
An Empirical Evaluation of Convolutional and

Recurrent Neural Networks for Lip Reading

Kevin Heimbach 3825981

dr. A.J. Feelders
prof. dr. A.P.J.M. Siebes

May 31, 2018
Version: Final Version

Universiteit Utrecht

Department of Information and Computing Sciences
Faculty of Science

Graduate School of Natural Sciences

Master Thesis

An Empirical Evaluation of Convolutional and
Recurrent Neural Networks for Lip Reading

Kevin Heimbach

1. Reviewer dr. A.J. Feelders
Department of Information and Computing Sciences
Universiteit Utrecht

2. Reviewer prof. dr. A.P.J.M. Siebes
Department of Information and Computing Sciences
Universiteit Utrecht

Supervisors dr. Laura Astola

May 31, 2018

Kevin Heimbach

An Empirical Evaluation of Convolutional and Recurrent Neural Networks for Lip Reading

Master Thesis, May 31, 2018

Reviewers: dr. A.J. Feelders and prof. dr. A.P.J.M. Siebes

Supervisors: dr. Laura Astola

Universiteit Utrecht

Graduate School of Natural Sciences

Faculty of Science

Department of Information and Computing Sciences

Princetonplein 5, De Uithof

3584CC and Utrecht

Abstract

The 3DCNN and the LSTM are both suited for video classification because of their
ability to take into account temporal information. However, the two models do this
in a very distinct manner. The aim of this work is to investigate which of the two
models is better suited for automatic lip reading. Moreover, we also tested which
model is better suited for transfer learning. We conducted two groups of experiments
in this work. The first group consisted of experiments in which the two models were
tested under several conditions in which the models were trained from scratch. The
second group was conducted to determine which of the two models is better suited
for transfer learning. We used a pretrained 3DCNN and LSTM from the first group of
experiments to verify whether the accuracy of a model trained on a different dataset
improved, compared to when it was trained from scratch. From the first group of
experiments, we concluded that the 3DCNN is better suited for automatic lip reading
because it achieves a higher test set accuracy than the LSTM. However, the 3DCNN
takes a lot longer to train than the LSTM. From the second group of experiments, we
can conclude that overall the 3DCNN is better suited for transfer learning. On the
basis of all the experiments conducted, we conclude that overall the 3DCNN seems
to be better suited for use in automatic lip reading in many different conditions.

iv

Contents

1 Introduction 1

2 Problem Statement 2
2.1 Research Questions . 3

3 Automatic Lip Reading 5
3.1 Relevance . 6
3.2 History . 7
3.3 Current State . 10

4 Neural Networks 15
4.1 Multi-Layer Perceptron . 16
4.2 Convolutional Neural Network . 25
4.3 Recurrent Neural Network . 31
4.4 Transfer Learning . 34

5 Experiments 39
5.1 Datasets . 39
5.2 Methods . 41
5.3 Results . 44

6 Discussion 51
6.1 Findings . 51
6.2 Conclusions . 54

Bibliography 56

v

1Introduction

The number of problems in which automation is being applied has been in steep
ascent in recent years. Automating processes that formerly required a human’s input
is getting increasingly more common. The type of automation we are discussing
is the automation of thought, also called artificial intelligence. One reason for the
increase of this form of automation is the rapid development of research in artificial
intelligence, and more specifically, machine learning. Machine learning is the process
of a machine gaining knowledge from past experiences and using this knowledge to
form a prediction model which is used to evaluate or predict forthcoming events.
Ever since industries began to profit from advances in machine learning, we see
an increasing number of applications in everyday life. Because of developments in
machine learning, several problems that were extremely difficult to solve a decade
ago are seen as relatively uncomplicated today. One example of this is the fact that
machines are now able to classify images with greater accuracy than humans [25].

Machine learning is being applied in many fields. In this work, we will focus on
the field of Automatic Lip Reading (ALR). Specifically, we will focus on the use of
neural networks for the classification of videos in which words are being vocalized.
The main focus of this research is to determine what type of neural network is best
suited for this purpose.

The structure of this thesis is as follows. In Chapter 2, we will describe the relevance
of this work and state the research questions. In Chapter 3, we will provide the
background information for automatic lip reading. In this chapter, we will describe
the relevance of ALR, the history of ALR, and some of the latest developments in ALR
research. In Chapter 4, we will describe neural networks by providing an elaborate
description of the mechanisms within several types of neural networks. Moreover,
we will describe the history behind neural networks and the latest development in
neural network research. Subsequently in Chapter 5, we will discuss the experiments
conducted and their results. Finally in Chapter 6, we will discuss the results and their
implications more elaborately, and we will discuss their relevance to the research
questions stated in Chapter 2.

1

2Problem Statement

„Computer science is no more about computers
than astronomy is about telescopes.

— Edsger Dijkstra

In video data,

there is a temporal interdependence between successive frames. The decision of
what action is taking place in a video depends on the information contained in sev-
eral frames and the relation between these frames. Because of this, it is often useful
to take into account information contained in and spread over many successive
frames and the chronological order of events in the frames. This interdependence
exists in the short-term, as well as in the long term. In ALR, for example, it is useful
to see the exact motions of the mouth in frames that succeed each other directly
(short-term interdependence), and, it is useful to see what groups of mouth motions
follow one another to decide what phonemes are likely to occur in the vocalization
(long-term interdependence). There are multiple ways of capturing the information
spread out over many frames. The LSTM and 3DCNN, for example, are very suitable
for such problems.

Despite the advances in machine learning research, certain general problems and
limitations remain. The wide availability of data does not imply that all classification
problems are trivial to solve nowadays. One problem with data could be that it
is unlabeled. Training a model to classify images of dogs and cats, for example,
is relatively uncomplicated because images of cats and dogs are vastly available.
However, some domains of image classification are still difficult to solve. These
domains are the ones that are very specific, and in which not a lot of data is readily
available. This makes it very difficult, perhaps impossible, to train a model to one
of these domains. Gathering a large dataset would be the solution, but this is often
not feasible because the process of data collection is a long and expensive process.
However, this problem could be overcome with the use of transfer learning. A
relatively small dataset could be sufficient to train a model when transfer learning is
applied [4, 47, 48].

Another limitation is the availability of computing power. Researchers wish to process
increasingly more data and data of higher dimensionality, which forms a limitation
because it creates a demand for increasingly more powerful computers. Training
a complex model on a large dataset takes a lot of computing power. For example,

2

the game of Go is seen as the computationally most complex board game. Recently,
the world champion of Go has been defeated by Google’s AlphaGo, which was a
revolutionary accomplishment. One implementation of AlphaGo was on multiple
machines, exploiting 1202 CPUs and 176 GPUs in total [61]. This example illustrates
how the need for computational resources increases when the problem complexity
also increases. It is evident that such resources are not available to the masses of
researchers, and thus, they are not able to train a model to solve the most complex
problems. For now, solving problems such as the game of Go within a reasonable
amount of time is only reserved for those with great financial resources.

Both the LSTM and the 3DCNN are capable of taking into account the interdepen-
dence between video frames. We want to investigate which model is better for the
application of ALR, an application where the short-term and the long-term inter-
dependency is present. However, the question of which model is ’better’ is rather
ambiguous. For this reason, it is useful to compare the LSTM and 3DCNN in the
context of ALR on several criteria. The main criteria we chose is training time, and
more specifically, the difference in training time between the models to achieve a
similar accuracy.

Aside from this, we want to investigate the models’ suitability for transfer learning.
The motivation for this is twofold. First, as stated before, gathering a large dataset
for a classification problem is sometimes not feasible and therefore a model has
to be trained on a small dataset. Using transfer learning can be beneficial in that
case. Second, training on large datasets is computationally expensive and sometimes
transfer learning can be of help to achieve good results in a shorter time.

The aim of the current paper is to investigate the differences between the two type
of neural networks in the context of automatic lip reading and to investigate their
suitability with respect to transfer learning.

2.1 Research Questions

Specifically, the current paper’s main focus is the empirical evaluation of the LSTM
and 3DCNN in the context of ALR. We aim to train an LSTM and a 3DCNN on an
ALR dataset and compare performance and training time, taking into account the
computing resources and time available. Thus, the first research question is:

What is the difference in training time between a CNN and an RNN when achiev-
ing a similar accuracy in the context of automatic lipreading, given the limita-
tion that we do not know whether our parameter values are optimal?

2.1 Research Questions 3

Subsequently, we want to take the optimized models and explore how well their
parameter values transfer to other datasets. We would like to investigate their
transfer learning capabilities to a dataset in the same domain and a dataset in a
different domain. Thus, the second research question is:

What is the difference in training time between a model that was trained from
scratch and a model in which parameter value transfer was applied when achiev-
ing a similar accuracy in the context of automatic lipreading, given the limita-
tion that we do not know whether our parameter values are optimal? And
between a CNN and an RNN, which benefits most when parameter transfer is
applied w.r.t. training time and accuracy?

2.1 Research Questions 4

3Automatic Lip Reading

„Innovation distinguishes between a leader and a
follower.

— Steve Jobs

“Lip reading, also known as lipreading or speechreading, is a technique of under-
standing speech by visually interpreting the movements of the lips, face and tongue
when sound is not available, relying also on information provided by the context,
knowledge of the language, and any residual hearing” [41]. We will refer to machine
LR by using the terminology ALR. In this chapter, we will discuss what the relevance
is of ALR and how research in ALR can aid humans, and we will discuss the history
of ALR. Finally, we will discuss what the current state is of research in ALR and
we will discuss its limitations. Throughout this thesis the following terminology
will be used: a phoneme is a sound that differentiates a word from another word,
and a viseme is the visual equivalent of a phoneme. However, there is not a one to
one correlation from phonemes to visemes. In the English language, for example,
multiple phonemes correspond to a single viseme. The phonemes /p/, /b/, and
/m/ correspond to the single viseme /p/, and the phonemes /t/, /d/, /n/,and /l/
correspond to the single viseme /t/. The motion of the mouth when these phonemes
are vocalized looks very similar, if not identical. Moreover, it is the reason why the
words ‘men’ and ‘pet’ are very difficult to differentiate by human lip readers.

In modern ALR research, usually the ’overlapped speakers’ and ’unseen speakers’
accuracy is reported. In the ’overlapped speakers’ condition, a single speaker’s set
of word vocalizations is distributed among the test set and the training set. In the
’unseen speaker’ condition, speakers in the test set and the speakers in the training
set are completely disjoint. Thus, in the unseen speaker condition, there is naturally
less resemblance between testing and training samples and this condition will thus
be harder for a model to perform well on. Moreover, ALR of previously unseen
speakers is also a challenging task, because of the speakers’ large variation in lip
shapes and because of the lack of large, tracked datasets of visual features [1].
However, we hypothesize that the unseen speaker accuracy correlates more with
real-world usability, because the model will have to deal with unseen speakers in
a real-world application, by definition. We will see that the first advances in ALR
research are made with overlapped speaker conditions and, later, research progresses

5

to such an extent where it is able to achieve positive performance on unseen speaker
conditions as well. Throughout this thesis, we will refer to ALR only capable of word
classification on overlapped speakers as ’speaker-dependent’ ALR and ALR capable
of also word classification on unseen speakers as ’speaker-independent’ ALR.

The process of ALR typically consists of three steps: face localization, mouth local-
ization, and classification (Fig. 3.1). There are many methods for the first two steps
[53, 72, 58, 59, 77]. In this thesis, however, we will focus on the final step, namely
the classification task.

Face
Localization

Mouth
Localization Classification

Fig. 3.1: The three steps involved when performing automatic lip reading from recorded
video material.

3.1 Relevance

Speech recognition is often seen as a purely auditory process. However, the contri-
bution of visual information to speech recognition cannot be underestimated. In
[42], it was shown that human speech recognition accuracy significantly decreases
when the word viseme of the speaker shown to the subject does not correlate with
the word phoneme of the perceived sound coming from the shown speaker (e.g.
‘ga-ga’ is being vocalized in a shown video but the phoneme ‘pa-pa’ is auditorily
superimposed on the video). This effect was called the McGurk effect. This effect
was even greater in adults of age 18 to 40 than their other two experimental groups
that contained children of age 3 to 5 and 7 to 8. Thus, it seems that people learn
to rely more on visual information in recognizing speech as they get older. More-
over, children as young as 10 weeks are aware of the correspondence between lip
movements and vocal sounds [15]. The underlying mechanism of the McGurk effect
bears resemblance to findings in ALR research: the addition of processing visual
information in parallel to regular auditory signal processing results in more accurate
speech recognition predictions [46, 43, 67].

The usage of ALR can also be of aid in the transcription of video with no, or only low-
quality audio available. By the same reasoning of the previous paragraph, ALR can
be used in ensemble with auditory speech recognition to transcribe video fragments
in the case where only low-quality audio is available. In the case where there is
no audio available, it might be possible to rely on ALR alone to transcribe videos.
In [18], for example, it was said that ALR was used to aid the analysis of Hitler’s

3.1 Relevance 6

privately recorded silent films, which gave the public an insight to how Hitler was in
his private life.

Recently it has been shown that ALR outperforms LR by humans [26]. They used
several types of classification conditions: using either appearance (i.e. regular)
recordings or only the facial landmark position movements (called ‘shape’ by the
authors) (Fig. 3.2), and testing either untrained or trained humans’ LR perfor-
mance. First, humans’ LR performance benefited greatly from being able to see the
appearance of a vocalization as opposed to seeing only the shape. Humans’ accuracy
in the shape-only LR test was 42.9%, as opposed to their 71.6% performance in
the appearance condition test. ALR does not follow this trend: 74.3% accuracy in
shape-only, and 75.2% in appearance. Second, humans do not seem to benefit from
training significantly. Humans were tested on their ALR performance first, which
became the measurements for the untrained condition, and afterwards followed a
short training. For each of four consecutive days, subjects had to take a training of
an hour long to increase their LR competence. However, their pre-train accuracy
was 57.7% averages over several word types, while their post-train accuracy on the
same tasks was 63.0%.

3.2 History

The current practice in ALR is that usually neural networks are used for research in
ALR. However, researchers in the early days had to use other algorithms for their
ALR models. This is because neural networks only became scalable to large datasets
relatively recent.

One of the first attempts to ALR was made in [19]. The authors recorded 12
landmark position coordinates of the mouth during the articulation of one of 23
English consonant phonemes at 30 frames per second (fps) for one speaker. Of
these 12 pairs of x and y positions, they calculated 14 distances between certain

Figure 1: Example frames rendered as point-lights from a video sequence of a talker articulating “B”. The speaker was instructed to begin
and end with a closed mouth. The first image shows the first frame of the sequence, in the second the mouth is open while the speaker
intakes breath, the subsequent frames are during speech.

3.1 Stimuli

Five speakers were filmed in full frontal pose speaking the let-
ters A-F using a tri-chip Thompson Viper FilmStream HD cam-
era. The video sequences were recorded as high definition un-
compressed video (1920x1080) at 50Hz progressive scan. The
selection of speakers were all male and covered a variety of eth-
nicities. Each speaker repeated the letters seven times in a neutral
speaking style (no emotion), beginning and ending each utterance
with a closed mouth. A speaker-specific AAM was trained for
each individual and used to encode the videos as shape-only pa-
rameters (p) and as shape and appearance ({p; λ}T).

To produce shape-only visual stimuli for the human experi-
ments, the mesh vertices located using an AAM were rendered
as point-lights, see Figure 1. These sequences exhibit only the
shape and kinematic properties of the utterances, and are the vi-
sual representation of the AAM shape component. For the full
shape and appearance sequences, the original video was used.

