

Master Thesis Business Informatics

Contrastive Explanation for
Machine Learning

Marcel Jurriaan Robeer
Department of Information and Computing Sciences

July 2018

Supervisors
dr. M.J.S. Brinkhuis Utrecht University
dr. ir. J.M.E.M. van der Werf Utrecht University
J.S. van der Waa, MSc TNO, Delft University of Technology
Prof. dr. M.A. Neerincx TNO, Delft University of Technology

ABSTRACT
Introduction. Recent advances in Interpretable Machine Learning (iML) and Explainable Ar-
tificial Intelligence (XAI) have shown promising approaches that are able to provide human-
understandable explanations. However, these approaches have also been criticized for disregard-
ing human behavior in explanation. When humans ask for an explanation they generally contrast
the given output against an output of interest. We propose to use this human tendency to ask
questions like ‘Why this output (the fact) instead of the other (the foil)?’ as a natural way of
limiting an explanation to its key causes.

Method. In this study we present an end-to-end approach for extracting contrastive explanations
for machine learning (ML). First, we define how to apply contrastive explanation to ML. Next,
we extensively study 84 iML methods in a systematic literature review to overview approaches
for enhancing interpretability in machine learning, and finding method parts most suitable for
contrastive explanations. We develop Foil Trees: a model-agnostic approach to extracting expla-
nations for finding the set of rules that causes the explanation to be predicted the actual outcome
(fact) instead of the other (foil). Moreover, we quantitatively validate Foil Trees, and empirically
evaluate contrastive explanations in a user experiment.

Results. Quantitative validation showed that Foil Trees are able to accurately mimic the decision
boundaries of the model it aims to explain (94% fidelity), generalizes well on unseen data (88%
accuracy), provides 78% shorter explanations than their non-contrastive counterparts (mean length
of 1.19 over 5.37) and does this all in real-time (60ms on average per explanation). Moreover, we
conducted a user experiment on 121 participants to establish how contrastive and non-contrastive
explanations are perceived in terms of general preference, transparency and trust. We found
that contrastive explanations are preferred over non-contrastive explanations in terms of under-
standability, informativeness of contents and alignment with their own decision-making. This
preference lead to an increased general preference and willingness to act upon the decision.

Discussion. These results suggest that it is feasible to extract generalizable, objectively transpar-
ent contrastive explanations for ML, and that contrastive explanations provide an intuitive means
to create informative minimal-length human-understandable explanations that are preferable and
more persuasive.

Keywords. Interpretable Machine Learning (iML) · Explainable Artificial Intelligence (XAI) · Contrastive

Explanation · Decision Trees · Model-Agnostic · Human Interpretable Machine Learning · Foil

i

ACKNOWLEDGEMENTS
In December 2017, I ventured on a journey to tackle defining and applying contrastive explana-
tions to machine learning. Over the months, this project challenged me by requiring me to be
a generalist as well as a specialist. While still in an early stage, explainable artificial intelligence
(XAI) and interpretable machine learning (iML) have shown many promising approaches to tackle
a pivotal issue in our current and future society, and uncovered many challenges for the years to
come. I am glad to have learned from the difficulties and opportunities in this subject area, and
that I was able to contribute to tackling the issue even if ever so slightly.

This study would not have been possible without a number of people pivotal throughout my
research. First, Matthieu Brinkhuis for the insightful discussions we had, your enthusiasm for
my research and the subject area, and your valuable insights regarding psychology, experimenta-
tion and psychometrics. Second, Jan Martijn van der Werf, for your never-ending guidance and
support—challenging me even beyond my information science bachelor years. Third, I would like
to thank TNO for providing me with the opportunity and means for conducting my master thesis
in an exciting and ambitious subject area. Specifically, I would like to thank Jasper van der Waa—
your relentless ideas, support and enthusiasm that went into this project. Mark Neerincx, your
extensive knowledge and eagerness for new ideas and exploring beyond my own discipline. My
colleagues Ajaya, Arthur, Jurriaan, Martin and Riccardo in Applied AI, who provided me with
valuable discussions and reviews. Finally, a special mention goes to my fellow graduate interns
in Soesterberg, who taught me a good coffee and fun distractions during the day are pivotal to a
good end result.

Last but not least, I would like to thank my girlfriend, friends and family, who encouraged me to
excel this year. Without them, none of this would have been possible.

Marcel Robeer

iii

CONTENTS

Abstract i

Acknowledgements ii

Abbreviations vii

1 Introduction 1
1.1 Context 2

1.2 Research Approach: Design Science 2

1.3 Thesis Outline 5

2 Background: Interpretable Machine Learning 7
2.1 Artificial Intelligence and Machine Learning 7

2.2 Key Terminology 10

2.3 Why Explain? 12

2.4 What Makes an Explanation Interpretable? 15

2.5 Making Machine Learning Interpretable 18

2.6 Practical and Ethical Considerations 22

Summary 23

Literature Study 25

3 Contrastive Explanation 27
3.1 Why P rather than Q? 27

3.2 Contrasts, Facts, Foils and Counterfactuals 28

3.3 Contrastive Explanation in Machine Learning 30

3.4 Conclusion 33

4 Interpretable Machine Learning Methods 35
4.1 Literature Review Method 35

4.2 Taxonomy of Interpretable Machine Learning Methods 38

4.3 Explanatory Representations 41

4.4 Methods 45

4.5 Discussion & Conclusion 60

v

Foil Trees 65

5 Foil Trees: Contrastive Explanations for Machine Learning 67
5.1 Contrastive Explanation as Binary Classification 67

5.2 Implementation 71

6 Quantitative Validation 75
6.1 Performance Metrics 75

6.2 Setup 76

6.3 Results 79

6.4 Discussion & Conclusion 80

Empirical Evaluation 83

7 Experiment 85
7.1 Glucose Level Prediction Data 85

7.2 Experimental Design 87

7.3 Results 93

7.4 Discussion 97

7.5 Conclusion 99

Conclusion and Outlook 101

8 Conclusion and Outlook 103
8.1 Conclusion 103

8.2 Future Directions 105

Bibliography 107

Appendix 119
A Machine Learning Model Evaluation 119

B Machine Learning Techniques 123

C Validation Data 133

D Experiment Materials 135

Publications 157

vi Contents

ABBREVIATIONS

AI Artificial Intelligence

CNN Convolutional Neural Network

DNN Deep Neural Network

DT Decision Tree

DR Decision Rule

FI Feature Importance

HCI Human-Computer Interaction

iML Interpretable Machine Learning

ML Machine Learning

NN Neural Network

PAL Personal Assistant for a healthy Lifestyle

PDP Partial Dependence Plot

RL Reinforcement Learning

RNN Recurrent Neural Network

T1DM Type 1 Diabetes Mellitus

XAI Explainable Artificial Intelligence

vii

1 INTRODUCTION

Machine Learning (ML) systems can learn analytical models from data without being explicitly
programmed. In recent years, these data-driven algorithms have proven to be very successful
in various tasks—sometimes even outperforming humans—, and are therefore commonly used
to guide important decisions [43]. Even though these decisions affect humans, to optimize task
performance ML models often become too complex to be intelligible to humans [43, 46]. Already
two decades ago, this lack of interpretability was acknowledged as a main obstacle for real-
world applications [159]. Even today, enabled by an increase in model complexity, a lack of
intelligible ML models is a prevalent barrier to adoption in areas such as healthcare [24] and
fully autonomous cars [93]. Interpretable ML (iML)1 is the area of research tackling these issues by
creating interpretable ML models.

Problem statement

With recent successes of black-box ML models (e.g., [125, 167]), the field of iML has seen renewed
attention with the Explainable Artificial Intelligence (XAI) program of DARPA [65]. XAI intends
to create a new suite of ML techniques that produce more interpretable ML models while main-
taining a high level of performance [65]. While the recent resurgence of XAI models has shown
promising approaches (see e.g., [10, 72, 148]), the field has been criticized for disregarding (i) what
constitutes a good explanation and (ii) the requirements of the intended users explanations are made
for [43, 124]. Insights from the social sciences can be employed to improve explanations, thereby
boosting understanding and trust [110, 123, 124].

One key notion is that explanation-seeking behavior is generally contrastive [109, 124]: when ask-
ing why a model predicted an output humans (implicitly) ask for a contrast against an expected
output. For example, in the context of a self-driving car an explanation for ‘Why did you hit the
tree?’ might require a different explanation for ‘Why did you hit the tree rather than the person?’
than for ‘Why did you hit the tree rather than staying on the road?’ A good explanation should
therefore consider the fact (output) as well as the foil (expected output) [109].

We hypothesize that explanations in iML can benefit from explicitly considering the fact and foil.
Not only can we present a concise explanation that addresses the explanation expected by the
end-user, but the expected outcome for a given situation can be used to improve the model. To
test our hypothesis, we aim to define and implement contrastive explanations for ML.

1 To avoid confusion with Interactive ML (IML), we use the abbreviation iML for interpretable ML.

1

Contributions

This research project has scientific as well as societal contributions. The scientific contributions
are (i) the definition of a framework for contrastive explanations in ML, (ii) a systematic review
of iML methods, (iii) applying contrastive explanation to ML in a general-purpose manner to
create accurate yet convincing explanations, and (iv) empirical insights into user preferences and
perceptions regarding non-contrastive versus contrastive explanations. In addition, the societal
contribution is the improvement of intelligibility of ML models in various contexts, with a specific
focus on healthcare.

1.1 Context

Type 1 Diabetes Mellitus (T1DM) is a chronic condition where insufficient insulin is produced
by the body, affecting blood glucose levels that may lead to complications that threaten health
and survival [200]. The majority of T1DM occurs in children and adolescents, with an estimated
130,000 cases of T1DM in children aged 0-14 in Europe [178, 200]. While the cause for T1DM is
currently unknown, daily administration and management of blood glucose levels are known to
reduce the risk of negative health effects [40, 200].

PAL project

The Personal Assistant for a healthy Lifestyle (PAL) project develops a system for children aged 8-14,
their parents and health care professionals that aims to advance the self-management of T1DM
for when children reach adolescence [131].2,3 The PAL system comprises an Embodied Conversa-
tional Agent (ECA) robot and (mobile) avatar, a set of mobile health (mHealth) applications (e.g.,
diabetes diary, educational quizzes), and dashboards for the caregivers (i.e., health care profes-
sionals and parents). All parts are interconnected with a shared knowledge-base and reasoning
mechanism [55].

PAL wants to develop an action-recommendation ML algorithm that suggests children with the
most appropriate action (e.g., food item or insulin injection) to administer the blood glucose
levels throughout the day. In addition, they want this action recommendation accompanied with
a convincing explanation using iML in order to enhance trust and thereby adherence to the action-
recommendation algorithm.

1.2 Research Approach: Design Science

The research project is best characterized as Design Science [198]. Design science problems are
improvement problems, that aim to design an artifact (object of study) to improve a problem
context. We iteratively investigate the problem context (investigation), and design artifacts (design)
using existing problem-solving knowledge and newly gained knowledge from our investigation.

2 http://www.pal4u.eu/
3 The PAL project is funded by European Union Horizon2020 grant nr. 643783-RIA.

2 Introduction

http://www.pal4u.eu/

In this section, we define the overall aims and objectives of this research project. Next, we
overview the research questions to address the overall aims. Subsequently, we detail the cor-
responding research methods. Lastly, we overview the six project phases that we use to structure
the project.

Aims and objectives

We make explicit the artifact and problem context by defining the design problem using the
template of Wieringa [198]:

This research aims to improve explanations for machine learning models by devising and im-
plementing a contrastive explanation technique for the selection of food items that is inter-
pretable for caregivers in order to provide convincing explanations that enhance trust and
understanding of the PAL system.

Research questions

To address our main objective, the research is structured with a main research question (RQ):

RQ How can contrastive explanation improve the explanatory capability of machine
learning methods?

The main research question is answered by four subquestions (SQs). The first SQ revolves around
surveying existing literature on methods for interpretable machine learning. SQ2 considers how
to automatically acquire explanations most suitable for creating contrastive explanations. SQ3

expands on determining the foil (expected output) when an explanation is desired. For SQ4, we
use insights from SQ1 and SQ2 to generate explanations that are human-understandable in the
problem context. Lastly, we evaluate the quality of our output:

SQ1 What are current approaches to automatically acquire explanations from
machine learning systems?
We survey existing methods for explanation of machine learning models to catalog the
research that has been conducted for benefit of researchers in this area, and create a
thorough understanding of their strengths and weaknesses. We use their insights for
the development of our own approach.
1.1 How do iML methods enhance interpretability in machine learning?
1.2 How can these methods be used for contrastive explanation in machine learning?

SQ2 How to automatically acquire decision rule explanations from machine learning
systems?
Based on the findings in SQ1, we develop a method for generating explanations for an
arbitrary outcome (i.e., fact or foil) that holds at least locally. This method forms the
foundation for our approach for contrastive machine learning explanation.

3

SQ3 How can we determine the foil for a required explanation?
First, we aim to distinguish which foils to consider for a machine learning task (3.1),
and consequently develop a method for automatically acquiring these foils (3.2) when
an explanation is requested:
3.1 Which foils can we distinguish for machine learning?
3.2 How to automatically acquire these foils for a required explanation?

SQ4 How can we generate human-understandable contrastive explanations?
Using the approaches developed in SQ2 and SQ3.2, we develop an end-to-end method
for contrastive explanation (4.1) and transform the final explanation to a
human-understandable format (4.2):
4.1 How to generate contrastive explanations, given an output to explain and the foil?
4.2 How to present the contrastive explanation in a human-understandable way?

SQ5 What is the quality of the contrastive explanations?
We assess the quality of the approach through a quantitative functional performance
assessment (5.1) as well as human evaluation of interpretability (5.2) by assessing the
perceptions of the intended users of our approach in an experiment:
5.1 How well do the contrastive explanations perform in terms of explanation length,

generalizability, truthfulness to the model it aims to explain, and speed?
5.2 How are contrastive explanations versus non-contrastive explanations perceived in terms

of general preference, transparency and trust?

Research methods

To answer our research questions, we apply various research methods. Table 1.1 relates the re-
search methods to the research questions to which they apply. SQ1, SQ2, SQ3.2, SQ4, and SQ5

are all part of the design, while SQ3.1 focuses on investigation. Through a literature research, we
aim to overview scientific insights and use these to design and develop a method. The method
is implemented in a proof-of-concept tool. We systematically review iML methods, combining
methods found in partial overviews of subareas and snowballing these articles to find new meth-
ods. Moreover, we perform a functional evaluation of the truthfulness of the explanation to the
model using a controlled experiment. Lastly, whether the method is deemed interpretable is
evaluated through expert evaluation in a user experiment.

Table 1.1 Research methods used to answer the subquestions (SQs)

SQ1 SQ2 SQ3 SQ4 SQ5

Research method 1.1 1.2 3.1 3.2 4.1 4.2 5.1 5.2

Systematic review X X
Literature research X X X X X
Controlled experiment X
User experiment X

4 Introduction

Project phases

We structure the research around six main phases, based on the design science research process
model [140]. Each of the first five phases addresses one or more subquestions (SQs), while during
communication (phase 6) we answer the main research question (RQ). We define the six phases
as follows:

1. Background Define and overview iML and contrastive explanation for ML SQ1-3

2. Method review Literature review of existing iML methods SQ1

3. Design Design and development of an end-to-end automated approach for
contrastive ML explanation

SQ2-4

4. Implementation Implementation of the approach in a proof-of-concept tool SQ4

5. Evaluation Functional and human-grounded evaluation of the approach, applied
to the use-case in form of the proof-of-concept tool

SQ5

6. Communication Writing final version of thesis and papers based on project RQ

1.3 Thesis Outline
The remainder of this thesis is structured as follows. First, as a theoretical baseline Chapter 2 ex-
pands on interpretability and explanation, both from a philosophical and psychological perspective,
as well as from its application in computer science through iML. The remainder of this thesis is
subdivided into four parts, as depicted in Figure 1.1.

Part I reports the literature review. Chapter 3 defines contrastive explanation concepts and applies
them to machine learning (ML). Chapter 4 provides a systematic review of existing interpretable
machine learning (iML) methods and provides insights for operationalizing contrastive explana-
tion in machine learning.

Part II describes and validates our Foil Trees: our approach for automated contrastive ML expla-
nations. Chapter 5 details the approach and its implementation. Chapter 6 then quantitatively
validates our approach using a controlled experiment.

Part III presents a human experiment that assesses perceptions and preferences for contrastive
versus non-contrastive explanations, and discusses the results and their implications.

Part IV concludes the thesis and present future directions for research.

Literature study
SQ1, SQ2 & SQ3.1

Foil Trees
SQ3.2, SQ4 & SQ5.1

Empirical evaluation
SQ5.2

Conclusion and Outlook

Figure 1.1 Thesis overview

5

2 BACKGROUND: INTERPRETABLE
MACHINE LEARNING

Interpretability is seen an important criterion for the adoption of machine learning (ML) models
in real-world tasks [43, 157]. Even though it is such a pivotal concept, the desired quality of
interpretability is ill-defined: ‘What is interpretability?’, ‘Why is it important?’, and ‘How can we
measure interpretability?’

In this chapter, we use the scientific understanding of interpretability and explanation as a base-
line to answer these questions in scope of this work. We overview scientific literature from the
fields of artificial intelligence (AI), philosophy of science, social sciences (in particular psychology)
and human-computer interaction (HCI). First, Section 2.1 introduces the main ML concepts and
four types of ML. Section 2.2 introduces key iML terminology as a baseline. Section 2.3 expands
on reasons for explanation. Section 2.4 examines measuring interpretability and key factors to
consider for making ML explanations interpretable. Section 2.5 overviews approaches to make
ML interpretable. Lastly, Section 2.6 discusses practical and ethical considerations fundamental
to interpretable ML.

2.1 Artificial Intelligence and Machine Learning

Artificial Intelligence (AI) is the study of the synthesis and analysis of computational agents that
intelligently solve tasks given information and a set of actions or decisions [141, 158]. Machine
Learning (ML) is a subfield of AI that focuses on computational approaches of learning analytical
models from data to optimize task performance [127]. In this thesis, we focus on ML specifi-
cally unless mentioned otherwise. In this section, we first define general ML concepts, and then
introduce the types of ML tasks.1

Machine learning concepts

In order to learn from data, an ML algorithm takes inputs and produces a model f̂ (·) so that it can
transform inputs into outputs. It is defined as

1 For a more detailed overview of ML model evaluation and ML algorithms, we refer the reader to Appendix A and
Appendix B, respectively.

7

Definition (Machine learning model).
A machine learning model is a mapping f̂ : X → Y , where

H x1, x2, . . . , xN ∈ X are the model inputs (data points), and;
H y1, y2, . . . , yN ∈ Y are the model outputs.

We refer to X as the input space, and Y as the target space. We write f̂ (X) = Y as a shorthand
for { f̂ (x) | x ∈ X } = Y.

The input xi consists of a set of m feature-value pairs (ai, vi), where ai is a feature (also referred to
as attribute or variable) and vi is the value from the domain of ai. A feature describes the domain
of a single element in the input—e.g., a number in the input data may represent a color, the speed
a car was driving at, or the presence of a disease. The values of these feature are either restricted
in the number of values they can take on (discrete) or they can take on an infinite number of values
(continuous).

Let Λ be the universe of all feature labels, and V be the universe of all feature values.

Definition (Feature set).
A feature set is a tuple (A, L, R) where

H Feature space A is the Cartesian product of m features A = a1 × a2 × . . .× am.
H L : A → Λ is a function describing the (potentially empty) label for each feature.
H R : A → P(V) is a mapping of a feature to a range of potential feature values for that

feature. A feature a ∈ A is
– discrete if R(a) can take on a countable set of feature values, or;
– continuous otherwise.

We denote the value assigned to an input xi for attribute ai ∈ A as vi ∈ V .

Types of machine learning

We distinguish four types of tasks in ML [158]: supervised learning, unsupervised learning, semi-
supervised learning, and reinforcement learning.

Supervised learning. Supervised tasks are given a training set of N input-output pairs (x1, y1),
(x2, y2), . . . , (xN , yN) where each y was generated by an unknown function y = f (x). In super-
vised learning, the outputs corresponding to inputs are often referred to as labels. The goal is to
discover a function ŷ = f̂ (x) that approximates the true function f (·) with respect to a perfor-
mance or loss function. We can then assess the performance of the model by giving it previously
unseen data (the test set) and comparing the predicted labels to the actual labels. The test set
is not used during training and contains labeled instances taken from the full data set, typically
between 20% and 40% of the total data set.

Supervised tasks are subdivided into two subtasks based on the type of output. When y can
take on a finite set of values (classes, such as spam or not spam), the task is called classification.

8 Background: Interpretable Machine Learning

Problems with two classes are referred to as binary classification, while problems with more classes
are denoted multi-class classification. If y is a number (e.g., the expected temperature), the problem
is referred to as regression analysis.

Unsupervised learning. Unsupervised tasks aim to find structure in the data without receiving
any feedback. These tasks do not have labeled inputs, i.e. it is trained on N inputs x1, x2, . . . , xN .
Examples of tasks are clustering—discerning clusters within the data where inputs are similar—,
association rule mining—discovering interesting relationships between data—, and anomaly detec-
tion—finding instances that deviate from the normal pattern in the data, such as fraudulent bank
transactions.

Semi-supervised learning. Semi-supervised tasks have only part of their input data labelled. Typ-
ically, the number of unlabeled examples greatly outnumbers the number of labeled examples.
The annotation with ground truth labels is very expensive (or even infeasible) for some tasks.
However, it might be possible to create a more accurate supervised model if we can also leverage
the provided unlabeled data. In semi-supervised learning the initial goal is to identify labels for
all inputs. After all inputs have been labeled, the problem can be treated as a supervised learning
task.

Reinforcement learning. Unlike the other types of learning, in reinforcement learning (RL) an
agent can affect the environment. In RL, an agent learns from the environment by performing ac-
tions, getting new information and a reinforcement (reward or punishment) from the environment
[176]. The algorithm aims to maximize the cumulative reward, by finding state-action pairs ob-
tained from the environment that were most responsible for acquiring the reward. To find the
optimal policy—the action-selection model—, the agent has to balance between exploitation (max-
imize reward you know about) and exploration (choose to acquire more information about the
environment).

Formally, RL can be defined as a Markov-Decision Process (MDP). An MDP is a 4-tuple 〈S, A, T, R〉,
with a set of possible states S and possible actions A. At each discrete time step t, the agent
observes a state st ∈ S and selects an action at ∈ As, where As ⊆ A is the set of possible
actions in s. Next, the agent immediately receives a scalar reward rt and changes its state to st+1.
T : S× A× S → R≥0 is the probability of ending up in one state from another state. The goal is
to find an optimal policy π : S → A (a mapping of probabilities for selecting the next action) that
maximizes the expected cumulative reward. The immediate reward is retrieved using a reward
function R : S× A→ R [158, 176].

Take for example a scenario where we want let a robot solve a maze by navigating a grid. The
states (S) are all the spots in the maze without a wall; its actions (A) may be forward, backward,
turn left, or turn right. In a given spot we may restrict the potential actions, as the robot cannot
move into a spot with a wall. To solve the maze, the robot should reach the finish line, where
we give a reward of 100 points. In addition, some states result in a reward of another 10 points.
When performing RL, we can give it the goal of maximizing the total number of points. If instead

9

we would rather find the shortest path to the finish line, we might only consider a reward at the
finish line and optimize for this reward.

2.2 Key Terminology

Interpretable Machine Learning (iML) and Explainable Artificial Intelligence (XAI) revolve around
several key concepts. In this section we define these concepts as they are used in this study.

Defining interpretability

Despite its importance there is no consensus in scientific literature regarding the definition of
interpretability of ML [43, 110]. Interpretability in ML suffers from a severe underspecification of
the problem [110]. It is viewed as a comparative measure, where one technique or model may be
more interpretable than another [123]. In its contents, intepretability conveys some sense of how
the model works [110], governing how easy it is to understand a model in a particular domain
[189].

In the field of iML, three works attempt to define interpretability. Doshi-Velez and Kim [43, p.
2] define interpretability as the “ability to explain or to present in understandable terms to a
human.” Miller [123, p. 12] describe interpretability as “the degree to which an observer can
understand the cause of a decision.” Ross et al. [155, p. 1] claim that “[a] model is interpretable
if it provides explanations for its predictions in a form humans can understand”. We strengthen
our definition of interpretability by employing two key insights prevalent throughout the afore-
mentioned definitions:

1. A model is made interpretable by providing explanations for its decisions [43, 123, 155], and;

2. These explanations should be provided in understandable terms to a human [43, 155].

Here, we view a decision as a generic output of AI systems. By combining these insights, in context
of this work we define interpretability as follows:

Definition (Interpretability).
The ability of a machine learning system to explain its decisions in understandable terms to
a human.

Similar to Miller [123], we use the terms interpretability and explainability interchangeably. In
addition, we equate comprehensibility with interpretability.

Model interpretability. In interpretability, it is important to distinguish between the interpretabil-
ity of the model itself, and the interpretability of the learning algorithm [157]. Note that in our
definitions, we specifically refer to the interpretability of the model. While the learning algorithm
may be interpretable, this does not imply that the resulting model will be interpretable as well.
For example, the simple functions in each neuron in a neural network may be easily explained to
an end-user, but this does not elucidate how the full network captured intricate patterns in the

10 Background: Interpretable Machine Learning

input data to arrive at a decision. Still, we argue that when a model is deployed factors such as the
chosen algorithm, training metadata and descriptive statistics of the input data set may provide
a general sense of a sound approach to solve the problem at hand—and therefore are significant
information to convey [46].

Explanation

An essential part of interpretability is the ability to provide an explanation. Like interpretability,
the term explanation also suffers from a multitude of definitions. Therefore, in the following
paragraphs we consider the definitions of explanations used in scientific literature and use these
to define explanation in scope of this work.

Explanation: a process and a product. Explanation is both a process and a product [123]. It en-
compasses both the explanatory act, as well as the thing to be explained (explanandum) and the
explanatory response (explanans) [156]. However, this distinction is not always clear. This is fur-
ther complicated because explanation captures a plurality of concepts, even in human psychology
itself [28]. Most scientific literature on explanation emphasizes the product of explanation (ex-
planandum), instead of the explanatory act. Accordingly, our characterization of explanation also
revolves around the explanatory product.

Scientific and everyday explanation. While a lot of work in the philosophy of science focuses on
scientific explanation, there is more to explanation than just scientific explanation [156]. Scientific
explanation focuses on creating theoretical and empirical statements that describe phenomena in
the world around us [71]. Explaining general phenomena requires a rigid process of hypothesis
formulation and experimental or formal justification [71]. In contrast, everyday explanations are
often between individuals and attempt to convey some sort of understanding of why particular
facts (e.g., events or decisions) occurred [86, 123]. They are singular, in that they describe one par-
ticular event instead of general laws [156]. Between individuals, these everyday explanations are
a currency to exchange beliefs [112]. In this thesis, we focus on everyday explanation. While this
distinction may not always be crisp, this means that we strive to formulate everyday explanations
that convey understanding between two agents—rather than explanations that hold generally in
the form of laws.2

Defining everyday explanation. In its simplest form, an everyday explanation (also referred to as
ordinary explanation) is defined as an answer to a ‘why’-question [e.g., 108, 112, 123, 156, 191].
However, this definition disregards what constitutes an explanation itself.

In general, the scientific consensus is that the main content of an explanation is a causal rela-
tionship between events and the outcome. Mandel [117] argues that ‘why’-questions are causal
questions. Thus, an explanation should encompass a rationale that provides the information
needed to establish causation [68]. Miller et al. [124] also emphasizes the importance of causation

2 Please note that this does not imply that non-scientific explanations are not generalizable to more cases, but rather that
we are not seeking explanations that hold for all cases of a phenomenon.

11

in explanation, stating that the attribution of causes to events is necessary to provide explana-
tions. While we do acknowledge that some authors argue that not all explanations are about
causal relationships [e.g., 86], in the context of ML models—where outputs are caused by the
given inputs—we restrict our definition of explanation to causal explanation. Even when some
explanations contain non-causal elements, causal elements seem to be preferred for explanation
[86].

While these definitions of explanation are drawn from the philosophy of science, there is no single
agreed-upon definition of explanation for machine learning (ML). Within ML, Miller [123] inter-
prets explanation as post-hoc interpretability—i.e., interpretability of the decision by the machine
learning model after it was made. Even though at first glance post-hoc interpretability seems an
ML equivalent of asking a ‘why’-question to explain a decision, using this definition poses the
issue that we would define explanation in terms of explanation, and vice versa. Instead, we view
interpretability as a concept that is defined in terms of explanation. Our definition of explanation
merely considers the causal contents of the everyday explanation, and thus we define it as follows:

Definition (Explanation).
A causal description of why a decision occurred.

Explanatory agents. This definition of the explanation leaves out one key aspect of everyday
explanation: that the explanation is conveyed between two agents. These two agents are distin-
guished using two roles:

H Explainer: the agent giving the explanation, and;

H Explainee: the agent receiving the explanation, with the aim to understand it.

Please note that given the aforementioned definition of interpretability, the explainee is a human.

2.3 Why Explain?

To understand a decision people ask for an explanation of why it happened, how it happened, and
even how it could have been prevented [117]. Analogously, if we are to use automated decisions
by ML models in real-world applications, human-understandable explanations are an intuitive
means to establish why these decisions were made in non-interpretable models.

Already two decades ago, a lack of interpretability has been acknowledged as a main obstacle for
real-world applications [159]. Even today, a lack of intelligible ML models is a prevalent barrier
to adoption in areas such as healthcare [24] and fully autonomous cars [93] due to the increase in
model complexity. With a lack of interpretability, explanations provide a basis to verify whether
the system adheres to quality properties other than its decision performance.

For real-world applications, it is important to consider why interpretability is necessary. When
designing for interpretability, the motivating goal it aims to address should be taken into account.
In this section, we overview the five main motivators for why interpretability is required in ML.

12 Background: Interpretable Machine Learning

They can be categorized as transparency, trust, model debugging, learning from the model and ethics &
regulation.

Transparency

The inability for most end-users to understand ML decisions originates from opaque models [21,
74, 110]. Transparency is the opposite of opacity [110]. It can be used as a means to counter
opacity, and is a motivator for interpretability in itself. Burrell [21] distinguishes three root causes
of opacity prevalent in ML models:

H opacity as a result of intentional hiding of the decision-making process by corporations and
institutions as proprietary protection;

H opacity stemming from the technical illiteracy of everyday users—who cannot understand
the underlying mechanisms—, and;

H opacity as a result of the mathematical paradigm to handle data diverging from the demands
of human-scale reasoning and comprehension.

These three root causes can be tackled by providing transparency regarding the decision-making
process, and explaining the inner workings of the model in terms and cognitive chunks under-
standable for the explainee.

In addition to being a motivator for interpretability, transparency facilitates other desiderata of
interpretability. For example, a more transparent model may increase trust on behalf of users
[107], and allows for the examination of ethical and legal concerns [42].

Trust

In order for people to apply ML models in real-world tasks, they need to trust that it will perform
well and understand beforehand when it will not perform well [43, 74, 110, 123]. Verification
that the model uses sensible inferences for decision making can ensure reliability, robustness and
safety when it is applied on a real-world task [43, 160]. In particular, we can uncover the cases
where the model fails in reality [46], observe whether it still performs even when greatly varying
inputs [43, 160], and is able to withstand attempts of users gaming the system [110].

Trust is strongly tied to the generalizability (or transferability) of a model: whether a model can
be applied in new contexts, and generalizes well beyond its training data. The difficulty of
generalizability lies in that learning problems suffer from the bias-variance trade-off : they have
to simultaneously minimize bias (how consistently correct the model performs) and variance (the
variation, or spread, of outputs), to prevent overfitting or underfitting on the input data [118]. If
it follows patterns of the input data too well the model might not hold in other contexts, while
if the model is too simple it might not capture the complex relationships in real-world tasks
[118]. This is further complicated by systematic bias in input data, where prejudices of humans
in the data selection process can misrepresent the relations it aims to capture [52]. For example,
while we may not want to discriminate against a minority—the fact that they are a minority will
result in a systematic underrepresentation of them in the input data. With the general objective

13

of maximizing performance, an easy method to differentiate a large group of people from the
rest is to (unknowingly) use the fact that they are a minority as a distinguishing characteristic—
potentially discriminating against a group as a consequence of distributions in input data.

Lastly, ML tasks might optimize for mismatched objectives [43]. In these cases, their goal is to max-
imize performance on a proxy objective, as the actual objective cannot be captured or measured
easily. Though the ML model may perform well on the proxy, this does not mean that it is optimal
performance for the actual objective per se. For example, while the overall goal may be to im-
prove patient health, we may only try to optimize for a measurable property such as blood sugar
level or body temperature. With the risk of mismatched objectives, iML can assist in uncovering
whether the decision is also optimal for the actual objective or solely the proxy objective.

Model debugging

When we uncover the weaknesses of our model, we can use this knowledge to improve the model
itself. Especially when there is high-dimensional or large-scale data, debugging or improving the
model becomes a futile endeavor [21]. Complex inputs that each subtly change the model output
may require intricate understanding for model improvement [21]. If we uncover what our model
is doing and explain why, it becomes easier to improve it [160]. Interpretability can facilitate
model improvement in three ways. Firstly, explanations are used for model debugging: in cases
where the model failed we might ask why it failed [86]. Secondly, model interpretability can help
in detecting and preventing human bias in the model and data [160]. Thirdly, making the model
interpretable allows for comparing different models and architectures [160].

Learn from model

Machine learning revolves around learning an analytical model from data. Automatically learning
from vast amounts of data may lead to a model discovering intricate patterns that may not be
apparent to human observers. Instead of merely deploying such a model in practice, the rationale
used by the ML system has been used to inform decision makers and further understanding of
the problem domain [88, 160]. A model may be informative to end-users in other ways than
merely its outputs [110]. For example, if we want to determine whether a patient has a disease
based on their DNA, we may be just as interested in knowing the parts of DNA responsible for
said disease than just the fact they are likely to obtain said disease.

From a scientific point of view, by asking explanations we can acquire new knowledge for scien-
tific understanding [43, 110]. Especially when the goal is to make strong claims about phenomena,
such as causality, a more comprehensive understanding of the problem is required [110]. Note
that our account of explanation may prove to be insufficient to justify explanations for scientific
phenomena, as we focus more on everyday explanation.

Ethics & legislation

Nowadays, decisions made by ML systems are applied in settings where they affect humans.
They may decide on your job application, whether you can be granted a loan, or the media you

14 Background: Interpretable Machine Learning

are presented with on a website. This has raised questions about the fairness and ethics of ML
decision-making [43, 46, 74, 110, 194]. ML systems may exhibit undesirable discrimination, as past
data may contain correlations we do not want to capture in our system [35, 46]. Decisions based
on direct characteristics, such as gender, race, religion and sexuality are not only unwanted, but
oftentimes even illegal [46]. Even if these are not directly present, they may be unknowingly
uncovered by indirect data, such as occupation data or postal codes [46]. With discrimination
as a concern, privacy-preserving ML systems may address potential issues through transparency
of the individual’s input data being used for automated decision-making [35]. With no direct
access to input data, as often this data is the key resource for an information-driven organization,
interpretability of individual decisions can help address privacy concerns [35].

Recently, this societal consideration of ethics in ML has been backed up by compliance to legisla-
tion: the European Union’s General Data Protection Regulation (GDPR) ‘right to explanation’ [137].
The GDPR requires all algorithms automatically processing EU citizen’s data to explain their deci-
sions as a safeguard for their rights and freedom [63]. Legally, according to the GDPR explanation
should provide us with ‘meaningful information about the logic of processing’ [46, 63]. Though
it is not the main aim of this work, it is also important to note that the ML model should be
contestable [63, 110]: allowing for decisions to be altered when their propositions are falsified.

2.4 What Makes an Explanation Interpretable?

Miller [123] argues that some techniques or models may be more interpretable than others. With
the goal of increasing interpretability, we require a form of benchmarking by measuring inter-
pretability. The difficulty of interpretability lies in that it is subjective [11, 157]: what one person
might call an interpretable explanation may not be interpretable to another person at all. First, we
overview methods for measuring the interpretability of ML models. However, measurements can
usually only be performed after a method for interpretability was already created. Therefore, in
the subsequent subsection we examine other factors that may improve interpretability in specific
contexts or in general.

Measuring interpretability

Doshi-Velez and Kim [43] remark that there are currently two predominant approaches to evalu-
ating interpretability: (i) human evaluation and (ii) evaluation through a quantifiable proxy.

Human evaluation. The first approach, human evaluation, revolves around evaluating the inter-
pretable ML system in the context of an application [43]. If the system is deemed useful by people
in some practical context—or a simplified version of it—, then it must also be useful in a more gen-
eral context. Interpretability must take into account the explainee’s limitations and perceptions
[43, 148]. While more expensive to test than quantifiable proxies, human-grounded evaluation
allows to comparatively evaluate the interpretability of one model to another, regardless of model
class (e.g., decision tree or classification rules) [157]. When testing on a real task, performing ex-
periments or questioning domain experts poses the benefit of gaining actual insights of whether

15

the approach will work in the envisioned application domain [43].

One caveat is that it may be difficult to separate interpretability from the impression of validity of
the model [157]. Personal beliefs are a major determinant in whether a model is perceived to be
interpretable, and these may hinder the evaluation of the general method. These prejudices may
also reach beyond the domain the model describe, as an explainee may have bias for or against
ML systems based on their past experiences with them [42]. As noted earlier, another downside
of human evaluation methods is that they are more expensive: they require time and effort to
perform, and demand high standards of evaluation design [43].

Quantifiable proxy. In the second approach interpretability is measured by using a formal com-
plexity measure [157]. Examples of such a complexity measure are the depth of a decision tree,
the minimum description length of a decision tree, the number of rules or rule depth in a clas-
sification rule list, the number of features in regression, or the Akaike Information Criterion.
Generally, measures are based on a claim that a (class of) model(s) are inherently interpretable
[43]. Next, they may achieve simplicity by constraining the model size in some manner.

While formal complexity measures may be easy to measure—and therefore pose a practical
advantage—, one might argue that they are a too simplistic representation for an imprecise con-
cept as interpretability [157]. The downside of formal complexity measures is that (i) they may
only be applicable to one class of models (such as decision trees or classification rules), or (ii) they
only provide a very coarse measure of complexity—completely disregarding the semantics (i.e.,
contents) of the model [51, 157].

Formal complexity measures are based on the heuristic that simpler explanations are preferred
[136, 157]. By reducing the number of features, parameters, or elements in an explanation it
becomes easier to understand. Authors employing formal complexity measures base their as-
sumption on an Occam’s razor-type (parsimonious) argument: when multiple explanations hold,
we should pick the simplest explanation that is consistent with the data [136, 158]. This notion of
the human favor of simplicity is also backed up by empirical evidence. Huysmans et al. [79] found
that when people were asked to perform judgments using models overall the comprehensibility,
answer accuracy and answer for decision tables, decision trees and classification rules tended to
increase when models became smaller.

However, Freitas [51] cautions for extreme simplicity in the explanation of complex problems
(which may invoke an averse reaction of the explainee), and that the acceptance of an explanation
may depend even more on the degree of alignment with the explainee’s background knowledge
rather than rule size. In causal explanation, Pacer and Lombrozo [136] found that people prefer
minimizing the number of unexplained causes (root simplicity) rather than the minimizing the
total number of causes (node simplicity), even more so when the causal effect of the root nodes (the
topmost nodes in a causal chain) is strong.

When using a quantifiable proxy to measure interpretability, the central question remains: ‘How
simple should the explanation be?’ As a starting point, one might consider the number of cog-
nitive entities (or facts) in an explanation. Commonly, considerations are based on well-known

16 Background: Interpretable Machine Learning

Table 2.1 Evaluation approach advantages and disadvantages

Approach Advantages Disadvantages

Human evaluation Independent of model class Expensive to conduct,
influenced by human
preferences

Quantifiable proxy Cheap to obtain Model class dependent,
disregards model contents

heuristics such as the finding of Miller [122] that humans are capable of processing 7± 2 cogni-
tive entities, and Jennings et al. [81] who found that humans are limited in estimating the relat-
edness of more than two variables. Beyond such generic heuristics, the key consideration is the
interpretability-accuracy trade-off [148, 165]: in order for a model to be more sparse (interpretable),
it usually has to be less faithful to the input data.

The evaluation trade-off. Both methods of evaluation have pros and cons [43, 157]. Table 2.1
overviews the pros and cons for each approach. On the one hand, human evaluations may show
the interpretability and adoption in the target domain regardless of model class, but are more
expensive to conduct and be influenced by human preferences. On the other hand, quantifiable
proxies pose the benefit of being easy to calculate, but are typically model class related and only
give a coarse indicator—disregarding model semantics.
Consequently, evaluation of interpretable ML should strike a balance between the two approaches—
combining the advantages of each approach. Because they give a rough indicator of the approx-
imate length we should strive for in an explanation, quantifiable proxies are a good basis for
deciding on an approximation for explanation length. Still, claims of the explanatory capability
of a method in practice should also be backed up by human-grounded empirical evidence.

Factors for interpretability

While the preceding methods of evaluation may give insights into interpretability after devising
an interpretable ML approach, there are other factors that can be taken into account to create an
optimal explanation.

Doshi-Velez and Kim [43] hypothesize that the type of explanation sought may depend on
whether it aims to explain the whole model (global) or a single decision (local), the problem area,
the severity of the problem it aims to solve, time constraints of the explainee, and the explainee’s
expertise. These considerations are backed up by Edwards and Veale [46], who also argue that
ML explanations are restricted by the type of explanation (global or local), the multi-dimensionality
(complexity) of the problem domain, and the type of explainee.

