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Abstract

The Convex String Recoloring (CSR) problem measures the Hamming
distance between a string of colored vertices to a convex string. This is a
special case of the Convex Tree Recoloring (CTR) problem, which mea-
sures the Hamming distance to a perfect phylogeny, which was popular-
ized by Moran and Snir [17]. It has been shown that even if the input
graphs are restricted to strings, the problem is still NP-complete. In 2008
Bar-Yehuda et al. came up with a dynamic programming approach the
can solve the CSR in O∗(2k) using exponential space. In this paper, it
is shown that the CSR problem can be solved in O∗(2k) time using only
polynomial space.

1 Introduction

Recoloring problems of graphs are problems that take (G,Γ, C), where G =
(V,E) is a graph and Γ : Γ(v)→ c is a coloring function that maps a vertex to
a color in C, where as few vertices as possible have to be assigned a new color
such that the resulting coloring fulfills a certain property [9]. In this thesis this
property is confined to convexity, i.e., the problem is to turn a given graph into
a convex one. Convexity is the property that for each x, y, z ∈ V : if there is a
path from x to z then it holds that if Γ(x) = Γ(z) then Γ(y) = Γ(z). So, in other
words: A coloring function Γ is convex if each color class induces a connected
subtree. One version of this problem that has been studied a lot is the Convex
Tree Recoloring Problem (CTR). Here, the input of the problem is restricted to
trees. This version was popularized by Morgan and Snir [17]. This problem is
well studied as it has important applications in evolutionary biology. A more
extensive overview of existing literature will be given in Section 1.6. Another
version of the problem, that is also the scope of this paper, is when it is assumed
that the input graph is a single path, also called a string. It has been shown
that even in this special case the problem is NP-hard [17]. A special case of
the string recoloring problem is the CSR-2. Here the graph is also a string, but
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each color occurs at most two times. Even with this restriction, the problem
is still NP-complete [12]. Another special case is the Convex Leaf Recoloring
problem in which only the colors of the leafs are known. This problem has been
popularized and been shown to also be NP-hard by Snir in his PhD thesis [20].

1.1 Definition

The problem is defined as follows:

Convex String Recoloring:
Each instance is a string of n vertices, a set of colors C, and a coloring function
Γ : V → C together with a positive integer k. The problem is then whether it
is possible to recolor at most k vertices such that the string becomes convex,
meaning that each color class induces a connected substring.

1.2 Example

1 2 3 4 5 6 7

In this example yellow is already convex. Blue could be made convex by recol-
oring all vertices in between, which would require three recolorings. A better
solution is to recolor all blue vertices, requiring only two recolorings.

1.3 Notations

In this paper, there are different cases for substrings of strings. For handy
notation, these have a different representation, as shown below:

An important concept is a block. A block is a maximal set of vertices with
the same color that induce a connected substring.

A lowercase Latin letter, e.g. yi, represents a block with a size equal or
larger than one. The i denotes which block of its color it is. So different colors
will have a different Latin letter, and different blocks of the same color will have
a different subscript.

An uppercase Latin letter, e.g. Yi, represents a single vertex. Different colors
will have a different letter, while different vertices with the same color will have
a different subscript.

A Greek letter, e.g. αi, represents a string that might contain several colors.
The subscripts are used to differentiate between different strings. This notation
is used to show that two blocks are not connected.

So as an example, assume there is a color, x, that occurs an unspecified
amount of times in consecutive order in the beginning of the string and on the
end of the string it occurs twice with some other color in between. This would
be written as:

x1α1X2y1X3
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So, it first occurs as a block, then some other colors occur and then it occurs
twice with the color y in between, that occurs an arbritary positive number of
times.