3.2 Procedure

Training machine-based lip-reading systems: Word-level HMMs
were trained from both shape-only and full shape and appearance
features using a leave-one-out cross-validation framework (using
repetitions of the letters as folds). The topology of the HMMs
was optimised and the best performing topology used in the eval-
uation. This was a topology of 16 states each with 3 Gaussian
mixture components.

Measuring baseline performance of human lip-readers: 17
computing undergraduate students from a UK University volun-
teered to take part in the experiment. All reported to have normal,
or corrected to normal vision. One repetition of each of the let-
ters was selected from each of the five speakers for both the full-
appearance and the point-light movies. This provided a set of 60
utterances (six letters× five speakers× two stimuli type). Partic-
ipants were shown, in a randomised order, three repetitions of the
60 test movies (without audio), and they were each asked to cir-
cle on an answer sheet the letter they believed was being spoken.
This was a closed test where all letters A–F letters were offered
as possible answers to all utterances.

3.3 Results

Table 1 presents the results of this experiment as percent correct
scores for both the machine-based lip-reading system and the hu-
man participants.

For both forms of stimuli we observe the machine-based sys-
tem out-peforming human lip-readers (although the difference for

Table 1: Human and machine-based lip-reading accuracy for the
letters A-F. Human results are the mean over 17 participants, the
machine-based results are the mean over cross-validation folds.

Shape-only Shape and Appearance
Human 42.9% 71.6%
Machine 74.29% 75.24%

the full shape and appearance is not statistically significant). Al-
though untrained human viewers achieve only ≈43% correct for
shape-only, this is significantly above chance (p < 0.0001), albeit
on a relatively simple (six class) problem. Also note that in our
selection of classes half were chosen deliberately to be difficult —
the letters C, D, and E all end with the same vowel, /i/. (Although
this is also the case for B, there is a clear bilabial action in the /b/
consonant, which should be sufficient to discriminate this letter.
The differences between C, D, and E are much more subtle). If we
reduce the experiment to a four class problem by collecting C, D
and E into one group, human shape-only recognition increases to
60.7%, which remains significantly lower than the machines per-
formance of 88.1% (p < 0.0002). These results suggest that the
poor shape-only recognition is not solely due to the complexity in
distinguishing between the difficult letters.

There are two possible causes for the lack of accuracy on the
part of the human lip-readers when presented with shape-only
stimuli. Firstly, as has been previously noted [12], shape-only
lip-reading proficiency depends on the number and positioning of
points on the face. It could be that the sparse vertices that define
the shape of the AAM provide insufficient information. We con-
sider this unlikely given the performance of the machine-based
system trained on the same data. It is more likely that humans
just are not used to seeing talking faces presented as (shape-only)
point-lights. The world in which we live is inherently appearance-
based, and thus the shape and appearance stimuli (as well as pre-
senting more information), are more natural for human viewers.

We note that previous studies, e.g. [5], have reported a signif-
icant improvement when training an automated lip-reading sys-
tem using full shape and appearance features compared with us-
ing shape features alone, which is counter to our finding above.
However, this could be explained by the complexity of the task.
We have considered only a six class problem, whereas in [5] a 26
class problem was considered. This could be verified by increas-
ing the number of classes to include all 26 letters of the alphabet.

AVSP 2009, Norwich, Sept 10th-13th, 2009 87

AVSP 2009, Norwich, Sept 10th-13th, 2009 Eds: B-J.Theobald & R.W.Harvey

Fig. 3.2: Example frames of the extracted facial landmarks of a subject vocalizing the letter
‘B’. The subject was instructed to begin and end the vocalization with a closed
mouth. Thus, frame 1 and 5 contain the facial landmarks of a person with its
mouth closed. The vocalization takes place in frames 2 to 4.

3.2 History 7

coordinate pairs as in Fig. 3.3. The speaker articulated each of the 23 phonemes
twice: The first set of articulations was considered the training set and the second
was considered the test set. The recognition procedure consisted of comparing the
14 distance measurement patterns of each sample in the test set to its equivalent
in the training set. For this reason, an equivalence metric was calculated for each
sample in the test set and each sample in the training set (i.e. one particular test
example was compared to all training examples etc.) and the training example
with the highest equivalence was considered the ’predicted’ phoneme. This process
recognized 9 out of 23 phonemes as the correct phoneme, or 39.1%. However, as
stated at the beginning of this chapter, multiple phonemes correspond to the same
viseme group. Taking this into account, 18 out of 23 phonemes (or 78.3%) were
predicted in the correct ‘viseme group’.

Another interesting research conducted in 1988 in [49] took a different approach.
They used ALR to accommodate auditory speech recognition and aimed to classify
utterances of digits and utterances of different letters separately. The comparison
they made was between audio-only, vision-only, and audiovisual classification. From
four speakers they extracted a 60 fps mouth region video and converted every frame
into a binary image by thresholding the original grayscale frame. Examples of these
obtained images can be seen in Fig. 3.4. As in the previously discussed research in
[19], the focus here was on whether a recording of a phoneme was classified in the
correct viseme group. Moreover, they compared the equivalence of each test sample
to all training samples to determine their model’s prediction. Their equivalence
metric was a distance measure computed based on the comparison of the binary

Fig. 3.3: Visualization of the landmark coordinate recordings and the distances calculated.
Letters a to l indicate the 12 landmark positions recorded using a reflective
substance and numbers 1 to 14 indicate the 14 distances calculated using these 12
landmark coordinates.

3.2 History 8

mouth images, which is a function of the size of the black region in two images,
and the Hamming distance between two images. The Hamming distance of two
images is the size of the exclusive disjunctive region between the images (i.e. the
region that is black in image 1, but white in image 2, and vice versa). What they
found was that audiovisual classification outperformed audio-only and vision-only
classification, but also that vision-only outperformed audio-only classification. The
audio-only classification was performed by AT&T’s isolated word acoustic speech
recognizer.

[71] was the first research to use a neural network for ALR. In contrast to today,
computing power was scarce and thus images or videos were not given as input
as pixel values, but as an array representing features. In this case, the authors
extracted 17 features from each frame in the video. Thus, each input was a matrix
of length 24, one for each of 24 timesteps, with each entry containing the 17
frame features. The network contained two hidden layers, classified five distinct
vocalizations of phonemes, and contained 428 trainable parameters (Fig. 3.5). The
performance of ALR was compared to auditory speech recognition and audiovisual
speech recognition. What they found was that ALR achieved 54% accuracy, auditory
speech recognition 62%, and both combined achieved 72% accuracy. These results,
as well as the results from the previously discussed results in [49], strengthen
the rationale of why advances in ALR are beneficial to speech recognition as a
complement.

Fig. 3.4: Examples of frames extracted from a speaker. The y-axis indicates which number
is vocalized and the x-axis indicates the number of milliseconds passed since the
beginning of the vocalization. The first frames are pictured with 3 frames skipped
after every frame.

3.2 History 9

In [31], a leave-one-out approach was taken with regards to testing ALR models. The
leave-one-out method in the context of ALR consists of training a model on all but one
speaker and testing the model on the speaker that was not included in the training
phase. This process is repeated until all speakers have been ’left out’ once and
the mean accuracy is considered the accuracy achieved. Because this research was
mainly concerned with audiovisual LR in auditory noisy environments, they focused
on whether taking visual information into account improved speech recognition
accuracy in several conditions in which the signal-to-noise ratio was changed. What
they found was that audiovisual speech recognition improved audio-only speech
recognition between 5% and 12%.

3.3 Current State

The current field of research uses mostly neural networks for ALR classification
tasks. In this section, we will provide an overview of the many types of ALR
models that have demonstrated state-of-the-art results or models that have recently
provided a novelty in the field of ALR. In this section, it is assumed the reader
has knowledge of the Convolutional Neural Network (CNN), Spatio-Temporal CNN
(3DCNN), Recurrent Neural Network (RNN), and Long-Short Term Memory neural
network (LSTM). A thorough explanation of these types of neural networks is

Fig. 3.5: Neural Network ALR

3.3 Current State 10

provided in the next chapter. Several datasets are used in ALR research, each
designed for a specific classification task. We will first discuss these datasets before
moving on to discussing the models that are used today.

A widely used word classification dataset is the Lip Reading in the Wild (LRW)
dataset [7]. In this paper, the authors describe their pipeline for fully automatically
collecting a large-scale lip-reading dataset from TV broadcasts. With this method,
they collected a dataset of more than a million word instances, spread over 500 word
classes and spoken by over a thousand people. Each video in the dataset is 1.28s long
and the word is vocalized in the middle, as part of a continuous stream of speech.
Before this dataset was available, the largest dataset was the GRID dataset [9]. This
dataset contained 33,000 different data samples. However, all the sentences were
syntactically identical and there was little variation between sentence classes. For
example, there were only four different starting words, and the total number of
different words was 51. Another widely used dataset, presented in [8], is the Lip
Reading Sentences in the Wild (LRS) dataset. This dataset was collected in a similar
way as the LRW dataset was collected and it is a significant contribution to the
sentence-level ALR field. While the GRID dataset contained 33.000 sentences with a
total number of 51 different words, the LRS dataset contained 118,000 sentences
with a total number of 17,000 different words.

Another ALR dataset is the MIRACL-VC dataset, presented in 2014 by Rekik et
al. [54]. This dataset contains 1500 word data samples and as many sentence
data samples, each consisting of 15 speakers vocalizing a total of 10 words and
10 short sentences 10 separate times. Each data sample is accompanied by the
depth measurements, recorded at 15fps by a Kinect sensor. The depth measurement
consisted of an image with the distance to the camera as pixel values.

Together with the presentation of the LRW dataset in [7], Chung et al. conducted the
first experiments on this dataset. They tested several network architectures, namely:
3DCNN with Early Fusion and 3DCNN with Multiple Towers [33], and, Early Fusion
and Multiple Towers [35]. They achieve a 61.1% accuracy, by which they show that
CNNs are very much suitable for word-level ALR. For future work, they suggested to
investigate ALR on profile faces, and combining CNNs with LSTMs using a language
model. Research of ALR on profile faces was done in [6] by the same authors and
it was concluded that frontal view ALR performed best in comparison to several
other angles (30◦, 45◦, 60◦, and 90◦). However, taking multiple views of a single
vocalization as input increases ALR accuracy [51].

Furthermore, as suggested in [7], A combined 3DCNN with GRU was presented in
[2]. It used three layers of combined 3D convolution and maxpooling, followed by
2 layers of bidirectional GRUs, and finally, a Connectionist Temporal Classification

3.3 Current State 11

(CTC) classifier, as presented in [23]. CTC is a method by which segmented data
can be labeled without the need for labeling the segments explicitly beforehand. It
takes as input a sequence of observations and gives as output a classification for
each observation. For example, in a video in which a subject is vocalizing a word
such as "dog", the classifier will learn by itself to recognize that the word "dog" is
vocalized, and, it will learn automatically what the temporal boundaries are of each
viseme, namely /t/ (viseme equivalent of the phoneme /d/), /o/, and /k/ (viseme
equivalent of the phoneme /g/). In other words: it learns in what exact frames
the viseme /t/ begins and ends. CTC eliminates the need to label each segment of
a data sample exactly at the word boundaries, as well as the need to convert the
output into a label sequence. They concluded that their model performed better than
human lip readers and that the addition of 3DCNN feature extraction also increased
performance. For future work, they suggest performing a similar experiment on the
LRS dataset [8]. As a side note, CTC has been proven to be beneficial in, among
other fields, handwritten character recognition [22], speech recognition [24], and
machine translation [66].

In [64], a 3DCNN, a ResNet, and a bidirectional LSTM were sequentially combined
to achieve an 83.0% accuracy on the LRW dataset. In this paper, they used the
dataset’s full-length sample video for their classification and do not make use of the
word boundaries, i.e. the time in the video at which the word vocalization begins
and ends. Later, in [65], the same authors do make use of the word boundaries,
while testing out a slightly different model. They conduct two distinct experiments
in this paper: they use a similar model as in [64] to perform the same closed-set
word classification task as is common in ALR research on the LRW dataset, and, they
extract word embeddings from 350 word classes to subsequently classify the other
150 words. The latter condition, called ’low-shot learning’, means that the training
set words and the test set word classes were two disjoint sets. In the closed-set
classification experiment, they used a model similar to that in [64], but with the
addition of word boundaries. With this new model, they achieve the current (i.e. at
the time of writing) state-of-the-art accuracy of 88.08%.

In the low-shot learning experiment, Stafylakis et al. perform Probabilistic Linear
Discriminant Analysis (PLDA) [30] to model a word embedding that summarizes
certain information of the word class that is relevant to the classification task,
while inhibiting irrelevant information. Specifically, PLDA is a linear dimensionality
reduction method that extracts a low-dimensionality vector representation from the
video data samples while maintaining the contextual closeness between words. In
our case specifically, the context is related to visemes and, thus, the embeddings of
words that look similar when vocalized, will look similar to each other as well (e.g.
‘cancer’ and ‘against’, ‘makes’ and ‘means’). Thus, in this experiment, they aim to
classify a subset of 150 word classes based on the word embeddings modeled on a

3.3 Current State 12

disjoint subset of 350 remaining word classes of the 500-class LRW dataset (‘unseen
word’ condition). For comparison, they classify a number of words in the validation
sets of all 500 classes based on word embeddings modeled on the test sets of the
500 classes (‘seen word’ condition). They varied the number of training instances
per word embedding to a maximum of 16 words. At this maximum of 16 training
examples per class, the model in the ‘seen word’ condition achieved 88.1% accuracy,
and the model in the ‘unseen word’ condition achieved an impressive 82.7% accuracy.
For future work, the authors express their ambition to use the same classification
technique with sentence-level ALR.

Others have aimed to reconstruct an acoustic speech signal from audio-less videos.
This process by which phonetic information is inferred from articulatory facial motion
is called speechreading. Ephrat presented an encoder-decoder CNN in [16] that
encodes raw video from the GRID dataset [9] and its optical flow into a vector
representing the visual features. Subsequently, this vector is fed into a decoder,
which consists of two fully connected layers that output a mel-scale spectrogram
(i.e. a graph that has the spectrum of frequencies plotted as they vary with time,
scaled in a way such that the distance between frequencies is perceptually realistic,
instead of physically correct). Finally, this mel-scale spectrogram is fed into a post-
processing layer which outputs a linear-scale spectrogram, which is used to generate
a waveform. They achieve good results by evaluating their generated speech using
several quantitative metrics but encourage the reader to watch and listen to the
videos on their project web page [17], which, in their opinion, demonstrate the
excellence of their method. They do provide, as a side note, the fact that the method
is speaker-dependent and that creating a similar method that is speaker-independent
is challenging.

Domain-adversarial training has also been applied in ALR. In [70], a single neural
network was trained to classify words and the speaker simultaneously. This was
done by copying the output of the second layer to another branch in the network
(a two-stream neural network that has one input and two outputs). This secondary
branch was trained to classify which speaker was speaking. However, instead
of performing backpropagation by gradient descent from this secondary branch,
gradient ascent was used from this secondary branch. This caused the first layers,
and thus the complete word classification branch of the network as well, to confuse
the speakers instead of learning to implicitly use the speaker as a feature. In a
speaker-independent classification task, the test set accuracy rose in all conditions
where the domain-adversarial training method was applied in comparison to the
regular training method.