A second factor is that when considering that people who are outliers given the data may most
commonly encounter an unexpected decision, for exactly these people providing an explanation
may be the most difficult [46]. This is an obvious drawback of statistical generalization. However,
it poses the benefit of uncovering exactly that: the reason the decision deviated from expectations

17

might be because the underlying model is too simplistic and overgeneralizes—providing a basis
for contesting the decision and/or model improvement.

Lastly, another factor that is regularly taken into consideration as improving the understandability
and acceptance of relationships are monotonicity constraints [51]. Simply put, a relationship is
monotonic if it either always increases or always decreases. Monotonicity constraints prevent
having to explain cases where first, for instance, the likelihood of an event increases with the
occurrence of another event, but suddenly decreases after a given threshold. In addition to being
less demanding to comprehend, monotonic relationships can also pose the benefit of preventing
effects of complex correlations to affect the explanation of a single relationship [35].

2.5 Making Machine Learning Interpretable
Now we have a sense and understanding of what interpretability is, why it is important and how
it can be measured, the practical issue of conceiving methods for interpretable ML (iML) remains.
In this section, we overview considerations and methods for making ML interpretable. First,
we enumerate evaluation criteria for comparing iML methods. Second, we present two general
strategies to make ML interpretable. Third, we draw from iML and human-computer interaction
(HCI) literature to gain insights in ways to present explanations in human-intelligible ways. Next,
we discuss how explanation depends on the informativeness of inputs and outputs. Finally, we
argue how interactivity can enhance explanations.

Evaluation criteria

While interpretability is imperative in iML, it is only one dimension of essential criteria that iML
methods should consider. In black-box rule extraction literature, Craven and Shavlik [33] list six
criteria to evaluate algorithms. These criteria state that the significance of iML methods depend
on the interpretability of the explanation, how accurate they represent what they explain, the
scalability of the method, whether the method can be applied in general, and its direct availability
for usage. We adapt these criteria, and extend them to hold more for iML methods in general:

H Interpretability (comprehensibility): the extent to which representations are human under-
standable, evaluated through human evaluation and/or quantifiable proxies (see Section 2.4).

H Fidelity: the extent to which representations accurately describe the underlying model, eval-
uated by comparing the iML model output to the underlying model output using traditional
performance measures (as detailed in Appendix A).3

H Accuracy: how accurately extracted representations can predict unseen examples—also
measured using traditional performance measures.4

H Scalability: the ability of the iML method to scale well with large numbers of input features,
large data sets and complex underlying models. Scalability is measured as the running

3 Please note that when there is no underlying model—i.e. the iML method is transparent/interpretable by design—
fidelity cannot be measured.

4 As we will see later, not all iML methods (e.g., ones showing feature importance, or which neurons are activated for a
given instance) can be used to predict new instances.

18 Background: Interpretable Machine Learning

time (run-time complexity or emperical evaluation), but also considers how well the inter-
pretability with size.

H Generality: the degree of dependence of the iML method on special training regimes, specific
underlying models or model architectures, types of data, and type of ML tasks. To become
widely accepted, iML methods must exhibit a high level of generality.

H Software availability: the extent to which researchers make their methods available to poten-
tial users—e.g., as open source software. Readily available methods can easily be adopted
by end-users, algorithm variants can be examined, and new functionality can be developed
conveniently.

Even though scalability, generality and software availability hold for an iML method in general,
interpretability, fidelity and accuracy depend on the specific case the iML method is applied to.
Therefore, they are to be assessed on a case-by-case basis. Moreover, learning iML represen-
tation is challenging because interpretability is generally a competing objective with accuracy
and fidelity [100]. For optimal accuracy and fidelity, the representation should take into account
the nuances and exception in predicting an output. Instead, interpretability favors simplicity—a
more comprehensible explanation it typically a simple one. When using a quantifiable proxy for
interpretability, these trade-offs can be made automatically using multi-objective optimization.

Explanatory strategies

To reach interpretability in ML through explanation, there are two explanatory strategies that can
be exercised [74]: descriptive and persuasive.

H Descriptive explanations focus on creating a truthful explanation of the model (maximum
fidelity). They attempt to accurately convey the inner workings of the model, but as a reper-
cussion may have to give in to their interpretability. To measure faithfulness, quantifiable
proxies are the principal means.

H Persuasive explanations aim to be as convincing to the explainee as possible. In order to do
so, they may employ explainee characteristics, preferences and knowledge. With the goal of
explainee persuasion, they often have to give into their model fidelity, in order to maximize
interpretability. To measure how convincing an explanation is, the sole means is through
human evaluation.

When making an ML model interpretable, one picks the strategy based on the goal of the expla-
nation. Descriptive explanations are most appropriate when the aim is reducing opacity, model
debugging, learning from the model or ethical considerations. Especially when trust or assurance
of transparency are a concern, persuasive strategies should be applied. In some considerations,
e.g. full transparency or legal issues, both strategies might be required to reach the desired level
of interpretability.

19

Presenting explanations

Explanations may take on a multitude of forms. Here, we overview four representations pervasive
in human-computer interaction (HCI) and iML literature. Note that these representations are not
mutually exclusive: often textual and graphical methods are combined. While in some cases
one representation can pose benefits over another, the design challenge is to match the right
representation to the explanatory task at hand [150]. To illustrate the types of explanations,
Figure 2.1 shows example explanations of each type for why a model classified an image as a
‘cat’.

Textual Graphical Salience Explanation by
example

because it contains
'pointy ears' and

'whiskers'

feature contributions

ears
wheels

legs
whiskers

feet

similar images that
are also 'cat'

Figure 2.1 Types of explanations for an image classified as ‘cat’

Textual. Humans often justify decisions verbally [110]. As such, explanation through text is
the most common approach for providing explanations in decision-support systems and of ML
models [e.g., 99, 184]. Textual representations range from very restricted (formulas of code) to
natural language. The preference for textual representations seems omnipresent, as even when
there is no textual understanding in an underlying model approaches are specifically made such
that they provide natural language explanations. For instance, Hendricks et al. [72] use class
definitions of the objects classified in a image classifier to give a descriptive explanation of why
an image is classified as such. Ehsan et al. [47] adds rationalizations to actions taken in the
training process as if a human had performed these actions—giving the ML model the ability to
generate natural language explanations for all actions it performs.

Graphical. Textual representations have difficulty in explaining complex networks of data or to
accurately convey relationships. Visualization is a very popular approach for global explanation
(i.e., explaining the entire model at once) or to explain individual decisions with charts (often used
in combination with textual explanations). Liu et al. [111] overviews visual analytics techniques
for understanding, diagnosing and refining ML models. Note that these are frequently interac-
tive visualizations—allowing the explainee to interact with the explanation. Goldstein et al. [62]
use chart-based visualizations to explain classifications while showing the underlying patterns of
data. Patel et al. [138] support ML model developers with a tool that employs graphical visual-
izations for model debugging. In decision-support systems charts are often used in conjunction
with text for explaining decisions [99, 184]. Krause et al. [95] use charts to visualize statistics

20 Background: Interpretable Machine Learning

to enhance textual rule explanations. Kulesza et al. [98] employ charts to visualize numerical,
time and musical key data with confidence intervals as explanations for song recommendation
predictions.

Salience. Saliency maps show an explanations as the relative importance of individual elements
compared to their neighbor elements. They are commonly presented as an overlay on their orig-
inal domain—e.g., the input image or input e-mail. Layer-wise Relevant Propagation [7] obtains
the relevant input features of a (deep) neural network. In images, this can create a heatmap show-
ing the relevant pixels for a decision. Saliency maps are often used to show the visual attention of
an ML model—i.e., where the model is looking at. For images and text, Ribeiro et al. [148] show
the relevant features of a decision as parts of an image or highlighted text, respectively. Zahavy
et al. [205] combine saliency maps for all decisions, and cluster similar saliency maps to general-
ize the decisions of a reinforcement learning agent—explaining the entire model as a simplified
Markov Decision Process (MDP).

Explanation by example. Explanation by example is a computer equivalent of human-style justi-
fication through analogy. They are often used in combination with other explanatory represen-
tations, but in unsupervised learning this is the most recurrent approach. While it may not be a
full explanation, showing similar cases to a decision equips an explainee with insights to build
their own mental model of the ML system [202]. Kim et al. [88] use similar examples to extract
features (e.g., colors in images or ingredients in recipes) common in subspaces in a cluster. Yang
and Shafto [202] explain individual decisions through Bayesian teaching: showing similar cases in
the input data to let the explainee learn about the model’s decision-making process.

Explanation informativeness

Explanation in ML depends on the informativeness of inputs and outputs. As long as these inputs
and outputs refer to some non-opaque concept (e.g., have clear feature names and labels)—a clear
explanation can be constructed. When citing causes for explanation, this can be equated to opacity
resulting in explanations to fail. To take an example from Lipton [108, p. 55]: “[. . .] suppose that
the decayed insulation in the high-voltage lines running between the walls caused the fire in the
department and is the event mentioned on page 17 of the accident report. If someone asks why
the fire occurred, it is unhelpful to say ’Because of the event reported on page 17 of the accident
report’.” Likewise, in ML it may be very unhelpful to explain a decision as ‘because variable X
was 0’—when variable X refers to gender and 0 means that the gender is male.

If either is not informative in itself, there are still presentation methods to reach a useful expla-
nation. For example, in clustering (where the output are similar cases) explanation by example can
provide an explanation that is more informative than that a case belongs to ‘cluster X’. As another
example, image inputs the inputs are integers representing pixel colors on a screen—not that
informative individually. Showing the input image and visualizing a saliency map can explain
what an ML model is looking for in an image. However, arguably a more verbose explanation is
one where a textual understanding of the concepts on the image is conveyed.

21

Interactive explanations

Most current explanations in iML are static [1]. Static explanations merely provide a single expla-
nation, that conveys a single message as a ground-truth explanation. However, when automating
the iML process interactive explanations allow a user to explore the ML systems’ behavior freely.
Through interactive visualization and dialogue systems, interaction can be a powerful means to
enable people to iteratively explore and gather insight from large amounts of complex informa-
tion [182]. In order to get a sense of an entire model or part of the model, explainees can, for
example, drill down from high-level explanation to very detailed ones [12]. Examples of current
HCI-focused approaches that leverage this principle are explanatory debugging [99]—showing
explanation of text predictions with evidence (e.g., important words and folder size) and the pre-
diction probability—, Rivelo [177]—that offers instance-level explanations by interactively explor-
ing features and data items for text data—, and Prospector [94]—a visual analytics tool showing
partial dependence diagnostics and localized inspections of why data points are predicted as they
are.

2.6 Practical and Ethical Considerations

In our quest to make the field of ML more interpretable, some authors caution for disregarding
the general trust, opacity and ethical concerns while we tackle these desiderata (e.g., [14, 74, 110]).
In a desire to optimize for human understandability, there may be a trade-off between creating
optimal and desirable explanations. While not the main aim of this study, we deem it important
before continuing our work to briefly touch upon potential ethical and practical issues in the
research area of iML.5

Firstly, as Lipton [110] notes, in taking human explanation methods as a golden standard for
iML research we might replicate human shortcoming in conveying and assessing interpretations.
The best explanation usually does not include the true cause [91]. With a preference of humans
to align explanations with their own beliefs, they may come up with a rationale of why that
explanation may be correct to them [92]. This preference highlights the potential decoupling
between explanation validity and perceived validity. In addition, explanation is often applied as
a tool for social comparison, where the content of the explanation can suffer under the attempt of
an explainer to create strategic misunderstanding in order to retain the social disparity between
explainer and explainee [147].

Secondly, as an ethical consideration Binns et al. [14], Herman [74] and Lipton [110] warn for opti-
mizing for convincing explanations. These persuasive explanations (see Section 2.4) have the goal of
convincing a human that the underlying model is correct, and may use misleading but plausible
explanations to do so. While persuasive explanations are an appealing approach to gain accep-
tance of ML methods in practice, when decisions affect humans in critical ways we may want to be
reserved in applying persuasive explanation methods. Rather than actually tackling explanatory
goals such as trust and ethics & legislation, these methods would only attempt to convincingly
trick humans into thinking they are up to the expected standards—‘nudging’ explainees into ac-

5 FAT-ML is the field of ML specifically focused on fairness, accountability and transparency.

22 Background: Interpretable Machine Learning

cepting a justification. Even when it is not the direct goal to persuade, benchmarking based on
human perception of explanation quality can have severe consequences. For instance, in clinical
decision support systems (CDSSs) Bussone et al. [22] found that comprehensive explanations lead
to over-reliance on the system. Merely including a high number of cognitive entities in an expla-
nation lead the explainees to believe that the system better understood the problem, and therefore
accepted the explanation even though the outcome was incorrect.

Lastly, making methods interpretable may be at odds with the broader objective of AI to surpass
human ability to solve complex tasks [110]. This is the same misalignment of ML methods’ com-
putational approach to handle vast amounts of data and human-style thinking that causes opacity
[21]. In attempting to make very complex decisions, we may have to give into interpretability (i.e.,
make an accuracy-interpretability trade-off) in order decipher the complex task. iML methods
need to be evaluated and used with caution, as ensuring their robustness is an often unaddressed
and currently unsolved problem [59]. Still, in practical considerations notions of ethics and legal
concerns should be examined on a case-to-case basis. As Burrell [21] and Hildebrandt [75] argue:
in some cases perhaps the only method for ensuring trust in a decision-making process is not to
use any ML methods at all.

Summary
H Interpretability is the ability of an ML system to explain its decisions in understandable terms

to a human. An explanation is a causal description of why a decision occurred. Explanations
are conveyed from an explainer to an explainee explainee.

H Explanations in ML have the goal of transparency, trust that the model will work well in
practice, model debugging, learning from the model, and ethical & legal considerations for
the decision-making process it is part of.

H Criteria for iML evaluation are interpretability, fidelity, accuracy, scalability, generality and soft-
ware availability. Interpretability can be measured using either human evaluation or a quan-
tifiable proxy—but often require a trade-off between the two.

H Explainability can be reached through descriptive (maximizing fidelity) and persuasive (with
as main goal explainee persuasion, often giving into fidelity) strategies. Persuasive strategies
are most appropriate for trust or transparency. Descriptive strategies should be used for
reducing opacity, model debugging, learning from the model or ethical considerations.

H iML explanations come in the form of text, images, salience overlays on the input data, or
showing groups of example instances that result in the same decision. Explanations are
typically presented using the model inputs and outputs, and therefore they depend on their
informativeness. With an automated explanation method, interactive visualizations and
dialogue systems can enhance explainability by exploration of the ML systems’ behavior.

23

LITERATURE
STUDY

We define contrastive explanation, facts, foils and counterfactuals for machine
learning. Furthermore, we systematically review 84 interpretable machine
learning methods published between 1994 and April 2018.

3 CONTRASTIVE EXPLANATION

Perhaps one of the most essential questions for interpretability in machine learning is: ‘What
constitutes a good explanation?’ A predominant finding from research in the philosophy of sci-
ence and social sciences is that explanation-seeking behavior is generally contrastive [109, 123]:
when asking why a model predicted an output humans (implicitly) ask for a contrast against an
expected output. A full causal explanation for an event is undesired and may even be infeasible.
In practice, humans always provide partial explanations instead of full ones [156]. Instead of a
full account, we expect an explanation for the key factors that caused the given output instead of
another.

This section introduces the main concepts of contrastive explanation, and defines how their mean-
ing in the philosophical theories and psychology can be transferred to meaningful definitions in
machine learning (ML). Section 3.1 introduces the general notion of contrastive explanation. Sec-
tion 3.2 defines the main concepts in contrastive explanation. Lastly, Section 3.3 applies these
concepts to ML to define a framework for using contrastive explanation in ML.

3.1 Why P rather than Q?

Authors in contrastive explanation argue that all ‘why’-questions are of the form ‘Why P rather
than Q?’ [9, 108, 109, 117]. Here, P is the actual decision and Q is the expected decision that
did not occur. Even if Q is left implicit—i.e., one might ask ‘Why P?’—the expected response
is contrastive. The question ‘Why did John hit the tree?’ may be asked with the intention of
knowing (i) ‘Why did John rather than Alice hit the tree?’, (ii) ‘Why did John hit the tree rather
than avoiding it?’ or (iii) ‘Why did John hit the tree rather than hitting a car?’All these variations
of expected events require different explanations. Therefore, to create a good explanation one
should take into account the event that occurred as well as the counterfactual event. To avoid
confusion, throughout the reminder of this thesis we will adopt the terminology used by Lipton
[109] and refer to actual event P as the fact, and the expected (class of) event(s) Q as foil.

Humans are well-equipped in detecting a foil from the language and tone in a conversation, and
the context surrounding the explanation [123]. However, to automatically obtain the foil from
an explainee requesting explanation may be difficult or even infeasible [123]. Nevertheless, for
an explanation to be deemed useful in practice it is important that the explainer and explainee
understand the expected output—e.g., given the question ‘Why was this animal classified as a
cat?’ the explanation ‘Because it has four legs’ may not be a good explanation if the foil is ‘rather
than a dog’ instead of ‘rather than an insect’. Even if the level of abstraction in ML can produce
causal chains with very few elements, as people are known to process contrastive explanations
and apply counterfactual thinking in day-to-day life (see psychological evidence by e.g., [180]), a
contrastive explanation will be more intuitive and therefore arguably more valuable [123]. This

27

is especially true when considering that humans tend not to ask for explanations as long as the
output is as expected. Rather, people seek explanation in case of an abnormality [154], such as
model failure or suspected unfair decision making.

An additional argument for contrastive explanations is that they pose the benefit that they only
require the difference between the fact P and foil Q as a sufficient explanation. Instead of giving
a full causal attribution (i.e., all causes C for event E), contrastive explanations may be easier to
derive without needing to know all of the potential causes for a given event [109, 123]. This is not
only a benefit for human explanation, but it may be leveraged by automatic explanation to reduce
the required computational power and time for an automated explanation [123].

3.2 Contrasts, Facts, Foils and Counterfactuals

Contrastive explanation is very closely tied to counterfactual thinking [121]. Despite their close
ties, contrastive explanation and counterfactual thinking use somewhat different terminology.
Therefore, in this section we overview counterfactual thinking and contrastive explanation, and
clarify some terminology as we apply it throughout the remainder of this work in order to avoid
confusion.

Counterfactual thinking and contrastive explanation

In counterfactual thinking, one might hypothetically alter a past event and see how it changed
the outcome, i.e. ‘What if I had done X instead of Y, would the outcome still be Z?’ [121]. Even
though the process to arrive at the explanation may initiate with a different negation, the elements
changed for explanation turn out to be the same. In contrastive explanation, one first decides on a
counterfactual outcome event (foil; counterfactual to E) and then determines the counterfactual causes
(counterfactual to C) that best explain the change of said outcome event. Lipton [108, p. 691]
refers to the counterfactual causes as the difference condition: “we explain why event P occurred
rather than event Q by giving information about the causal history of P that would not have
applied to the history of Q if Q had occurred”. Conversely, in counterfactual explanation the
alteration (i.e., an alternative action or the absence of the action) is a counterfactual cause C such
that the outcome is changed to a different outcome E. However, note that a single counterfactual
alteration of the outcome may require multiple alterations of causes. As a result, we draw from
insights in counterfactual thinking, but view them from a contrastive explanation perspective.

Contrast class, fact and foil

With emphasis on the outcome, we first consider the class of all possible outcomes in a given con-
text: the contrast class. Van Fraassen [191] argues that in ‘Why P rather than Q?’ the contrast class
is a class of propositions X comprising of P together with all alternative events to P (including
Q). Barnes [9] claims that we might view the contrast class as state spaces, i.e. the possibilities of
the system.

We define the contrast class, fact and foil for a decision (event) E that was caused by a set of causes

28 Contrastive Explanation

C:

Definition (Contrast class, Fact, Foil).
A contrast class F are all possible alternatives to a decision given the context (i.e., the range
of values for a decision E). The fact is the actual decision f ∈ F , while the foil is any other
member of the contrast class that is not f —i.e., g ∈ F \ { f }.

Counterfactuals and semifactuals

To explain specific events that happened, actual causation is important [67]: we must distinguish
the causes that are actually responsible for the outcome. Identifying these causes can be done
through the backgrounding (also known as discounting), where we view a cause as non-relevant
because it also holds for the foil [86, 123]. Counterfactuals are any change in causes that results
in a different outcome event. In specific, because there might be many counterfactuals we adopt
the closest possible world view [194], where we look for the minimal change required in causes
such that the outcome will change from fact to foil. In addition, in constructing a counterfactual
explainers look for the most most import features to best describe the difference between fact and
foil [123].

The defining feature of counterfactuals is that the corresponding outcome changes, and are there-
fore not the same as semifactuals—where even though the fact is altered the outcome does not
change [153]. This is related to the discussion of compatible versus incompatible contrasts—whether
the foil happening means that the fact does not [61]. Based on the generally adopted accounts of
counterfactual thinking and contrastive explanation, we exclusively focus our work on incompat-
ible contrasts—i.e., we assume that the model output may not be in the fact state and foil state
simultaneously.

Considering ML, we define a counterfactual as a change in the input data resulting in the decision
to be changed from fact to not-fact [194]. In contrastive explanation, we are specifically interested
in changing the fact to the foil, and therefore define it as follows:

Definition (Counterfactual).
A counterfactual is a change in the input data resulting in the decision to be changed from
fact to foil.

Note that multiple counterfactuals may hold for a particular change from fact to foil. Any member
of this set of counterfactuals is a targeted contrastive explanation:

Definition (Contrastive Explanation).
A contrastive explanation is any member of the set of counterfactuals resulting in the decision
being changed from fact to foil.

29

Example

Consider an example of deciding on a patient health status. Figure 3.1 shows this case as a
causal graph. This directed acyclic graph (DAG) consists of a set of events (E) depicted by boxes
connected by arrows, that indicate conditional dependencies. Rounded boxes indicate causes
C, while non-rounded boxes is the health outcome E . Under consideration is the contrast class
F consisting of four potential outcomes: Diabetes, Heart disease, Overweight or Healthy. Red
boxes with a double border indicate the causes C that hold for fact Diabetes, while hatched boxes
indicate what holds for foil Heart disease. The contrastive explanation is what counterfactually
holds for the foil, but not for the fact—i.e., Heart condition.

Genetics

Beta cell functioning

Heart condition

Body condition

Exercise

Age

Diabetes

Heart disease

Overweight

Healthy

Fact

Foil

Contrast class

Figure 3.1 Example causal graph for explaining ‘Why diabetes (fact) instead of heart disease (foil)?’

3.3 Contrastive Explanation in Machine Learning

Though contrastive explanation is a grounded process in human psychology [153], to the best
of our knowledge no automated contrastive explanation methods are available for ML. In this
section, we address causal models in ML and define foils for ML.

Causal models

Conveying an explanation using causes is the de-facto standard in philosophical theories and so-
cial sciences. Nevertheless, automatically creating an accurate causal model is difficult in practice
[194]. Ensuring that relationships in ML are causal requires an underlying theory or experimental
manipulations to support that variable A causes variable B, instead of for instance an unobserved
confounder C being responsible for changes in levels of both A and B [169].

However, the assumption we can make for all ML models is that their outputs are caused by their
inputs (see Section 2.2). In unsupervised, semi-supervised and supervised ML we may take an
independence assumption of all variables—similar to naive Bayes in classifiers. In reinforcement
learning, when we are able to affect the environment we may perturb the inputs and observe

30 Contrastive Explanation

the actual outputs—thereby uncovering a causal chain. If the explanation is post-hoc (i.e., after
the decision was made), our information may be limited to only historical observations—thus we
may not be able to make causal claims. By viewing the inputs of ML as causes for their outputs,
ML explanations can be communicated in terms of their inputs and outputs.

Foils

There is a large body of work on types of counterfactuals and selecting counterfactuals for expla-
nation1 that is not applied to ML in specific. Some work does focus on counterfactuals in ML:
counterfactuals have been adopted as a means for deciding on causal structures for explaining
data (see e.g., [84]) and to generate explanations of the minimal changes required to change a
classification outcome [130].

What these counterfactual approaches have in common is that they do not take into account the
actual foil. Their emphasis is on changing input data, so that the outcome changes from the
actual output to any other output. In other words, they are not targeted contrastive explanations.
Based on literature, in this section we define our account of potential foils in ML. For a more
comprehensive overview, we do not merely explain the potential foils but rather the contrast class
of outcomes—i.e., describe the class for the fact and the foil. Based on the rendition of Barnes [9]
that a contrast class describes a state space of outcomes (i.e., the value range for the target space),
we describe the state space of outcomes a contrast class may encompass. Table 3.1 summarizes
the contrast classes per type of ML.

Table 3.1 Contrast classes per type of machine learning

Type Contrast class(es)

Supervised learning
Classification H Class labels

Regression
analysis

H All values (compare two outcome values)
H Binned values
H Statistical norm

Unsupervised learn-
ing

H Clusters
H Anomaly, not-anomaly

Reinforcement learn-
ing

H Reachable states
H Actions
H Time

Generally, a foil describes the presence or absence of an event, or a deviation from the norm
[117, 156]. In the ML paradigm, the outputs of an ML model depend on the type of ML that was
applied to the problem. Thus, we list potential contrast classes for each of the types of ML:

H In (semi-)supervised learning the output is either a class (classification) or a number (regression
analysis):

– For classification the contrast class consists of all output classes (class labels). Note that

1 We refer the reader to Roese and Olson [154] or Miller [123] for a concise overview.

31

in binary classification (i.e., classifying two classes) the foil is by definition the other
class. If the output is not expected to be class 1, the output can only be class 2.

– In regression analysis the output is not discrete. Thus, the contrast class are all other
possible values that may be output by the regression analysis—infinitely many values.
As such, one may compare it to a relative class of values (i.e., higher or lower) or the
deviation from some (statistical) norm—such as a measure of central tendency (e.g.,
mean, median or mode).

H For unsupervised learning outputs commonly do not have descriptive outputs. When clus-
tering, the contrast class may be all clusters—i.e., one might ask ‘Why is this case put into
cluster 1 instead of cluster 2?’ Unsupervised anomaly detection distinguishes two classes:
anomaly or not anomaly. Like binary classification, the foil given an output is the other
class.

H The output of reinforcement learning (RL) are actions resulting in states. However, simply
designating the contrast class as alternative actions or states disregards two properties of
RL: (i) not all actions may be possible in a given state, and (ii) RL also has a time dimension.
Depending on the informativeness, the foil may be made explicit by either the action, the
state or both. For instance, in the robot example one might ask ‘Why did the robot go
forward instead of turning left and crossing the finish?’. Here, turning left is an action,
while crossing the finish is a state. Regarding the time dimension, in his work on contrastive
explanation Lipton [108, p. 694] noted as an example “suppose we explain why a bomb
went off at noon rather than in the evening”—a clear case of when a time dimension may
be included as a foil.

Foil level of detail. In the aforementioned foils we already briefly touched upon the possibility
that foils can take on an abstracted form. Foils may have an inherent hierarchy that is explicitly
known or one that can be constructed.

For continuous contrast classes—e.g., the output of regression analysis or the time dimension in
RL—the contrast may refer to a specific value (such as a different value or a norm), or we may
group values by discretizing them into groups (such as ‘more than’, ‘less than’, ‘earlier’, ‘first
quantile’ or ‘21-30 year olds’).

For discrete contrast classes there may be a known grouping that groups the individual members of
the contrast class into categories. Take for instance an action selection mechanism for children to
learn to self-manage type I diabetes [131], where actions may be playing a particular quiz ques-
tion, starting a new dialogue or filling in their diary. Here, when for example the selected action
is filling in a diary, the foil of playing a particular quiz question may be too fine. Rather, a more
coarse foil—playing a quiz at all—may be more appropriate. Another example is hierarchical
clustering, where may compare the actual cluster the observation was put into to any level of
cluster, as long as this cluster does not include the actual decision itself.

32 Contrastive Explanation

3.4 Conclusion
We have studied literature from the philosophy of science and psychology, to define contrastive
explanation concepts for machine learning (ML). For ML, a contrastive explanation is a change
in input data resulting in the decision to be changed from fact (the actual outcome) to foil (the
outcome of interest). Any of these changes in input data is referred to as a counterfactual. The
set of potential facts and foils under consideration is referred to as the contrast class. For ML,
this contrast class depends on the type of ML—e.g., it can be class labels for classification tasks,
and reachable states, actions and different times for reinforcement learning. Moreover, multiple
members of the contrast class can be grouped to form a composite foil.

33

4 INTERPRETABLE MACHINE
LEARNING METHODS

In defining our contrastive explanation approach, we draw from existing iML approaches in
scientific literature. We systematically review iML methods, with the aim of finding the one(s)
most optimal to form the foundation of our contrastive explanation method. The need for this
systematic review is twofold. First, during the writing of this thesis, no comprehensive peer-
reviewed overview of iML methods exists that considers all four types of ML. Second, recent iML
methods generally do not reflect on previous methods that could be suitable for current use-cases
[1]. Therefore, by systematically reviewing iML methods we can find techniques that form a
general basis for all types of ML, while considering the full range of iML methods.

Section 4.1 outlines the review process taken for our systematic literature review. Section 4.2
introduces a general taxonomy to subdivide the iML methods found in this review. Section 4.3
overviews the ML-specific representations used to convey the explanations to end-users. Finally,
Section 4.4 provides an in-depth overview of the studied iML methods. The findings of the
literature review are discussed in Section 4.5.

4.1 Literature Review Method

A systematic literature review (SLR) in software engineering consists of three phases [90]: (1) plan-
ning the review, (2) conducting the review, and (3) reporting the review. First, this section introduces
the research questions and the review protocol. Second, we overview the results of the identification,
selection and quality assessment of research that is included in the iML method overview.

Research questions

As introduced in Section 1.2, with the SLR we aim to address research question “What are cur-
rent approaches to automatically acquire explanations from machine learning systems?”, addressed by
two subquestions that aim to (i) obtain generic insights regarding how approaches reach inter-
pretability in ML, and (ii) transfer these insights into the domain of contrastive explanation for
machine learning:

1.1 How do iML methods enhance interpretability in machine learning?

1.2 How can these methods be used for contrastive explanation in machine learning?

35

Search process

Literature studies that summarize topic evidence in software engineering are characterized by
their unstructured nature [20]. To avoid confirmation bias and to ensure all relevant tools are
considered, we objectively review iML tools.

Typical systematic reviews start off from a from search strings containing keywords that may
reveal a number of methods relevant to our study. However, as became apparent in Chapter 2 the
field of iML suffers from imprecise terminology. Methods that may not be intended directly for
interpretability are used as such, and may therefore be difficult to distinguish based on keywords
online. Instead, we opt for identification through various articles that have previously overviewed
part of iML literature in their literature study. These articles were extracted by consulting major
software engineering search databases—i.e., SpringerLink, ACM, IEEExplore and Google Scholar.

Selection criteria. In our literature review, we use to following criteria to select iML methods:

H Machine learning tool. It is an automated technique that focuses on explanations for ML
decisions—rather than other fields of computer science.

H Developed for interpretability. It explicitly mentions that the development of the method
has a goal of improving interpretability (e.g., comprehensibility, providing explanations to
end-users, transparency)—or is used as such by subsequent studies.

H Not general-purpose ML. It is not a general-purpose ML technique. Using this criteria we
exclude methods such as decision trees, or Lasso regression.

H Describes method. Describes actual explanation extraction method, instead of using an al-
ready existing method for explanation (e.g., explanatory debugging [99] and Rivelo [177]).

H Novelty. The work provides a new method. Multiple works may continue on this, extending
the method or showcasing the method on new use-cases. However, we aggregate them into
a single method where we describe the most up-to-date version.

H Scientific. While we acknowledge that tools exist beyond the scientific body of work
(e.g., eli5, Skater and tree-reg), these tools (i) typically implement scientific methods,
or (ii) provide novel improvements without argumentation or documentation.

Note that we included articles that have the main purpose of the iML method development, as
well as articles where the iML method was only one element of the article.

Included and excluded studies. Our overview resulted in 84 iML methods. iML methods pub-
lished before April 2018 were included. We report our review according to PRISMA [126]. Sec-
tion 4.4 expands on each method in detail.

Figure 4.1 shows how the methods in the overview in Section 4.4 were selected. Our initial
identification consisted of the general (non-peer reviewed) iML method overview of Guidotti et al.
[64], Chakraborty et al. [25]’s overview of deep neural networks (DNNs) iML methods, and a
study of saliency map extraction from by Kindermans et al. [89] and Montavon et al. [129]. The

36 Interpretable Machine Learning Methods

Guidotti et al. (2018), n = 57

Chakraborty et
al. (2017), n = 15

Montavon et al.
(2017a), n = 9

Kindermans et
al. (2017), n = 9

Other sources, n = 9

Articles after dupli-
cates removed, n = 78

Excluded articles
that do not de-

scribe method, n = 2

Selected methods, n = 76
Snowballing arti-
cle references for

new methods, n = 8

Methods in overview, n = 84

Id
en

tifi
ca

tio
n

E
lig

ib
ili

ty
In

cl
ud

ed

Figure 4.1 PRISMA flow chart describing the literature review of interpretable machine learning (iML) methods

identification phase resulted in 78 methods. From these methods, we excluded Gibbons et al.
[60] (single tree extraction without description of method details) and Radford et al. [145] (does
not describe method). From the remaining 76 methods we performed snowballing and reverse
snowballing—i.e., considering the articles that a method references, and the articles that directly
reference the method—to identify another 8 methods after testing for eligibility. Finally, this
resulted in the 8 methods in the final overview.

Data collection. The data extracted from each study were as follows:

H The method name, and source and full reference.

H Classification of the type of representation used for explanation.

H The type of ML model and type of data (images, text, and/or tabular data) the method
works on.

H How it can best be categorized according to the taxonomy in Section 4.2: the scope of the
explanation (i.e., ‘Does it explain the whole model or only part of it?’), and its approach
taken.

H The type(s) of ML it is able to provide explanations for.

37

H How the method was evaluated, and whether this included empirical evaluation with hu-
man subjects.

H Available source code and implementation language.

H Summary of the study, including a high-level description of the method.

4.2 Taxonomy of Interpretable Machine Learning Methods

Methods for tackling iML can broadly be categorized in two ways [46, 64, 110]. First, whether the
original model is designed as transparent, is first learned and then decomposed into an iML model,
or treated as a black-box after learning (and queried post-hoc). Second, whether the explanation is
for a single instance (subject-centric or local) or for the entire model (model-centric or global). Our
taxonomy adopts subdivisions made by Edwards and Veale [46] and Lipton [110], and categorizes
iML approaches along two dimensions: the approach taken and the scope of the explanation. Fig-
ure 4.2 shows the taxonomy of ML methods along these dimensions, with the number of methods
for each approach-scope pair. Note that five methods (one decompositional, four pedagogical) are
able to provide local as well as global explanations. Below, for each of the dimensions we provide
a brief consideration of the type of iML methods covered by this dimension.

Transparent Decompositional Pedagogical

n = 14

n = 2

n = 16

n = 14

n = 33

n = 10

Global

Local

Approach

Scope

Figure 4.2 Taxonomy of methods for interpretable machine learning (iML)

Explanation scope

The explanation scope is either global or local.

Global. Global approaches aim to explain the complete model. Strictly speaking, they require an
explanation in which the explainee is able to comprehend an aspect of the entire model at once
[110]. Edwards and Veale [46] argue that these aspects may include the setup information (e.g.,
type of model used, its goal and parameter settings), training metadata (e.g., summary statistics
on the data, description of the training process), performance metrics it acquired in training, and
a simplified explanation of the model (simplified human-understandable accounts of how inputs are
turned into outputs). The latter is the sort of explanation we focus on in transparent design, and
decompositional or pedagogical explanation.

Global models also include surrogate (or mimic) models [e.g., 10, 19]. Surrogate models are smaller,

38 Interpretable Machine Learning Methods

simpler—and thereby arguably more interpretable—versions of a complex model. They explain
the behavior of the underlying model, while also focusing on increased comprehensibility. Even
if it is possible to condense a complex model into a more simple one, these models have as a
downside that they commonly have to give into predictive performance to be more intelligible
(interpretability-accuracy trade-off) and there might be a gap in functionality with the model they
are attempting to mimic [19, 87].

Local. Unlike global explanations, local explanations only seek to explain a single decision. They
show how the model arrived at the decision made. Local explanations only require an explanation
of the neighborhood around the data point it predicted, and can therefore sometimes disregard
large parts of the model in their explanation [46, 148]. Edwards and Veale [46, p. 27] note that
even though these explanations are bound to a specific decision made regarding a subject, this
does not restrict them to only being performed after a decision was made: “they are theoretically
possible to give before or after a “decision” [. . .] if access to the model is provided.” Even
though they may only give an explanation for a single decision, by combining local explanations
explainees can build their own mental model of the ML model—an internal representations of how
the system performs its decisions [46, 123].

In local explanation, explanation evaluation may also be more feasible—i.e., deciding whether
the decision made was made using reasonable assumptions. Explainees are known to be able to
explain single examples really well, even when using implicit knowledge [157]. Moreover, it aligns
more with human-scale reasoning and semantic interpretation—and can therefore circumvent the
issues stemming from the mathematical complexity and multi-dimensionality of the ML model
[21].

Approach

We distinguish three approaches to make create interpretable ML explanations: transparent, de-
compositional and pedagogical. Figure 4.3 illustrates the difference between the three approaches:
transparent iML methods create an interpretable model by design, decompositional methods ac-
cess the underlying model mechanics for an explanation, while pedagogical methods treat the
underlying model like a black-box. Below, we expand on each approach and state their respective
advantages.

Transparent. In the strictest sense, we might call a model transparent if a person can contemplate
the entire model at once [110]. This concept—referred to as simulatability [110]—is heavily related
to quantifiable proxies in evaluating interpretability as mentioned earlier (see Section 2.4). By
picking inherently more intelligible model classes (such as decision tables, decision trees, rule-
based systems or linear models), and limiting their size in some way, an explanation can be
conveyed to a user. Even when the model class is generally not perceived as intelligible—such as
neural networks—, restricting models by picking a small model size can result in an explanation
that is comprehensible for humans [110]. Transparent design is sometimes also referred to as
white-box ML.

39

Model

Decompositional
iML method

Pedagogical
iML method

Model

input data
point

output

Transparent iML
method

Explanation ExplanationExplanation

Figure 4.3 Transparent, decompositional and pedagogical interpretable ML (iML) methods

While such designs provide interpretability through transparency, they usually have to give into
accuracy as they are unable to capture the intricate patterns of the input data [185]. This is
also demonstrated in Figure 4.3, where the simply linear model classifier of the transparent iML
method cannot fully capture all data points perfectly. Therefore, part of their design goal is to
optimize model performance to similar levels to that of state-of-the-art ML techniques in that
problem area.

Observe that in transparent design one directly creates a model with the aim of interpretability
from data, and therefore does not have an underlying black-box model it aims to explain.

Decompositional. Transparency is be achieved through decomposability [110]: each input, param-
eter, output and calculation might have an intuitive explanation. By using these explanations, a
full explanation can be formed for an explainee. This does not only hold for already transparent
models, but these partial explanations can often be extracted from underlying models as well.
Some ML model classes are already decomposable by design (e.g., linear models), while other
models may be made decomposable (e.g., the variable importance in Random Forests), or are
attempted to be decomposed (e.g., deep neural networks) [46]. The downside of decompositional
methods is that they are model-dependent—i.e., for each (implementation of a) class of models they
require a specific approach. However, with access to the model, decomposable iML methods have
the advantage of (i) being able to re-use intelligible parts of the model for the explanation, and
(ii) having a high fidelity to the underlying model.

Pedagogical. Rather than decomposing the underlying model, pedagogical methods query the
model like an oracle—providing insights based on the model inputs and corresponding out-
puts [5, 46]. Typically, they use the underlying model to generate examples, from which an
interpretable representation is extracted. They treat the model like a black-box and decouple the

40 Interpretable Machine Learning Methods

explanations from the decision-making process.

Pedagogical methods present a number of benefits. First, these methods are model-agnostic, in that
they do not rely on creating specific interpretability methods for each (sub)class of model [46].
Instead, they can be applied to any ML problem within the same type of ML (e.g., classification
or reinforcement learning). Hence, as long as they fall within the same ML type methods allow
for the comparison of underlying models, and will even work if in the future new algorithms
for creating models are introduced. They are commonly employed after automated decision has
taken place (then referred to as post-hoc explanations), allowing explainees to build their own
model of the complex underlying model [194]. Second, legally they pose the benefit that they do
not require for company models to rely on providing insights into trade secrets or intellectual property [46].
Accordingly, these methods may manifest in widespread adoption due to their potential to mit-
igate the issue of interpretability without requiring to tackle opacity stemming from intentional
corporate or state secrecy [see 21]. Third, by decoupling explanation from decision-making, these
methods do not sacrifice the predictive performance of models [110]; one of the main goals of the XAI
programme [65].

Pedagogical model interpretability usually requires multiple queries of the model, and may there-
fore be an relatively expensive means to acquire explanations. As acquiring explanations is not
free, their utility must be balanced against the cost of generating them [44]. However, similar
to explanation in daily life not all decisions require an explanation. Explanations are usually
not required to work in real-time [86]. Especially in contrastive explanation, where explanations
are sought when the outcome deviates from the expected outcome, post-hoc interpretability is
arguably the most suitable paradigm similar to human-style explanation.

4.3 Explanatory Representations

What all these methods have in common is that they use the same set of representations to pro-
vide the explanation to the explainee. Section 2.5 introduced the four main representations to
convey automated explanations: textual, graphical, salience and explanation by example. In this sec-
tion, we detail ML-specific methods that provide explanations through (a combination of) these
explanations. These representations are based on recognized models for interpretation [51, 79], such
as decision rules, decision trees and finite-state automata.1 Note that while simply choosing such
a representation does not consequently make the explanation interpretable (interpretability also
depends on the semantics of the models, i.e. the contents). However, evaluating representa-
tions before selecting the iML method has the particular advantage of being able to consider the
interpretability requirements of the intended explainees before picking a specific method [11].

