t-test performed

here will assume unequal variances using two tailed distribution. As seen from the

box plot in Figure 5.9 the data from each sample does not look symmetric, so we can

assume that the null hypothesis will be rejected. Again H0 can be stated as follows:

H0 : µi − µj = 0. This shows that there is no difference between the scores of agents i

and j. Also H1 : µi − µj 6= 0 denotes the significant difference between the scores.

Using the same equation as 5.7 for unequal variances, the following t value is obtained:

t =
(x̄i − x̄j)− (µ̄i − µ̄j)√

σ2
i
ni

+
σ2
j

nj

=
(1299, 15− 1044, 25)− 0√

4901,78
1000 + 94744,44

1000

= 25, 54 (5.9)

Now approximating the degrees of freedom:
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Figure 5.9: Box plot of scores the proposer and responder obtained playing scenario
g1 where tiles were changed initially by the proposing agent i

n ≈

(
σ2
i
ni

+
σ2
j

nj

)2

σ4
i

n2
i

(
ni−1

) +
σ4
j

n2
j

(
nj−1

) =
(4901,781000 + 94744,44

1000 )2

70, 04

10002 · 999
+

307, 84

10002 · 999

≈ 1102 (5.10)

Because the obtained p-value is 2, 17 · 10−113 << 0, 05 and 25, 54 > 1, 962 we can

reject the null hypothesis, as expected. This shows that there is a very significant

difference between the scores of agents i and j when playing the scenario g1.
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5.5.3 Significance Test using Pearson Correlation

To show the correlation between the scores obtained by agents a measure called

Pearson Correlation is used. A positive coefficient would indicate a positive correlation

between the agents’ scores, meaning that if one score increases the other increases with

it as well. From this value it can be shown whether the agents overall behaviour is

cooperative or deceptive, where a positive value indicates more cooperation and negative

value indicates the agents’ tendency for deception. The relevance of correlation decreases

the closer the value approaches zero. This coefficient is obtained by taking the covariance

of both scores and divide that by the product of the standard deviations. This is given

in the equation 5.11.

rij =

∑
f inf

j
n−nx̄ix̄j

(n− 1)σiσj
=

n
∑
f inf

j
n −

∑
f in
∑
f jn√

n
∑

(f in)2 − (
∑
f in)2

√
n
∑

(f jn)
2 − (

∑
f jn)

2
, (5.11)

where f in = {f i1, f i2, ..., f in} are the scores obtained by agent i and similarly f jn obtained

by agent j. Further n is the amount of observations. The resulting value is always

between −1 and 1, where values < 0 indicate a negative linear correlation and > 0

positive linear correlation and zero value indicates no correlation. Both scatter plots

representing the correlation of players’ scores in environments g0 and g1 and the linear

trendlines are shown in Figures 5.10 and 5.11 for clarification.

Using Equation 5.11 the value for environment g0 is obtained: rij = 0, 65; and for

g1 results in: rij = −0, 30. Positive Pearson correlation coefficient indicates that as

one variable increases the other increases as well, whereas a negative value indicates

that as one variable increases the other decreases. These results are consistent with the

trendlines shown in figures 5.10 and 5.11. Using the Pearson correlation coefficient the

t-value can be obtained. The equation that denotes this is shown below:

t =
rij
√
n− 2√

1− r2ij
(5.12)

Filling in the above equation gives a t-value 27, 02 for g0 and −10, 10 for g1. Taking

the alpha level 0,05 (5%) with 1000 degrees of freedom the obtained t-value from the

t-value table is 1,962. Because 27, 02 > 1, 962 and 0, 65 > 0 we can conclude that the

correlation of obtained scores by the agents playing on environments g0 is significantly

positive. For environments g1 can be shown that | − 10, 10| > 1, 962 and −10, 10 < 0

which indicates that the correlation of obtained scores is significantly negative.
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Figure 5.10: Correlation between the scores obtained by agent i and agent j playing
on environment g0

Figure 5.11: Correlation between the scores obtained by agent i and agent j playing
on environment g1

5.6 Analysis of Results

The results and statistical tests above show that the combined scores of both agents

are higher when they are playing g0 games, which can be seen in Figure 5.12. By giving
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both agents the same amount of information, the agents cooperate more often, hence

the increase in score for agent j playing scenario g0 as opposed to scenario g1. However

agent i obtains overall higher score through deception than cooperation, supporting the

expected Hypothesis 1 H1. Further, the proposing agent has some advantage over the

responder because he is the one that can make a proposal, whereas the responder can

only accept a proposal that looks acceptable even if there are better options available.

Figure 5.12: Average scores both agents i and j obtained when playing scenarios g0
and g1

When the agent i gets an opportunity to hide certain tiles to make a deceptive

proposal the standard deviation of agent j becomes very high, as seen from Figure 5.13.

This is due to the large difference in scores an agent would receive if he would reach

the goal as opposed to if he would not. The standard deviation of the scores of agent i

becomes higher as well because in such scenario the agent is able to request more chips

from his opponent than needed, sometimes resulting in relatively higher scores. The

results shown in the previous section show that an agent having more information has

an advantage over the other, supporting the expectation represented by Hypothesis 2

H2 saying that first-order ToM agents with complete information generally receive a

higher score than agents with incomplete information. However in environments where

cooperation is expected the advantage an agent has over the other is not as high as one

would expect. In this one-shot case the agents have a better chance on reaching the goal

and obtain a nearly optimal score by cooperating. While Figure 5.12 shows that agent

i obtains a higher average score when playing g1 games as opposed to g0, the standard

deviation of those scores is higher when that agent is playing g1 games. This indicates

stronger variation in obtained scores, while overall increase in average score is not as

high.
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Figure 5.13: Average scores both agents i and j obtained when playing scenarios g0
and g1

Using Pearson correlation it is shown that agents playing g0 scenarios obtain scores

that have a positive correlation, which means that as the score of one agent increases

the other agents’ score increases as well. This indicates cooperative behaviour, which

is supported by the agents’ average scores for g0. The correlation coefficient for scores

obtained by the agents playing scenarios g1, however, is negative. This shows the de-

ceptive behaviour of agent i, meaning that when that agents’ score increases the other

agents’ score decreases.

In order to explore deception more in-depth while using different orders of Theory of

Mind there needs to be more interaction between the agents during each game. This can

be done by making the game a Repeated Game, where the agents can interact multiple

times with each other during a game or a round. Because interaction should be two-sided

the responding agent needs to be able to communicate as well. This can be done by

giving the responder the ability to make a counter proposal upon receiving a proposal

from the proposer. Because of more frequent interaction both agents can start with the

same amount of information, where both of them will have incomplete information. By

communicating with each other they would be able to reveal some of the information

to each other, either true or false information. This is when cooperation and deception

will occur more clearly. By implementing different orders of Theory of Mind a better

analysis into deception in environments with incomplete information can be made. This

case study is a stepping stone towards the second case study that expands on what is

previously stated, which is described in the next chapter.



Chapter 6

Case Study 2: Repeated games

This chapter shows the second approach for investigation of deception in different

orders of Theory of Mind agents. The environment used here is configured as a repeated

game. In such game scenario the agents interact with each other through continuous

alternating offers. More frequent interaction between the agents allows for better under-

standing of the workings of ToM and how it’s used to deceive the opponent. Both agents

have incomplete information about the game, which means that none of the agents has

an advantage or any prior knowledge over the other agent initially. This incomplete

information is in the form of hidden chip sets. Unlike the previous case study, here

the agents can assume both roles of being a proposer and a responder during a single

game. This allows the agents to get a better understanding of opponents beliefs, de-

sires and intentions. While a proposer always starts the communication at each round,

the responder can make a counter proposal upon receiving a proposal. This interaction

continues until both agents have reached an agreement and the chips are exchanged or

until 20 consecutive offers have occurred without reaching an agreement. The reason

for choosing 20 is because the agents rarely come to an agreement after that amount

of continuous interactions. Both agents are then advanced one step towards the goal,

given that they have the right chips to advance onto the next tile. Then the commu-

nication phase starts again, which the initial proposer always starts. Individual scores

are computed during each advancement step and the game terminates once either one of

the players reaches the goal or once an agent didn’t move for 5 consecutive rounds. The

next sections describe the model and simulation results for repeated game approach.

42
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6.1 Model

This section shows the model used for this case study, that extends the general model

introduced in chapter 4.

6.1.1 Navigation in Repeated Games

Both repeated and one-shot game scenarios implement similar navigation techniques.

Because the agents have complete information about each others chip sets in one-shot

game, they are able to find a shortest path on the board by combining the given chip

sets. The chips that are not in their set can then be requested from the trading part-

ner. In a repeated game the agents initially don’t have any information about the other

agents’ chip set, however this information can be obtained through continuous interac-

tion. Because in repeated games the agents are advanced one step at a time towards

the goal, the neighbouring position needs to increase the score of the agent. If it does

not, then the agent has no incentive to move. Otherwise, the agent moves onto the tile

that will yield him the highest score. In some cases there are movements possible that

result in same scores. In such case the agent needs to look further into the movement

process by checking the possibly reachable tiles after the tile he is planning on moving

onto. The agents are able to look into the movement process as far as their chip set

allows. This means that an agent can find a neighbouring tile that will lead him to the

goal, given that he has the needed chips in his possession. The position of the tile that

results in the highest score will be chosen as follows:

Move(posi, c
t
i) =


n if max

n∈N
f i(n, ct+1

i ) > f i(posi, c
t
i)

posi otherwise,
(6.1)

where posi is the current position of agent i and ct+1
i is his chip set after advancing

on the neighbouring tile. If the highest scores are equal then the tile is chosen that has

the most neighbouring tiles, ensuring that the agent has the most options later on. This

navigation technique is shown in figure 4.1.

