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Chapter 1

Introduction

Health care is coming to a new era. Now that technology has advanced, able to handle large amounts of
data, and we collect more and more biomedical data, new opportunities and challenges rise in health care
research (Miotto et al., 2017). Examples of these biomedical data sources are clinical imaging, electronic
health records (EHRs), genomes, and also wearable devices. This data can be used to develop reliable
medical tools, for example decision support systems for physicians. Next to this application of the data,
new discoveries in health care can be made by exploring the associations among all these data sources.
One of the areas where health care is getting more advanced is the automated drug dosing of intensive
care unit (ICU) patients. There are several issues that should be addressed and machine learning can
be a great tool to do so. These issues are discussed in the following paragraphs.

High heterogeneity in patient response. Every human body is different and therefore every patient
can respond differently to certain medication. The Target Controlled Infusion (TCI) system that is used
to control the infusion rate of drugs relies on a precomputed drug-patient interaction model. These mod-
els, also known as pharmacokinetic/pharmacodynamic (PK/PD) models, characterize the distribution
of the drug within the body (pharmacokinetics), as well as the effect of the drug (pharmacodynamics).
PK/PD models are developed based on trials with patients that do not necessarily fit all the target
patient’s characteristics but only some patient-specific parameters, which can include gender, height,
weight, and age, which have to be provided by the clinician (Moore et al., 2004). Although this system
has showed a positive effect in comparison to manual control, for example at the infusion of Propofol for
Direct Laryngoscopy and Bronchoscopy (Passot et al., 2002), there are a lot of improvements that can
be made.

The use of TCI is not recommended for the paediatric population as there are still hardware limi-
tations, lack of integrated PK/PD studies and target monitoring issues (Anderson, 2010; Anderson &
Hodkinson, 2010). Currently, most of the TCI systems perform open-loop control, which means the
system is not equipped with a feedback mechanism of the patient’s reaction. Current research of closed-
loop TCI systems is mostly about sedation of the patient and uses the bispectral index (BIS) as the
control variable (Moore et al., 2004). In neonatal care closed-loop systems are used for oxygen titration
to automatically stay within the target range of oxygen saturation measured with pulse oximetry (van
Zanten, 2017). When it comes to a feedback system that includes the combined effect of multiple medi-
cations, more variables should be included that can provide feedback about the patient’s response. By
better phenotyping of patients, using a combination of multiple biomedical data sources, personalized
treatments can be improved (Silverman & Loscalzo, 2013).

Mismanagement of drugs. Drug dosing is complex for adults, but even more complex for newborns.
Newborns have a delayed absorption of gastric emptying, lower renal and liver activity than adults and
a body composition of 80-90% water (Bressan et al., 2013). This makes that they react different to
medicine than adults. There is a lack of evidence to support most of the medication use in neonates:
often there is no reference standard for doses of off-label and unlicensed medication while they are being
used for neonates (Chedoe et al., 2007). Next to this, neonates are not a homogeneous group, because
they are born at different gestational ages and their weight and length vary widely. These issues can lead
to mismanagement of drugs where the newborns receive an incorrect dose. This may cause short-term
side effects and potentially has irreversible damage that has not been reported in the literature for lack
of prospectively collected data (Bressan et al., 2013).

7
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Figure 1.1: Design cycle (J. Wieringa, 2014)

High treatment costs. Next to the improvements to the patient’s health the optimization of drug
dosing also has the potential to lower costs. First, the treatment costs that include the amount of
medicine used can be lowered. For example, the costs that are caused by the overdosing of patients
that do not respond to medicine. One research mentioned that an optimal policy for erythropoietin
(EPO) dosage can save between 100 and 200 Euro per patient per year (Mart́ın-Guerrero et al., 2009).
Secondly, the hospital invests a considerable amount of money in alleviating side-effects directly related
to the treatment. Therefore, reducing side-effects by lowering medication dosing could save money.
And finally, mismanagement of drugs can lead to unnecessarily extending a patient’s length of stay in
the hospital. All these factors can generously reduce costs for a hospital with thousands of patients a year.

It is clear there are multiple opportunities to use machine learning to improve the patient’s quality-
of-life and reduce costs of treatment in the hospital. Although these opportunities are applicable to
machine learning in general, this research will use a specific type of machine learning: reinforcement
learning. Reinforcement learning is a computational approach to learning by interacting with our en-
vironment, which is neither supervised or unsupervised. It can be thought of as the nature of learning
for humans. The machine is not told what actions to take, but tries different actions and assesses the
rewards of those actions. The ultimate goal for the machine is to take the actions that maximise the
future reward. The reinforcement learning problem is extensively described by Sutton & Barto (1998)
who are the primers in this field. Section 2.2 will explain reinforcement learning, and it’s advantages and
challenges.

Sepsis is a life-threatening complication of an infection, occurring when the body is trying to fight
the infection. Adults and neonates on the intensive care unit are susceptible for sepsis as their body’s
defence system is affected. This research will focus on neonatal late-onset sepsis, which is explained in
Section 2.1. The goal of this research is to improve the treatment of late-onset neonatal sepsis at the
NICU department of the Leiden University Medical Centre. This research attempts to make improve-
ments by earlier detection of sepsis and optimizing antibiotics dosing.

1.1 Research Questions

After having discussed problems around drug dosing of intensive care unit patients and previous research
to the implementation of reinforcement learning at the intensive care unit to solve these issues, we in-
troduce the following research question that is leading in this work:

Research Question: How can reinforcement learning optimize the treatment policy of premature
neonates in neonatal care?

To answer this main research question five sub questions will be investigated. In this section the re-
search methodology will be presented by using the design cycle as proposed by J. Wieringa (2014). The
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design cycle (shown in Figure 1.1) is part of the engineering cycle, a rational problem-solving process
with five tasks, which will be described in hereafter. The first step of the design cycle is the problem
investigation. The problem to be treated will be investigated using the following question:

Question 1: What is the current treatment policy of premature newborns in neonatal care?

First the stakeholders and their goals have to be identified. Thereafter, the problem is investigated,
by describing the phenomena, defining how and why it is caused, and evaluating and explaining the ef-
fects on the stakeholders’ goals. There are many ways to investigate the problem, of which the following
will be used in this research:

• Literature research: extracting information from scientific, professional and technical literature.
The research will be done by manual search, in the following topics: Reinforcement Learning,
Neonatal Intensive Care Unit, Personalized Treatment, Health Care Analytics, Biomedical Infor-
matics, Drug Dosing Optimization.

• Case study: one case is studied in depth, using multiple data sources, to obtain a detailed insight
into the problem environment. In this research the case will be at the neonatology department
of the Leiden University Medical Center. The prediction of sepsis occurrence at the neonatal
intensive care unit will be investigated. The case study will be of a descriptive nature: it illustrates
the problem that is occurring and discusses how the stakeholder perceive it. In order to examine
the problem, two data sources will be collected:

1. Interviews: a couple of experts will be asked questions about the area of interest in the
research. The interview questions are based on the research question and will be open in
order to get a better understanding of the phenomena.

2. Attendance at the nurse transfer meetings: during this research the researcher will attend the
meetings that clinicians have in the morning to discuss how the night shift went and what is
planned for the day. By attending these meetings approximately once a week the researcher
is able to gain knowledge about the daily issues the nurses at the neonatal intensive care unit
face, without interfering with their daily routine.

3. Archichal Data: data that is already collected by the organization. In this case the medical
data about the patients, for example from monitoring equipment or laboratory results, that
are stored by the hospital. The data will be anonymized in order to protect the privacy of
the patients. The data is described in ??.

The next phase of the design cycle is treatment design. During this phase multiple artifacts are designed
in order to answer the following research questions:

Question 2: How can reinforcement learning analyse the current treatment policy?

Question 3: How can reinforcement learning be used to optimize the treatment policy?

Question 4: How does the learned policy compare to the current policy?

In this research two machine learning algorithms will be presented and compared. The process of
designing a machine learning algorithm can be visualized by the CRISP-DM Reference Model (CRoss-
Industry Standard Process for Data Mining, introduced by Shearer (2000)). Similar to the Design Cycle
by Wieringa, the CRISP-DM model is circular and multiple iterations of the steps will be performed.
Although some steps might seem similar, for example the Treatment Validation from the Design Cycle
and the Evaluation step in the CRISP-DM model, the scope in which both models will be used is dif-
ferent. Where the Design Cycle is used as a model for the complete research, the CRISP-DM model
describes only the processes within the Treatment Design phase of the Design Cycle.

The CRISP-DM model (Figure 1.2) defines the process into six phases (Shearer, 2000):

• Business understanding. In the first phase the problem determined in the Problem Investigation
step of the design cycle has to be converted into a data mining problem. The treatment require-
ments will be defined, which are the desired properties of the to-be-designed treatment (as described
by J. Wieringa (2014)). These can be functional requirements, which are requirements for desired
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functions of the artifact, or nonfunctional requirements, which are requirements that have a speci-
fied nonfunctional property. A nonfunctional property, sometimes called a quality property, is any
property that is not a function, for example utility, accuracy, efficiency, security, reliability and
usability. The business understanding is presented in Section 3.1.

• Data understanding. The data understanding phase consists of collecting the initial data, describing
and exploring the data and verifying the quality of the data. For the data describing step the
hospital will provide a database description and the support of a medical PhD that can explain
the semantics of the data. The results of this step will be presented in Section 3.2.

• Data preparation. In this phase the data will be selected, cleaned, constructed, integrated and
formatted. This is critical for health care data as it is highly heterogeneous, ambiguous, noisy and
often incomplete (see Section 2.2.1). Selecting what data to use is important to reduce the dimen-
sionality of the data. Data cleaning includes getting rid of errors and the removal of redundancies.
Data preprocessing consists of renaming, rescaling, discretization, abstraction, aggregation and
adding new attributes. These transformations can be automated. The results of this step will be
presented in Section 3.2.

• Modeling. After the data is prepared the modeling phase starts. First, the appropriate modeling
technique has to be selected which can satisfy the requirements. In this research reinforcement
learning is the chosen type of machine learning. Different versions of reinforcement learning will be
generated and assessed. During the modeling phase it might be necessary to step back to the data
preparation phase, for example to adjust the data formatting. The modeling phase is described in
Section 3.3.

• Evaluation. This step assesses if the model meets the business objectives that were discovered in
the first phase (and presented in Section 3.1). Next to this, the model might be tested on real-world
applications to see if implementation would positively influence the business problem. The whole
process has to be reviewed to see if no mistakes are made when creating the model. Evaluation of
the process can be found in Chapter 4.

• Deployment. The last phase of the data mining process is the deployment of the created model.
The size and importance of this phase in the process depends on the requirements. In this step
it has to be planned how to deploy the model, and how to monitor and maintain the deployment
after implementation. This should all be recorded in a final report. Possible deployment of the
model is presented in Section 5.1.4.

During the last phase of the design cycle, treatment validation, the following research question will be
investigated:

Question 5: How can the reinforcement learning implementation improve the clinicians decision mak-
ing?

The validation of a treatment is to assess if the designed artifact would contribute to the stakehold-
ers’ goals that are defined during the problem investigation phase. The goal is to predict what effect the
artifact has on it’s environment, before implementing it in the real-world. There are many methods to
validate an artifact:

• Expert Opinion: The artifact is presented to a panel of experts, who will conceptualize how the
artifact will interact with the problem and predict what effects it would have.