The final research we want to discuss is the audiovisual speech recognition method
presented by Petridis et al. in [50]. In this paper, the authors designed a two-

3.3 Current State 13

stream neural network that in one stream takes as input a video and in the other
stream an audio waveform. Each stream consists of a ResNet followed by two
bidirectional LSTM layers. Subsequently, the output is concatenated and passes
two more bidirectional LSTM layers. The difference between the vision and audio
stream is that the visual ResNet consists of 34 layers and the audio stream ResNet
consists of 18 layers, and, the video sequence first goes through a 3DCNN layer.
They compare the performance of their model to audio-only and vision-only models
in several signal-to-noise conditions. In a noiseless condition, the audiovisual speech
recognizer outperforms both the audio-only and vision-only models (98.0% vs.
97.7% and 83.0%, respectively). In this comparison, the improvement from audio to
audiovisual is only slight. In noisy conditions, however, the improvement is more
notable. Specifically, in noisy conditions, the absolute improvement in test accuracy
is between 1.3% and 14.1%, respectively.

3.3 Current State 14

4Neural Networks

„Users do not care about what is inside the box, as
long as the box does what they need done.

— Jef Raskin

In the previous chapter, we have described the history and current state of ALR,
which eventually became a field dominated by neural networks, as did many other
fields that involved image or video classification. In this chapter, we will first
discuss how the Multilayer Perceptron (MLP) works. Second, we will discuss the
Convolutional Neural Network (CNN). And, third and final, we will discuss the
Recurrent Neural Network (RNN). There are already many papers elaborating on the
operations in neural networks, but our goal is to provide a more concise, intuitive,
and comprehensible explanation.

Neural networks are loosely inspired by biological brains. The resemblance is often
overstated, but there are two analogies to be made here. The first is that layer-wise
processing takes place in both biological brains and neural networks. In humans’
visual system, light received as raw light values in the retina is passed on to the
primary visual cortex (V1). Subsequently, relatively low-level ‘features’ are ‘extracted’
by simple cells in V1, and complex cells and hypercomplex cells that are found in V1
and the secondary visual cortex (V2) [39]. And finally, after being processed by many
different components of the visual system, we become conscious of the fact that we
are indeed perceiving what we are looking at and the biological object recognition
process is complete. Neural networks applied to computer vision, for example,
receive raw pixel values (analogous to the retina receiving light) and subsequently
processes this layer by layer until it is able to execute its task, for example classifying
an image of a dog as a dog. As a side note; the human brain does not process the
environment in a closed stimulus→response sequence manner as neural networks do.
A human brain works via a feedback system called the sensorimotor loop [34]. This
means that the brain is constantly reacting to its environment, and these reactions
change the environment to which it responds to almost recursively, to put it in
computer science terms.

Another analogy between neural networks and the human brain is that both are
heavily interconnected. In an MLP for example, each node in an arbitrary layer is

15

given input by all nodes in the preceding layer, and it gives its output on to all nodes
in the succeeding layer. A connection between two nodes is called a weight. A weight
in a neural network has a value, which indicates the direction and strength of the
influence of one node to the next. The value of a weight is a trainable parameter.
This means that the value of a weight is constantly adjusted during the training to
increase the performance of the network as a collective to increase the classification
accuracy. Similarly, there is also a case of heavy interconnectivity between processing
‘layers’ in a biological brain, but the mechanism of a neural network is by no means
neurologically plausible, despite this similarity [14, 68]. However, information is
passed on to succeeding layers by a process in which the nodes in one layer are
heavily interconnected with the nodes in the next layer in both the brain and a
neural network. Each node in a neural network, or neuron in the brain, has a specific
task, but no single node in neither a neural network or a biological brain is decisively
influential [36, 45]; this property is called graceful degradation. It prevents that a
faulty node or a relatively small group of faulty nodes causes the complete system to
be faulty.

There are many applications of neural networks. In this chapter, however, we will
discuss only the mechanism of neural networks used for classification tasks. To
support the intuition behind our explanation in the following sections, we conduct
several experiments documented in the next chapter and guide the reader through
the inner workings of the CNN and RNN by analyzing these experiments.

4.1 Multi-Layer Perceptron

In this section, we will first discuss the general mechanism of a feed-forward neural
network. Then, we will delve deeper into the concepts mentioned in this general
introduction.

A perceptron, of which the foundation was introduced in [55], is an algorithm that
computes a binary function based on its inputs. It was originally used to classify an
image into one of two classes. It had no hidden layers, only the raw pixel values
fed into a single node that performed the classification. Later came the Multilayer
Perceptron neural network (MLP), the most basic type of neural networks used
nowadays. Even the most elaborate and complicated neural networks contain a
regular feed-forward neural network. It is characterized by having an input layer, an
output layer, and one or more so-called ‘hidden’ layers (Fig. 4.1). Input is fed into
the first layer and it is processed layer by layer until it reaches the output layer. Each
node in the network (except the input nodes) also receive input from a bias node.
The role of this bias input is to provide the individual nodes in the network with a

4.1 Multi-Layer Perceptron 16

trainable constant value in addition to the input a node receives from the nodes in
the preceding layer.

The activation in the last layer is decisive for the task; this is where the classification
is performed. Each node in the output layer represents a class. For example, a
network used to classify pictures based on what animal is depicted will have one
output node for each animal.

The terminology used in this thesis is the following: a forward pass is the processing
of an input in order to produce its corresponding output; a backward pass is the
process by which the network calculates the loss function’s gradient w.r.t its weights’
by comparing the desired output of the network to the actual output. The gradient
is the vector (set) of partial derivatives of the loss function w.r.t. the weights.

Activation Functions

So far we have mentioned activation functions and have discussed activation. But
what exactly are activations and activation functions? Activation is the value that
a node has during a forward pass. The activation of a node in the input layer

Fig. 4.1: A four-layer Multi-Layer Perceptron. A node is shown as a circle and weights are
shown as arrows between nodes. x is the input layer, h are the hidden layers, and
y is the output layer. Layers are numbered with indice j, and nodes in any arbitrary
layer j are numbered with indice i. Nodes in any layer j except the input layer
j = 0 receive their input from all nodes in the previous layer j − 1 and forward
their output to all nodes in the next layer j + 1. Moreover, each node performs a
certain activation function on the input before forwarding it to the next layer.

4.1 Multi-Layer Perceptron 17

is the value of that particular element of the input vector. The reason a neural
network needs an activation function is to make it able to learn a non-linear function.
Without an activation function, a neural network could only learn a simple linear
function. The activation y of an arbitrary node a at position i in layer j, yaij , is
computed by taking as input the output from the nodes in the preceding layer,
x0...xn. Subsequently, node aij computes its activation based on the predetermined
activation function and passes it on to all nodes in the succeeding layer j + 1 (Fig.
4.2).

(4.1)yaij = f

(
n∑

k=0
xkwkj

)

where f is the activation function, n is the number of nodes in the layer j − 1, x is
the activation of node akj−1 and wkj is the weight from node akj−1 to node aij . The
activation function decides how an arbitrary node calculates its activation. There
are countless activation functions able to be used in a neural network. However, we
will discuss the activation functions most widely used today. We will also discuss
their strengths and weaknesses.

The most basic activation function is the linear function, or identity function. It
computes the dot product between all input nodes and the weights of these input
nodes to the current node, as in Equation 4.1. Thus, the linear activation function
is:

(4.2)f(x) = x

Fig. 4.2: Schematic visualization of the mechanics within a single node in an MLP. The node
i in arbitrary layer j receives the activations from all nodes in the preceding layer
j − 1, [x0, x1, ..., xn] via their corresponding weights [w0, w1, ..., wn]. Subsequently,
node i computes its output, given a predefined activation function f .

4.1 Multi-Layer Perceptron 18

Another widely used activation function is the logistic activation function, also called
the sigmoid function. The sigmoid function takes a scalar value and converts it to a
value in the range of (0, 1):

f(x) = σ(x) = 1
1 + e−x

(4.3)

The hyperbolic tangent, or tanh, function converts a scalar value to a value in the
range of (−1, 1) and it is computed as follows:

f(x) = tanh(x) = ex − e−x

ex + e−x
(4.4)

The Rectified Linear Unit (ReLU), however, is currently the most successful and
widely used activation function in neural networks according to Ramachandran et
al. in [52]. Basically, the ReLU thresholds the input at 0, thus converting a number
to the range of [0,∞):

f(x) = max(0, x) (4.5)

The last activation function we want to discuss is the SoftMax activation function.
This activation function is mostly used in the output layer, where the classification
is done. The activation of an arbitrary node aij depends on the input to node aij

and the total input to layer j. The SoftMax activation is computed by taking the
exponential function of the input to an arbitrary node aij and dividing it by the
exponential function of the total input to layer j as follows:

fi(~x) = exi∑J
j=1 e

xj
, for i = 1, ..., J, (4.6)

where J is the number of output nodes. fi(~x) can be interpreted as a probability of
class J because the output is a probability distribution of J possible outcomes.

Initialization

Another point of consideration is the initialization of the parameters in the network.
These parameters, or weights, decide how strong the connection is between two

4.1 Multi-Layer Perceptron 19

nodes in two consecutive layers. The weights that connect nodes in consecutive
layers are often referred to as kernel weights, and the connections between bias
nodes and nodes in a certain layer are often called bias weights. A neural network’s
weights have to be initialized with a certain inequality within the parameters’ values.
This is to produce symmetry breaking. Symmetry breaking causes the different
elements within a neural network such as individual weights and nodes to adopt
different functions from one another. Consider a three-layer neural network with
each layer containing an arbitrary number of nodes. If each parameter is initialized
to the same value, the activations of all nodes in the first hidden layer will be equal.
This is because each of these nodes takes as input all activations of the input, each
multiplied by the same arbitrary number. Naturally, all the outputs will be equal
as well, and thus, the gradients of weights will be equal per layer. This makes it
impossible for a neural network to approximate a complex non-linear function.

A common solution to this is to initialize the kernel weights to random small values
in the range of −ε and ε with mean 0. There are a lot of methods to initialize weights,
many of which can be found in [5].

Loss Functions

The loss function is an important metric used to indicate the spread between the
desired output of the network and the actual output. We will discuss two loss
functions, namely the Mean Square Error (MSE) loss function, and the one we use in
our experiments: Categorical Cross-Entropy (CCE). The MSE loss function is defined
as:

EMSE = 1
n

n∑
i=1

(yi − ti)2, (4.7)

where n is the number of output nodes, yi is the output of node i, and ti is the target
output, or desired output. the CCE loss function, or log loss, is defined as follows:

ECCE = −
n∑

i=1
(ti log(yi) + (1− ti) log(1− yi)) (4.8)

CCE is a popular loss function in neural network research, but it has been sug-
gested that other loss functions are more efficient and effective for some types of
classification tasks [32].

4.1 Multi-Layer Perceptron 20

Backpropagation

Backpropagation is the process by which the gradients of a loss function w.r.t. each
of the parameters of a network is calculated. As stated before, the loss function of
our choice was categorical cross entropy. Taking this into consideration, the process
of backpropagation works as follows:

1. A forward pass is computed and the gradient (derivative) of E w.r.t. the output
nodes must be computed in the following way:

∂E

∂y
= y − t
y(1− y) , (4.9)

where y is the output of a node, and t is its target output.

2. Then, by the chain rule, the gradient of E w.r.t. each weight in the preceding
layers must be computed:

∂E

∂wij
=

k∑
i=1

∂E

∂yk

∂yk

∂wij
, (4.10)

where wij is the weight of node i in layer j. Here, j is the layer of weights
that connects the last layer of nodes to the output nodes. The output of the
second to last layer is indicated by y and the separate output of each node by
yk. This can be generalized in order to compute the gradients of E to nodes in
all preceding layers (Fig. 4.3).

y

∂E

∂aj

wij

=

∂E

∂wij

∂E

∂aj

∂aj

∂wij

aj

Fig. 4.3: A visualization of the chain rule. The arrows pointing right represent the values
being forward propagated during a forward pass. The arrows pointing left rep-
resent the gradients that are computed during a backward pass. The gradient of
E w.r.t. node aj , and the gradient of node aj w.r.t. weight wij , are assumed to
be computed. The gradient of E w.r.t. wij can be computed by the chain rule as
shown.

4.1 Multi-Layer Perceptron 21

3. When all gradients have been computed, the weights are updates as follows:

wt = wt−1 − η
∂E

∂w
, (4.11)

where t is a timestep in the training phase.

4. This process is repeated until a sufficiently low loss value has been reached.
There are several choices one can make regarding when to stop training:

• Stop training after a predefined number of epochs, or passes over the
dataset.

• Stop after the loss does not decrease within a predefined number of
epochs from the last lowest achieved loss on the validation/training set.

• Decrease the learning rate after the loss does not decrease within a
predefined number of epochs from the last lowest achieved loss on the
validation/training set.

• Gradually decrease the learning rate over time regardless of the loss
function.

• A combination of two or more of the above.

The gradient of E w.r.t. a weight provides the information of what the influence is
of a weight on the output. If the gradient is positive, increasing this weight causes
the loss to increase and thus the weight has a negative influence on the network’s
performance. If the gradient is negative, increasing this weight causes the loss to
decrease and thus the weight has a positive influence on the network’s performance.
Thus, in the first case the weight will be decreased, and in the latter case the weight
will be increased.

Optimizers

After the gradients of the loss function w.r.t. the network’s weights have been
computed, a weight update needs to be made. Again, there are many ways to
go about updating the weights. The different methods are called optimizers, or
optimization algorithms. In this section, we will discuss two other optimizers, in
addition to the optimizer denoted in Equation 4.11, which is the Stochastic Gradient

4.1 Multi-Layer Perceptron 22

Descent (SGD) optimizer: Root Mean Square Propagation (RMSprop) [69], and
Adaptive Moment Estimation (Adam) [37]. A more complete overview of choices of
optimizers can be found in [56].

RMSprop is slightly more advanced than SGD. It is a gradient descent algorithm
that adapts its learning rate based on an exponentially decaying average of the past
gradients squared, vt. This average is computed as follows:

vt = β1vt−1 + (1− β1)g2
t , (4.12)

where β1 is the decay rate of the weight of the past average squared gradients in
relation to the weight of the current squared gradient, g is the gradient of the loss
function w.r.t. the weight, and v is the average of the past gradients squared. In
our experiments we use b1 = 0.9, as suggested in [69]. The weight at the current
timestep, wt, is subsequently computed as follows:

wt = wt−1 −
η
√
vt
gt (4.13)

Adam also stores a running average of the gradients as in RMSprop. However, it
is extended with the storage of another value, namely the exponentially decaying
average of the past gradients, mt:

mt = β2mt−1 + (1− β2)gt (4.14)

Where β2 is the decay rate of the weight of the past average gradients in relation to
the weight of the current gradient. Moreover, in [37] it was observed that mt and vt

tend to be biased towards zero. To counteract this, the authors correct their bias by
computing the following ‘bias-corrected’ values:

v̂t = vt

1− β1
(4.15)

m̂t = mt

1− β2
(4.16)

These are used to update the weight in the following way:

4.1 Multi-Layer Perceptron 23

wt = wt−1 −
η√
v̂t
m̂t (4.17)

The authors suggest default values for β1 and β2: 0.9 and 0.999, respectively.

Regularization

Another important issue to consider in neural networks and machine learning in
general is overfitting. To prevent overfitting, there is a process called regularization
and the methods that do so are called regularizers. There are several types of
regularizers, and we will discuss three of them: L1 regularization, L2 regularization,
and dropout. In our experiments specifically, we will use dropout as a regularizer.