6.1.2 Predicting Own Score

Because the agents are moving towards the goal step by step over the period of the

game, they need to be able to compute their predicted scores. The agents are able to

calculate their position on the board if they were to advance as far as possible towards



Case study 2: repeated games 44

the goal given their current chip sets. This enables the agents to see further into the

game process. The way this is done is by simulating the next movement processes using

the Move function described in the previous subsection, until they cannot advance any

further. From this new position n the expected score can be obtained. By using the

score function f i(s) introduced in 4.1 and the Move function, a prediction of agents’ i

score is calculated as follows:

f(cti) =

Move(n, ct+1
i )→ f(ct+1

i ) if Move(posi, c
t
i) 6= posi

f i(posi, c
t
i) otherwise

(6.2)

Here, Move(n, ct+1
i ) → f(ct+1

i ) denotes the one step the agent makes towards the

goal followed by the above score function. The current position posi then becomes the

next position n. This recursive behaviour ensures that the agent tries to see how far he

can advance towards the goal before calculating his score. After the negotiation process

the agents adjust their expected scores based on their new distribution of chips.

6.1.3 Agents

This game scenario considers the agents to have the same amount of information

initially. The difference in information later on during a game depends on the agents’

ability to observe and reason about the game state. Initially, both agents are set to

have incomplete information about each others preferences. This is done by obscuring

their chip sets from each other. By reasoning about the possible chip sets the opponent

may have, an agent is able to make an offer that might be deceptive, cooperative or

just advantageous for himself. Forming beliefs about possible chips that the opponent

may have is achieved by interacting with each other through continuous alternate offers.

Unlike one-shot scenario, in a repeated game both agents can make offers and respond

to offers. This enables the agents to communicate their intentions through actions to

each other continuously, giving the responding agent j a better chance to communicate

with the proposer i, unlike the one-shot scenario. Whether it results in a cooperative

action or a deceptive can be seen in the changes that occur in zero-order beliefs and

expected values, more on that in sections 6.1.4 and 6.1.6.

Each trade can only include one chip that is being requested and one chip that is being

offered. The responding agent can either accept, decline or make a counter offer. In

case of the latter option, the roles of the agents are reversed. Because the agents have

no information about each others chip sets initially, the agent chooses a trade that will

yield him the highest score, not considering whether the trade will be accepted by the
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other agent. While the game progresses, the agents get a better understanding of each

others chip sets and the proposals to do a trade become more constrained.

6.1.4 Zero-Order Beliefs

Initially, the zero-order ToM (ToM0) agent needs to form beliefs about whether the

opponent will accept a certain proposal. A way of achieving this is to make a list of

possibilities about the likelihood of the opponent accepting a certain offer for each chip

set that could possibly be owned by him b(0) : C→ [0, 1], as presented by De Weerd et

al.[26] as zero-order beliefs. Building upon this idea a belief matrix is made that can be

represented for agent i as b
(0)mn
i : C → [0, 1]. Here m represents a requested chip and

n one offered chip {m,n} ∈ C, where C is the set of all colours in the game, for each

possible chip set. In this matrix each column shows the requested chip and each row

shows the offered chip. Because opponents chip set is unknown during the first steps,

the agents assign equal probabilities to each proposal. These probabilities depend on the

opponent having the requested chip in his chip set. This probability can be computed

with 1− 1
(w·h)/c+1 , where the denominator is the maximum amount of each colour in a

chip set as shown in 4.2. Given a 4×4 board of 4 colours, the probability of the opponent

having a certain chip in his chip set becomes: 1 − 1
5 = 0.8. An initial zero-order belief

matrix is shown in Table 6.1, where the letters R, G, B and Y indicate the colours red,

gree, blue and yellow that make up the game. The updated belief matrix based on

the observations of an agent and his beliefs about which chips the opponent has in his

possession is shown in Table 6.2.

R G B Y

R 0.00 0.80 0.80 0.80

G 0.80 0.00 0.80 0.80

B 0.80 0.80 0.00 0.80

Y 0.80 0.80 0.80 0.00

Table 6.1: Zero-order belief matrix of likelihoods that a certain proposal will be
accepted, as initially formed by the agent. The rows indicate a colour that the agent
requests and columns a colour that the agent is willing to offer. Because the agent has
no information about opponents’ chip set, he makes assumptions about the likelihood

of the opponent having certain chips.

Because zero-order beliefs do not depend on the mental content of others, an agent

using only these beliefs will not consider the beliefs and intents of his opponent and

will only try to increase his own score. Values in the belief matrix are updated during

interaction with other agent and the observation of the game state. If the agent believes
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that a certain chip is not present in opponents chip set then the zero-order beliefs are

updated accordingly. This means that the agent will eventually learn that if a certain

chip is not present in opponents set, the opponent will not accept a proposal that requests

that chip.

6.1.5 Beliefs about Opponents Chips

During each interaction the agents update their beliefs about the chips that are

owned by the other player, from now on named as chip set beliefs for simplicity of

naming. During the start of the game at communication round t = 0 the agent i

enumerates all possible chip sets, here denoted as Cti = C. Each agent considers that

every possible chip set might be opponents chip set where each chip set initially has a

likelihood li = 1
|Ct

i|
of being the right one, where |Cti| denotes the length of the set. The

maximum amount of each colour in a given chip set is (width·height)
|C| . The amount of chip

sets at round t = 0 that result after enumeration becomes:

|Cti| =
((w · h)

|C|
+ 1
)w·h
|C|
, (6.3)

where |C| is the amount of colours on the board, w and h are width and height

dimensions of the board respectively. The reason for adding one to the base of the

exponent is because a given chip set can contain zero values for each colour. As an

example, given a game scenario where the board is 4 × 4 consisting of 4 colours, the

amount of possible chip sets that a player can have is 54 = 625. Based on these chip set

beliefs, an agent can make assumptions about the possibility of his offer being accepted.

Subsequently the agent can also make approximations of his score given a requested or

accepted proposal.

Agents update their chip set beliefs regularly throughout the game. These update steps

are given in 6.1.8. The chip set beliefs influence the zero-order belief matrix directly.

Consider a case where two agents i and j play, where agent i has a zero-order belief

matrix as shown in Table 6.1. After an amount of interactions agent i believes that

agent j does not have a green chip in his possession, based on his chip set beliefs. He

then proceeds to update his zero-order belief matrix to include this new belief. The new

belief matrix is shown in Table 6.2.

6.1.6 Expected Values

In order to find proposals that will yield a higher score the agents compute expected

values for each colour combination of chips possible. Again, like in a zero-order belief
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R G B Y

R 0.00 0.80 0.80 0.80

G 0.00 0.00 0.00 0.00

B 0.80 0.80 0.00 0.80

Y 0.80 0.80 0.80 0.00

Table 6.2: Zero-order belief matrix after some interaction between the agents has
occurred. The agent that builds up this matrix believes that his opponent does not
have any green chips, resulting in each proposal that requests a green chip from the

opponent having a likelihood of 0.00 of being accepted

matrix, this results in a matrix of all possible trades of chips. The expected values in the

matrix correspond to the score the agent would receive after his proposal is accepted by

the opponent and the agent is advanced as far as possible towards the goal. Computing

this value requires the probability of opponent accepting the proposal, which can be

found at the same position in zero-order belief matrix. Agent i computes the expected

value EV
(0)mn
i at communication round t as follows:

EV
(0)mn
i (cti, b

(0)mn
i ) = b

(0)mn
i · f(ct+1

i ) + (1− b(0)mni ) · f(cti), (6.4)

where b
(0)mn
i is the zero-order belief likelihood corresponding to the proposed chips in

the expected value matrix and f(ct+1
i ) denotes the predicted score agent i would receive

if his trading partner would accept the proposal.

6.1.7 Interaction Between Agents

During the game both agents can assume the role of a proposer and responder,

however the one that is assigned the initial role of a proposer always starts after the

players are advanced one step towards the goal. After the initial proposer made an

offer, the responder has an opportunity to make a counter offer instead of accepting

or declining it. If that is the case then the roles of the agents are reversed for the

duration of that interaction. The above proposal and response functions are explained

more in-depth below.

Making a proposal When making an offer, the proposing agent i selects the highest

expected value in his expected value matrix. The row and column in the expected value

matrix correspond to the colours of requesting and offering chips that are chosen as a
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proposal. If the expected value matrix contains multiple highest expected values then

the agent selects one at random and makes the corresponding proposal pbesti :

Proposei(p
best
i )

R←− argmax
{m,n}∈C

EV
(0)mn
i (cti, b

(0)mn
i ) (6.5)

An example expected value matrix is shown in Table 6.3. Here the agent looks for

the highest value, which is 800. This value corresponds to the row representing a colour

that the agent should request and a column representing a colour that the agent should

offer, therefore the agent will make a proposal requesting the colour blue and offering

the colour yellow.