• Single-Case Mechanism Experiment : The artifact will be validated by feeding it test scenarios
(from archichal data) and observing the responses.

• Technical Action Research: The artifact is validated like a single-case mechanism experiment, but
in a real-world scenario to help the client.

• Statistical Difference-Making Experiments: The artifact is validated by comparing average outcome
of treatments to different samples.

For this particular research the first two are considered to be within the scope of this research. In
Chapter 5 it will be explained why these validation methods are different for reinforcement learning in
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relation to other machine learning algorithms or predictive models. The latter two methods can only
be conducted if the first two methods indicate the algorithm generates a positive effect on the problem
environment.

The next phase of the full engineering cycle is the treatment implementation, where the problem is
to be treated with one of the designed artifacts. This phase should not be confused with the model
implementation phase of the CRISP-DM process. The implementation of a treatment is defined as “the
application of the treatment to the original problem context”, in this case the usage of the machine
learning algorithm in practice.This is not feasible, as this research investigates a problem that affects
human beings in a hospital setting. Therefore, the algorithm has to be extensively tested before it can
be implemented, which is not part of the scope of this research project.

The final phase is the implementation evaluation in which it is evaluated wheter the treatment has
been successful. This can be investigated the same way the problem investigation was done, by letting
the stakeholders in the field assess how the treatment influences the real-world problem. As the treat-
ment will not be implemented in practice, this step will be left out as well.

This research project will be restricted to the first three tasks and will therefore use the design cy-
cle (shown in Figure 1.1) instead of the full engineering cycle.



Chapter 2

Background and Related Work

This chapter will discuss literature on the subjects that are relevant for this research:. The first section
investigates the problem to be treated in the neonatal intensive care unit (NICU). The second section
will explain the type of machine learning we will use to treat the problem: reinforcement learning (RL).
Thereafter we mention related work that used reinforcement learning in healthcare. Finally, we introduce
literature about clinical decision support systems (CDSS).

2.1 Neonatal Intensive Care Unit

The Neonatal Intensive Care Unit takes care of preterm infants, who are born before the gestational age
of 37 weeks, and sick a-term born newborns that need hospitalization. According to the World Health
Organization (2017) every year approximately fifteen million preterm babies are born worldwide, which
is more than one in ten babies . For the last 15 years in The Netherlands on average 7 to 8 % of all
newborns are born preterm (De Staat van Volksgezondheid en Zorg, 2017). Since 2010 newborns from
the gestational age of 24 weeks are treated according to the Perinatal Policy at Extreme Preterm Birth
(Nederlandse Vereniging voor Kindergeneeskunde, 2010).

The first two years. Currently a heated discussion is going on whether extreme premature newborns
of the age of 24 or 25 weeks should be treated, after research showed the development of the 185 preterm
newborns that were born in the first year after the new policy was introduced. This research (De Kluiver
et al., 2013), involving all ten NICUs in The Netherlands, was first published in 2013 and showed that the
survival rate of the group of the 185 preterm newborns was 43% at 24 weeks and 61% at 25 weeks. After
two years the researchers did a follow-up research (Aarnoudse-Moens et al., 2017) where they tested the
development of 78 of the 95 infants that were still alive at the age of two years. Overall, only one fourth
of the 185 preterm born infants grew up to be a healthy two year old without any impairments. Due to
medical technological advancements preterm newborns can be treated at a younger gestational age, and
chances of survival have grown during the last couple of years, but still doctors cannot predict which
newborn will survive and if they will grow up to be a healthy child.

Adult life. In The Netherlands there is a long term project running for over 30 years called POPS
(Project On Preterm and Small for gestational age infants) (TNO, 2017). A cohort of 1.338 infants
born in 1983 at the gestational age of less than 32 weeks and/or with a weight less than 1500 grams has
been investigated after birth and at the age of 19, 28 and 30+ years. Some of the conclusions of the
POPS-19 research are: (1) one third of the original group from 1983 died before reaching the age of 19,
(2) one third of the survivors has severe problems, one third has small problems and one third has no
problems as a consequence of the prematurity, and (3) a quarter of the surviving group had to follow
special education. At this moment the research group is applying for funding to perform the 30+ study.

2.1.1 Sepsis

“The term neonatal sepsis is used to designate a systemic condition of bacterial, viral, or fungal (yeast)
origin that is associated with haemodynamic changes and other clinical manifestations and results in
substantial morbidity and mortality” (Shane et al., 2017). Neonatal sepsis can be classified as either
early-onset sepsis, which usually appears within the first 72 hours of life, or late-onset sepsis (LOS),
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which occurs beyond 3 to 7 days of age. The focus in this research will be on the prediction of late-onset
sepsis in order to timely start the treatment and limit short and long term effects.

Early-onset sepsis. An early-onset sepsis is usually caused by bacteria in the placenta or in the uterus
from the vaginal environment following membrane rupture, or by pathogenix bacteria during the passage
through the birth canal. The most common bacteria associated with EOS are Streptococcus agalactiae
(GBS) and Escherichia coli (Shane et al., 2017).

Late-onset sepsis (LOS). Late-onset sepsis is attributed to organisms acquired from interaction with
the hospital environment. The main causative micro-organisms are Gram-positive organisms, including
coagulase-negative staphylococci and streptococci. LOS occurs more often for premature born infants,
as they usually require a longer hospitalization, more invasive interventions, surgery and respiratory
support. Because of the strong affects of sepsis on neonates it is important to recognise developing sepsis
early. The frequency and severity of apnea (see Section A.1.1) is mentioned in research as one of the signs
of a developing sepsis, but this is not a good predictor as it can be also present in non-septic preterm
infants with other complications. Next to this, the vital signs that can imply sepsis but not exclusively
are respiratory rate, temperature, blood pressure and heart rate.

Proven vs Clinical sepsis. Within the definition of late-onset sepsis, there is a difference between
clinical sepsis and culture-proven sepsis. In other research (Griffin et al., 2007) proven sepsis is defined as
“clinical signs of sepsis and a positive blood culture prompting five or more days of antibiotic therapy”
and clinical sepsis as “clinical signs of sepsis with a negative blood culture prompting five or more days
of antibiotic therapy”. In this research they defined a Clinical Illness Score to identify clinical signs of
sepsis. The candidate findings that appeared in the final score were:

• Severe apnea requiring positive pressure ventilation or 50% increase in apneic episodes over 24h in
an extubated infant stable for three days;

• increased ventilatory support and FiO2 by 25%;

• temperature instability (> 38◦C or < 36.2◦C) twice in 8 hours;

• lethargy or hypotonia;

• feeding intolerance (feedings held for > 24h) in an infant tolerant of advancing or full feeds for 3
days;

• immature/total neutrophil (I:T) ratio > 0.2;

• white blood cell count > 25, 000 or < 5, 000/mm3;

• hyperglycemia (> 180 mg/dL).

Sepsis protocol (LUMC). The NICU department of the LUMC has a written treatment policy,
visualized in two charts, for the use of antibiotics when an infection is suspected. The first part of
the treatment is deciding which medication has to be used, based on how long the infant has been
hospitalized and additional research. This process is visualized in a flow chart (Figure 2.1). After two
days the blood cultures are evaluated in order to decide whether to continue the antibiotics or end the
treatment (Figure 2.2).

2.1.2 Sepsis prediction

Using different machine learning algorithms to predict late-onset sepsis from off-the-shelf medical data
has showed to be successful (Mani et al., 2014). The predictive models developed exceeded the treatment
sensitivity and specificity of clinicians.

Heart Rate Characteristics (HRC). Multiple studies found that reduced variability and transient
decelerations of the heart rate both indicate a high chance of sepsis (Moore et al., 2011; Griffin et al.,
2007). The heart rate characteristics index (HRC-index) takes the variability and decelerations of the
heart rate into account and was used to calculate the risk of a neonate developing sepsis in the next 24
hours. Looking at the HRC-index is not fully reliable though, since not only infectious causes (including
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How long has the infant been hospitalized?

< 72hours ≥ 72 hours

On request

- Sputum

- Liquor

- X-BOZ (abdominal x-ray)

- Viral

Additional examination:

- Complete blood count

- C-reactief protein (CRP)

- Blood cultures

Treatment

Sepsis/pneumonia

- Amoxicilline, Gentamicine

Central line infection or phlebitis

- Add Vancomycine

Meningitis

- Amoxicilline (high dose),

Ceftazidim

Necrotising Enterocolitis (NEC)

- Amoxicilline, Gentamicine,

Metronizadol

Treatment

Sepsis/pneumonia/meningitis

- Vancomycine, Ceftazidim

one time Gentamicine

Necrotising Enterocolitis (NEC)

- Amoxicilline, Gentamicine,

Metronizadol and one time

Gentamicine

Additional examination:

- Complete blood count

- C-reactief protein (CRP)

- Blood cultures

- Urine sediment and cultivation

On request

- Urine

- Sputum

- Liquor

- X-BOZ (abdominal x-ray)

- Viral

Figure 2.1: Antibiotics policy
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Evaluation of blood culture results

No growth Growth

CNS sepsis

- If no suspicion of contamination:

Vancomycine mono-theraphy

- If lines/IV: Vancomycine until 3

days after removal of lines, if

clinical improvement and lowered

CRP

Clinical signs of sepsis?

Yes No

7 days of

antibiotics
stop antibiotics

Figure 2.2: Evaluation of blood culture results

LOS) are associated with a high score on the HRC-index. Other causes for a high HRC-index are surgery,
acute respiratory deterioration without infection, or no apparent clinical correlation at all (Gilfillan &
Bhandari, 2017).

Oxygen saturation. Preterm infants often need supplemental oxygen for a prolonged period. Mon-
itoring the arterial oxygen saturation is mostly performed using pulse oximetry, by analysing the sat-
uration (SpO2). Because the therapeutic ranges for oxygen therapy in preterm infants are very small,
preterm infants are regularly exposed to hypoxemia or hyperoxemia (van Zanten et al., 2015). Hypoxemia
(or hypoxia) is a decrease in blood saturation (SpO2) of ≤ 80% for ≥ 10 seconds. It is called hyperoxemia
(or hyperoxia) when the blood saturation (SpO2) is ≥ 95% for ≥ 10 seconds. Hypoxemia leads to an
increased risk of several morbidities, including retinopathy of prematurity (ROP), impaired growth, long
term cardio-respiratory instability, and adverse neurodevelopmental outcome. Hyperoxemia increases
the risk of high oxygen levels, which is toxic to cells and an important risk factor for the development of
bronchopulmonary dysplasia and ROP (Saugstad & Aune, 2011), and is associated with cerebral palsy
(Askie et al., 2011). Therefore, the target range for SpO2 in preterm infants is usually set at 85%− 95%
(van Zanten et al., 2015).

The fraction of inspired oxygen (FiO2) is manually or automatically titrated to maintain the SpO2

within the target range, while trying to avoid hypoxemia and hyperoxemia. However, premature infants
frequently have fluctuations in SpO2 due to respiratory instability and immaturity, and require continuous
titration of FiO2 Claure & Bancalari (2015). Several studies have shown that automatic FiO2 control
improved the time within the target range by reducing the occurrence and duration of hyperoxemia, but
it has only little effect in reducing hypoxemia (van Zanten et al., 2015; Van Kaam et al., 2015). Periods
with hyperoxemia occur mostly when oxygen is increased for ABCs (occurrence of Apnoea, Bradycardia,
and Cyanosis, which are explained in Appendix A). In those cases, the hyperoxemic periods last longer
than the duration of bradycardia and hypoxemia. A study tried to lower the periods of hypoxemia by
narrowing the target range from 85% − 95% to 90% − 95%. They found an increase in median SpO2

and a rightwards shift in the distribution of SpO2. However, no change was found in time spent between
90% and 95%, and in frequency and duration of hypoxemic events (van Zanten et al., 2017).