L1 and L2 regularization simply penalize E by adding a penalty value, based on
the numbers of weights the network has and their values. L1 adds the sum of the
absolute weight values in the network with a regularization factor strength λ:

EL1 = E + λ
k∑

i=1
|wi|, (4.18)

L2 regularization is relatively similar. However, it adds the sum of the squared
weight values with a regularization factor strength λ:

EL2 = E + λ
k∑

i=1
w2

i (4.19)

The reason why this works is as follows. Essentially, the task of a neural network is
to learn a certain function such that it can perform well on the test set and desirably
in the real world. When a neural network is overfitting, it is learning a function that
can predict the training set well but does not perform well on the test set. A possible
cause for this is that the network is learning a function that is too complex, which
will learn the training set well but it will not learn to generalize its knowledge to
the test set. By penalizing high weights and therefore obtaining smaller weights,
the network learns a function with smaller slopes that is more fit to predict unseen
data, i.e. the test data. Another reason why having smaller weights is better, is that
a function with higher weights is more sensitive to noise and therefore might start
to learn the samples from the training set better than the test set.

4.1 Multi-Layer Perceptron 24

Dropout is a regularizer more specific to neural networks [63]. Dropout brings the
activation of independent neurons in a certain layer and their effect on the neurons
in the succeeding layer to zero at random with a probability factor p (Fig. 4.4).
Effectively, a random different architecture is trained in each training epoch, and the
forming of complex co-adaptation between nodes which would cause the network
to overfit is prevented. Instead, each node learns a function that is independent of
other nodes. Subsequently, when evaluating the model, dropout is not applied and
the network can utilize all of its nodes and therefore its full capacity.

Fig. 4.4: Dropout with p = 0.5 applied to the two hidden layers in the MLP shown in
Fig. 4.1. Note that when dropout is applied to a layer, the nodes chosen to be
deactivated are randomly chosen every iteration.

4.2 Convolutional Neural Network

A CNN is a type of neural network of which the architecture is inspired by the
architecture of the visual cortex. A neuron in the visual cortex responds to stimuli
occurring in a restricted subsection in the field of vision. The specific region of space
to which the individual neuron responds is called the receptive field. [29] showed
that the output of cortical cells in certain layers in the visual system form the input
to the receptive fields of cortical cells in subsequent layers in the visual system. Thus,
small elementary receptive fields originating in the retina are phase-wise combined
at following stages in the visual system to form large and complicated receptive
fields that process complex visual information. As an analogy to this, neurons in
a convolutional layer have a specific area in the preceding layer as their receptive
field. A convolutional layer applies several filters to the visual input in order to

4.2 Convolutional Neural Network 25

obtain feature maps. Usually, a CNN extracts an increasing amount of feature maps
as its convolutional layers get deeper. However, the feature maps are reducing in
size every layer it passes. By having multiple layers of convolution, increasingly
complex features are extracted. Moreover, apart from convolutional layers, a CNN
also contains pooling layers. The role of the pooling layers is to attain dimensionality
reduction of the data by creating a summary of each subspace in the feature maps.
Most often a CNN will consist of: several layers of convolution, each followed by a
pooling layer, and several fully connected layers (Fig. 4.5).

The foundation of the modern CNN originates from the mechanism of a visual
pattern recognition model called the Neocognitron, designed by [20]. It models
how visual information passes through different layers of visual cortical cells. The
structure is similar to the structure proposed by [29]. [20] modeled the visual
system mechanism discovered by [29] containing, among other types of cells, simple
and complex cells. In the Neocognitron, as well as in Hubel and Wiesel’s model,
information is processed at an increasingly higher level. That is: receptive fields
of simple cells are linear and dependent on location and orientation and because
they only respond to changes in gradient in specific orientations and locations, they
take the role of edge detectors; complex cells’ receptive fields are dependent on
motion and direction and take the role of motion detectors, because they respond to
shifting gradient changes in specific directions at specific locations; receptive fields
of hypercomplex cells are dependent on orientation, motion, and direction, and take
the role of angle detectors, because they combine complex cells’ signals to produce
information regarding the orientation of a certain motion [20, 29]. Cells at higher
levels are able to take on their respective roles because they receive information
from multiple adjacent cells in the preceding level. When comparing the model from
[29], the Neocognitron from [20], and the CNN’s general architecture in Fig. 4.5, a
certain similarity exists.

Fig. 4.5: A CNN with three layers of convolution and pooling, and two fully connected
layers. The convolutional layers are indicated with c1, c2, and c3. The pooling
layers are indicated with p1, p2, and p3. As illustrated, the convolutional layers
extract multiple representations from their respective inputs, and the pooling
layers reduce the size of said representations.

4.2 Convolutional Neural Network 26

While the Neocognitron might have been the foundation of today’s CNN, it was still
very far from what is called a CNN today. The first modern CNN was LeNet-5, and
the paper it was presented in coined the term ‘convolutional neural network’ [30]. It
was the first neural network that used a number of alternating convolutional layers
and pooling layers, followed by a number of fully connected layers to classify images.
Despite this CNN performing very well, the first major performance breakthrough of
CNNs came in 2012, when the ILSVRC (ImageNet Large-Scale Visual Recognition
Challenge) [57] was won for the first time by a CNN, presented in [38]. In the
ILSVRC, teams submit their classification algorithms, among other computer vision
algorithms, and results to compete in an image classification challenge. The dataset
of images to be classified is the ImageNet dataset [13]. In the following years, an
increasing number of CNNs were among the top performing submissions in the
ILSVRC. Currently, most of the competitors use some type of NN to compete Thus, a
CNN or a variation on a CNN is the first choice for any image classification task in
the present-day.

So far we have only discussed CNNs for classifying images. However, CNNs can
also be adapted to take into account temporal information in order to process
videos instead of images. By using 3D kernels for convolution instead of 2D kernels,
3D feature maps can be obtained of which the third dimension contains temporal
information; and by using 3D pooling instead of 2D pooling, temporal features can
be reduced in dimensionality together with spatial features [33]. In regular CNNs,
the feature maps that are obtained after every layer of convolution are 2-dimensional.
In 3D CNNs, the feature maps are 3-dimensional.

The CNN and neural networks that have a CNN component, have been applied to
many other problems apart from image and video classification. For example: chem-
ical data analysis [21], image colorization [76], sentence relation extraction [44],
automatic game play [61], text sentiment analysis [60], image caption generation
[73], and video caption generation [74].

Convolution

In Section 4.1, we have seen that regular neural networks consist of several layers
of nodes and that all nodes in an arbitrary hidden layer j receive input from all
nodes in the preceding layer j − 1 and give input to all nodes in the succeeding
layer j + 1. In a CNN, nodes in consecutive layers are heavily interconnected as
well. However, there are several constraints imposed on these connections in a CNN.
These constraints make CNNs a better fit to perform classification on image and
video data. The constraints are: local connectivity and parameter sharing.

4.2 Convolutional Neural Network 27

Local connectivity means that an arbitrary neuron in an arbitrary convolutional layer
j has a limited group of neurons in the preceding layer j − 1 as its receptive field,
as opposed to a node in an MLP, which has all nodes in the preceding layer j − 1
as its receptive field (Fig. 4.1). Local connectivity is effective, because, in image
data, features are locally dependent and globally independent (i.e. whether a certain
feature is present at a location in an image only depends on a small group of spatially
adjacent pixels).

Then, parameter sharing exploits a different characteristic of image data. As ex-
plained, an arbitrary neuron in an arbitrary convolutional layer is connected to only
a small group of adjacent neurons in the preceding layer. Additionally, the weights
that connect neurons from layer j − 1 to convolutional layer j are dependent on
each other. Each node i in convolutional layer j has a different group of neurons
as its receptive field. However, each group of weights from any group of neurons
in layer j − 1 to its corresponding neuron in a convolutional layer j share the same
parameters. Moreover, a weight update is imposed on each of these groups of
weights evenly. The reason for this is that a certain feature can be present anywhere
in the image.

The unique group of weights applied to each group of neurons in layer j− 1 is called
a filter. And, the already mentioned feature maps are activation maps generated by
the application of such a filter to an input. Generally, multiple layers of convolution
and pooling are applied to an input image or video. This part of a CNN consisting of
multiple layers of convolution has the role of feature extractor. Subsequently, these
features become the input to one or more fully connected layers. As the number of
convolutional layers increases, more and more complex features can be extracted.
However, this does not apply to every type of data and all datasets. Moreover, the
first layer or layers extract low-level features (e.g. Gabor filters and color blobs) and
the features become increasingly higher-level when the input is processed by deeper
layers [75].

Fig. 4.6: A visualization of the connections in a convolutional layer (right), in relation to
the connections in a fully connected layer (left).

4.2 Convolutional Neural Network 28

So far we have only discussed CNNs for classifying images. However, CNNs can also
be adapted to take into account temporal information in order to process videos
instead of images. By using 3D filters for convolution instead of 2D filters, 3D feature
maps can be obtained of which the third dimension contains temporal information;
and by using 3D pooling instead of 2D pooling, temporal features can be reduced in
dimensionality together with spatial features [33] (Fig. 4.6). In regular CNNs, the
feature maps that are obtained after every layer of convolution are 2-dimensional.
In 3D CNNs, the feature maps are 3-dimensional.

Pooling

Another important objective of a CNN is dimensionality reduction. This is performed
by pooling layers. Usually, each layer of convolution in a CNN is followed by a layer
of pooling. Pooling is basically a method of non-linear subsampling. In a pooling
layer, the representation is downsized by a certain factor for each dimension (Fig.
4.7). If the factor is 2, a 3D representation is evenly divided in 2× 2× 2 subdivisions.
Depending on the pooling method, a single value is taken from these subdivisions
and this results in a smaller representation. The reasoning behind this is that the
precise location of a certain feature is not as important as its position in relation to
other features, and it reduces the number of parameters in a network significantly.
Two methods of pooling are most common: average pooling and max pooling. Max
pooling takes the maximum value of the subdivision, and average pooling takes the
average value.

Fig. 4.7: A visualization of the max pooling operation. The pooling factor in both the x and
y dimension the pooling operation is applied with a factor of 2.

4.2 Convolutional Neural Network 29

Backpropagation

Because the general architecture is quite different from a regular feed-forward neural
network with fully connected layers, the generality of our explanation of backpropa-
gation does not fully apply in CNNs. In this section, we will discuss backpropagation
through convolutional layers, and through pooling layers. Backpropagation through
fully connected layers is already explained in Section 4.1.

Backpropagation through a layer is computed as follows. As we already explained,
there are many weights in a convolutional layer, but only a few parameters. To
compute the gradient of the loss function w.r.t. a filter, the gradient has to be
computed for every connection in the layer. Subsequently, the gradients of the
weights represented by a single parameter are summed.

In our experiments, we will use maxpooling of size 2× 2× 2. For simplicity, however,
we will discuss how backpropagation through a 2× 2 maxpooling layer is computed.
Consider a forward pass in which a 2× 2 maxpooling operation is performed on the
following subdivision:

7 6
9 8

The output will be:

9

The position from which this 9 originated from has to be stored. Afterwards, during
backpropagation, it is checked what position in the original input the 9 came from
and this position is assigned a gradient of 1, while the other positions receive a
gradient of 0:

∂y
∂x =

0 0
1 0

4.2 Convolutional Neural Network 30

4.3 Recurrent Neural Network

An RNN is a type of neural network that is designed to process sequential data. In
sequential data, the chronological order of events is one of the key characteristics.
This is because an event at an arbitrary timestep is dependent on the event that
occurred before it. Examples of data for which this is true are time series data,
human action recognition, speech recognition, and optical character recognition. In
optical character recognition, the possible characters at position t depends on the
characters at position tz until t − 1 where z is a non-negative integer. How large
z is, and thus how far back the dependency goes, remains an empirical question.
Moreover, RNNs take into account the chronological order of the input data by
having an internal state that keeps track of the events it has seen before and the
order in which it has seen said events.

In general, an RNN works as follows:

1. The network receives an input vector at timestep t0, xt0 , and updates it internal
state at t0, ht0 by applying its activation function, the hyperbolic tangent
function tanh, on its input as follows:

ht0 = tanh(xt0wx + b), (4.20)

where wx is the input weight matrix.

2. Subsequently, it passes its internal state on as an input to the copy of itself at
timestep t1. The internal state h at timestep t1 thus receives as input: ht0 , and
the input vector at timestep t1, xt1 . The internal state at an arbitrary timestep
tn is computed as follows:

htn = tanh(xtnwx + htn−1wh + b) (4.21)

3. This process is repeated until the cell at the final timestep has its internal state
htN computed. This last internal state forms the output of the RNN cell and is
passed onto the subsequent layer in the network:

y = htN (4.22)

4.3 Recurrent Neural Network 31

or, when the RNN is set to output a sequence, the RNN gives its hidden state
at every timestep as output:

y = [ht0 , ht1 , ..., htN] (4.23)

Backpropagation through time

The process through which the derivatives of E w.r.t. the weights in an RNN is
calculated is the same as in a regular NN. However, the weight update is slightly
different. The gradients are calculated for the complete unrolled network. Thus,
each weight has one gradient in each timestep. For clarity, we will use a slightly
different notation. We will use t to indicate a timestep in the training phase, and
we will use T to indicate a timestep in the RNN. Recall that the weight update in a
regular neural network is computed as denoted by Equation 4.11. A weight update
in an RNN is computed as follows:

wt = wt−1 − η
T∑

i=0

∂E

∂wi
(4.24)

What happens is that, as usual, all the gradients in the network are computed.
However, because the weights at multiple timesteps in the RNN are represented by
one single value, there are more gradients than parameters. For example, weight
matrix wh is used at every timestep, but it is the exact same weight matrix at every
timestep. Thus, the gradient of E w.r.t. wh is computed at every timestep. These

X

Y

H ht0

Y = htn

htnht1

xtnxt1xt0

Fig. 4.8: The general architecture of an RNN. Both are visualizations of the same architec-
ture: on the left the folded visualization is shown, and on the right the unfolded
visualization is shown.

4.3 Recurrent Neural Network 32

gradients must be summed and the outcome of that summation is the gradient of E
w.r.t. wh that is used for the weight update.

Long Short-Term Memory

The RNN described so far is more fit to handle sequential data than an MLP. Often,
however, the sequences an RNN has to process contain long-term dependencies: not
only are there directly successive temporal interdependencies, but the temporal inter-
dependency between events can span over prolonged intervals. The RNN described
is not fit to handle such data, because it suffers from a phenomenon called the van-
ishing and exploding gradient problem [3]. This means that during backpropagation
through many layers, gradients might either increase out of proportion (exploding
gradient) or decrease and approach near-zero values (vanishing gradient). In both
cases, the network is unable to update its weight proportionally. If the gradient
‘vanishes’, the network will apply negligible weight changes or none at all. And,
if the gradient ‘explodes’, the network will apply weight changes that are out of
proportion.