R G B Y

R 450.0 600.0 600.0 620.0

G 480.0 450.0 520.0 450.0

B 450.0 720.0 450.0 800.0

Y 450.0 520.0 450.0 450.0

Table 6.3: Expected value matrix as computed by an agent. Here the rows represent
the colour that the agent requests and columns represent the offered colours. The values
are the scores as predicted by the agent. The agent will choose the highest value in the

matrix when making a proposal or responding to a proposal.

Responding to a proposal Upon receiving a proposal pi, the responding agent j

determines whether his maximum expected value is higher than the score he would

receive if he were to accept the offer. The score f(ct+1
j ) that is computed by agent j if

he were to accept the given proposal pti is denoted here as pti → f(ct+1
j ). If that score

is higher than his current score and at least as high as the best expected value, then

the offer is accepted. If highest expected value is larger than the score agent j would

receive, he can make a counter offer. That means the agent j knows an offer that would

benefit him more than the current offer proposed by i. This response function is done in

a similar way as presented in the model of De Weerd et al.[26], however the agents here

consider every chip set likelihood in their chip set beliefs before making the following

response:
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Responsej(p
t
i → f(ct+1

j )) =



Proposej(p
best
j ) if EV

(0)best
j (ctj , b

(0)∗
j ) > f(ctj) and

EV
(0)best
j (ctj , b

(0)∗
j ) > pti → f(ct+1

j )

accept if pti → f(ct+1
j ) > f(ctj) and

pti → f(ct+1
j ) ≥ EV (0)best

j (ctj , b
(0)∗
j )

decline otherwise

(6.6)

In the equation above the zero-order belief b
(0)∗
j corresponds to the same position

in the expected value matrix EV best
j . The agent makes a counter proposal pbestj if he

considers that it will result in the highest score among his current score f(ctj) and the

score he would obtain if he were to accept the offer pti → f(ct+1
j ).

6.1.8 Updating Chip Set Beliefs

The chip set beliefs are updated several times at round t according to the following

rules:

• After received a proposal, the other players’ offered colour should occur at

least once in his chip set.

• After received a proposal, the requested colour by the other player cannot have

an upper bound value in his chip set.

• After a trade has been accepted, the colour that is given to the other player

needs to be present in his chip set at least once.

• After a trade has been accepted, the colour that the other player gave cannot

have an upper bound value in his chip set.

• After both players advanced towards the goal, the other player cannot have

an upper bound value of the colour where he is moved to.

• After both players advanced towards the goal, if the other player did not

move then the neighbouring colour does not occur in his chip set.

The chip set beliefs that do not meet the above requirements have a zero likelihood

of being true at round t.
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6.1.9 Updating Beliefs

Agents update their beliefs depending on the actions of the opponent and their role

in the negotiation process. The update steps are explained below for each role.

Responder After receiving a proposal, the responder makes the following updates:

• Update chip set beliefs: The beliefs of an occurrence of a certain colour in opponents

chip set are updated accoording to the rules described in 6.1.5.

• Update all zero-order beliefs: Because the chip set beliefs are updated, the beliefs

of a proposal being accepted by the opponent need to be updated as well. Using

this update the agent gains a better understanding of which offers are less likely

to be accepted, because the opponent lacks the required chips.

• Update one zero-order proposal belief: The belief likelihood of opponent accepting

exactly the same proposal that is made by him need to be lowered. This is intuitive

because if the opponent assigns a high value to the chip he requests, it is unlikely

he will accept a trade that requests this chip from him. Similarly, if the opponent

offers a certain chip, that means that he most likely does not need it.

• Update Expected Values: Updating the expected values is necessary in order to

make a response based on the beliefs that have been updated previously. This

enables the agent to make a prediction of his score early on in the negotiation.

Proposer Depending on the response the proposer received from his trading partner,

he updates his beliefs. After receiving an accept response from his trading partner, the

proposer makes the following updates:

• Update chip set beliefs: The beliefs of an occurrence of a certain colour in opponents

chip set are updated according to the rules described in 6.1.5.

• Update all proposal beliefs: Same as for the Responder because the chip set beliefs

are updated, the beliefs of a proposal being accepted need to be updated as well.

• Update one proposal belief: Lower the belief likelihood of opponent accepting a

proposal that offers the chip he just gave and requests the chip he just received.

If the offer is declined then the proposer cannot make assumptions about opponents

chip set and only one update will take place:
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• Update one proposal belief: Lower the belief likelihood of opponent accepting ex-

actly the same proposal in the future.

If the Responder can’t make a counter offer then both agents are advanced one

step towards the goal. In case of such event, both agents update their chip set beliefs

accordingly:

• Agent i update chip set beliefs: If agent j didn’t advance towards the goal, then

it means that the colours of his neighbouring squares that increase his score are

not present in his chip set.

• Agent i update chip set beliefs: If agent j did advance towards the goal, then it

means that he cannot have a maximum amount of the colour he advanced on in

his chip set.

The above update steps also hold for agent j.

6.1.10 First-Order Theory of Mind Agent

The previous subsections describe the behaviour of Zero-Order ToM agents. First-

Order ToM (ToM1) agents consider the opponent to have beliefs and intents as well. So

in addition to his zero-order proposal beliefs b(0) he also has a set of first-order beliefs

b(1). These beliefs are initially formed for each possible opponents chip set, resulting in

a list of matrices as shown in Figure 6.1. This enables a ToM1 agent to see the game

from the perspective of his opponent to a certain extent. By going through the list of

belief matrices the agent can reason about the likelihood the opponent thinks that ToM1

agent will accept a certain offer.

The amount of belief matrices in such list decreases with the chip set beliefs while

the agent gets a better understanding about opponents chip set. So the agent i considers

the possibility that the opponent j believes that the probability of him accepting the

proposal ptj = mn is b
(1)mn
i . Using his first-order beliefs a ToM1 agent can estimate the

expected values in order to predict his opponents behaviour. This is done by reasoning

about whether the opponent will accept a certain proposal. Using the ToM0 response

function, ToM1 agent can find out if the opponent will accept the offer or make a counter

offer. If he would make a counter offer then the agent compares whether the outcome

of accepting such an offer will increase his own score. A more in-depth explanation on

first order expected values is given in section 6.1.10.1 below. While still considering his

expected values which are obtained using zero-order proposal beliefs the agent makes a
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Figure 6.1: First-order ToM agent forms besides his zero-order beliefs also a set of
first-order beliefs based on his belief about opponents chip set

consideration between those and the new expected values, depending on his confidence

in the model of his opponent[26]. The next sections will expand on the above process.

6.1.10.1 First-Order Expected Values

Using his first-order beliefs b(1) a ToM1 agent is able to make predictions of his

opponents’ behaviour by using his response function. This is done by first calculating

the expected values as computed by the opponent EV
(0)
j′ . The agent does so by assuming

that each chip set cj′ ∈ Cti in his chip set beliefs could be his opponents’, each with a

certain likelihood that is being continuously updated based on his observations of the

game and interactions with the opponent. The opponent as modelled by agent i is here

denoted as j′. The agent then computes the expected value for an opponent given that a

chip set cj′ ∈ Cti. This expected value is here denoted as EV
(1)mn
i∗ . This expected value

depends strongly on the response that the modelled agent j′ makes which is based on

his chip set cj′ , expected value EV
(0)
j′ and the proposal pti. For each possible proposal

the ToM1 agent i computes the expected value as follows:

EV
(1)mn
i∗ (pti, EV

(0)
j′ , cj′) =


f(ct+1

i ) if Responsej′(p
t
i → f(ct+1

j′ )) = accept

f(cti) if Responsej′(p
t
i → f(ct+1

j′ )) = decline

max {pt+1
j′ → f(ct+1

i ), f(cti)} otherwise,

(6.7)
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where pti → f(ct+1
j′ ) denotes the score agent j′ would receive given the proposal pti

and pt+1
j′ → f(ct+1

i ) is the score agent i would receive if he would accept the counter

proposal pt+1
j′ made by agent j′. Note the max function in the above equation, which

allows the agent i to compare the score he would receive with his current score. The

above equation shows that a ToM1 agent is able to make predictions about the future

behaviour of his trading partner by using the response function of the modelled agent

j′. Applying the above function to each chip set in the agents’ chip set beliefs Cti results

in a list of expected value matrices that are based on each separate possible chip set.

Taking the average of those matrices gives an estimated expected value matrix EV
(1)
i∗∗

given the agents chip set beliefs.

Although using the above obtained expected value implies first-order theory of mind

reasoning, the ToM1 agent considers the possibility that his first-order beliefs b(1) may

be incorrect or not accurate enough to predict opponents behaviour. If this is the case

then the agent can use his zero-order beliefs instead. This is done by defining a confidence

variable v1 ∈ [0, 1] that shows the confidence the agent has in his first-order theory of

mind predictions of scores. The agent computes weighted expected values based on his

confidence between his zero-order expected values and the estimated expected values

given his chip set beliefs as follows:

EV
(1)mn
i (b

(0)mn
i , b

(1)mn
i ,Cti, v1) = v1 · EV (1)mn

i∗∗ + (1− v1) · EV (0)mn
i (6.8)

Because the agents update their beliefs continuously throughout the game, for ex-

ample upon receiving a proposal, a ToM1 agent takes such actions into account. Before

making a proposal the agent first simulates the updates his trading partner would do

if he would receive that proposal. This allows the agent to reason about what the

other agent would do when receiving different proposals. The next subsection describes

additional updates that are made by a ToM1 agent.

