
Master Thesis

Performance optimization of solving methods in ELEFANT and

development of simPyFEM: An efficient educational tool for

geodynamic simulations using Python

Job Mos BSc

Supervisor: dr. Cedric Thieulot

Second supervisor: Lukas van de Wiel MSc

Utrecht University

March 1, 2018

Abstract

Numerical models are used to develop a better physical understanding of small and large scale geody-

namic processes over geological time scales. Through continuous development of computational techniques

and methods, the accuracy and resolution of the models increases each year. Simulating geodynamic pro-

cesses such as mantle convection or subduction requires the solve of a linear system in which efficient solvers

and preconditioners can be used to yield low computation times and thus optimal performance. Many state

of the art codes are fully parallel but even then can require multiple days or weeks to run large simulations.

Implementing an efficient solver and preconditioner into ELEFANT is the first step into optimizing its per-

formance. A free and open source package for scientific computing (PETSc) is used to facilitate this process.

The second part of this thesis consists of the development of an educational tool for geodynamics called

simPyFEM. By translating and optimizing a pre-exisiting code (simpleFEM) from Fortran to Python, its

usability and versatility are improved. This modernization is inviting to students who are new to geody-

namic modelling and want to experience the effect, on an educational level, of changing parameter such as

viscosity, density and gravity.

Contents

1 Introduction 1

1.1 Geodynamic modelling . 1

1.2 ELEFANT . 1

1.3 Governing equations . 2

1.4 Finite elements . 3

1.5 Challenges and goal . 6

2 Methods 6

2.1 Matrices . 6

2.2 Time complexity . 7

2.3 Solvers . 7

2.4 Preconditioners . 13

2.5 PETSc . 14

3 Results / Numerical experiments 16

3.1 NSinker . 17

3.2 Tosi . 18

3.3 Annulus . 19

3.4 Convecting cube . 20

3.5 Subduction . 20

4 Discussion and conclusions 28

5 simPyFEM 30

5.1 Methods . 31

5.2 Results . 35

5.3 Discussion and conclusions . 43

1 Introduction

1.1 Geodynamic modelling

Through the interpretation of geological, geophysical, geochemical and other data we gain a better understand-

ing of the fundamental geodynamic processes linked to the tectonic evolution of the Earth. Reconstructing

and simulating tectonic progression of Earth’s history (Van Hinsbergen et al., 2012) allows us to develop an

explanation for the formation and evolution of both small and large scale structures and dynamical processes.

The scale of these structures ranges from grain-size evolution (Thornton, 2000) to 10-meter scale shear zones

(Mancktelow, 2002) to whole Earth mantle convection (Schubert et al., 2001; Ismail-Zadeh and Tackley, 2010;

Zhong et al., 2007).

Tomographical data, obtained through seismic stations, reveals the relative velocity structure of the Earth

(Bijwaard et al., 1998). This structure can be linked to density and temperature of convecting mantle material.

Combining these observations and interpretations with laboratory High Pressure/Temperature (HPT) experi-

ments (Murakami et al., 2004), geological data logged in the field and paleomagnetic data (de Groot et al., 2016)

are the basis of producing accurate numerical models. Ultimately, a starting point is required when developing

a model (e.g. initial slab angle and plate motion velocity when simulating plate subduction).

Numerical models are able to simulate both (in time and space) small and large scale processes employing

forward modelling. Contrary to seismics, where a model is produced out of a set of observational data (Floricich

et al., 2011), numerical modelling is grounded by a set of equations, boundary conditions and an initial setup.

These physically substantiated equations describe the interaction between a set of variables such as pressure,

velocity, viscosity, density and temperature (a detailed explanation can be found in books such as Gerya (2010)

and Lowrie (2007)). Consequently, the set of these variables allows for an interpretation of the resulting

geodynamic behaviour.