A solution to this problem is the Long Short-Term Memory neural network (LSTM),
first presented in [27] in 1997. It maintains an internal state similar to the regular
RNN. However, it has an additional internal state: its memory, which enables the
LSTM to learn long-term temporal contingencies. The mechanism is slightly more
complicated than the mechanism of the RNN. An LSTM cell receives the input at the
current timestep, xt, the hidden state output of the previous timestep’s LSTM cell,
ht−1, and the memory state output of the previous timestep’s LSTM cell, ct−1. The
internal states ht and ct are computed as follows (Fig. 4.9):

1. Several gating values ft, it, and ot, are computed:

ft = σ(wf [ht−1, xt] + bf) (4.25)

it = σ(wx[ht−1, xt] + bi) (4.26)

ot = σ(wo[ht−1, xt] + bo) (4.27)

2. In parallel, the candidate memory state c̃t is computed:

4.3 Recurrent Neural Network 33

c̃t = tanh(wo[ht−1, xt] + bo) (4.28)

3. Finally, the memory state ct and hidden state ht are computed:

ct = ftct−1 + itc̃t (4.29)

ht = tanh(ct)ot (4.30)

4.4 Transfer Learning

In machine learning, knowledge is conventionally learned in one domain only and
used for one task only. A new prediction model is trained on a new task with different
data from scratch when the domain or task changes. However, sometimes this is
either: not possible, because of a lack of data in the new domain; not necessary,
because knowledge learned from other tasks can reduce training time; or not optimal,

Fig. 4.9: The general architecture of an LSTM cell. The white circles indicate multiplication
or addition operations, and the rectangles indicate activation functions.

4.4 Transfer Learning 34

because extracting knowledge from other prediction models can increase another
model’s performance. What can be used to bridge the seemingly incompatible
knowledge is transfer learning. In the context of machine learning, transfer learning
comprises of methods that aim to take learned knowledge from one domain or task,
called the source, and use that knowledge in another domain or task, called the
target. Transfer learning can be applied in many tasks, such as classification [35],
regression [40], and clustering [11]. One motivation for this could be that the target
does not have a large enough up-to-date dataset available from which a model can
be optimized from scratch. [48] categorizes transfer learning into three different
types: inductive transfer learning, transductive transfer learning, and unsupervised
transfer learning, which differ in what knowledge is transferred (Table 4.1). In
inductive transfer learning, the source task and target task are different but related,
while the domains are the same. In transductive transfer learning it is the opposite:
the source task and target task are the same, but the source domain and the target
domain are different but related. Finally, unsupervised transfer learning is similar
to inductive transfer learning such that the source and target tasks are different
but related, but unsupervised transfer learning focuses on cases where there is no
labeled data available neither the source domain and target domain.

Another division that is made by [48] is the division of transfer learning approaches
(Table 4.2). The first is instance-based transfer learning, in which certain knowledge
learned in the source domain can be reused in the target domain by relabeling
using the class labels in the source data to relabel the target data [10]. The second
approach is feature representation transfer learning, in which the way features are
represented in the source domain is transferred to the target domain [12]. This leads
to features in the target domain being encoded more accurately which subsequently
leads to an increase in target task performance. The third approach is parameter
transfer learning, which relies on the assumption that parameters learned in the
source task are useful to the target task. By transferring the parameters of the
prediction model learned in the source task directly to the prediction model used for
the target task, a significant performance increase and training time decrease can
be achieved [35]. The fourth and final approach is relational knowledge transfer
learning, which assumes that certain relations within the source domain data also
apply in the target domain data. Moreover, not all transfer learning approaches can

Learning Setting Domains Tasks
Conventional Machine Learning Same Same
Inductive Transfer Learning Same Related
Transductive Transfer Learning Related Same
Unsupervised Transfer Learning Related Related

Tab. 4.1: Difference of conventional machine learning in relation to several transfer learning
varieties.

4.4 Transfer Learning 35

be used for all transfer learning settings: transductive transfer learning can only
make use of instance transfer learning and feature-representation transfer learning,
and unsupervised transfer learning can only make use of feature representation
transfer learning. Inductive transfer learning is the only setting in which all four
approaches can be used.

The current paper, however, focuses solely on using transfer learning in neural
networks. Specifically, we will focus on parameter transfer learning from a prediction
model that contains knowledge learned on a source domain dataset, to a prediction
model that will be optimized on a target domain dataset. The parameters of the
model optimized on the source domain dataset are used as a starting point for
optimizing the model on the target domain dataset. The reason for this is that the
target domain dataset is not large enough to learn useful features from, which the
neural network aims to extract and uses for classification. A typical transfer learning
process in neural networks is to train a model from scratch on the source domain
dataset, freeze (i.e. keep the parameters fixed) a number of layers, and then retrain
the non-frozen layers, usually one or more layers in the end, on a different dataset as
in [35, 47, 75]. Specifically, when transfer learning is used in neural networks, it is
most often the case that knowledge from the first layer and n number of succeeding
layers are transferred from the source task to the target task, where n is at most the
number of layers in the source task’s model minus 1.

Retraining means either initializing the layers’ parameters as if they were trained
from scratch, or using the formerly optimized parameters as a starting point. The
latter case is often referred to as fine-tuning the layers. Another possible method is

Transfer Learning Approach Description

Instance Transfer
Reweight labeled data from the source domain
to train a model in the target domain.

Feature-representation Transfer
Features that are useful in the source domain
are used in the target domain.

Parameter transfer
Model parameters that are beneficial in the
source domain are used to train a model in the
target domain.

Relational Knowledge Transfer

Define the relational knowledge in the target
domain by using the already established know-
ledge in the source domain and the relation
between the source and target domain.

Tab. 4.2: The different approaches to transfer learning.

4.4 Transfer Learning 36

training a number of starting layers on multiple different but related domains and
training several sets of end layers separately on those domains, all using the same
starting layers. This can be used in tasks where the separate domains share certain
domain-general knowledge while being different to the extent where they require
different end-layers, such as automatic language comprehension [28].

Transfer learning in neural networks can often be very useful, but the extent to
which knowledge can be transferred depends on a few factors. As stated before, the
first layers of a CNN process pixel-level patterns and the deeper into the network,
the more specific and abstract the extracted information becomes. The type of
knowledge extracted changes gradually from general knowledge being extracted
in the first layers of a CNN and specific knowledge being extracted towards the
last layers of the network. Thus, there seems to be a shift from general to specific
knowledge processing through the network.

In [75], several methods of transfer learning were experimentally evaluated, namely
whether knowledge was transferred from the bottom, middle, or top of the network.
This was done to quantify the extent to which layers process specific or general
information. They used the ImageNet dataset, which contains 1.3 million images
distributed across 1000 classes. The dataset was split in half at random such that
each half contains 500 classes, creating two datasets, named A and B. This served
as the ’similar datasets’ condition. They also split the dataset into the semantically
dissimilar ImageNet parent classes: 551 man-made entity classes and 449 natural
entity classes. This served as the ’dissimilar datasets’ condition. In each condition,
an 8-layer CNN was trained on both dataset halves separately. The numbers of
layers from which knowledge was transferred were changed in each experiment
and ranged from 1 to 8. They also experimented with either freezing or fine-tuning
the transferred layers. Another experiment was that they used TL from task B to
task B, to test whether co-adaptation between layers takes place. In the similar
datasets condition, they made a few surprising discoveries, as well as confirming
some expected occurrences. First, they expected that layers towards the end contain
dataset-specific knowledge and thus it should not be useful to transfer these layers.
This was indeed the case: the first two layers transfer seamlessly from task A to task
B, transferring the layers till layer 3 showed a slight drop in performance, and the
drop from layers 4 till the end showed a more significant decline in performance.
Second, training a network on dataset A and fine-tuning a number of layers on
dataset B provided a better performance than when a network is trained on dataset
B directly. This was the case for any number of layers transferred. We suspect that
this phenomenon occurred because of the similarity between the datasets and the
increased number of training examples. Third, transferring three or more already
learned layers from dataset B to a new model also trained on dataset B caused a
drop in performance when the transferred layers were frozen and the rest of the

4.4 Transfer Learning 37

network was randomly reinitialized. This proves that the first network contained
fragile co-adapted features that could only be extracted because successive layers
were dependent on each other. This codependency could not be relearned when
later layers are randomly reinitialized. Fourth, in a similar case where transferred
layers were fine-tuned instead of frozen, this codependency among layers was
learned again. Moreover, transfer learning always led to a performance decrease in
the dissimilar datasets condition, regardless of from which layers knowledge was
transferred.

4.4 Transfer Learning 38

5Experiments

„No amount of experimentation can ever prove me
right; a single experiment can prove me wrong.

— Albert Einstein

In this chap-

ter, we will describe the datasets we utilized, our methodology in the experiments,
and the results obtained from these experiments. We split our experiments into two
groups. The first group is concerned with the differences between the LSTM and
the 3DCNN in the context of ALR. These experiments are conducted to investigate
the differences between these models on several criteria, such as accuracy, training
time, and computational cost. The second group of experiments is concerned with
the transfer learning capabilities of the models. Here, the models trained in the first
experiments are used to transfer knowledge to models that operate in the same do-
main, and, to models that operate in different but related domains. In all conditions,
we cropped the mouth area from the video. We were able to choose the bounding
box coordinates of the cropped area because all videos were already centered around
the face. From the original video of size 256 × 256, we obtained a 30 × 60 ‘mouth
crop’ video (Fig. 5.1). The mouth crop video is used in all experiments unless stated
otherwise. Moreover, all videos were converted to grayscale.

5.1 Datasets

The dataset we used for the first experiments was the Lip Reading in the Wild (LRW)
dataset [7]. This dataset consists of up to 1000 vocalizations for each of the 500

Fig. 5.1: Sample frames of a video in the LRW dataset. The blue boxes indicates the area
that was used for the mouth crop video.

39

word classes. Each video in the dataset is 1.28s long and the word is vocalized
in the middle, as part of a continuous stream of speech. We used two classes of
this dataset for our experiments because the effects observed in a small dataset can
most likely be extrapolated to the large dataset as well. The word classes we used
were ’economic’ and ’Westminster’. In the transfer learning experiment, we also
use two other classes in this dataset, namely the ‘politicians’ and the ‘temperatures’
word classes. These classes were chosen because they were among the words with
the highest recognition rate in [64]. For each class in this dataset; the training
set consisted of 1,000 samples, and the test set and validation set consisted of 50
samples each.

For determining the suitability of the models for transfer learning to different
domains, we use the UCF101 dataset, first presented in [62]. The UCF101 dataset
is a human action recognition dataset, containing approximately 100,000 videos
distributed over 101 human action classes. The videos contain realistic human action
with a high variation of poses, camera angles, backgrounds, and object scales. We
chose two classes from this dataset, namely the ‘squat’ and the ‘hula hoop’ classes.
Each class in this dataset contains 25 groups of video samples. Videos within a
particular group are several takes of the same scene, and thus are very similar. That
is why videos from the same group should not be separated for the training and
test split, for example. The video samples in this dataset are of various lengths,
ranging from 48 to 267 frames. We cut every video in smaller videos of 29 frames
because of this, starting from the first frame. The training, testing, and validation
sets for the ‘bodyweight squat’ class are of size 313, 65, and 58, respectively. The
training, testing, and validation sets for the ‘hulahoop’ class are of size 278, 68, and
53, respectively.

Fig. 5.2: Sample frames of the two classes from the UCF-101 dataset we used. The top row
shows three frames from a video in the ‘bodyweight squat’ class, and the bottom
rows shows three frames from a video in the ‘hulahoop’ class.

5.1 Datasets 40

5.2 Methods

Experiment 1

In the first set of experiments, we have three experiments in which we compare
the accuracy, total training time, and time per epoch. We designed a small RNN
and a small 3DCNN and trained them on a small artificial dataset. In the second
experiment, we reduced the 30 × 60 resolution to a 15 × 15 resolution video,
thereby reducing the y dimension more strongly than the x dimension. Thus, the
video will appear stretched or, from a different perspective, compressed. In the third
experiment, we used the full mouth crop video. The summary of the differences
between the models used in these experiments is shown in Table 5.1.

Experiment 1.1: Dummy Models

In this experiment, we designed a small artificial dataset which we used to train an
RNN and a 3DCNN on. The artificial dataset consisted of eight samples of which
one sample belonged to one class and the seven others belonged to the second class.
Each sample was a 2 × 2 × 2 matrix with each value being 0 or 1. The single sample
belonging to one class was the following:

x1 =
[[

1 0
0 1

] [
1 0
0 1

]]

The other samples were of the same structure, but with a different binary pattern.

In all experiments but this one, we designed an LSTM. We decided to use an RNN
here because we aimed to keep the number of parameters of both models relatively
equal, while also keeping the number of parameters to a minimum. The RNN used

Models Input Size # Parameters
Exp. 1.1 1-layer (1) 3DCNN 2 × 2 × 2 13

1-layer (1) RNN 2 × 2 × 2 11
Exp. 1.2 2-layer (8/16) 3DCNN 15 × 15 × 15 10,658

2-layer (16/16) LSTM 15 × 15 × 15 17,634
Exp. 1.3 3-layer (16/24/32) 3DCNN 30 × 60 × 29 96,218

2-layer (16/32) LSTM 30 × 60 × 29 122,626
Tab. 5.1: The models used for the three experiments in Experiment 1. The numbers in

parentheses in the ‘Model’ column indicate the number of feature maps every layer
in the CNN extracts, or the output vector size in each layer in the RNN/LSTM.

5.2 Methods 41

here consists of one recurrent layer and one fully connected layer, adding up to a
total of 11 parameters. The 3DCNN used consists of one convolutional layer with a
single filter and one fully connected layer, adding up to a total of 13 parameters.

Moreover, both models were tested using three different optimizers, and, three
different learning rates. Thus, Each model was trained in 9 different ways. The
optimizers used are SGD, RMSprop, and Adam. The learning rates used are: 0.025,
0.05, and 0.1

Experiment 1.2: Reduced Size Data

For this experiment, the 30 × 60 video frames were resized to 15 × 15 frames, and
each second frame was skipped. This resulted in each video being of size 15 × 15
× 15. Here, we do use an LSTM. The LSTM used for this experiment consists of
two LSTM layers and one fully connected layer. Each LSTM cell in the network
has an output of length 16. This LSTM contains 17,634 parameters. The 3DCNN
used for this experiment consists of two layers of convolution and pooling, and two
fully connected layers. The first layer of convolution extracts 8 feature maps, the
second layer of convolution extracts 16 feature maps, and the first fully connected
layer contains 16 nodes. In total, the 3DCNN contains 10,658 parameters. In this
experiment, we chose to use the same single learning rate. However, we are still
interested in the difference when using different optimizers, and thus we will train
each model using three different optimizers: SGD, RMSprop, and Adam.

Experiment 1.3: Full-size Data

Here, we use the mouth crop video of the original size 30 × 60 and designed a new
3DCNN and LSTM. The LSTM used here is very similar to the LSTM used in the
previous experiment. However, this LSTM’s second layer of LSTM cells has an output
size of 32. This results in this LSTM having a total of 122,626 parameters. The
3DCNN used here is similar to the previously used model as well. It is extended with
another layer of convolution and pooling. The successive layers extract 16, 24, and
32 feature maps, respectively. These layers are followed by a fully connected layer
of width 32 and a classifying layer. This 3DCNN contains 96,218 parameters.