6.1.10.2 Updating Beliefs

A ToM1 agent makes the same updates as a ToM0 agent would, however such agent

is also capable in updating his first-order beliefs. These beliefs are updated at the same

time when the opponents belief updates occur.

When updating his chip set beliefs, the ToM1 agent first uses his zero-order update

method in order to decrease the amount of chip sets that could possibly be opponents’.

Subsequently the agent then computes the expected value the opponent would get given

a possible chip set. If the best expected value, given this chip set, is higher than proposers

expected value then the likelihood of this chip set being the right one is lower. If there



Case study 2: repeated games 54

is a chip set that yields the opponent the highest expected value given his proposal,

then the likelihood of it being the right one is higher. Because there exist multiple chip

sets that yield the highest expected value for a certain proposal, multiple continuous

interactions are needed in order to narrow down the search space.

6.1.10.3 Updating Confidence

The confidence variable vk is updated after chip set beliefs are updated, upon receiv-

ing a proposal. The agent looks for each chip set that he assigns a belief likelihood higher

than 0, whether the proposal yields the highest expected value. Possible opponents’ chip

sets that will yield the highest expected value given that the proposal is accepted in-

crease the confidence in the model. This confidence increases with the accuracy of such

possible chip sets. Some possible chip sets yield a lower expected value than a best

expected value, given some proposal. Such chip sets do not increase the confidence as

much, however still by some degree. This confidence variable allows an agent to get an

idea about how well the order of Theory of Mind he is reasoning at fits the opponents’

behaviour. The rate at which the agents update their confidence is also influenced by

a learning speed parameter λ ∈ {0, .., 1}. This constant parameter regulates how fast

the agent adapts to the opponents behaviour. The value of learning speed is left at 0, 5

throughout the research. The model for confidence is given by 6.9, where j′ is one of

the possible models for agent j believed by agent i and lj′ is the belief likelihood of a

certain chip set cj′ being the right one.

vk = (1− λ) · vk + λ ·
∑
cj′∈Ct

i

lj′ ·
EV

(k)mn
j′ (cj′ , b

(k)mn
j′ )

maxEV
(k)
j′ (cj′ , b

(k)
j′ )

(6.9)

Here mn indicate the proposal made by agent j and k represents the order of Theory

of Mind the agent updating his confidence in.

6.1.11 Measuring the Occurrence of Deception

Because this case study depends on the emergence of deceptive behaviour in agents

through continuous play, a measure that captures such behaviour needs to be defined.

Here change in a players’ belief can occur in two different forms, both of which influence

his behaviour. However in order for successful deception to occur, both changes in an

agents’ beliefs need to occur where one follows from the other. The first measure relies on

the changes occurring in an agents’ chip set beliefs Ct. Such agent would be considered

as deceived if he fails to approximate his opponents’ chip set leading to a lower expected
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value. This could happen through different combinations of proposals that will make

the agent believe that a certain chip could not possibly be contained in his opponents’

chip set. By looking at the list representing the chip set beliefs of an agent prior to

communication step and after, a comparison of both lists can be made while searching

whether the actual opponents’ chip set is occurring within those lists. If the chip set is

not inside the list then the beliefs of that agent are successfully changed.

The second measure looks for changes occurring in agents’ expected value matrices. The

best expected values of both agents are determined prior to the communication step and

are compared to the values after the communication. If an agent would attain a higher

expected value after the communication step than before, while his opponent has a lower

value than before because of the change that has occurred in his chip set beliefs, then it

can be considered that some deceptive behaviour has occurred. Similarly because of that

change in his chip set beliefs the agent will choose a different action from his expected

value matrix than he otherwise would, resulting in a successful deception. A diagram

representing the above described process is shown in Figure 6.2 for clarification. Here

agent i deceives agent j by changing that agents’ beliefs about his chip set after the

communication step. Because of the changed chip set beliefs agent j now computes his

best expected value, which is lower than before.

Combining both measures as explained above makes sure that the changes that oc-

cur in an agents’ expected value matrix did not happen because of incorrect information

that is being corrected. Note that an agent does not necessarily have to win the game

in order for deception to occur, or an opponent that is deceived does not necessarily lose

the game as some incorrect beliefs only force an agent to look for alternative moves.

Cooperative moves are being measured using the same idea as the second measure de-

scribed above. The difference with cooperative moves is the best expected values of both

agents need to be either higher or lower than before the communication step. Once both

values increase or decrease at the same time it can be considered a cooperative move,

because the agents are agreeing on some middle-ground and choosing for lower scores or

both agents are working together to obtain the highest values possible.

6.2 Examples

The following paragraphs show two examples of repeated games played by a propos-

ing agent i and responding agent j. First example shows how both agents are using

zero-order ToM in order to make and respond to proposals, and try to reach the goal.

Second example shows a first-order ToM agent i playing against a first-order ToM agent

j. In both cases either cooperation or deception is expected, however which one cannot
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Figure 6.2: Diagram showing the beliefs of the agents before and after communication.
Here agent i successfully deceives agent j

be predicted in advance. This is because it depends on multiple factors such as the

distribution of colours on the board, distribution of chips both players own and the

proposals and responses both agents make. Both scenarios are configured in such way

that the players cannot reach the goal without trading, and there are enough chips to

make sure both agents reach the goal simultaneously if they are willing to cooperate.

Example 1 Consider the board layout shown in Figure 6.3 A, where agent i is the

proposer and agent j is the responder. Both agents cannot view each others’ chip sets

and therefore assume initially that every possible distribution of chips C has a chance

of being opponents’ set. Using this assumption both agents are able to construct their

zero-order belief matrix as shown in 6.1.4. Initially, this matrix contains only values of

0,8 as explained in that section. Using the obtained values representing the likelihoods

that certain proposals will be accepted the agents compute their expected values. Those

values represent the score as predicted by the agents, in the form of a matrix. The

method the agents use to compute expected values is shown in 6.1.6. The resulting

expected value matrix for both agents is shown in Figure 6.3 B. The matrix created by
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Figure 6.3: Figure A shows the initial board layout with both players’ initial chip
sets. Figure B shows both expected value matrices that agents i and j computed. Here
the rows represent the colours the agent requests and columns represent the colours the

agent offers.

agent i shows that the agent predicts a score of 890 if he would request any colour while

offering purple or orange. By looking at figure A it can be seen that agent i is able to

reach the goal if he would receive one chip of a colour other than purple. The reason for

the zero values along the purple column in the matrix created by j is because the agent

cannot offer any purple chips as they are not in his chip set.

Agent i then randomly selects the best expected value from his matrix and makes a

matching proposal as shown in Figure 6.4 A. In his proposal agent i requests an orange

and offers a purple chip, which has the highest expected value in the matrix of agent

j. This can be seen by reversing the proposal, resulting in a request for a purple chip

and offer of an orange chip by agent j. The matching value in his matrix is 440, which

is the highest in his matrix, and thus agent j accepts the offer. This can be seen in

6.4 B, where the agents completed the exchange and are advanced one step towards the

goal along their respective shortest paths and obtaining a score of 300. Before and after

the exchange both agents update their zero-order beliefs and their expected values. The

changed matrices after the agents are advanced are shown in Figure 6.5. Here agent i is

sure that he will reach the goal if he does not give away his green and cyan chip, whereas

the agent j does not believe he will reach the goal if he is going to trade any chips but

orange. By looking at the Figure 6.4 B it can be confirmed that agent j needs all but

orange chips to reach the goal. Because agent i has offered a purple chip during the

first communication round, agent j now believes that purple chips are less important
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Figure 6.4: Figure A shows the proposal made by agent i, which results in the highest
expected value. Figure B shows the game state after agent j accepted the proposal,

where after the agents are advanced one step towards the goal

for his opponent and raises his first-order beliefs about the purple chips. This is why

agent j predicts a score of 1000 if he would request a purple chip and offer an orange

one, whereas trading a green or cyan against orange gives a lower predicted score.

Figure 6.5: This figure shows the expected value matrix EV (0) and zero-order belief
matrix b(0) for both agents i and j after the first interaction step is completed and the

agents are advanced one step towards the goal.
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During the second communication phase agent i again selects randomly the highest

expected value in his matrix, which happens to be in this case request green and offer

purple. The corresponding value in agents’ j matrix is 450, which is not the highest

value. This agent then responds to the proposal by making a proposal himself, this is

shown in Figure 6.6 A. In the same way as his opponent, agent j looks for the highest

expected value in his matrix and makes the proposal. Because accepting this proposal

will yield agent i a lower expected value, he declines the offer and both agents are

advanced towards the goal, as seen from Figure 6.6 B. The expected value and first-

order belief matrices after this communication step are shown in Figure 6.7 for both

agents. While interacting with each other both agents reveal more information about

their chip sets to each other. Beliefs about chip sets influence the values in the zero-order

belief matrix, lowering the value if the agent believes that his opponent does not have

the needed chip in his possession and vice versa, as explained in 6.1.5.

Figure 6.6: Figure A shows the counter proposal made by agent j as a response to
the proposal initiated by agent i. Figure B shows the game after agent i declined the

counter proposal.

In this example both agents reach the goal simultaneously and get a score of 1000.