1.4 Applications

The Convex String Recoloring problem originates from the Convex Tree Recol-
oring problem, which is an algorithmic problem that has interesting applications
in biology. It is a way to reconstruct an evolutionary tree from biological data.
The resulting evolutionary tree is also called a phylogeny, which has the natural
constraints that each characteristic property has been evolved without reverse
convergent transitions. A reverse transition means that a species regains a prop-
erty that was lost by one of its ancestors. A convergent transitions means that
two different species have the same characteristic even though their most recent
common ancestor does not [17]. A phylogeny that satisfies these natural con-
straints is called a perfect phylogeny. These constraints mean that the resulting
evolutionary tree has to be convex in each characteristic. Different character-
istics can be represented by a color which means that each color has to be
convex. From the perfect phylogeny problem also arose the problem of whether
it is possible to triangulate a given colored graph such that no edges between
vertices of the same color are added. This is strongly related to the problem of
recognizing k-partial trees [7][14]. The Convex String Recoloring problem also
has some applications, as the convexity is useful in gene expressions, in which
the classification of different types of tumors [3][4]. The recoloring distance is
used to identify Tuberculose strains as well [22].

1.5 Algorithmic approaches

There are several approaches to solving this problem. Mainly the Exact ap-
proach, the Approximate approach and the Fixed Parameter Tractability ap-
proach.

1.5.1 Exact algorithms

An exact algorithm is an algorithm that solves an optimization problem to opti-
mality. If the problem is NP-hard then this cannot run in worst case polynomial
time unless P = NP . The goal of an exact algorithm is firstly to get the expo-
nential part as low as possible and secondly to get the subexponential parts as
low as possible. Kanj and Kratsch [12] give an exact algorithm that solves the

Convex String Recoloring problem in O∗(2
4n
9 ) time.

1.5.2 FPT

Instead of trying to compute the minimum number of recolorings needed, one
can wonder whether it is possible to recolor a graph to make it convex with a
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given number k of recolorings. This is a different approach to the same problem,
but changes the problem from an optimization problem to a decision problem.
More generally, given an object x, a fixed parameter tractability (FPT) problem
is defined to be solved in f(k) · |x|O(1), for some function f . The f(k) typically
stands for an exponential part that does not depend on x, but instead on some
other variable k. Background on FPT algorithms can be found in the book
Parameterized Complexity [11] or in Parameterized Algorithms [10].

1.5.3 Approximation algorithms

Approximation algorithms are algorithms that solve NP-hard optimization prob-
lems within a provable distance to the optimal solution. These algorithm are
generally much faster than other algorithms with the downside that they do not
guarantee to return an optimal solution. This is because these algorithms are
based on the conjecture that P 6= NP . Because, if P 6= NP , there are no exact
polynomial algorithms for NP-hard problems, although there are polynomial al-
gorithms for these problems that return an approximate solution. The concept
of an approximation algorithm can be formalized as follows:

A ρ-approximation algorithm A which returns the value f(x) for instance
x, is guaranteed to be not more than ρ times the optimal solution, in case of a
minimization problem, with ρ > 1. i.e.: [13]

OPT ≤ f(x) ≤ ρOPT

Another approximation method is an absolute performance guarantee de-
fined for a bounded error c: [13]

(OPT − c) ≤ f(x) ≤ (OPT + c)

In a paper by Bar-Yehuda et al. an approximation algorithm for the Con-
vex Tree Recoloring Problem was given [2]. The algorithm is an (2 + ε)-

approximation that runs in O(n2 + n 1
ε

2
4

1
ε ) time.

1.5.4 Branching

This paper uses a specialized technique called branching, sometimes called Search
Tree Pruning. Branching algorithms solve problems by recursively applying
branching rules and reduction rules, until the problem is sufficiently easy to
solve using different techniques. Branching has a natural property that each
branch can be looked at individually, so it only uses polynomial space and can
be calculated in parallel. A reduction rule takes an instance of a decision prob-
lem and modifies it such that the resulting instance returns yes if and only if the
original instance returns yes. A reduction rule is defined as safe if the following
holds: whenever a string t results from string s by applying a reduction rule x,
then string t can be made convex by using k recolorings if and only if string s
can be made convex using k recolorings. A branching step takes an instance
of a decision problem and creates sub-instances of the problem such that the
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original instance returns yes if and only if any of the sub-instances return yes.
So, for example, suppose an instance of a problem has k recolorings left, and it
could create two new problems each of which has k − 1 recolorings left. This
would be written as a (1, 1) branch as there are two branches that each bring
k down by one and would give the following recurrence:

T (k) ≤ T (k − 1) + T (k − 1)

The complexity of the example results from solving the following equation for
x:

xk = xk−1 + xk−1

This example solves for x = 2 and more generally these equations can be solved
using mathematical analysis for an exact result or by using an numerical approx-
imation. A branching step is said to have a factor c, if the resulting complexity
is O(ck). In the example this step would give a complexity of O(2k). The
complexity of a branching algorithm is equal to the maximum complexity of
all its branching steps. There is more on this in the book Fundamentals of
Algorithmics [8].