Decision trees and rule-based models

Decision trees and rule-based models are natural representations of prediction problems for hu-
mans [80, 158]. They allow humans to perform a sequence of tests, in order to determine the

1 Appendix B expands on the various basic machine learning (ML) techniques in more detail, including decision trees,
decision rules, regression models and neural networks.

41

corresponding output for a given input. They are used for why (not) explanations—i.e., why a
decision was made—, as well as counterfactual (what if) explanations [107]. We subdivide them
into four categories:

H Decision trees (DT) subdivide the input feature space into mutually exclusive decisions re-
gions in their leaf nodes. Explainees can decide on an outcome by performing a sequence
of decisions from the root node to a leaf. Their interpretability is facilitated three factors
[51]. Firstly, its graphical representation allows for an easy overview of larger models. Sec-
ondly, features considered more important in a decision are shown further to the top of the
tree—showing the relative importance of features in a decision. Thirdly, they only show a
subset of relevant features important in distinguishing between decisions. However, even
though a feature may occur higher up in the tree, this does not necessarily mean it is used
to distinguish between as many instances as features further down the decision path. More-
over, decisions can be replicated multiple times, introducing irrelevant attributes that do not
affect the final decision.

H Decision Rules (DR) have a less restrictive nature over decision trees. This poses the benefit
that they do not enforce mutually exclusive rules [79]—allowing simpler and shorter rules
that end up in the same decision. Decision rules take on a multitude of forms, such as
decision sets, decision lists and M-of-N rules. Figure 4.4 illustrates the difference between
decision sets, and M-of-N rules.

– Decision Lists (DL) (if-then-else rules) are a sequence of boolean literals, where if the
literal evaluates to true the corresponding consequent is followed, otherwise the else
path is followed [151]. They are easy to interpret locally, and allow for non-mutually
exclusive and non-exhaustive decisions [51]. However, they do not give a direct clue
about feature importance and are typically difficult to interpret as a whole, due to
their typical length complexity as a whole [51]. Graphically, decision lists may also be
represented as a decision table or decision tree [79].

– Decision Sets (DS) (if-then rules) tackle the difficulty in interpretation as a whole of
decision lists by simplifying rules to if-then statements [100, 152]. If all antecedents in
the statement hold, the consequent is true. For example, in classification each class
only has to be represented by a single rule.

– M-of-N rules mitigate the length issue of decision lists, by using a set of simpler an-
tecedents where M of the N antecedents must hold to result in a given consequent [186].
Due to their simpler nature, they typically do not require any conjunctions (AND) or
disjunctions (OR) in their antecedents.

H Scoring Systems (SS) are similar to M-of-N rules in the sense that an explainee needs to eval-
uate multiple statements to arrive at a decision. Instead of simply counting the number of
true instances, a point weight is attached to each statement—demonstrating relative feature
importance—, where if the summed weight is above a threshold a certain decision holds.
They are a popular classification system used for predictions in healthcare [190]. Figure 4.4
also shows an example scoring system.

42 Interpretable Machine Learning Methods

if BMI ≥ 25 and sex = male
and diabetes or hypertension
then Stroke

if cholesterol < 194 and
exercise/wk ≥ 2 then No
Stroke

Stroke if at least 2 of 4
rules below are true:

· sex = male and diabetes

· BMI ≥ 30

· hypertension

· cholesterol ≥ 240

Stroke if total points ≥ 5

age ≥ 65 +4 points

BMI ≥ 27 +3 points

cholesterol ≥ 205 +1 points

exercise/wk < 2 +1 points

sex = female –3 points

Decision Set M-of-N Rule Scoring System

Figure 4.4 Example rules for decision sets, M-of-N rules and scoring systems for stroke risk prediction

Regression models

Regression models apply a function to each coefficient (input feature) to determine an outcome.
Their interpretable counterparts are ones that are reduces to a small number of features, or ones
that use simple functions (e.g., a single weight) to each coefficient.

H (Log)linear Models (LI) help explainees understanding the influence of input features with
respect to others by comparing their coefficients [189]. They attach a single weight to each
coefficient. When normalized—i.e. made independent of unit—, they can show the relative
feature importance (especially for linear and logistic models) by looking at the magnitude
and sign of coefficients. Note that various regression techniques (e.g., Lasso and Ridge)2 al-
low for increased interpretability by selecting a smaller relevant subset of features.

H Partial Dependence Plots (PDP) highlight the average partial relationship between a set of
features (typically 1-3) and the outcome [53]. For each feature, it shows graphically how
varying that feature influences the outcome, while averaging out the effect of other features.

Feature importance and saliency maps

These representations provide insights into a model by showing the relative contribution of fea-
tures to an individual decision or model decision (e.g., class). These representations can broadly
be categorized in two types:

H Feature Importance (FI) aims to acquire a ranked ordering of features’ contributions to an
individual outcome or global model decisions. Each feature has a positive or negative
contribution to an outcome, where typically a subset of the highest contributions (e.g., top
ten) are shown. To convey a ranked list of feature contributions, they require a meaningful
label (e.g., name of feature, or word in text).

2 Discussed in Appendix B

43

H Saliency methods (attention maps) show the importance of individual outcomes as an overlay on
the original input. They are a popular means of visualizing relative importance in domains
with a large number of features—such as images or text. While all methods have the same
purpose, they vary in how they acquire the saliency of an input. These methods can acquire
saliency in a bottom-up (i.e., changing inputs and observing changes in outputs) or top-down
(i.e., changing the outputs and discovering how this affects the inputs) manner. We distin-
guish three types of saliency methods, each with their respective benefits and downsides
[89]:

– Sensitivity Analysis (SA) (gradients) are a bottom-up saliency method that shows how
small changes in inputs result in a different model output. These methods pose several
benefits. Firstly, these methods only require only changes in inputs and observing out-
puts and are therefore model-agnostic (pedagogical) and implementation invariant (i.e., as
long as the behavior of model f̂ (·) is the same they result in the same saliency regard-
less of architecture). In addition, they satisfy input invariance (a shift in inputs—e.g.,
making all pixels 10 points darker—results in the same saliency map). The downside
of these methods is that you can only see the saliency of the input (typically coarse-
grained), instead of introspecting the model’s individual layers. As a result, they might
be less useful for model debugging.

– Signal Methods (SM) backpropagate a signal top-down through a (deep) NN to isolate
input patterns responsible for neuron activations in the final layers of a NN. This en-
ables a user to observe the behavior of individual layers. However, it has to give into
implementation invariance in order to do so. SMs benefit from being input invariant.

– Attribution Methods (AM) decompose the feature relevances (determined by their re-
spective weights) into the relevance of areas in the input layer. Their downside is that
they are not input invariant, because they typically use a baseline reference point for
determining saliency. The choice of this baseline is a hyperparameter set by the user,
and affects the resulting saliency map—thereby being able to manipulate the result-
ing saliency map. Nevertheless, like SMs these methods allow for the introspection of
individual NN layers.

Prototypes

Prototypes are example (partial) inputs that best summarize the data set or a model area (e.g., a
class). They can either be selected from a set of (provided or generated) examples, or they are
directly reconstructed from a model.

H Prototype Selection (PS) selects a small set of examples from the data set that best sum-
marize that data set [13]. These methods are often aimed at describing neighborhoods of
data, such as a particular class (classification) or cluster (unsupervised learning). In partic-
ular, they look for a minimal number of prototypes that best cover all data points in their
neighborhood (in terms of inputs and outputs).

44 Interpretable Machine Learning Methods

Class explanation 'dog'
(prototype reconstruction)

Natural image prior 'dog' Prototype with natural
image prior

Figure 4.5 Example prototype reconstruction for images, adapted from Vedaldi [193]

H Prototype Reconstruction (PR) seeks to find the most representative example of a class in a
decompositional manner. Typically, this method is applied to DNNs for image classification
tasks in a process called activation maximization. Activation maximization synthesizes the
preferred stimuli for a neuron in the NN by starting from a random image and iteratively
calculating through backpropagation how the input pixels should be changed to increase
the activation of that neuron [132]. Neuron activations can be combined to introspect the
models’ prototypes at a layer level. Some authors use natural image priors (e.g., example
images used in training), because activation maximization methods typically result in an
optimization that does not resemble a natural image. Figure 4.5 illustrates prototype re-
construction for the ‘dog’ class for an image classifier, and illustrates how this explanation
is improved using a natural image prior. The downside of these models is that even for
moderately complex models, a good global approximation cannot generally be found [15].

Annotations

Humans oftentimes provide explanations and justification verbally or through text. To mimic this
behavior, recent approaches have proposed methods for creating text explanations for decisions
made by models.

H Annotation (AN) provide textual explanations for a black-box model regardless of the type of
input (i.e., images, text or tabular). To do so, they incorporate explanation generation in the
training process of the model, resulting in an explanatory model in addition to the prediction
model. When applying the model to a task, these methods can then annotate the outcomes
with text explanations generated by the explanatory part of the model.

4.4 Methods

In our systematic review, we found 84 distinct iML methods. In this section, for each method
we briefly detail the main method idea and contributions. Table 4.2 shows the iML methods
considered, the year they were published, the explanation scope and approach, the explanatory
representation used and to which types of ML the method applies. In addition, we included
whether human evaluation was performed, and whether and in which language the source code

45

is available. Table 4.1 expands on the column meanings and the used abbreviations in columns.

Table 4.1 Legend of columns for Table 4.2

Column Description Abbreviations

Name Method name
Year Year published
Scope Explanation scope Global, Local
Appr. Explanation approach Decompositional, Pedagogical, Transparent
Repr. Representation Decision Rules, Decision Tree, Feature Importance,

Prototype Selection, Prototype Reconstruction,
Saliency (Sensitivity Analysis, Signal Methods,
Attribution Methods), LInear model, ANnotation, *
other

ML Type Type of ML Unsupervised, Supervised (Classification,
Regression), Reinforcement Learning

H. Eval. Human evaluation
Code Source code availability in this lan-

guage

46 Interpretable Machine Learning Methods

Table 4.2 Overview of the 84 iML methods studied in the literature review

Name Ref. Year Scope Appr. Rep. ML Type H.Eval. Code

SVM+P [133] 2002 G D DR C
ExtractRules [56] 2005 G D DR C
GRG [134] 2008 G D DR C
RxREN [6] 2012 G D DR C
Hara et al. [69] 2016 G D DR C,R
Tree Metrics [26] 1998 G D DT C
CDT [162] 2007 G D DT C
TSP [179] 2016 G D DT C
TreeView [181] 2016 G D DT C,R
GENESIM [192] 2016 G D DT C Python
NID [135] 2002 G D FI C
Karpathy et al. [85] 2016 G D FI U,C Torch (Lua)
Simonyan et al. [168] 2013 G D PR C
DeepVis [204] 2015 G D PR C Python
Nguyen et al. [132] 2016 G D PR C Python
Zahavy et al. [205] 2016 G P * RL
Schwartz-Ziv et al. [166] 2017 G P * C
Craven et al. [31] 1994 G P DR C
REFNE [210] 2003 G P DR C
G-REX [83] 2004 G P DR C,R
ExOpaque [66] 2007 G P DR C,R
Johansson et al. [82] 2009 G P DR C,R
STEL [38] 2014 G P DR C,R R
GPRL [70] 2017 G P DR RL
MAGIX [144] 2017 G P DR C
Trepan [32] 1996 G P DT C
CMM [41] 1998 G P DT C
Krishnan et al. [96] 1999 G P DT C
DecText [16] 2002 G P DT C
Sánchez et al. [161] 2015 G P DT U
STA [209] 2016 G P DT C
Bastani et al. [10] 2017 G P DT C,RL X
PALM [97] 2017 G P DT C
Strobl et al. [172] 2008 G P FI C
GA2M [113] 2013 G P FI C,R Java
GoldenEye [73] 2014 G P FI C R
OPIA [2] 2015 G P FI C,R Python
VIN [78] 2004 G P PDP C,R
ICE [62] 2015 G P PDP C,R R
Prospector [94] 2016 G P PDP C X Python
GFA [3] 2018 G P PDP C Python
PS [13] 2011 G P PS U,C
Baehrens et al. [8] 2010 G P SA C
GSA [29] 2011 G P SA C,R

47

Name Ref. Year Scope Appr. Rep. ML Type H.Eval. Code

Rationalization [47] 2017 G T AN RL X
CMAR [106] 2001 G T DR C
CPAR [203] 2003 G T DR C
RuleFit [54] 2008 G T DR C,R Python
BRL [104] 2015 G T DR C,R Python
TLBR [174] 2015 G T DR C
FRL [195] 2015 G T DR C Python
IDS [100] 2016 G T DR C X
1Rule [116] 2017 G T DR C
Bayesian Rule Set [197] 2017 G T DR C Python
DILSVM [23] 2016 G T DR,LI C
SLIM [190] 2016 G T DR,LI C
OT-SpAM [196] 2015 G T DT C,R
BCM [88] 2015 G T PS U,C X
Tzeng et al. [188] 2005 G,L D FI C
QII [36] 2016 G,L P FI C
SHAP [114] 2016 G,L P FI C,R Python
LIME [148] 2016 G,L P FI C,R X Python
Streak [48] 2017 G,L P FI C,R Python
Anchor [149] 2018 G,L P DR,PS C Python
LRP [7] 2015 L D AM C
DTD [128] 2017 L D AM C
IG [175] 2017 L D AM C Python
Excit. Backprop [207] 2017 L D AM C Python
FDS [105] 2015 L D FI C
NeuralTalk [201] 2015 L D FI C Torch (Lua)
LSTMVis [171] 2018 L D FI U,C Python
Mahendran et al. [115] 2015 L D PR C Matlab
DeConvNet [206] 2014 L D SM C
GB [170] 2015 L D SM C
CAM [208] 2015 L D SM C Python
Grad-CAM [163] 2016 L D SM C Torch (Lua)
DeepLIFT [164] 2017 L D SM C Python
MES [187] 2016 L P DR C
Tolomei et al. [185] 2017 L P DR C
Strumbelj et al. [173] 2010 L P FI C
SEDC [119] 2014 L P FI C
Fong et al. [50] 2017 L P SA C
Vis. Expl. Mod. [72] 2016 L T AN C
Lei et al. [103] 2016 L T FI C Python

48 Interpretable Machine Learning Methods

Transparent design

Transparent local or global iML methods primarily focus on tabular data. Especially data sets
with a large number of features are difficult to explain, when these features have intricate inter-
actions. Instead, transparently designed methods oftentimes disregard some of the complexity of
the underlying data to explain with a small number of features and interactions between these
features. Because of their human-style interpretation, popular explanatory representations are
decision lists, decision sets and linear models. For more complex problems, explanations can be
incorporated in training or provided through examples. In the following paragraphs we describe
the iML methods per explanatory representation.

Decision lists. For supervised learning tasks, RuleFit3 [54] derives a small number of rules that
have a predictive accuracy comparable to tree ensemble methods. The simple rules it generates
comprise a conjunction of a few statements describing decision paths in an interpretable manner.
Additionally, RuleFit is able to show the most important rules and features for a given decision.
Motivated by the need for interpretable predictive medical models for deciding on patient di-
agnosis, Letham et al. [104] introduce Bayesian Rule Lists (BRL)4—decision list classifiers that
describe the feature space in accurate, sparse decision statements. By using permutations of pre-
mined rules, BRL is able to greatly reduce the rule search space and consequently scales very
well with a large number of features. Continuing on the work of Letham et al. [104], Falling
Rule Lists (FRL)5 [195] are also constructed from pre-mined rules and aimed at healthcare. FRL

are ordered decision lists that enforce monotonicity in their ordering to ensure that the topmost
rules have the highest confidence in classification. Su et al. [174] create sparse decision lists—so-
called Two-Level Boolean Rules (TLBR)—that form classification predictions by connecting fea-
tures with logical statements AND, OR and NOT in simple rules. They propose two strategies for
finding TBLR: one based on 0-1 classification error and another based on the Hamming distance
from the current rule to the closest rule that correctly classifies a sample. While also optimizing
for accuracy, both strategies simultaneously try to minimize the number of features used in rules
to enforce sparsity.

Decision sets. However, decision lists still have drawbacks. The chaining if-then-else statements
in decision lists create increasingly smaller partitions of the feature space, that become less and
less interpretable the longer the statements become. To this end, Lakkaraju et al. [100] propose
Interpretable Decision Sets (IDS)—if-then rules that can be considered in any order. For each
class, a single rule is constructed connected with AND conjunctions. With one rule per class, de-
cision sets remain interpretable even for multi-class classification with a larger number of classes.
Similarly, 1Rule [116] learns a single decision rule (either with AND/OR conjunctions, or M-of-N
rules) that accurately classifies and entire class—and are therefore very interpretable. Through
linear programming, 1Rule obtains decision sets containing boolean statements that balance be-
tween interpretability and accuracy. Bayesian Rule Set6 [197] produces sparse classification de-

3 https://github.com/christophM/rulefit
4 https://users.cs.duke.edu/~cynthia/code/BRL_supplement_code.zip
5 https://users.cs.duke.edu/~cynthia/code/falling_rule_list.zip
6 https://github.com/wangtongada/BOA

49

https://github.com/christophM/rulefit
https://users.cs.duke.edu/~cynthia/code/BRL_supplement_code.zip
https://users.cs.duke.edu/~cynthia/code/falling_rule_list.zip
https://github.com/wangtongada/BOA

cision sets that connect features with AND/OR conjunctions. Their method is based on Bayesian
probabilities, that aim to maximize the likelihood that all instances are classified correctly.

The finding that decision lists can become difficult to comprehend in practice is not new. Rather
than using a single high-confidence classification rule, Classification based on Multiple Asso-

ciation Rules (CMAR) [106] determines the class label by a set of rules. CMAR generates rules using
association mining technique FP-growth, and selects a small number of rules that accurately
classify with high confidence. Yin and Han [203] greatly improve on the running time of CMAR

with their method Classification based on Predictive Association Rules (CPAR), that uses
dynamic programming to generate a smaller set of rules with higher quality, lower redundancy
and similar predictive performance.

Linear models. Ustun and Rudin [190] introduce Supersparse Linear Integer Models (SLIM):
linear binary classification models that only contain a few terms that are subtracted, added and
multiplied. To increase comprehensibility, these boolean terms only have an integer number of
points attached. By adding up the number of points for all terms that hold on a decision, if the
number of points is greater than or equal to the threshold for a given class the data point falls
within that class. SLIM can be used by domain experts to easily classify manually—especially
within healthcare.

Discrete Level Support Vector Machine (DILSVM) [23] is a linear SVM variety where each fea-
ture weight is represented as a Likert scale. DILSVM selects a small subset of features with non-zero
weights, and shows their weights as a discretized ordinal rating scale (e.g., strongly disagree, dis-
agree, neutral, agree, strongly agree)—allowing for the extraction of feature importance and manual
analysis for classification.

Incorporating explanation in training. Recent approaches have considered explanation generation
as an integral part of training the (black-box) model. Lei et al. [103]7 use an end-to-end encoder
and generator network that can create interpretable summaries that can accurately predict text.
These summaries, form coherent stretches of the input text (e.g., a phrase) that agrees with the
overall classification (e.g., sentiment) for that text. The encoder and decoder networks are jointly
trained to favor accurate, yet concise rationales. The Visual Explanation Model [72] creates class-
specific text explanations for image classification. To generate explanations, it combines two key
elements. First, an image description explaining the discriminative features present in the image
to be explained (e.g., wheels and a trailer). Second, the class definition of the class outcome of
the classifier (e.g., a truck is a tall vehicle with four or more wheels, a trailer). By combining the
elements present in the image that are also part of the class description, their method can pro-
vide a visual explanation—combining the predicted feature with an explanation generated using
an LSTM natural language generator for explanations. Rationalization [47] focuses on rein-
forcement learning (RL) use-cases where explanation is desired in a different format from the
input data, such as textual explanations for images—similar to human-style explanations. They
manually annotate inputs with explanations and use an LSTM recurrent neural network (RNN)

7 https://github.com/taolei87/rcnn/tree/master/code/rationale

50 Interpretable Machine Learning Methods

https://github.com/taolei87/rcnn/tree/master/code/rationale

to learn these representations alongside the task. They then use an RNN decoder to generate
corresponding output rationales while performing the task.

Other approaches. To create small interpretable decision trees, Wang et al. [196] designed Oblique

Treed Sparse Additive Models (OT-SpAMs). OT-SpAMs are made up of region specific decision trees,
where the tree first splits up the feature space in small disjoint regions that each are predicted with
their own comprehensible oblique supervised predictor. As comprehensible predictor, OT-SpAMs
use sparse additive models [146], that form an interpretable complex model by adding linear models
with very few terms per model. By increasing rule complexity per node, the size of the tree can
be restricted to a very small number of decisions while still performing with high accuracy.

For unsupervised and supervised ML tasks, Kim et al. [88] propose the Bayesian Case Model

(BCM). It builds on case-based reasoning, the idea that new situations can be addressed by experi-
ences with previous examples. BCM extracts subclusters using unsupervised learning, where each
subcluster is illustrated using prototypes (the most descriptive examples) and subspaces (features
and values best describing the subcluster). For example, for a data set on recipes, BCM can discern
different types of cuisines (e.g., TexMex cuisine, Mediterranean cuisine) and the key ingredients
re-occurring within these cuisines.

Decompositional local explanation

A great deal of literature focuses on creating saliency maps for deep neural networks (DNNs),
with an emphasis on convolutional NNs (CNNs) and recurrent NNs (RNNs). Recall that saliency
methods broadly fall into three categories: sensitivity analysis (gradients), signal methods and at-
tribution methods [89]. While sensitivity analysis only considers changes in input—and therefore
is pedagogical—, signal methods and attribution methods decompose the underlying method
through backpropagating the activitation signal of the final layers of the NN back to its inputs.

Feed-forward signal methods. Signal methods reveal input stimuli of a layer by inverting the
data flow of a feed-forward NN, passing on a signal back to the input space. This method was
first proposed by Zeiler and Fergus [206]. For supervised image classification, DeConvNet map
the feature activation in any layer of a CNN using deconvolutional approximations back into
the input image—showing where the attention lies within that image. Guided Backprop (GB)
[170] improves on DeConvNet by adding an additional guidance signal during backpropagation
that combines deconvolutions with standard backpropagation, allowing for saliency maps cre-
ated from lower layers and more accurate ones from higher layers. As a more coarse approach,
Class Activation Mapping (CAM)8 [208] takes the weights and activations (reconstructed through
global average pooling) of the convolutional layers before classification to create the highlight the
discriminative regions for that class on the input image. The downside of this approach is that
it cannot reconstruct local explanations for an output label if the model contains fully-connected
layers. To circumvent this, Gradient-weighted CAM (Grad-CAM)9 [163] extends CAM by only tak-

8 https://github.com/metalbubble/CAM
9 https://github.com/ramprs/grad-cam

51

https://github.com/metalbubble/CAM
https://github.com/ramprs/grad-cam

ing into consideration the final layers of the CNN before the output. Deep Learning Important

FeaTures (DeepLIFT)10 [164] are more widely applicable than the aforementioned methods—not
just CNN-specific. Using their recursive method they explain the difference in output based on
the difference between a reference input and actual input. DeepLIFT overcomes two issues caus-
ing misleading importance scores: (i) even with a zero gradient the input can be important, and
(ii) discontinuous gradients can cause sudden jumps in feature importance over tiny differences
in inputs.

Feed-forward attribution methods. Attribution methods decompose a neuron at the output layer
(rather than the layers before that) into contributions in the input layer. Layer-wise Relevance

Propagation (LRP) [7] backpropagates a class-specific signal through a NN while multiplying it
with each convolutional layer’s activations. This results in a fine-grained heatmap of the most
important features (input pixels) for classification. Deep-Taylor Decomposition (DTD) [128] deter-
mines the saliency relative to a reference neuron. It obtains the relevance score for each neuron in
the forward pass, and backpropagates a signal top-down from to obtain the pixel-wise relevance
scores. Sundararajan et al. [175] propose Integrated Gradients (IG)11—a method for attribut-
ing the prediction of a DNN to its input features, that requires no modification to the original
method. Moreover, it has two desirable additional properties: (i) it produces the same result as
long as the inputs and outputs are equal—regardless of NN architecture, which is unlike LRP and
DeepLIFT—, and (ii) it guarantees that if a feature change causes a different prediction it shows
up in the sensitivity analysis. Excitation Backprop12 [207] uses the contrast between a backprop-
agated attribution for class and not-class to determine the importance for a class decision. In
addition to CNNs, this method can also do this for individual words in captions generated by a
RNN.

Recurrent neural networks. NeuralTalk13 [201] can generate captions for image using visual
attention—restricting the focus on part of the input to produce more accurate results—, and
show for each word in the generated caption where the the attention on the input image was for
that word. For text inputs, First-Derivative Saliency (FDS) [105] visualizes how each unit in a
RNN contributes to a decision by approximating the contribution of word embeddings using a
linear function. LSTMVis14 [171] allows for LSTM RNN architecture comparison and debugging
by visualization of the cells’ hidden states.

Prototype reconstruction. Mahendran and Vedaldi [115]15 provides insight into a CNN by show-
ing prototype reconstructions of a reference image that are indistinguishable to a CNN. Their
method aims to find a set of image perturbations of an image to explanation, that result in the

10 https://github.com/kundajelab/deeplift
11 https://github.com/ankurtaly/Integrated-Gradients
12 https://github.com/jimmie33/Caffe-ExcitationBP
13 https://github.com/karpathy/neuraltalk2
14 https://github.com/HendrikStrobelt/LSTMVis
15 https://github.com/aravindhm/deep-goggle

52 Interpretable Machine Learning Methods

https://github.com/kundajelab/deeplift
https://github.com/ankurtaly/Integrated-Gradients
https://github.com/jimmie33/Caffe-ExcitationBP
https://github.com/karpathy/neuraltalk2
https://github.com/HendrikStrobelt/LSTMVis
https://github.com/aravindhm/deep-goggle

same neuron outputs in a layer in a feed-forward CNN. By doing so, it shows the variance and
abstract notions of concepts the CNN is considering in each layer.

Decompositional global explanation

Rather than explaining a single outcome, these iML methods aim to explain the entire model
through decomposition. Their decompositional nature makes them model-type dependent. Be-
low, we discuss several approaches for neural networks (NNs), support vector machines (SVMs)
and tree ensembles (TEs).

Neural networks. Odajima et al. [134] propose to learn classification rules by decomposing the
input space in the input layer of a NN. Their method, Greedy Rule Generation (GRG) can ex-
tract decision lists for discrete outputs by clustering hidden activations in neurons and seeing
how rules perform on these activation values. Rule extraction by Reverse Engineering the

Neural networks (RxREN) [6] can extract decision rules from NNs using a process consisting of
two phases. The first phase prunes the insignificant neurons to discover their influence on clas-
sification. Next, in phase two they take the significant inputs and their data ranges to generate
rules and prune them to create minimal length rules.

TreeView [181] creates a surrogate DT model of a supervised (deep) NN by decomposing the
feature space into factor partitions. It builds meta-features (that are easy to interpret but still
predict well) for the factors, and decides on the overall factor label by predicting instances within
the factor cluster.

A large body of work has focused recently on prototype reconstruction (PR) methods for DNNs
(CNNs and RNNs). Simonyan et al. [168] propose a decompositional approach for PR, that can
generate class saliency images that a representative a class for convolutional NNs (CNNs). In
order to do so, it creates the derivative w of each pixel, and takes the maximum value across all
channels (RGB) of w—a procedure called activitation maximization (AM). As a result, it obtains
the pixels which need to be changed least in order to affect the class score the most. By ranking
these pixels, the ones with the highest influence can be visualized. DeepVis16 [204] allows for
the interactive analysis of individual neurons in a trained (deep) feed-forward NN by showing
(i) AM of the neuron for a class using gradient ascent, (ii) top images (prototype selection) that
resulted in the highest activation for this neuron, and (iii) the corresponding deconvolution [206]
for these prototypes. Furthermore, they introduce a regularized method for AM of classes of
deep CNNs. Karpathy et al. [85]17 characterize the behavior of RNNs by visualizing patterns in
LSTM units. By highlighting AM of the tanh(·) function for each character in natural language
text, their method shows where the model is sensitive to—showing patterns such as sensitivity to
quotes (turns of inside quotes and turning off outside of quotes), sensitivity to sentence length, or
activation of the cell in if-statements. Note that even though the behavior of some cells is easily
interpretable, Karpathy et al. [85] found that in most cases their behavior is too complex to be

16 https://github.com/yosinski/deep-visualization-toolbox
17 https://github.com/karpathy/char-rnn

53

https://github.com/yosinski/deep-visualization-toolbox
https://github.com/karpathy/char-rnn

directly understood from highlighting attention. Nguyen et al. [132]18 observe that even though
AM is an attractive approach due to its simplicity, it often produces uninterpretable images—
because the images do not resemble the natural images that the neuron has learned to detect.
Instead, their approach uses a natural image prior (i.e., a real image the data was trained on) in
addition to the AM function to create human-recognizable images showing the prototype of what
a neuron’s visual attention is at.

A recent promising approach by Shwartz-Ziv and Tishby [166] supports direct comparison of
DNN architectures by studying their information paths in the information plane. It treats each
layer in a NN as a single random variable, that shows how much mutual information a layer
preserves between its input and output variables. By visualizing the network layers over training
epochs, the network prediction and generalization quality can be assessed. These visualizations
allow for preliminary actionable insights, that they also use to support previous claims of DNN:
(i) hidden layers may dramatically reduce the number of epochs required for good generaliza-
tions, and (ii) that DNNs learn better when more data is available.

The Neural Interpretation Diagram (NID) [135] shows the feature importance (FI) of inputs fea-
tures in a feed-forward NN by visualizing the significant positive and negative effects on the
outcome on top of the NN using a randomization approach. These effects can then be partitioned
to determine the relative FI of the input neuron features on outputs. Tzeng and Ma [188] visualize
a NN weights for individual decisions or whole data sets, by showing the relative contribution of
input neurons and weights as the sum of all hidden nodes affecting that input. It is shown graph-
ically on top of the NN, where the color indicates the mean value and standard deviation for that
node. By ordering on these two statistical indicators, the feature that most positively/negatively
contribute to the decision can be determined.

Support vector machines. While SVMs remain popular, their mappings to feature space may re-
sult in very opaque decision boundaries. Two methods have tackled this issue by introducing
rule-extraction methods for SVMs. SVM+Prototypes (SVM+P) [133] takes the separating hyper-
planes determined by the SVM, and generates if-then rules (decision sets) by selecting areas a
minimal number of areas around prototype points for each class—with maximal coverage. These
prototypes (most descriptive examples for each class) are found by clustering the data points for
each class. ExtractRules [56] consider the hyperplane in input space for any arbitrary linear
classifier, and describe this region with non-overlapping decision rules.

Tree ensembles. The first popular approach for create more interpretable versions of TEs was
extracting a small number of decision trees (DTs) from the ensemble that best describe the full
behavior of the ensemble. In 1998, Chipman et al. [26] found that many trees in a TE are very
similar in how they make a decision. To explain their behavior, Tree Metrics picks a small subset
of the trees that describe the behavior of the group of tree ensembles most accurately. Confident
Decision Tree (CDT) [162] finds a small number of DTs in the TE that most confidently classi-
fies the data as correct, by iteratively removing misclassified instances. Tree Space Prototype

18 https://github.com/Evolving-AI-Lab/synthesizing

54 Interpretable Machine Learning Methods

https://github.com/Evolving-AI-Lab/synthesizing

(TSP) [179] extracts the most descriptive prototypes for Random Forests by deciding on their
proximity—based on which instances are classified in the same leaf nodes for two trees. This
approach poses a number of benefits, such as being able to handle continuous and categorical
features, the ability to handle missing data, and being insensitive to outliers. GENESIM19 [192]
genetically constructs a single DT from a TE by traversing the space of model combinations and
merging the hyperplanes they split the data set into. For an optimal DT, GENESIM uses multi-
objective optimalization of maximum accuracy and mimimum tree size. Rather than extracting a
DT, Hara and Hayashi [69] propose to reproduce a set of decision rules from a DT. First, they train
an axis-aligned TE model on the input data. Next, their method extracts an interpretation model
of that reduces the number of regions, while minimizing model error.

Pedagogical local explanation

These explanations are formed either by (i) perturbing the input data and measuring changes on
outcome, or (ii) annotating individual images using a class definition.

Input perturbations. These explanations are formed to explain individual outcomes by perturbing
the input data and observing how that affects the outcome.

The first methods for pedagogical local explanation focused on determining the most important
featured that contributed to an individual decision. These general methods hold the benefit that
they continue to work even when the model is modified or replaced. Strumbelj and Kononenko
[173] propose to acquire these feature importance by perturbing the input data and seeing how
changes in the input data correspond to changes in outcome. Their basic premise is that when a
change in input feature greatly changes the outcome, this input perturbation has a large impor-
tance for determining the output. Instead of testing out all perturbations, they use an efficient
sampling-based approach to acquire feature importance. Nevertheless, Martens and Provost [119]
found that their method still does not scale well with large input spaces—text data required too
many perturbations to efficiently provide explanations. Search for Explanations for Document

Classification (SEDC) [119] uses a faster heuristic search for determining leaving out which
words will change the classification of an instance. By doing this for multiple instances and com-
bining their feature importance, they can globally estimate the words that contribute most to a
decision. Rivelo[177] is an interactive interface using SEDC, which allows users to interact with the
underlying data set by showing feature importance and example documents belonging to text
classification decision.

Turner [187] proposes using a local interpretable predictor around a point to explain to provide
the explanation for its outcome. By using this approach, the Model Explanation System (MES)
[187] does not have to give into predictive accuracy while also being able to provide an expla-
nation. To this end, MES can explain any arbitrary black-box classifier using axis-aligned or linear
decision boundaries. They use data points generated based on the input distribution, and finding
an explanation function that provides the most accurate explanation with highest confidence.

19 https://github.com/IBCNServices/GENESIM

55

https://github.com/IBCNServices/GENESIM

Fong and Vedaldi [50] apply the sample principle of input data perturbations on image data to
create saliency maps. By perturbing (deleting, introducing noise or blurring) regions of the in-
put image, they can determine contribution of the regions to the image classification decision.
These regions are found using meaningful image perturbations, that try to find the regions where
blurring causes the largest output change using gradient descent.

While the majority of iML methods focus on explaining what caused a particular outcome,
Tolomei et al. [185] argue that in model debugging and when we disagree with the outcome we can
benefit from seeing how the input should have changed in order to change the outcome.20 For
example, in the healthcare domain if a patient is classified as a high-risk patient, it is a useful
insight to see which clinical indicators should be changed to make this patient a low-risk patient.
For use in tree ensembles, the method of Tolomei et al. [185] generates proposed instances based
on the alternative paths in decision trees that change the prediction outcome—determining the
minimal changes required in inputs to change the outcome from a true negative (TN) to a true
positive (TP).

Pedagogical global explanation

Global pedagogical explanations come in many representations. They query a black-box model
and create a single method for explaining (part of) the model, e.g. the entire model or an ex-
planation per class. In the following paragraphs, we discuss the found iML methods per type of
representation.

Decision rule generation. Many works have focused on creating decision rules for tabular data in
a pedagogical manner. Craven and Shavlik [31] propose to create an accurate symbolic repre-
sentation of a NN classifier by extracting conjunctive if-then and M-of-N rules based on sampling
of how rules perform for a given class. Rules are learned by querying the NN as an oracle,
where the NN is restricted to discrete outputs and input values that are either Boolean or nom-
inal. Rule Extraction From Neural network Ensemble (REFNE) [210] generate instances using
NN ensembles, and then try literals (i.e., feature-value pairs) that are above a fidelity threshold.
It iteratively creates a decision list using a sequential coverage algorithm: first generating length
one rules, removing the instances in the data that are correctly classified by these rules, then
generating length two rules, etc. Genetic-Rule EXtraction (G-REX) [83] can extract Boolean and
Fuzzy decision rules from an arbitrary opaque supervised model using genetic programming on
the training data—generating candidate rules and evaluating them based on interpretability (rule
length), accuracy and fidelity. Johansson and Niklasson [82] expands on G-REX by training the su-
pervised model on (i) training data, (ii) training data with black-box model ouputs, and (iii) oracle
data (new instances generated a queried using the black-box model). Model Agnostic Globally

Interpretable Explanations (MAGIX) [144] finds a single conjunctive rule per class (decision set)
with the highest F1-score, minimal length and maximal coverage using genetic programming.

ExOpaque [66] was specifically designed to work for tree ensembles (TEs), but falls within the ped-
agogical approach as it does not decompose the TE model. It uses Inductive Logical Programming

20 Note that altering the causes in order to change the outcome is counterfactual explanation.

56 Interpretable Machine Learning Methods

to extract a set of Horn clauses (conjunctive decision sets, where all feature-value pairs are only
allowed to be simple statements) from any arbitrary black-box model. These Horn clauses de-
scribe the black-box model with high fidelity, while maintaining the relative simplicity for human
interpretation. Simplified Tree Ensemble Learner (STEL)21 [38] also focuses on supervised TEs,
and can extract a minimal length decision set using a sequential coverage algorithm that is able
to most accurately predict the highest frequency of the oracle data set.

Decision tree generation. The first widely recognized pedagogical for extracting decision trees
(DTs) from classifiers is Trepan [32]. Following their work on decision rules, Craven and Shav-
lik [32] query the model as an oracle, where inputs are generated by randomly selecting feature
values within constraints determined using the range on the input data. Rather than using stan-
dard DT induction algorithms, Trepan expands its tree based on the split that has the greatest
potential of increasing the fidelity of the tree to the black-box model. Krishnan et al. [96] adopt
the pedagogical paradigm of Craven and Shavlik [32] to inductively learn a decision tree (DT) for
classification, by generating prototypes most representative of a class—merely taking into con-
sideration the inputs and probabilistic outputs—, and then training a DT on these prototypes.
While the latter two mainly focused on DT extraction from NNs, Combined Multiple Models

(CMM) [41] was motivated by DT extraction from TEs—also querying the underlying model as an
oracle based on input data distributions and approximating the classification task with a single,
interpretable tree. 18 years later, Zhou and Hooker [209] continue on the idea of CMM by propos-
ing a method that also pedagogically generates a single DT based on input distributions: Single
Tree Approximation (STA). They improve the chosen splits to better mimic the behavior of the
underlying TE, by using a stabilized node selection approach that ensures that enough samples
are obtained to remove the variability of random data generation. DecText [16] creates DTs that
maximize fidelity to the black-box model while minimizing the tree size using a special splitting
technique. DecText can handle continuous features. It trains on unseen instances, a mathematical
model of the data, or randomly generated data based on the original data distribution. Bastani
et al. [10] extend pedagogical axis-aligned DT extraction to black-box reinforcement learning (RL)
models that learn through a Q-function.

Feature importance. Strobl et al. [172] improve feature importance methods for tree ensembles
by accounting for their bias resulting from correlations among features, the number of categories
in discretization, and their scale of measurement. To combat this, they determine the feature
importance based on the difference in accuracy with or without the input variable (permutation
importance). Generalized Additive Models plus Interactions (GA2M)22 [113] are linear models
of non-linearly shaped features that provide a good trade-off between intelligibility and accu-
racy. Their linear nature allows for visual inspection of the input features on the output—thereby
unveiling feature importance. GoldenEye23 [73] looks at feature sets and their influence on an out-
come by comparing the consistency of a black-box predictor when randomly permuting the input

21 https://cran.r-project.org/web/packages/inTrees/index.html
22 http://www.cs.cornell.edu/~yinlou/projects/gam/
23 https://bitbucket.org/aheneliu/goldeneye

57

https://cran.r-project.org/web/packages/inTrees/index.html
http://www.cs.cornell.edu/~yinlou/projects/gam/
https://bitbucket.org/aheneliu/goldeneye

data set. This allows the explainee to find groups of features who’s interactions are most respon-
sible for affecting the predictive performance of the black-box model. Orthogonal Projection of

Input Attributes (OPIA)24 [2] give black-box predictors two equal inputs, except for one changed
feature. Depending on how this feature permutation changed the outcome, OPIA can define a fea-
ture ranking for any black-box regressor or classifier.

Partial Dependence Plots. Partial dependence plots (PDPs) show how changes in the input affect
prediction outcomes. Variable Interaction Network (VIN) [78] observed that PDPs only show
the influence of one variable on another, resulting in a difficult interpretation on a global level.
Thus, they visualize the importance and feature interactions as a network—where the nodes
represent features, and edges are shown when an interaction is present between these features.
Individual Conditional Expectation (ICE)25 [62] extends PDPs by showing one line on the plot
for each input. Prospector26 [94] acknowledges that simply sampling input values using interpo-
lation from the observed data poses shortcomings when looking for input feature perturbations
to obtain a PDP. It can miss feature values, or create feature values that are impossible to achieve
for the predictive function. Instead, Prospector takes into account the original context of the data,
and allows for local explanations and feature importance of individual outcomes. The human-in-
the-loop approach allows data scientists to interactively and visually inspect a black-box model by
seeing local and global PDPs and feature importance, allowing for the inspection and comparison
of models. Gradient Feature Auditing (GFA)27 [3] obscures the influence of a feature to see how
this changes the outcome, determining the indirect influence of a given feature.

Sensitivity analysis. Sensitivity analysis (SA) is similar to PDPs in that they show the effect
of features on the outcome, but rather than approximating this globally SA compares it to a
reference—making them computationally more efficient. Baehrens et al. [8] aim to explain indi-
vidual classification decisions of any model by using explanation vectors—directional arrows that
show how the change the input features in order to change the classification decision. For indi-
vidual points, these explanation vectors can yield feature importance and counterfactual changes
resulting in a different classification outcome. Global Sensitivity Analysis (GSA) [29] is a gen-
eralized visualization approach based on SA, that is applicable to any supervised black-box model
for any arbitrary type of input.