Because both agents use zero-order ToM it was expected to be a cooperative game

because the agents cannot reason about each others mental content such as beliefs. This

means that both agents are trying to maximize their own scores, without taking the

other agents’ preferences into account. This results in continuous negotiation until both

agents reach some agreement, not very unlike Multi-Objective Optimization[32]. The

next example shows the same game, however it is played by a first-order ToM proposing

agent i and zero-order ToM responding agent j.
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Figure 6.7: Both expected value matrices show that the agents are confident in reach-
ing the goal. The belief matrices after some communication steps show how sure the
agents are that a certain proposal will be accepted by the opponent. More interaction

with each other increases the accuracy.

Figure 6.8: Figure A shows the proposal made by agent i. While both agents do
not need those additional chips they still agree on the exchange. This is because the
chips do not lower their best expected values. Figure B shows the game after agent j

accepted the proposal.

Example 2 This example shows the difference in reasoning between a zero-order and

first-order ToM agents. The environment for this example is the same as in the previous
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example, to be able to see the difference in behaviour more clearly. During the first

interaction steps the ToM1 agent reasons at a zero-order level because he does not have

any information about his opponent yet. This means that the first interaction step is

similar to the one shown in the previous example. For simplicity the whole game scenario

is given in Figure 6.9, where the red numbers indicate the game state at time t.

Figure 6.9: The entire game process, where agent i is a ToM1 agent and j is ToM0.
Agent i only makes an initial proposal, which is accepted by the agent j, after that all

counter proposals are declined.

During the first interaction step the ToM1 agent i forms the same beliefs and expected

value matrices as if he were a ToM0 agent. After second step the agent has some more

information about agents’ j chip set, namely he has to have at least one orange chip in

his chip set. Agent i now sets the likelihoods of chip sets that have zero orange chips to

0.0 in his chip set beliefs. From this observation the agent updates his first-order belief

matrix and thereby also his expected value matrix. With the increasing confidence in

his first-order model, the agent now computes his first-order expected value matrix. The

matrices after the second communication step are given by Figure 6.10.

Note that even though agent i has won the game, deception has not occurred. The

reason why the agent won the game is because in this situation he was able to look further

into the communication process. After the initial trade agent i only requested the chips
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Figure 6.10: First-order expected value matrix and first-order belief matrix as com-
puted by agent i after communication step 2. Both zero-order matrices of agent j are

also given.

that would be declined by agent j, because by then he had enough chips to reach the

goal. In cases such as this example, where interaction between agents is minimal, ToM1

agents are unable to model the other agents’ behaviour precisely because of the lack of

information about that agents’ chip set. This leads to a larger focus on his zero-order

beliefs, as the confidence in his first-order model does not exceed 0.5

6.3 Parameters

This section describes the parameters used for running the simulations. The param-

eters that influence the general setting of the game are kept the same as those that were

used in the previous case study:

Board

Dimensions of the board are chosen as 4 x 4 where 4 colours are randomly distributed

among each tile. Reason for choosing such dimensions and the amount of colours is

again to reduce the computational resources. Because in a repeated game the agents

have to make calculations at each round it is expected that this scenario is more com-

putationally expensive than the one shot game.

Agents

In order to investigate the occurrence of deception in agents using Theory of Mind, both

agents are allowed to reason on different orders of ToM. The simulations are run with

zero-order, first-order and second-order ToM agents, using every combination on the

responder and proposer. This enables for investigation of the agents behaviours when

presented different orders of ToM opponents.
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Because both agents have the same amount of information where some of it is unknown,

they need to interact more often with each other in order to form beliefs about that

information. This is done by giving the responder the ability to make a counter offer.

The agents are allowed to make a series of counter offers until they come to an agree-

ment and are advanced one step towards the goal. Subsequently the negotiation process

starts again and the proposer makes his new proposal. Over the course of the game the

proposer will make in general more offers than the responder. Research into negotiation

shows that the opening bid of a negotiation process is important for the outcome, where

the person that makes the initial offer has a disadvantage over the other[33][34]. Keeping

that in mind, simulations are also run with the roles of the agents reversed.

Chip sets

The parameters for agents’ chip sets are the same as in the previous case study, where

the maximum amount of a certain colour in a chip set is 4 as seen in chapter 4.2. The

same chip set rules still hold for both agents, where they cannot reach the goal given

their initial distributions of chips.

Scoring

Four parameters in the scoring function are defined as follows:

1. Goal weight, set to 500 to ensure that both players have incentive to move towards

the goal as it increases the score the most.

2. Distance, set to -50, the penalty a player receives for each square away from the

goal along the Manhattan distance.

3. Chip weight, set to 0 to ensure that each player will try to advance towards the

goal at each turn. If the chip weight would have been set to a positive number

the agents would have no incentive to move towards the goal when lacking the

information about opponents chip set and his behaviour. This is because the only

way to gain a higher score is by reaching the goal, which cannot be predicted with

certainty.

4. Base score, set to 500 to prevent from agents having negative scores. Because the

agents are playing on a 4 x 4 board, the distance from an agent to the goal cannot

exceed 5 steps. This means that the agents start with a minimum score of 250 and

upon reaching the goal the agents would receive a total score of 1000.

6.4 Simulation Results

Simulations for this case study were performed using pairs of different orders of

Theory of Mind agents. These pairs are as follows:
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• Zero-order proposer i against zero-order responder j: i0 - j0.

• First-order proposer i against zero-order responder j: i1 - j0.

• Zero-order proposer i against first-order responder j: i0 - j1.

• First-order proposer i against first-order responder j: i1 - j1.

Because the agent that makes the initial offers has a disadvantage by revealing more

information about his chip set, the above simulations are also run with the roles reversed

as mentioned in section 6.3. This will make the agent i the responder and agent j the

proposer.

Similar to the previous case study a 1000 different game boards were generated where

the agents played on a total of 10 times for each board. These runs were performed

for every scenario, with the same 1000 boards, in order to make relevant comparison of

the outcomes. Playing on the same board multiple times sometimes result in different

outcomes because the agents make a random decision when choosing between actions

that result in equal expected scores. This means that in order to make relevant analysis

there need to be as many alternative outcomes as possible. The measures consisted of the

scores the agents received, amount of deceptions each agent has made and the amount of

cooperative actions. These metrics allow for comparison of agents’ performances using

different orders of ToM and to show the differences between the roles of the agents.

Table 6.4 shows the average scores and standard deviations over all runs for agents

using different orders theory of mind and with their roles reversed.

f i f j σi σj
i0 - j0 771.2 781.8 291.6 285.8

i1 - j0 766.0 774.5 293.6 287.7

i0 - j1 764.1 772.7 293.2 288.7

i1 - j1 755.0 764.4 296.0 290.4

Rev i0 - j0 781.0 770.3 289.4 288.4

Rev i1 - j0 775.8 764.2 291.7 289.8

Rev i0 - j1 771.4 762.8 292.1 290.9

Rev i1 - j1 766.0 757.1 294.1 292.7

Table 6.4: Average scores f and standard deviations σ agents received when playing a
1000 generated games 10 times for different combinations of orders of Theory of mind.

All scenarios use the same 1000 boards for consistency.

The results show that the responding agent j always has a higher score than the

proposer i. With the roles reversed the outcomes support the claim, because in that case

the agent i gets on average higher scores than agent j. This is because the proposing

agent reveals more information about his chip set than his trading partner. Having
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more information about the other agents’ chip set gives the responder the ability to

find better solutions than he otherwise would. Interestingly, even when ToM1 proposing

agent plays against a ToM0 agent he gets a lower score on average. This is mainly

because the ToM1 proposer is unable to predict the behaviour of his opponent during

the first communication as he has no information about the opponents chip set yet,

making his confidence in his first-order model 0. This results in the ToM1 agent using

his zero-order beliefs during the start of the game. Because in a lot of cases the agents

only need to trade one chip to reach the goal the ToM1 agent has no good opportunity

left to make a better trade when using his first-order beliefs. Additionally, in cases where

a ToM1 agent is able to model the behaviour of his ToM0 opponent he will make offers

that are more beneficial to his opponent, according to his beliefs, in order to prevent

him from declining the offer and thereby withdrawing from negotiations. Even though a

ToM0 agent is unable to reason about the intentions and beliefs of his trading partner,

when both ToM0 agents are playing they are often able to increase their scores through

negotiation. Surprisingly, Table 6.4 shows that the standard deviation σj of agent j is

always smaller than that of agent i, even with the roles reversed. This indicates that

the scores agent j has obtained do not vary as much as the scores of agent i, which is

surprising seen the model of agent j is identical to agent i. The standard deviation values

show that dispersion in the set of obtained scores increases with the increase of ToM

order. Because agents using first-order ToM are continuously switching between orders

based on opponents’ behaviour and are able to deceive the opponent more often, the

eventual scores vary more. When comparing that increase in standard deviation with

the increase of deceptions for each order ToM agent as shown in Table 6.5, a noticeable

positive correlation between the two can be seen.

Both agents’ scores decrease when at least one of them has a first-order ToM reasoning

as opposed to both zero-order ToM agents. This is because a ToM1 agent tries to find

more optimal solutions for himself, increasing the amount of deceptive moves as opposed

to cooperative, as seen from Table 6.5. This behaviour is also seen in two ToM1 agents

playing against each other, resulting in lower obtained average scores for both agents

than cases where just one of the agents uses first-order ToM reasoning. Both agents’

desire to obtain the highest possible score results in a decrease in the overall obtainable

score.

There is a clear difference between the amount of cooperative and deceptive actions made

by ToM0 and ToM1 agents. Table 6.5 shows the average amount of cooperative and

deceptive moves agents i and j made for each 1000 games and rounded to the nearest

integer.