Since nearly all preterm infants need supplemental oxygen, the SpO2 is constantly measured. When
a neonate is developing sepsis, often the frequency of apnoea episodes increases. When this happens, the
SpO2 will decrease more often than normally. Since the SpO2 is constantly monitored, fluctuations in
SpO2 may be a predictive factor for late onset sepsis.
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Artemis project. One of the first and biggest data analytics projects in neonatal care is Artemis
(Catley et al., 2010), which is a framework for the real-time analysis of times series physiological data
streams from multiple devices for multiple patients. It employs IBM’s InfoSphere Streams, which is a
software platform that enables the development and execution of applications that process information
of multiple streams of high volume and high rate data. It combines data streams from physical monitor
devices as well as from the hospitals Clinical Information Management System (CIMS), the Electronic
Health Record (EHR) and Laboratory Information Systems (LIS). This platform can be used to detect
clinically significant conditions based on real-time and retrospective analysis in order to support clinical
decision making. In past research it has been used to detect apnea (Catley et al., 2010), changes in
sleep-wake cycling (Eklund et al., 2014), retinopathy of prematurity (Courtney et al., 2013), neonatal
spells (Thommandram et al., 2014), late-onset neonatal sepsis (McGregor et al., 2012), and pain (Naik
et al., 2013).

Complications of preterm birth. There are many complication that newborns can have as a result of
preterm birth. Appendix A explains some complications to the respiratory system and the cardiovascular
system, and also describes the most common treatments for these complications.

2.2 Reinforcement Learning

Agent

Environment

actionstate
reward

Figure 2.3: Reinforcement Learning

The RL problem can be represented in a diagram which contains five elements (Figure 2.3). The agent is
the learner that selects the actions to take. It interacts with the environment, which contains everything
outside the agent. From the environment the agent receives a numerical reward and a new representation
of the environment’s state. Next to the agent and the environment, there are four main elements of a
reinforcement learning system:

• Policy : A stochastic rule by which the agent selects actions as a function of states, or the agent’s
behaviour function. It corresponds to what for humans would be called a set of stimulus-response
rules or associations.

• Reward function: It maps states with rewards of being in that state, indicating the intrinsic
desirability of the state in an immediate sense. In the biological system this relates to pleasure and
pain. The policy can be dependent of the reward function.

• Value function: A prediction of future reward, or the amount of reward an agent can expect to
accumulate over the future starting from that state. It indicates the long-term desirability of states
after taking into account the states that are likely to follow.

• Model : mimics the behaviour of the environment. It predicts the next state and next reward given
a state and action. Models are used for planning, which means deciding the course of action by
considering future states before they happen.

When implementing reinforcement learning a couple of choices have to be considered, which will be
discussed in the following sections.
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Exploration vs Exploitation

One of the challenges of reinforcement learning is the trade-off between exploration and exploitation
(Sutton & Barto, 1998). Exploitation is making the best decision given the current information the agent
has retrieved using the greedy strategy. But how does it know that there might not be a better decision,
given that he did not exhaust all of the possible options (which might not be possible in problems with
a large action and state space set)? It doesn’t, therefore it also has to explore other options, because the
best long-term strategy may involve short-term sacrifices. The agent has to gather sufficient information
to make the best overall decision. One approach to handle this problem is the epsilon-greedy strategy,
which selects a random action on a fraction ‘epsilon’ of the time steps. The balance between exploration
and exploitation is important in the case of modelling a medication treatment as the best policy does not
only rely on the patient’s outcome (improving health), but also on the amount of medication given to the
patient. As medication can have side effects one of the goals is to give the lowest amount of medication
that would still improve the patient’s health.

On-policy vs Off-policy

An on-policy method estimates the value of a policy while using it for control, while in off-policy methods
these are separates (Sutton & Barto, 1998). In off-policy methods the estimation policy, the policy that
is evaluated and improved, can be unrelated to the policy used to generate behavior, called the behavior
policy. The advantage of this is that the behavior policy can continue to explore all possible action even
if the estimation policy is deterministic. In this research both on-policy and off-policy methods are used.
The on-policy method is used to evaluate the clinicians policy based on historical data. For this we
use Sarsa, an on-policy temporal difference control method (Sutton & Barto, 1998). Sarsa stands for
st, at, rt, st+1, at+1), which reflects the value (reward) of the transition from state-action pair to state-
action pair. For the off-policy TD control algorithm we use Q-learning as developed by Watkins & Dayan
(1992). In this case the learned action-value function Q directly approximates the optimal value function
regardless of the actions taken in the current policy that is being followed.

Discrete vs Continuous Spaces

Estimates of value functions for discrete state and action spaces are represented as a table with one
entry for each state-action pair. This is limited to tasks with a small number of states and actions, but
cannot be used for when action or state spaces are continuous. Building large tables would require a lot
of memory and time to fill them in, and the learner will encounter states it has not experienced before.
Therefore some sort of generalization has to be formed, where previously experienced states can produce
a good approximation of ones that have not been seen yet. A method to generalize from examples that
can be used in RL is supervised-learning function approximation, where each backup is treated as a
training example. Using continuous state-space models to capture a patient’s physiological state allows
for discovery of high-quality treatment policies (Raghu et al., 2017).

Online vs Offline

There are two different ways of making updates when computing the value function. In online updating,
the updates are done during the episode as soon as the increment is computed. In offline updating, on
the other hand, the increments are accumulated ’on the side’ and not used to change value estimates until
the end of the episode. Applying reinforcement learning to optimize treatments using offline sampled
data can be a challenge, as models can only be fit to a retrospective dataset (Raghu et al., 2017).
Exploration of state spaces is limited to those that already exist in the dataset, which makes learning
the truly ’optimal’ policy for a new patient difficult.

Feature selection vs Autoencoding

An important part of developing a reinforcement learning model, or any model, is the selection of features
that are the best predictors. An autoencoder is a neural network that represents the data as a function
of the input data. It is forced to prioritize the features of the input data that best represent the data and
are therefore most useful (LeCun et al., 2015). Especially in healthcare this is a challenge as the patient’s
state can be represented as a high dimensional continuous vector without clear structure (Raghu et al.,
2017). One approach is that of the Deep patient, where the patient is represented by a set of general
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features, which are inferred automatically from a large-scale EHR database processed by a deep neural
network composed of a stack of denoising autoencoders (Miotto et al., 2016).

2.2.1 Challenges

When applying machine learning to health care, there are some challenges to face (Miotto et al., 2017).
Some of the challenges are not specific to the domain of health care, but are also common for other
industries, for example the challenge of data volume and temporality. Next to this, data quality is an
important challenge as health care data are highly heterogeneous, ambiguous, noisy and incomplete.
Two challenges that require specific attention when handling healthcare data are:

Domain complexity. Problems in biomedicine and health care are complicated. The diseases are
highly heterogeneous and for most of the diseases there is still no complete knowledge on their causes
and how they progress. There are four challenges when modelling patient-level healthcare time series
data (Pham et al., 2016):

• Long term dependencies: future illness may depend on historical illness, and often effects of treat-
ment cannot be immediately detected.

• Representation of admission: an admission episode consists of a variable-size discrete set containing
diagnoses and interventions.

• Episodic recording and irregular timing: hospital admissions vary in size and only portray a specific
time episode in a patients life, ranging from days to weeks.

• Confounding interactions between disease progression and intervention: medical records are a mix-
ture of the course of illness, the developmental and the intervening processes.

Interpretability. In health care, not only the quantitative algorithmic performance is important, but
also the reason why the algorithm works is relevant. This can be hard to explain when using deep
learning models that are often described as ‘black boxes’. The interpretability is crucial when convincing
a clinician to take actions recommended by a predictive system. Clinicians are held accountable by law
and by the GMC (Rocheteau, 2012): they can only carry out a recommendation if they can justify that
decision to themselves. Therefore the clinical decision support system should be able to communicate
the reasoning behind their recommendation.

2.2.2 Advantages of RL

There are a couple of advantages of reinforcement learning that can address some of these challenge
mentioned before and that make it suitable to use with health care data.

Long term effect. RL can handle sequential data where there is no one-to-one correspondence between
actions and outcomes. This makes reinforcement learning well-suited for the analysis medication dosing
data, where multiple treatments are performed and effectiveness cannot be immediately detected (Nemati
et al., 2016). The optimization process is made over sequences of doses instead of isolated doses, which
is crucial to include the drug long-term effects (Escandell-Montero et al., 2014).

No ground truth needed. The RL agent can learn from suboptimal examples, because it learns in
a natural way where it does not require prior knowledge of optimal performance in the form of a model
(Mart́ın-Guerrero et al., 2009). No ground truth is needed of a what is a ‘good’ treatment (Raghu et
al., 2017). Because the agent does not learn via ‘scripted’ observation/action sequences, the likelihood
of developing a brittle, overtrained controller is reduced, resulting in more generalized control that is
better equipped to handle uncertainty and variability (Moore et al., 2011).

2.3 Reinforcement Learning in Healthcare

This approach is inspired by research paper Continuous State-Space Models for Optimal Sepsis Treatment
- a Deep Reinforcement Learning Approach (Raghu et al., 2017). In this paper a new approach is
proposed to deduce optimal treatment policies for septic patients by using continuous state-space models
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and deep reinforcement learning. The network architecture used in this model is a Dueling Double-Deep
Q Network (Dueling DDQN) with two different latent state representations as inputs: one created by
ordinary autoencoders and one created by sparse autoencoders. For the action spaces they defined a 5 x
5 action space for the medical interventions covering the space of intravenous (IV) fluid (volume adjusted
for fluid tonicity) and maximum vasopressor (VP) dosage in a given 4 hour window. Evaluation of the
proposed model on past ICU patient data showed that the model could reduce patient mortality in the
hospital by 1.8 - 3.6%, over observed clinical policies, from a baseline mortality of 13.7%. It must be
noted that this research is applicable to intensive care unit patients of at least 15 years old and does not
include the neonatal patients.

Another research that discusses the implementation of reinforcement learning to the intensive care
unit is A Reinforcement Learning Approach to Weaning of Mechanical Ventilation in Intensive Care
Units (Prasad et al., 2017). This work aims to develop a decision support tool that uses available patient
information to predict time-to-extubation readiness and recommend a personalized regime of sedation
dosage and ventilator support. They used off-policy reinforcement learning algorithms to determine the
best action at a given patient’s state from sub-optimal historical ICU data. They compared treatment
policies from fitted Q-iteration with extremely randomized trees and with feed forward neural networks.
The policies learnt show promise in recommending weaning protocols with improved outcomes, in terms
of minimizing rates of re-intubation and regulating physiological stability.