Other. Prototype Selection (PS) [13] allows for explanations of unsupervised and classification
decisions by finding a small set of prototypes for each class/cluster region that cover as much of
that region as possible, while minimizing coverage for other regions.

Zahavy et al. [205] propose a method for showing the state space of a Deep Q Network (DQN)
by grouping their visual representations using t-SNE. As a result, groups with similar states end

24 https://github.com/adebayoj/FairML
25 https://cran.r-project.org/web/packages/ICEbox/index.html
26 https://github.com/nyuvis/explanation_explorer
27 https://github.com/algofairness/BlackBoxAuditing

58 Interpretable Machine Learning Methods

https://github.com/adebayoj/FairML
https://cran.r-project.org/web/packages/ICEbox/index.html
https://github.com/nyuvis/explanation_explorer
https://github.com/algofairness/BlackBoxAuditing

up in the same area of the visualization, showing a generalized state space for the reinforcement
learning (RL) model.

For model-based RL, Genetic Programming for Reinforcement Learning (GPRL) [70] can learn
policy equations (decision rules true at a given time step) using genetic programming from pre-
existing example tuples of the current state, action, reward and next state.

Sánchez et al. [161] create a Bayesian network decision tree and first-order logic (FOL) rules based
on unsupervised matrix-factorization models. These extracted models serve as an interpretable
proxy for the black-box models, that become unintelligible due to the large matrix size (e.g., for a
movie recommendation system the rows are ll users and columns are all movies).

Combining local explanations to explain global behavior

A recent trend in iML methods is to leverage the benefit from local pedagogical explanation—i.e.,
they allow for relatively simplistic models as they only have to be locally faithful to the model-
labelled data points—to create outcome explanations, and then combine these local models to
explain the (complex) model behavior globally.

In 2016, Datta et al. [36] proposed Quantitative Input Influence (QII), that measures the degree
of influence of inputs on outputs of the model. They can compute them locally for an individual
outcome, while also accounting for correlations in influence. In addition, these values can be
visualized globally to show the QII on all outcomes when varying the range of an individual
variable—similar to partial dependence plots (PDPs).

Local Interpretable Model-Agnostic Explanations (LIME)28 [148] locally generates data around
a single prediction, and fits a linear model that shows the relative importance of features in that
local neighborhood. It is able to do so for tabular, image and text data. By combining many local
explanation (in a procedure referred to as submodular pick), they are able to form a global explana-
tion of feature importance for a model. While the model-agnostic nature LIME makes it appealing
in practice, due to its reliance on random data points its running time is slow on dense inputs
like images. Therefore, Streak29 [48] provides a speed-up of LIME by using a weakly submodular
search for perturbations—that does not rely on a large set of random perturbations for defining
an explanation but instead genetically searches for one.

SHapley Additive exPlanations (SHAP) [114]30 show that Shapley values—a notion from game
theory, showing how important each players contribution was to a game—can unify and justify
multiple iML methods, such as LIME [148], DeepLIFT [164] and LRP [7]. They calculate the feature
importance (FI) for individual predictions using Expectation Shapley values that are trained on the
outputs of the black-box oracle and enforce monoticity and are able to account for colinearity. By
stacking FIs horizontally along a range of inputs, they are able to show the sign and magnitude
of FI for each feature for the whole model.

28 https://github.com/marcotcr/lime
29 https://github.com/eelenberg/streak
30 https://github.com/slundberg/shap

59

https://github.com/marcotcr/lime
https://github.com/eelenberg/streak
https://github.com/slundberg/shap

Anchors31 [149] improves on their previous work [148]. Ribeiro et al. [149] acknowledge that
the shortcoming of linear explanations is that their coverage is not clear, i.e. it is unclear when
an explanation does and does not apply. To tackle this, they propose to use Anchors—if-then
rules that describe a local area of the model with a clear boundary—where for instances for
which the anchor holds the prediction is (almost) always the same. For example, the anchor A =

{‘not′, ‘bad′} illustrates that the presence of the words ‘not’ and ‘bad’ in a sentence will typically
result in a positive prediction of a sentiment analysis model. Moreover, they combine these
anchors with prototype selection on the generated neighborhood data, to enhance explanations
with other useful examples and counterexamples for which the anchors does and does not hold.

4.5 Discussion & Conclusion

This section reports and discusses the main findings. We then examine the most relevant threats
to validity, and outline the main conclusions.

Discussion of results

Overall, we identified 84 iML methods. The first identified method was published in 1994. Fig-
ure 4.6 shows a large increase in the number of iML methods from 2014 onwards. The number of
methods peaked in 2016 with 19 methods published that year.

0

2

4

6

8

10

12

14

16

18

20

1
9
9

4

1
9
9

5

1
9
9

6

1
9
9

7

1
9
9

8

1
9
9

9

2
0
0

0

2
0
0

1

2
0
0

2

2
0
0

3

2
0
0

4

2
0
0

5

2
0
0

7

2
0
0

8

2
0
0

9

2
0
1

0

2
0
1

1

2
0
1

2

2
0
1

3

2
0
1

4

2
0
1

5

2
0
1

6

2
0
1

7

2
0
1

8

N
u
m

b
e
r

o
f

iM
L
 m

e
th

o
d
s

Figure 4.6 Number of iML methods per year

In the following paragraphs, we discuss four aspects of the literature review: the predominant ex-
planation methods, popular representation types, human evaluation, and source code provision.

31 https://github.com/marcotcr/anchor

60 Interpretable Machine Learning Methods

https://github.com/marcotcr/anchor

Explanation methods. Table 4.5 cross-tabulates the explanation scope and approach according
to the taxonomy in Section 4.2. iML methods are predominantly focused on global explanation
(69.0%, n = 58) rather than local (25.0%, n = 21). Five tools (6.0%) are able to provide both.
In recent years, the focus has shifted from global explanation to local explanation, and extending
local approaches to provide global explanations. Local models are able to structure a global model
into more understandable chunks, that still perform well [157]. As such, they are able to capture
patterns in subsets of the data in human-understandable ways [157]. The shift of focus to local
models coincides with the need to explain more complex input data (e.g., images) and model
types (e.g., DNNs).

Table 4.5 Number of iML methods taxonimized

Scope / Approach Transparent Decompositional Pedagogical Total

Global 14 15 29 58

Global & local 0 1 4 5

Local 2 13 6 21

Total 16 29 39 84

Most methods are pedagogical (46.4%, n = 39), closely follow by decompositional (34.5%, n = 29)
methods. In addition, a large number of studies describes transparent (19.1%, n = 16) approaches.

Nearly all methods are able to explain classifiers (95.2%, n = 80). 17 of these methods provide
interpretations for regression analysis models (20.2%). Five (6.0%) focus on unsupervised learn-
ing, and four (4.8%) on reinforcement learning. The majority of decompositional methods focus
on explaining (deep) neural networks (75.9%, n = 21). Five focus specifically on tree ensembles
(17.2%) and two on (6.9%) SVMs. They focus mostly on tabular input data (59.5%, n = 50) or
explaining images (20.2%, n = 17). Eight methods (9.5%) provide explanations for text input data.
Twelve methods (14.3%) are able to provide explanations for all three types of data. Note that one
method is able to provide explanations for both tabular and text data, and two of these are able
to provide explanations for image and text data.

While iML was focused primarily on explanations for tabular data in classification tasks, the
field has seen increased interest in moving beyond these domains and creating more generic
explanation methods for any type of input data, any type of ML task, and any type of model.

Representation types. Table 4.6 presents the number of iML methods per representation type as
described in Section 4.3. Methods are predominantly explained using rule-based representations—
i.e., decision rules (DR) or decision trees (DT). They account for nearly half (48.8%, n = 41) of all
studied iML methods. Another popular representation for explanation is feature importance (FI)
with 20.2% (n = 17). Twelve methods (14.3%) provide explanations through saliency maps, while
six methods (7.1%) use prototype-based explanations.

The popularity of rule-based methods stems from that they are a natural representation to hu-
mans [80, 158] and that they allow for multiple types of explanation (e.g., counterfactual) [107].
However, especially with text and image inputs they pose the downside of becoming too large

61

to comprehend. As such, there is a preference for feature importance, prototypes and saliency in
such input domains.

Table 4.6 Number of iML methods per representation type

Rule-based Prototypes Saliency

AN DR DT FI PDP PR PS AM SA SM Other

2 27 14 17 4 4 2 4 3 5 2

A lack of human evaluation. A mere 7.1% (n = 6) of methods perform human evaluation. The
first empirical evaluations using human subjects was published in 2015. Before that, method eval-
uation typically consisted of measures such as fidelity, accuracy and explanation length. One of
these human evaluations was a single case study, while five conducted a user experiment. While
scarce, these empirical evaluations provide a baseline for future work in establishing interpretabil-
ity in iML methods.

Krause et al. [94] performed a four-month longitudinal case study on five data scientists using
their method Prospector to predict diabetes. During bi-weekly meetings, they found that data
scientists were able to distinguish how different models treat features differently, that they were
able to uncover how data imputation affected on predictions, and were able to extract actionable
insights from the model decision-making process.

Kim et al. [88] found that BCM explanations improved classification accuracy of 24 participants
compared to LDA groups in determining the correct recipe for a set of required ingredients.
However, subjects were not quicker in determining the recipe for either method, and did not
report a preference for BCM over LDA. In an experiment on 46 graduate students, Bastani et al.
[10] found that users were able to perform similarly in terms of understandability using their
method, while being able to come to these conclusions more quickly. Lakkaraju et al. [100] showed
in an experiment on 47 students that decision sets resulted in more accurate decisions while
also improving decision speed. Using 27 graduate students, Ribeiro et al. [148] demonstrated
participants were able to more accurately detect bad classifiers when using their method.

Software availability. With the goal of application of interpretability methods in practice, software
availability has been acknowledged as a significant factor [33]. One third (n = 28) of iML methods
is implemented as open-source software, with the most popular language being Python (n = 20),
followed by Lua and R (both n = 3). One tool is implemented in Java, and one in Matlab.

Limitations

We discuss four aspects of threats to validity [199] in this literature review.

Construct validity concerns consistent understanding of the used constructs. The key threat here
is the ill-defined nature of the construct ‘interpretable machine learning’ (iML) and ‘explainable

62 Interpretable Machine Learning Methods

artificial intelligence’ (XAI). This risk re-occurs in the search strategy, as rather than a search
string a number of previous overview studies were taken as a baseline for extracting relevant
studies. Misunderstanding of constructs was minimized by using an individual researcher. For
the systematic literature review, we followed the guidelines [90] to design the research goals,
search and assessment criteria. We also reported the search process to address potential threats
to construct validity.

Internal validity focuses on how the study minimizes systematic error. The main threat is related
to the bias on the process of selection of the studies. To mitigate this issue we used the guide-
line to perform the systematic review according to a pre-defined search process as proposed by
Kitchenham [90]. To increase cover, additional articles were manually introduced to the overview.
Articles were extracted from the main software engineering electronic databases, which may have
missed out on important results. Moreover, additional databases could have produced comple-
mentary missed information. Finally, there may be individual researcher bias introduced in their
subjective interpretation during data collection.

External validity threats reduce the generalizability of the results. The extracted results spanned
in the time period from 1994 to 2018, and may therefore not be generalizable across broader time
periods. Currently these methods were studied qualitatively, further analysis may be performed
quantitatively to enable analytical and statistical generalizations.

Reliability concerns the dependence of this research on specific researchers. With the aim of broad
coverage and identifying tools, not all included studies were published in peer-reviewed scientific
venues. In such cases, the face validity was assessed by the researcher before including it in the
study. Articles were still judged according to the inclusion criteria. When replicating the study,
due to the rigorous search process when the selected primary studies are equal we expect similar
results.

Conclusions

This chapter systematically reviewed interpretable machine learning (iML) methods to analyze
the state-of-the-art to make machine learning interpretable. Its main contribution is the exhaustive
overview and summary of iML methods. Nevertheless, we also obtained some valuable insights.

How iML methods enhance interpretability in machine learning. Even though scarcely backed up
by empirical evidence, rule-based and feature importance explanations are typically chosen as a repre-
sentation. They pose the benefit of being natural representations to humans. Local models provide
the benefit of being able to capture a part of the model in a more understandable manner, and
may therefore be more valuable when the goal is to explain more complex models, data types
and phenomena. Lastly, the approach taken to explain the model, and the representation used
depend on (i) the type of input data it aims to explain, (ii) the range of models it aims to explain,
(iii) the type of ML it aims to explain (e.g., supervised or reinforcement learning), and (iv) the
goal and intended end-users of the explanation.

63

Implications for contrastive explanation. In recent years, many methods have proven to be ef-
fective in being able to provide model-agnostic explanations for any type of representation and
ML type. Such generic methods pose the benefit that they are future-proof (e.g., able to provide
explanations for ML models currently unknown) and generally applicable. Especially with tabu-
lar data, rule-based explanations have shown to be widely adopted and deemed interpretable in
end-user experimental evaluations. As contrastive explanations provide explanation for a single
data point, we can utilize the benefits of local, pedagogical, rule-based explanations for our approach.
Notwithstanding, we should caution against claims of intepretability without empirical evidence.

64 Interpretable Machine Learning Methods

FOIL TREES

Foil Trees provide targeted model-agnostic contrastive explanations for any
foil. A contrastive explanation rule is extracted by training a foil-versus-all deci-
sion tree, and extracting the disjoint set of rules that causes the tree to predict
the output as the foil instead of the fact. Our method show promising results as
it is able to mimic the decision boundaries used by the model it aims to explain
(94% fidelity), generalizes well on unseen data (88% accuracy), while provid-
ing 78% more concise explanations than non-contrastive ones (mean length
1.19, improvement of 4.18).

Published as
J. van der Waa, M. Robeer, J. van Diggelen, M. Brinkhuis, & M. Neerincx, “Contrastive Explanations
with Local Foil Trees”, in 2018 Workshop on Human Interpretability in Machine Learning (WHI
2018), 2018, pp. 41-47.

5 FOIL TREES: CONTRASTIVE
EXPLANATIONS FOR MACHINE
LEARNING
Chapter 4 unearthed that the majority of interpretable machine learning (iML) methods provide
explanations in terms of their input features. Decision trees, decision rules, feature importance,
saliency methods and partial dependence plots all use features as the main means for conveying
explanations. Correspondingly, we build on using feature explanations by creating explanations
using transparent locally faithful models in input space.

This chapter describes our approach and its implementation. Section 5.1 introduces the end-to-
end approach for contrastive explanations in machine learning (ML). Section 5.2 provides details
on the implementation of ContrastiveExplanation.

5.1 Contrastive Explanation as Binary Classification
We propose a model-agnostic (pedagogical) approach for local contrastive explanations, where
we view contrastive explanations as a binary classification problem. It is pedagogical in the
sense that we view the model to explain as a black-box—merely using its inputs and outputs to
explain its behavior—, and local because we provide explanations for a questioned data point—
only requiring the explanation to be locally faithful. We provide targeted contrastive explanations
by training an arbitrary model to distinguish between fact and foil that is more accessible.

Because we aim to explain a single data point, this problem can be reduced to a foil-versus-
rest classification problem. Given that the fact data point is outside of the foil class, the set of
contrastive explanations are all explanations that cause the data point to be classified as the foil
instead of the fact. Figure 5.1 illustrates this approach for an example classification problem, in
which x is the questioned data point (of class 1), and the foil is determined to be class 2.1

Below, we detail strategies for fact and foil extraction, and for neighborhood data generation.

Fact and foil extraction. Recall from Section 3.3 that the possible set of facts and foils (the contrast
class) depends of the type of ML. As such, given the ML type we are able to provide the explainee
with a set of potential foils. The fact is determined by applying the ML model to explain to the
fact-sample (i.e., data point to be explained). We propose multiple strategies for determining the
foil:

1 Note that in the future this same approach can be extended to a probabilistic representation, where each data point is
labeled with a probability that it is part of the foil class.

67

Sample data around
questioned data point x

Determine fact (class 1)
and foil (class 2) for x

Step 1 Step 2 Step 3
Encode data for foil-vs-

rest classification

Step 4
Explain using local transparent

model or perturbation

Class distribution predict(x)

1
1

1
1

1 1

x

2
2

2 2
2

2
2

3 3 3
3

3

1
1

1
1

1 1

x

0
0

0 0
0

0
0

1 1 1
1

1

1
1

1
1

1 1

x

0
0

0 0
0

0
0

1 1 1
1

1 1 2 3

Figure 5.1 Overview of constructing targeted contrastive explanations for questioned data point x in an example classi-
fication problem

H Explicitly given by the explainee;

H Learned from previous preferences by explainees or similar explainees, or;

H Automatically extracted based on the model prediction (e.g., the second most likely class in
classification, or a measure of central tendency in regression analysis).

Neighborhood data. Neighborhood data is sampled around the questioned data point x to con-
struct an explanation. To do so, multiple sampling strategies can be used, such as:

H Randomly sampling from the original training data;

H Generated according to a normal distribution for each feature (e.g., [148]), or;

H Generating according to the marginal distribution of each feature in the training data (e.g.,
[19]).

To ensure local fidelity (i.e., local truthfulness to the model), similar to LIME [148], all sampled
data points are weighed according to their similarity to questioned data point x. Currently, this
is done using a radial basis function (RBF) kernel using the squared Euclidean distance. Alterna-
tive strategies for measuring distance between points could be their similarity after performing
principal component analysis (PCA) or similarity in an autoencoder network [76].

Foil Trees

The transparent model we propose in this study are Foil Trees: a one-versus-all decision tree to
recognize the foil class. From the Foil Tree we distill two set of rules; one used to identify data
points as a fact and the other to identify data points as a foil. Given these two sets, we subtract
the factual rule set from the foil rule set. This relative complement of the fact rules in the foil rules
is used to construct our contrastive explanation. Figure 5.2 overviews the steps taken to construct
an explanation using a Foil Tree.

The method we propose learns a decision tree centred around any questioned data point. It is
trained locally to distinguish the foil-class from any other class, including the fact class (Step 4’).

68 Foil Trees: Contrastive Explanations for Machine Learning

Determine fact-leaf Train foil-tree on foil
class

Step 4' Step 5 Step 6

F

F¬F

¬F

F

F¬F

¬F

Locate foil-leaf (e.g.,
closest)

x

F

F¬F

¬F

Step 7
Retrieve different
decision nodes

F

F¬F

¬F

Step 8
Construct explanation

This data point is 'class 1'
instead of 'class 2'
because feature f is less
than threshold

Figure 5.2 The steps required to construct and explanation using a Foil Tree, which distinguishes foil F from the rest
(¬F)

Given this tree, the ‘foil-tree’, we search for the leaf in which the data point in question resides
(Step 5)—the ‘fact-leaf’. This gives us the set of rules that defines the data point as the not-foil
class according to the foil-tree. These rules respect the decision boundary of the underlying ML
model, as it is trained to distinguish the foil class outputs. Next, we use an arbitrary strategy to
locate the ‘foil-leaf’ (Step 6)—providing us with the set of rules that define the foil. For example,
we select the leaf that classifies data points as the foil class with the lowest number of nodes
between itself and the fact-leaf.

This results in two rule sets, whose difference define how the data point in question differs from
the foil data points as classified by the foil-leaf (Step 7). This explanation of difference is done in
terms of the input features themselves. From the decision nodes that remain, those that regard
the same feature are combined to form a single literal. Finally, from these literals we construct an
explanation (Step 8), that forms the actual presentation of differences between the fact-leaf and
foil-leaf.

In summary, the algorithm goes through the following steps to obtain a contrastive explanation
using a foil-tree:

1. Determine fact and foil for the questioned data point using the model. The fact is the output
class, and the foil is explicitly given or derived (e.g., second most likely class).

2. Generate or sample a local data set, either randomly sampled from an existing data set,
generated according to a normal distribution, generated based on marginal distributions of
feature values or more complex methods.

3. Encode neighborhood data for foil-versus-rest classification. For each sampled data point
determine whether it is a fact (class 1) or a foil (class 0).

4. Train a decision tree with sample weights depending on the training point’s proximity or
similarity to the data point in question.

5. Determine fact-leaf, the leaf in which the data point in question resides.

6. Locate foil-leaf, we select the leaf that classifies data points as part of the foil class with
the smallest distance according to a foil-leaf selection (e.g., the lowest number of decision

69

nodes) between it and the fact-leaf.

7. Retrieve different decision nodes to obtain the two set of rules that define the difference
between fact- and foil-leaf, all common parent decision nodes are removed from each rule
sets. From the decision nodes that remain, those that regard the same feature are combined
to form a single literal.

8. Construct explanation, the actual presentation of the differences between the fact-leaf and
foil-leaf. For example using a fixed interaction with tabular data or text data, or as an image
overlay for image data.

Algorithm 1 describes the steps taken after foil-tree construction to form a contrastive explanation.
Note that we convert finding the foil-leaf into a shortest-path undirected graph search problem, to
allow for different explanations to be provided depending on the selected foil-leaf. The ‘closest’
foil-leaf is then the foil-leaf that minimizes the total path length (i.e., total weight) from the fact-
leaf. Observe when the weight for each edge is set to one, the selected foil-leaf is equal to the
closest foil-leaf. In order to extract the foil-leaf, we introduce a sink, connected to the foil leaves
with edge weight zero.

Algorithm 1: ContrastiveExplanation(foil-tree, fact-sample, foil-strategy)
input : foil-tree: foil-tree · fact-sample: sample to explain · foil-strategy: strategy to select to

appropriate foil-leaf
output: contrastive explanation as an ordered list of literals

1 sink = -1;

2 fact-leaf = GetLeaf(foil-tree, fact-sample); // get leaf where fact-sample resides in

3 foil-graph = ToGraph(foil-tree, 0);
4 foil-graph = ApplyWeights(foil-graph, foil-strategy); // convert to a weighted graph based

on foil-strategy

5 foil-leaves = GetLeavesOfClass(foil-tree, class=0); // get all foil leaves

6 for for leaf in foil-leaves do
7 foil-graph ∪ (leaf, sink, weight=0, –)
8 end

9 explanation = ShortestPath(foil-graph, start=fact-leaf, end=sink);
10 contrastive-explanation = ToDifferencePath(explanation); // convert to contrastive

explanation by considering both downward rule paths

11 return contrastive-explanation

We recursively convert a foil-tree into a graph, while retaining how each node relates itself to other
nodes in the graph—ensuring that we can still trace which node we end up in when the expression

70 Foil Trees: Contrastive Explanations for Machine Learning

in the node evaluates to true or false. This is done according to the steps in Algorithm 2.

Algorithm 2: ToGraph(tree, node)
input : tree: tree to convert into graph · node: id of current node
output: graph with tuples (node_id, node_child_id, right_child_in_tree)

1 l = ChildrenLeft(tree);
2 r = ChildrenRight(tree);

3 if l 6= leaf then
4 left-path = [(node, l, False)] ∪ ToGraph(tree, l);
5 right-path = [(node, r, True)] ∪ ToGraph(tree, r);
6 return left-path + right-path

7 else
8 return ∅
9 end

Foil-leaf strategies. Our approach allows for multiple strategies for deciding on an appropriate
foil-leaf, by generalizing the foil-leaf selection to a graph-search from the fact vertex to the foil
vertex, while minimizing edge weights. The most naive strategy is choosing the closest leaf.
However, this strategy may not yield satisfactory results according to the explainee because (i) it
may have a high misclassification rate (i.e., low certainty) for the foil class, or (ii) the foil-leaf may
only classify a very small number of examples . We propose four strategies:

H Closest: that minimizes the distance between itself and the fact-leaf, creating the shortest
explanation possible (i.e., each edge weight is one).

H Size: the foil-leaf which classifies the most number of examples, penalized by the distance
in the tree. This mitigates explanations that only hold for very few data points, but rather
creates explanations that hold more generally.

H Accuracy: the foil-leaf with the highest relative accuracy in foil classification (most pure
leaf), also penalized by the distance in the tree. An explanation should be both accurate
and fairly general [33]. Thus, this may result in somewhat more longer and more complex
explanations, which nonetheless hold more generally and may therefore be more beneficial.

H Combined: a trade-off between the previous three strategies, where the relative weighting of
each strategy is determined based on weights set by the user, or weights learned from user
preferences.

5.2 Implementation

We created ContrastiveExplanation,2 a proof-of-concept tool of our proposed method for ex-
tracting contrastive explanations for machine learning. ContrastiveExplanation is implemented
in Python, with as main dependencies NumPy and Scikit-learn. For finding the shortest path to

2 Source code available at https://github.com/MarcelRobeer/ContrastiveExplanation

71

https://github.com/MarcelRobeer/ContrastiveExplanation

the foil in the foil-tree, it uses package networkx. It currently supports explaining predictions with
probabilistic outcomes (e.g., Scikit-learn and Keras).

In the next sections we describe the software architecture, and provide an example of how to use
ContrastiveExplanation.

Software architecture

We overview the system functionalities and processes of our implementation with a Functional
Architecture Model (FAM) [18] in Figure 5.3. The FAM describes the main modules of Contrastive-
Explanation (CE) and the relations between them. CE has three modules: FACTFOIL, EXPLANATOR

and DOMAINMAPPER—all implemented as Python classes.

DomainMapper

FactFoil Explanator

ContrastiveExplanation

(in) predict_function
(in) sample

(in) data
(out) explanation

(1) fact, foil (2) data’

(2) data’,
weights

(3) encoded_labels

(4) rules

Figure 5.3 ContrastiveExplanation functional architecture

CE takes as inputs (i) predict_function: the predict function of the model it aims to explain; (ii) sam-

ple: questioned data point x, and; (iii) data: the training data to generate or sample neighborhood
data from. As output, it produces a contrastive explanation explanation. The process taken to create
a contrastive explanation starts with FACTFOIL determining the fact and foil for sample x. Next, we
sample neighborhood data data’ around sample x, and determine the weights for each data point
based on similarity to questioned data point x. These are provided to FACTFOIL and the EXPLANA-

TOR. FACTFOIL uses the neighborhood data to determine for each data point the encoded_labels,
of whether the data point is a foil or not. The set of labeled samples (data’, encoded_labels) with
weights weights is the used by EXPLANATOR to determine the contrastive rules. Finally, the fact, foil
and rules are combined into a meaningful explanation in input space.

FACTFOIL is responsible for defining the fact and foil for a contrastive explanation, and then encod-
ing neighborhood data such that the labels are either foil (1) or not-foil (0). To this end, FACTFOIL

requires the predict function used by the model it aims to explain—to determine the predicted
output for each data point—, and the sample x it aims to explain. The fact can be determined by
applying this prediction function to the sample, while the foil may be induced by looking at pre-
dictor probabilities. As a hyperparameter, the foil-search-strategy may be set (e.g., second most
probable class, least probable class, or random pick). For classification tasks the implementation

72 Foil Trees: Contrastive Explanations for Machine Learning

provides FACTFOILCLASSIFICATION, and for regression analysis tasks it provides FACTFOILREGRES-

SION.

EXPLANATOR converts the weighed neighborhood data with foil-versus-all encoded labels into a
set of contrastive rules. The example EXPLANATOR described in this chapter are Foil Trees, but
other transparent models or perturbation methods may be used. Currently implemented is the
TREEEXPLANATOR, that explains using a Foil Tree.

DOMAINMAPPER translates the input data in a generic representation, and maps the rules back from
its generic representation into a concrete explanation in terms of its input features. By decoupling
the domain mapping from explanation, this allows EXPLANATORS to also create explanations in
terms of human-constructed or extracted high-level features, or explanations in lower dimensions
than the input data. As input it requires training data to sample or generate the neighborhood
data from. From this input data it can also infer meaningful labels for the contrast class instances.
We provide full support for tabular data (rows and columns) with DOMAINMAPPERTABULAR, and
preliminary support for image data with DOMAINMAPPERIMAGE. Here, a meaningful label for the
members of the contrast class can be provided, as well as hyperparameters that determine how
local the EXPLANATOR should create explanations for the neighborhood data.

Example usage

We illustrate ContrastiveExplanation on a Random Forest trained on the Iris data set [45]. The
Iris data set is a multi-class classification problem that contains data about flower characteristics—
sepal and petal length and width—, and aims to predict whether the flower in one of three species
of Iris: setosa, virginica or versicolor. The Random Forest is trained on the training set, which
comprises 80% of the 150 data points in the data set.

from sklearn import datasets, model_selection, ensemble

seed = 1994

Train black-box model on Iris data

data = datasets.load_iris()

train, test, y_train, y_test = model_selection.train_test_split(data.data,

data.target,

train_size=0.80,

random_state=seed)

model = ensemble.RandomForestClassifier(random_state=seed)

model.fit(train, y_train)

The data provided is tabular (four columns, 150 rows). Hence, we set the DOMAINMAPPER to
DOMAINMAPPERTABULAR. We provide the feature names and contrast names as the feature names
and class names of the data set, respectively. Next, we take a data point from the test set to
provide an explanation for. The data point in question has four features: ‘sepal length = 5.1 cm’,

‘sepal width = 3.3 cm’, ‘petal length = 1.7 cm’ and ‘petal width = 0.5 cm’.

73

Contrastive explanation

import contrastive_explanation as ce

dm = ce.domain_mappers.DomainMapperTabular(train,

feature_names=data.feature_names,

contrast_names=data.target_names)

exp = ce.ContrastiveExplanation(dm, verbose=True)

Explain first data point in test set

sample = test[0]

exp.explain_instance_domain(model.predict_proba, sample)

We explain the instance using the models’ probability prediction to determine the foil (by default
the second most probable class). We directly map it back to the input domain, to obtain the
explanation The model predicted ‘setosa’ instead of ‘versicolor’ because ‘sepal width (cm) > 2.714’. Using
to their internal representation, the same extracted explanations can also be mapped to a fixed
interaction in a dialogue setting:

CE The flowertype is ‘setosa’.

User Why ‘setosa’ and not ‘versicolor’?

CE Because for it to be ‘versicolor’ the ‘sepal width (cm)’ needs to be smaller.

User How much smaller?

CE The ‘sepal width (cm)’ needs to be less than 2.714.

74 Foil Trees: Contrastive Explanations for Machine Learning

6 QUANTITATIVE VALIDATION

We quantitatively validate Foil Trees on eight benchmark supervised learning tasks from the UCI
Machine Learning Repository [45]. To demonstrate the model-agnostic nature of our approach
we apply multiple machine learning (ML) models to each task. Section 6.1 introduces the perfor-
mance metrics used. Section 6.2 describes the validation setup and operationalization. Section 6.3
reports the results, which are discussed in Section 6.4.

6.1 Performance Metrics

In Section 2.5 we introduced multiple performance metrics for automatically evaluating global in-
terpretable ML (iML) methods as defined by Craven and Shavlik [33]. We adapt these metrics and
validate the accuracy, fidelity, time and explanation comprehensibility. The mean length serves as
a proxy measure demonstrating the relative explanation comprehensibility (interpretability) [43].
The fidelity allows us to state how well the tree explains the underlying model, and the accu-
racy tells us how well its explanations generalize to unseen data points. Time indicates whether
explanations can be extracted in real-time. While these measures were defined for global perfor-
mance assessment of iML methods, we however aim to assess how the model performs locally.
Thus, when assessing the performance of the model the data points are weighed based on their
Euclidean similarity to the questioned data point. We detail each measure below:

H Accuracy (Acc.) tells us how well the explanations generated from the Foil Tree generalize
to unseen data points. It is measured as the F1 score of the foil-tree predictions on the test
set compared to the true labels, weighed by the Euclidean distance from the test set points
to the questioned data point.

H Fidelity (Fid.) allows us to state how well the Foil Tree explains the underlying model. It is
the F1 score over the foil-tree compared to the model output, also weighed by the Euclidean
distance from the test set points to the questioned data point.

H Time is the number of seconds needed on average to explain a test data point.

H Mean Length (Len.) is the average length of the explanation in terms of decision nodes. The
ideal value is in a range [1.0, Nr. features) since a length of zero means that no explanation
is found, and a length near the number of features offers little gain compared to showing the
entire ordered feature contribution list as in other iML methods. In addition, we show the
improvement over the length of non-contrastive explanations. Non-contrastive explanation
length is defined as the number of decision nodes from the root to the leaf the data point
resides in, explained by a regular decision tree (i.e., classifier for classification tasks and
regressor for regression analysis tasks) on the weighed neighborhood data.

75

In addition, we obtain two metrics during foil-tree construction and foil-leaf selection: the con-
fidence and local fidelity. The confidence allows us to state how confident the foil-tree is that the
extracted contrastive rule will convert the fact into a foil, while the local fidelity measures how
well the foil-tree performs locally on black-box labeled data points.

H Confidence (Conf.) measures how certain the foil-tree is that contrastive explanation will
ensure that the proposed explanation converts the fact into a foil. It is defined as the correct
classification rate in the selected foil-leaf.

H Local fidelity (Loc.) describes how well the foil-tree performs locally on black-box labeled
data points. It is measured as the accuracy of the foil-tree on the generated neighborhood
data around the questioned data point, that the foil-tree was trained on.

6.2 Setup

Data sets

We validate Foil Trees on eight data sets from the UCI Machine Learning repository [45]; five
classification tasks and three regression analysis tasks. Table 6.1 summarizes the characteristics
of these data sets. Below, we describe each in more detail:

Table 6.1 Data sets for quantitative validation

Data set Features Rows Problem type

Iris 4 150 Classification (3 classes)
Diabetes 7 768 Classification (2 classes)
Heart disease 13 297 Classification (5 classes)
SPECT 45 267 Classification (2 classes)
Census income 108 32 561 Classification (2 classes)
Wine quality 11 4898 Regression
Parkinson 28 1040 Regression
Student 58 649 Regression

H IRIS. Iris is a well-known classification tasks of plants based on four flower leaf characteris-
tics. It has 150 data points and three classes.

H DIABETES. PIMA Indians Diabetes is a binary classification task to correctly diagnose the
onset of diabetes, based on medical predictor variables. Its data set contains 769 data points
and has nine features.

H HEART DISEASE. Heart disease aims at classifying the risk of heart disease from no presence (0)
to presence (1–4), consisting of 297 instances with 13 features. The features describe patient
demographics and summarized medical measurements.

H SPECT. The Single Proton Emission Computed Tomography (SPECT) data set contains summary
statistics of cardiac images. It has the purpose of classifying patients into abnormal or
normal based on 45 features. It comprises 267 data points.

76 Quantitative Validation

H CENSUS INCOME. United States census data to predict whether a person’s income exceeds
$50,000 per year or not. It contains 32,561 data points with 108 features.

H WINE QUALITY. Wine quality is a regression analysis task that aims at predicting the quality
score of white wine variants of the Portuguese ‘Vinho Verde’ wine based on physicochemical
characteristics. It comprises 4898 data points with 11 features.

H PARKINSON. The Parkinson Speech data set contains extracted features of 26 speech recordings
of 20 healthy patients and 20 patients diagnosed with Parkinson’s disease. It aims at pre-
dicting the Unified Parkinson’s Disease Rating (UDPR) score for each recording—making it
a regression analysis task. In totality, it contains 1040 data points with 28 attributes.

H STUDENT. Student Performance is a regression analysis problem that aims to predict the grade
of a student in a Portuguese language course. The data was taken from secondary schools
in Portugal, and contains data about student demographics and school-related features. It
contains 649 data points with 58 features.

Please note that these data sets cover a wide range in terms of number of features and rows, and
in number of classes.

Machine learning models

We apply five ML models on classification tasks, and three on regression analysis tasks: a Random
Forest (RF), logistic regression (LR; only for classification), Support Vector Machine (SVM), and neural
network (NN). Model selection is performed by searching a grid of parameters, which are selected
using ten-fold cross-validation (CV). Table 6.2 describes the used models, their fixed parameters
and the grid-searched parameters.
Table 6.3 reports the final performance of the models as the F1 score for classification (weighted if
multi-class), and R2 for regression analysis. Note that each supervised learning task has one data
set with a lower performance than other models—Census income and Wine quality, respec-
tively. They are included on purpose, as they allow us to assess the effect of model performance
on the performance of Foil Trees.

Operationalization

The quantitative validation is implemented in Python (3.6.5) using package scikit-learn (0.19.1)
[139]. Each benchmark on a data set-model pair is cross-validated three times to account for
randomness in foil-tree construction. For classification tasks, the foil-tree was constructed for
the using as foil second most probable class according to the model prediction. For regression
analysis tasks we applied two foils to each data point: all data points predicted smaller than the
questioned data point, and all data points predicted to be larger. Results were then averaged out
across both foils.

The black-box model was trained with a train-test split, resulting in two disjoint sets of 80%
training data and 20% test data, respectively. To limit total validation time, for data sets with
more than 1000 data points a sample of 1000 data points were randomly sampled as the combined
training and test data. For reproducibility, random functions were set to seed 1994. The foil-tree

77

Table 6.2 Machine learning model settings

Model Fixed parameters Grid-Search Parameters

Classification
RF Classifier class_weight: balanced subsample n_estimators: 10, 20, 40, 500

Logistic Regression
(LR)

max_iter: 1000

solver: saga
penalty: `1, `2
class_weight: balanced, –
multi_class: ovr, multinomial

SVM Classifier kernel: linear C: 1, 5, 10

NN max_iter: 2000 hidden_layer_sizes: (50, 20, 10),
(250, 100, 20), (500, 200, 100),
(1000, 500, 300)

alpha 0.01, 0.1, 1

Regression
RF Regressor n_estimators: 50, 100, 500

SVM Regressor kernel: linear C: 1, 5, 10

NN max_iter: 2000 hidden_layer_sizes: (50, 20, 10),
(250, 100, 20), (500, 200, 100),
(1000, 500, 300)

alpha 0.01, 0.1, 1

Table 6.3 Performance per model, measured as the F1 score for classification problems and R2 for regression analysis
problems

Data set/model LR NN RF SVM Average

Iris 0.93 0.97 0.93 0.93 0.94

Diabetes 1.00 0.95 1.00 1.00 0.99

Heart disease 1.00 1.00 0.94 1.00 0.99

SPECT 1.00 1.00 1.00 1.00 1.00
Census income 0.62 0.67 0.53 0.64 0.62

Wine quality – 0.27 0.36 0.26 0.30
Student – 0.73 0.87 0.82 0.81

Parkinson – 1.00 1.00 0.96 0.99

was trained on n = 500 data points sampled from the original training data also used to construct
the black-box model. The time required to train the foil-tree and define an explanation was
measured on a Dell Latitude E7470 Ultrabook (64-bit, 16GB RAM) running Windows 10 Enterprise
(Version 10.0.16299) with an Intel® Core™ i7-6600U processor (2.80 GHz).

After training the black-box model the ground-truth labels and model-predicted labels for the
test set are encoded in the same manner as the data used for the foil-tree (e.g., the second most
probable class as foil with class label 0 with all other predicted classes labeled as 1). Resultingly,
performance assessment can be seen as a binary classification problem—with the F1 score for
classification and R2 score for regression analysis problems. Note that to measure the local per-
formance, the samples in performance assessment are weighted based on their Euclidean distance
from the data point to be explained.

78 Quantitative Validation

6.3 Results

The results per data set for each measure in Section 6.1 are shown in their respective columns in
Table 6.4.1 In addition, in the second column the total number of explanations created for each
data set is included, and the third column describes the number of features in each data set as
the upper bound of the explanation length. For each column, the best value(s) are highlighted in
green, while the worst performing value is highlighted in red.

On average, the Foil Tree is able to confidently distinguish a foil (confidence of 0.96), while having
a high local truthfulness to the model it aims to explain (local fidelity of 0.99). It generalizes well to
unseen data, with a mean accuracy of 0.88. Notably, the data sets with a lower accuracy also had
lower model performance to begin with (see Table 6.3)—showing similar performance in terms
of accuracy to the underlying model. Foil Trees are able to quickly provide explanations (average
time needed to explain of 60 milliseconds), while accurately mimicking the decision boundaries
used by the model well (fidelity of 0.94). The contrastive explanations provided are considerably
more concise than non-contrastive ones (mean length of 1.19 over 5.37), with a mean improvement
of explanation length of 4.18 decision nodes.

Table 6.4 Quantitative validation results per data set

Data set # Explan. # Features Conf. Loc. Acc. Fid. Time (s) Len.

Iris 120 4 0.92 1.00 0.98 0.99 0.022 1.16 (+0.70)
Diabetes 614 7 0.99 0.99 1.00 1.00 0.058 1.46 (+4.48)
Heart disease 237 13 0.94 0.99 0.92 0.92 0.027 1.32 (+3.90)
SPECT 213 45 1.00 1.00 1.00 1.00 0.051 1.26 (+4.98)
Census income 800 108 0.92 0.98 0.72 0.81 0.105 1.06 (−0.06)
Wine quality 800 11 0.96 0.99 0.63 0.83 0.065 1.01 (+9.22)
Parkinson 800 28 1.00 1.00 0.87 0.99 0.079 1.04 (+4.82)
Student 519 58 0.98 1.00 0.89 0.95 0.085 1.12 (+7.69)

Average 0.96 0.99 0.88 0.94 0.060 1.19 (+4.18)

Even though not always fully confident, all data explained models on the data sets were con-
sistently high-performing in terms of local fidelity (ranging from 0.98 to 0.99). Most data sets
perform very well in terms of accuracy, apart from Census income and Wine quality—as ex-
pected by their lower initial model performance. Fidelity performed consistently over 80%, where
data sets with less accurate models also showed the lowest fidelity. The Census income data set
took longest to explain. In addition, Census income was the only data set where non-contrastive
explanations provided shorter explanations.

Table 6.5 summarizes the results per model.2 Across the performance metrics, contrastive expla-
nations performed best on LR. However, it also showed least improvement in terms of explanation
length. Random Forests (RFs) and Support Vector Machines (SVMs) performed least well, even
though they generally perform with over 90% confidence and fidelity. SVMs proved most difficult

1 The full results are included in Appendix C.
2 Note that logistic regression (LR) was only applied to classification tasks, and therefore was only validated on five data

sets.