This table shows that ToM0 agents are able to cooperate with each other quite well,

while keeping a low amount of deceptive moves. The ratio between the cooperative
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i has deceived j has deceived cooperations

i0 - j0 271 293 765

i1 - j0 1026 295 1005

i0 - j1 467 951 1049

i1 - j1 1185 1054 1172

Rev i0 - j0 249 284 772

Rev i1 - j0 961 515 1065

Rev i0 - j1 283 1125 1073

Rev i1 - j1 1102 1210 1289

Table 6.5: Average amount of deceptive and cooperative actions the agents have made.
The values are averaged over 10 runs of 1000 games, rounded to the nearest integer.

actions and deceptive actions explains the differences in scores. Having more deceptive

actions than cooperative decreases the overall score of the agents. It can be seen as

having a desire to obtain the largest piece of pie resulting in a smaller pie to share. Note

that because both ToM0 agents are unable to reason about their opponents’ beliefs the

amount of deceptive actions in the above table are the result of unintentional deception.

The amount of deceptive moves increases dramatically with the introduction of a ToM1

agent, which supports the hypothesis H3 as stated in 1.3. However, deceptive behaviour

is not beneficial for agents playing in this mixed-motive setting, as seen from their scores.

This claim does not agree with the hypothesis H1 for this setting, because the results

show that cooperative behaviour results in a overall higher score.

ToM1 agents engage in negotiations more often while trying to increase their confidence

in their first-order beliefs, which explains the high amount of deceptive actions. The

table shows when two ToM1 agents play together, they are able to deceive each other

roughly equal amount of times. This observation, along with the roughly equal amount

of deceptions when two ToM0 agents play, supports the hypothesis H5 for zero-order

and first-order ToM agents.

6.5 Hypotheses Test

The significance of the scores and the amount of deceptive moves between the agents

i and j is shown in the next subsection by performing parametric tests on the obtained

data. Specifically, the tests performed are two sample z-tests assuming unequal vari-

ances, because the samples are taken from two different populations. The reason for

choosing z-test over t-test is because of the large sample sizes. For these tests the de-

grees of freedom is set on infinity because the sample size for each population is 10000,

making the t table a standard normal distribution z. Additionally, because the infor-

mation about the population is known, which includes the mean, it is expected that
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more accurate results will be obtained using a parametric test over a non-parametric

one. The first tests are performed on the set of scores obtained by the agents, followed

by the tests on the amount of deceptive moves each ToM agent has made.

Second subsection calculates Pearson correlation coefficients between deceptive and co-

operative actions, in order to see how deception correlates with cooperation, for both

agents using zero-order and first-order ToM.

6.5.1 Two sample z-tests

The first set of z-tests is performed on the agents’ scores, in order to show whether

there is significant difference. The null hypothesis H0 is stated as follows: H0 : µi = µj .

Accepting the null hypothesis implies that there is no difference in scores, meaning that

the scores could have been obtained by a random chance. Rejecting the null hypothesis

implies a significant difference in scores, H1 : µi 6= µj . The significance level for the tests

is set to α = 0.05. Table 6.6 shows the results of performed z-tests on different orders

of ToM agents.

SEi SEj z-cal z-crit p Decision

i0 - j0 2.92 2.86 -2.599 1.96 0.0094 Reject H0

i1 - j0 2.94 2.88 -2.048 1.96 0.0406 Reject H0

i0 - j1 2.93 2.89 -2.085 1.96 0.0371 Reject H0

i1 - j1 2.96 2.91 -2.279 1.96 0.0227 Reject H0

Rev i0 - j0 2.89 2.88 2.611 1.96 0.009 Reject H0

Rev i1 - j0 2.92 2.90 3.055 1.96 0.0022 Reject H0

Rev i0 - j1 2.92 2.91 2.072 1.96 0.0383 Reject H0

Rev i1 - j1 2.94 2.93 2.133 1.96 0.0329 Reject H0

Table 6.6: Table showing the results of different z-tests between the average scores
obtained by the agents, using significance level α = 0.05. SEi and SEj are the standard
errors for agents i and j respectively, z-cal is the calculated z value. For clarification

the p value approach is shown as well.

The results show a significant difference in mean scores between agents using different

orders of ToM and having different roles, resulting from rejection of the H0. In order to

see the difference in agents’ deceptive behaviour, z-tests were performed on the amount of

deceptions. Again, the null hypothesis H0 states that there is no significant difference in

the amount of deceptions when two agents are playing against each other, H0 : µi = µj .

Rejecting the null hypothesis implies significant difference. The results are shown in

Table 6.7 below.

The results show a clear difference in the amount of deceptions done by both agents,

which means that different orders of ToM deceive differently. The z values that come
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SEi SEj z-cal z-crit p Decision

i0 - j0 0.0047 0.0050 -3.32 1.96 0.0009 Reject H0

i1 - j0 0.0185 0.0055 41.373 1.96 < 0.0001 Reject H0

i0 - j1 0.0060 0.0155 -29.146 1.96 < 0.0001 Reject H0

i1 - j1 0.0176 0.0169 5.337 1.96 < 0.0001 Reject H0

Rev i0 - j0 0.0048 0.0049 -5.04 1.96 < 0.0001 Reject H0

Rev i1 - j0 0.0162 0.0064 25.646 1.96 < 0.0001 Reject H0

Rev i0 - j1 0.0051 0.0183 -44.452 1.96 < 0.0001 Reject H0

Rev i1 - j1 0.0176 0.0174 -4.386 1.96 < 0.0001 Reject H0

Table 6.7: Table showing the results of different z-tests between the amounts of
deceptive behaviours as performed by agents, using significance level α = 0.05. SEi

and SEj are the standard errors for agents i and j respectively, z-cal is the calculated
z value. For clarification the p value approach is shown as well.

the closest to the critical value are obtained with the results from scenarios where ToM0

agent i plays against ToM0 agent j and the reversed roles scenario where ToM1 agent i

plays against ToM1 agent j. This is because in both scenarios the agents are using the

same ToM order reasoning, which results in roughly equal amount of deceptive actions.

6.5.2 Significance Test using Pearson correlation

Pearson correlation is used to show the correlation between deceptive and cooperative

actions. This measure and calculation steps are described in-depth in section 5.5.3, and

will not be discussed here. In order to find how deception and cooperation correlates in

scenarios where different orders ToM agents play Colored Trails with each other, we need

to compute Pearson correlation coefficient. If this coefficient is negative then that means

that there is negative correlation between deception and cooperation, meaning that

increase in deceptive actions implies decrease in cooperative actions. The significance

of this correlation is obtained by computing the t-value using the degrees of freedom

and the correlation coefficient. The results are shown in Table 6.8, where the amount

of cooperations and deceptions is taken as average for each 1000 games. Because the

amount of observations here is the averages for each 1000 games, the df will be set on

(10 + 10) − 2 = 18. The t-values in the table show the significance of the correlation,

where red values indicate that the correlation is insignificant because it is smaller than

critical t-value 2.101 given df = 18.

The significant correlations show that in general the deceptive actions performed by

ToM0 agents correlate negatively with the cooperative actions. This means that the

agent can either deceive someone through unintentional deception resulting in less coop-

erative actions or engage in cooperative negotiation resulting in less deceptive behaviour.
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meani meanj meancoop ric rjc tic tjc
i0 - j0 270.5 293.4 765.3 -0.2772 -0.3585 -0.816 -1.086

i1 - j0 1119.4 321.8 1096.3 0.1371 -0.2116 0.392 -0.612

i0 - j1 466.5 950.8 1048.9 -0.6833 0.0151 -2.647 0.043

i1 - j1 1166.5 1036.5 1119 0.1776 0.3712 0.766 1.696

Rev i0 - j0 249.3 283.8 772.4 -0.5550 -0.3464 -1.887 -1.044

Rev i1 - j0 960.5 514.5 1064.8 0.4734 -0.6307 2.280 -3.448

Rev i0 - j1 282.5 1124.8 1072.8 -0.6006 -0.4290 -2.125 -1.343

Rev i1 - j1 1101.7 1210.3 1288.7 -0.0109 0.4636 -0.031 1.480

Table 6.8: Table showing the obtained Pearson correlation coefficients indicated by ric
for correlation between deceptive actions made by agent i and amount of cooperations
and the same for agent j, rjc. Using the coefficients the t-values are computed, showing

the significance of the correlation, where values in red are not significant enough.

Note however, the significant correlations for ToM0 agents are obtained only when play-

ing against a ToM1 agent. This might imply that if a ToM1 agent detects that he is

being deceived, he will not engage in cooperative interactions. Because cooperation is

both-sided it will decrease with the increase of deceptive behaviour. Alternatively, if a

ToM1 agent detects cooperative behaviour he will cooperate as well. This will increase

the cooperative actions and decrease the ToM0 agents’ deceptive actions.

In cases where both ToM1 agents play with each other the results do not suggest any

significant correlations, meaning that the deceptive behaviour of those agents is not

influenced by cooperation.

6.6 Analysis of Results

Results show that agents using zero-order Theory of Mind are able to obtain a higher

average score than first-order ToM agents. Even though ToM1 agents are able to nego-

tiate better, which is seen from the increase in the amount of cooperative actions, they

do not have a competitive advantage over ToM0 agents. When two ToM0 agents play,

the game becomes essentially a multi-objective optimization function[32] where both

agents are trying to increase each others score as much as possible, through negotiation.