1.6 Earlier work

There has been a lot of research about the tree variant (CTR) of this problem.
It started with Moran and Snir [17] who showed that the problem is NP-hard
and gave an FPT algorithm that runs in O(k(k/ log k)kn4) time. Bar-Yehuda et
al. [2] gave a dynamic programming approach that runs in O(n2 +n ·k ·2k) time
with exponential space usage and a (2+ε)-approximation algorithm that runs in
O(n2 +n(1/ε)2 ·41/ε) time. Kanj and Kratsch [12] gave an exact algorithm that
runs in O(20.454nnO(1)) time with exponential space usage. In 2007 Razgon gave
an FPT algorithm that runs in O∗(256k) time [19]. There has also been research
into involving other variables as done by Kannan and Warnow in 1996. They
gave an algorithm that runs in O(22rk2n) time using a different notation. Here,
they use n species with k r-state characteristics [15]. This means that there
are k different amount of colors and that each vertex has at most r different
colors that are valid in the recoloring. Nederhof gave an O(2kc) time algorithm,
where k stands for the amount of terminals [18]. Terminals, here, are a subset
of all vertices. Bodlaender et al. showed that the CTR has a kernel of size
O(k2) [6] for when all vertices have unit weight. The unit weight means that
each recoloring has a cost of 1, opposed to some vertices being more expensive
to recolor than others. That result was further generalized to be true even if
vertices do not have unit weight by Bodlaender et al. [5].

The Convex String Recoloring problem has the following research done: Kanj
and Kratsch [12] gave a O(2

4n
9 nO(1)) time algorithm. Moran and Snir gave 2-

approximation algorithm for the Convex String Recoloring problem in 2007 that
runs in O(cn), where c is the number of colors and n the size of the input [21].
Because the CTR problem is a generalized version of this problem, all results
for the CTR problem also apply to the CSR problem.
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The Convex Leaf Recoloring problem has the following research done: Ba-
choore and Bodlaender showed that the CLR problem can be solved in O(4OPT )
time, where OPT stands for size of the optimal solution [1]. Kanj and Kratsch [12]
showed it can be solved in O(2

n
3 nO(1)) time.

The CSR-2 problem has the following research: Lima and Wakabayashi gave
a 2/3-approximation algorithm [16]. Kanj and Kratsch [12] gave a O(2

n
4 nO(1))

time algorithm. In this algorithm, Kanj and Kratsch introduce the notion of
long pairs, short pairs and singletons, which will be used in the algorithm (see
Lemma 11).

1.7 Polynomial memory

For the Convex String Recoloring problem there does not yet exist an algorithm
that runs in O(2k) time that uses only polynomial memory. This is significant
because in practice the problem instances can be large and memory is expen-
sive. Therefore, if an algorithm uses exponential memory it quickly becomes
unpractical to use.

1.8 Main Theorem

The main theorem of this paper is the following. The proof is given in Section
4.2.

Theorem 1 (Main Theorem). The Convex String Recoloring Problem can be
solved in O∗(2k) time and polynomial memory.

2 Preliminaries

To start, some definitions and lemmas are needed. Consider the following prob-
lem:

Convex String Removing:
Each instance is a string of n vertices, a set of colors C, and a coloring function
Γ : V → C together with a positive integer k. The problem is then whether it
is possible to remove at most k vertices such that the string becomes convex.

Lemma 1. The Convex String Removing problem is equivalent to the Convex
String Recoloring problem.