The complexity of numerical models is increasing rapidly. Two-dimensional models were the first to arrive in

the geodynamic modelling field, some of which are still in active development (Sopale (Fullsack, 1995), I2ELVIS

(Gerya and Yuen, 2003), SULEC (Quinquis et al., 2011)), and evolved to complex pieces of software which

are able to model thermomechanically coupled geodynamics in full 3D at high resolutions and small time steps

showing large jumps in viscosity (Kronbichler et al., 2012; Zhong et al., 2000). Modern codes such as ASPECT

(Kronbichler et al., 2012) and StagYY (Tackley, 2008) exploit mesh refinement (May et al., 2013), yin-yang

type elements (Guerri et al., 2016), optimal solving strategies (May et al., 2016) and multi-core parallelism

(Bangerth et al., 2012) further enhancing computational performance.

Continuous development of these types of techniques and constantly increasing needs on numerical modellers

drives researchers to further improve performance and intricacy of pre-existing or newly developed models (May

et al., 2013, 2014, 2015; Ho et al., 2015). Modelling geodynamical processes at high performance promotes

exploiting high resolutions and thus allows for a more detailed description of the physical evolution. However,

high resolution comes at the price of long computational time. Combining high resolution with large contrasts

in viscosity, caused by plumes when modelling mantle convection, also requires switching from a direct solv-

ing technique to an iterative solver approach. Iteratively solving a system of equations facilitates the use of

preconditioners which beneficially manipulate the equations (Saad, 2003) and an increase in computational

performance is expected.

1.2 ELEFANT

Not all numerical codes focus on identical problems. For example, ASPECT (Advanced Solver for Problems

in Earth’s ConvecTion (Kronbichler et al., 2012)) is a state of the art mantle convection code specialized in

high performance and high resolution models. Running the code on simple models at low resolution may yield

an accurate solution, but is unreasonable/inefficient because the same result can also be obtained by a simpler

1

and less complex numerical code in a fraction of the time. Benchmark tests in the modelling community (Tosi

et al., 2015) compare the many numerical codes which are instructed to run the same model. This provides a

performance and accuracy overview of the many codes available today (e.g. ASPECT, CitcomS (Zhong et al.,

2000), ELEFANT and others).

Like ASPECT is aimed at mantle convection, other codes will focus more on smaller scale structures in

the crust and lithosphere. ELEFANT focusses on larger scale structures such as modelling subduction and

convection. ELEFANT (ELElements Finis Appliques au Numerique en TectOnique (Thieulot, 2014)) is a

descendant of FANTOM (Thieulot, 2011) (Finite Element method Applied to Numerical TectOnics Modelling),

thus borrowing a lot of features from it. It is a multi-purpose thermomechanically coupled finite element

Arbitrary Lagrangian Eularian geodynamical code and it allows for different boundary conditions (e.g. no-

slip, free-slip and a free surface). The code is still under active development and usage (Maffione et al., 2015;

Tosi et al., 2015; Thieulot, 2017, 2018). ELEFANT offers a variety of solving methods. MUMPS (MUltifrontal

Massively Parallel sparse direct Solver) is the integrated direct solver (Amestoy et al., 2001). Numerous iterative

solvers and preconditioners are also available as on/off toggles in the code.

Not only regularly spaced quadrilateral (in 2D) and hexahedrons (in 3D) are supported. Many other element

geometries can be toggled with a single variable. The range from a 2D box with regular square elements to a

3D hollow sphere containing up of twelve individual parts that communicate through a complex connectivity

setup form a versatile base layer for many types of numerical simulations. However, the main focus is on

regular Q1P0 elements. To efficiently solve the set of equations, an outer-inner solve technique known as the

Schur complement method (Horn and Zhang, 2005) is used. ELEFANT is constructed to be installed and set

up relatively easily. The code and subroutine structure are built to be understood by students with a little

background in finite elements, modelling and Fortran. By breaking up the code in many subroutines, every

routine serves one job only. This further supports understandability for outside users.