However, with a ToM1 agent in play, the game is mixed-motive because that agents’ be-

haviour depends on the configuration of the environment and the opponents’ behaviour.

Being able to reason about opponents’ beliefs and intentions gives the ToM1 agent the

ability to predict his behaviour. This however, leaves the agent with a disadvantage,

namely the agent can predict which proposals will be declined by his trading partner.
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This means that the agent ends up having less options to choose from. Through achiev-

ing a cooperative solution the ToM1 agent gets a lower score than his ToM0 opponent.

Figure 6.11: Average amount of deceptive and cooperative actions of agents for each
1000 games.

The overall obtained scores are the lowest when two ToM1 agents negotiate. By try-

ing to predict each others’ behaviours and trying to deceive each other at the same time,

the agents often fail to reach an agreement when negotiating. By deceiving each other

the agents change each others beliefs about the chips they own, resulting in both agents

believing that they cannot reach the goal with the chips they own. This leads to both

agents terminate negotiations and not being able to reach the goal. This observation

rejects the hypothesis H4 because ToM0 agents are often able to reach an agreement

and therefore obtain a higher score, unlike ToM1 agents.

Comparing the scores the responding agent received with the proposer it can clearly be

seen that the responder has an advantage, because the overall scores are in his favour.

Reversing the roles shows the same results, where the agent that has been changed from

proposer to responder gets the highers scores. This is expected, as shown in various
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studies on negotiation [33][34] that the opening bid of a negotiation process is important

for the outcome.

Figure 6.12: Average amount of deceptive and cooperative actions of agents for each
1000 games, with roles reversed.

Figure 6.11 shows the average amount of deceptive and cooperative actions the agents

made for each 1000 games. Each chart represents a different scenario where agents’ ToM

reasoning varies. The results show that ToM1 agents are able to perform more decep-

tive actions, which confirms the hypothesis H3. Because a ToM1 agent is able to reason

about the observations the opponent makes, he can make a proposal or a response that

will change the opponents beliefs about his chip set. This strategy can be used to prevent

the opponent from asking a certain chip. The increase in deceptive behaviour is also

observed when reversing the roles of the agents. This is shown in Figure 6.12, where

ToM1 agents have a significantly higher amount of deceptions. Noticeably however,

equal orders of ToM agents are able to deceive each other roughly equally often, which

supports the hypothesis H5.
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The results of Pearson correlation tests show that agents using zero-order ToM favour

cooperative moves over deceptive. This is shown as a negative correlation coefficient.

When both ToM0 agents negotiate, the amount of cooperative actions are higher than

deceptive. This behaviour is also observed when reversing the roles of agents. In con-

trast, the ToM1 agents receive most of the time a correlation coefficient close to zero

indicating that the agents do not favour any strategy. This can be observed when two

ToM1 agents negotiate, where the amount of deceptive actions each agent performs

is roughly equal to the amount of cooperative actions. Because the agents play in a

mixed-motive environment their behaviour is dependant on the environment set up and

the behaviour of the opponent. Figures 6.13 and 6.14 show the correlations between

deception and cooperation for agents using zero-order and first-order ToM respectively.

It can be seen that ToM0 agents obtain a negative correlation between deception and

cooperation, whereas looking at the trend line for ToM1 agents it can be concluded that

there is no correlation between both values.

Figure 6.13: Correlation between a sample of deceptive and cooperative actions, as
performed by ToM0 agents. Here the x-axis represents the amount of deceptive actions

and y-axis represents the amount of cooperative actions.
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Figure 6.14: Correlation between a sample of deceptive and cooperative actions, as
performed by ToM1 agents. Here the x-axis represents the amount of deceptive actions

and y-axis represents the amount of cooperative actions.
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Discussion

The results in this study were gathered using two different methods, in the form of

one-shot and repeated games case studies. The environment used to test the hypotheses

is a multi-agent mixed-motive interaction framework that has been implemented based

on the existing framework called Colored Trails[24][35]. In this environment the agents

were able to successfully deceive each other, given the right circumstances. In one-shot

games, a first-order theory of mind agent having complete information was able to find

deceptive moves most of the time when playing against a zero-order theory of mind agent

with incomplete information. This behaviour results in the deceptive agent obtaining

much higher average score throughout multiple games. However results show that in

same environments given that both agents have the same amount of information, they

are able to cooperate with each other quite well. As a result, the average scores of both

agents do not fall far below the average score a deceiving agent obtained. This is because

in mixed-motive interaction environments cooperative behaviour is sometimes preferred

over competitive. The standard deviations of the scores both agents obtained confirm

this claim, as shown in Figure 5.13. The values are lower for both agents when they are

cooperating more often with each other, whereas the values for the deceiving agent are

much higher, indicating a larger spread in obtained scores.

The second case study narrows down onto the behaviour of both agents by allowing

frequent interaction during a single game, resulting in a repeated game scenario. Giv-

ing both agents the ability to make proposals, interact with each other more often and

decide for themselves whether to perform a cooperative or deceptive action shows inter-

esting results. Agents using zero-order theory of mind were able to obtain higher average

scores than first-order theory of mind agents. The ToM1 agents perform better when

presented some purely competitive settings as seen in multiple studies[36][37], however

this is not the case here. This is because the framework used in this study represents a

mixed-motive setting. While in competitive games the agents increase their own score
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by decreasing opponents score, in a mixed-motive game the agent might be increasing

his score as well as his opponents’. Because ToM1 agents increase their score by ne-

gotiating, a failed negotiation results in a low score. In order to prevent the failure of

negotiation the agent has to make proposals that should increase the score of his oppo-

nent, hence the ToM0 agent obtaining a higher score on average when playing against

a ToM1 agent.

Results show that agents using zero-order theory of mind are performing less deceptive

actions and more cooperative ones. As a consequence, agents that perform more decep-

tive actions during the negotiation fail to reach an agreement more often. This direct

correlation between the increase in deceptive behaviour versus the decrease in average

score can be seen in tables 6.4 and 6.5. However, the results from Table 6.5 show that

first-order theory of mind agents are able to find more deceptive actions than agents us-

ing zero-order theory of mind. This is explained by the ToM1 agents’ ability to represent

the opponents’ beliefs and intentions. Being able to predict the opponents’ behaviour

to a certain degree gives the agent the ability to explore multiple outcomes, including

the ones where the opponent fails to model the chip set of that agent correctly. Because

of those changed beliefs, the opponent then lowers his best expected values resulting in

deception.

Multiple z-tests were performed to compare the scores the agents obtained, as shown in

Table 6.6. The results showed that for every combination of theory of mind agents there

are significant differences in scores, for a significance level of 0.05 (5%). This means

that the results could not have been produced by chance, which confirms the validity of

the implementation. The same set of tests were performed on the amount of deceptions

produced by both agents, this is shown in Table 6.7. Results from those tests show that

the differences between the amount of deceptions for each agent are very significant,

where the significance level is << 0.05 (<< 5%).

The results from Pearson correlation tests show that agents using zero-order theory of

mind reasoning have a higher preference to cooperative actions as opposed to deceptive.

Table 6.8 shows that ToM0 agents get a negative Pearson correlation coefficient in all

cases, meaning that as the amount of cooperative actions increases the amount of decep-

tive decreases. This is confirmed when comparing the amount of deceptions as opposed

to cooperations when two ToM0 agents play. Interestingly first-order theory of mind

agents do not seem to have a preference for deceptive or cooperative actions, as seen

from the Pearson correlation table. While the correlation coefficients are statistically

insignificant, nearly every coefficient corresponding to the correlation between deceptive

and cooperative actions first-order ToM agents performed lies very close to zero. This

indicates that both deceptive and cooperative actions are independent from each other.
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7.1 Limitations

It should be mentioned that theory of mind reasoning in orders beyond zero is com-

putationally resource intensive. An agent having such reasoning is using a large set of

first-order beliefs besides his zero-order beliefs. It can be seen as the first-order agent

trying to consider every possible zero-order opponent. The amount of first-order beliefs

depends on the size of the game and the colours on the board. More colours on the board

implies more colours in a chip set which results in a larger amount of possible chip sets.

This results in a large amount of computation needed in order to perform updates on

such set, each time the agent makes a new observation. Additionally, a second-order

theory of mind agent would make a set representing all first-order opponents, which in

turn each represent all zero-order agents. Such implementation would result in expo-

nential increase in computation time. The process of representing the opponent can be

simplified however, reducing the time complexity of the algorithm. This is explained in

Chapter 9.
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Conclusion

The research question posed in this thesis was as follows: Under what conditions

can deception emerge in computational agents using Theory of Mind? To research such

conditions a multi-agent interaction environment named Colored Trails was built. This

framework was built based on the Colored Trails framework introduced by Grosz et

al.[13] in 2004. Here, the environment was set up as a mixed-motive setting, which

enables the agents to make a decision between a cooperative and competitive action.

Firstly, the behaviour of a first-order Theory of Mind agent was investigated, when

playing one-shot games with a zero-order ToM agent. Having complete information

about the environment, the first-order ToM agent was able to find deceptive strategies.

By using cooperation the agents obtained close to Pareto optimal solutions when both

had complete information about the environment. This is because the game becomes a

multi-objective optimization problem. However on average the deceptive agent received

a higher score than cooperative, confirming the hypothesis H2.