Proof. If a Convex String Recoloring problem instance returns yes, then remove
every vertex that got recolored. This would create a valid yes for this instance
of Convex String Removing problem.
If a Convex String Removing problem instance returns yes, then insert each
vertex that was removed back at its original position and give it the same color
as its nearest neighbor that was not get removed. If two such vertices are equally
far apart, then give it the same color as its left nearest neighbor that was not
removed. This way a color that is convex will always remain convex and the
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amount of recolorings will be equal to the amount of removed vertices. Therefore
this will also return a yes for this instance of Convex Recoloring problem.

So the problems are equivalent.

This is useful because of the following lemma:

Lemma 2. [Removing vertices] Instead of recoloring vertices, they can be re-
moved from the string.

Proof. Because the Convex String Recoloring problem and the Convex String
Removing problems are equivalent this will result in the same answer. This
is done by counting the removal of a single vertex as a single recoloring by
decreasing k by one. This guarantees that the amount of recolorings will not
surpass k.

What method will be used in this paper depends on whatever is convenient
for obtaining easier arguments.

An important lemma is provided by Kanj and Kratsch [12]:

Lemma 3 (Exchange Lemma [12]). Let (V,Γ) be an instance of CSR-2, and
there exists a convex recoloring of V that recolors at most k vertices. Then there
exists a convex recoloring of V that recolors at most k vertices such that each
color in the range of Γ is used at least once.

So in other words, if each color occurs at most twice then there always exists
a solution in which each color is used at least once.

Lemma 4. If a color is convex and is either on the start or on the end of the
string, then it can be removed from the instance without decreasing k.

Proof. There is never a need to recolor a convex color unless there is another
color that is not convex that occurs on both the left and the right from the
convex color. Therefore the leftmost or rightmost color will never be recolored
if it is already convex and therefore does not need to be considered and can be
removed safely.

3 Branching on each color depending on how
often it occurs

In this section a O∗(2k) time algorithm for the CSR problem will be given.
Instead of considering how often a color occurs, it is interesting to look at how
often a block of a certain color occurs. So if a color occurs ten times, but
nine of those are consecutive, then it will be considered a two block color. The
algorithm consists of a number of branches and reduction steps. For correctness
and time analysis, it is assumed that these steps are executed in the given order.
Meaning that each step is only considered when all previous steps have been
exhausted. The first step branches on all colors that occur as more than four
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blocks and each following branches step then assumes that there are no colors
that occur as more than four blocks. Finally there will only be four cases that
will describe all remaining colors that can then be reduced to only two cases
which will then be solved in Lemma 12.

3.1 First branching steps

Lemma 5. If a color occurs as at least five blocks, a branching step with factor
1.968 exists.

Proof. It can be assumed that each block has size one, as the complexity will
only decrease otherwise. If a color x occurs as five blocks, then it can be repre-
sented like this:

α1x1α2x2α3x3α4x4α5x5α6.

Here, α represents a substring that does not contain x and xi represents each
of the blocks of color x.
There are five occurrences of x and there can be branched on all recolorings
such that x is convex. For example, recoloring only x1 and x2 for some color
other than x, means that α4 and α5 have to be recolored as well, because x3,
x4 and x5 remain the same color and have to become one convex block. The
amount of ways to make a color with n blocks convex is n(n+1)

2 .
For example, if there are n vertices of color x, and all but one are recolored,

then there n different ways of doing this. If two vertices of the color x remain
uncolored, then there are n−1 ways of doing this, as the two kept vertices have
to be neighbors in order to become convex. This goes on until all vertices of
color x remain uncolored, which can only be done in one way. So in total, this is

equal to
∑n
i=1 i = n(n+1)

2 . Therefore, if a color occurs n times, there are n(n+1)
2

ways to recolor them such that the result will be convex. Each of these will use
at least n− 1 recolorings, because the vertices of color x that are not recolored
are separated by other vertices that will have to be recolored to make x a convex
string. Instead of considering which color they get, the vertices can be removed
from the string, as per Lemma 2. Therefore, the complexity of branching on a
color that occurs n times will be O(bk), for the value of b for which the following
equation is true:

bk = (
n(n+ 1)

2

1
n−1

)k

For n = 5, 5(5+1)
2

1
5−1

= 15
1
4 ≈ 1.968. So solving the equation results in a

complexity of O(1.968k). This function is a monotone decreasing function, so
the complexity will decrease as n increases. So each color that occurs more than
four times has a branching step with factor 2. However, this also means that
each color that occurs as less than five blocks will result in a branching factor
higher than 2.