79

to generalize, with an accuracy of 0.82. Neural Networks (NNs), RFs and SVMs all performed
similar in terms of length improvement over non-contrastive explanation.

Table 6.5 Quantitative validation results per model type

Model # Data sets Conf. Loc. Acc. Fid. Time (s) Len.

LR 5 1.00 1.00 0.93 0.97 0.029 1.24 (+2.66)
NN 8 0.98 0.99 0.90 0.94 0.056 1.27 (+4.82)
RF 8 0.96 0.99 0.91 0.93 0.103 1.14 (+4.24)
SVM 8 0.92 0.99 0.82 0.93 0.040 1.13 (+4.41)

6.4 Discussion & Conclusion

We summarize and conclude the main findings of the quantitative validation. Next, we analyze
and discuss the results in more detail. Lastly, we consider the main threats to validity [199].

Summary and conclusion

We validated ContrastiveExplanation (CE) using Foil Trees by applying multiple ML models on
eight benchmark supervised learning tasks. Generally, CE performed well—with a fidelity to the
underlying model of 94% and an improvement in rule length over non-contrastive explanations of
4.18 (78% improvement). CE is able to quickly provide explanations (60 milliseconds on average)
that generalize well on unseen data points (88% accuracy). Across models and data sets, CE can
confidently distinguish between foil and not-foil (96% confidence) and locally accurately follows
the decision boundary used by the model it aims to explain (99% local fidelity).

Discussion and analysis

Important to note are that performance differed for data sets, as well as for model types.

Data sets. Data sets with lower initial performance also performed less well in terms of general-
izibility (accuracy) and faithfulness to the model (fidelity). For one data set (Census income) the
mean explanation length increased (rather than decreased) with contrastive explanations. How-
ever, this simple decision boundary used by the model to explain also had lower performance on
the initial data set. Explanation length did not increase with the number of features. Contrastive
explanations showed consistent length (ranging from 1.01 to 1.46), while non-contrastive expla-
nations varied greatly on average (1.00–10.46). Contrastive explanations are persistently able to
provide shorter explanations that are equally valid, as generally preferred by humans [79].

Model types. Logistic regression (LR) provided the most confident, locally faithful, generalizable
explanations—but showed least improvement in terms of explanation length over non-contrastive
explanations. CE’s high performance on LR can be traced back to that unlike other model types

80 Quantitative Validation

it only considers a single coefficient per feature, and thus disregards feature interactions. The
same rationale applies inversely to SVMs (that performed least well), as their kernel trick may
be difficult to be explain by a model that only creates decision boundary in input space. This
trade-off between interpretability and faithfulness to the model has been widely acknowledged
[110, 148, 165, 196], and depends on the explainee’s expertise as well as the desired goal of the
explanation.

Threats to validity

Construct validity threats concern the degree to which a test measures what it intends to measure.
We adapted measures from global interpretable machine learning (iML) methods and weighed
them to measure locally. They show CE’s performance, transparency, generalizability and speed.
However, the explanation length surrogate does not allow us to infer whether contrastive ex-
planations are more understandable or preferable over non-contrastive explanations. In their
adaptation, while the performance measures provide valuable insights into the local performance
of CE the choice of similarity measure may affect results.

Internal validity threats focus on how the experiments were conducted. A set of eight benchmark
data sets were selected, which were able to produce reasonably well performing models. In addi-
tion, the four model types and the hyperparameters that were searched for each model were also
manually selected. A wider range of models and hyperparameters may affect the performance.
Moreover, time was measure on a specific computer setup, where a different setup may result in
different results.

External validity considers the generalizibility of results. We validated CE on two types of super-
vised learning tasks with three or four model types each, with a wide range in terms of number
of features and number of data points per data set. Regarding types of machine learning, as it
is currently not supported in its implementation we did not cover reinforcement learning tasks—
where it is currently unknown how it will perform. We expect similar results in unsupervised
learning tasks, as after labeling they are similar to classification tasks. Regarding the types of
data, we have only validated our approach on tabular data, and it is yet to be validated on text
data and image data.

Reliability concerns the consistency of measurements. We argue that when the same setup is
applied the validation should yield similar results. To mitigate these threats, the quantitative
evaluation was performed in an automated fashion, and performed using the same seeds. For
randomness in foil-tree construction, the validation was cross-validated three times.

81

EMPIRICAL
EVALUATION

While the quantitative validation has shown the feasibility and objective trans-
parency of contrastive explanations, it disregarded the contents of the expla-
nations. We conducted a user experiment on 121 participants to establish how
contrastive and non-contrastive explanations are perceived in terms of general
preference, transparency and trust. We found that contrastive explanations
are preferred over non-contrastive explanations in terms of understandabil-
ity, informativeness of contents and alignment with their own decision-making.
This preference also lead to an increased general preference and willingness
to act upon the decision. The experimental evaluation did not confirm that
these methods affected the agreement with a decision—regardless of whether
the prediction was correct.

7 EXPERIMENT

Chapter 6 showed that Foil Trees are able to provide concise explanations that accurately mimic
the decision boundary used by the model, and generalize well on unseen data. While this valida-
tion demonstrates the feasibility and objective transparency and generalizability of our approach,
it disregards the actual semantics (contents) of the explanation. The difficulty in interpretability
lies in that it depends on the perceptions and previous experiences of the user seeking an expla-
nation [11]. What one person might call an interpretable explanation may not be interpretable
to another person at all. Therefore, we perform a user experiment to establish the interpretability,
perceived transparency and trust of our approach. The following subquestion is the focal point of
in the current phase of our study:

5.2 How are contrastive explanations versus non-contrastive explanations perceived in
terms of general preference, transparency and trust?

For this empirical study, a comparative experiment was designed and executed by evaluating
contrastive explanations according to the steps of the empirical cycle in design science [198]. In
previous chapters, we have defined an analyzed the research problem of contrastive explanations
for machine learning (ML). Next, we created an experiment design—that describes the objects
of measurement, hypotheses, sample, treatments and inferences—and validated this design. We
conducted the experiment in July 2018, and used the observations from the collected data to test
the hypotheses, and discuss potential explanations, generalizations and limitations to these.

The chapter is organized as follows. Section 7.1 introduces the experiment case used to create
the scenario performed by participants. Section 7.2 defines the experimental design and how the
experiment was implemented. Section 7.3 presents the results. Section 7.4 shows the threats to
validity that were identified when running the experiment, and discusses general findings and
generalizations. Lastly, Section 7.5 reports the conclusions.

7.1 Glucose Level Prediction Data

Section 1.1 introduced the action-recommendation use-case children with type I diabetes mel-
litus (T1DM) that we plan to implement within the problem context. To initially develop and
validate the practical applicability and interpretability of contrastive explanations for the action-
recommendation use case we have developed an ML model trained on simulated data generated
using an extended version of the simglucose package, a Python implementation of the FDA-
approved UVa/PADOVA Type 1 Diabetes Simulator [34]. For various virtual subjects, we are able to
simulate the blood sugar (glucose) levels over time as measured by a sensor by providing a diary
of meals, exercises and manual insulin injections. The data consists of 138 observations of 20

features, each taken around a time-slice of one hour before and after a food item was consumed.
We trained an ML model (dense feed-forward neural network classifier) on this data that is able

85

to predict whether the food item consumed at a given time will result in a a hyper (too high
glucose), hypo (too low glucose) or neither within the next hour. It does this by also taking into
account the performed and planned activities, and the patient’s previous blood glucose levels.

Figure 7.1 Example agenda showing the simglucose output blood glucose levels based on the patients’ diary of meals
and exercises

We apply Foil Trees to the prediction model, to generate contrastive explanations that are then
evaluated by participants in an experiment. As a basis for comparison, we also provide non-
contrastive explanations that are extracted by fitting a decision-tree model on the three classes
that is locally faithful and model-agnostic. Figure 7.2 illustrates the four parts of information
used to predict the health status of the patient: (1) the current time, (2) the food consumed at this
time and the grams of carbohydrates (CHO), (3) an agenda of activities planned and performed,
and (4) the health status in the previous hour. Note that in order to reduce task complexity the
model and explanations disregard manual insulin injections, and are all generated for the same
patient.

Figure 7.2 Example case with annotations for the four parts of information provided to a participant

86 Experiment

7.2 Experimental Design
This experiment aims to investigate the effects of explanation types on user perceptions regard-
ing transparency and trust for ML systems. It constitutes two parts. Part Preference aims at
establishing the relative preference of explanation types, by comparing non-contrastive explana-
tions, contrastive explanations and no explanations for a given data point of a ML algorithm
and corresponding prediction with value judgments. Part Agreement has the purpose of deter-
mining whether different types of explanations can facilitate trust in a system without causing
under-reliance or over-reliance on its decision-making.

Goal

This experiment stems from the premise that the type of explanation offered to a user influences
transparency and trust, and affects under-reliance and over-reliance on an ML system. The goal
of this experiment is to compare contrastive and non-contrastive explanations for the purpose
of establishing the perceived quality in terms of transparency, trust and general preference. To
estimate the size of the effect of the difference in perceived quality, we also provide decisions
without any explanation. We further subdivide the goal into three subgoals:

1. determine whether there is a general preference for contrastive explanations over non-
contrastive and no explanation;

2. establish which value judgments may be responsible for a preference for contrastive expla-
nation over the other two, and;

3. see how different explanation methods lead to over-reliance and under-reliance (a part of
trust) when using the system.

Subgoals one and two are covered by ‘Preference’, while ‘Agreement’ tests sub-goal three.

Factors and treatments

Each case constitutes three parts: (1) an agenda item, (2) an explanation, and (3) a prediction for the
agenda item made by the ML system. This experiment encompasses two factors that vary parts
two and three of a case, respectively:

1. the explanation method offered to the participant (no explanation, non-contrastive explanation
or contrastive explanation), and;

2. the prediction correctness (correct or wrong prediction made by the ML model, given the
labeled data).

We refer to the explanation together with a prediction as a decision.

Dependent (outcome) variables, metrics and hypothesis formulation

People are known to process contrastive explanations and apply counterfactual thinking in day-to-
day life [180]. As a result, a contrastive explanation will be more intuitive and therefore arguably

87

more valuable to a user seeking an explanation [123]. To establish whether this preference for
contrastive explanations over non-contrastive ones and no explanations holds for ML, we define
this hypothesis in terms of the null-hypothesis (stating there is no effect):

H01 The means for general preference are the same for all explanation methods.

Transparency & trust. While this general preference can be used as a general argument for the
usage of contrastive explanations, it does not provide us with insights into why it is preferred,
and whether this reason for preference corresponds to our goals of transparency and trust. There
are a multitude of reasons for preferring one explanation over another, corresponding to the goal
of the explanation at hand. In the validation in Chapter 6 we have shown that the explanations
provided are truthful to the model it aims to explain (i.e., transparent). However, in order to assess
whether the contents of the explanation are also interpretable to users we consider the perceived
transparency [30, 143]. Transparency can facilitate perceived understanding of the model and
thereby trust [74]. We hypothesize that explanations are perceived as more transparent than
providing no explanation:

H02 The mean preferences for perceived transparency are the same for all explanation
methods.

In order for people to apply ML models in real-world tasks, they need to trust that it will perform
well and understand beforehand when it will not perform well [43, 74, 110, 123]. Verification
that the model uses sensible inferences for decision making can ensure reliability, robustness and
safety when it is applied on a real-world task [43, 160]. However, trust is a long-term relationship
between the user and a system that develops over time through interactions [57, 143]. To measure
how the types of explanations might facilitate trust, we decompose trust into variables according
to Cramer et al. [30] and Tintarev and Masthoff [184].

In evaluating trust, we look for the characteristics that distinguish contrastive explanations from
non-contrastive ones. Firstly, we expect that contrastive explanations are preferred in terms of
the informativeness of the features used in the explanation [30]. Similar to human explanatory
behavior, contrastive explanations only explain a decision in terms of features used to distinguish
fact from foil. Second, trust is strongly tied to the perceived competence of a system [30]. A more
competent system, i.e. one with a better alignment with their own decision-making process, will
lead to higher acceptance of its decisions and general acceptation of the system [30]. Moreover, Pu
and Chen [142] found when the system is perceived as more competent, users are more willing to
return to the system. This again stems from the premise that contrastive explanation is inherent
to human explanation and therefore the preferred choice in terms of alignment with a users’
own decision-making process. We capture these two dependent variables in the following null
hypotheses:

H03 The mean preferences for informativeness are the same for all explanation methods.

H04 The mean preferences for alignment are the same for all explanation methods.

88 Experiment

Effect of transparency & trust on general preference and persuasiveness. If there indeed is a pref-
erence for contrastive explanations over non-contrastive ones and non explanation, we addition-
ally want to establish whether this preference also leads to the general preference of this type of
explanation. Decisions that have a higher perceived transparency, informativeness and decision-
making alignment are expected to be generally preferred. We establish their associations using
hypotheses H05, H06 and H07:

H05 Decisions that are perceived as more transparent are generally preferred.

H06 Decisions that are perceived as more informative are generally preferred.

H07 Decisions that are perceived as aligning well with their own decision-making are
generally preferred.

Moreover, this preference in terms of transparency in trust that leads to an increased system and
decision acceptance is a form of persuasion: the system has the ability to persuade the user to
agree with its decisions [184]. We therefore hypothesize that a people who find a decision more
transparent, informative and aligning better with their own decision making are also more likely
to act upon this decision—viewing it as more persuasive. H08 through H010 test this relationship.
In addition, this persuasiveness is also strongly tied to a general preference as people who are
more satisfied with an explanation are also more likely to act upon it [184]:

H08 Decisions that are perceived as more transparent do not cause explanations to be
perceived as more persuasive.

H09 Decisions that are perceived as more informative do not cause explanations to be
perceived as more persuasive.

H010 Decisions that are perceived as aligning well with their own decision-making do not
cause explanations to be perceived as more persuasive.

H011 There is no relationship between preference and persuasiveness of decisions.

Agreement. While contrastive explanations may perform well in persuading the user to agree
with its decisions, previous research has shown that explanations may lead to insensitivity to
reliability of automated systems. Bussone et al. [22] found that placing too much trust in the
system may lead to over-reliance, where a user agrees with the system even if it makes a faulty
decision. For our healthcare context, where decision may affect the short-term and long-term
health of a T1DM patient, this is undesirable behavior. Similarly, providing no explanations
or wrong explanations can lead to users ignoring incorrect suggestions (under-reliance of the
system). In addition, appropriate reliance improves system’ perceptions and intention to use the
system [58, 143]. To the best of our knowledge, no current studies have comparatively evaluated
contrastive and non-contrastive explanations. Therefore, we aim to test how contrastive and non-
contrastive explanations compare in terms of an appropriate level of reliance:

H012 There is no association between the explanation method and decision agreement.

H013 There is no association between the prediction correctness and decision agreement.

89

Overview. All independent variables (IVs), dependent variables (DVs) and hypotheses are sum-
marized graphically in Figure 7.3. We test directly for three value judgments (perceived trans-
parency, informativeness and alignment) and see their effect on the perceptions (preference and
persuasiveness). In addition, we determine the effect of the explanation method and prediction
correctness on willingness to agree with decisions made by the system (reliance).

Trust

Transparency

H8

Perceived
Transparency

H11

Preference

H9
Informativeness

H10
Alignment Persuasiveness

Agreement

H1

Explanation
method

Prediction
correctness

IVs Values Perceptions

H7

H5

H6

H2

H3

H4

H12

H13

Figure 7.3 Theoretical framework

Experiment design, participants and objects

Each participant is assigned each factor.

Sample. The experimental participants were recruited on Amazon Mechanical Turk (MTurk).1 All
participants were at least 18 years old (in line with MTurks’ Participation Agreement). Participants
received a small monetary reward in case of questionnaire completion. In addition, they were
provided a small bonus when performing well on a test quiz on the scenario and type I diabetes
mellitus (T1DM) management. Questionnaires were set-up to disallow repeat workers. In case of
participant drop-out—i.e., a participant not finishing the questionnaire—, MTurk recruited new
participants and the participant will not receive their reward. In total, 148 participants took part in
the experiment—of which 121 completed it in full. None of the drop-out participants completed
a part beyond the demographics and test quiz, and are therefore excluded from further analysis.
Table 7.1 describes the participant demographics and their familiarity with T1DM (management).

Experimental objects. We define the procedure for constructing the questionnaires as follows.
For part ‘Preference’ participants will receive ten (10) agenda items that broadly represent the un-

1 https://www.mturk.com/

90 Experiment

https://www.mturk.com/

Table 7.1 Participant demographic and T1DM management familiarity characteristics (N = 121)

Demographics Diabetes management

Characteristic N % Characteristic N %

Age Familiarity with diabetes management (self-rep.)
18–24 2 1.7 Mean 6.14
25–34 52 43.0 SD 3.02
35–44 37 31.4
45–54 20 16.5 Family history of diabetes
55–64 6 5.0 Yes 85 70.2
65+ 3 2.5 No 33 27.2

Sex Unknown 3 2.5
Male 64 52.9
Female 57 47.1 Occupation/study related to healthcare

Region No 106 87.6
Africa 1 0.8 Yes, studying medicine 2 1.7
Americas 83 68.6 Yes, direct occupation∗ 10 8.3
Asia 36 29.8 Yes, indirect occupation† 3 2.5
Oceania 0 0.0

Education (highest completed)
High school 33 28.1
Undergraduate 70 57.9
Graduate 17 14.0

English reading/writing
Not well at all 0 0.0
Not very well 0 0.0
Well 7 5.8
Pretty well 11 9.1
Very well 103 85.1

∗ e.g., nurse, doctor; † e.g., pharmaceutical

derlying data set, and for each explanation type pair (i.e., no explanation–contrastive explanation,
contrastive explanation=-non-contrastive explanation, no explanation–non-contrastive explana-
tion) they will be asked to determine their preferences. This totals to 30 pairwise comparisons.
Part ‘Agreement’ will uses six (6) different agenda items (three of which have a correct prediction,
and three have an incorrect prediction). They are shown each agenda item three times, including
one of three types of explanation types (no explanation, contrastive explanation, non-contrastive
explanation) and they are asked whether they agree or disagree with the prediction made.

Data collection

Data was collected with an anonymous online questionnaire implemented in Survey Monkey.2

For reference, questionnaire materials are included in Appendix D.

2 https://www.surveymonkey.com/

91

https://www.surveymonkey.com/

Instrumentation. Before the experiment, each participant is asked to fill in a demographic ques-
tionnaire, which contains questions about sex, age group, region, highest-attained education, level
of English and their background and previous experience with the diabetes management subject
area. Next, we generate the questionnaire which forms the main body for parts ‘Preference’ and
‘Agreement’ as described in the experimental objects earlier in this section.

Procedure. The diagram in Figure 7.4 outlines the procedure for the online experiment. Table 7.2
describes the variables measured per activity. Participants are first provided with a general intro-
duction about the experiment set-up and use case and asked to accept to the terms of an informed
consent. Next, they are given with a demographic questionnaire. Participants are trained with
an elaborate description of the scenario of the experiment—a case for an adolescent type I dia-
betes mellitus (T1DM) patient using an intelligent app to predict whether she will have a hypo,
hyper or neither based on the current time, the food she intends to eat, exercises performed and
planned, and the prior health status—and how T1DM (management) works. Participants are then
tasked to fill in a test quiz about the scenario and T1DM (management), and are provided with
the scenario & T1DM explanation page again if they were uncertain about responses given in the
test.

Introduction Informed
Consent (IC)

Fill
demographic
questionnaire

Scenario &
T1DM

explanation

Scenario &
T1DM test

Scenario &
T1DM

explanation

Thank you,
general remarks

50%

50%

Preference Agreement

PreferenceAgreement

Random assignment

LEGEND

Activity

Flow

Start

End

Choice
split/join

Activity w/
subprocess

Figure 7.4 Experiment procedure overview

The body of the experiment constitutes two parts: ‘Preference’ and ‘ Agreement’. All participants
perform both parts, but are randomly assigned a part to perform first to mitigate order effects.
Figure 7.5 describes each part in more detail.

In the ‘Preference’ part they are given 30 pairwise comparisons and asked to determine their
preferences. They are then asked for their general perceptions of the cases in the pairwise com-
parisons. In part ‘Agreement’ they are provided with 18 cases and asked for each case whether
they agree or disagree with the provided decision given the data and provided explanation and

92 Experiment

decision. For both parts, they are given information about the task, and an example cases to
familiarize themselves with the task. In addition, after executing the task for both parts they
are asked to perform the task one more time, and provide the reason for the choices they made.
Finally, participants are thanked for their participation and given a form and contact information
for further remarks.

Preference

Agreement

[Preference]
Explanation

[Preference]
Example

[Preference]
30 Pairwise
comparisons

[Preference]
Reason for
preference

[Agreement]
Explanation

[Agreement]
Example

[Agreement]
18 Agreement

cases

[Agreement]
Reason for

(dis)agreement

Figure 7.5 Experiment procedure for parts ‘Preference’ and ‘Agreement’

Part ‘Preference’ aims to test hypotheses H1–H11, while part ‘Agreement’ aims to test hypotheses
H12 and H13.

Table 7.2 Measured variables per activity

Activity Measured variables

Part ‘Preference’
Pairwise comparison Preference, perceived transparency,

informativeness, alignment, persuasiveness
Reason for preference –

Part ‘Agreement’
Over-reliance / under-reliance Agreement
Reason for (dis)agreement –

7.3 Results
This section reports the quantitative results that are obtained from the participants, and describes
the analyses performed on the results. The analyses were executed using Python 3.6 using pack-
ages SciPy, statsmodels and choix.

Descriptive statistics

Participants performed well in the test quiz, with a mean score of 80% (N = 121, SD = 0.21,
Min = 0.22, Max = 1.00).

Figure 7.6 summarizes the preferences for the pairwise comparisons, for each of the five state-
ments (persuasiveness, alignment, informativeness, perceived transparency and preference). On

93

average, contrastive explanations (M = 715.2, SD = 25.9) were preferred over no explanations
(M = 307.6, SD = 24.4). In 187.2 cases on average there was no preference for either (SD = 15.2).
Non-contrastive explanations (M = 623.2, SD = 27.9) were also preferred over no explanations
(M = 375.6, SD = 27.2)—but lead to more ties (M = 211.2, SD = 15.7). Contrastive explanations
(M = 569.8, SD = 28.7) were somewhat preferred over non-contrastive explanations (M = 368.8,
SD = 13.1). Here, on average 271.4 judgments lead to a tie (SD = 18.4).

Figure 7.6 Overview of pairwise preferences (N = 1210), where tie indicates no preference

Table 7.3 details the number of times participants agreed or disagreed with the decisions made
for the agenda items, grouped by explanation method and decision correctness. It shows that
participants were on average twice as likely to agree with a statement (M = 242.0, SD = 4.6)
rather than disagree (M = 121.0, SD = 4.6).

Table 7.3 Overview of agreement per explanation method and decision correctness (N = 2178)

Agreement

Explanation method Decision correctness Agree Disagree

No explanation True 236 127

False 241 122

Contrastive True 249 114

False 237 126

Non-Contrastive True 243 120

False 246 117

Data set preparation

The data set contains one row per participant of all experiment parts. For the preference part
only preference judgments for agenda items 0 through 9 were considered (the ten given during
the 30 pairwise comparisons), and for the agreement part only the 18 (dis)agreement decision re-
sponses of the six agenda items (10–15) were considered. The reasons for each part are considered
separately.

For each of the preference judgments, the pairwise comparisons were transformed into a set of
win-loss pairs per agenda item. Ties were equally distributed as wins across both explanation
methods.3 They were then transformed into a coefficient estimate using the Bradley-Terry method

3 No current Bradley-Terry method currently is able to handle tie results. As such, we take this naive approach to

94 Experiment

[17], which indicates the probability of that explanation method winning over the other two
methods.

Hypothesis testing

All hypotheses were tested with a critical value of α = 0.05 with Bonferroni correction.

Preferences. First, we aim to verify which explanation method is preferred generally, and in terms
of perceived transparency, informativeness and alignment. Table 7.4 shows the mean Bradley-
Terry estimate of each explanation method per dependent variable (DV), and the results of a
one-way ANOVA on the Bradley-Terry estimates of each agenda item. The results show that for
each DV there is a significant effect of the explanation method on the preference of decisions in
terms of general preference, perceived transparency, informativeness, and decision-making align-
ment. In each case, contrastive explanations are generally preferred over both non-contrastive
explanations and no explanation. Non-contrastive explanation are typically preferred over no
explanation. Based on the significant differences in the ANOVA results (all with p < 0.001), we
reject hypotheses H01 through H04.

Table 7.4 Mean Bradley-Terry estimates (and resulting rank & standard deviation) per explanation method, and the
reported differences in estimates for preference, perceived transparency, informativeness and alignment (N =
10)

Hypothesis DV Bradley-Terry estimate (rank, SD) ANOVA

No explanation Contrastive Non-Contr. F-stat. Sig.

H01 Preference -0.27 (3, 0.13) 0.35 (1, 0.19) -0.07 (2, 0.24) 26.18 <0.001

H02 P. Transparency -0.39 (3, 0.11) 0.37 (1, 0.17) 0.02 (2, 0.22) 48.68 <0.001

H03 Informativeness -0.39 (3, 0.11) 0.36 (1, 0.18) 0.03 (2, 0.28) 42.77 <0.001

H04 Alignment -0.38 (3, 0.15) 0.33 (1, 0.15) 0.05 (2, 0.24) 37.10 <0.001

Post-hoc analysis using the Tukey HSD test indicated at a < 0.0044 that contrastive explanations
were always preferred over no explanation, and contrastive explanations were preferred over
non-contrastive explanations in terms of preference, perceived transparency and informativeness.
Regarding decision-making alignment, contrastive explanations were not significantly preferred
over non-contrastive explanations. Non-contrastive explanations were significantly preferred over
no explanation, except for general preference.

Effect of value preferences on perceptions. We aim to verify whether general preference and per-
suasiveness depend on the three values perceived transparency, informativeness and alignment. In
addition, we test the correlation between preference and persuasiveness. Table 7.5 reports the
correlations between the ranks given by participants to the (DVs) dependent variables using the
Kendall rank correlation coefficient τ. There was a strong (rτ > 0.7) positive correlation for all

handling ties, and plan to leave extending such models (e.g., using the Davidson model [37]) for future work.
4 a = 0.05 Bonferroni correct with 3× 4 = 12 hypotheses tests.

95

seven hypotheses tests. Thus, we reject null-hypotheses H05 through H011. This indicates that ex-
planations that are preferred in terms of perceived transparency, informativeness and alignment
with their own decision-making are also generally performed, and perceived as more persuasive.
Moreover, general preference is strongly correlated with the persuasiveness of an explanation.

Table 7.5 Kendall’s correlation statistics for hypotheses H05–H011 (N = 3630)

Hyp. DV1 DV2 Kendall’s rτ Sig.

H05 P. Transparency Preference 0.781 <0.001

H06 Informativeness Preference 0.754 <0.001

H07 Alignment Preference 0.800 <0.001

H08 P. Transparency Persuasiveness 0.755 <0.001

H09 Informativeness Persuasiveness 0.778 <0.001

H010 Alignment Persuasiveness 0.792 <0.001

H011 Preference Persuasiveness 0.774 <0.001

Agreement. Finally, we aim to assess whether willingness to agree with a decision depends on
the explanation method and the prediction correctness. A chi-square test of independence was
performed to examine the relation between explanation method and agreement. The relation between
these variables was not significant, χ2(2, N = 2178)= 0.01, p = 0.892. Moreover, a chi-square test
of independence was conducted to examine the association between prediction correctness and
agreement, which also showed no significant relation: χ2(3, N = 2178)= 0.48, p = 0.785.

Reasons for preferences and agreement

Besides, we also used the experiment to gain some qualitatively insights into reasons for why
decisions were preferred, and why people tended to (dis)agree with decisions.

Preference. The reasons given for the preference one type of explanation over the other are
shown in Figure 7.7, where the colors indicate the type of explanation preferred. For determin-
ing their preferences, participants looked at the amount of information given by a decision (i.e.,
explanation–prediction pair), their understanding of the information and its alignment and infor-
mativeness. Longer length decisions were preferred over shorter length explanations. Regardless
of the general preference for contrastive explanations, the comparison made in these explanations
between two predictions was only cited as a reason for preference by 17 (14.0%) of participants.

In general, there is no difference between reasons for the explanation types. However, it should be
noted that non-contrastive explanations were also seen as making a comparison between predic-
tions by multiple participants—even though this is the core explicit concept making contrastive
explanation unique.

96 Experiment

Figure 7.7 Main considerations made to determine preference for a decision

Agreement. The reasons for agreeing/disagreeing were given in free-form text. Typically, the
reasons that were cited were the contents of the agenda item and decision. The given agenda
item was equal to the one shown in Figure 7.2. Fifty-seven (57) participants cited the fact that
she had a hyper in the past hour as a consideration. Fifty-one (51) looked at the food and the
amount of carbohydrates (CHO) in the food. Twenty-eight (28) considered the skating exercise.
Six participants (6) expected a different prediction.

7.4 Discussion

Threats to validity

In this section we discuss the identified threats to the validity of this experiment, including how
threats were mitigated. The threats are grouped into four different types of validity based on
Wohlin et al. [199].

Conclusion validity is concerned with the relationship between treatment and outcome. The sam-
ple size of 121 was large enough to conduct the experiment. Heterogeneity of subjects is a
possible threat to this research, as some participants had previous experience or reported famil-
iarity with T1DM management. This might influence the distribution of results. To reduce this
threat, all participants were given an equal training of the required knowledge to infer their own
decisions for the provided agenda items. Hypothesis fishing was avoided by determining the
hypotheses before conducting the experiment. The reliability of measures was threatened as to
minimize the task difficulty for the comparison a number of constructs had to be reduced to a
single sentence, even though they comprised multiple statements in studied literature. It was
reduced by using appropriate wording to draw conclusions upon for contrastive explanations.

Internal validity considers how the experiment minimizes bias. Threats introduced by the effects of
maturation—i.e., ordering effects—were avoided by randomly assigning half of the participants

97

to perform the ‘Preference’ part first and half performing the ‘Agreement’ part first. In addition,
the pairwise comparisons and (dis)agreement cases were shown in random order. However, the
reason for each part may have been affected by maturation as this was always shown at the part
end. The threat of undermotivation was minimized by providing a small monetary reward, and
an additional positive reward when performing well on a test quiz of the scenario and T1DM
(management). Mortality was reduced by allowing Mechanical Turk to re-recruit participants in
case of drop-out.

Construct validity involves the relation between theory and observation. Hypothesis guessing
was mitigated by determining a theoretical framework and the hypotheses before experiment
execution. This was enforced by the experiment having to pass through the ethical committee of
TNO before conducting the experiment. Potential confounding variables for the statistical tests
were acquired using demographic and T1DM (management) familiarity questions. The effect of
participant perceptions of machine-generated explanations was reduced by not informing them
that the explanations were extracted automatically. Experimenter expectancies were reduced by
letting multiple researchers validate the experiment design and questions before execution.

External validity threats reduce generalization of the findings. Subject population is a possible
threat, as the participants predominantly resided in the Americas and Asia. This introduces
cultural differences, which may reduce the generalizability of these findings to the first region of
implementation of the tool: Europe. In addition, these findings are difficult to generalize to health
practitioners, and diabetes patients and their caregivers—who have a more intricate understand-
ing of T1DM (management). We mitigated the threat of interaction of setting and treatment by
using a T1DM simulator that is able to generate realistic blood glucose levels for virtual subjects,
operating on actual T1DM patient characteristics. However, tweaks to this simulator to generate a
data set fit-for-purpose may have introduced a toy-problem not completely representing all facets
of T1DM management in a realistic manner.

Inferences

This empirical experiment has been able to show that contrastive explanations were generally
preferred over non-contrastive explanations and no explanations, and also preferred in terms of
perceived transparency, informativeness and alignment with their own decision-making. Con-
trastive explanations were also found to be more persuasive. Moreover, association tests indicate
that this general preference is correlated with perceived transparency, informativeness and align-
ment, and explanations that were more transparent, informative and aligned well also were more
persuasive.

Even though these findings are difficult to generalize to the intended users of the T1DM man-
agement use-case, they indicate a more broad generalization beyond specific contexts that expla-
nations that are transparent, understood more clearly, and contain information that is valuable
and more similar to the contents people would use in explanation are also generally preferred and
thereby more persuasive. Contrastive explanations are a valuable means for creating explanations
that are preferable in all of these criteria.

98 Experiment

Regarding under-reliance and over-reliance, this study has been unable to show the effects of pre-
diction correctness and explanation type on the willingness of participants to agree with decisions
for the T1DM management use-case. This is possibly due to the fact that in the reasons for their
agreement, participants showed the ability to make their own inferences regarding the agenda
items regardless of the decision. Moreover, participants were shown the same agenda item three
times (each time with a different explanation, but the same prediction)—which may have affected
the willingness to agree.

7.5 Conclusion
The purpose of this user experiment was to establish whether contrastive explanations were
preferred over non-contrastive explanations and no explanations in terms of general preference,
transparency and trust. Contrastive explanations have been brought forward as an intuitive and
human-like means to limit an explanation to only the key differences [109]. With an empirical
experiment on 121 participants, our study has shown that indeed contrastive explanations were
aligned better with the user’s decision-making process (alignment) and his/her considered fea-
tures (informativeness), and that they were also perceived as more understandable (transparency).
The preference regarding these three values also lead to an increased general preference (prefer-
ence) and willingness to act upon the decision (persuasiveness). The experimental evaluation did
not confirm that these methods affected the agreement with a decision—regardless of whether
the decision was correct—, potentially due to maturation effects of the participants.

The implications of these findings are in line with the theorized natural tendency of humans
to perform contrastive explanations as hypothesized in philosophy of science and psychology
literature (e.g., [109, 117, 180]) and as argued in interpretable machine learning (iML) literature
(e.g., [110]). In addition, we found that this preference can increase the trust and convincingness
of an explanation. However, it remains unclear whether this also holds for the caregivers and in
particular children in the T1DM management case.

99

CONCLUSION
AND OUTLOOK

8 CONCLUSION AND OUTLOOK

This study investigated how contrastive explanation can be defined and operationalized in ma-
chine learning (ML), and which benefits it provides over non-contrastive explanations for the
person the explanations are provided to. The study was structured around the following research
question:

RQ How can contrastive explanation improve the explanatory capability of machine
learning methods?

The main research question was investigated using five subquestions. This chapter concludes the
study by answering the research questions in Section 8.1, and we present directions for future
research in Section 8.2.

8.1 Conclusion

Subquestions

This section summarizes the main findings for each subquestion (SQ).

SQ1 What are current approaches to automatically acquire explanations from
machine learning systems?

In Chapter 4 we systematically reviewed 84 interpretable machine learning (iML) methods, that
show that there is a manifold of means for improving interpretability in machine learning. They
cover a wide range of approaches (pedagogical, decompositional and transparent), and are able to
provide local and/or global explanations using a variety of explanatory representations (e.g., rule-
based, feature importance, explanation by example or saliency). While many focus on supervised
learning (in particular classification), in recent years approaches have also started to cover rein-
forcement learning. For contrastive explanations, local, pedagogical, rule-based explanations seem
most beneficial. They are model-agnostic, and able to provide explanations in a representation
that is natural to humans.

SQ2 How to automatically acquire decision rule explanations from machine learning
systems?

For our approach (see Chapter 5), we locally sample or generate data points with labels deter-
mined by the model. This data is used a training data for a local rule-based model, such as a
decision tree. The decision rule explanations can then be directly extracted from this decision
tree. For explanations of individual data points, neighborhood data is weighed based on the
similarity to the data point in question—ensuring that the local explanator is faithful in close

103

proximity to the model. The decision rule explanation can then be extracted by applying this
model to the questioned data point and combining the traversed rule evaluations.

SQ3 How can we determine the foil for a required explanation?

The contrast class contains the fact and all foils (potential alternative outcomes) under consider-
ation. For machine learning, this depends on the machine learning task (elaborated further in
Chapter 3). For example, for classification this contrast class are the classes, while for regression
it can be a different value, binned values, or a statistical norm. In Chapter 5 we argued that the
foil of interest to the explainee can either be (i) explicitly given in a static interaction, (ii) inferred
based on model characteristics (e.g., class probabilities), or (iii) learned from interaction of the
explainee with the explanation system.

SQ4 How can we generate human-understandable contrastive explanations?

After determining an appropriate foil, the explanation task can be reduced to a foil-versus-rest
binary classification problem. On the weighed neighborhood data a local transparent model or
perturbation can be used to define the contrastive explanation counterfactually. In this study, we
propose Foil Trees (Chapter 5) as such a local transparent model, where we form an explanation
by taking the difference between the rule set that holds for the fact, and the rule set that holds for
a selected foil-leaf. By providing explanations in the input space, we are able to yield meaningful
contrastive explanations for the end-user for any questioned data point and for an arbitrary foil.

SQ5 What is the quality of the contrastive explanations?

Quantitative validation (Chapter 6) showed that Foil Trees are able to accurately mimic the de-
cision boundaries of the model it aims to explain (94% fidelity), generalizes well on unseen data
(88% accuracy), provides 78% shorter explanations than their non-contrastive counterparts (mean
length of 1.19 over 5.37) and does this all in real-time (60ms on average per explanation). This
demonstrates the feasibility, objective transparency and generalizability of our contrastive expla-
nation approach.

In a user experiment (Chapter 7) we evaluated the explanation contents in order to establish
how contrastive explanations, non-contrastive explanations and no explanation are perceived in
terms of general preference, transparency and trust. For agenda items in a diabetes management
case using explanations generated using Foil Trees, participants (N = 121) were tasked with de-
termining their pairwise preferences regarding three value judgments (perceived transparency,
informativeness & alignment) and two perception judgments (general preference & persuasive-
ness), and whether they agreed with the decision made given an explanation type. We found that
contrastive explanations are preferred over non-contrastive explanations and no explanation in
terms of transparency (understandability), informativeness of contents and alignment with their own
decision-making. This preference lead to an increased general preference and willingness to act upon
the decision. The empirical evaluation did not confirm that these methods affected the agreement
with a decision made—regardless of whether the prediction was correct.

104 Conclusion and Outlook

Research question

Finally, we use insights and inferences from the subquestions to define an answer to our main
research question:

RQ How can contrastive explanation improve the explanatory capability of machine
learning methods?

Contrastive explanations provide an intuitive, human-like way to reduce the number of elements
required to form an explanation. This is done by setting a contrast between the actual out-
put (fact) and the output of interest (foil). For supervised machine learning tasks, we are able
to generate human-understandable contrastive rule-based explanations using a locally faithful,
model-agnostic explanation method: Foil Trees. For any of the potential foils of the machine learn-
ing model, we can extract in real-time meaningful explanations in terms of model inputs for any
questioned data point and for any arbitrary foil (either given, inferred from model characteris-
tics or learned from interaction with the explainee). These contrastive explanations are truth-
ful to the model they aim to explain, generalize well to unseen data and provide considerably
shorter explanations than non-contrastive ones. Moreover, they are deemed more understandable
(transparent), informative and aligned better with individual decision-making behavior than non-
contrastive explanations. These values lead to an increased general preference and willingness of
end-users to act upon the decision.

8.2 Future Directions

During this study, we have identified interesting directions for further research.

Approach generalization: new domains, new machine learning types

Previous iML methods have successfully proven to be able to provide generalized model-agnostic
explanations using a single explanator (e.g., Ribeiro et al. [148, 149]), that can explain tabular,
text, and image data. ContrastiveExplanation (CE) currently supports tabular data explanations
and has rudimentary support for images, but we aim to extend this to text data and image
data. For handling the large search-space—caused by the high number of features in text and
especially image data—we intend to explore extracting meaningful high-level features (e.g., using
an autoencoder neural network), to investigate explaining using an efficient directed explanation
through foil-sensitive (i.e., targeted) data point perturbation [39], and we consider to investigate
the possibility of explaining using a domain different than the input (e.g., text explanations for
images) [47, 72].

Moreover, while we currently are able to explain classification and regression analysis tasks, we
intend to transfer our contrastive explanation approach to reinforcement learning. This introduces
a time component, as well as a need to adjust sampling methods to account for only the possible
actions in a state to be considered as possible next actions.

105

Adaptive Contrastive Explanations (ACE)

Adaptive Contrastive Explanations (ACE) extend Foil Trees and the ContrastiveExplanation

(CE) tool by adapting the contrastive explanations to the explainee. It will be able to learn the
foil from previous interactions with ACE, or from explainees similar to the one asking for an ex-
planation. In addition, we envision that it will be able to learn the appropriate foil-leaf selection
strategy, such that the right type of explanation is provided to the explainee based on user charac-
teristics and situational demands. In addition, this requires a meaningful indicator for measuring
the optimal explanation, as well as improved end-user interaction with a more sophisticated in-
terface.

Local robustness and validation

Recent studies in iML has shown that iML methods are sensitive to small changes in input val-
ues of the data point it aims to explain, and the size of the local neighborhood considered for
explanation [4, 101]. This effect has most strongly been observed for model-agnostic approaches
[4]. In future work we intend to assess the locality (i.e., the relative size of the region the trans-
parent model is able to explain) and robustness (i.e., the effect of small changes in input change
on the explanation, especially around decision boundaries) of Foil Trees in order to improve the
stability and generalizability of our approach across data sets. Moreover, we intend to change
the contrastive explanation problem from a binary classification problem into probabilities that a
data point is a foil or not-foil, so that explanation certainty can be increased by explaining further
away from the decision boundary between the foil decision region and the rest of the data points.