ELEFANT is in continuous development. Performance improvements such as parallelism could have a great

impact on its future use. Often, more than 90 percent of runtime consists of the solve step. Especially in large

runs with high resolution and high viscosity contrasts, this problem becomes prominent. Direct solvers are

always the preferred method for solving smaller 2D problems because of relatively small amounts of CPU and

RAM (Random Access Memory) requirements compared to 3D. Upscaling to 3D can present computational

complications, such as long computation times, when using direct solvers. For high resolution 3D problems,

iterative solvers provide a better solution. These solvers require a small amount of RAM compared to direct

solvers. Trough the continuous development of ELEFANT it grows to be a more robust, versatile and powerful

code.

1.3 Governing equations

On the geological time scale, flow of mantle and lithosphere can be estimated by assuming continuous fluid

behaviour (Karato, 2008). Therefore the Stokes equations are solved to model Earth’s material flow. In the

case of geodynamics, the momentum conservation equation is used to describes the mechanics of the litho- and

asthenosphere

∇ · σ + ρ~g = ~0 (1)

where σ is the stress tensor (Pa), ρ the mass density (kg/m3), and ~g the gravitational acceleration vector

(m/s2).

To preserve mass conservation (i.e. mass outflow is equal to mass inflow in a bounded system), incompress-

ibility is assumed. The incompressibility constraint, resulting in a constant overall density writes

∇ · ~v = 0 (2)

2

where ~v is the velocity vector (m/s). The stress tensor is given by

σ = −pI + τ (3)

where p is the hydrostatic pressure (Pa), I the identity matrix and τ the deviatoric stress tensor (Pa). The

latter is expressed in terms of dynamic viscosity µ (m2/s) and strain rate

τ = 2µε̇ (4)

where the ε̇ is the strain rate

ε̇ =
1

2

[
∇~v + (∇~v)T

]
(5)

expressed in terms of velocity gradients (s−1). Combining these five equations results in the Stokes equation

∇ · (2µε̇)−∇p+ ρ~g = ~0 (6)

Figure 1: Top: comparison of a regularly spaced rectangular mesh and adaptive mesh. In this case, more detail is

required in the center and thus mesh is adapted. Bottom: simple dimensionless convecting system and associated mesh

with higher resolution in areas of higher temperature gradients. Top two and bottom right figure from May et al. (2013),

bottom left from Tosi et al. (2015).

1.4 Finite elements

To be able to solve the Stokes equations, the Finite Element Method (FEM) is used. This is a powerful numerical

technique to solve Partial Differential Equations (PDE) that arise in fields of engineering and applied science

3

(Reddy and Gartling, 2010). The method is based on the variational and weighed residual methods (Reddy,

1986, 2002, 2004; J N Reddy, 2005; Heinrich, 1965; Mikhlin, 1971) through which a differential equation and its

solution are represented as a set of unknowns and corresponding functions. The functions are an approximation

such that they abide the boundary conditions.

In FEM, the domain Ω is subdivided into smaller geometrically shaped subdomains called finite elements,

each able to satisfy different boundary conditions. For every element it is possible to produce an approximate

function required for solving the PDE. FEM allows for irregularly shaped elements, hereby making it possible

exploit the use of mesh refinement techniques (May et al., 2013). Areas where gradients in parameters (temper-

ature, velocity, viscosity) are largest are assigned smaller elements (Figure 1). In lithosphere modelling a fault

geometry with high gradients in viscosity would be an ideal place for mesh refinement.