Lemma 6. If a color occurs as exactly four blocks, then a branching step with
factor 2 exists.
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Proof. This case can be represented as follows:

α1x1α2x2α3x3α4x4α5

If the algorithm would naively branch on all possibilities this gives:

xk = 10xk−3

This solves for x ≈ 2.15. This can be improved using another method. This
method is to branch on a color without actually making it convex, such that it
can be solved more efficiently by another branching step later on. This means
that, instead of branching on all ways a certain color can be made convex, some
branches can be grouped together. If there are several branches that recolor
one certain vertex, then only recoloring that vertex could become a new branch
that replaces those other branches. This new branch uses less recolorings than
the old ones, but it can replace several branches. This creates a tradeoff as
it decreases the quality of a single branch, but it decreases the total amount
of branches. By carefully choosing branches that can be merged, the overall
complexity can be improved.

In this case by only recoloring x1 and x2 but not α4, or only recoloring x3
and x4 but not α2. This means that there does not need to be branched on any
other recoloring that recolors both x1 and x2 or both x3 and x4. There will still
need to be branched as normal on the recoloring that retains x1, x2 and x3, on
the recoloring that retains x2, x3 and x4, on the recoloring that retains x2 and
x3, and finally on the recoloring that retains all xs. These are all the cases in
which x2 and x3 are both retained, but in these four cases the string will be
made convex so they will cost three recolorings each. The complexity will then
become:

xk = 4xk−3 + 2xk−2

This equation solves for x = 2, so a branching step with factor 2 exists.

Lemma 7. Suppose x is a color that occurs as three blocks, represented as:
α1x1α2x2α3x3α4. If x1, α2, α3, or x3 has size larger than one, a branching step
with factor 2 exists.

Proof. There are six ways to make this string convex, by recolorings these:
Either x2 and x3, or x1 and x3, or x1 and x2, or α2 and x3, or x1 and α3, or
α2 and α3. Branching on these would give a branching step with factor 2.45...,
which can be improved with a case analysis.

Case A: (|α2| > 1 or |α3| > 1):
First suppose α2 has size two: Instead of branching on all six possibilities, x1
can be recolored such that x only occurs as two blocks which can be branched
on more efficiently. This is done later on by a different branching step. From
the remaining three branches in which x1 is not recolored, two of them recolor

9



α2. This will give a (1, 2, 3, 3) branch, which solves for x = 2 so gives a branch-
ing step with factor 2. If α2 has size larger than two, the complexity will only
improve. Because of symmetry, the proof in the Case that α3 is larger than one
is identical.

Case B: (|x1| > 1 or |x3| > 1):
First suppose x1 has size two:: Then the same technique as in Case 1 can be
used. Branching on recoloring x3 and on all branches in which x3 is retained
gives a (1, 2, 3, 3) branch which has a branching step with factor 2. Because of
symmetry, the proof in the case that x3 is larger than 1 is identical.

So, from now on, it can be assumed that for each color x that appears as
three blocks, represented as α1x1α2x2α3x3α4, each of x1, x3, α2 and α3 all have
size one. About the size of x2 no assumptions can be made.

Lemma 8. A color x that occurs as two blocks, written as: x1α2x2: if two of
x1, α2, or x2 have size larger than 1, a branching step with factor 2 exists.

Proof. If two of the blocks x1, α2 or x2 have a size larger than 1, then it can be
branched on and give at least a (2, 2, 1) branch, which is a branching step with
factor 2. So after this branching step, if a color x occurs as two blocks, only one
of x1, α2 or x3 can have a size larger than 1.

3.2 The Remaining Cases

After branching, each instance now only contains colors that occur as one of the
following cases:

Case 1: a single block color, a color that occurs as one block.

This is already convex. All the colors that have already been made convex
also belong to this case.