5.2 Methods 42

Experiment 2

In the second group of experiments, the main aim was to compare both models’
fitness for transfer learning. Another aim was to observe what the effect is of a
smaller training set on the test set performance, and the contribution of transfer
learning on smaller training sets. First, we test the models’ fitness for parameter value
transfer to words in the same dataset. This experiment is called the ‘same domain’
transfer learning experiment. With this experiment, we test the models’ fitness for
transfer learning within the same domain. Second, we test the models’ fitness for
parameter value transfer to videos in a different, but relatively related dataset. This
experiment is called the ‘different domain’ transfer learning experiment, and with
this experiment, we test the models’ fitness for transfer learning to a different domain.
In both the same domain transfer learning experiment and the different domain
transfer learning experiment, we train a new model in three different conditions.
First, we take the parameter values of the previously trained model as a starting point
and fine-tune all parameters on the new words. Second, we take the parameters of
the previously trained model as a starting point again, but this time retrain the final
two layers from scratch while keeping the parameters of the rest of the network fixed.
The third condition is used as a reference. Here, we train the model on the new
word classes from scratch. Moreover, to observe the effects of smaller training sets
on test set performance, and the contribution of transfer learning on smaller training
sets, we conduct the same experiments with a smaller fraction of the training set.
Namely, training set sizes of 10%, 5%, and 1%, of the original training set of a
1000 samples per class in the same domain condition. These smaller training set
experiments will not be conducted in the different domain condition, because the
dataset in this experiment is already quite small.

Experiment 2.1: Same Domain

In the same domain transfer learning experiment, we take the model used in the full-
size data model of the first group of experiments. These were trained on the words
‘economic’ and ‘Westminster’. Subsequently, we train a model under three different
conditions on two different words of the LRW dataset, namely the ‘politicians’ and
the ‘temperatures’ word classes. First, we train a model on the words ‘economic’
and ‘Westminster’ from scratch. Second, we take the parameters of the model
optimized in Experiment 1 and fine-tune all layers on the two new words from the
same dataset, ‘politicians’ and the ‘temperatures’. The third condition is similar to
the second condition. However, we only fine-tune the last layer of the network.
Moreover, the same experiments are conducted with a smaller fraction of the training

5.2 Methods 43

set (10%, 5%, and 1%, of the original training set) to see what the contribution of
transfer learning is when the training set decreases in size.

Experiment 2.2: Different Domain

In this experiment, we evaluate transfer learning in the same three conditions as in
Experiment 2.1. However, here we aim to transfer knowledge from the domain of
automatic lip reading to a different domain. The domain we chose was human body
movement in natural scenes. The description of the dataset and classes used was
already discussed in Section 5.1.

5.3 Results
SGD RMSprop Adam

lr
=

0.
02

5

0 200 400 600 800 1000
iteration

0.1

0.2

0.3

0.4

0.5

0.6

0.7

lo
ss

3DCNN

RNN

0 20 40 60 80 100
iteration

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

lo
ss

3DCNN

RNN

0 20 40 60 80 100
iteration

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

lo
ss

3DCNN

RNN

lr
=

0.
05

0 200 400 600 800 1000
iteration

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

lo
ss

3DCNN

RNN

0 20 40 60 80 100
iteration

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

lo
ss

3DCNN

RNN

0 20 40 60 80 100
iteration

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

lo
ss

3DCNN

RNN

lr
=

0.
1

0 200 400 600 800 1000
iteration

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

lo
ss

3DCNN

RNN

0 20 40 60 80 100
iteration

0.0

0.1

0.2

0.3

0.4

0.5

0.6

lo
ss

3DCNN

RNN

0 20 40 60 80 100
iteration

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

lo
ss

3DCNN

RNN

Fig. 5.3: The pair-wise comparison between the models in all nine conditions of Experiment
1.1. Note that the y-axis for SGD ends at 1000, while the others end at 100.

5.3 Results 44

Experiments 1

Experiment 1.1: Dummy Models

In the first experiments, we compared the small versions of both models in nine
conditions. The results of this experiment are visualized in Fig. 5.3. All of the
optimizers benefited from a higher learning rate, given the tested learning rates of
0.025, 0.05, and 0.1. Moreover, RMSprop reached a near-zero loss value the fastest
of all the optimizers, while SGD did this the slowest. The models reached near-zero
loss values in each condition.

Experiment 1.2: Reduced Size Data

The results of this experiment are visualized in Fig. 5.4 and Fig. 5.5. In the pair-wise
comparisons in Fig. 5.4, the decrease in loss of the models using different optimizers
are compared. The 3DCNN seems to be faster when taking only into account the
number of epochs until minimum loss. In Fig. 5.5, The differences in optimizer
choice are plotted together per model. It can be seen that SGD is the slowest for
both models. For the 3DCNN, Adam and RMSprop are more or less equally fast. For
the LSTM, however, Adam is faster. The results regarding test set performance and
training time can be found in Table 5.2. It can be read that the LSTM is faster in all
cases, even though this cannot be inferred from Fig. 5.4.

Test Accuracy Training Time Time per Epoch

SGD
3DCNN 100% 1h 10m 30m 1m 38.4s
LSTM 98% 12m 23s 7.9s

RMSprop
3DCNN 100% 28m 09s 1m 24.2s
LSTM 98% 9m 55s 6.3s

Adam
3DCNN 99% 33m 49s 1m 46.8s
LSTM 99% 6m 10s 6.3s

Tab. 5.2: Test set accuracy and training time results of the reduced size data experiments of
experiment 1.2.

5.3 Results 45

SGD RMSprop Adam

0 20 40 60 80 100
iteration

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

lo
ss

SGD 0.1

3DCNN

LSTM

0 20 40 60 80 100
iteration

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

lo
ss

RMSprop 0.002

3DCNN

LSTM

0 10 20 30 40 50 60
iteration

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

lo
ss

Adam 0.002

3DCNN

LSTM

Fig. 5.4: The pair-wise comparison of the decrease in loss between the models per optimizer
in experiment 1.2.

3DCNN LSTM

0 5 10 15 20 25 30 35 40 45
iteration

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

lo
ss

3DCNN

SGD 0.1

RMSprop 0.002

Adam 0.002

0 20 40 60 80 100
iteration

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

lo
ss

LSTM

SGD 0.1

RMSprop 0.002

Adam 0.002

Fig. 5.5: The comparison of decrease in loss between the optimizers per model.

Experiment 1.3: Full-size Data

In this experiment, we used the full size 30 × 60 mouth crop video. Moreover, we
compared the 3DCNN and LSTM in this experiment only once. In this comparison,
the ideal learning rate was determined by educated guesses. The best learning rate
found for the 3DCNN was 0.0005 and for the LSTM it was 0.00025. Both models
were trained using the Adam optimizer. In Fig. 5.6, the decrease in loss for both
models is visualized. In Table. 5.3, the test set performance, training time, and time
per epoch are depicted.

Test Accuracy Training Time Time per Epoch
3DCNN 99% 7h 59m 51s 36m 54.7s
LSTM 95% 39m 15s 27.4s

Tab. 5.3: The test set performance, training time, and time per epoch in the full size mouth
crop video experiment of experiment 1.3.

5.3 Results 46

0 20 40 60 80 100
iteration

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

lo
ss

3DCNN

LSTM

Fig. 5.6: The decrease in loss for the 3DCNN and the LSTM in Experiment 1.3. The
3DCNN needs only approximately 10 epochs to converge, while the LSTM takes
approximately 90. It should be noted that the 3DCNN needs more time per epoch
than the LSTM, as can be seen in Table. 5.3.

Experiments 2

Experiment 2.1: Same Domain

In this experiment, we tested the suitability of the 3DCNN and LSTM for parameter
transfer to a target dataset within the same domain as the source dataset, and the
effect of a smaller training set size on transfer learning in terms of performance. To
do this, we used the models trained in experiment 1.3 and used the parameters to
train a model on two different words in the LRW dataset. In Fig. 5.8, a figure is
shown for each model’s performance on the three conditions tested, and for all of
the training set size conditions. In Table 5.4, the test set performance for each of the
conditions is shown.

In the condition where the complete training set of 1000 samples per class was used,
the LSTM’s loss seems to decrease quite a lot in the condition where all layers were
fine-tuned, in comparison to the other conditions. The 3DCNN’s loss did not seem to
decrease much when only the last layer was fine-tuned in transfer learning. However,
when all layers were fine-tuned in transfer learning, the 3DCNN’s loss decreased
slightly faster than when it was trained from scratch.

In the conditions where smaller training sets were used, the 3DCNN’s loss did not
decrease at all when only the last layer could be fine-tuned. However, its loss

5.3 Results 47

decreased at a similar rate when the model was trained from scratch and when
transfer learning was applied where all parameters could be fine-tuned. In the
LSTM’s case, it did not benefit when the training set was of size 10 or 50, but
training set performance did improve in the smaller training set of size 100.

3DCNN LSTM

1000
Scratch 97% 75%
Layer 53% 82%
All 96% 97%

100
Scratch 93% 63%
Layer 50% 82%
All 95% 82%

50
Scratch 91% 62%
Layer 50% 48%
All 91% 49%

10
Scratch 76% 50%
Layer 44% 32%
All 84% 54%

Tab. 5.4: Test set accuracy for all conditions of experiment 2.1. The number on the left
indicates the training set size per class.

Experiment 2.2: Different Domain

In this experiment, we tested the suitability of the 3DCNN and LSTM for parameter
transfer to a target dataset in a different domain as the source dataset. To do this, we
used the model trained in experiment 1.3 and used the parameters to train a model
on two classes in the UCF101 dataset. In Fig. 5.7, a figure is shown for each model’s
performance on the three conditions tested. In Table 5.5, the test set performance
for each of the conditions in this experiment is shown.

Fine-tuning the last layer does not seem to benefit the LSTM in this experiment,
compared to when it was trained from scratch. However, fine-tuning all layers in the
LSTM does seem to make the loss decrease faster, albeit to approximately the same
loss value as when it was trained from scratch.

5.3 Results 48

3DCNN LSTM

0 2 4 6 8 10 12 14 16
iteration

0.6

0.7

0.8

0.9

1.0

1.1

1.2

lo
ss

Scratch

Tune Layer

Tune All

0 20 40 60 80 100
iteration

0.60

0.62

0.64

0.66

0.68

0.70

0.72

0.74

0.76

lo
ss

Scratch

Tune Layer

Tune All

Fig. 5.7: The decrease in loss value for the 3DCNN and LSTM in experiment 2.2.

3DCNN LSTM
Scratch 65% 72%
Layer 49% 67%
All 49% 53%

Tab. 5.5: Test set accuracy for all conditions of experiment 2.2.

5.3 Results 49

3DCNN LSTM

10
00

0 2 4 6 8 10 12 14
iteration

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

lo
ss

Scratch

Tune Layer

Tune All

0 10 20 30 40 50 60 70
iteration

0.0

0.5

1.0

1.5

2.0

lo
ss

Scratch

Tune Layer

Tune All

10
0

0 10 20 30 40 50 60 70 80 90
iteration

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

lo
ss

Scratch

Tune Layer

Tune All

0 10 20 30 40 50 60
iteration

0.4

0.6

0.8

1.0

1.2

lo
ss

Scratch

Tune Layer

Tune All

50

0 10 20 30 40 50 60 70 80 90
iteration

0.1

0.2

0.3

0.4

0.5

0.6

0.7

lo
ss

Scratch

Tune Layer

Tune All

0 5 10 15 20 25 30 35 40
iteration

0.6

0.8

1.0

1.2

1.4

1.6

lo
ss

Scratch

Tune Layer

Tune All

10

0 20 40 60 80 100
iteration

0.52

0.54

0.56

0.58

0.60

0.62

0.64

0.66

0.68

0.70

lo
ss

Scratch

Tune Layer

Tune All

0 20 40 60 80 100
iteration

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

lo
ss

Scratch

Tune Layer

Tune All

Fig. 5.8: The the decrease in loss for all of the conditions in Experiment 2.1. On the left the
training set size per class is indicated, and at the top it is indicated which model
is used. Each graph contains the three conditions: Scratch is when a model was
trained from scratch, Tune Layer means transfer learning was applied but only the
parameters in the last layer were fine-tuned, and Tune All means transfer learning
was applied and all parameters in the model were fine-tuned.

5.3 Results 50

6Discussion

6.1 Findings

The focus of this thesis was to compare the 3DCNN and the LSTM in the context
of ALR on several criteria. We conducted two groups of experiments in which the
models were compared in several conditions in which they were either trained from
scratch or where transfer learning was applied.

First, we compared several 3DCNN and RNN/LSTM models using several optimizers
and learning rates. What we found was that all the models seemed to benefit from
a relatively higher learning rate. Moreover, both models seemed to benefit from a
more complex optimizer. Between SGD, RMSprop, and Adam, the Adam optimizer
seemed to work best when comparing the models’ performance and training time.
Another finding was that between an LSTM and a 3DCNN with a comparable number
of parameters, the LSTM is always much faster to train than the 3DCNN. However,
the 3DCNN takes fewer epochs to reach its minimum loss value. Thus, in our case,
an epoch in an LSTM is a lot faster than an epoch in a 3DCNN with a comparable
number of parameters.

Second, we compared the LSTM and the 3DCNN in their capability for transfer
learning. We used a 3DCNN and an LSTM trained in the domain of lipreading
for transfer learning to a dataset in the same domain, and for transfer learning
to a dataset in a different domain, namely the domain of human body movement
recognition. In the same domain condition, we also tested what the effect is of
transfer learning in the 3DCNN and LSTM when we use a smaller training set. In the
case where we performed transfer learning within the same domain, and using the
full-size training set, we found that both models training improved when they could
make use of the parameters of a pre-trained model as a starting point, but only when
the new model was able to fine-tune all parameters and not only the parameters
in the last layer. When the parameters of the source model were frozen until the
last layer, the target model seemed to be unable to learn anything from the target
dataset. When we decreased the training set size, the 3DCNN only benefited from
transfer learning when the training set was reduced to 10 samples per class. The
LSTM benefited a lot from transfer learning when the training set was of size 100 per
class, but not when the training set was decreased further to 50 samples per class.

51

In the condition where 10 samples per class were used, the LSTM’s performance
improved slightly. Moreover, when comparing the 3DCNN and LSTM when they
were trained from scratch, the 3DCNN performed better in all training set sizes.
In the different domain condition, transfer learning did not seem to improve the
performance. However, when training a model from scratch, the LSTM performed
better than the 3DCNN.

In the first group of experiments, we can see that using SGD as the optimizer caused
the models to converge the slowest. Adam and RMSprop were in all cases faster
than SGD. This is most likely because both Adam and RMSprop keep track of the
average of the past gradients squared, and take this into account in the computation
of the weight update. This caused the weight updates to be more drastic than when
SGD would have been used, and thus, it caused the loss function to decrease quicker
in this case. Between Adam and RMSprop, it is difficult to say which optimizer
was faster. In experiment 1.1, RMSprop was faster than Adam at all learning rates.
In experiment 1.2, Adam and RMSprop were roughly equally fast when used in
the 3DCNN, but Adam was faster when used in the LSTM. There are two main
differences between experiment 1.1 and experiment 1.2; the data and models in
experiment 1.2 were much larger than the data and models in experiment 1.1, and,
the data in experiment 1.2 is data recorded in the natural world, while the data in
experiment 1.1 is artificially generated. Both of these differences could contribute to
the fact that RMSprop performed better in 1.1 and Adam performed better in 1.2.

Experiment 1.3 was the only experiment of the first group of experiments that used
the true size video samples. Comparing the decrease in loss value in the Adam figure
in Fig. 5.4 and Fig. 5.6 (in which only the Adam optimizer was used), it can be
observed that the patterns are similar. However, the LSTM’s loss value does not
reach the same minimum value the 3DCNN does. This is reflected in the test set
performance in Table 5.3. In Table 5.2, it can already be seen that, overall, the LSTM
performs slightly worse on the test set, while the 3DCNN takes longer to train. In
experiment 1.3, these effects seem to be magnified.