Quantitative and qualitative insights

The quantitative and qualitative data collected in this study provide many opportunities for fur-
ther analysis. Interesting trajectories to pursue are the effect of outliers on model performance
and explanation contents, determining the effect of various demographic and diabetes knowl-
edge characteristics on preferences and willingness to agree in the user experiment, and obtain-
ing quantitative data for the diabetes management use-case data set to allow for data analysis
with the integrated quantitative and experiment data set. In addition, further empirical evalua-
tion should consider the effect of user expertise in a subject area on their willingness to agree,
compare contrastive explanations to other explanation methods (e.g., feature importance), and
analyze decisions for multiple use-cases and multiple model types. Lastly, we intend to validate
whether the findings regarding the perceptions of contrastive explanations and their preference
over non-contrastive explanations also hold for caregivers in the PAL use-case.

106 Conclusion and Outlook

BIBLIOGRAPHY
[1] A. Abdul, J. Vermeulen, D. Wang, B. Y. Lim, and M. Kankanhalli, “Trends and Trajectories for Explain-

able , Accountable and Intelligible Systems: An HCI Research Agenda,” in International Conference on
Human Factors in Computing Systems (CHI ’18), Proceedings, 2018.

[2] J. Adebayo and L. Kagal, “Iterative Orthogonal Feature Projection for Diagnosing Bias in Black-Box
Models,” arXiv preprint, 2015. [Online]. Available: http://arxiv.org/abs/1611.04967

[3] P. Adler, C. Falk, S. A. Friedler, T. Nix, G. Rybeck, C. Scheidegger, B. Smith, and S. Venkatasubrama-
nian, “Auditing Black-Box Models for Indirect Influence,” Knowledge and Information Systems, vol. 54,
no. 1, pp. 95–122, 2018.

[4] D. Alvarez-Melis and T. S. Jaakkola, “On the Robustness of Interpretability Methods,” in 2018 ICML
Workshop on Human Interpretability in Machine Learning (WHI), 2018, pp. 66–71.

[5] R. Andrews, J. Diederich, and A. B. Tickle, “Survey and Critique of Techniques for Extracting Rules
from Trained Artificial Neural Networks,” Knowledge-Based Systems, vol. 8, no. 6, pp. 373–389, 1995.

[6] M. G. Augasta and T. Kathirvalavakumar, “Reverse Engineering the Neural Networks for Rule Extrac-
tion in Classification Problems,” Neural Processing Letters, vol. 35, no. 2, pp. 131–150, 2012.

[7] S. Bach, A. Binder, G. Montavon, F. Klauschen, K. R. Müller, and W. Samek, “On Pixel-Wise Explana-
tions for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation,” PLoS ONE, vol. 10,
no. 7, 2015.

[8] D. Baehrens, T. Schroeter, S. Harmeling, M. Kawanabe, K. Hansen, and K.-R. Mueller, “How to Explain
Individual Classification Decisions,” Journal of Machine Learning Research, vol. 11, pp. 1803–1831, 2010.

[9] E. Barnes, “Why P rather than Q? The Curiosities of Fact and Foil,” Philosophical Studies, vol. 73, no. 1,
pp. 35–53, 1994.

[10] O. Bastani, C. Kim, and H. Bastani, “Interpreting Blackbox Models via Model Extraction,” arXiv
preprint, 2017. [Online]. Available: http://arxiv.org/abs/1705.08504

[11] A. Bibal and B. Frénay, “Interpretability of Machine Learning Models and Representations: An Intro-
duction,” European Symposium on Artificial Neural Networks (ESANN), no. April, pp. 27–29, 2016.

[12] J. Bieger, K. R. Thorisson, and B. Steunebrink, “Evaluating Understanding,” in IJCAI Workshop on
Evaluating General-Purpose AI, 2017.

[13] J. Bien and R. Tibshirani, “Prototype Selection for Interpretable Classification,” The Annals of Applied
Statistics, vol. 5, no. 4, pp. 2403–2424, 2011.

[14] R. Binns, M. Van Kleek, M. Veale, U. Lyngs, J. Zhao, and N. Shadboldt, “’It’s Reducing a Human Being
to a Percentage’; Perceptions of Justice in Algorithmic Decisions,” in ACM Conference on Human Factors
in Computing Systems (CHI’18), Proceedings, 2018.

[15] O. Biran and C. Cotton, “Explanation and Justification in Machine Learning: A Survey,” in International
Joint Conference on Artificial Intelligence (IJCAI), Proceedings, 2017, pp. 8–13.

[16] O. Boz, “Extracting Decision Trees From Trained Neural Networks,” in 8th SIGKDD International Con-
ference on Knowledge Discovery and Data Mining (KDD’02), Proceedings, 2002, pp. 456–461.

[17] R. A. Bradley and M. E. Terry, “Rank Analysis of Incomplete Block Designs: The Method of Paired

107

http://arxiv.org/abs/1611.04967
http://arxiv.org/abs/1705.08504

Comparisons,” Biometrika, vol. 39, no. 3/4, pp. 324–345, 1952.

[18] S. Brinkkemper and S. Pachidi, “Functional Architecture Modeling for the Software Product Industry,”
Software Architecture, vol. 6285, pp. 198–213, 2010.

[19] C. Buciluǎ, R. Caruana, and A. Niculescu-Mizil, “Model Compression,” 12th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining (KDD ’06), Proceedings, pp. 535–541, 2006.

[20] D. Budgen and P. Brereton, “Performing Systematic Literature Reviews in Software Engineering,” in
28th International Conference on Software Engineering, Proceedings, 2006, pp. 1051–1052.

[21] J. Burrell, “How the Machine ’Thinks’: Understanding Opacity in Machine Learning Algorithms,” Big
Data & Society, vol. 3, no. 1, 2016.

[22] A. Bussone, S. Stumpf, and D. O’Sullivan, “The Role of Explanations on Trust and Reliance in Clinical
Decision Support Systems,” in 2015 International Conference on Healthcare Informatics, vol. 44. IEEE,
2015, pp. 160–169.

[23] E. Carrizosa, A. Nogales-Gómez, and D. R. Morales, “Strongly Agree or Strongly Disagree?: Rating
Features in Support Vector Machines,” Information Sciences, vol. 329, pp. 256–273, 2016.

[24] R. Caruana, Y. Lou, J. Gehrke, P. Koch, M. Sturm, and N. Elhadad, “Intelligible Models for HealthCare:
Predicting Pneumonia Risk and Hospital 30-day Readmission,” in 21st ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD ’15), Proceedings, 2015, pp. 1721–1730.

[25] S. Chakraborty, R. Tomsett, R. Raghavendra, D. Harborne, M. Alzantot, F. Cerutti, M. Srivastava,
A. Preece, S. Julier, R. M. Rao, T. D. Kelley, D. Braines, M. Sensoy, C. J. Willis, and P. Gurram, “In-
terpretability of Deep Learning Models: A Survey of Results,” in IEEE Smart World Congress: DAIS -
Workshop on Distributed Analytics InfraStructure and Algorithms for Multi-Organization Federations. IEEE,
2017.

[26] H. A. Chipman, E. I. George, and R. E. McCulloch, “Making Sense of a Forest of Trees,” in 30th
Symposium on the Interface, Proceedings, 1998, pp. 84–92.

[27] K. Cho, B. van Merrienboer, D. Bahdanau, and Y. Bengio, “On the Properties of Neural
Machine Translation: Encoder-Decoder Approaches,” arXiv preprint, 2014. [Online]. Available:
http://arxiv.org/abs/1409.1259

[28] M. Colombo, “Experimental Philosophy of Explanation Rising: The Case for a Plurality of Concepts
of Explanation,” Cognitive Science, vol. 41, no. 2, pp. 503–517, 2017.

[29] P. Cortez and M. J. Embrechts, “Opening Black Box Data Mining Models Using Sensitivity Analysis,”
in IEEE Symposium on Computational Intelligence and Data Mining (CIDM), Proceedings. IEEE, 2011, pp.
341–348.

[30] H. Cramer, V. Evers, S. Ramlal, M. Van Someren, L. Rutledge, N. Stash, L. Aroyo, and B. Wielinga, The
Effects of Transparency on Trust in and Acceptance of a Content-Based Art Recommender, 2008, vol. 18, no. 5.

[31] M. W. Craven and J. W. Shavlik, “Using Sampling and Queries to Extract Rules from Trained Neural
Networks,” Eleventh International Conference on Machine Learning (ICML), Proceedings, pp. 37–45, 1994.

[32] ——, “Extracting Tree-Structured Representations of Trained Neural Networks,” Advances in Neural
Information Processing Systems (NIPS), vol. 8, pp. 24–30, 1996.

[33] ——, “Rule Extraction: Where Do We Go from Here?” University of Wisconsin Machine Learning
Research Group, Tech. Rep., 1999.

[34] C. Dalla Man, F. Micheletto, D. Lv, M. Breton, B. Kovatchev, and C. Cobelli, “The UVA/PADOVA Type
1 Diabetes Simulator: New Features,” Journal of Diabetes Science and Technology, vol. 8, no. 1, pp. 26–34,
2014.

108 Bibliography

http://arxiv.org/abs/1409.1259

[35] A. Datta, M. C. Tschantz, and A. Datta, “Automated Experiments on Ad Privacy Settings: A Tale of
Opacity, Choice, and Discrimination,” in Privacy Enhancing Technologies, Proceedings, 2015, pp. 92–112.

[36] A. Datta, S. Sen, and Y. Zick, “Algorithmic Transparency via Quantitative Input Influence: Theory
and Experiments with Learning Systems,” in 2016 IEEE Symposium on Security and Privacy (SP 2016),
Proceedings. IEEE, 2016, pp. 598–617.

[37] R. R. Davidson, “On Extending the Bradley-Terry Model to Accommodate Ties in Paired Comparison
Experiments,” Journal of the American Statistical Association, vol. 65, no. 329, pp. 317–328, 1970.

[38] H. Deng, “Interpreting Tree Ensembles with inTrees,” arXiv preprint, 2014. [Online]. Available:
http://arxiv.org/abs/1408.5456

[39] A. Dhurandhar, P. Chen, R. Luss, C. Tu, P. Ting, K. Shanmugam, and P. Das, “Explanations based
on the Missing: Towards Contrastive Explanations with Pertinent Negatives,” arXiv preprint, 2018.
[Online]. Available: http://arxiv.org/abs/1802.07623

[40] Diabetes Control and Complications Trial Research Group, D. Nathan, S. Genuth, J. Lachin, P. Cleary,
O. Crofford, M. Davis, L. Rand, and C. Siebert, “The Effect of Intensive Treatment of Diabetes on the
Development and Progression of Long-Term Complications in Insulin-Dependent Diabetes Mellitus,”
The New England Journal of Medicine, vol. 329, pp. 162–167, 1993.

[41] P. Domingos, “Knowledge Discovery via Multiple Models,” Intelligent Data Analysis, vol. 2, no. 3, pp.
187–202, 1998.

[42] D. Doran, S. Schulz, and T. R. Besold, “What Does Explainable AI Really Mean? A New Conceptual-
ization of Perspectives,” arXiv preprint, 2017.

[43] F. Doshi-Velez and B. Kim, “Towards A Rigorous Science of Interpretable Machine Learning,” arXiv
preprint, 2017. [Online]. Available: http://arxiv.org/abs/1702.08608

[44] F. Doshi-Velez, M. Kortz, R. Budish, C. Bavitz, S. Gershman, D. O’Brien, S. Schieber, J. Waldo,
D. Weinberger, and A. Wood, “Accountability of AI Under the Law: The Role of Explanation,” arXiv
preprint, 2017. [Online]. Available: http://arxiv.org/abs/1711.01134

[45] D. Dua and E. Karra Taniskidou, “UCI Machine Learning Repository,” 2017. [Online]. Available:
http://archive.ics.uci.edu/ml

[46] L. Edwards and M. Veale, “Slave to the Algorithm? Why a Right to Explanation is Probably Not the
Remedy You are Looking for,” Duke Law & Technology Review, vol. 16, no. 1, pp. 18–84, 2017.

[47] U. Ehsan, B. Harrison, L. Chan, and M. O. Riedl, “Rationalization: A Neural Machine Translation
Approach to Generating Natural Language Explanations,” arXiv preprint, 2017. [Online]. Available:
http://arxiv.org/abs/1702.07826

[48] E. R. Elenberg, A. G. Dimakis, M. Feldman, and A. Karbasi, “Streaming Weak Submodularity:
Interpreting Neural Networks on the Fly,” arXiv preprint, 2017. [Online]. Available: http:
//arxiv.org/abs/1703.02647

[49] P. Flach, Machine Learning: The Art and Science of Algorithms that Make Sense of Data. Cambridge
University Press, 2012.

[50] R. Fong and A. Vedaldi, “Interpretable Explanations of Black Boxes by Meaningful Perturbation,”
arXiv preprint, 2017. [Online]. Available: http://arxiv.org/abs/1704.03296

[51] A. A. Freitas, “Comprehensible Classification Models – A Position Paper,” ACM SIGKDD Explorations
Newsletter, vol. 15, no. 1, pp. 1–10, 2014.

[52] B. Friedman and H. Nissenbaum, “Bias in Computer Systems,” ACM Transactions on Information Sys-
tems, vol. 14, no. 3, pp. 330 –347, 1996.

109

http://arxiv.org/abs/1408.5456
http://arxiv.org/abs/1802.07623
http://arxiv.org/abs/1702.08608
http://arxiv.org/abs/1711.01134
http://archive.ics.uci.edu/ml
http://arxiv.org/abs/1702.07826
http://arxiv.org/abs/1703.02647
http://arxiv.org/abs/1703.02647
http://arxiv.org/abs/1704.03296

[53] J. H. Friedman, “Greedy Function Approximation: A Gradient Boosting Machine,” Annals of Statistics,
vol. 29, no. 5, pp. 1189–1232, 2001.

[54] J. H. Friedman and B. E. Popescu, “Predictive Learning via Rule Ensembles,” Annals of Applied Statis-
tics, vol. 2, no. 3, pp. 916–954, 2008.

[55] M. Fumagalli, B. Bierman, B. Kiefer, J. Broekens, and M. Neerincx, “DR 5.1: PAL Technical Architecture
and Software Architecture,” EU H2020 PAL, Tech. Rep., 2016.

[56] G. Fung, S. Sandilya, and R. B. Rao, “Rule Extraction from Linear Support Vector Machines,” 11th
ACM SIGKDD International Conference on Knowledge Discovery in Data Mining (KDD’05), Proceedings,
pp. 32–40, 2005.

[57] F. Gedikli, D. Jannach, and M. Ge, “How Should I Explain? a Comparison of Different Explanation
Types for Recommender Systems,” International Journal of Human Computer Studies, vol. 72, no. 4, pp.
367–382, 2014.

[58] Gefen, Karahanna, and Straub, “Trust and TAM in Online Shopping: An Integrated Model,” MIS
Quarterly, vol. 27, no. 1, p. 51, 2003. [Online]. Available: http://www.jstor.org/stable/10.2307/
30036519

[59] A. Ghorbani, A. Abid, and J. Zou, “Interpretation of Neural Networks is Fragile,” arXiv preprint, 2017.
[Online]. Available: http://arxiv.org/abs/1710.10547

[60] R. D. Gibbons, G. Hooker, M. D. Finkelman, D. J. Weiss, P. A. Pilkonis, E. Frank, T. Moore, and D. J.
Kupfer, “The Computerized Adaptive Diagnostic Test for Major Depressive Disorder (CAD-MDD),”
The Journal of Clinical Psychiatry, vol. 74, no. 07, pp. 669–674, jul 2013.

[61] V. Gijsbers, “Reconciling Contrastive and Non-contrastive Explanation,” Erkenntnis, pp. 1–15, 2017.

[62] A. Goldstein, A. Kapelner, J. Bleich, and E. Pitkin, “Peeking Inside the Black Box: Visualizing Statistical
Learning With Plots of Individual Conditional Expectation,” Journal of Computational and Graphical
Statistics, vol. 24, no. 1, pp. 44–65, 2015.

[63] B. Goodman and S. Flaxman, “European Union Regulations on Algorithmic Decision-Making and a
"Right to Explanation",” in 2016 ICML Workshop on Human Interpretability in Machine Learning (WHI),
2016, pp. 1–9.

[64] R. Guidotti, A. Monreale, F. Turini, D. Pedreschi, and F. Giannotti, “A Survey Of
Methods For Explaining Black Box Models,” arXiv preprint, 2018. [Online]. Available: http:
//arxiv.org/abs/1802.01933

[65] D. Gunning, “Explainable Artificial Intelligence (XAI),” 2016. [Online]. Available: https:
//www.darpa.mil/program/explainable-artificial-intelligence

[66] Y. Guo and B. Selman, “ExOpaque: A Framework to Explain Opaque Machine Learning Models Using
Inductive Logic Programming,” in 19th IEEE International Conference on Tools with Artificial Intelligence
(ICTAI 2007). IEEE, oct 2007, pp. 226–22–.

[67] J. Y. Halpern and J. Pearl, “Causes and Explanations: A Structural-Model Approach - Part I: Causes,”
in Seventeenth Conference on Uncertainy in Artificial Intelligence, Proceedings. San Francisco, CA: Morgan,
2001, pp. 194–202.

[68] ——, “Causes and Explanations: A Structural-Model Approach - Part II: Explanations,” in International
Joint Conference on Artificial Intelligence (IJCAI), Proceedings, 2001.

[69] S. Hara and K. Hayashi, “Making Tree Ensembles Interpretable,” arXiv preprint, 2016. [Online].
Available: http://arxiv.org/abs/1606.05390

[70] D. Hein, S. Udluft, and T. A. Runkler, “Interpretable Policies for Reinforcement Learning by Genetic

110 Bibliography

http://www.jstor.org/stable/10.2307/30036519
http://www.jstor.org/stable/10.2307/30036519
http://arxiv.org/abs/1710.10547
http://arxiv.org/abs/1802.01933
http://arxiv.org/abs/1802.01933
https://www.darpa.mil/program/explainable-artificial-intelligence
https://www.darpa.mil/program/explainable-artificial-intelligence
http://arxiv.org/abs/1606.05390

Programming,” arXiv preprint, 2017. [Online]. Available: http://arxiv.org/abs/1712.04170

[71] C. G. Hempel, Aspects of Scientific Explanation and Other Essays in the Philosophy of Science. New York,
NY: The Free Press, 1965.

[72] L. A. Hendricks, Z. Akata, M. Rohrbach, J. Donahue, B. Schiele, and T. Darrell, “Generating Visual
Explanations,” in European Conference on Computer Vision (ECCV), 2016, pp. 3–19.

[73] A. Henelius, K. Puolamäki, H. Boström, L. Asker, and P. Papapetrou, “A Peek into the Black Box:
Exploring Classifiers by Randomization,” Data Mining and Knowledge Discovery, vol. 28, no. 5-6, pp.
1503–1529, 2014.

[74] B. Herman, “The Promise and Peril of Human Evaluation for Model Interpretability,” in Conference on
Neural Information Processing Systems (NIPS), 2017.

[75] M. Hildebrandt, “The New Imbroglio: Living with Machine Algorithms,” The Art of Ethics in the
Information Society. Mind you, pp. 55–60, 2016.

[76] G. E. Hinton and R. R. Salakhutdinov, “Reducing the Dimensionality of Data with Neural Networks,”
Science, vol. 313, no. 5786, pp. 504–507, 2006.

[77] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Computation, vol. 9, no. 8, pp.
1735–1780, 1997.

[78] G. Hooker, “Discovering Additive Structure in Black Box Functions,” in 10th ACM SIGKDD Interna-
tional Conference on Knowledge discovery in data mining (KDD’04), Proceedings, 2004, pp. 575–580.

[79] J. Huysmans, K. Dejaeger, C. Mues, J. Vanthienen, and B. Baesens, “An Empirical Evaluation of the
Comprehensibility of Decision Table, Tree and Rule Based Predictive Models,” Decision Support Sys-
tems, vol. 51, no. 1, pp. 141–154, 2011.

[80] G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to Statistical Learning. New York,
NY: Springer, 2014.

[81] D. L. Jennings, T. M. Amabile, and L. Ross, “Informal Covariation Assessment: Data-based versus
Theory Based Judgments,” in Judgment Under Uncertainty: Heuristics and Biases. New York, NY:
Cambridge University Press, 1982, pp. 211–230.

[82] U. Johansson and L. Niklasson, “Evolving Decision Trees Using Oracle Guides,” in 2009 IEEE Sympo-
sium on Computational Intelligence and Data Mining. IEEE, 2009, pp. 238–244.

[83] U. Johansson, R. König, and L. Niklasson, “The Truth is In There - Rule Extraction from Opaque
Models Using Genetic Programming,” in FLAIRS Conference, 2004, pp. 658–663.

[84] M. Kalisch and P. Bühlmann, “Causal Structure Learning and Inference: A Selective Review,” Quality
Technology & Quantitative Management, vol. 11, no. 1, pp. 3–21, 2014.

[85] A. Karpathy, J. Johnson, and L. Fei-Fei, “Visualizing and Understanding Recurrent Networks,” arXiv
preprint, 2015. [Online]. Available: http://arxiv.org/abs/1506.02078

[86] F. C. Keil, “Explaining and Understanding,” Annual Review of Psychology, vol. 57, pp. 227–254, 2006.

[87] B. Kim and F. Doshi-Velez, “Interpretable Machine Learning: The Fuss, the Concrete and the Ques-
tions,” in International Conference on Machine Learning (ICML), 2017.

[88] B. Kim, C. Rudin, and J. Shah, “The Bayesian Case Model: A Generative Approach for Case-Based
Reasoning and Prototype Classification,” in Advances in Neural Information Processing Systems (NIPS),
2015.

[89] P.-J. Kindermans, S. Hooker, J. Adebayo, M. Alber, K. T. Schütt, S. Dähne, D. Erhan, and
B. Kim, “The (Un)reliability of Saliency Methods,” arXiv preprint, 2017. [Online]. Available:

111

http://arxiv.org/abs/1712.04170
http://arxiv.org/abs/1506.02078

http://arxiv.org/abs/1711.00867

[90] B. Kitchenham, “Procedures for Performing Systematic Reviews,” Keele University, Tech. Rep. TR/SE-
0401, 2004.

[91] D. Knowles, Explanation and its Limits. Cambridge: Cambridge University Press, 1990.

[92] D. J. Koehler, “Explanation, Imagination, and Confidence in Judgment,” Psychological Bulletin, vol. 110,
no. 3, pp. 499–519, 1991.

[93] J. Koo, J. Kwac, W. Ju, M. Steinert, L. Leifer, and C. Nass, “Why did my car just do that? Explain-
ing Semi-Autonomous Driving Actions to Improve Driver Understanding, Trust, and Performance,”
International Journal on Interactive Design and Manufacturing, vol. 9, no. 4, pp. 269–275, 2015.

[94] J. Krause, A. Perer, and K. Ng, “Interacting with Predictions: Visual Inspection of Black-box Machine
Learning Models,” ACM Conference on Human Factors in Computing Systems, pp. 5686–5697, 2016.

[95] J. Krause, A. Dasgupta, J. Swartz, Y. Aphinyanaphongs, and E. Bertini, “A Workflow for Visual Diag-
nostics of Binary Classifiers using Instance-Level Explanations,” in IEEE Conference on Visual Analytics
Science and Technology (IEEE VAST 2017). IEEE, 2017.

[96] R. Krishnan, G. Sivakumar, and P. Bhattacharya, “Extracting Decision Trees From Trained Neural
Networks,” Pattern Recognition, vol. 32, pp. 1999–2009, 1999.

[97] S. Krishnan and E. Wu, “PALM: Machine Learning Explanations For Iterative Debugging,” in 2nd
Workshop on Human-In-the-Loop Data Analytics (HILDA’17), Proceedings, 2017.

[98] T. Kulesza, S. Stumpf, M. Burnett, S. Yang, I. Kwan, and W.-K. Wong, “Too Much, Too Little, or Just
Right? Ways Explanations Impact End Users’ Mental Models,” in IEEE Symposium on Visual Languages
and Human-Centric Computing. IEEE, 2013, pp. 3–10.

[99] T. Kulesza, M. Burnett, W.-K. Wong, and S. Stumpf, “Principles of Explanatory Debugging to Personal-
ize Interactive Machine Learning,” in 20th International Conference on Intelligent User Interfaces (IUI’15),
Proceedings, 2015, pp. 126–137.

[100] H. Lakkaraju, S. H. Bach, and L. Jure, “Interpretable Decision Sets: A Joint Framework for Description
and Prediction,” in 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD’16), Proceedings, 2016, pp. 1675–1684.

[101] T. Laugel, X. Renard, M.-J. Lesot, C. Marsala, and M. Detyniecki, “Defining Locality for Surrogates in
Post-hoc Interpretablity,” in 2018 ICML Workshop on Human Interpretability in Machine Learning (WHI),
2018, pp. 47–53.

[102] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-Based Learning Applied to Document Recog-
nition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[103] T. Lei, R. Barzilay, and T. Jaakkola, “Rationalizing Neural Predictions,” arXiv preprint, 2016. [Online].
Available: http://arxiv.org/abs/1606.04155

[104] B. Letham, C. Rudin, T. H. McCormick, and D. Madigan, “Interpretable Classifiers Using Rules and
Bayesian Analysis: Building a Better Stroke Prediction Model,” Annals of Applied Statistics, vol. 9, no. 3,
pp. 1350–1371, sep 2015.

[105] J. Li, X. Chen, E. Hovy, and D. Jurafsky, “Visualizing and Understanding Neural Models in NLP,”
arXiv preprint, 2015. [Online]. Available: http://arxiv.org/abs/1506.01066

[106] W. Li, J. Han, and J. Pei, “CMAR: Accurate and Efficient Classification Based on Multiple Class-
Association Rules,” in 2001 IEEE International Conference on Data Mining, Proceedings, 2001, pp. 369–376.

[107] B. Y. Lim, A. K. Dey, and D. Avrahami, “Why and Why Not Explanations Improve the Intelligibility
of Context-Aware Intelligent Systems,” in 27th International Conference on Human Factors in Computing

112 Bibliography

http://arxiv.org/abs/1711.00867
http://arxiv.org/abs/1606.04155
http://arxiv.org/abs/1506.01066

Systems (CHI’09), Proceedings, 2009, pp. 2119–2129.

[108] P. Lipton, “Contrastive Explanation and Triangulation,” Philosophy of Science, vol. 58, no. 4, pp. 687–697,
1991.

[109] ——, Inference to the Best Explanation, 2nd ed. London: Routledge, 2004.

[110] Z. C. Lipton, “The Mythos of Model Interpretability,” in 2016 ICML Workshop on Human Interpretability
in Machine Learning (WHI), 2016.

[111] S. Liu, X. Wang, M. Liu, and J. Zhu, “Towards Better Analysis of Machine Learning Models: A Visual
Analytics Perspective,” Visual Informatics, vol. 1, no. 1, pp. 48–56, 2017.

[112] T. Lombrozo, “The Structure and Function of Explanations,” Trends in Cognitive Sciences, vol. 10, no. 10,
pp. 464–470, 2006.

[113] Y. Lou, R. Caruana, J. Gehrke, and G. Hooker, “Accurate Intelligible Models with Pairwise Interac-
tions,” in 19th ACM SIGKDD International Conference on Knowledge Discovery in Data Mining (KDD’13),
Proceedings, 2013, pp. 623–631.

[114] S. Lundberg and S.-I. Lee, “An Unexpected Unity Among Methods for Interpreting Model Predic-
tions,” in 29th Conference on Neural Information Processing Systems (NIPS 2016), 2016.

[115] A. Mahendran and A. Vedaldi, “Understanding Deep Image Representations by Inverting Them,” in
IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), Proceedings. IEEE,
nov 2015, pp. 5188–5196.

[116] D. M. Malioutov, K. R. Varshney, A. Emad, and S. Dash, “Learning Interpretable Classification Rules
with Boolean Compressed Sensing,” Transparent Data Mining for Big and Small Data. Studies in Big Data,
vol. 32, 2017.

[117] D. R. Mandel, “Counterfactual and Causal Explanation: From Early Theoretical Views to New Fron-
tiers,” in The Psychology of Counterfactual Thinking, D. R. Mandel, D. J. Hilton, and P. Catellani, Eds.
London: Routledge, 2005, pp. 11–27.

[118] C. D. Manning, P. Ragahvan, and H. Schutze, An Introduction to Information Retrieval. Cambridge:
Cambridge University Press, 2009.

[119] D. Martens and F. Provost, “Explaining Data-Driven Document Classifications,” MIS Quarterly, vol. 38,
no. 1, pp. 73–99, 2014.

[120] D. Martens, J. Vanthienen, W. Verbeke, and B. Baesens, “Performance of Classification Models from a
User Perspective,” Decision Support Systems, vol. 51, no. 4, pp. 782–793, 2011.

[121] A. L. McGill and J. G. Klein, “Contrastive and Counterfactual Reasoning in Causal Judgment,” Journal
of Personality and Social Psychology, vol. 64, no. 6, pp. 897–905, 1993.

[122] G. A. Miller, “The Magical Number Seven, Plus or Minus Two: Some Limits on Our Capacity for
Processing Information,” Psychological Review, vol. 63, no. 2, pp. 81–97, 1956.

[123] T. Miller, “Explanation in Artificial Intelligence: Insights from the Social Sciences,” arXiv preprint,
2017. [Online]. Available: http://arxiv.org/abs/1706.07269

[124] T. Miller, P. Howe, and L. Sonenberg, “Explainable AI: Beware of Inmates Running the Asylum,” in
International Joint Conference on Artificial Intelligence (IJCAI), Proceedings, 2017, pp. 36–41.

[125] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller, “Playing
Atari with Deep Reinforcement Learning,” in NIPS Deep Learning Workshop, 2013.

[126] D. Moher, A. Liberati, J. Tetzlaff, D. G. Altman, D. Altman, G. Antes, D. Atkins, V. Barbour, N. Barrow-
man, J. A. Berlin, J. Clark, M. Clarke, D. Cook, R. D’Amico, J. J. Deeks, P. J. Devereaux, K. Dickersin,

113

http://arxiv.org/abs/1706.07269

M. Egger, E. Ernst, P. C. Gøtzsche, J. Grimshaw, G. Guyatt, J. Higgins, J. P. Ioannidis, J. Kleijnen,
T. Lang, N. Magrini, D. McNamee, L. Moja, C. Mulrow, M. Napoli, A. Oxman, B. Pham, D. Rennie,
M. Sampson, K. F. Schulz, P. G. Shekelle, D. Tovey, and P. Tugwell, “Preferred Reporting Items for
Systematic Reviews and Meta-Analyses: The PRISMA Statement,” PLoS Medicine, vol. 6, no. 7, 2009.

[127] M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of Machine Learning. MIT Press, 2012.

[128] G. Montavon, S. Lapuschkin, A. Binder, W. Samek, and K. R. Müller, “Explaining Nonlinear Classi-
fication Decisions with Deep Taylor Decomposition,” Pattern Recognition, vol. 65, no. C, pp. 211–222,
2017.

[129] G. Montavon, W. Samek, and K.-R. Müller, “Methods for Interpreting and Understanding Deep Neural
Networks,” Digital Signal Processing: A Review Journal, vol. 73, pp. 1–15, jun 2017.

[130] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “DeepFool: A Simple and Accurate Method to
Fool Deep Neural Networks,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Proceedings. IEEE, 2015, pp. 2574–2582.

[131] M. A. Neerincx, F. Kaptein, M. A. van Bekkum, H.-U. Krieger, B. Kiefer, R. Peters, J. Broekens,
Y. Demiris, and M. Sapelli, “Ontologies for Social, Cognitive and Affective Agent-Based Support of
Child’s Diabetes Self-Management,” in Workshop on Artificial Intelligence for Diabetes. Artificial Intelli-
gence for Diabetes (AID), located at ECAI 2016, 2016, pp. 35–38.

[132] A. Nguyen, A. Dosovitskiy, J. Yosinski, T. Brox, and J. Clune, “Synthesizing the Preferred Inputs for
Neurons in Neural Networks via Deep Generator Networks,” Advances in Neural Information Processing
Systems (NIPS), vol. 29, 2016.

[133] H. Núñez, C. Angulo, and A. Català, “Rule Extraction from Support Vector Machines,” in European
Symposium on Artificial Neural Networks, Proceedings, 2002, pp. 107–112.

[134] K. Odajima, Y. Hayashi, G. Tianxia, and R. Setiono, “Greedy Rule Generation from Discrete Data and
Its Use in Neural Network Rule Extraction,” Neural Networks, vol. 21, no. 7, pp. 1020–1028, 2008.

[135] J. D. Olden and D. A. Jackson, “Illuminating the "Black Box": a Randomization Approach for Under-
standing Variable Contributions in Artificial Neural Networks,” Ecological Modelling, vol. 154, no. 1-2,
pp. 135–150, 2002.

[136] M. Pacer and T. Lombrozo, “Ockham’s Razor Cuts to the Root: Simplicity in Causal Explanation,”
Journal of Experimental Psychology: General, vol. 146, no. 12, pp. 1761–1780, 2017.

[137] Parliament and Council of the European Union, “General Data Protection Regulation,” 2016.

[138] K. Patel, N. Bancroft, S. M. Drucker, J. Fogarty, A. J. Ko, and J. Landay, “Gestalt: Integrated Support for
Implementation and Analysis in Machine Learning,” in 23rd annual ACM symposium on User Interface
Software and Technology (UIST ’10), Proceedings, 2010, pp. 37–46.

[139] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine Learning in Python,” Journal of Machine Learning Research, vol. 12, pp.
2825–2830, 2011.

[140] K. Peffers, T. Tuunanen, M. A. Rothenberger, and S. Chatterjee, “A Design Science Research Method-
ology for Information Systems Research,” Journal of Management Information Systems, vol. 24, no. 3, pp.
45–77, 2007.

[141] D. L. Poole and A. K. Mackworth, Artificial Intelligence: Foundations of Computational Agents. Cam-
bridge: Cambridge University Press, 2010.

[142] P. Pu and L. Chen, “Trust-Inspiring Explanation Interfaces for Recommender Systems,” Knowledge-
Based Systems, vol. 20, no. 6, pp. 542–556, 2007.

114 Bibliography

[143] P. Pu, L. Chen, and R. Hu, “A User-Centric Evaluation Framework for Recommender Systems,” 5th
ACM Conference on Recommender systems (RecSys ’11), Proceedings, pp. 157–164, 2011.

[144] N. Puri, P. Gupta, P. Agarwal, S. Verma, and B. Krishnamurthy, “MAGIX: Model Agnostic Globally
Interpretable Explanations,” arXiv preprint, 2017. [Online]. Available: http://arxiv.org/abs/1706.07160

[145] A. Radford, R. Jozefowicz, and I. Sutskever, “Learning to Generate Reviews and Discovering
Sentiment,” arXiv preprint, 2017. [Online]. Available: http://arxiv.org/abs/1704.01444

[146] P. Ravikumar, J. Lafferty, H. Liu, and L. Wasserman, “Sparse Additive Models,” Journal of the Royal
Statistical Society. Series B: Statistical Methodology, vol. 71, no. 5, pp. 1009–1030, 2009.

[147] D. G. Ray, J. Neugebauer, K. Sassenberg, and F. W. Hesse, “Motivated Shortcomings in Explanation:
The Role of Comparative Self- Evaluation and Awareness of Explanation Recipient’s Knowledge,”
Journal of Experimental Psychology: General, vol. 142, no. 2, pp. 445–457, 2013.

[148] M. T. Ribeiro, S. Singh, and C. Guestrin, “"Why Should I Trust You?": Explaining the Predictions of
Any Classifier,” in 22nd ACM SIGKDD International Conference on Knowledge Discovery in Data Mining
(KDD’16), Proceedings, 2016, pp. 1135–1144.

[149] ——, “Anchors: High-Precision Model-Agnostic Explanations,” in AAAI Conference on Artificial Intelli-
gence, 2018.

[150] L. Rieber, S. Tzeng, and K. Tribble, “Discovery Learning, Representation, and Explanation within
a Computer-Based Simulation: Finding the Right Mix,” Learning and Instruction, vol. 14, no. 3, pp.
307–323, 2004.

[151] R. L. Rivest, “Learning Decision Lists,” Machine Learning, vol. 2, no. 3, pp. 229–246, 1987.

[152] M. Robnik-Šikonja and I. Kononenko, “Explaining Classifications for Individual Instances,” IEEE
Transactions on Knowledge and Data Engineering, vol. 20, pp. 589–600, 2008.

[153] N. J. Roese, “Counterfactual Thinking,” Psychological Bulletin, vol. 121, no. 1, pp. 133–148, 1997.

[154] N. J. Roese and J. M. Olson, “Counterfactual Thinking: A Critical Overview,” in What might have been:
The social psychology of counterfactual thinking. Hillsdale, NJ: Lawrence Erlbaum Associates, 1995, pp.
1–55.

[155] A. S. Ross, M. C. Hughes, and F. Doshi-Velez, “Right for the Right Reasons: Training Differentiable
Models by Constraining their Explanations,” in International Joint Conference on Artificial Intelligence
(IJCAI), Proceedings, 2017, pp. 2662–2670.

[156] D. H. Ruben, Explaining Explanation. London: Routledge, 2004.

[157] S. Ruping, “Learning Interpretable Models,” Ph.D. dissertation, TU Dortmund University, 2006.

[158] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 3rd ed. Prentice Hall, 2014.

[159] L. Saitta and F. Neri, “Learning in the "Real World",” Machine Learning, vol. 30, no. 2-3, pp. 133–163,
1998.

[160] W. Samek, T. Wiegand, and K.-R. Müller, “Explainable Artificial Intelligence: Understanding,
Visualizing and Interpreting Deep Learning Models,” arXiv preprint, 2017. [Online]. Available:
http://arxiv.org/abs/1708.08296

[161] I. Sánchez, T. Rocktäschel, S. Riedel, and S. Singh, “Towards Extracting Faithful and Descriptive Rep-
resentations of Latent Variable Models,” in AAAI Spring Symposium on Knowledge Representation and
Reasoning, vol. 3, 2015, pp. 35–38.

[162] V. Schetinin, J. E. Fieldsend, D. Partridge, T. J. Coats, W. J. Krzanowski, R. M. Everson, T. C. Bai-
ley, and A. Hernandez, “Confident Interpretation of Bayesian Decision Tree Ensembles for Clinical

115

http://arxiv.org/abs/1706.07160
http://arxiv.org/abs/1704.01444
http://arxiv.org/abs/1708.08296

Applications,” IEEE Transactions on Information Technology in Biomedicine, vol. 11, no. 3, pp. 312–319,
2007.

[163] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, “Grad-CAM: Visual Expla-
nations from Deep Networks via Gradient-based Localization,” in NIPS 2016 Workshop on Interpretable
Machine Learning in Complex Systems, 2016.

[164] A. Shrikumar, P. Greenside, and A. Kundaje, “Learning Important Features Through Propagating
Activation Differences,” arXiv preprint, 2017. [Online]. Available: http://arxiv.org/abs/1704.02685

[165] P. K. Shukla and S. P. Tripathi, “A Review on the Interpretability-Accuracy Trade-Off in Evolutionary
Multi-Objective Fuzzy Systems (EMOFS),” Information (Switzerland), vol. 3, no. 3, pp. 256–277, 2012.

[166] R. Shwartz-Ziv and N. Tishby, “Opening the Black Box of Deep Neural Networks via Information,”
arXiv preprint, 2017. [Online]. Available: http://arxiv.org/abs/1703.00810

[167] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner,
I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis, “Mastering the
Game of Go with Deep Neural Networks and Tree Search,” Nature, vol. 529, no. 7587, pp. 484–489,
2016.

[168] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep Inside Convolutional Networks: Visualising
Image Classification Models and Saliency Maps,” arXiv preprint, 2013. [Online]. Available:
http://arxiv.org/abs/1312.6034

[169] P. Spirtes, C. Glymour, and R. Scheines, Causation, Prediction, and Search, 2nd ed. London: MIT Press,
2000.

[170] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, “Striving for Simplicity: The All Con-
volutional Net,” in International Conference on Learning Representations (ICLR), Workshop, 2015.

[171] H. Strobelt, S. Gehrmann, H. Pfister, and A. M. Rush, “LSTMVis: A Tool for Visual Analysis of Hid-
den State Dynamics in Recurrent Neural Networks,” IEEE Transactions on Visualization and Computer
Graphics, vol. 24, no. 1, pp. 667–676, 2018.

[172] C. Strobl, A. L. Boulesteix, T. Kneib, T. Augustin, and A. Zeileis, “Conditional Variable Importance for
Random Forests,” BMC Bioinformatics, vol. 9, pp. 1–11, 2008.

[173] E. Strumbelj and I. Kononenko, “An Efficient Explanation of Individual Classifications using Game
Theory,” Journal of Machine Learning Research, vol. 11, pp. 1–18, 2010.

[174] G. Su, D. Wei, K. R. Varshney, and D. M. Malioutov, “Learning Sparse Two-Level Boolean Rules,” in
IEEE International Workshop on Machine Learning for Signal Processing, MLSP, vol. 2016-Novem. IEEE,
sep 2016, pp. 1–6.

[175] M. Sundararajan, A. Taly, and Q. Yan, “Axiomatic Attribution for Deep Networks,” in 34th International
Conference on Machine Learning (ICML), Proceedings, 2017.

[176] R. S. Sutton and A. G. Barto, “Reinforcement Learning: An Introduction,” IEEE Transactions on Neural
Networks, vol. 9, no. 5, 1998.

[177] P. Tamagnini, J. Krause, A. Dasgupta, and E. Bertini, “Interpreting Black-Box Classifiers Using
Instance-Level Visual Explanations,” in 2nd Workshop on Human-In-the-Loop Data Analytics (HILDA’17),
Proceedings, 2017.

[178] T. Tamayo, J. Rosenbauer, S. H. Wild, A. M. Spijkerman, C. Baan, N. G. Forouhi, C. Herder, and
W. Rathmann, “Diabetes in Europe: An Update,” Diabetes Research and Clinical Practice, vol. 103, no. 2,
pp. 206–217, 2014.