Case 2: a color occurring as two blocks, each of size 1, but with
no limit on the amount of vertices in between.

This case can be written as X1α1X2. This is the first use of a capital let-
ter as explained in Section 1.3. A capital letter Xi represents a single vertex
with color x. In the picture below the color x is shown as yellow.

x1 a1 b1 c1 d1 d2 x2

Case 3: a color occurring as two blocks, with only one vertex in
between them and one of the two blocks having a size equal to 1 and
the other having a size higher or equal to 1.
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This can be written as X1α1x2. This could also be x1α1X2, but these are
symmetrically equivalent and therefore treated as the same case.

x1 x2 x3 x4 x5 y1 x6

Case 4: a color occurring as three blocks

This can be represented as X1Y1x2Z1X3. Because of Lemma 7, this is the
only way a color can occur as three blocks. This substring consists of only
blocks of size 1. Note that Y1 and Z1 can be of the same color or of different
colors.

x1 y1 x2 x3 x4 z1 x5

4 Reduction Rules

It will now be shown how Cases 3 and 4 can be transformed to Case 1 or 2 using
reduction rules, after which only Cases 1 and 2 remain. With only those two
cases left, the proof can be finished using a final branching rule.
The following sections all contain proof by contradiction, some of these will use
the knowledge that if a vertex Y has not been recolored in an optimal solution,
then there cannot be another color that occurs both on the left and the right of
Y . Whenever it is not specified to which color a vertex is recolored, it can be
assumed that is got removed. This will make the proof easier and is still correct
according to Lemma 2.

Reduction Rule 1. Suppose a color x occurs as Case 4, X1Y1x2Z1X3 or
X1Y1x2Y2X3, then Y1 can be recolored.

Lemma 9. Reduction Rule 1 is safe.

Proof. Start with X1Y1x2Z1X3. The goal of this proof is to show that any op-
timal solution can be changed such that it remains optimal, but Y1 has been
recolored. Because it then follows that Y1 can be recolored without excluding
all optimal solutions. So in other words, showing that there exists at least one
optimal solution in which Y1 is recolored, guarantees that it is safe to recolor Y1.
So lets assume there is an optimal solution in which Y1 has not been recolored
and then show that the solution can be changed such that it is still convex and
the amount of recolorings has not increased. This reduces the problem to four
subcases, because Y1 can be each of the four remaining cases.

11



Case 1: the color y occurs only once.
In this case, the color y does not occur anywhere else. This means that either
X1 or x2 has been recolored, because otherwise the optimal solution would not
be convex. This gives two subcases:

Case 1.1: only one of X1 and x2 has been recolored.
Now, this recoloring could be undone and instead be used to recolor Y1. This
means that x would still be convex and it would require at most the same
amount of recolorings.

Case 1.2: both X1 and x2 have been recolored.
If both of them have been recolored then there are two possibilities: Either X3

has been recolored as well and x as a color does not occur anymore or X3 has
not been recolored.

Case 1.2.1: the vertex X3 has not been recolored.
Then the recolorings of X1 and x2 could be undone and instead be used to
recolor Y1 and Z1. This guarantees that x is still convex and would require an
equal amount of recolorings.

Case 1.2.2: the vertex X3 has been recolored.
This means that all x have been recolored. So X1 has been recolored, but be-
cause Y1 has not been recolored, it cannot be a color that occurs on both sides
of Y1. Therefore, it is safe to undo X1, back to x, and then recolor Y1 to x as well.

Case 2: the color y occurs as either Y1α1Y2 or Y2α1Y1.
Then there exists one more instance of the color y, which either occurs on the
right of Y1 or on the left of Y2.

Case 2.1: the color y occurs as Y1α1Y2.
It would look like this: X1Y1x2Z1X3α1Y2, or X1Y1x2Y2X3. Note that in this
Case α1 could also have a size of 0.

Case 2.1.1: the color y occurs as X1Y1x2Z1X3α1Y2.
This means that Y2 6= Z1.