Going by the results in the first experiment, it is possible that there exists a trade-off
between performance and computational cost. The LSTM trains faster but performs
worse on the test set, while the 3DCNN performs better but takes longer to train.
Our experiments were conducted on small datasets, but the effect is visible. We
expect this trade-off effect will most likely be magnified in the case where larger
datasets are processed. The answer to the first research question, however, can be
found in experiment 1.2 most clearly. And specifically, in Table 5.2 and Fig. 5.4. For
the sake of answering the first research question, we assume that the range of test
set accuracies indicated in Table 5.2 (98-100%) counts as a ‘similar accuracy’, the
constraint imposed by the first research question. In experiment 1.2, the LSTM is

6.1 Findings 52

between 2.8 and 5.8 times faster than the 3DCNN. The LSTM is even 12.2 times
faster than the 3DCNN in experiment 1.3, but the difference in test set accuracy is
slightly larger (95% and 99%).

The reason why this difference in training time exists between an LSTM and a
3DCNN with a comparable number of parameters is the difference in the number of
operations in these models in the calculations of the gradients of the loss function
in relation to the number of parameters of the models. In general, computing
the gradients in a 3D convolutional layer with an arbitrary number of parameters
involved more computations than computing the gradients in an LSTM layer with
the same number of parameters. This is due to the nature of the mechanisms within
these models. The results of this experiments provide an answer as to how large this
difference can be in practice.

Looking at Experiments 2, and specifically Table 5.4, we can see that the 3DCNN
performs better in all conditions where the models were trained from scratch. The
dataset sizes go from 1000 to 100, to 50, to 10. And, the 3DCNN’s and LSTM’s test
set performance goes from 97% to 93%, to 91%, to 76%; and from 75% to 63%, to
62%, to 50%; respectively. In this experiment specifically, the 3DCNN only needs
10 samples per class, where the LSTM needs 1000 samples per class, to achieve a
similar performance. This suggests that the LSTM requires quite a lot more data
than the 3DCNN to achieve a similar test set performance. Further experiments with
larger training sets would be needed to see if the LSTM could achieve the same
result as the LSTM in this case and if this finding can be generalized. However,
these results support and strengthen the findings in Experiments 1, namely that the
3DCNN performs better than the LSTM in the context of ALR.

Looking at the transfer learning experiments in experiment 2.1, we can see that the
3DCCN does not benefit at all when only the last layer of a pre-trained model can
be fine-tuned. The LSTM, however, does seem to benefit from this, but only when
the training set was large enough. Only in the experiments where the training set
size was 100 or greater did the LSTM benefit from transfer learning. This suggests
that in these experiments, the features extracted by the 3DCNN were not general
enough to be transferred to other classes in the same dataset, while the features
extracted by the LSTM were. However, the LSTM using a pre-trained model and that
was able to fine-tune the last layer still performed quite a lot worse than a 3DCNN
that was trained from scratch. Again, these results support the previous findings that
the 3DCNN is better suited for ALR.

When the models were able to fine-tune all parameters in the network and not
just the parameters in the last layer, in all cases the models performed better or
comparable than its versions trained from scratch. The LSTM using transfer learning

6.1 Findings 53

and fine-tuning all parameters even performed as well as the 3DCNN when the full
training set of size 1000 was used. However, this was not the case where a smaller
training set was used. In the small training set sizes of 50 and 10, the LSTM was not
able to benefit from transfer learning very much, or not at all. Using a pre-trained
3DCNN on training set sizes of 10 even performed better than all LSTMs in the
training sets sizes of 100, 50, and 10. This shows that the 3DCNN is much better
suited than the LSTM in ALR, and especially when the training set is very small.

Finally, in experiment 2.2 we also tested the suitability of the models for transfer
learning to other domains. We used the same methodology as in experiment 2.1,
except for the training set size reductions. What we found was that transfer learning
did not improve the performance of either model. The main reason for this is most
likely that the features extracted by the pre-trained models were not general enough
to be used in the new domain. A noticeable difference between the data in the source
domain and the data in the target domain was that the data in the source domain
was very ‘clean’ (Fig. 5.1). The way we cut out the mouths from the original video
resulted in the videos only containing the mouths, and thus there was relatively
little noise in the video samples. There was a lot more noise in the samples of each
class in the target dataset(Fig. 5.2), compared to the source dataset. A pre-trained
model trained on a dataset containing more noise could possibly have improved the
baseline performance in this specific experiment.

What was noticeable about the results in experiment 2.2 was that the LSTM achieved
a higher test set performance than the 3DCNN overall. This is the only experiment
in this thesis in which this occurred. The only difference between this experiment
and the previous experiments is the data used, which suggests the 3DCNN performs
better in data with different characteristics than the LSTM. As said before, the dataset
used in experiment 2.2 contained more noise than the dataset used before. It might
be that the LSTM is more suited for this type of data. However, given the fact that
this was not one of the main focuses of this thesis, this conclusion can not be drawn
solely from this experiment.

6.2 Conclusions

From the experiments conducted in this thesis, we can conclude that the 3DCNN
seems to be better suited for video classification in the context of ALR than the LSTM.
Generally, the 3DCNN achieves a lower loss value and a higher test set accuracy.
There were a couple of experiments where the LSTM performed as well as the
3DCNN, but the LSTM did not perform better than the 3DCNN on any subset of
the LRW dataset. These findings are likely to be extrapolated to larger datasets

6.2 Conclusions 54

with more data per class and/or more classes, but further research would provide a
more elaborate answer to this. Because the 3DCNN did not outperform the LSTM
in experiment 2.2, in which a model was trained on a different domain than ALR,
we will only conclude that the 3DCNN is better suited than the LSTM for video
classification in the domain of ALR, and not in video classification in general.

Aside from the findings coming forth from our main focus, we also draw several
other conclusions. It seems that the Adam optimizer performed better than SGD and
RMSprop. RMSprop and Adam were comparable in general, and RMSprop was faster
than Adam in some conditions. However, in experiment 1.2, in which downsized
LRW data samples were used, Adam and RMSprop had comparable performance, but
the LSTM trained slightly faster using the Adam optimizer. Another result we found
rather unexpected was the fact that parameter value transfer learning in which only
the last layer could be retrained was counterproductive in nearly all conditions. Even
in the situation where the difference between the source and target data was that
they were different classes from the same larger dataset, the features learned were
not general enough to be transferred to the different classes.

A limitation of this work is that the datasets used were relatively small. As a
suggestion for further research, using bigger datasets for comparison of the 3DCNN
and LSTM would provide a better answer to which model is best suited for video
classification in the domain of ALR and other domains. Moreover, the models’
capability for transfer learning has been tested in this paper, but more elaborate
experiments would provide a more generalizable answer as well for this point.
Moreover, it would be useful to use pre-trained models that were trained on larger
datasets, and perform parameter value transfer to models trained on larger datasets
as well, to be able to answer which of the models is better capable of transfer
learning. This is because the pre-trained models were trained in experiment 1.3,
and used as a source model for parameter value transfer in experiment 2.1 and
experiment 2.2, were relatively small. It is likely that transfer learning did not
produce many noticeable results because the source models were not extracting very
general features to begin with.

6.2 Conclusions 55

Bibliography

[1]Ibrahim Almajai, Stephen Cox, Richard Harvey, and Yuxuan Lan. „Improved speaker
independent lip reading using speaker adaptive training and deep neural networks“. In:
Acoustics, Speech and Signal Processing (ICASSP), 2016 IEEE International Conference on.
IEEE. 2016, pp. 2722–2726 (cit. on p. 5).

[2]Yannis M Assael, Brendan Shillingford, Shimon Whiteson, and Nando de Freitas. „LipNet:
end-to-end sentence-level lipreading“. In: (2016) (cit. on p. 11).

[3]Yoshua Bengio, Patrice Simard, and Paolo Frasconi. „Learning long-term dependencies
with gradient descent is difficult“. In: IEEE transactions on neural networks 5.2 (1994),
pp. 157–166 (cit. on p. 33).

[4]Xudong Cao, David Wipf, Fang Wen, Genquan Duan, and Jian Sun. „A practical trans-
fer learning algorithm for face verification“. In: Computer Vision (ICCV), 2013 IEEE
International Conference on. IEEE. 2013, pp. 3208–3215 (cit. on p. 2).

[5]François Chollet. Keras. https://github.com/fchollet/keras. 2015 (cit. on p. 20).

[6]Joon Son Chung and Andrew Zisserman. „Lip reading in profile“. In: BMVC. 2017
(cit. on p. 11).

[7]Joon Son Chung and Andrew Zisserman. „Lip reading in the wild“. In: Asian Conference
on Computer Vision. Springer. 2016, pp. 87–103 (cit. on pp. 11, 39).

[8]Joon Son Chung, Andrew Senior, Oriol Vinyals, and Andrew Zisserman. „Lip reading
sentences in the wild“. In: arXiv preprint arXiv:1611.05358 2 (2016) (cit. on pp. 11,
12).

[9]Martin Cooke, Jon Barker, Stuart Cunningham, and Xu Shao. „An audio-visual corpus for
speech perception and automatic speech recognition“. In: The Journal of the Acoustical
Society of America 120.5 (2006), pp. 2421–2424 (cit. on pp. 11, 13).

[10]Wenyuan Dai, Qiang Yang, Gui-Rong Xue, and Yong Yu. „Boosting for transfer learning“.
In: Proceedings of the 24th international conference on Machine learning. ACM. 2007,
pp. 193–200 (cit. on p. 35).

[11]Wenyuan Dai, Qiang Yang, Gui-Rong Xue, and Yong Yu. „Self-taught clustering“. In: Pro-
ceedings of the 25th international conference on Machine learning. ACM. 2008, pp. 200–
207 (cit. on p. 35).

[12]Hal Daumé III. „Frustratingly easy domain adaptation“. In: arXiv preprint arXiv:0907.1815
(2009) (cit. on p. 35).

56

https://github.com/fchollet/keras

[13]Jia Deng, Wei Dong, Richard Socher, et al. „Imagenet: A large-scale hierarchical im-
age database“. In: Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE
Conference on. IEEE. 2009, pp. 248–255 (cit. on p. 27).

[14]Ezequiel A Di Paolo. „Organismically-inspired robotics: homeostatic adaptation and
teleology beyond the closed sensorimotor loop“. In: Dynamical systems approach to
embodiment and sociality (2003), pp. 19–42 (cit. on p. 16).

[15]Barbara Dodd. „Lip reading in infants: Attention to speech presented in-and out-of-
synchrony“. In: Cognitive psychology 11.4 (1979), pp. 478–484 (cit. on p. 6).

[16]Ariel Ephrat, Tavi Halperin, and Shmuel Peleg. „Improved speech reconstruction from
silent video“. In: ICCV 2017 Workshop on Computer Vision for Audio-Visual Media. 2017
(cit. on p. 13).

[17]Ariel Ephrat, Tavi Halperin, and Shmuel Peleg. Vid2Speech: Speech Reconstruction from
Silent Video. http://www.vision.huji.ac.il/vid2speech/. [Online; accessed
03-March-2018]. 2017 (cit. on p. 13).

[18]Richard J Evans. The third Reich in history and memory. Oxford University Press, USA,
2015 (cit. on p. 6).

[19]Kathleen E Finn and Allen A Montgomery. „Automatic optically-based recognition of
speech“. In: Pattern Recognition Letters 8.3 (1988), pp. 159–164 (cit. on pp. 7, 8).

[20]Kunihiko Fukushima. „Neocognitron: A hierarchical neural network capable of visual
pattern recognition“. In: Neural networks 1.2 (1988), pp. 119–130 (cit. on p. 26).

[21]Garrett B Goh, Nathan O Hodas, and Abhinav Vishnu. „Deep learning for computational
chemistry“. In: Journal of computational chemistry (2017) (cit. on p. 27).

[22]Alex Graves, Marcus Liwicki, Santiago Fernández, et al. „A novel connectionist system
for unconstrained handwriting recognition“. In: IEEE transactions on pattern analysis
and machine intelligence 31.5 (2009), pp. 855–868 (cit. on p. 12).

[23]Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen Schmidhuber. „Connec-
tionist temporal classification: labelling unsegmented sequence data with recurrent
neural networks“. In: Proceedings of the 23rd international conference on Machine learn-
ing. ACM. 2006, pp. 369–376 (cit. on p. 12).

[24]Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. „Speech recognition with
deep recurrent neural networks“. In: Acoustics, speech and signal processing (icassp),
2013 ieee international conference on. IEEE. 2013, pp. 6645–6649 (cit. on p. 12).

[25]Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. „Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification“. In: Proceedings of the
IEEE international conference on computer vision. 2015, pp. 1026–1034 (cit. on p. 1).

[26]Sarah Hilder, Richard W Harvey, and Barry-John Theobald. „Comparison of human
and machine-based lip-reading.“ In: AVSP. 2009, pp. 86–89 (cit. on p. 7).

[27]Sepp Hochreiter and Jürgen Schmidhuber. „Long short-term memory“. In: Neural
computation 9.8 (1997), pp. 1735–1780 (cit. on p. 33).

[28]Jui-Ting Huang, Jinyu Li, Dong Yu, Li Deng, and Yifan Gong. „Cross-language knowledge
transfer using multilingual deep neural network with shared hidden layers“. In: Acoustics,
Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on. IEEE.
2013, pp. 7304–7308 (cit. on p. 37).

Bibliography 57

http://www.vision.huji.ac.il/vid2speech/

[29]David H Hubel and Torsten N Wiesel. „Receptive fields and functional architecture of
monkey striate cortex“. In: The Journal of physiology 195.1 (1968), pp. 215–243 (cit. on
pp. 25, 26).

[30]Sergey Ioffe. „Probabilistic linear discriminant analysis“. In: European Conference on
Computer Vision. Springer. 2006, pp. 531–542 (cit. on p. 12).

[31]Koji Iwano, Satoshi Tamura, and Sadaoki Furui. „Bimodal speech recognition using lip
movement measured by optical-flow analysis“. In: International Workshop on Hands-Free
Speech Communication. 2001 (cit. on p. 10).

[32]Katarzyna Janocha and Wojciech Marian Czarnecki. „On loss functions for deep neural
networks in classification“. In: arXiv preprint arXiv:1702.05659 (2017) (cit. on p. 20).

[33]Shuiwang Ji, Wei Xu, Ming Yang, and Kai Yu. „3D convolutional neural networks
for human action recognition“. In: IEEE transactions on pattern analysis and machine
intelligence 35.1 (2013), pp. 221–231 (cit. on pp. 11, 27, 29).

[34]James W Kalat. Biological psychology. Cengage Learning, 1980 (cit. on p. 15).

[35]Andrej Karpathy, George Toderici, Sanketh Shetty, et al. „Large-scale video classification
with convolutional neural networks“. In: Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition. 2014, pp. 1725–1732 (cit. on pp. 11, 35, 36).

[36]Alireza Khotanzad and J-H Lu. „Classification of invariant image representations using
a neural network“. In: IEEE Transactions on Acoustics, Speech, and Signal Processing 38.6
(1990), pp. 1028–1038 (cit. on p. 16).

[37]Diederik P Kingma and Jimmy Ba. „Adam: A method for stochastic optimization“. In:
arXiv preprint arXiv:1412.6980 (2014) (cit. on p. 23).

[38]Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. „Imagenet classification with
deep convolutional neural networks“. In: Advances in neural information processing
systems. 2012, pp. 1097–1105 (cit. on p. 27).