116 Bibliography

http://arxiv.org/abs/1704.02685
http://arxiv.org/abs/1703.00810
http://arxiv.org/abs/1312.6034

[179] H. F. Tan, G. Hooker, and M. T. Wells, “Tree Space Prototypes: Another Look at Making Tree Ensembles
Interpretable,” in NIPS 2016 Workshop on Interpretable Machine Learning in Complex Systems, 2016.

[180] K. H. Teigen, A. B. Kanten, and J. A. Terum, “Going to the Other Extreme: Counterfactual Thinking
Leads to Polarised Judgments,” Thinking and Reasoning, vol. 17, no. 1, pp. 1–29, 2011.

[181] J. J. Thiagarajan, B. Kailkhura, P. Sattigeri, and K. N. Ramamurthy, “TreeView: Peeking into Deep Neu-
ral Networks Via Feature-Space Partitioning,” in NIPS 2016 Workshop on Interpretable Machine Learning
in Complex Systems, 2016.

[182] J. J. Thomas and K. A. Cook, Illuminating the Path: The Research and Development Agenda for Visual
Analytics. National Visualization and Analytics Center, 2005.

[183] R. Tibshirani, “Shrinkage and Selection via the Lasso,” Journal of the Royal Statistical Society. Series B
(Methodological), vol. 58, no. 1, pp. 267–288, 1996.

[184] N. Tintarev and J. Masthoff, “Designing and Evaluating Explanations for Recommender Systems,” in
Recommender Systems Handbook. Boston, MA: Springer US, 2011, pp. 479–510.

[185] G. Tolomei, F. Silvestri, A. Haines, and M. Lalmas, “Interpretable Predictions of Tree-based Ensem-
bles via Actionable Feature Tweaking,” in 23rd ACM SIGKDD International Conference on Knowledge
Discovery in Data Mining (KDD’17), Proceedings, 2017, pp. 465–474.

[186] G. G. Towell and J. W. Shavlik, “Extracting Refined Rules from Knowledge-Based Neural Networks,”
Machine Learning, vol. 13, no. 1, pp. 71–101, 1993.

[187] R. Turner, “A Model Explanation System,” IEEE International Workshop on Machine Learning for Signal
Processing (MLSP), 2016.

[188] F. Y. Tzeng and K. L. Ma, “Opening the Black Box-Data Driven Visualization of Neural Networks,” in
IEEE Visualization, 2005, pp. 383–390.

[189] B. Ustun and C. Rudin, “Methods and Models for Interpretable Linear Classification,” arXiv preprint,
2014. [Online]. Available: http://arxiv.org/abs/1405.4047

[190] ——, “Supersparse Linear Integer Models for Optimized Medical Scoring Systems,” Machine Learning,
vol. 102, no. 3, pp. 349–391, 2016.

[191] B. C. Van Fraassen, The Scientific Image. Oxford University Press, 1980.

[192] G. Vandewiele, O. Janssens, F. Ongenae, F. De Turck, and S. Van Hoecke, “GENESIM: Genetic Ex-
traction of a Single, Interpretable Model,” in NIPS 2016 Workshop on Interpretable Machine Learning in
Complex Systems, 2016.

[193] A. Vedaldi, “Understanding Models via Visualizations, Attribution, and Semantic Identification,” in
Tutorial on Interpretable Machine Learning for Computer Vision (CVPR 2018), 2018.

[194] S. Wachter, B. Mittelstadt, and C. Russell, “Counterfactual Explanations Without Opening the
Black Box: Automated Decisions and the GDPR,” arXiv preprint, 2017. [Online]. Available:
http://arxiv.org/abs/1711.00399

[195] F. Wang and C. Rudin, “Falling Rule Lists,” in Artificial Intelligence and Statistics (AISTATS), vol. 38,
2015.

[196] J. Wang, R. Fujimaki, and Y. Motohashi, “Trading Interpretability for Accuracy,” in 21st ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD ’15), ProceedingsInternational Con-
ference on Knowledge Discovery in Data Mining. New York, New York, USA: ACM Press, 2015, pp.
1245–1254.

[197] T. Wang, C. Rudin, F. Velez-Doshi, Y. Liu, E. Klampfl, and P. Macneille, “Bayesian Rule Sets for In-
terpretable Classification,” in IEEE International Conference on Data Mining (ICDM), Proceedings. IEEE,

117

http://arxiv.org/abs/1405.4047
http://arxiv.org/abs/1711.00399

2017, pp. 1269–1274.

[198] R. J. Wieringa, Design Science Methodology for Information Systems and Software Engineering. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2014.

[199] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén, Experimentation in Software
Engineering. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.

[200] World Health Organization, Global Report on Diabetes, 2016, vol. 978.

[201] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhutdinov, R. Zemel, and Y. Bengio, “Show, Attend
and Tell: Neural Image Caption Generation with Visual Attention,” arXiv preprint, 2015. [Online].
Available: http://arxiv.org/abs/1502.03044

[202] S. C.-H. Yang and P. Shafto, “Explainable Artificial Intelligence via Bayesian Teaching,” in Conference
on Neural Information Processing Systems, 2017.

[203] X. Yin and J. Han, “CPAR: Classification based on Predictive Association Rules,” in 2003 SIAM Inter-
national Conference on Data Mining, Proceedings. Philadelphia, PA: Society for Industrial and Applied
Mathematics, 2003, pp. 331–335.

[204] J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, and H. Lipson, “Understanding Neural Networks Through
Deep Visualization,” arXiv preprint, 2015. [Online]. Available: http://arxiv.org/abs/1506.06579

[205] T. Zahavy, N. B. Zrihem, and S. Mannor, “Graying the Black Box: Understanding DQNs,” in 33rd
International Conference on Machine Learning (ICML), Proceedings, 2016, pp. 1–32.

[206] M. D. Zeiler and R. Fergus, “Visualizing and Understanding Convolutional Networks,” Computer
Vision (ECCV 2014), vol. 8689, pp. 818–833, 2014.

[207] J. Zhang, S. A. Bargal, Z. Lin, J. Brandt, X. Shen, and S. Sclaroff, “Top-Down Neural Attention by
Excitation Backprop,” International Journal of Computer Vision, pp. 1–19, 2017.

[208] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, “Learning Deep Features for Discrimina-
tive Localization,” in Computer Vision and Pattern Recognition (CVPR), 2016 IEEE Conference on. IEEE,
2015, pp. 2921–2929.

[209] Y. Zhou and G. Hooker, “Interpreting Models via Single Tree Approximation,” arXiv preprint, 2016.
[Online]. Available: http://arxiv.org/abs/1610.09036

[210] Z.-H. Zhou, Y. Jiang, and S.-F. Chen, “Extracting Symbolic Rules from Trained Neural Network En-
sembles,” AI Communications, vol. 16, no. 1, pp. 3–15, 2003.

118 Bibliography

http://arxiv.org/abs/1502.03044
http://arxiv.org/abs/1506.06579
http://arxiv.org/abs/1610.09036

APPENDIX

A Machine Learning Model Evaluation

To select the model with the best performance on a task, machine learning (ML) algorithms
are evaluated on their performance. In this section, we introduce ML evaluation methods for
supervised and reinforcement learning.

Classification

Classification performance assessment is best illustrated using a confusion matrix (contingency
table), that counts the equal instances of the predicted label ŷi = f̂ (xi) and actual label yi = f (xi)

for each instance i in the test set T. The classifier is a mapping ĉ : X → C, where C = {c1, c2, . . . , ck}
is a finite set of k classes. To indicate the equality of labels, we use indicator function I[·] that
evaluates to 1 if the enclosed logical statement evaluates to true (e.g., we predict it to be class one
and the actual label is also class one), and 0 otherwise [49].

For a given class c ∈ C we use a short-hand notation where (i) TPc (true positives) are the number of
correctly classified instances, (ii) FPc (false positives) are the number of instances wrongly predicted
as c, (iii) FNc (false negatives) are the instances the classifier missed out on—i.e., did not predict as
c while they were c—, and (iv) TNc (true negatives) are the instances not of class c that are correctly
identified as not being c.1 They are defined as

TPc =
n

∑
i=1

I[ĉ(xi) = yi = c] (A.1)

FPc =
n

∑
i=1

I[ĉ(xi) = c ∧ yi 6= c] (A.2)

FNc =
n

∑
i=1

I[ĉ(xi) 6= c ∧ yi = c] (A.3)

TNc =
n

∑
i=1

I[ĉ(xi) 6= c ∧ f (xi) 6= c] (A.4)

Table A.1 shows a confusion matrix for an arbitrary multi-class classifier that distinguishes be-
tween animals, vehicles and objects. Each row shows the actual label f (·) as recorded in the
test set, and each column shows the accompanying prediction ĉ(·) of the classifier. For instance,
the first row shows that of the instances that are actually animals 50 were classified correctly as
animal, and another 50 were classified incorrectly: 30 as vehicle and 20 as object. The confusion

1 False negatives (FN) are also referred to as Type-I errors, while false positives (FP) are also denoted as Type-II errors.

119

matrix shows the results of the classifier on a test set with n = 240 instances. We denote the
classes C = {animal, vehicle, object}, where the number of classes |C| = 3.

Table A.1 Example confusion matrix for multi-class classification on a test set with n = 240 instances

Predicted
Animal Vehicle Object

Animal 50 30 20

Actual Vehicle 10 90 0

Object 5 25 10

Accuracy describes the proportion of correctly classified instances. Precision (positive predicted value;
PPV) indicates the fraction of relevant instances among the identified instances. Recall (sensitivity)
measures what part of the class instances the classifier can distinguish. Specificity (true negative
rate; TNR) indicates the proportion of instances not of a class that are correctly classified as such.
They are calculated using the marginals (row-wise and column-wise sums) of each class, and the
mean precision, recall and specificity can be determined by summing the individual scores per
class and dividing them by the number of classes, e.g. for precision P = 1

|C| ∑c∈ C Pc. In binary
classification, the precision, recall and specificity are directly calculated as their respective scores
class of interest—typically the majority class (class with most instances).

Oftentimes, a trade-off between precision and recall is required to take into account the false
positives as well as the false negatives. As a measure for this trade-off, the F1 score can be used:
the harmonic mean of precision and recall [49, 158]. Note that each measure takes on a value in
the range [0, 1], where zero indicates low performance and one indicates a perfect score. Table A.2
shows the aforementioned performance measures and how they are calculated. In addition, for
the example in Table A.1 the table includes a class-specific example and the average score for the
example.

Table A.2 Overview of classification performance measures, with class-specific examples and average values for Ta-
ble A.1

Measure Class-specific example Average

Accuracy A = 1
|N| ∑

c∈C
TPc - A = 50+90+10

240 = 0.625

Precision Pc = TPc/(TPc + FPc) Panimal =
50

50+10+5 ≈ 0.77 P ≈ 0.77+0.62+0.33
3 ≈ 0.57

Recall Rc = TPc/(TPc + FNc) Rvehicle =
90

10+90+0 = 0.9 R = 0.5+0.9+0.25
3 = 0.55

Specificity Sc = TNc/(TNc + FPc) Sobject =
50+30+10+90

50+30+10+90+20+0 = 0.9 S ≈ 0.89+0.61+0.9
3 = 0.8

F1 score F1 = 2 · P · R/(P + R) - F1 ≈ 2·0.55·0.57
0.55+0.57 ≈ 0.56

The preceding measures are typically sensitive to class distribution (e.g., unbalanced classes) and
the number of instances used for testing [120]. Instead, the receiver operating characteristic (ROC)
curve is commonly used when comparing across data sets and class distributions [49, 127]. The
ROC curve plots the ranked relationship between recall R on the y-axis and the false positive rate
1 − S on the x-axis [127]. As a comparative measure, the area under the ROC curve (AUC) is
a performance indicator in the range [0, 1], where 0.5 indicates similar performance to random

120 Appendix

classification and 1 is a classifier that perfectly predicts all instances.

Regression analysis

The performance of regression analysis, where h : X → R, is evaluated by comparing the value
of the predicted outcome ŷi = f̂ (xi) to the actual outcome yi for a data point xi. Evaluation is
done using a loss function that is based around the residual ei = yi − ŷi. A popular measure of
fit based on Euclidean distance is the mean squared error (MSE) or root mean squared error (RMSE),
given by

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (A.5)

RMSE =
√

MSE (A.6)

where n are the number of instances. A lower MSE/RMSE indicates a better performance. The
main downside of MSE and RMSE is that they are in scale of measurement of the predictor
variable y, making them incompatible when comparing across data sets. Instead, the R2 statistic
measures the goodness of fit independent of the measurement scale of y. A higher R2 indicates
a better performance. Important to note is that the value of R2 is still affected by the number of
features considered in the regression. To compare models with different numbers of variables, a
popular approach is using the adjusted R2 statistic that penalizes adding non-descriptive variables
to the model.2 They are given by

R2 =
∑n

i=1 (ŷi − ȳ)2

∑n
i=1 (yi − ȳ)2 (A.7)

R2
adj = 1−

(
(1− R2)(n− 1)

n− k− 1

)
(A.8)

where ȳ = 1
n ∑n

i=1 yi denotes the average value of the observed data and k is the number of
independent variables used in the model [80].

Cross-validation

During training, the principle of performance measurement can also be applied iteratively to
assess performance of the current version of the model, a process referred to as cross-validation
(CV). In this resampling method, a small part of the training data is held out to assess the model’s
performance on. After assessing performance, a different part of the data is held-out and the
previously held-out data is used for training. By immediately checking the model performance,
we can determine during training whether the model generalizes well on unseen data. If the
data is split up into k approximately equal randomly sampled parts (where one fold is used for
testing and k− 1 folds are used for training) it is referred to as k-fold CV. In stratified k-fold CV the
data per fold is not sampled randomly, but the data is rearranged to ensure that each fold is a

2 Other popular measures include Akaike’s information criterion (AIC) and Bayesian information criterion (BIC). We refer the
reader to James et al. [80, ch. 6] for a more detailed overview.

121

good representation of the whole training set. If the held-out part for CV is a single instance it
is referred to as leave-one-out CV (LOOCV). Figure A.1 illustrates k-fold CV on a training set split
into ten folds.

Iteration 1

Iteration 2

...

Iteration 10

Test Train

Train Test Train

Train Test

Figure A.1 k -Fold cross-validation with k = 10 folds

Reinforcement learning performance

In Section 2.1 we mentioned that in reinforcement learning (RL) the goal is to maximize the
cumulative reward the agent receives in the long run. The total reward Rt from time step t can be
defined as the sum of rewards

Rt = rt + rt+1 + rt+2 + · · ·+ rn =
n

∑
i=0

rt+i (A.9)

where n is the final time step.

However, usually the behavior the environment is stochastic—there may be some randomness in-
volved in selecting the next state. This uncertainty increases the more actions the agent performs,
possibly resulting in a very different actual sum of rewards compared to the expected one when
performing the same policy. In addition, it cannot always be assumed that the task will terminate,
i.e. the environment can have an infinite horizon n = ∞. we denote tasks with a final terminal
state episodic, while ones with an infinite horizon are called continuous.

To counter these issues, RL techniques typically use a discount factor γ ∈ [0, 1] describing the
preference of an agent for immediate rewards over future ones. The discounted future reward takes
into account this discount factor:

Rt = rt + γrt+1 + γ2rt+2 + · · ·+ γn−trn =
n

∑
i=0

γirt+i (A.10)

If we only want to rely on immediate rewards we can set discount factor γ = 0. Agents only
concerned with direct rewards are referred to as myopic. If instead we want to balance the two,
we select γ anywhere inbetween zero and one. As γ approaches one the agent takes future
rewards more into account for their objective. Observe that for γ = 1 the discounted future
reward (Eq. A.10) equals the sum of rewards (Eq. A.9) [176].

122 Appendix

B Machine Learning Techniques

We overview popular ML techniques used for learning models that form the predominant foun-
dation for interpretable ML (iML).3 In particular, we detail:

H Regression analysis techniques (linear regression and generalized additive models);

H Probabilistic classification techniques (logistic regression and naive Bayes);

H Decision boundary classification techniques (support vector machines, decision trees and
rule-based methods);

H Neural networks;

H Ensemble methods (bagging and boosting), and;

H Reinforcement learning techniques.

Regression analysis

Regression analysis techniques estimate the quantitative response variable (dependent variable) y
by fitting a predictor function that estimates the relationship between y and predictors (indepen-
dent variables) a1, a2, . . . , ak. We discuss linear regression, a popular, relatively comprehensible
method that provides the baseline for regression models. Furthermore, we briefly discuss a less
restrictive approach to regression: generalized additive models.

Linear regression. Linear regression models predict the quantitative response y by fitting a linear
function on the predictors. We multiply each independent variable ak with a weight βk, that
indicates the increase in y a one unit increase in ak results in. In addition, the intercept term β0

that gives the expected value of y when a1 = a2 = · · · = ak = 0. In general, a linear regression
function is defined as

y = β0 + β1a1 + β2a2 + · · ·+ βkak + ε (A.11)

where ε is an error term that cannot be predicted by the independent variables.

If only terms β0 and β1a1 are considered, we refer to the problem as simple linear regression, while
if it includes more terms it is called multiple linear regression.

The goal of regression is to estimate coefficients β0, β1, . . . , βk. This involves finding estimators
β̂0, β̂1, . . . , β̂k that minimize the error on the data, to obtain an estimator function ŷ = f̂ (x). The
estimator function is given by

ŷ = β̂0 + β̂1a1 + β̂2a2 + · · ·+ β̂kak (A.12)

3 A large body of work considers ML techniques in more detail. We refer the interested reader to works such as Russell
and Norvig [158], Manning et al. [118] and James et al. [80] for a more elaborate discussion of ML techniques.

123

Finding the estimators is done through maximum likelihood estimation. The error is measured
using the residual sum of squares (RSS)—that also is the basis of the previously introduced MSE—,
that estimates the error for all n data points in the training set:

RSS =
n

∑
i=1

(yi − ŷi)
2 (A.13)

Due to their simple relationship between input features and the output, linear regression models
are generally perceived as a good first approach to predict an outcome variable [80]. In addition,
variable selection methods (e.g., forward selection or backward selection) can reduce the number
of predictors to only include the ones contributing most to the prediction. Lasso regression [183]
incorporates feature selection and regularization to combine high accuracy with good generaliz-
ability and interpretability through the production of a sparse linear model (i.e., one using fewer
variables in its prediction). For its regularization, Lasso uses `1 regularization that penalizes a
regressor based on the absolute values of the β-coefficients. Ridge regression penalizes the coeffi-
cients using `2 regularization—based on the squared values of the coefficients. Ridge regression
performs best when the actual relationship is close to linear–trading off a little increase in bias for
a major decrease in variance [80].

Generalized Additive Models (GAM). Even though linear regression models have advantages in
terms of interpretability, the restrictive nature of the linearity assumption for all predictors can
impose limitations on the predictive power of the model. Whereas linear regression models
restrict each term to only include a numeric coefficient β, Generalized Additive Models (GAMs)
allow for a more flexible representation by also allowing non-linear relationships between the
independent and dependent variables. Each term ai is represented by a function fi(ai) such that

y = β0 + f1(a1) + f2(a2) + . . . fk(ak) + ε (A.14)

where like linear regression β0 is intercept and ε the error term [80]. For example, function f (·)
can be a polynomial fi(ai) = βi1ai + βi2a2

i + βi3a3
i . The restriction that each term ai is additive has

the advantage that individual effects of each term can still be examined. However, note that fitting
more complex functions (i) is susceptible to overfitting to the training data (following the relation-
ship too well and thereby not generalizing well on unseen data), and (ii) is computationally more
expensive than simple linear coefficients.

Probabilistic classification

The first discussed approach for classification is probabilistic classification, where a classifier ĉ(·)
outputs the probability P(c | xi) that an instance falls in a particular class c. This type of classifier
is called a Bayes classifier [80]. Given a probability for each class c ∈ C, the predicted class can
then be obtained by selecting the class with the highest probability using

ŷi = arg max
c∈ C

P(c | xi) (A.15)

124 Appendix

where xi = 〈ai1, ai2, . . . , aik〉 is the instance to predict and ŷi is the corresponding class prediction.

We discuss two methods for probabilistic classification: logistic regression and the naive Bayes clas-
sifier.

Logistic regression. Regression techniques can be extended to classification problems by trans-
forming output variable y to a probability P(x) that given the dependent variables x = 〈a1, a2, . . . , ak〉
the outcome belongs to a particular class. This requires that the outcome is binary, where if the
probability of one increases the probability of the other class decreases equivalently. Because the
probability lies in range [0, 1], we also impose this restriction on y = P(x) by using a logistic
function expanding on multiple linear regression of Eq. A.12, such that

ln
(

P(x)
1− P(x)

)
= β0 + β1a2 + β2a2 + · · ·+ βkak (A.16)

where we refer to the left-hand side of Eq. A.16 as the log-odds [80]. To acquire P(x) directly,
Eq. A.16 can be rewritten as

P(x) =
exp(β0 + β1a2 + β2a2 + · · ·+ βkak)

1− exp(β0 + β1a2 + β2a2 + · · ·+ βkak)
(A.17)

Naive Bayes classifier. A Bayesian classifier uses the observed probabilities in the independent
variables to determine the probability that a new data point falls within a particular class. In
its simplest form, the naive Bayes classifier assumes that all observed independent variables are
independent of each other in predicting the dependent variable. In other words, it disregards
all correlations between the features. It learns from the distributions of P(c) and P(xi | c) for the
input features in the data, and learns the probability for each class given by

P(c | x) = P(c) ∏
a∈ x

P(a | c) (A.18)

where x are all observed feature values in the data set.

Support vector machine (SVM)

A support vector machine (SVM) is a classification algorithm that aims to find a decision hy-
perplane with maximum distance from any point in the training data [118]. To construct the
separator, the SVM uses support vectors formed by a small number of data points in the input
data, and it aims to maximize the margin between the maximal margin separator and these support
vectors [118, 158]. Even though data may not be linearly separable in the input space, the SVM
can use a kernel trick to embed the data in a higher dimensional space where the data can be
separated linearly by a decision hyperplane [158]. For instance, a data set with two features a1

and a2 may not be linearly separable in the input space, but be linearly separable in feature space
with features a2

1 and
√

a2 − a1.

If in case of noisy data we do not want or it is difficult to linearly separate the data, SVM can use

125

a soft margin classifier instead of a strict decision boundary [158]. A soft margin classifier allows
for some observations to fall on the wrong side of the decision boundary, and instead penalizes
them based on their distance from the boundary [158].

While in its base form an SVM is used for binary classification, SVMs can also be used for multi-
class classification (Multi-Class SVM) or for regression (support vector regresson; SVR) [127].

Decision trees and rule-based methods

Decision trees (DT) and decision rules (DR) reach an output decision by performing a sequence of
tests on the input values of an instance. They are popular approaches for supervised learning
and anomaly detection—most commonly used for classification but also applicable to regression
tasks. The popularity of decision trees and rule-based approaches originates from that they are
natural representations for humans [80, 158].

DTs and DRs are constructed around the evaluation of Boolean expressions, that group the input
space into areas (decision regions) by evaluating to either true or false. If the logical statement
evaluates to true for a given instance, that instance falls within the decision region for instances
where the expression holds. Else, it falls outside the decision region. We continue this process
recursively until a decision is reached regarding the instance. We refer to the hyperplane that
separates the decision region from the remainder of the feature space as the decision boundary. The
most simple form of these logical expressions, literals, are equalities of the form feature = value,
or inequalities of a form such as feature < value or feature 6= value [49]. Note that inequalities
(expect not being equal to a value) require that the feature under consideration has an ordering—
i.e., is ordinal or continuous. More complex Boolean expressions can be formed (i) using logical
connectives (e.g., conjunction (AND; ∧), disjunction (OR; ∨) and negation (NOT; ¬)), or (ii) by allowing
non-axis aligned oblique rules: linear combinations of variables such as a1 · a2 < value [49, 79].

attack severity

age

ER

< 16

-

≥ 16

mild

cholesterol

age

-

< 65

ER

≥ 65

high

-

{low, medium}

moderate

ER

severe

if attack severity = mild then

if age < 16 then ER else -

else if attack severity = moderate then

if cholesterol =high then

if age < 65 then - else ER

else -

else ER

Decision tree Decision rule

Figure A.2 Example decision tree on ER admission with corresponding if-then-else decision rule

126 Appendix

Decision trees (DT). Decision trees consist of a set of nodes connected by branches, where based
on the values of the input features a sequence of tests is performed from the root node to a leaf
to reach a decision. The decisions in the leaves capture exhaustive, mutually exclusive regions of
the input space and the corresponding (probability of a) decision for data points in that decision
region. For classification trees, the decision for a leaf region is a class label, while in regression
trees it typically is the mean response of the training instances in that region [80]. While they are
predominantly used for their graphical representation, decision paths from the DT root to a node
can be represented as if-then-else rules, and can therefore be converted to some DR representations
[51]. Conversely, if-then-else decision rules can be represented as decision trees. Figure A.2
depicts an example DT on whether a patient needs to be admitted to the emergency room (ER) or
not, along with the corresponding conversion to a DR. In this DT, the top node a is the root and
the leaves are shown as circles.

While the example in Figure A.2 shows more than two branches as a split after a node, the most
popular implementations (e.g., CART and C4.5) of decision tree induction—the learning of a DT
model—typically only create a single binary split per node (i.e., have two outgoing branches).
These approaches are based on Hunt’s algorithm: a depth-first greedy algorithm where each split
recursively subdivides the data set into mutually exclusive decision regions by only considering
a single feature, until all instances in a single node are of one class—making that node a leaf.

A desirable property of DTs is that they only consider a minimal number of relevant attributes
for their decisions [51], by only considering the most informative splits and including tunable
hyperparameters for minimizing a tree size. The optimal splits are decided on by finding splits
that most cleanly divide the considered data into homogeneous groups of maximal size. For
instance, for a binary classifier with 10 instances (5 of class one, 5 of class two) we prefer a split
where all 5 of class one are distinguished, over one where 2 of class one and 3 of class two are put
into one decision region. This concept, referred to as node purity, can be computed using various
measures, such as the residual sum of squares (RSS) for regression, and the resubstitution error, Gini
index or entropy for classification.

As the objective of DTs is to divide the input space into decision regions that most purely split
the data, they are prone to overfitting on the training data. For instance, in their last splits they
may only create a decision boundary between two individual instances. To avoid overfitting,
algorithms include hyperparameters that can be set—like early stopping when a given number
of instances is in a node, or a maximum tree depth. The downside of early stopping rules is that
they may not recognize situations where combinations of attributes are informative instead of a
split on a single attribute. Therefore, we might prefer to first induce a DT that overfits slightly on
the data but recognizes these complex splits. To combat overfitting, DT pruning can cut back the
nodes that are irrelevant—replacing uninformative branches with leaf nodes [158].

Decision rules (DR). Decision rules take on the form of an antecedent and consequent, where if the
expression in the antecedent is true then the consequent also holds. In other words, they are of the
general form if antecedent then consequent. In some types of decision rules, else indicates
how the decision process continues when the antecedent does not hold. Their natural language

127

representation often makes them a preferred choice when intepretability is required [79].

Decision rules take on a multitude of forms, such as decision sets (if-then rules), decision lists
(if-then-else rules) and M-of-N rules (where M of the N antecedents must hold to result in a given
consequent) [100, 151, 186]. Graphically, a decision rule set may also be represented as a decision
table or decision tree [79]. Their less restrictive nature over decision trees poses the benefit that
they do not enforce mutually exclusive rules [79]. Similar to decision trees, some rule generation
algorithms may construct oblique, conjunctive, disjunctive, and negated expressions.

Neural Networks (NN)

Artificial neural networks are a class of techniques that mimic the behavior of neurons in the
biological brain, where an artificial neuron (node) fires (i.e., passes on a signal) based on the inputs
it receives. This mapping from inputs to outputs is done using an activation function g(·) for
a node j. Neurons are organized in a network, and connected by directed links that serve to
propagate the activation from a node i to node j. Each link has a numeric weight wi,j attached to
it, that determines the strength and sign of the connection. In addition, the neuron has a bias bj

for when all weights are zero—similar to the intercept term of regression. The neuron computes
the input function, a weighted sum of its n input links

inj =
n

∑
i=1

wi,jai + bj (A.19)

and takes this as the value to determine its output activation aj by applying the activation function
to its input aj = g(inj) [158]. Popular activation functions include the binary step function, sigmoid
function, tanh function and rectified linear unit (ReLU).

Architectures. Even though a single neuron in a network may represent a simple relationship
between inputs and outputs, the power of NNs lies in connecting multiple neurons to form a
network. When deployed, NNs have a decided upon structure that is responsible for mapping its
inputs into outputs, called the neural network architecture. Different architectures make NNs able
to support a wide variety of ML tasks, within (semi-)supervised learning, unsupervised learning
and reinforcement learning.

The neurons in a neural network are organized in layers. We denote the neurons that receive
input for the network as the input layer, while the neurons that produce output are the output
layer [158]. In the final layer of the NN, functions can be used to restrict its output, such as the
softmax function that ensures that the sum of all outputs adds to one—resulting in a probability
per output neuron that can be used for probabilistic classification.

There are two distinct approaches to connecting neurons together in a network: feed-forward and
recurrent. First, feed-forward NNs form a directed acyclic graph—where neurons receive inputs
from upstream nodes and pass them down to downstream ones. The first layer are a fixed num-
ber of inputs, while the final layer are the network outputs. Thus, they are used for tasks with
fixed input and output sizes, such as supervised learning on tabular data or image classifica-

128 Appendix

tion. Deep neural networks (DNNs) organize the neurons in the network in multiple layers [129].
Unlike their shallow counterparts, they contain multiple hidden layers—i.e., neurons that are not
connected to the outputs of the network. These multi-layer networks are able to represent more
complicated functions [158]. Figure A.3 shows example architectures for shallow and deep feed-
forward NNs, each with three inputs i and two outputs o. The unnamed middle nodes represent
hidden neurons.

i1

i2

i3

o1

o2

i1

i2

i3

o1

o2

i1

o1

it-1

ot-1

it

ot

. . .

Shallow feed-forward NN Deep feed-forward NN Recurrent NN

Figure A.3 Example architectures of shallow and deep feed-forward NNs, and an example unfolded recurrent NN archi-
tecture with t time steps

Second, in contrast to feed-forward NNs recurrent NNs (RNNs) feed their outputs back into its
own inputs [158]. Each activation level depends on the previous activation, making them able
to form a dynamic system with a non-fixed number of inputs and outputs. In addition, the
knowledge of previous activations makes them able to support short-term memory. However,
note that their opaque structure also makes the less intelligible. Typical applications of RNNs are
ones that do not have a fixed number of inputs or outputs, such as speech recognition, (visual)
question answering, natural language generation, and machine translation. Figure A.3 shows
an RNN with n inputs and outputs, that is unfolded to show each state separately. Note that
different RNN architectures are also supported:4

H One-to-many RNNs have a single output and many outputs (e.g., caption generation for a
single image);

H Many-to-one RNNs have multiple inputs and a single output (e.g., sentiment analysis), and;

H Many-to-many RNNs with many inputs and many outputs (e.g., time series prediction).

Short-term memory in RNNs requires special units that are able to keep track of the internal state
of the network. These units use logic gates that conditionally process and pass on signals based
on previous states and inputs. Long short-term memory (LSTM) [77] units comprise a memory
cell, and three neurons—the input gate, output gate and forget gate. As the name suggests, the
memory cell responsible for remembering values over an arbitrary time period. As a result, it
can capture long-time dependencies between inputs and outputs. The three gates regulate the
memory cell. They are responsible for deciding which values in the cell to update, which ones to

4 While technically one-to-one RNNs exist, they are functionally equivalent to feed-forward NNs. To avoid confusion,
we refer to them as feed-forward NNs.

129

output and which ones to forget, respectively. Alongside the previous state, an LSTM also passes
on a signal of how much to forget in the next state. Gated recurrent units (GRUs) [27] are recent,
simplified version of LSTM that do not require a memory cell, but rather only two gates: update
and reset.

The NNs we considered so far do not scale well to a large number of inputs. For example, small
images with three channels (red, green and blue) of size 100× 100 followed by a fully connected
layer of 100 neurons already require three million weights. This not only increases the memory
needed to store the network, but also the amount of training data that is necessary to train the net-
work. In addition, feed-forward architectures disregard the structure of the inputs, while inputs
in for instance images are highly correlated—representing structures such as objects, corners or
edges. Convolutional NNs (CNNs) [102] address these issues using layers with convolution units.
Convolution units consider a small neighborhood of neurons (e.g., an input section of 20× 20
of an image) and combines them into a smaller output—the convolved feature—by multiplying
the input weights with a filter (convolution) and then extracting a single weight for the filtered
weights (pooling). Typical use-cases for CNNs are object recognition and image segmentation.
Figure A.4 shows an example architecture for a CNN that convolves and pools the 64 inputs into
two convolved feature matrices in the third layer, which are then fed into a feed-forward NN.

i1

i2

i63

i64

...

c1,1

c1,2

c1,15

c1,16

...

c2,1

c2,2

c2,3

c2,4

c3,1

c3,2

o1

o2

Figure A.4 Convolution neural network (CNN) architecture example

Learning weights and biases. NNs learn to perform a task by considering examples and then
finding weights and biases that transform the inputs into a desired output. Backpropagation is a
form of gradient descent search that minimizes the sum of squares (see Eq. A.13) error by iterating
over the examples [141]. In the forward pass it obtains the outputs for the given weights and
biases, and then in the backward pass it finds the corresponding errors for all output and hidden
neurons and updates them to minimize the error.5

Ensemble methods

Ensemble methods combine multiple predictions for an input made by base predictors to produce a
prediction for an input [158]. By combining predictions, the likelihood of an incorrect prediction

5 While there are other approaches to find weights and biases, such as genetic algorithms, backpropagation is the main
approach taken for decompositional iML methods for opening up NNs.

130 Appendix

decreases—improving the generalizability and robustness of an ensemble method over a single
predictor. For instance, when using simple majority voting where out of five base learners four
found the instance to be of class A instead of B, it is more likely that it is indeed class A rather than
we used a single base learner that could have simply predicted B. The most popular application
of ensembles are tree ensembles, that train multiple decision trees on data (for classification or
regression) and aggregate them into a single model so that when they applied their predictions
are consolidated into a single prediction.

There are two widely-used approaches to ensemble learning [158]:

H Bagging combines predictions learned from multiple bootstrap data sets, each generated by
uniformly sampling from the original data set with replacement. It trains a base learner on
each bootstrap data set. Bagging models are combined by performing a majority vote on
the new instance. A popular method using bagging is Random Forests.

H Boosting incrementally builds a predictor by adjusting the learning algorithm based on the
weights of instances in a weighted training set. If an instance is misclassified or its prediction
is far from the truth, the instance will receive a higher weight. Because the instances are
weighted, the predictor will consider some instances more often—ensuring that previously
wrongly predicted instances will sequentially be predicted more correctly. The final model
is a weighted average of all earlier models. Widely use implementations of boosting include
AdaBoost and XGBoost.

Reinforcement learning

The goal of an RL agent is to perform planning in an environment—i.e., execute a series of actions
with a maximal expected reward. This can be done through two approaches. Model-based RL
builds an explicit model of the environment. The policy can then simply be executed by following
the sequence of actions most appropriate according to the model. However, we are also able to
find the optimal policy without having an explicit model: model-free RL. Model-free RL estimates
the optimal policy directly from experience. This is done through either iteratively finding the
policy directly (policy learning) or finding values for the expected optimal actions in a given state
(value learning). The remainder of this section will focus specifically on value learning.

Value learning. To evaluate a policy, we use a value function Vπ(s)—the expected return of fol-
lowing a policy π starting from state s—, defined as

Vπ(s) = Eπ{Rt | st = s} (A.20)

where Rt is the discounted future reward from current state t onwards (defined in Eq. A.10) and
Eπ{·} is the expected reward given that the agent will follow policy π [176].

Recall from Appendix A that RL tasks are either episodic (tasks that end in a terminal state) or
continuous (tasks that do not). Monte Carlo learning updates the value function when reaching the
terminal state (full look-ahead). It cannot learn the value function for continuous tasks, because

131

they do not have a guarantee of a terminal state. Instead, Temporal-Difference (TD) learning only
considers the current state and follow-up action, and incrementally builds a model (one-step
look-ahead). The additional benefit of TD learning, alongside its application to both episodic and
continuous tasks, is that TD learning is able to react quickly to recent trends [176].

To find an optimal action-selection policy, we need to ensure that all actions are selected infinitely
often. Therefore, each of these learning techniques is used with either on-policy methods—where
it attempts to use and evaluate the same policy that they use to make decisions—, or off-policy
methods—using two distinct policies: one for behavior and one for value estimation [176].

Q-learning. Q-learning is an off-policy TD learning algorithm that is used to learn the Q-function.
The Q-function Qπ(s, a) denotes the expected reward when taking an action a in state s under
policy a:

Qπ(s, a) = Eπ{Rt | st = s, at = a} (A.21)

We obtain the values for the Q-function for the state-action pairs by iteratively updating their Q-
values. First, we initialize it arbitrarily (e.g., randomly or with zeros), then take an action a ∈ As

in state s and observe its direct reward rt+1. In addition, we take into account the maximal Q-
value of the state we end up in after taking the action, denoted by max Q(st+1, a). Jointly, these
parts update the Q-function for the taken state-action pair by updating its current value as

Q(st, at) += α[rt+1 + γ max Q(st+1, a)−Q(st, at)] (A.22)

where α ∈ [0, 1] is the learning rate (i.e., how much the new information overrides the new
information) and γ denotes the discount factor. For fully stochastic events a learning rate of one
is optimal, while for deterministic events the learning rate should decrease to zero. The optimal
actions can then easily be deduced by selecting in each state the action with the highest expected
Q-value

arg max
a∈ As

Qπ(s, a) (A.23)

where As are all actions possible in state s.

While originally the state-action value pairs were represented in a Q-table, this representation
suffers from the same curse of dimensionality of traditional NNs. For use with large state spaces
(e.g., image data), Deep Q-Networks (DQN) [125] can handle vast amounts of data using convolu-
tions, while still performing Q-learning on tasks. They pass each state through a CNN to obtain
the Q-values for that state, and the reward for the next state, and then update the Q-values as
well as the CNN itself.

132 Appendix

C Validation Data
This appendix shows the individual results for each data set-model pair.6 Table A.3 summarizes
the data set-model pair performance, confidence, local fidelity, accuracy, fidelity and time per
data point needed to form a contrastive explanation. Table A.4 details per data set-model pair
the length of the contrastive explanation (C-Length) in terms of decision nodes, length of the
non-contrastive explanation (NC-Length), and the improvement of the former over the latter. In
addition, it shows the number of features for each data set as the upper bound of explanation
length.

Table A.3 Data set-model pair performance, confidence, local fidelity, accuracy, fidelity and time results

Data set Model Perform. Confidence Loc. fid. Accuracy Fidelity Time (s)

Iris RF 0.93 0.89 0.99 0.99 0.99 0.0262

LR 0.93 1.00 1.00 0.96 1.00 0.0205

SVM 0.93 0.77 0.99 0.98 0.97 0.0186

NN 0.97 1.00 1.00 0.98 1.00 0.0238

Diabetes RF 1.00 0.97 0.98 1.00 1.00 0.1667

LR 1.00 1.00 1.00 0.99 0.99 0.0208

SVM 1.00 0.97 0.98 1.00 1.00 0.0228

NN 0.95 1.00 0.99 0.99 0.99 0.0230

Heart disease RF 0.94 1.00 0.99 0.92 0.92 0.0263

LR 1.00 1.00 1.00 0.99 0.99 0.0196

SVM 1.00 0.74 0.96 0.86 0.86 0.0200

NN 1.00 1.00 0.99 0.92 0.92 0.0408

SPECT RF 1.00 1.00 1.00 1.00 1.00 0.0471

LR 1.00 1.00 1.00 1.00 1.00 0.0503

SVM 1.00 1.00 1.00 1.00 1.00 0.0541

NN 1.00 1.00 1.00 1.00 1.00 0.0524

Census income RF 0.53 0.86 0.98 0.78 0.78 0.2312

LR 0.62 0.99 0.99 0.70 0.86 0.0323

SVM 0.64 0.96 0.96 0.67 0.8 0.0706

NN 0.67 0.87 0.98 0.74 0.8 0.0842

Wine quality RF 0.36 0.96 0.99 0.69 0.79 0.1433

SVM 0.26 0.96 0.99 0.57 0.85 0.0376

NN 0.27 0.97 0.99 0.64 0.84 0.0151

Parkinson RF 1.00 1.00 1.00 1.00 1.00 0.0600

SVM 0.96 0.99 1.00 0.61 0.96 0.0507

NN 1.00 1.00 1.00 1.00 1.00 0.1259

Student RF 0.87 0.98 1.00 0.89 0.95 0.1254

SVM 0.82 0.98 1.00 0.86 0.96 0.0491

NN 0.73 0.99 0.99 0.92 0.93 0.0808

Average – 0.96 0.99 0.88 0.94 0.0600

6 The full source code for the quantitative validation (benchmark) is available online at https://github.com/
MarcelRobeer/ContrastiveExplanation-experiment

133

https://github.com/MarcelRobeer/ContrastiveExplanation-experiment
https://github.com/MarcelRobeer/ContrastiveExplanation-experiment

Table A.4 Data set-model pair length results

Data set Features Model C-Length NC-Length Improvement

Iris 4 RF 1.01 1.73 0.72
LR 1.02 1.33 0.31
SVM 1.04 2.00 0.96
NN 1.57 2.38 0.81

Diabetes 7 RF 1.11 6.39 5.28
LR 1.54 5.48 3.94
SVM 1.54 5.00 3.46
NN 1.66 6.87 5.21

Heart disease 13 RF 1.42 6.46 5.04
LR 1.38 5.46 4.08
SVM 1.14 5.14 4.00
NN 1.32 3.79 2.47

SPECT 45 RF 1.26 6.95 5.69
LR 1.26 6.23 4.97
SVM 1.26 4.84 3.58
NN 1.26 6.95 5.69

Census income 108 RF 1.12 1.00 −0.12
LR 1.01 1.00 −0.01
SVM 0.98 1.00 0.02
NN 1.13 1.00 −0.13

Wine quality 11 RF 1.08 10.46 9.38
SVM 0.96 9.98 9.02
NN 1.00 10.25 9.25

Parkinson 28 RF 1.00 1.00 0.00
SVM 1.13 8.50 7.37
NN 1.00 8.07 7.07

Student 58 RF 1.1 9.06 7.96
SVM 1.02 7.91 6.89
NN 1.23 9.44 8.21

Average 1.19 5.37 4.18

134 Appendix

D Experiment Materials
This appendix contains the questionnaire materials. First, we overview the agenda items used for
the preference and agreement parts of the experiment. Next, we include the questionnaire pages
shown to the participants.