The main steps that are carried out during FEM calculation, in order, are discretization of the PDE,

construction of the weak form, setup of the equations and unknowns, assembly of the matrix/matrices, boundary

condition imposing and solving the system. Discretization subdivides the domain Ω, where Ω ∪ Γ (Figure 2),

into element domains Ωe bounded by Γe. For every element, an elemental matrix and elemental right-hand

side are constructed. This is carried out through a numerical integration. This integration can be of linear,

quadratic or higher order. If calculating the unknown pressure, P , in a single element, the FEM expression is

P (x, y) ≈ P e(x, y)

n∑
i=1

P e
i φ

e
i (x, y) (7)

where P e is the approximation of P for a single element, φe are the functions related to the element and n is

the number of nodes that make up the element (n = 4 for the dark grey element in Figure 2).

Figure 2: Discretisation of the domain Ω using irregularly shaped elements. From Reddy and Gartling (2010).

In order to numerically integrate a PDE into a computer, its weak form needs to be constructed. The weak

form is equivalent to the actual PDE in addition to supporting some types of boundary conditions (Reddy and

Gartling, 2010). For an extensive background on the weak formulation, the reader is referred to Pinchover and

Rubinstein (2005). After integration, simple boundary conditions can already be applied to the weak form over

Ω. Finally, the weak form is decomposed to the element-based equations.

The resulting polynomials can be integrated over a number of the integration points, known as quadrature

4

points (nodes that are at the corner of the element). Shape functions describe the geometry of the element in a

unique coordinate scheme and are used in the weak form of the PDE. Continuity in the system is maintained as

neighbouring elements share some amount of nodes depending on element geometry. As an example, a grid of

quadrilateral elements is set up (Figure 3). In the case of 2D, the resolution is defined as the amount of nodes

in the x and y direction, nx and ny respectively. In this case, 4 nodes make up 1 element. For hexahedral

elements in 3D, 8 nodes make up an element. In order to solve PDEs with FEM, it must be known which local

Figure 3: FEM mesh numbering of nodes and elements in a rectangular grid. From GNU (2014).

nodes belong to which element. This link between node and element numbering is called connectivity. A correct

connectivity setup is crucial. From Figure 3 it is clear that the corners of element number 1 are nodes 1,2,7 and

6. Local ordering of nodes belonging to elements is done counter clockwise starting from the bottom left.

A quadrilateral element surrounded by other elements shares two nodes with the up, down, left and right

elements and one node with the neighbouring top-right, top-left, bottom-right and bottom-left elements. In

Figure 3, element 11 shares global nodes 13 and 18 with element 10 and shares only global node 13 with element

6. Sharing in this case indicates that the parameters at local node 1 of element 11 are equal to the parameters

of local node 3 of element 6.

The connectivity and set of equations are cast into a linear system of shape A~x = ~b in which A and ~b are

known and ~x is the vector of unknowns (Ho et al., 2015). In the case of the Stokes equation, they can be written

in vector notation as Block Stokes:[
K G

GT 0

][
v

p

]
=

[
f

0

]
(8)

where K is discrete gradient of the deviatoric stress tensor, G is the gradient operator, GT is the divergence

5

operator, v is the velocity, p is the pressure and f is the righthand side vector describing the force field (May

et al., 2015). This notation of Stokes, as opposed to the more simple A~x = ~b formulation, allows for higher

performing and more robust iterative solving techniques.

1.5 Challenges and goal

Models at a high resolution result in a large system of linear equations with dimensions of A as high as millions.

In many cases, solve time comprises most of the model’s runtime. A percentual reduction of solve time is

necessary to increase the number of geodynamic models run per time unit. In this thesis I will present iterative

solver methods combined with preconditioning which can improve performance of ELEFANT. Consequently,

models of mantle convection, plate subduction, and slab tear are able to run at higher resolution and results

can be interpreted with more accuracy and detail.

Additionally, an educational FEM code is rewritten from Fortran to Python. This opens up easy-to-use,

but powerful functionality in the space of large numerical calculations. A penalty method, as well as using the

Schur complement, are compared on a performance level. Conjugate Gradient and Preconditioned Conjugate

Gradient methods will be explored to assess performance for two tests. The aim is to provide a powerful tool

for Earth Sciences students (not only those of Universiteit Utrecht) to explore geodynamics.