In Optimal Medication Dosing from Suboptimal Clinical Examples: A Deep Reinforcement Learning
Approach (Nemati et al., 2016) they present a clinician-in-the-loop sequential decision making framework,
which provides an individualized dosing policy adapted to each patient’s evolving clinical phenotype.
They employed retrospective data from the publicly available MIMIC-II intensive care unit database,
and developed a deep reinforcement learning algorithm that learns an optimal heparin dosing policy from
sample dosing trails and their associated outcomes in large electronic medical records. Using separate
training and testing datasets, the model was observed to be effective in proposing heparin doses that
resulted in better expected outcomes than the clinical guidelines.

No existing research can be found that implements reinforcement learning in neonatal care, therefore
this research will be the first in the field.

2.4 Clinical Decision Support System

As machine learning techniques have evolved and the quantity of healthcare data is growing exponen-
tially, the implementation of clinical decision support systems (CDSS) in our hospitals and healthcare
institutions seems like a logical next step. The current CDSSs are based on statistical analysis or deci-
sion trees and cannot cope with the full complexity of handling long decision sequences. There is a need
for more advanced CDSSs (Rocheteau, 2012) that will be able to reduce the workload for clinicians by
taking over certain tasks, so clinicians can focus on the tasks that require human cognitive and social
skills. One possible method that can improve CDSSs is reinforcement learning which is able to analyse
problems that involve sequences of decisions where the effects of certain actions are not directly visible
in the data. As mentioned before RL is applied to disciplines as gaming and robotics, but the examples
in healthcare analytics are sparse.

For the development of a successful CDSS three steps are crucial (Rocheteau, 2012): (1) Development
of a realistic simulation for exploring healthcare policies, (2) compatibility with EHR software, and (3)
acceptance in the medical community. The first step will be addressed in this research by applying a
reinforcement learning model to healthcare data and assessing the performance with clinicians. Com-
patibility with EHR software is possible, but not yet implemented in all hospitals because of a lack of
resources and funding. To encourage the further integration of clinical decision support systems the third
step has to be addressed: the use of artificial intelligence has to be accepted in the medical community.
A major obstacle is the view that CDSSs are ‘black boxes’: the clinicians don’t understand how they
work and therefore cannot base their decision on the CDSS.

In A Framework to Design Successful Clinical Decision Support Systems (Zikos, 2017) seven principles
are mentioned to consider when designing a clinical decision support system. A CDSS should...

1. mimic the cognitive process of clinical decision makers

2. provide recommendations with longitudinal insight

3. ‘know’ the time when decisions will be made

4. provide predictions in a dynamic manner
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5. should be outcome-based, with a historical decision bias

6. model a-priory known interactions between clinical attributes

7. take caution when reducing the data dimensionality

A clinical decision support system based on reinforcement learning will address principle 1. by imitating
the cognitive process of decision making, principle 2. by considering decision sequences, principle 3. and
4. by developing a model that makes decisions on the current available data, and principle 5. by using
a reward system that is outcome-based. These issues are standard addressed by reinforcement learning,
where principle 6. and 7. require more involvement with clinicians to determine which attributes are
important and where data dimensionality can be reduced.
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Chapter 3

Methods

This chapter will explain what data and tools are used to create the two reinforcement learning mod-
els, following four phases of the CRISP-DM cycle: business understanding, data understanding, data
preparation and modelling.

3.1 Business Understanding

The first step of our modelling process is to understand what porblem our model should treat. The
previous chapter described the literature around the to be treated problem. This section however will
summarise the problem investigation and conclude with a list of requirements for our model.

As described in the problem investigation, infants that are born preterm can have a lot of problems
caused by underdevelopment. One of these problems is the high chance of late-onset neonatal sepsis
(LONS), as explained in Section 2.1. There are multiple challenges around diagnosing and treating
sepsis that should be considered when building a machine learning model. These are described in the
next paragraphs.

Definition of sepsis. Defining late-onset sepsis can be difficult as symptoms can vary between patients
and they may overlap with symptoms of other diseases and are therefore a-specific. Earlier in this research
it is explained that sepsis can be proven (based on positive blood cultures) or can be clinical when showing
the clinical symptoms of sepsis with negative blood cultues. In this research we investigate clinical sepsis
and do not attempt to make claims about the sepsis being proven or not. The diagnosis of sepsis will be
based on the following vitals signs: temperature, heart rate, respiration rate, oxygen saturation, fraction
of inspired oxygen and blood pressure. These vitals signs are input for the state of the environment in
our RL model.

Timely diagnosis of sepsis. As explained earlier it is import to recognize a developing sepsis early.
But because symptoms of sepsis vary and patients this is challenging. During the interviews with
clinicians that treat the newborns with sepsis they were not able to define the specific boundaries of
when they diagnose an infant with sepsis. This is understandable as their is no standard definition of
sepsis and clinician make their diagnosis based on intensive observation of the condition of each patient.
In order to evaluate if our model can predict the diagnosis of sepsis, we have decided on a time of
diagnosis in consultation with the clinicians: the moment antibiotics (which are typical for sepsis) are
given to the patient, that is the moment the sepsis is diagnosed by the clinician. The RL model built will
not directly provide a prediction of when sepsis starts, but will ultimately provide a treatment advice
when it predicts a possibility of sepsis.

Treatment of sepsis. Another challenge is the treatment of the sepsis, mainly because until the blood
cultures are evaluated (48 hours or longer), it is not clear if it is indeed a proven sepsis. And even if
it is determined to not be a proven sepsis but clinical signs are still present, the treatment can be con-
tinued. The protocol of the LUMC (to be found in Section 2.1.1) provides some guidance on how to
treat a possible sepsis. However this protocol does not define the dose of antibiotics given. Suggested
by the clinicians this is because each case of sepsis is different and demands a personal approach when
considering the medication dosing. In our research the reinforcement learning model will evaluate the

23
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policy executed by the clincians and will attempt to find the optimal treatment policy. The two types of
antibiotics given when a sepsis is suspected, Vancomycine and Ceftazidim, are the two actions that can
be taken by the agent in the RL model.

The goal of this research is to improve the treatment of late-onset neonatal sepsis at the NICU department
at the Leiden University Medical Centre. Improving the treatment has underlying requirements:

1. Earlier detection of possible clinical sepsis

2. Determining the optimal antibiotics dosing dependent on the situation

3. Prevent unnecessary medication overdose

4. Earlier decision making about whether to continue with the antibiotics treatment

5. Reducing unnecessary (blood culture) examination

The data mining objective is to predict the medication dose for each specific patient at a given time
based on the optimal policy developed by a reinforcement learning model. The goals would be successfully
achieved when the optimal policy would give the patients less amount of antibiotics during their stay
while resulting in a similar or better patient outcome.

3.2 Data Understanding & Preparation

During this research data from the Neonatology Intensive Care Unit (NICU) of the Leiden Universitair
Medical Centre (LUMC) will be used. The NICU of the LUMC stores the vital signs of the infants every
minute. On request the database is made available by the ICT Business Intelligence Unit of the LUMC.
This was the first time the NICU database (with the exception of personal data) was made available
for a data science project. Therefore the collection of the data was an extensive process which required
an amount of time that could not be estimated beforehand. For this research the researcher will have
access to the full NICU database, which is anonymized in order to protect the privacy of the patients
and apply to the regulations involved with the use of patient data. Standard documentation is provided
of the MetaVision database tables. The database contains data of 3722 NICU patients with a total of
3957 hospital stays from October 2011 to May 2018.

Features mean std min 25% 50% 75% max unit

Birth Weight 973.75 255.30 430.0 763.0 950.0 1158.0 2120.0 grams
Gestational age 191.50 10.63 168.0 184.0 193.0 200.0 209.0 days
Chonological age 23.83 20.25 0.0 9.0 18.0 34.0 139.0 days

HR 161.46 10.65 107.4 154.7 162.0 168.7 200.8 min
RR 48.19 9.73 9.0 41.5 47.6 54.6 113.0 min
FiO2 15.61 14.03 0.0 0.0 21.0 24.8 100.0 %
SpO2 94.45 2.60 21.0 92.7 94.3 96.4 100.0 %
Temperature 36.80 0.40 30.5 36.6 36.8 37.0 38.6 Celsius
Weight 1317.07 525.59 428.0 973.0 1200.0 1519.3 5285.0 grams
ABP (measured) 0.15 0.36 0.0 0.0 0.0 0.0 1.0 bool

Vancomycin dose 1.03 2.72 0.0 0.0 0.0 0.0 42.0 mg
Ceftazidim dose 2.49 7.87 0.0 0.0 0.0 0.0 100.0 mg

Table 3.1: Data descriptives

Data Selection

The data from the NICU database contains data from infants born at different gestational ages. In
this research only the infants that are born before 30 weeks of pregnancy are relevant as they are more
vulnerable which increases the occurrence of sepsis. Of all the infants in the dataset 653 were born
before the gestational age of 30 weeks. Next to this we only included patients that were admitted to the
neonatal intensive care unit within one day after birth. Another requirement is that the patient stayed
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Figure 3.1: Inclusion diagram

for at least 7 days at the NICU, in order to have enough data points for out machine learning algorithm.
After removing the data of patients that did not have all the required measurements (i.e. vital signs),
there were 490 patients in the target group. The selection process is visualized in an inclusion diagram
Figure 3.1.

Data Description

As the NICU database contains over 6600 parameters in various categories, a selection has to be made on
what parameters to use for our research. For this research we have chosen to focus on the vital signs of the
patients. As the infants at the neonatal intensive care unit are a vulnerable group they are intensively
monitored. The NICU database contains multiple measurements of the patient’s temperature, heart
beat, blood pressure, oxygen saturation, breathing pace, but also 120 parameters about respiration. For
this research we will use three types of parameters: demographics, vital signs and medication. Table 3.1
shows the parameters used and their mean, standard deviation, minimum, maximum, quantile cuts and
the unit used.

Three demographics are used. Birth weight is the measured weight of the patient right after birth.
This is a static parameter. The gestational age is the difference between the birth date and the date of
conception, in other words, the duration of the pregnancy. In this research we focus on infants born after
30 weeks of pregnancy or less. Gestational age is also a static parameter. The chronological age is the
difference between the birth date and the date of measurement. This is a dynamic parameter, and differs
for each patient at each time. The terms chronological age and length of stay are used interchangeably,
as for our group of patients which are admitted directly after birth, they are equal. Of the final group of
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participants the distribution of gestational age, birth weight and length of stay are visualized (Figure 3.2).
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Figure 3.2: Scatterplot of the three variables birth weight, gestational age and length of stay

Six parameters are used to represent vital signs, which are dynamic variables. All vital signs have a
saved measurement every minute. The actual measurement frequency is higher for most vital signs, but
due to restrictions of the current data storage architecture only one measurement is saved every minute.
The first vital sign is the heart rate (HR), which is measured in beats per minute. The repiration rate
(RR) is measured as the number of breaths taken per minute. FiO2 and SpO2 are both parameters that
are related to the oxygen levels in the blood. Where SpO2 is the blood oxygen saturation of the patient,
FiO2 represents the fraction of inspired oxygen the patient receives. Both have measurements saved
every minute. See Section 2.1.2 for more information about these parameters and how they are used in
neonatal care. The percentage of days the patients received additional inspired oxygen (Figure E.1) is
visualized, which shows that around ten percent of the group received respiratory support during their
entire stay. The temperature of the patient is measured on multiple parts of the body: on the skin, nose
or ear, axillary or rectally. These measurements are combined into one parameter in order to achieve
the lowest missing rate (Section 3.2). The infants is measured on average once a day during their stay
at the NICU, which is saved in the weight parameter. The weight is measured in grams. The arterial
blood pressure (ABP) is the mean blood pressure measured when the infants have a catheter inserted
into an artery, i.e. an artery line. Because of the high percentage of missing values for this parameter
(see Section 3.2) the parameter is represented by a boolean.