Case 2.1.1.1: the vertex Y2 has not been recolored.
Then all the vertices in between Y1 and Y2 must have been recolored. This
means that X1 is uncolored and x is convex. So if x is convex, then the recolor-
ing of x2 could be undone and instead be used to recolor Y1. This would mean
the string would still be convex and the amount of recolorings would be at least
equal.

Case 2.1.1.2: the vertex Y2 has been recolored.
Then the proof is identical to Case 1.
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Case 2.1.2: the color y occurs as X1Y1x2Y2X3.
This is the case that Y1 and Z1 are the same color.

Case 2.1.2.1: the vertex Y2 has not been recolored.
Then x2 has been recolored, and one of X1 or X3 as well. So these two recolor-
ings can be undone to recolor Y1 and Y2.

Case 2.1.2.2: the vertex Y2 has been recolored.
Then at least one of X1 or x2 has been recolored, because Y1 will now be a
single vertex that otherwise separates the color x, so undo the block of the two
that got a recoloring to recolor Y1. Then both Y1 and Y2 are recolored and all
vertices in this string with color x are uncolored.

Case 2.2: the color y occurs as Y2α1Y1.
It would look like this: Y2α1X1Y1x2Z1X3. In the case that it would look like
X1Y2x2Y1X3, the proof would be identical to case 2.1.2.1.

Case 2.2.1: the vertex Y2 has not been recolored.
Then X1 and α1 have been recolored. So reversing those recoloring and recol-
oring Y1 would still leave the color y convex. If X3 has not been recolored but
x2 has, then it x is not convex anymore. The recoloring of x2 can be undone
to recolor X3 instead. This would result in a convex recoloring that recolors Y1
without using more recolorings.

Case 2.2.2: the vertex Y2 has been recolored
Then the rest of the string can be made convex by using the same proof as if
Y1 were Case 1.

Case 3: the color y occurs as Y1α1y2.
This could occur one of two ways: y2X1Y1x2Z1X3 or X1Y1x2Z1X3y2.

Case 3.1: the color y occurs as y2X1Y1x2α1X3.
This means that the block y2 occurs on the left of Y1.

Case 3.1.1: the vertices y2 have not been recolored.
Then X1 has been recolored, in which case the recoloring of X1 can be undone
to recolor Y1. This could mean that x is not convex anymore if x2 has been
recolored but X3 has not. But that can be fixed be switching those recolorings.

Case 3.1.2: the vertices y2 have been recolored.
In this case that recoloring could be undone to recolor Y1 instead. This would
mean that y stays convex, because it occured only once and x is not affected so
still convex.
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Case 3.2: the color y occurs as X1Y1x2Z1X3y2.
This means that the block y2 occurs on the right of Y1.

Case 3.2.1: the vertex y2 has not been recolored.
Then all vertices in between have been recolored. This means all vertices of
color x, except X1, have been recolored. So, reversing the recoloring of x2 to
recolor Y1 will keep all colors convex.

Case 3.2.2: the vertex y2 has been recolored.
Then that recoloring could be undone to recolor Y1. This would mean that y
stays convex, because it occured only once and x is not affected so still convex.

Case 4: the color y occurs three times.
This could only happen like this: Y2E1y3X1Y1x2Z1X3, or symmetrically but
then the proof would be equivalent.

Case 4.1: the vertices y3 have not been recolored.
Then X1 has been recolored, which can be undone to recolor Y1. This only
works if x remains convex, meaning that if x2 has been recolored then that can
be undone to recolor X3. If x2 was not recolored it was already convex. This
way x will always remain convex.

Case 4.2: the vertices y3 have been recolored.
Then that recoloring can be undone to recolor Y1. This means that Y1 was the
only vertex with color y, because if X1 is recolored then it would be suboptimal
to recolor y3 as well.

Reduction Rule 2. Suppose a color x occurs as Case 3, X1Y1x2, then Y1 can
be recolored.

Lemma 10. Reduction Rule 2 is safe.

Proof. Lets assume there is an optimal solution in which Y1 has not been recol-
ored. Then either X1 or x2 has been recolored, or both.

Case A: only X1 has been recolored.
Then the recoloring of X1 can be undone, and used to recolor Y1 instead. This
results in a convex string with an equal amount of recolorings.