The next case study introduced a repeated game scenario, where the agents were able to

interact with each other more often. Because this case study focuses on emerging decep-

tive behaviour, a model of how deception and cooperation are interpreted in this setting

was built. Subsequently, simulations of games where zero-order and first-order theory of

mind agents play CT were run. Results show that although ToM1 agents were able to

deceive ToM0 agents more often, which confirms the hypothesis H3, the average scores

of ToM0 agents were higher. This observation does not support the assumption made

in hypothesis H1. Agents using zero-order ToM were able to make deceptive actions as

well, which is unintentional deception. Results show that these agents favour coopera-

tive actions over deceptive, whereas first-order ToM agents do not have a preference.

The results from simulations where two ToM0 agents negotiate showed that these agents

perform better than two ToM1 agents negotiating, because those agents favour coopera-

tion over deception. Because ToM1 agents deceive and cooperate with each other equally
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often, they fail to negotiate in some cases. These results do not confirm the hypothesis

H4, stating that equal orders of ToM play as if they were ToM0 agents. However seen

the amount of deceptive actions performed by agents of equal orders of ToM shows that

the same orders of ToM agents deceive each other roughly equally often, which confirms

the hypothesis H4.

In this study there were multiple conditions needed for deception to emerge. Using

a mixed-motive setting with agents having incomplete information gives the agents the

ability to choose their strategy based on opponents behaviour and the configuration of

the game. Results have shown that using first-order ToM agents in such environments

enables the emerging of intentional deceptive behaviour. Additionally, because this

behaviour is very dependent on the configuration of the environment and the behaviour

of the opponent, cooperative behaviour happens equally often.
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Further Work

In order to explore the emergence of deceptive behaviour more in-depth, the be-

haviour of a second-order Theory of Mind agent (ToM2) needs to be investigated. Within

the framework that has been introduced in this study, a model of such agent can be made

relatively easily. This can be achieved by expanding the current first-order ToM model,

which in turn expands the zero-order ToM model. Computing the expected value using

second-order beliefs b(2) and a new confidence variable v2 that shows the confidence of

the agent in his second-order ToM model can be implemented as follows:

EV
(2)mn
i (b

(0)mn
i , b

(1)mn
i , b

(2)mn
i , C

t

i, v
1, v2) =

v2 · EV (2)mn
i∗∗ + (1− v2) · (v1 · EV (1)mn

i∗∗ + (1− v1) · EV (0)mn
i )

Here the EV
(2)mn
i∗∗ represents the estimated expected value obtained from taking the

average of all expected values that the agent has calculated for each possible opponent,

in the same way as computing of EV
(1)mn
i∗∗ happens as explained in section 6.1.10.1.

Computing and updating such values at every observation is very computationally ex-

pensive, as mentioned in the limitations section 7.1. However the computational strain

can be decreased. Such second-order ToM agent would try to represent all possible

ToM1 opponents as a large set which in turn represent all possible ToM0 agents as a

large set. The set of all possible ToM0 agents does not need to be modelled by every

ToM1 model as created by ToM2 agent, because one set would already capture every

possible ToM0 agent. So computing and updating of such set would happen only once,

reducing the need for computational resources greatly.
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In the second case study the agents are able to negotiate with each other until they

have reached an agreement or fail to negotiate successfully. Having a constraint such

as a negotiation penalty, which can be seen as a cost that the agents have to pay every

negotiation turn, would show a better distinction in performance between ToM0 and

ToM1 agents. This penalty would force the agents to withdraw from negotiations if they

believed that the cost of negotiation outweighs the predicted score. Because a ToM1

agent would be able to predict such outcome, it is expected that his behaviour would

change accordingly. Instead of engaging in continuous negotiation, such agent would

choose his proposals is such way that he expects his opponent to not withdraw from ne-

gotiations. This means that a ToM1 agent would offer chips in such way that it increases

the opponents score by a large amount, or alternatively find better deceptive strategies

using his beliefs that represent the opponents’ tendency to withdraw from negotiations.

The implementation of a multi-agent interaction framework as described in this study

allows for investigation of interaction between agents in various other contexts. Because

this framework was built with the idea of being extensible to other research into multi-

agent interaction, this allows for various other research fields. A reason for doing this

is because the original version of Colored Trails is not available any more, as a lot of

implementation techniques are depricated. A consideration of using this framework in

the research that focuses on interaction between multiple agents is made by a post doc

Mor Vered along with Liz Sonenberg and Tim Miller from University of Melbourne. This

framework is open source for anyone that wishes to perform research into multi-agent in-

teraction and can be found at https://git.science.uu.nl/P.Homayun/DeceptiveCT.

git.

https://git.science.uu.nl/P.Homayun/DeceptiveCT.git
https://git.science.uu.nl/P.Homayun/DeceptiveCT.git
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Classes in the Framework

The following paragraphs will explain briefly the top-level classes and their functions

within the framework.

GameCreator

This class allows for creation of different games, which can be either one-shot game or

repeated game. This class can switch between the GUI representation of the game to a

console window, which is used for running multiple simulations consecutively. Generat-

ing the board, players and chip sets happen in this class. Here the set up of different

orders of ToM agents happens as well.

MakeActions

This is a static class that specializes in performing different actions such as computation

of expected values, likelihoods, enumeration of chip sets and trading. Reason for being a

static class is because there is no initialization needed for this class to perform different

actions.

GameWindow

This class implements the front-end behaviour such as drawing the state of the game

on the screen as a form object. To do that it needs to interact with different classes

such as Board, Player and ShortestPaths through initialization methods. By doing so

it gets the information needed to draw the configuration of the board on a bitmap, the

representation of the players as an SVG image on that board and show the shortest

paths towards the goal.

Board

Board class contains the implementation of different aspects of the game board. This

includes a list of colours that are being played with in the current scenario. Further the

board consists of a 2D array of Square classes that implement a real and a false colour

and whether its a goal or not. Using a 2D array gives us a constant time to lookup

a specific square. Board class has a variable amount of rows and columns that can be

accessed as read-only. The goal piece can be either accessed or set.

Player

Player class is an abstract class in order to make the code more extensible. Through this

two derived classes are implemented, namely Proposer and Responder. This class has

variables Point and Position, where the first is a position representation in pixels on the
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game board when being drawn and the second is the actual position on the board class.

A few Lists of best paths and chipsets are available to the players that can be used to

make certain choices in order to increase the score. Players have also a ChipSet which

is the amount of chips in their possession, this class will be discussed below. Further,

every player has a unique ID, which can be a name.

ShortestPaths

This is a static class that implements different methods of getting the shortest paths

towards the goal. The first method just computes a specified amount of shortest paths

toward the goal without looking at the chips that are available to the player. The second

method computes the shortest paths given a combination of chips a player owns and his

opponent. However, an empty chip set for opponent can be inserted in order to compute

shortest paths towards the goal given only the chips the player owns. FastShortestPaths

method computes a path by simply adding or subtracting the squares from the players

position until the goal is reached.

Path

Path class stores a known path as a HashSet of Position classes. Position class imple-

ments simply the row and column value and can perform calculations on neighbouring

positions. Further, Path class can perform different actions such as getting the required

chips for a certain path and check whether a position is contained within a path.

ChipSet

Chipset class implements a HashSet of Tuples of Colour and Integer. The integer corre-

sponds to the amount of chips of a certain colour a player owns. This class can perform

different actions concerning the chips such as retrieving the colours, setting number

of chips given a certain colour, adding and removing of chips, comparing chipsets and

adding two chipsets together. The latter two methods are important when calculating

a shortest path that is needed through trading with the opponent.

PathWithChips

This class simply implements the combination of the above two classes. It stores the path

with the chipset that is needed to take the path. This class is used by the ShortestPaths

class, where its being placed in a queue. By doing this the amount of calculations reduces

which in turn increases the performance.

TradeWindow

Similar to GameWindow class, this class is also a front-end form object. This class is

initialized when a player decides to trade the chips. It draws the chips offered and the

chips requested by the player. If the player is a Human, he can accept or deny the trade

by pressing the corresponding button.
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Shortest Paths Algorithm

This algorithm uses the combined chip sets of both players in order to find the best

possible paths towards the goal. Start position of the player is added to the priority

queue. From this queue the smallest element is taken. The elements in the priority queue

are ordered based on the chip weights. Then each neighbouring tile is examined. If the

neighbours’ colour is present in the chip set then that tile is added to the current path.

Subsequently this path is put into the priority queue, along with the chips left after

removing the colour of the added tile. This is done for each neighbour, which results in

multiple sub-paths in the queue. The process starting from taking the minimum value

from the queue is repeated until a specified amount of paths is found or the priority

queue is empty.

Algorithm 1 Shortest Paths Algorithm

1: combinedChips← Combine(myChips, opponentChips)

2: path.Add(start)

3: PriorityQueue.Add(path, combinedChips)

4: while NotEmpty(PriorityQueue) and counter < pathsFound do

5: pathWithChips← PriorityQueue.DeleteMin()

6: if pathWithChips.Last() == goal then

7: paths.Add(pathWithChips)

8: counter = counter + 1

9: else

10: for all neighbours do

11: if !pathWithChips.Contains(neighbour) then

12: newPathWithChips← pathWithChips

13: newPathWithChips.Add(neighbour)

14: newPathWithChips.RemoveColor(neighbour.Color)

15: PriorityQueue.Add(newPathWithChips)
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