The two final parameters, Vancomycin and Ceftazidim, are the two types of medication the patients
receive in order to treat an late onset sepsis (as explained in Section 2.1.1). Both are saved in the database
with a start time, a medication dose and a frequency of administration. During the data integration
step (Section 3.2) this is transformed to a medication dose per 6 hours. The descriptives in Table 3.1
describe the data after this transformation. The final scatter plot (Figure 3.3) shows the total amount
of Vancomycine and Ceftazidim the infants received during their stay.
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Figure 3.3: Scatter plot of the total Vancomycin dose and Ceftazidim dose during the patients stay

Data Quality

As the database of the NICU at the LUMC was not yet used for data science purposes, there were no
previous assumptions about the data quality. Initial exploration showed a high percentage of missings
for most of the vitals signs. After further investigation it appeared that the vital signs were saved in
multiple parameters. This is dependent of the type of medical measuring equipment that is used. After
combining the different parameters that measured the same vital signs, there was still missing data
which is shown in Figure 3.4. The missing percentage is calculated as the percentage of 6 hours blocks
(explained in Section 3.2) that have no value for that vital sign. Of the vital signs ABP (ambulatory
blood pressure) has the highest percentage of missing data with over 80%. This can be explained as
blood pressure is not constantly measured for neonates, but only when they have an artery line inserted.
The second highest missing percentage is for the weight of the infants. As the infant is not weighted
within every 6 hour block the missings appear naturally. On average the infants are weighed every 24
hours, especially if they are born with a low birth weight. FiO2 has explainable missings as the value for
the inspired oxygen is only noted when the infant receives respiratory support. Temperature, respiration
rate, heart rate and SpO2 should be measured constantly. Missings for these variables can arrive from
the infants being detached from the measuring equipment, for instance when they are being held in the
parents arms.

Data Integration

For this research the data integration was executed before the data cleaning and data construction in
order to reduce the size of the dataset before performing actions on it. The data source contains one
value every minute for every vital sign. As this would produce a really big data set to apply machine
learning on, we have binned the data into 6 hour time windows. This reduces the complexity of the
problem at hand and the resources necessary to handle these amounts of data. The binning of the data
happened during the extraction from the database and was coded into the SQL query to average all
values from within the six hours. The data of the medication (Vancomycin and Ceftazidim) was also
transformed to those 6 hours bins.
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Figure 3.4: Chart of percentage missings per variable

Data Cleaning

In Section 3.2 we described the quality of the data and the occurrence of missing values in the data. In
this section we describe how the missing data of each vital sign was handled. First of all, rows with all
variables missing at the beginning or end of the admission were removed. Empty rows at the beginning
represent the time before the infant was set up with the measuring equipment and the empty rows at
the end represent the time that the infants is already detached from the measuring equipment but not
yet discharged from the department. The variable with the highest percentage of missing data was the
blood pressure (> 80%). This variable was not imputated but transformed into a binary attribute, value
1 for ’measured’ and 0 for ’not measured’. This also solved the situation were no blood pressure was
measure for the infant during the entire stay. The weight measurement also had a hight percentage of
missing values, but this was less problematic as on average the data contained one measurement every
24 hours. We filled the gaps with linear interpolation treating the values as equally spaced. This is
acceptable for the variable as weight is not expected to dramatically change every hour. The missing
data for the inspired oxygen, FiO2, meant that the infant did not receive additional respiratory support
and could be filled with the value ‘0’. The remaining variables, HR, RR, SpO2 and Temperature, were
filled in with linear interpolation.

The state features are scaled to a 0,1 range, using the scikit-learn Python package. The action
features needed no further data formatting after being discretized during the data integration process.

Data Construction

After the binning of the data it had to be prepared in order to be used with reinforcement learning.
Section 2.2 explained the different elements in a RL model: states, actions and rewards.

State space In this case the state is represented by the demographics and vitals signs of the patient
for the six hour bin, yielding a 10 x 1 feature vector for each patient at each time step.

Chrono-
logical
age

Gesta-
tional
age

Birth
weight

Heart
rate

Respir-
ation
rate

FiO2 SpO2 Temper-
ature

Weight ABP

static static static dynamic dynamic dynamic dynamic dynamic dynamic dynamic

Table 3.2: 10 x 1 state space with variable type
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Action space The action space is discretised into a 5 x 5 action space for the antibiotics treatment
with Vancomycin and Ceftazidim. These medications were discretized into quatiles based on all non-zero
dosages of each drug and one bin for no dosage at that moment. The binning is visualized in Figure D.1.
For the Vancomycin dosing the quantile cuts are at 4,5 and 7. For Ceftazidim the cuts are at 12, 20 and
27. The binning of both antibiotics resulted in a discrete set of 25 possible actions, as seen in Figure 3.5.

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

0

1

2

3

4

0 1 2 3 4

V
an

co
m

y
ci

n

Ceftazidim

Figure 3.5: Action matrix

Reward function The reward function has to represent whether the state space the patient is in is
desired. The desired states are where the patient shows no signs of possible clinical sepsis. The clinical
signs of sepsis are described in Section 2.1.1 and include temperature instability and increased ventilatory
support. As these two variables are included in dataset we haven chosen for a reward function based
on temperature (◦C) and inspired oxygen (FiO2). The desired temperature for newborns is from 36◦C
to 38◦C, with the ideal temperature being 37◦C. The additional inspired oxygen (FiO2) should be as
low as possible, with 0% being most optimal but around 20% being acceptable. The final code for the
shaped reward function can be found in Appendix B.

3.3 Modelling

To analyse the current policy and find the optimal policy we will use two different reinforcement learning
models: an on-policy model and an off-policy model. The on-policy model Sarsa (as explained in
Section 2.2) will be used to model the policy used by the clinicians based on historical data. Q-learning,
the off-policy algorithm, is used to find the optimal policy for sepsis medication dosing for neonates.
Although the algorithms differ the model are based on a similar network architecture: a Dueling Double
Deep Q Network. Both models will share the following characteristics:

Deep Q-Network

Introduced by the researchers of DeepMind Technologies in 2013, the Deep Q-Network was first used
to play Atari games(Mnih et al., 2013). It was the first deep learning model to successfully learn
control policies directly from high-dimensional sensory input using reinforcement learning. The model
is a convolutional neural network trained with a variant of the Q-learning algorithm. The network
architecture of the Q Network will be fully-connected with two hidden layers of size 128.

Separate Target Network

Two years after the initial DQN was introduced by DeepMind the updated version of DQN was published,
which showed the importance of experience replay and a separate target network (Mnih et al., 2015).
The target network is second network that is used to generate the target Q-values that will be used to
compute the loss for every action during training.
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Figure 3.6: Visualization of shaped reward function

Double Q-learning

A regular Deep Q-Network often overestimates the Q-values of the potential actions to take in a given
state, which could endanger the chance of the agent being able to learn the optimal policy. The addition
of the Double Q-learning algorithm (Van Hasselt et al., 2016) to the DQN was introduced in 2015 by
the researchers of DeepMind, part of Google since 2014, in order to reduce the overestimation. The
algorithm was originally proposed by van Hasselt (2010) in a tabular setting, which is used to construct
the new Double DQN algorithm. In standard Q-learning and DQN the same values are used to both
select and evaluate an action, which results in overoptimistic value estimation. The approach of Double
DQN to reduce the overestimation is to decouple the action choice from the Q-value generation, which
means that the main network is used to choose an action and the target network to generate the Q-value.

Dueling Network Architecture

As of 2016 most of the approaches for reinforcement learning used standard neural networks, until
an ‘alternative but complementary approach’ was introduced by Wang et al. (2015) that focused on
innovating a neural network architecture that is better suited for model-free RL. The proposed network
architecture consists of two streams that represent the value and advantage functions, instead of the
single-stream of the DQN. The dueling architecture has a value V (s) function and an advantage A(s, a)
function, whose output is later combined into a state-action value Q(s, a). The advantage function
represents the quality of the chosen action relative to other possible actions and the value function
represent the quality of the current state. The benefit of this separation is that it allows the model to
better differentiate actions from one another and learn faster. The key insight behind this is that in some
states the choice of action has no effect on what happens and therefore it is unnecessary to estimate the
value of each possible action choice in that state. This also means that the estimation of state values is
of great importance.
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Figure 3.7: Normal DQN vs Dueling DQN architecture (Wang et al., 2015)

Prioritized Experience Replay (PER)

In experience replay the agent’s experiences are stored as a tuple of < state, action, reward, nextstate >
(Schaul et al., 2015). During training of the model mini-batches of experiences are drawn from the
memory to learn from. This way the model will be more robust by preventing it only learns from what
it is immediately doing in the environment, but also learn from past experiences. The idea behind
prioritizing experiences is that the RL agent can learn more effectively from some transitions than
from others. PER allows the agent to replay experiences at a different frequency than what they were
originally collected in and allowing it to choose experiences with a bigger learning value. However,
prioritization introduces bias by changing the distribution of experiences, which is corrected by using
weighted importance sampling.

Batch Normalization

Batch normalization has been introduced by Ioffe & Szegedy (2015) to accelerate training of deep neural
networks by reducing internal covariate shift. They define this phenomenon as ‘the change in the dis-
tribution of network activations due to the change in network parameters during training’. Simplified
this means the input to each layer is affected by parameters in all the preceding input layers. This slows
down training because the layers need to continuously adapt to the new distribution. Batch normaliza-
tion accelerates the training by putting in a normalization step that fixes the means and variances of
layer inputs.

Leaky-ReLU activation function

Leaky ReLU (Rectified Linear Units) is an activation function designed by Maas et al. (2013) to improve
the performance of deep neural network acoustic models for speech recognition. An activation function
checks whether to consider a neuron as activated or not. A simple version of this is the threshold based
activation function. An improvement to this is using a linear function where activation is proportional
to the input. Using a linear function causes problems for deep neural networks, because if all layers
are linear the final activation function of the last later is just a linear function fo the first layer. This
undermines the reasoning for stacking multiple layers as the whole network is equivalent to a single
layer network with one linear activation function. Moving on to the Sigmoid Function, stacking layers
are justifiable again as it is a non-linear activation function. Although the Sigmoid function has been
widely used, it still has a particular problem that can be improved: the problem of ‘vanishing gradients’.
Towards the end of the sigmoid the gradient is small or is even vanished, causing the network to slow
down or stop learning. As a reaction to this problem the ReLU is non-linear as are combinations of
ReLU. The ReLU function gives an output x if x is positive and zero otherwise. The activation function
is sparse as only the neurons with a positive output are activated. But even the ReLU function has a
downside: the dying ReLU problem. Neurons that are not active have a zero gradient and can possibly
stop responding because the gradient-based optimization algorithm will not adjust their weights. The
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idea behind Leaky ReLU is that it allows for a small, non-zero gradient when the unit is not active. It
sacrifices the hard-zero sparsity described earlier for more robust optimization.

Parameters

• Alpha (α): the learning rate α determines with what factor the model overrides old information
with new information. Setting it to 0 means that the Q-values are never updated, hence nothing
is learned. Setting a high value such as 0.9 means that learning can occur quickly. The alpha of
our prioritized experience replay is set to 0.6.