Case B: x2 has been recolored.
Then the recoloring of x2 can be undone, and used to recolor Y1 instead. This
results in a convex string with at most an equal amount of recolorings.

Case C: both have been recolored.
This could not happen in an optimal solution. Because both recolorings can be
undone to recolor Y1 which decreases the amount of recolorings needed.
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4.1 Final Step

At this stage only Case 1 and Case 2 remain in the algorithm. This means
there exist colors that occur as a single block, and there exist colors that occur
as two blocks of size one. Kanj and Kratsch [12] gave an algorithm to solve
CSR-2, in which each color occurs at most twice, in O(n

n
4 ) time that has some

useful terminology that can be used here. Their first step in solving CSR-2 is
by categorizing all colors. If a color occurs only once, it is called a singleton,
otherwise each color occurs at most twice and can be called a pair. Those pairs
can be divided into long pairs and short pairs. A long pair are all the pairs
such that between the left and right vertex of the pair at least one of these is
contained:

• both vertices of another pair

• a singleton

However, in Case 1 a color can still occur multiple times, so the problem
is not yet equivalent to the CSR-2 problem. The next Lemma shows that the
problem can be branched on if each color occurs as most twice and then there
will be a lemma that shows that the solution of this branching will return the
same answer even if a color that occurs as a single block with a size larger than
1.

Lemma 11. If there are at most two vertices of each color, then a branching
step with factor 2 exists.

Proof. According to the Exchange Lemma 3 each color can be retained. So there
is never a need to recolor all vertices contained within a long interval, meaning
that for each long interval X1αX2 either X1 or X2 has to be recolored. Instead
of being recolored to specific color, the vertex can also be removed according to
Lemma 2. This means there is a branch with factor 2: remove X1 or remove
X2.

Suppose now, all pairs are short. Consider then the leftmost color. If that
color is convex then according to Reduction Rule 4 it can safely be removed
from the instance without decreasing k. If the color is not convex, then the left
vertex is not in between two other vertices so recoloring it can never make any
other color convex. This means there is a branch of factor 2 by either removing
the right vertex of the same color, again using Lemma 2, or removing all vertices
in between.

Lemma 12. If there is an instance in which every color is either Case 1 or
Case 2, then a branching step with factor 2 exists.

Proof. Each color that occurs as only one block can be reduced to a single
vertex. Then it can be solved using Lemma 11. This will always result in a
correct answer. If Lemma 11 returns yes, then this instance will return yes as
well, as no color that occurs as a single block has been recolored so the amount
of recolorings are equal. If Lemma 11 returns no, then every recoloring of this
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instance will be at least as bad, as adding extra vertices to an instance will never
be able to decrease the amount of recolorings needed, so it will also return no.
Therefore, a branching step with factor 2 exists.

4.2 Main Theorem

Theorem 1 (Main Theorem). The Convex String Recoloring Problem can be
solved in O∗(2k) time and polynomial memory.

Proof. The problem can be solved by branching in order of the branching rules
as they occur in this paper. Each branching step has a factor of at most 2, and
each branching step and reduction rule can be executed in polynomial time.
This means the complexity of the branching algorithm is obtained from the
worst case step, which is a branching step with factor 2. Hence, this gives
O∗(2k) time. The branching procedure can be done in polynomial memory.

5 Discussion and further research

In this paper a branching approach on the FPT version of the Convex String Re-
coloring problem has been studied. The results are an improvement on existing
algorithms in that it has the same runtime complexity as the dynamic program-
ming algorithm described by Bar-Yehuda et al. but uses only polynomial space
instead of exponential. Future research might include improving upon the few
branching steps with factor 2. It is also possible to improve on the algorithm
for specific cases of this problem, for example an algorithm that depends on the
amount of colors or the amount of blocks that runs faster if these numbers are
small. It would also be interesting to see if the methods used in this paper can
be extended for the more general case of the Convex Tree Recoloring problem.
For example in an algorithm that solves branches independently and somehow
merges them together. Another advantage of the methods used in this paper is
that most of them are relatively easy to program, but it could be an interesting
topic to optimize the implementation of each branching and reduction step.
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