2 Methods

To get an understanding of how the models are set up, certain aspects of a numerical code need to be addressed.

What techniques can be used to solve a system and how do these work? How is an external solving package

integrated into ELEFANT? These questions are answered in this section.

2.1 Matrices

Solving a discrete PDE implicitly yields a system of linear equations

A~x = ~b (9)

where A is the n× n linear operator, ~b is the solution vector and ~x is the vector of unknowns, both of length n

(number of degrees of freedom). FEM discretisation of PDE’s results in a sparse linear operator with, less than

1% nonzero entries. As of this discretization, A is symmetric. Its symmetry is defined as

AT = A (10)

and is Symmetric Positive Definite (SPD) because

~wTA~w > ~0 ∀ ~w 6= ~0 for ~w ∈ R. (11)

The combination of sparsity and SPD can yield a large computation time and space (RAM) saving. First, only

the upper or lower half (including the diagonal) of A has to be stored to capture the whole matrix because it

is symmetric. Second, zero entries can be disregarded and only non-zero entries have to be stored. The non-

zero structure of SPD matrices can be predicted and is dependent on number of elements, degrees of freedom,

resolution and connectivity.

For a 2D quadrilateral grid, the nodes that are not located on the boundary communicate to 8 adjacent

nodes. In the assembly of A, this results in a maximum of 9 non-zeros per row. A corner along the boundary is

communicating with 3 nodes and results in 4 non-zeros per row in A. For simplicity, let us assume that every

row contains 9 non-zero entries. The amount of sparsity (percentage of non-zeros in a matrix) is

size(A) = n× n, sparsity =
9n

n2
. (12)

6

Thus, for a matrix size of 1000×1000, sparsity = 0.9%. Increasing matrix dimensions would further decrease

the percentage of non-zeros. Storing the zero-entries of A is highly inefficient as they do not contribute to the

solution. The critical information of A is the combination of the location and value of the non-zero entries.

Compressed Row Storage (CSR) stores the matrix in a more compact format using three one-dimensional arrays.

The first and second arrays contain row-structured integer pointers of the non-zero values while the third array

contains the matrix values (Figure 4).

Figure 4: Structure of CSR storage consisting of three vectors. In this example, zero-indexing is used. From Liu and

Vinter (2015).

2.2 Time complexity

Scaling (Computation as a function of resolution, processors or cores) is important when assessing performance.

The slope in a log-log plot indicates how well a certain method/technique scales. When measuring computation

time, a slope of 1 means that computing time scales linearly with the degrees of freedom (i.e. increasing

resolution by two results in computation time increase of two). Theoretically, multigrid computation time

scales with O(N) while other methods might scale with O(N logN) or O(N2), where O(N2) is the slowest. We

can visualise this by plotting N , N logN , and N2 (Figure 5).

2.3 Solvers

To obtain the solution to the Stokes equation, a linear system has to be solved (Eq. 9). It is impossible for

large systems to carry out ~x = A−1~b because the inverse of a large matrix is very costly to compute. The valid

strategy to solving such a system is to apply a solver which takes A and ~b as input and returns solution ~x.

Direct solvers aim to calculate a solution in a single iteration through Gaussian elimination. When using such

an approach, A first has to be factorized. In linear algebra, factorization is the decomposition of a matrix into

a product of 2 or more separate matrices so that the product of the factorization equals the original matrix.

An example of a decomposition is LU, where A is split in a lower and upper triangular matrix so that

L ·U = A. (13)

7

 1

 100

 10000

 1x10
6

 1x10
8

 1x10
10

 1x10
12

 0.1 1 10 100 1000 10000 100000 1x10
6

C
o

m
p

u
ta

ti
o

n
 t

im
e

Degrees of freedom

x
x*log(x)

x**2

Figure 5: Time complexity of three functions. x2 scales with the steepest slope.