• Epsilon (ε): the ε-greedy algorithm describes the balance between exploration and exploitation.
During the training process it selects random actions with a probability epsilon. In our model the
epsilon of our prioritized experience replay is 0.01.

• Gamma (γ): the discount factor γ determines the present value of future rewards by defining that
a reward received k steps in the future is worth γk−1 of its immediate worth. In our model the
discount factor is set to 0.99.

• Number of steps. This models has been trained with 100.000 steps, which took around 8 hours for
both models on one GPU each.

• Batch size. The batch size which the model processed during training was 32.

• TAU: rate to update the target network toward primary network. The variable is set to 0.001
which means that the target network is updated with the amount of 1/1000 every time step which
is roughly equivalent to fully updating the network every 1000 steps.

• Reward threshold. Regularization in the form of a reward threshold was added to the network that
penalises the network when it produces rewards that are above the reward threshold, to ensure
reasonable Q-value predictions. The reward threshold in our model is set to 100.

3.3.1 Tools used

All the code is written in Python. Pandas, Numpy and scikit-learn are used for data preparation. The
Matplotlib library is used for visualization. And finally Tensorflow is used for creating the reinforcement
learning models.

The code used for this research is based on the code created by Raghu et al. (2017). Their research
introduced a reinforcement learning model for sepsis treatment for adults at the intensive care unit. As
the problem is similar the code was a guideline for the code used in this research. The code used by
Raghu et al. (2017) is published on https://github.com/aniruddhraghu/sepsisrl.

3.3.2 Model Assessment

After both models have ran for eight hours on one GPU each, we will now assess the performance of the
models based on five values: Q-value, Q-loss, average loss, mean absolute error and convergence.

Q-value

One of the most important values when evaluating the performance of a reinforcement learning model is
the average action-value, or Q-value, as the goal of our model is to improve the value of actions taken.
The history of the Q-values of both models during 100.000 training epochs is displayed in Figure 3.8.
The chart shows that the Q-value of the DQN model is higher than the Q-value of the SARSA model.
This is occurs naturally when training a RL model because the goal is to discover the optimal actions
to take based on the actions that are taken in the examples.

Loss and Error

During the training the loss is obtained by taking the sum of squares difference between the target
and prediction Q-values. The mean abs error is the mean of the absolute error values of a processed
batch during training. The absolute error is the absolute difference between the Q values from the main
network and the Q values of the target network.
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Figure 3.8: Q Value

Convergence

The convergence chart in Figure 3.9d shows us the difference between Q(n) and Q(n−1). The chart shows
that these values do not converge over the 100.000 steps that we have run and once every couple of steps
we see a peak. This can be explained by the trade-off between exploration and exploitation (as discussed
in Section 2.2). In our model the epsilon, the fraction of the time steps in which it selects a random
action, is set to 0.01 and is not reduced during training. Gradual reduction of epsilon during training
would result in faster convergence of model performance.
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Results

In this chapter we will compare the optimal policy with the clinician’s policy. First we discuss whether
validation studies on reinforcement learning models are possible. Then we show multiple charts that
show the comparison of the physicians policy and the optimal policy. And finally we show a performance
measurement of the reward differences between the two policies. The evaluation in Section 4.2.1 is based
on the evaluation in the paper about reinforcement learning for optimal sepsis treatment by Raghu et al.
(2017). The performance measurement that we use in Section 4.2.5 is inspired by the analysis performed
in the research by Nemati et al. (2016).

4.1 Validation

Validation of supervised learning algorithms has been extensively discussed in literature. In a validation
study the predictive performance of the model is observed without intervening with the decision-making
(Kappen & Peelen, 2016). The predicted risks are compared with the actually observed risks to assess
the applicability of the model. The model can be internally validated as well as externally. Internal
validation, which is the minimal requirement for accepting a model, is the predictive performance in
the population from which the model was developed. To asses the predictive performance of the model
the data is split into a training set and a validation set beforehand, or split multiple times in case of
cross-validation. The predicted risk from the model based on the training set is compared to the observed
risk in the validation set. This assesses how well the model performs on unseen data. Because a model
will typically perform best on the data that was used to develop the model, or data from the same
environment, it should also be tested for external validity: the predictive performance of the model is
estimated in a new cohort of patients. External validation assesses the generalizability of the model.

Unfortunately, validation of reinforcement learning models is less straightforward. As we do not have
a model of the environment, which in this case is the patient, we do not know how it will react to the
actions taken by the optimal policy. Another possible problem is that the model is trained only on the
states and action seen in the historical data, and during online use it might encounter states it has not seen
before and there is no way to tell how the model will react to these states. Examples of reinforcement
learning models being validated with hypothetical simulation models are the research about cancer
clinical trials (Zhao et al., 2009) and about optimization of anemia treatment in hemodialysis patients
(Escandell-Montero et al., 2014).

This research does not include either an internal or external validation study. Possibilities for internal
and external validation will be discussed in Section 5.1 about future work. The following section will
discuss the possibilities for verification of our reinforcement learning model.

4.2 Verification

As mentioned in the previous section, validation of reinforcement learning is not straightforward and
no discussion has been found examining the validation of reinforcement learning models where there is
no model of the environment or the RL model cannot simply be tested in a real-life scenario. These
two properties are often true for health care environments: physiological models of patients are not
always available and clinical trials take time to set up and perform. If validation of this research is not
possible without performing a clinical trial, what can be done to evaluate the reinforcement learning

35



36 CHAPTER 4. RESULTS

model performance. According to a publication by Van Wesel & Goodloe (2017) there are multiple ways
to verify reinforcement learning models, both offline and online. The core problem of verification in
computer science is to verify that a given system satisfies the specification. In practice this means that
we apply the machine learning model and check whether the output are as expected. Hereby we can
prove that the implementation of the system is correct, but cannot say anything about the (predictive)
performance of the model. The next sections show multiple offline verifications of our reinforcement
learning model based on historical data.
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Figure 4.1: 2D histogram of actions selected by (a) the physician and (b) the Q-network

4.2.1 2D histogram of actions taken

During training the Sarsa model has evaluated the actions taken by the physician. In Figure 4.1a the
results are plotted against the action map in a 2D histogram with a logarithmic scale. It is directly
evident from the 2D histogram that the action where no Ceftazidim dose and no Vancomycin dose is
administered is most common. This can be explained by the fact that the number of time bins where
no sepsis occurs is most prevalent. This also explains the need for a logarithmic scale as the zero-zero
action is zo prevalent, the other actions all fell in the same size category and no distinctions could be
made. Furthermore it can be stated that there are more times where only Vancomycin is given to the
patient than the occurrence of only Ceftazidim dose. This is consistent with the written sepsis protocol
of the LUMC which states that Vancomycin mono-therapy is given when the blood culture results are
positive but no contamination is suspected (Figure 2.2).

The 2D histogram of the mapped actions by the optimal policy can be seen in Figure 4.1b, again
with a logarithmic scale to show internal differenced of non zero-zero actions. Similar to the physicians
actions the Q-network choose the zero Vancomycin and zero Ceftazidim most often. It can be assumed
that the model did this with the same reason: no occurrence of sepsis at those time steps. Also the
Vancomycin mono-therapy is one of the most prevalent actions chosen by the Q-network. Ceftazidim
mono-therapy is almost never chosen as an optimal action.

As the two 2D histogram are hard to compare seen separately, we created a 2D histogram of the
difference in actions taken by the two policies (Figure 4.2). Blue represents the physician’s policy and
red the optimal policy. This figure shows a couple of interesting results. First off, the zero-zero dose is
more often picked by the physicians than by the optimal policy. Second, the Vancomycin mono-therapy
is more frequently picked by the optimal policy than by the physicians policy. Finally, the optimal policy
shows a preference for a high dose of both medications.

4.2.2 Action to action mapping

Although the policy comparison in the previous section provided an overview of the differences in strategy
of both policies, it did not show us exactly which action were replaced by which other action. Therefore
we created the chart in Figure C.1. The actions taken by the optimal policy are mapped to the actions
taken by the physician in a matrix. On the vertical axis are the action taken by the physician and on
the horizontal top axis are the actions taken by the Q network. Instantly it can be seen that most of the
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Figure 4.2: 2D histogram of difference in actions selected by the physician (blue) and the Q-network
(orange)

switches are from the physician’s zero action to a non-zero action by the DQN. In practice this means
that there are multiple opportunities where the physician gives no medication but the DQN thinks the
patient should be given medication. If these moments represent situations where the DQN detects sepsis
earlier than the physician, this would check one of the requirements of our model. This can be validated
during online testing of the model (described in Section 5.1.3). Another observation can be made about
the action switches. The DQN zero column shows that some non-zero action of the physician are replaced
by zero action from the DQN. In other words, in some situations were the physician did give medication
to the patients the DQN would advise to give no medication. In practice this could apply to the states
were the patient is healthy again, but the medication is not yet stopped by the physician. If the DQN
is indeed able to stop the medication at an earlier time than the physician, then this would approve
another requirement for our model, which is to reduce the medication given to the patient. To check
whether the DQN is more compliant to this requirement than the physician, this should be tested during
online learning of the model.

4.2.3 Action sequences

The previous analyses did not take the time dimension in consideration. By mapping action sequences
when using a model-free algorithm, we can discover the underlying model of the system. If the environ-
ment can be modelled as a Markov decision process, the requirements can be quantified in a probabilistic
temporal logic specification (Van Wesel & Goodloe, 2017). Temporal logic have been an important re-
search subject within the study on logical formalisms for specifying and verifying real-time systems. More
in-depth information can be found in the overview paper about Real-time and Probabilistic Temporal Log-
ics (Konur, 2010). During runtime verification of the temporal logic specification can be performed by
observing the output actions of the DQN agent and classifying whether they fall within the specification.
For this research we did not model the Markov decision process or create a temporal logic specification
due to time limitations.

Figure C.2 shows an visualization of the first week of 50 random patients. Visualizing these action
sequences could already show some structure of the underlying model. An improvement to this visual-
ization would be to split the combined Vancomycin and Ceftazidim action number. That way it would
offer direct insight into the dosing of both medications.

4.2.4 State to action mappings

When the actions taken at each state are mapped, when the model is not learning online, rules can
be discovered (Van Wesel & Goodloe, 2017). These rules can then be checked with the requirements
of the model in order to perform verification. An example of this could be that for a certain patient
state, a high dose of Vancomycin is given with a zero dose of Ceftazidim. Checking this with the NICU
antibiotics protocol could verify whether this is state to action mapping is appropriate. State to action
mapping can also be performed when the model is learning online, keeping track of the changes in these
mappings.
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A state to action mapping is not performed in this research as it would require discrete states opposed
to the continuous states used. This is possible to add to the research, but restricted by time limits.