[39]Peter Lennie. „Single units and visual cortical organization“. In: Perception 27.8 (1998),
pp. 889–935 (cit. on p. 15).

[40]Xuejun Liao, Ya Xue, and Lawrence Carin. „Logistic regression with an auxiliary data
source“. In: Proceedings of the 22nd international conference on Machine learning. ACM.
2005, pp. 505–512 (cit. on p. 35).

[41]Frederick N Martin and John Greer Clark. Introduction to audiology. Allyn and Bacon
Boston, 1997 (cit. on p. 5).

[42]Harry McGurk and John MacDonald. „Hearing lips and seeing voices“. In: Nature
264.5588 (1976), p. 746 (cit. on p. 6).

[43]Youssef Mroueh, Etienne Marcheret, and Vaibhava Goel. „Deep multimodal learning for
audio-visual speech recognition“. In: Acoustics, Speech and Signal Processing (ICASSP),
2015 IEEE International Conference on. IEEE. 2015, pp. 2130–2134 (cit. on p. 6).

[44]Thien Huu Nguyen and Ralph Grishman. „Relation extraction: Perspective from convo-
lutional neural networks“. In: Proceedings of the 1st Workshop on Vector Space Modeling
for Natural Language Processing. 2015, pp. 39–48 (cit. on p. 27).

Bibliography 58

[45]Yukio Nishimura, Hirotaka Onoe, Yosuke Morichika, et al. „Time-dependent central
compensatory mechanisms of finger dexterity after spinal cord injury“. In: Science
318.5853 (2007), pp. 1150–1155 (cit. on p. 16).

[46]Kuniaki Noda, Yuki Yamaguchi, Kazuhiro Nakadai, Hiroshi G Okuno, and Tetsuya Ogata.
„Audio-visual speech recognition using deep learning“. In: Applied Intelligence 42.4
(2015), pp. 722–737 (cit. on p. 6).

[47]Maxime Oquab, Leon Bottou, Ivan Laptev, and Josef Sivic. „Learning and transferring
mid-level image representations using convolutional neural networks“. In: Computer
Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on. IEEE. 2014, pp. 1717–
1724 (cit. on pp. 2, 36).

[48]Sinno Jialin Pan and Qiang Yang. „A survey on transfer learning“. In: IEEE Transactions
on knowledge and data engineering 22.10 (2010), pp. 1345–1359 (cit. on pp. 2, 35).

[49]Eric Petajan, Bradford Bischoff, David Bodoff, and N Michael Brooke. „An improved
automatic lipreading system to enhance speech recognition“. In: Proceedings of the
SIGCHI conference on Human factors in computing systems. ACM. 1988, pp. 19–25 (cit.
on pp. 8, 9).

[50]Stavros Petridis, Themos Stafylakis, Pingchuan Ma, et al. „End-to-end Audiovisual
Speech Recognition“. In: arXiv preprint arXiv:1802.06424 (2018) (cit. on p. 13).

[51]Stavros Petridis, Yujiang Wang, Zuwei Li, and Maja Pantic. „End-to-End Multi-View
Lipreading“. In: arXiv preprint arXiv:1709.00443 (2017) (cit. on p. 11).

[52]Prajit Ramachandran, Barret Zoph, and Quoc V Le. „Searching for activation functions“.
In: (2018) (cit. on p. 19).

[53]Rajeev Ranjan, Vishal M Patel, and Rama Chellappa. „Hyperface: A deep multi-task
learning framework for face detection, landmark localization, pose estimation, and
gender recognition“. In: IEEE Transactions on Pattern Analysis and Machine Intelligence
(2017) (cit. on p. 6).

[54]Ahmed Rekik, Achraf Ben-Hamadou, and Walid Mahdi. „A new visual speech recog-
nition approach for RGB-D cameras“. In: International Conference Image Analysis and
Recognition. Springer. 2014, pp. 21–28 (cit. on p. 11).

[55]Frank Rosenblatt. „The perceptron: a probabilistic model for information storage and
organization in the brain.“ In: Psychological review 65.6 (1958), p. 386 (cit. on p. 16).

[56]Sebastian Ruder. „An overview of gradient descent optimization algorithms“. In: arXiv
preprint arXiv:1609.04747 (2016) (cit. on p. 23).

[57]Olga Russakovsky, Jia Deng, Hao Su, et al. „ImageNet Large Scale Visual Recognition
Challenge“. In: International Journal of Computer Vision (IJCV) 115.3 (2015), pp. 211–
252 (cit. on p. 27).

[58]Christos Sagonas, Georgios Tzimiropoulos, Stefanos Zafeiriou, and Maja Pantic. „300
faces in-the-wild challenge: The first facial landmark localization challenge“. In: Com-
puter Vision Workshops (ICCVW), 2013 IEEE International Conference on. IEEE. 2013,
pp. 397–403 (cit. on p. 6).

Bibliography 59

[59]Christos Sagonas, Georgios Tzimiropoulos, Stefanos Zafeiriou, and Maja Pantic. „A
semi-automatic methodology for facial landmark annotation“. In: Computer Vision and
Pattern Recognition Workshops (CVPRW), 2013 IEEE Conference on. IEEE. 2013, pp. 896–
903 (cit. on p. 6).

[60]Cicero dos Santos and Maira Gatti. „Deep convolutional neural networks for senti-
ment analysis of short texts“. In: Proceedings of COLING 2014, the 25th International
Conference on Computational Linguistics: Technical Papers. 2014, pp. 69–78 (cit. on
p. 27).

[61]David Silver, Aja Huang, Chris J Maddison, et al. „Mastering the game of Go with deep
neural networks and tree search“. In: nature 529.7587 (2016), pp. 484–489 (cit. on
pp. 3, 27).

[62]Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. „UCF101: A dataset of 101
human actions classes from videos in the wild“. In: arXiv preprint arXiv:1212.0402
(2012) (cit. on p. 40).

[63]Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. „Dropout: A simple way to prevent neural networks from overfitting“. In: The
Journal of Machine Learning Research 15.1 (2014), pp. 1929–1958 (cit. on p. 25).

[64]Themos Stafylakis and Georgios Tzimiropoulos. „Combining residual networks with
LSTMs for lipreading“. In: arXiv preprint arXiv:1703.04105 (2017) (cit. on pp. 12, 40).

[65]Themos Stafylakis and Georgios Tzimiropoulos. „Deep word embeddings for visual
speech recognition“. In: arXiv preprint arXiv:1710.11201 (2017) (cit. on p. 12).

[66]Ilya Sutskever, Oriol Vinyals, and Quoc V Le. „Sequence to sequence learning with
neural networks“. In: Advances in neural information processing systems. 2014, pp. 3104–
3112 (cit. on p. 12).

[67]Kwanchiva Thangthai, Richard W Harvey, Stephen J Cox, and Barry-John Theobald.
„Improving lip-reading performance for robust audiovisual speech recognition using
DNNs.“ In: AVSP. 2015, pp. 127–131 (cit. on p. 6).

[68]Simon J Thorpe and Michel Imbert. „Biological constraints on connectionist modelling“.
In: Connectionism in perspective (1989), pp. 63–92 (cit. on p. 16).

[69]Tijmen Tieleman and Geoffrey Hinton. „Lecture 6.5-rmsprop: Divide the gradient by a
running average of its recent magnitude“. In: COURSERA: Neural networks for machine
learning 4.2 (2012), pp. 26–31 (cit. on p. 23).

[70]Michael Wand and Jürgen Schmidhuber. „Improving Speaker-Independent Lipreading
with Domain-Adversarial Training“. In: arXiv preprint arXiv:1708.01565 (2017) (cit. on
p. 13).

[71]Gregory J Wolff, K Venkatesh Prasad, David G Stork, and Marcus Hennecke. „Lipread-
ing by neural networks: Visual preprocessing, learning, and sensory integration“. In:
Advances in neural information processing systems. 1994, pp. 1027–1034 (cit. on p. 9).

[72]Yue Wu, Tal Hassner, KangGeon Kim, Gerard Medioni, and Prem Natarajan. „Facial
landmark detection with tweaked convolutional neural networks“. In: IEEE Transactions
on Pattern Analysis and Machine Intelligence (2017) (cit. on p. 6).

Bibliography 60

[73]Kelvin Xu, Jimmy Ba, Ryan Kiros, et al. „Show, attend and tell: Neural image caption
generation with visual attention“. In: International Conference on Machine Learning.
2015, pp. 2048–2057 (cit. on p. 27).

[74]Li Yao, Atousa Torabi, Kyunghyun Cho, et al. „Describing videos by exploiting temporal
structure“. In: Proceedings of the IEEE international conference on computer vision. 2015,
pp. 4507–4515 (cit. on p. 27).

[75]Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. „How transferable are
features in deep neural networks?“ In: Advances in neural information processing systems.
2014, pp. 3320–3328 (cit. on pp. 28, 36, 37).

[76]Richard Zhang, Phillip Isola, and Alexei A Efros. „Colorful image colorization“. In:
European Conference on Computer Vision. Springer. 2016, pp. 649–666 (cit. on p. 27).

[77]Zhanpeng Zhang, Ping Luo, Chen Change Loy, and Xiaoou Tang. „Facial landmark
detection by deep multi-task learning“. In: European Conference on Computer Vision.
Springer. 2014, pp. 94–108 (cit. on p. 6).

Bibliography 61

List of Figures

3.1 The three steps involved when performing automatic lip reading from
recorded video material. 6

3.2 Example frames of the extracted facial landmarks of a subject vocalizing
the letter ‘B’. The subject was instructed to begin and end the vocal-
ization with a closed mouth. Thus, frame 1 and 5 contain the facial
landmarks of a person with its mouth closed. The vocalization takes
place in frames 2 to 4. 7

3.3 Visualization of the landmark coordinate recordings and the distances
calculated. Letters a to l indicate the 12 landmark positions recorded us-
ing a reflective substance and numbers 1 to 14 indicate the 14 distances
calculated using these 12 landmark coordinates. 8

3.4 Examples of frames extracted from a speaker. The y-axis indicates which
number is vocalized and the x-axis indicates the number of milliseconds
passed since the beginning of the vocalization. The first frames are
pictured with 3 frames skipped after every frame. 9

3.5 Neural Network ALR . 10

4.1 A four-layer Multi-Layer Perceptron. A node is shown as a circle and
weights are shown as arrows between nodes. x is the input layer, h are
the hidden layers, and y is the output layer. Layers are numbered with
indice j, and nodes in any arbitrary layer j are numbered with indice
i. Nodes in any layer j except the input layer j = 0 receive their input
from all nodes in the previous layer j−1 and forward their output to all
nodes in the next layer j + 1. Moreover, each node performs a certain
activation function on the input before forwarding it to the next layer. . 17

4.2 Schematic visualization of the mechanics within a single node in an
MLP. The node i in arbitrary layer j receives the activations from all
nodes in the preceding layer j−1, [x0, x1, ..., xn] via their corresponding
weights [w0, w1, ..., wn]. Subsequently, node i computes its output, given
a predefined activation function f . 18

62

4.3 A visualization of the chain rule. The arrows pointing right represent
the values being forward propagated during a forward pass. The ar-
rows pointing left represent the gradients that are computed during a
backward pass. The gradient of E w.r.t. node aj , and the gradient of
node aj w.r.t. weight wij , are assumed to be computed. The gradient of
E w.r.t. wij can be computed by the chain rule as shown. 21

4.4 Dropout with p = 0.5 applied to the two hidden layers in the MLP
shown in Fig. 4.1. Note that when dropout is applied to a layer, the
nodes chosen to be deactivated are randomly chosen every iteration. . 25

4.5 A CNN with three layers of convolution and pooling, and two fully
connected layers. The convolutional layers are indicated with c1, c2,
and c3. The pooling layers are indicated with p1, p2, and p3. As
illustrated, the convolutional layers extract multiple representations
from their respective inputs, and the pooling layers reduce the size of
said representations. 26

4.6 A visualization of the connections in a convolutional layer (right), in
relation to the connections in a fully connected layer (left). 28

4.7 A visualization of the max pooling operation. The pooling factor in both
the x and y dimension the pooling operation is applied with a factor of 2. 29

4.8 The general architecture of an RNN. Both are visualizations of the same
architecture: on the left the folded visualization is shown, and on the
right the unfolded visualization is shown. 32

4.9 The general architecture of an LSTM cell. The white circles indicate mul-
tiplication or addition operations, and the rectangles indicate activation
functions. 34

5.1 Sample frames of a video in the LRW dataset. The blue boxes indicates
the area that was used for the mouth crop video. 39

5.2 Sample frames of the two classes from the UCF-101 dataset we used.
The top row shows three frames from a video in the ‘bodyweight squat’
class, and the bottom rows shows three frames from a video in the
‘hulahoop’ class. 40

5.3 The pair-wise comparison between the models in all nine conditions of
Experiment 1.1. Note that the y-axis for SGD ends at 1000, while the
others end at 100. 44

5.4 The pair-wise comparison of the decrease in loss between the models
per optimizer in experiment 1.2. 46

5.5 The comparison of decrease in loss between the optimizers per model. 46
5.6 The decrease in loss for the 3DCNN and the LSTM in Experiment 1.3.

The 3DCNN needs only approximately 10 epochs to converge, while
the LSTM takes approximately 90. It should be noted that the 3DCNN
needs more time per epoch than the LSTM, as can be seen in Table. 5.3. 47

List of Figures 63

5.7 The decrease in loss value for the 3DCNN and LSTM in experiment 2.2. 49
5.8 The the decrease in loss for all of the conditions in Experiment 2.1.

On the left the training set size per class is indicated, and at the top
it is indicated which model is used. Each graph contains the three
conditions: Scratch is when a model was trained from scratch, Tune
Layer means transfer learning was applied but only the parameters in
the last layer were fine-tuned, and Tune All means transfer learning
was applied and all parameters in the model were fine-tuned. 50

List of Figures 64

List of Tables

4.1 Difference of conventional machine learning in relation to several trans-
fer learning varieties. 35

4.2 The different approaches to transfer learning. 36

5.1 The models used for the three experiments in Experiment 1. The
numbers in parentheses in the ‘Model’ column indicate the number of
feature maps every layer in the CNN extracts, or the output vector size
in each layer in the RNN/LSTM. 41

5.2 Test set accuracy and training time results of the reduced size data
experiments of experiment 1.2. 45

5.3 The test set performance, training time, and time per epoch in the full
size mouth crop video experiment of experiment 1.3. 46

5.4 Test set accuracy for all conditions of experiment 2.1. The number on
the left indicates the training set size per class. 48

5.5 Test set accuracy for all conditions of experiment 2.2. 49

65

Colophon

This thesis was typeset with LATEX 2ε. It uses the Clean Thesis style developed by
Ricardo Langner. The design of the Clean Thesis style is inspired by user guide
documents from Apple Inc.

Download the Clean Thesis style at http://cleanthesis.der-ric.de/.

http://cleanthesis.der-ric.de/

	Cover
	Titlepage
	Abstract
	1 Introduction
	2 Problem Statement
	2.1 Research Questions

	3 Automatic Lip Reading
	3.1 Relevance
	3.2 History
	3.3 Current State

	4 Neural Networks
	4.1 Multi-Layer Perceptron
	4.2 Convolutional Neural Network
	4.3 Recurrent Neural Network
	4.4 Transfer Learning

	5 Experiments
	5.1 Datasets
	5.2 Methods
	5.3 Results

	6 Discussion
	6.1 Findings
	6.2 Conclusions

	Bibliography
	Colophon