A related factorization is the incomplete LU decomposition (ILU) which uses an approximation so that

L ·U ≈ A. (14)

ILU factorization is more time efficient as L and U require less memory to be stored but is not valid for

solving equations as the factorization is not exact. Some factorization software packages include UMFPACK

(Davis, 2004),SuperLU (Li, 2005), PARADISO (Schenk and Gartner, 2006) and MUMPS (Amestoy et al., 2001).

MUMPS is one of the packages implemented in ELEFANT. It supports sparse large linear systems and is able

to run in parallel through MPI. At its core, it uses BLAS and LAPACK to carry out small matrix calculations.

The deficiency of MUMPS is in the non-linear scaling RAM and CPU requirements as the size of the system

increases. Hence, increasing the resolution by two means RAM and CPU demands increase by a factor of larger

than two (COMSOL, 2014).

Due to this limitation different methods need to be used for high resolution (and especially 3D) models. In

contrast to direct solving methods, iterative methods produce approximate solutions with which consecutive

solution are computed, hereby approaching the exact solution vector. At each iteration, the stopping condition

is tested. This generally involves calculating the residual vector which is defined as

r = b−Axk (15)

where b is the righthand side vector of A~x = ~b and xk is the solution vector at iteration k in an iterative

solve. From this time forth, A = A, ~b = b, ~x = x etc. When an iterative method is converging, the residual

will decrease after every iteration. The stopping condition itself is based on setting a tolerance. Low tolerance

results in a more iterations and an accurate solution whereas a high tolerance allows for inaccurate results but

at a lower computational cost.

The disadvantage of direct solvers, regarding RAM issues, is absent here. Contrary to direct solvers, iterative

solvers do not require A to be stored explicitly. It only requires the solution matrix-vector products by A (Saad,

2003). This feature vastly decreases storage requirements.

Iterative methods start with an initial guess x0. Often, when there is no pre-knowledge about the solution,

a zero vector is used x0 = 0. x1, the vector used in the second iteration, is closer to the exact solution than x0

and thus the residual decreases.

8

Algorithm 1: Jacobi method

Input : A,b,Initial guess x0

Output: Solution vector x

1 decompose A

2 k = 0, xk = 0

3 while not converged do

4 xk+1 = D−1(b− (L+ U)xk)

5 xk = xk+1

6 k = k + 1

7 end

Many types of iterative solvers exist. They can be subdivided into two classes. The first are stationary

methods, which are based on the residual and correct the solution at each iteration accordingly. Jacobi (Jacobi,

1845), Gauss-Seidel (Seidel, 1874), and Successive Over-Relaxation (SOR,(Young, 1954)) are among the most

well known stationary methods. The second class is Krylov subspace methods which computes

Aib i = 1, 2, ...,m− 1 (16)

where m is the subspace dimension (Saad, 2003). The Conjugate Gradient (CG) is the archetypal method.

Other Krylov subspace methods include Generalized Minimal REsidual Method (GMRES, Saad and Schultz

(1986)) and BiCGSTAB (van der Vorst, 1992). To be able to understand the principles of iterative solvers, a

simple method known as Jacobi is first explained.

Jacobi

Not all solvers are able to handle all types of matrices. For example, the Jacobi solver requires A to be fully

non-zero along the diagonal. Furthermore, diagonal elements must be at least strictly diagonally dominant over

off-diagonal elements. Strict diagonal dominance of A at any element along the diagonal is given in Saad (2003)

as

|ajj | >
i=n∑
i=1

|aij | for i = 1, ..., n and i 6= j (17)

where a indicates an element of matrixA. This feature restricts the method’s usability and practicality. However,

when solving well defined and relatively uncomplicated problems, this method could be useful.

The method is based on calculating the i-th vector component of the k + 1 iteration to reduce the ith

component of the residual vector (Saad, 2003). The first step is the decomposition of A into the diagonal D

and the strictly upper and lower half U and L respectively in a similar manner as the LU decomposition (Eq.