4.2.5 Reward difference

Evaluation of performance of the two modelled policies is difficult as there is no model of the environment.
In other words, as we do not have a model of how the infant would react to the actions picked by the
two different policies we can not evaluate whether the actions picked by the optimal policy lead to a
better outcome for the patient. One form of evaluating the performance of the optimal policy against the
physicians policy is to calculate how much the actions taken by the policies differ. Figure 4.3 shows the
percentual difference of both policies plotted against the cumulated reward. The points in this scatter
plot represent the different patients in our dataset. Based on this plot we performed a linear regression
analysis, which seems to show a correlation between the two plotted values. Important to note is that
the values of the reward are dependent on how the reward function is shaped. Therefore no conclusions
can be made about the clinical performance of the model.
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Figure 4.3: Linear regression analysis chart of reward difference
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Discussion

In this research we have investigated the possibility of improving sepsis treatment in neonatal care by
using reinforcement learning. First we defined the current sepsis treatment according to the literature,
which answered our first research question. We discovered that the treatment of sepsis for neonates can
be quite complicated. This is due to the fact that neonates all differ in age and developmental stage,
and that the definition of sepsis is not unambiguous. For this research we decided to focus on the dosing
of the two most used antibiotics for sepsis treatment in neonates: Vancomycin and Ceftazidim.

Next to our study on neonatal sepsis, we researched the field of reinforcement learning (RL) and
clinical decision support system in order to understand how these subjects could help improve the
treatment. The next three research questions were about how RL could analyse the current treatment,
optimize the treatment policy and compare that to the current policy. We have developed two models,
one to analyse the current policy of the physician and one to learn an optimal policy from historical data.
Assessment of the model showed that the optimal model performed better on model specific evaluation
metrics. Therefore in terms of the model performance, the learned optimal model outperforms the
physicians model.

The final question is whether the learned optimal policy improves the clinicians decision making.
This question is more difficult to answer as the clinical impact of the model cannot be evaluated. As
we do not have a model of the environment, in this case the patient, we cannot evaluate the reaction of
the environment to the actions taken by the model. It is not possible to run simulations in order to see
whether the actions taken will lead to better patient outcome. Although we have verified the model and
it’s output meets the expectations, we have to run clinical trials to validate the model.

5.1 Future work

During this research it gradually became evident that the field of reinforcement learning applied to health
care data is relatively unknown and turned out to be more complicated than seemed at first. The list
of limitations grew and thereby also the list of future work. The future work based on this research is
divided into four subjects. First of all, a better definition of the problem statement would improve this
work. In this case that includes the definition of sepsis, which has been explained to be complicated
in Section 2.1. The second option to advance our research is to improve the model. The state space,
action space and reward function of the reinforcement learning model can each be further improved.
A third improvement is the execution of clinical trials which can help to finally evaluate the clinical
impact, rather than only verify the model performance as done during this research. The final step of
the future work is actual deployment of the model as a decision support system. All these improvements
are described in the following sections.

5.1.1 Definition of sepsis

As mentioned before the definition of sepsis ambiguous. Different definitions are used in research and the
clinicians could not provide a straightforward definitions of sepsis during the interviews. Neonatal sepsis
is not straightforward. The symptoms vary and could also be an indication for other diseases. Using a
different definition during the modelling process might possible lead to better or worse results. Next to
this, there is the difference between clinical sepsis and proven sepsis. Where the first is diagnosed based
on symptoms in the clinical signs, the latter is proven by a positive blood culture. This research was
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focused on clinical sepsis, as it is important to treat a sepsis on time, whether it is proven or clinical.
Research into proven sepsis could also lead to improvements. Although treatment of both proven and
non-proven sepsis are equally important, it might be useful to see if an advanced machine learning model
can detect differences between them in the patient state. When a proven sepsis can be detected without
the need of collecting blood from the patient, this improves the patient well being as blood collection
from newborns is a tough intervention because their bodies are so vulnerable.

5.1.2 Improvement of the model

As this paper showed a simple implementation of reinforcement learning, there are multiple possibilities
for improvement of the model. These improvements can be made on multiple parts of the RL model: the
state space, the action space and the reward function. The next paragraphs discuss the improvement
possibilities for each of the elements.

State space

The state space that was used for this research was a simple 7 x 1 feature vector representing the vital
signs of the patient for each six hour time step. This small feature vector (comparable research used a
47 x 1 vector (Raghu et al., 2017)) provides the model with a simplified representation of the patient.
Adding more variables to the feature vector might lead to a better performance of the model, which is
a more personalized treatment. Another improvement to the state space could be achieved by giving
the features different weights according to their importance. The importance of the features should be
derived from clinical research. One example of this is giving more importance to ventilatory support
(FiO2) as opposed to heart rate as increased ventilatory support is seen as one of the important variables
in sepsis prediction. A third improvement is reduction of the time bin sizes. In this research we used 6
hour bins to aggregate the state of the patient. Using smaller time bins, for instance every hour, might
improve the results. Especially when the model will be used in real time you want more evaluation points
during the day. Next to this, the neonatal intensive care unit of LUMC will possibly make a transition
from 1/60 Hertz frequency data points to 1 Hertz data storage. This would make it possible to keep track
of the heart rate and respiratory rate in more detail, and detect apnoea and bradycardia events. As these
events can be indicators of possible sepsis, detecting them can improve the models performance. Next
to this the way that the data is imputed can influence the performance of the model. In this research
most of the parameters are imputed by using interpolation, but there is research available that handled
missing medical data using multiple imputation(Wells et al., 2013). As simple imputation methods can
lead to misleading results, multiple imputation is recommended by preventing exclusion of data rather
than creating false data (Janssen et al., 2010).

Action space

The action space can be improved in multiple ways. The first improvement would be to relate the dosing
of the antibiotics to dosing given according to the protocol. In this research we calculated the dosing per
6 hour bin. In practice the medication is not given every 6 hour, but dosing are given with a frequency per
24 hours. For example Vancomycin can be given once per 24 hours, but when increasing the dose, it will
be given twice every 24 hours or even three times per 24 hours. When relating the actions recommended
by the model to actions used in practice, the physicians will be able to directly interpret

Reward function

Further shaping of the reward function might improve the effectiveness of a reinforcement learning model.
The reward function of our model is shaped based on the patients temperature (◦C) and ventilatory
support (FiO2), as they are possible indicators of sepsis. Other indicators (as described in Section 2.1.1)
could be integrated in the reward function. Another possibility is to use Inverse Reinforcement Learning
(IRL) to learn an unknown reward function from observed behaviour of an agent (Ng et al., 2000). This
algorithm assumes that the agent behaves optimal, but in many cases this is not true. For example
when a human learns a tasks by trial and error, the observed behaviour will contain behaviour that lead
to failure. Therefore other researchers introduced Inverse Reinforcement Learning from Failure (IRLF)
to address this problem (Shiarlis et al., 2016). This could improve the reward function by minimizing
learning from ‘failed’ behaviour, or in practice treatments that did not work. Another paper addresses
the problem of multitask inverse reinforcement learning (Dimitrakakis & Rothkopf, 2011), where the
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motivations of different experts that try to solve the same task are considered to be part of the problem.
This relates to the different physicians having different opinions about how the treat an patient, within
this subject group, or when combining data from different hospitals. Next to this, our reward function
gives no reward or punishment based on the final state. In comparable research this is done based on the
patients survival. Another improvement could be giving negative reward for medication use, as one of
the motives for this research is to reduce medication use on these patients. Our current model does not
have a negative relation with medication use and might give more medication if it improves the reward
achieved. In practice, giving more medication could lead to negative long term effects.

5.1.3 Clinical trials

The final question in this research is whether a reinforcement learning implementation can improve
clinical decision making in health care. As described in Chapter 4 validation of the optimal policy
learned by the RL model is difficult and without retrieving new data we can not conclude whether our
learned policy would perform better than the current physicians policy. In order to answer our the
previously mentioned question, we should run clinical trials to determine it’s effect on clinical decision
making. A cluster randomized trial there is one intervention group and one ‘care-as-usual’ group. The
physicians in the intervention group receive information from the prediction model in a non-intrusive
matter: the model runs alongside the existing systems and the physicians could compare their approach
to the suggestions by the model and choose whether they agree with the model. At the end of the trial,
the physicians are then asked about their experience with the model and how the model influenced their
decision making. Although this is subjective feedback, and therefore hard to assess the performance
numerically, it will provide some information about the effects of the model on clinical practice. This
process is extensively described in a PhD research by (Kappen, 2015) about the chances and challenges
of prediction models and decision support.

5.1.4 Deployment

An important part of the problem treatment is the implementation of a decision support system. In this
current research the reinforcement learning agent has only been able to learn on historical, offline data.
In the future we want the agent to learn online and be able to adapt to every specific patient. Therefore
we need an online implementation with a front-end system for the physicians to work with.

There are a couple of recommendations for a successful implementation of a prediction model in
clinical practice (Kappen et al., 2016):

1. Adding an actionable recommendation to the predicted risk (directive prediction model).

2. Presentation of the predicted risk should be automated and smoothly integrated with the physi-
cian’s workflow.

3. The reasoning and research evidence of the underlying prediction model to show how risks are
actually estimated should also be available to physicians.

4. A prediction model will be better perceived by physicians when it predicts outcomes that are
relevant to them and their patients.

In order to confirm with the first recommendation the CDSS should provide a recommendation of which
antibiotic to give and in what amount. For example it should say to the physician “Give the patient a
8mg Vancomycin dose and repeat every 6 hours”. This provides the physician with an actionable recom-
mendation which is in alignment with their clinical practice. Second, the model should be implemented
into the current workflow of the clinician. Preferably in the system they already use. Adding another
separate interface could cause the physicians being reluctant to use it as it adds steps to their process.
The implementation of the third step is more difficult as the underlying algorithm of the reinforcement
learning is possibly hard to understand for physicians. Research has to be put into illustrating the inner
processes of reinforcement learning models. As mentioned before the physician has to fully understand
how the recommendation by the model is established in order to be able to make a decision. Making
visible which features were most important to the model could be a first step towards this. The final
recommendation for successful implementation of a CDSS is that it should explain what the predicted
outcome is for the patient. For example it should state that when using this amount of medication for
this duration, it expects an improvement in the patient’s health in the next couple of hours. If the model
could be specific on what effects the antibiotics would have on the patient’s vital signs, it could help the
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physician decide whether the recommendation is correct for this patient and if it would have negative
side effects. For example a lowered oxygen saturation which would require to increase the respiratory
support.

To conclude, the clinical decision support system should make a recommendation, explain what the
recommendation is based on and illustrate the expected outcome for the patient’s health.
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Appendix A

Complications of preterm birth

Information about these complications and treatments are mostly based on a Dutch book about Neona-
tology written by paediatricians (Kneepkens et al., 2005). If another source is used it will be references to.

A.1 Respiratory system

A complication of pre-term birth is underdevelopment of the respiratory system. This may lead to the
following complications described in the next subsections.

A.1.1 Apnea

The absence of spontaneous breathing for a consecutive period of at least 15 seconds. This is usually
caused by immaturity of the respiratory system. There are three types of apnea: (1) central apnea: the
respiratory muscles are not activated by the respiratory center in the brainstem, (2) obstructive apnea:
the respiratory muscles are activated but the (upper) airways are obstructed and the air can’t enter the
lungs, and (3) mixed apnea: most common type of apnea, which is a combination of both central and
obstructive apnea. Apnea occurs at almost 100 percent of the infants born before 32 weeks. Diagnosis:
One of the symptoms is central cyanosis, which is the bluish or purplish discolouration of the skin, due
to hypoxia (see next section). Another symptom is bradycardia (see Section A.2). Treatment : As apnea
can be caused by a variety of neonatal syndromes, it can be hard to determine what causes the apnea.
In some situations apnea can be remedied by repositioning the infant, removing nasal mucus, or better
regulation of the body temperature. In other cases antibiotics are needed to treat an untreated infection
which can be cause of the apnea. One of the most used types of medication used to treat apnea are
methylxanthines, for example caffeine or theofylline. These increase the heartbeat which causes the heart
to pump the blood through faster and work as a bronchodilator, a substance that dilates the bronchi and
bronchioles, decreasing resistance in the respiratory airway and increasing airflow to the lungs. Apnea
generally resolves as the preterm infant matures.