Agenda items and explanations

Table A.5 summarizes the ten agenda items for the preference part, and the six agenda items
for the agreement part. Table A.6 presents the corresponding predictions and explanations. Facts
(predictions made by the model) highlighted in red indicate that it is a wrong prediction according
to the actual label.

Table A.5 Experiment agenda items

Agenda item Time Food Agenda Health (past hr)

Preference
0 11:52 chips (4g CHO) - hypo
1 14:47 apple (9g CHO) 14:13 14 minuts of bicycling

(16kph, sport)
-

2 14:23 banana (13g CHO) - -
3 19:1 ham cheese tosti (4g CHO) 19:53 38 minutes of walking hyper
4 20:7 muesli bar (5g CHO) 19:50 69 minutes of walking hyper
5 11:51 spaghetti (7g CHO) 12:24 37 minutes of chores -
6 11:52 grapes (16g CHO) - -
7 20:49 muesli bar (10g CHO) 20:11 25 minutes of dancing

(sport)
-

8 21:38 lasagna (13g CHO) 19:39 67 minutes of skating
(sport) & 22:15 107 minutes
of walking

hyper

9 19:45 pizza (8g CHO) 19:29 16 minutes of chores hyper

Agreement
10 12:17 grapes (14g CHO) 11:30 16 minutes of dancing

(sport)
hypo

11 14:37 chips (3g CHO) - -
12 20:35 chips (2g CHO) 19:48 19 minutes of skating

(sport)
hyper

13 11:51 spaghetti (7g CHO) 12:24 37 minutes of chores -
14 15:39 apple (14g CHO) - -
15 19:15 carrots & potatoes (16g CHO) 20:01 41 minutes of running

(sport)
-

135

Table A.6 Prediction and explanation per experiment agenda item

Agenda item Prediction Explanation

Actual Fact (pred.) Foil Contrastive Non-Contrastive

Preference
0 hypo hypo ok had a hypo had lunch (after 11.30)

and spent less than 5

minutes on activities
1 ok ok hypo did not perform another

activity and did not have
a hypo

had lunch (after 11.30)

2 ok ok hyper her food did not contain
more than 21g CHO

had lunch (after 11.30)
and spent less than 5

minutes on activities and
did not have a hypo

3 hyper hyper ok did not perform sports
and had dinner (after
16.00)

had food after 15.00 and
performed sports

4 hyper hyper ok did not perform sports
and ate a muesli bar (after
16.00)

had food after 15.00 and
ate spaghetti

5 hypo ok hypo did not perform another
activity and did not have
a hypo

had lunch (after 11.30)

6 hypo hypo ok ate grapes had lunch (after 11.30)
and spent less than 5

minutes on activities and
did not have a hypo

7 hyper hyper ok performed dancing and
had dinner (after 16.00)

had food after 15.00 and
performed dancing

8 hyper hyper ok performed two activities
and ate lasagna

had food after 15.00 and
did not eat spaghetti

9 ok hyper ok did not perform sports
and had dinner (after
16.00)

had food after 15.00 and
performed chores

Agreement
10 ok ok hypo did not perform another

activity
had food before 11.30

11 ok ok hypo did not have a a hypo had food before 11.30 and
performed an activity
more than 3 hours before
eating and did not have a
hypo

12 hyper hyper ok did not perform another
activity and had a hyper

had dinner (after 15.00)
and ate spaghetti

13 hypo ok hypo did not perform another
activity and did not have
a hypo

had food after 11.30

14 hyper ok hyper did not have a hyper had an apple after 15:00

and did not perform
sports

15 ok hyper ok did not perform another
activity

ate carrots and potatoes
and the food contained
more than 12g CHO

136 Appendix

Questionnaire pages

The pages below include the following pages of the questionnaire (the pages containing the
agenda items are omitted for brevity reasons):

H Introduction

H Informed Consent (IC)

H Demographics (5 questions)

H Diabetes management familiarity (3 questions)

H Scenario & type I diabetes mellitus (T1DM) management explanation (as shown before and
after the test quiz)

H Test quiz (9 questions, filled in with correct answers)

H Preference part:

– Introduction

– Example

– Pairwise comparison (placeholder)

– Reason for preference

H Agreement part:

– Introduction

– Example

– Agreement cases (placeholder)

– Reason for (dis)agreement

H Thank you, general remarks

137

Introduction

Thank you for your interest in our online experiment. The experiment will take approximately 45 minutes.

Diabetes management

Type 1 Diabetes Mellitus (T1DM) is a chronic condition where the body is unable to produce enough

insulin, the hormone that helps move glucose (sugar) into your body’s tissues. This glucose is used to fuel

your body’s cells. With insufficient insulin, the body is unable to get glucose into the cells where it is

needed, which makes the blood glucose levels very high and causes health problems.

When the blood sugar in your body is too low we refer to it as a hypo, while a too high blood glucose level

is called a hyper. Both are damaging to the body. Hypos are characterized by sweating, fatigue, difficulty

to concentrate and hungriness. Hypers result in thirst, increased urination, nauseousness (feeling sick),

and a bad mood.

Important elements to manage the disease are ones’ nutrition and physical activity and exercise. Food

and drink can increase the glucose levels, depending on the amount of carbohydrates (CHO) in the food.

Exercise decreases glucose levels, depending on the intensity and length of the exercise.

About the experiment

Your task is to make judgments about suggested decisions by an intelligent app that supports a diabetes

patient, for various agenda items of that patient. This study constitutes two parts. In

the preference part you will be given 30 agenda items for a diabetes patient, and two decisions

corresponding to this agenda item. Some decisions will include a rationale of why this decision was made.

You will be asked which decision you find preferable in general, and preferable regarding four value

judgments. In the agreement part you will be provided with 18 agenda items. For each agenda item, you

will be asked whether you agree with the decision made for that agenda item.

Informed Consent

Before taking part in this study, please read the consent form below. Continue to the next page if you

understand the statements and freely consent to participate in the study.

Consent Form

Your responses will be collected anonymously and are kept confidential. There are no known or

anticipated risks associated with this study. You are free to withdraw and stop at any moment of the

experiment, and will receive no penalty if you decide to do so.

Participation in this study typically takes 45 minutes.

If participants have further questions about this study or their rights, or if they wish to lodge a complaint or

concern, they may contact the researchers at: removed for anonymity

By continuing to the next page you indicate that you are at least 18 years old, have read and understood

this consent, and voluntarily participate in this study.

Demographics

We first ask you to fill in the questions below, so that we can collect some general demographics about

the people performing our experiment.

Diabetes management familiarity

Before we start the experiment we would like to gather some insights about your familiarity with diabetes

and managing diabetes.

Experiment

Please read carefully and take notes if necessary.

Emily is a type 1 diabetes mellitus (T1DM) patient. Her profile is as follows:

Task

Emily has an intelligent app that helps her to predict each time she eats what her health status will be in

the next hour. For the food item she chooses to eat, the app will give her a decision whether she will have

a hyper (high glucose), hypo (low glucose), or remain ok. Imagine you are Emily, and the app gives the

decision for the food item you choose.

You will be given 16 moments in the agenda of Emily. For each agenda item (see image below), you will

be provided with:

1. The current time (when she wants the app to make a decision)

2. The food item she wants to eat at this time, and the number of grams of carbohydrate (CHO)

3. The activities she performed (within one hour before eating), and is planning to perform (within

one hour after eating)

4. Whether she had a hyper (too high blood sugar) or hypo (too low blood sugar) during the last

hour

5. A decision of whether her health status in the next hour results in a:

• Hyper (too high blood sugar)

• Hypo (too low blood sugar)

• Ok (neither hyper nor hypo, the ideal situation)

Your task is to make a judgment about the decision made.

The image below shows an example agenda item (as you will be shown):

For this agenda item, the prediction of the intelligent app is 'Hyper'.

Expected Behavior

In general, you can expect the following effects on the prediction:

• Food will increase glucose, where more grams of Carbohydrate (CHO) increase the glucose

level more

• Activities will decrease glucose, where more intense exercise (e.g., sports) and longer exercise

will decrease glucose levels more

• Previous health status will result in similar outcomes:

o a hyper before food increases the chance of a hyper

o a hypo before an activity increases the chance of a hypo

Example Agenda

In the example agenda above, the orange trend line indicates the blood glucose (mg/dL) during the day

for Emily. Her agenda has four items:

• 04:55 - She eats a hamburger meal (14g CHO)

• 08:12 - She eats an apple (6g CHO)

• 09:59 - She performs hiking for 73 minutes

• 13:17 - She eats spaghetti (13g CHO)

Observe that hiking results in a hypo after exercise (red area), while eating spaghetti results in ok (neither

a hypo or hyper; green area) in the hour after eating, even though she had a hypo in the hour before

eating.

TEST: Scenario

A small test of whether you were able to recall some details about the scenario of diabetes patient Emily

and diabetes management. Performing well in this test allows you to gain a bonus reward.

Each question is worth 1 point (total of 9 points), where you can gain a bonus if you obtain 5 or more

points.

Part: Preference

In this part of the experiment, you are tasked with deciding your preference for Decision A or Decision B

regarding five (5) statements. You can also have no preference when you judge both decisions to be

equal. However, even with a slight preference we urge you to choose between Decision A and Decision B.

You will be shown 30 preference judgments.

Click next to see an example.

Part: Preference (example)

You are first given an agenda item about a food item Emily wants to consume at a certain time. In

addition, this agenda item contains activities for the hour before and after eating, and the health status of

Emily in the past hour.

The decision is a prediction of whether Emily will have a hypo or hyper in the next hour, or will be ok

(neither hypo nor hyper). You are given two decisions, and asked to determine your preferences for one

decision over the other regarding five (5) statements.

1. Agenda item (provided by Emily to the intelligent app)

2. Two decisions (both made by the intelligent app)

3. Determine your preferences for five (5) statements

Click next if you understand the task, and want to start the experiment.

Part: Preference

30 pairwise comparisons (random order)

Part: Preference

Finally, for one preference we ask you why you prefer one decision over the other.

Part: Agreement

In this part of the experiment, you are tasked with deciding whether you agree or disagree with the

decision made (i.e., prediction for the next hour of whether the patient will have a hyper, hypo or be ok) for

the agenda item.

You will be shown 18 decisions.

Click next to see an example.

Part: Agreement

You are first given an agenda item about a food item consumed at a certain time. In addition, this agenda

item contains activities for the hour before and after eating, and the health status in the past hour.

The decision is a prediction by the intelligent app of whether Emily will have a hypo or hyper in the next

hour, or will be ok (neither hypo nor hyper). You are given a decision, and asked whether you agree or

disagree with this decision.

Recall that this is the expected behavior:

• Food will increase glucose, where more grams of Carbohydrate (CHO) increase the glucose level

more

• Activities will decrease glucose, where more intense exercise (e.g., sports) and longer exercise

will decrease glucose levels more

• Previous health status will result in similar outcomes:

o a hyper before food increases the chance of a hyper

o a hypo before an activity increases the chance of a hypo

1. Agenda item (provided by Emily to the intelligent app)

2. Decision (made by the intelligent app)

3. Determine whether you agree or disagree with the decision

Click next if you understand the task, and want to start the experiment.

Part: Agreement

18 (dis)agreements (random order)

Part: Agreement

Finally, for one decision we ask you why you choose to agree/disagree with that decision.

Thank you!

Thank you for completing the experiment! The answers you provided are anonymous and kept confidential. If you

have any comments regarding our study, please do not hesitate to fill in the form below. If you have any further

questions, please contact the researchers at: removed for anonymity

PUBLICATIONS
The first paper based on this paper was accepted for publication and presented at the 2018 Third
Annual Workshop on Human Interpretability in Machine Learning (WHI 2018) as part of the Interna-
tional Conference on Machine Learning (ICML) in Stockholm, Sweden.

H J. van der Waa, M. Robeer, J. van Diggelen, M. Brinkhuis, & M. Neerincx, “Contrastive
Explanations with Local Foil Trees”, in 2018 Workshop on Human Interpretability in Machine
Learning (WHI 2018), 2018, pp. 41-47. [Online]. Available: http://arxiv.org/abs/1806.

07470

157

http://arxiv.org/abs/1806.07470
http://arxiv.org/abs/1806.07470

Contrastive Explanations with Local Foil Trees

Jasper van der Waa * 1 2 Marcel Robeer * 1 3 Jurriaan van Diggelen 1 Matthieu Brinkhuis 3 Mark Neerincx 1 2

Abstract
Recent advances in interpretable Machine Learn-
ing (iML) and eXplainable AI (XAI) construct
explanations based on the importance of fea-
tures in classification tasks. However, in a high-
dimensional feature space this approach may be-
come unfeasible without restraining the set of
important features. We propose to utilize the hu-
man tendency to ask questions like “Why this
output (the fact) instead of that output (the foil)?”
to reduce the number of features to those that
play a main role in the asked contrast. Our pro-
posed method utilizes locally trained one-versus-
all decision trees to identify the disjoint set of
rules that causes the tree to classify data points
as the foil and not as the fact. In this study we
illustrate this approach on three benchmark clas-
sification tasks.

1. Introduction
The research field of making Machine Learning (ML) mod-
els more interpretable is receiving much attention. One of
the main reasons for this is the advance in such ML models
and their applications to high-risk domains. Interpretabil-
ity in ML can be applied for the following purposes: (i)
transparency in the model to facilitate understanding by
users (Herman, 2017); (ii) the detection of biased views
in a model (Crawford, 2016; Caliskan et al., 2017); (iii) the
identification of situations in which the model works ad-
equately and safely (Barocas & Selbst, 2016; Coglianese
& Lehr, 2016; Friedler et al., 2018); (iv) the construction
of accurate explanations that explain the underlying causal
phenomena (Lipton, 2016); and (v) to build tools that allow

*Equal contribution 1Perceptual and Cognitive Systems, Dutch
Research Organization for Applied Research (TNO), Soesterberg,
The Netherlands 2Interactive Intelligence group, Technical Uni-
versity of Delft, Delft, The Netherlands 3Department of Infor-
mation and Computing Sciences, Utrecht University, Utrecht,
The Netherlands. Correspondence to: Jasper van der Waa
<jasper.vanderwaa@tno.nl>.

2018 ICML Workshop on Human Interpretability in Machine
Learning (WHI 2018), Stockholm, Sweden. Copyright by the au-
thor(s).

model engineers to build better models and debug existing
models (Kulesza et al., 2011; 2015).

The existing methods in iML focus on different approaches
of how the information for an explanation can be obtained
and how the explanation itself can be constructed. See for
example for an overview the review papers of Guidotti et al.
(2018) and Chakraborty et al. (2017). A number of exam-
ples of common methods are: ordering the feature’s con-
tribution to an output (Datta et al., 2016; Lei et al., 2016;
Ribeiro et al., 2016), attention maps and saliency of the
features (Selvaraju et al., 2016; Montavon et al., 2017; Sun-
dararajan et al., 2017; Zhang et al., 2017), prototype selec-
tion, construction and presentation (Nguyen et al., 2016),
word annotations (Hendricks et al., 2016; Ehsan et al.,
2017), and summaries with decision trees (Krishnan et al.,
1999; Thiagarajan et al., 2016; Zhou & Hooker, 2016) and
decision rules (Hein et al., 2017; Malioutov et al., 2017;
Puri et al., 2017; Wang et al., 2017). In this study we fo-
cus on feature-based explanations. Such explanations tend
to be long when based on all features or use an arbitrary
cutoff point. We propose a model-agnostic method to limit
the explanation length with the help of contrastive explana-
tions. The method also adds information of how that fea-
ture contributes to the output in the form of decision rules.

Throughout this paper, the main reason for explanations is
to offer transparency in the model’s given output based on
which features play a role and what that role is. A few
methods that offer similar explanations are LIME (Ribeiro
et al., 2016), QII (Datta et al., 2016), STREAK (Elenberg
et al., 2017) and SHAP (Lundberg & Lee, 2016). Each of
these approaches answers the question “Why this output?”
in some way by providing a subset of features or an or-
dered list of all features, either visualized or structured in a
text template. However, when humans answer such ques-
tions to each other they tend to limit their explanations to
a few vital points (Pacer & Lombrozo, 2017). This human
tendency for simplicity also shows in iML: when multiple
explanations hold we should pick the simplest explanation
that is consistent with the data (Huysmans et al., 2011).
The mentioned approaches do this by either thresholding
the contribution parameter to a fixed value, presenting the
entire ordered list or by applying it only to low-dimensional
data.

41

Contrastive Explanations with Local Foil Trees

This study offers a more human-like way of limiting
the list of contributing features by setting a contrast be-
tween two outputs. The proposed contrastive explanations
present only the information that causes some data point
to be classified as some class instead of another (Miller
et al., 2017). Recently, Dhurandhar et al. (2018) have
proposed constructing explanations by finding contrastive
perturbations—minimal changes required to change the
current classification to any arbitrary other class. Instead,
our approach creates contrastive targeted explanations by
first defining the output of interest. In other words, our con-
trastive explanations answer the question “Why this output
instead of that output?”. The contrast is made between the
fact, the given output, and the foil, the output of interest.

A relative straightforward way to construct contrastive ex-
planations given a foil based on feature contributions, is to
compare the two ordered feature lists and see how much
some feature differs in their ranking. However, a feature
may have the same rank in both ordered lists but can be
used in entirely different ways for the fact and foil classes.
To mitigate this problem we propose a more meaningful
comparison based on how a feature is used to distinct the
foil from the fact. We train an arbitrary model to distin-
guish between fact and foil that is more accessible. From
that model we distill two sets of rules; one used to identify
data points as a fact and the other to identify data points as
a foil. Given these two sets, we subtract the factual rule set
from the foil rule set. This relative complement of the fact
rules in the foil rules is used to construct our contrastive
explanation. See Figure 1 for an illustration.

Figure 1. This figure shows the general idea of our approach to
contrastive explanations. Given a set of rules that define data
points as either the fact or foil, we take the relative complement
of the fact rules in the foil rules to obtain a description how the
foil differs from the fact in terms of features.

The method we propose in this study obtains this comple-
ment by training a one-versus-all decision tree to recognize
the foil class. We refer to this decision tree as the Foil Tree.
Next, we identify the fact-leaf—the leaf in which the cur-
rent questioned data point resides. Followed by identifying
the foil-leaf, which is obtained by searching the tree with
some strategy. Currently our strategy is simply to choose
the closest leaf to the fact-leaf that classifies data points as

the foil class. The complement is then the set of decision
nodes (representing rules) that are a parent of the foil-leaf
but not of the fact-leaf. Rules that overlap are merged to
obtain a minimum coverage rule set. The rules are then
used to construct our explanation. The method is discussed
in more detail in section 2. An example of its usage is dis-
cussed in section 3 on three benchmark classification tasks.
The validation on these three tasks shows that the proposed
method constructs shorter explanations than the fully fea-
ture list, provide more information of how these features
contribute and that this contribution matches the underly-
ing model closely.

2. Foil Trees; a way for obtaining contrastive
explanations

The method we propose learns a decision tree centred
around any questioned data point. The decision tree is
trained to locally distinguish the foil-class from any other
class, including the fact class. Its training occurs on data
points that can either be generated or sampled from an
existing data set, each labeled with predictions from the
model it aims to explain. As such, our method is model-
agnostic. Similar to LIME (Ribeiro et al., 2016), the sample
weights of each generated or sampled data point depend on
its similarity to the data point in question. Samples in the
vicinity of the questioned data point receive higher weights
in training the tree, ensuring its local faithfulness.

Given this tree, the ‘foil-tree’, we search for the leaf in
which the data point in question resides, the so called ‘fact-
leaf’. This gives us the set of rules that defines that data
point as the not-foil class according to the foil-tree. These
rules respect the decision boundary of the underlying ML
model as it is trained to mirror the foil class outputs. Next,
we use an arbitrary strategy to locate the ‘foil-leaf’—for
example the leaf that classifies data point as the foil class
with the lowest number of nodes between itself and the
fact-leaf. This results in two rule sets, whose relative com-
plement define how the data point in question differs from
the foil data points as classified by the foil-leaf. This ex-
planation of the difference is done in terms of the input
features themselves.

In summary, the proposed method goes through the follow-
ing steps to obtain a contrastive explanation for an arbitrary
ML model, the questioned data point and its output accord-
ing to that ML model:

1. Retrieve the fact; the output class.

2. Identify the foil; explicitly given in the question or
derived (e.g. second most likely class).

3. Generate or sample a local data set; either ran-
domly sampled from an existing data set, generated

42

Contrastive Explanations with Local Foil Trees

according to a normal distribution, generated based on
marginal distributions of feature values or more com-
plex methods.

4. Train a decision tree; with sample weights depending
on the training point’s proximity or similarity to the
data point in question.

5. Locate the ‘fact-leaf’; the leaf in which the data point
in question resides.

6. Locate a ‘foil-leaf’; we select the leaf that classifies
data points as part of the foil class with the lowest
number of decision nodes between it and the fact-leaf.

7. Compute differences; to obtain the two set of rules
that define the difference between fact- and foil-leaf,
all common parent decision nodes are removed from
each rule sets. From the decision nodes that remain,
those that regard the same feature are combined to
form a single literal.

8. Construct explanation; the actual presentation of the
differences between the fact-leaf and foil-leaf.

Figure 2 illustrates the aforementioned steps. The search
for the appropriate foil-leaf in step 6 can vary. In Section
2.1 we discuss this more in detail. Finally, note that the
method is not symmetrical. There will be a different an-
swer on the question “Why class A and not B?” then on
“Why class B and not A?” as the foil-tree is trained in the
first case to identify class B and in the second case to iden-
tify class A. This is because we treat the foil as the ex-
pected class or the class of interest to which we compare
everything else. In addition, even if the trees are similar,
the relative complements of their rule sets are reversed

2.1. Foil-leaf strategies

Up to now we mentioned one strategy to find a foil-leaf,
however multiple strategies are possible—although not all
strategies may result in a satisfactory explanation according
to the user. The strategy used in this study is simply the
first leaf that is closest to the fact-leaf in terms of number
decision nodes, resulting in a minimal length explanation.

A disadvantage of this strategy is its ignorance towards the
value of the foil-leaf compared to the rest of the tree. The
nearest foil-leaf may be a leaf that classifies only a rela-
tively few data points or classifies them with a relatively
high error rate. To mitigate such issues the foil-leaf selec-
tion mechanism can be generalized to a graph-search from
a specific (fact) vertex to a different (foil) vertex while min-
imizing edge weights. The foil-tree is treated as a graph
whose decision node and leaf properties influence some
weight function. This generalization allows for a number
of strategies, and each may result in a different foil-leaf.

The strategy used in this preliminary study simply reduces
to each edge having a weight of one, resulting in the nearest
foil-leaf when minimizing the total weights.

As an example, an improved strategy may be where the
edge weights are based on the relative accuracy of a node
(based on its leaves) or leaf. Where a higher accuracy re-
sults in a lower weight, allowing the strategy to find more
distant, but more accurate, foil-leaves. This may result in
relatively more complex and longer explanations, which
nonetheless hold in more general cases. For example the
nearest foil-leaf may only classify a few data points accu-
rately, whereas a slightly more distant leaf classifies sig-
nificantly more data points accurately. Given the fact that
an explanation should be both accurate and fairly general,
this proposed strategy may be more beneficial (Craven &
Shavlik, 1999).

Note that the proposed method assumes the knowledge of
the used foil. In all cases we take the second most likely
class as our foil. Although this may be an interesting foil it
may not be the contrast the user actually wants to make.
Either the user makes its foil explicit or we introduce a
feedback loop in the interaction that allows our approach
to learn which foil is asked for in which situations. We
leave this for future work.

3. Validation
The proposed method is validated on three benchmark clas-
sification tasks from the UCI Machine Learning Reposi-
tory (Dua & Karra Taniskidou, 2017); the Iris data set, the
PIMA Indians Diabetes data set and the Cleveland Heart
Disease data set. The first data set is a well-known clas-
sification task of plants based on four flower leaf charac-
teristics with a size of 150 data points and three classes.
The second data set is a binary classification task whose
task is to correctly diagnose diabetes and contains 769 data
points and has nine features. The third data set is aims at
classifying the risk of heart disease from no presence (0)
to presence (1–4), consisting of 297 instances with 13 fea-
tures.

To show the model-agnostic nature of our proposed method
we applied four distinct classification models to each data
set: a random forest, logistic regression, support vector ma-
chine (SVM) and a neural network. Table 1 shows for each
data set and classifier the F1 score of the trained model.
We validated our approach on four measures; explanation
length, accuracy, fidelity and time. These measures for
evaluating iML decision rules are adapted from Craven &
Shavlik (1999), where the mean length serves as a proxy
measure demonstrating the relative explanation compre-
hensibility (Doshi-Velez & Kim, 2017). The fidelity allows
us to state how well the tree explains the underlying model,

43

Contrastive Explanations with Local Foil Trees

Figure 2. The steps needed to define and train a Foil Tree and to use it to construct a contrastive explanation. Each step corresponds with
the listed steps in section 2.

and the accuracy tells us how well its explanations general-
ize to unseen data points. Below we describe each in detail:

1. Mean length; average length of the explanation in
terms of decision nodes. The ideal value is in the
range [1.0, Nr. features), since a length of 0 means
that no explanation is found and a length near the
number of features offers little gain compared to
showing the entire ordered feature contribution list as
in other iML methods.

2. Accuracy; F1 score of the foil-tree for its binary clas-
sification task on the test set compared to the true la-
bels. This measure indicates how general the expla-
nations generated from the Foil Tree are on an unseen
test set.

3. Fidelity; F1 score of the foil-tree on the test set com-
pared to the model output. This measure provides a
quantitative value of how well the Foil Tree agrees
with the underlying classification model it tries to ex-
plain.

4. Time; number of seconds needed on average to ex-
plain a test data point.

Each measure is cross-validated three times to account for
randomness in foil-tree construction. These results are
shown in their respective columns in Table 1. They show
that on average the Foil Tree is able to provide concise ex-
planations, with a mean length 1.33, while accurately mim-
icking the decision boundaries used by the model with a

mean fidelity of 0.93 and generalizes well to unseen data
with a mean accuracy of 0.92. The foil-tree performs simi-
lar to the underlying ML model in terms of accuracy. Note
that for the random forest, logistic regression and SVM
models on the diabetes data set rules of length zero were
found—i.e. no explanatory differences were found be-
tween facts and foils in a number of cases—, resulting in
a mean length of less than one. For all other models our
method was able to find a difference for every questioned
data point.

To further illustrate the proposed method, below we present
a single explanation of two classes of the Iris data set in a
dialogue setting;

• System: The flowertype is ‘Setosa’.
• User: Why ‘Setosa’ and not ‘Versicolor’?
• System: Because for it to be ‘Versicolor’ the

‘petal width (cm)’ should be smaller and the
‘sepal width (cm)’ should be larger.

• User: How much smaller and larger?
• System: The ‘petal width (cm)’ should be

smaller than or equal to 0.8 and the ‘sepal
width (cm)’ should be larger than 3.3.

The fact is the ‘Setosa’ class, the foil is the ‘Versicolor’
class and the total length of the explanation contains two
decision nodes or literals. The generation of this small di-
alogue is based on text templates and fixed interactions for
the user.

44

Contrastive Explanations with Local Foil Trees

Table 1. Performance of foil-tree explanations on the Iris, PIMA Indians Diabetes and Heart Disease classification tasks. The column
’Mean length’ also contains the total number of features for that data set as the upper bound of the explanation length.

DATA SET MODEL F1 SCORE MEAN LENGTH ACCURACY FIDELITY TIME

IRIS

RANDOM FOREST 0.93 1.94 (4) 0.96 0.97 0.014
LOGISTIC REGRESSION 0.93 1.50 (4) 0.89 0.96 0.007
SVM 0.93 1.37 (4) 0.89 0.92 0.010
NEURAL NETWORK 0.97 1.32 (4) 0.87 0.87 0.005

DIABETES

RANDOM FOREST 1.00 0.98 (9) 0.94 0.94 0.041
LOGISTIC REGRESSION 1.00 0.98 (9) 0.94 0.94 0.032
SVM 1.00 0.98 (9) 0.94 0.94 0.034
NEURAL NETWORK 1.00 1.66 (9) 0.99 0.99 0.009

HEART DISEASE

RANDOM FOREST 0.94 1.32 (13) 0.88 0.90 0.106
LOGISTIC REGRESSION 1.00 1.21 (13) 0.99 0.99 0.006
SVM 1.00 1.19 (13) 0.86 0.86 0.012
NEURAL NETWORK 1.00 1.56 (13) 0.92 0.92 0.009

4. Conclusion
Current developments in Interpretable Machine Learning
(iML) created new methods to answer “Why output A?”
for Machine Learning (ML) models. A large set of such
methods use the contributions of each feature used to clas-
sify A and then provides either a subset of feature whose
contribution is above a threshold, the entire ordered feature
list or simply apply it only to low-dimensional data.

This study proposes a novel method to reduce the number
of contributing features for a class by answering a contrast-
ing question of the form “Why output A (fact) instead of
output B (foil)?” for an arbitrary data point. This allows
us to construct an explanation in which only those features
play a role that distinguish A from B. Our approach finds
the contrastive explanation by taking the complement set of
decision rules that cause the classification of A in the rule
set of B. In this study we implemented this idea by training
a decision tree to distinguish between B and not-B (one-
versus-all approach). A fact-leaf is found in which the data
point in question resides. Also, a foil-leaf is selected ac-
cording to a strategy where all data points are classified as
the foil (output B). We then form the contrasting rules by
extracting the decision nodes in the sub-tree from the low-
est common ancestor between the fact-leaf and foil-leaf,
that hold for the foil-leaf but not for the fact-leaf. Overlap-
ping rules are merged and eventually used to construct an
explanation.

We introduced a simple and naive strategy of finding an ap-
propriate foil-leaf. We also provided an idea to extend this
method with more complex and accurate strategies, which
is part of our future work. We plan a user validation of
our explanations with non-experts in Machine Learning to
test the satisfaction of our explanations. In this study we
tested if the proposed method is viable on three different
benchmark tasks as well as to test its fidelity on different

underlying ML models to show its model-agnostic capac-
ity.

The results showed that for different classifiers our method
is able to offer concise explanations that accurately de-
scribe the decision boundaries of the model it explains.

As mentioned, our future work will consist out of extending
this preliminary method with more foil-leaf search strate-
gies as well as applying the method to more complex tasks
and validating its explanations with users. Furthermore, we
plan to extend the method with an adaptive foil-leaf search
to adapt explanations towards a specific user based on user
feedback.

References
Barocas, S. and Selbst, A. D. Big Data’s Disparate Impact.

Cal. L. Rev., 104:671, 2016.

Caliskan, A., Bryson, J. J., and Narayanan, A. Semantics
Derived Automatically from Language Corpora Con-
tain Human-Like Biases. Science, 356(6334):183–186,
2017.

Chakraborty, S., Tomsett, R., Raghavendra, R., Harborne,
D., Alzantot, M., Cerutti, F., Srivastava, M., Preece, A.,
Julier, S., Rao, R. M., Kelley, Troy D., Braines, D., Sen-
soy, M., Willis, C. J., and Gurram, P. Interpretability of
Deep Learning Models: A Survey of Results. In IEEE
Smart World Congr. DAIS - Work. Distrib. Anal. Infras-
truct. Algorithms Multi-Organization Fed. IEEE, 2017.

Coglianese, C. and Lehr, D. Regulating by Robot: Admin-
istrative Decision Making in the Machine-Learning Era.
Geo. LJ, 105:1147, 2016.

Craven, M. W. and Shavlik, J. W. Rule Extraction: Where
Do We Go from Here? Technical report, University of
Wisconsin Machine Learning Research Group, 1999.

45

Contrastive Explanations with Local Foil Trees

Crawford, K. Artificial Intelligence’s White Guy Problem.
The New York Times, 2016.

Datta, A., Sen, S., and Zick, Y. Algorithmic Transparency
via Quantitative Input Influence: Theory and Experi-
ments with Learning Systems. In Proc. 2016 IEEE Symp.
Secur. Priv. (SP 2016), pp. 598–617. IEEE, 2016. ISBN
9781509008247. doi: 10.1109/SP.2016.42.

Dhurandhar, Amit, Chen, Pin-Yu, Luss, Ronny, Tu, Chun-
Chen, Ting, Paishun, Shanmugam, Karthikeyan, and
Das, Payel. Explanations based on the Missing: To-
wards Contrastive Explanations with Pertinent Nega-
tives. arXiv preprint arXiv:1802.07623, 2018.

Doshi-Velez, F and Kim, B. Towards A Rigorous Sci-
ence of Interpretable Machine Learning. arXiv preprint
arXiv:1702.08608, 2017.

Dua, D. and Karra Taniskidou, E. UCI Machine Learn-
ing Repository, 2017. URL http://archive.ics.
uci.edu/ml.

Ehsan, U., Harrison, B., Chan, L., and Riedl, M. O. Ra-
tionalization: A Neural Machine Translation Approach
to Generating Natural Language Explanations. arXiv
preprint arXiv:1702.07826, 2017.

Elenberg, E. R., Dimakis, A. G., Feldman, M., and Karbasi,
A. Streaming Weak Submodularity: Interpreting Neural
Networks on the Fly. arXiv preprint arXiv:1703.02647,
2017.

Friedler, S. A., Scheidegger, C., Venkatasubramanian, S.,
Choudhary, S., Hamilton, E. P., and Roth, D. A Compar-
ative Study of Fairness-Enhancing Interventions in Ma-
chine Learning. arXiv preprint arXiv:1802.04422, 2018.

Guidotti, R., Monreale, A., Turini, F., Pedreschi, D., and
Giannotti, F. A Survey Of Methods For Explaining
Black Box Models. arXiv preprint arXiv:1802.01933,
2018.

Hein, D, Udluft, S, and Runkler, T. A. Interpretable Poli-
cies for Reinforcement Learning by Genetic Program-
ming. arXiv preprint arXiv:1712.04170, 2017.

Hendricks, L. A., Akata, Z., Rohrbach, M., Donahue, J.,
Schiele, B., and Darrell, T. Generating Visual Explana-
tions. In Eur. Conf. Comput. Vis., pp. 3–19, 2016. ISBN
9783319464923. doi: 10.1007/978-3-319-46493-0 1.

Herman, B. The Promise and Peril of Human Evaluation
for Model Interpretability. In Conf. Neural Inf. Process.
Syst., 2017.

Huysmans, J., Dejaeger, K., Mues, C., Vanthienen, J., and
Baesens, B. An Empirical Evaluation of the Comprehen-
sibility of Decision Table, Tree and Rule Based Predic-
tive Models. Decis. Support Syst., 51(1):141–154, 2011.
ISSN 01679236. doi: 10.1016/j.dss.2010.12.003.

Krishnan, R., Sivakumar, G., and Bhattacharya, P. Ex-
tracting Decision Trees From Trained Neural Networks.
Pattern Recognit., 32:1999–2009, 1999. doi: 10.1145/
775047.775113.

Kulesza, T., Stumpf, S., Wong, W.-K., Burnett, M. M., Per-
ona, S., Ko, A., and Oberst, I. Why-Oriented End-User
Debugging of Naive Bayes Text Classification. ACM
Trans. Interact. Intell. Syst. (TiiS), 1(1):2, 2011.

Kulesza, T., Burnett, M., Wong, W.-K., and Stumpf, S.
Principles of Explanatory Debugging to Personalize In-
teractive Machine Learning. In Proc. 20th Intl. Conf. on
Intell. User Interfaces, pp. 126–137. ACM, 2015.

Lei, T., Barzilay, R., and Jaakkola, T. Rationalizing Neu-
ral Predictions. arXiv preprint arXiv:1606.04155, 2016.
ISSN 9781450321389. doi: 10.1145/2939672.2939778.

Lipton, Z. C. The Mythos of Model Interpretability. In
2016 ICML Work. Hum. Interpret. Mach. Learn., 2016.

Lundberg, S. and Lee, S.-I. An Unexpected Unity Among
Methods for Interpreting Model Predictions. In 29th
Conf. Neural Inf. Process. Syst. (NIPS 2016), 2016.

Malioutov, D. M., Varshney, K. R., Emad, A., and Dash,
S. Learning Interpretable Classification Rules with
Boolean Compressed Sensing. Transparent Data Min.
Big Small Data. Stud. Big Data, 32, 2017. doi: 10.1007/
978-3-319-54024-5.

Miller, T., Howe, P., and Sonenberg, L. Explainable AI:
Beware of Inmates Running the Asylum. In Proc. Int. Jt.
Conf. Artif. Intell. (IJCAI), pp. 36–41, 2017.

Montavon, G., Lapuschkin, S., Binder, A., Samek, W.,
and Müller, K. R. Explaining Nonlinear Classification
Decisions with Deep Taylor Decomposition. Pattern
Recognit., 65(C):211–222, 2017. ISSN 00313203. doi:
10.1016/j.patcog.2016.11.008.

Nguyen, A., Dosovitskiy, A., Yosinski, J., Brox, T., and
Clune, J. Synthesizing the Preferred Inputs for Neurons
in Neural Networks via Deep Generator Networks. Adv.
Neural Inf. Process. Syst., 29, 2016.

Pacer, M. and Lombrozo, T. Ockham’s Razor Cuts to the
Root: Simplicity in Causal Explanation. J. Exp. Psychol.
Gen., 146(12):1761–1780, 2017. ISSN 1556-5068. doi:
10.1037/xge0000318.

46

Contrastive Explanations with Local Foil Trees

Puri, N., Gupta, P., Agarwal, P., Verma, S., and Kr-
ishnamurthy, B. MAGIX: Model Agnostic Glob-
ally Interpretable Explanations. arXiv preprint
arXiv:1702.07160, 2017.

Ribeiro, M. T., Singh, S., and Guestrin, C. ”Why Should I
Trust You?”: Explaining the Predictions of Any Classi-
fier. In Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Dis-
cov. Data Min. (KDD’16), pp. 1135–1144, 2016. ISBN
9781450321389. doi: 10.1145/2939672.2939778.

Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R.,
Parikh, D., and Batra, D. Grad-CAM: Visual Expla-
nations from Deep Networks via Gradient-based Local-
ization. In NIPS 2016 Work. Interpret. Mach. Learn.
Complex Syst., 2016. ISBN 9781538610329. doi:
10.1109/ICCV.2017.74.

Sundararajan, M., Taly, A., and Yan, Q. Axiomatic Attribu-
tion for Deep Networks. In Proc. 34th Int. Conf. Mach.
Learn. (ICML), 2017.

Thiagarajan, J. J., Kailkhura, B., Sattigeri, P., and Rama-
murthy, K. N. TreeView: Peeking into Deep Neural
Networks Via Feature-Space Partitioning. In NIPS 2016
Work. Interpret. Mach. Learn. Complex Syst., 2016.

Wang, T., Rudin, C., Velez-Doshi, F., Liu, Y., Klampfl,
E., and Macneille, P. Bayesian Rule Sets for Inter-
pretable Classification. In Proc. IEEE Int. Conf. Data
Min. (ICDM), pp. 1269–1274. IEEE, 2017. ISBN
9781509054725. doi: 10.1109/ICDM.2016.130.

Zhang, J., Bargal, S. A., Lin, Z., Brandt, J., Shen, X., and
Sclaroff, S. Top-Down Neural Attention by Excitation
Backprop. Int. J. Comput. Vis., pp. 1–19, 2017. ISSN
15731405. doi: 10.1007/s11263-017-1059-x.

Zhou, Y. and Hooker, G. Interpreting Models via Single
Tree Approximation. arXiv preprint arXiv:1610.09036,
2016.

47

	Abstract
	Acknowledgements
	Abbreviations
	Introduction
	Context
	Research Approach: Design Science
	Thesis Outline

	Background: Interpretable Machine Learning
	Artificial Intelligence and Machine Learning
	Key Terminology
	Why Explain?
	What Makes an Explanation Interpretable?
	Making Machine Learning Interpretable
	Practical and Ethical Considerations
	Summary

	Literature Study
	Contrastive Explanation
	Why P rather than Q?
	Contrasts, Facts, Foils and Counterfactuals
	Contrastive Explanation in Machine Learning
	Conclusion

	Interpretable Machine Learning Methods
	Literature Review Method
	Taxonomy of Interpretable Machine Learning Methods
	Explanatory Representations
	Methods
	Discussion & Conclusion

	Foil Trees
	Foil Trees: Contrastive Explanations for Machine Learning
	Contrastive Explanation as Binary Classification
	Implementation

	Quantitative Validation
	Performance Metrics
	Setup
	Results
	Discussion & Conclusion

	Empirical Evaluation
	Experiment
	Glucose Level Prediction Data
	Experimental Design
	Results
	Discussion
	Conclusion

	Conclusion and Outlook
	Conclusion and Outlook
	Conclusion
	Future Directions

	Bibliography
	Appendix
	Machine Learning Model Evaluation
	Machine Learning Techniques
	Validation Data
	Experiment Materials

	Publications