13). The iteration is written as

xk+1 = D−1(b− (L+ U)xk). (18)

Assuming that D−1 is stored as a vector, one matrix multiplication, (L+U) ·xk, is carried out at each iteration,

taking up most of the computation time. The Jacobi algorithm in pseudocode is given in Algorithm 1.

Conjugate Gradient

According to Dongarra and Sullivan (2000), Krylov subspace methods are in the top 10 of most influential

algorithms alongside methods like FFT (Fast Fourier Transform) and Quicksort. Some large sparse linear

9

systems can be solved in a more efficient manner using this method compared to simple iterative methods.

Among the most used Krylov methods, we find the Conjugate Gradient (CG), Generalized minimal residual

(GMRES), and multigrid methods. Particular geodynamic models may apply a combination of GMRES and

CG with a multigrid preconditioner (ASPECT), showing there is not a single best method for every problem.

CG was originally presented by Hestenes and Stiefel (1952).

Optimizing the solving procedure is critical when analyzing and improving performance of numerical codes.

Direct methods are not dependent on values of the matrix. In contrast, iterative solver performance depends

solely on the matrix entries.

Solving large linear systems (i.e. matrix dimensions of 106 × 106) proves to be computationally costly when

utilising suboptimal solvers. Exploiting the sparsity and SPD nature of the linear operator (A in Eq. 9) could

not be enough to achieve efficient solves. In view of the fact that the solve step is the main contributor of

computation time (Figure 6), it requires the use of preconditioners. For the understanding and explanation of

preconditioning techniques, the excellent presentation and slides from Bangerth (2013) are used.

Figure 6: Overview of main time contributors in a FEM simulation showing that the solve step is always the most

computationally expensive. From Thieulot (2011).

The controlling factor on iterative solve time is the convergence rate. This is the rate/time in which an

iterative solver arrives at the convergence criterion. Setting a high accuracy will result in longer solve times

while a low accuracy is cheaper to compute but yields a less accurate solution. The linear operator in Eq. 9 is

what dominates performance of solvers. Every matrix has a corresponding condition number which is the ratio

between the largest and smallest singular values of A in Eq. 9. Generally, for a square matrix (i.e. matrix of

10

dimensions n× n), the eigenvalues are calculated as

si = |A− λiI| where i = 1, 2, ..., n (19)

where |...| indicates a determinant. The condition number then is

C =
smax

smin
. (20)

An infinite condition number indicates a singular (i.e. non-invertable) matrix. Ill-conditioned matrices corre-

spond to a large condition number relative to the accuracy of matrix entries.

When A is SPD and using CG as an iterative solver, the residual is reduced by

r =

√
C − 1√
C + 1

< 1. (21)

m iterations are needed to arrive at tolerance ε so that

rm = ε→ m =
log(ε)

log(r)
. (22)

For Laplace equations, the condition number is h−2 where h is the internodal distance of the mesh. Substituting

into Eq. 21 yields

r =
C − h
C + h

< 1 (23)

and thus the amount of iterations scales as

m = O(log(ε)/h). (24)

When the mesh resolution is increased, h decreases, r → 1, resulting in slower convergence rates of CG. A

resolution increase of 2 thus requires twice as many CG iterations. The advantage of CG is that the number of

iterations required for convergence is predictable.

Multigrid

As the resolution and the degrees of freedom in a system grows, the number of iterations needed to compute

the solution increases. The rate at which this increases varies per method. In a log-log plot of degrees of

freedom versus solve time, an ideal slope would be 1. When solving 3D Stokes, direct methods are known to

not scale well, showing high slopes, while an iterative method like GMRES with an ILU preconditioner has a

more shallow slope (Figure 7 in May et al. (2013)). However, correctly tuning a technique known as multigrid

will result in a high level of performance for particular types of problems.