A.1.2 Respiratory Distress Syndrome (RDS)

RDS is associated with surfactant deficiency combined with structural immaturity of the lungs. Symp-
toms are tachypnea (abnormally rapid breathing), dyspnea (shortness of breath that comes with grunting,
flaring nostrils and subcostal retractions of the chest) and cyanosis. Infants born before 28 weeks have
approximately 80 percent chance of developing RDS. Diagnosis: The above mentioned symptoms usually
develop in the first six hours after birth and progress during the first 24 hours. Important is to differ-
entiate between RDS, transient tachypnea of the newborn (TTN) and pneumonia. The most significant
diagnostic for RDS is to examine radiographic imaging of the thorax. This shows whether the lungs
suffer from underaeration and have a reduced lung volume, which are indications of RDS. Treatment :
RDS is an acute illness treated with respiratory support (oxygen, positive airway pressure, ventilator,
or surfactant) as needed and improves in 2 to 4 days and resolves in 7 to 14 days. Because RDS is
difficult to distinguish from other infections, infants with respiratory distress are generally treated with
antibiotics. Next to this the infants are treated with a modified natural surfactant.
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A.1.3 Neonatal pneumonia

Opposed to adult pneumonia neonatal pneumonia is not clearly defined and often hard to identify (Nissen,
2007). It is an infection in the area of the lungs due to compromised lung defences of premature neonates.
There are two types of pneumonia: (1) congenital pneumonia, which is caused by an ascending infection
in the birth canal of the mother, and (2) nosocomial pneumonia, which evolves during the hospitalization
of newborns. Diagnosis: Both types of pneumonia have show different symptoms. Congenital pneumonia
is similar to the RDS, with tachypnea, dyspnea and cyanosis, and even with a thorax image it can be
hard to distinguish the two. Infants with nosocomial pneumonia show aspecific symptoms and a thorax
image shows similarities with bronchopulmonary dysplasia (BPD). Treatment : Neonatal pneumonia is
treated with antibiotics, supplemental oxygen and, when it hard to distinguish from RDS, a modified
surfactant.

A.1.4 Transient Tachypnea of the Newborn (TTN)

Respiratory problems due to slow absorption of the fluid in the fetal lungs. The symptoms are similar
to those of RDS, but in contrast to RDS tachypnea is more present than dyspnea. TTN occurs mostly
at almost full term infants and most infants are no longer showing symptoms after 24 hours. Diagnosis:
Although the clinical course of TTN is characteristics, addition investigation can be done to differentiate
it from other pulmonary complications. A radiographic image of the thorax will show a normal aeration
of the lungs but a large lung volume, which distinguishes it from RDS. Treatment : In most cases
supplemental oxygen is sufficient.

A.2 Cardiovascular system

Next to the respiratory system, is also the cardiovascular system of pre-term infants often underdeveloped.
The next subsections describe possible complications of this.

A.2.1 Bradycardia

Reduction of heart rate. For premature neonates < 100 beats per minute and < 80 beats per minute for
full-term neonates. One of the causes for bradycardia is hypoxia (see section Section A.2). Diagnosis:
Analysis of the heart rate (HR) can demonstrate bradycardia. If the bradycardia occurs without the
manifestation of hypoxia there might be an atrioventricular block (AV block), which can be diagnosed
based on an electrocardiography (ECG). Treatment : As bradycardia is a result of other complications,
the treatment of these complication is essential in order to manage the bradycardia.

A.2.2 Tachycardia

High heart beat frequency of > 180 beats per minute for premature infants and > 150 beats per minute
for full-term neonates. Diagnosis: Analysis of the heart rate (HR) can show if the infant suffers from
tachycardia. Treatment : Short term tachycardia is not unusual for newborns, but if the tachycardia
persist for a longer period the underlying cause should be investigated.

A.2.3 Persistent Pulmonary Hypertension of the Newborn (PPHN)

PPHN is defined as failure of the normal circulatory transition that occurs after birth. It is a syndrome
characterized by marked pulmonary hypertension that causes right-to-left shunting of blood at the fora-
men ovale and ductus arteriosus and hypoxia. Diagnosis: Can be caused by for example pneumonia,
sepsis or RDS and usually leads to cyanosis. Treatment : The underlying causes of the PPHN should be
investigated and treated. One of the most frequent treatments is respiratory support.



Appendix B

Reward function

de f ca lc temp reward ( row ) :
temp reward = 0
i f ( row . Temp Avg Int >= 36) & ( row . Temp Avg Int <= 38) :

temp reward = (1− abs (37 − row . Temp Avg Int ) ) ∗ 5
i f ( row . Temp Avg Int < 36) :

temp reward = abs (36 − row . Temp Avg Int ) ∗ −1
i f ( row . Temp Avg Int > 38) :

temp reward = abs (36 − row . Temp Avg Int ) ∗ −1
re turn temp reward

de f ca lc FiO2 reward ( row ) :
FiO2 reward = 0
i f row . FiO2 Avg <= 20 :

FiO2 reward = ((20 − row . FiO2 Avg ) ∗ 0 . 25 )
e l s e :

FiO2 reward = ( ( row . FiO2 Avg−20) ∗ −0.5)
i f FiO2 reward < −5:

FiO2 reward = −5
re turn FiO2 reward

data [ ’ temp reward ’ ] = data . apply ( calc temp reward , ax i s=1)
data [ ’ FiO2 reward ’ ] = data . apply ( ca lc FiO2 reward , ax i s=1)
data [ ’ reward ’ ] = data [ ’ temp reward ’ ] + data [ ’ FiO2 reward ’ ]
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54 APPENDIX C. VERIFICATION

Appendix C

Verification

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
DQN action

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

p
h
y
si

ci
an

ac
ti

on

24909 118 0 0 0 1373 619 188 0 0 527 120 0 25 0 728 66 263 1337 268 3510 0 0 4 1326

70 1 0 0 0 5 23 0 0 0 13 0 0 0 0 3 0 0 23 4 10 0 0 1 1

82 1 0 0 0 21 10 1 0 0 6 0 0 0 0 4 0 1 61 13 4 0 0 0 0

23 2 0 0 0 1 3 0 0 0 1 0 0 0 0 4 0 0 2 0 11 0 0 0 2

44 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 45

268 6 0 0 0 121 45 12 0 0 23 3 0 1 0 10 7 1 110 11 82 0 0 0 4

121 4 0 0 0 65 103 12 0 0 95 2 0 6 0 6 24 3 19 2 26 0 0 0 3

60 0 0 0 0 26 39 9 0 0 39 0 0 0 0 1 7 1 89 0 20 0 0 0 1

10 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 6 0 1 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 2

173 13 0 0 0 72 43 16 0 0 37 0 0 1 0 6 7 2 99 0 18 0 0 0 0

153 10 0 0 0 77 36 4 0 0 27 10 0 0 0 4 1 0 33 1 4 0 0 2 0

25 0 0 0 0 27 7 5 0 0 7 0 0 0 0 1 0 1 10 1 6 0 0 1 0

78 3 0 0 0 11 8 0 0 0 34 0 0 0 0 0 9 0 82 3 26 0 0 2 0

11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

531 1 0 0 0 91 43 17 0 0 20 0 0 0 0 49 4 8 90 30 183 0 0 0 6

81 1 0 0 0 26 5 0 0 0 3 1 0 0 0 1 9 2 14 0 11 0 0 0 0

302 1 0 0 0 56 36 0 0 0 22 0 0 0 0 40 1 35 56 25 67 0 0 0 0

327 0 0 0 0 23 8 1 0 0 6 0 0 0 0 10 5 0 107 3 20 0 0 0 1

376 0 0 0 0 2 1 0 0 0 0 0 0 0 0 10 0 0 9 13 78 0 0 0 11

615 1 0 0 0 4 14 0 0 0 1 0 0 0 0 8 10 1 1 2 184 0 0 0 18

27 1 0 0 0 5 0 0 0 0 6 0 0 0 0 0 0 1 3 1 7 0 0 0 2

80 1 0 0 0 5 0 0 0 0 2 0 0 0 0 19 0 8 9 10 109 0 0 0 0

157 0 0 0 0 11 22 0 0 0 7 0 0 0 0 10 0 1 17 1 50 0 0 0 3

620 10 0 0 0 0 0 3 0 0 0 0 0 1 0 28 0 0 0 4 121 0 0 0 65

100

101

102

103

104

N
u

m
b

er
of

ac
ti

on
s

Figure C.1: Action to action mapping
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
timestep

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

p
at

ie
n
t

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 12 12

0 0 0 0 0 0 0 0 0 5 15 15 15 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 15 15 15 5 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 2 2 2 2 2 2 2 1 0 0 0 0 0 0 6 17 17 17 7 17

0 0 0 0 0 1 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 13 7

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 17 17 17 17 17 6

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 6 6 6 6 6 6 6 6 6 1

0 0 0 0 0 0 0 0 0 0 0 0 0 5 15 15 15 15 0 0 0 17 22 17 17 17 17 17

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 15 15 10 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 23 23 23 23 23 23 23 23 23

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 17 17 17

0 0 0 0 0 0 0 11 11 11 11 11 11 16 16 21 21 15 15 15 15 15 15 15 15 15 15 15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 15 15 15 15 15 15 15 15 15 15 20 5 5

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 15 15 15 10 0

0 0 0 5 5 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17 17

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 5 5 5

0 0 0 0 0 0 0 0 0 0 0 0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 15 15 15 10 0 0 5 15 15

0 0 0 0 0 0 0 0 0 6 11 11 11 11 11 11 11 11 11 11 11 6 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19

0 0 0 0 0 12 17 17 17 6 17 23 22 21 17 23 22 21 22 23 22 22 22 22 22 22 22 22

0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 0 0 0 0 0 0 5 15 15 15 15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 17 17 17

0 0 0 0 0 0 0 10 20 15 20 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 22

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 20 0 15 20

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 11 11 11 11 11 11

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17

0 0 0 0 0 0 0 0 0 0 0 0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 15 15 15 5 0 0 0 0 6

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 20 20 20 15 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 10 16 11 11 11 11 6 6 6 5 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 20 20 20 0 0 0 0 0 0 0 0 5

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 24 19 24

0 0 0 0 0 0 0 0 0 0 0 0 5 5 5 5 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 10 10 10 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 1 17 17 17 17 17 11 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 15 15 15 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 11 11 11 11 11 11 11 11 11 6 0 5

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 5 15 15 15 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5

Figure C.2: Action sequences
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Appendix D

Medication doses
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58 APPENDIX D. MEDICATION DOSES
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(a) Vancomycin dosing (excluding zero dose) with the quantile cut points at 4,5 and 7
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(b) Ceftazidim dosing (excluding zero dose) with the quantile cut points at 12, 20 and 27

Figure D.1: Histograms of medication dosing per 6 hours



Appendix E

Respiration
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Figure E.1: Percentage of days with additional inspired oxygen (FiO2)
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Appendix F

Density
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Figure F.1: Density chart of the patients’ states
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