The user might choose to not use multigrid as it is more complex than other iterative methods. However,

when implemented correctly, it can greatly improve the speed of solving the linear system. Fedorenko (1964)

first explicitly documented this method and since then is used progressively more as it evolves. Extensive

background on the use of this method can be found in Saad (2003); Wesseling (2004); Borzi and Schulz (2009);

Falgout (2006) and Meurant (1999).

Every iterative method uses the original grid to get a solution on the next iteration. Multi-level methods,

however, exploit the interaction of multiple coarser and finer meshes to reach faster convergence, hence the

name. Residuals (Eq. 15) at each iteration have a certain wavelength when projected onto the mesh (Figure

7). When iterating, residuals with a short wavelength get annihilated faster than long term residuals. The

goal is to reduce residuals of all wavelength simultaneously. By solving the system at increasingly coarser grids

and exchanging information between them, residuals of all wavelengths get annihilated in the same number

of iterations. From Figure 7 it is observed that multigrid does a better job of decreasing residuals than GS.

11

Figure 7: Distribution of the residual with a) Gauss-Seidel for a low resolution, b) multigrid for a low resolution and

c) multigrid for a high resolution. Note that the multigrid high resolution mesh residuals decreases only slightly slower

than the multigrid residuals of the lower resolution mesh. From Gerya (2010).

Figure 8: Structure of the coarse and fine multigrid meshes showing restriction and prolongation directions. From

Gerya (2010).

12

Furthermore, using the multigrid method at a higher resolution performs better than GS at low resolution

(Figure 7c).

During an iteration cycle of an iterative method, the information about the unknowns is propagated only

by neighbouring cells (Gerya, 2010). If the grid is coarsened, the information has to travel a smaller distance

in order to communicate with the total domain and thus information is propagated faster per iteration. By

back-propagating the information of the coarse grid residuals onto the finer grids, residuals are smoothened. The

information exchange from fine to coarse grids is called restriction requires a restriction operator. Prolongation is

the operation of back-propagation of the information onto the fine grids (Figure 8) and requires an interpolation

operator. This method proves to be very robust for models with sharp viscosity contrasts such as mantle

convection and subduction. However, for large system any iterative solver becomes very costly. Preconditioning

helps to alleviate this problem and reduces the condition number.

2.4 Preconditioners

The perfect preconditioner is defined as P−1 = A−1 so that P applied to A would yield an identity matrix,

thus C = 1 and 1 iteration is required to reach convergence. Calculating the inverse of large matrices becomes

nearly impossible when working with large matrices. Therefore, the approach is to find a preconditioner which

needs to meet three basic requirements. First, it needs to be cheap to compute

Px = b. (25)

This matrix-vector multiplication is carried out every iteration and thus must remain cheap. Second, P must

be non-singular (i.e. its inverse exists). Third, P must be similar to A so that P−1 applied to A is close to

identity and the condition number is close to 1. Preconditioning a simple iterative method results in

xk+1 = xk − P−1(Axk − b) (26)

where Axk − b is the residual. If P−1 = A−1 only 1 iteration is required as P−1A = I and

xk+1 = A−1b. (27)

Let us take the Jacobi preconditioner where P−1 = ωD−1 where D−1 is the inverse of the diagonal of A and ω

is a relaxation factor so that

xk+1 = xkωD−1(Axk − b). (28)

The preconditioner is easy to compute but does not converge very fast and only converges if ω is sufficiently

small. In this case, ω needs to be smaller than (smax)−1. When using CG, ω can be neglected as the convergence

is not affected by it. Gauss Seidel (GS) preconditioning (P−1 = (D+αL)−1) is slightly better than Jacobi and

results in

xk+1 = xkω(D + L)−1(Axk − b). (29)

This preconditioner is cheap to apply as its triangularity can be exploited in matrix multiplications. However,

this preconditioner is asymmetric and its inverse is hard to compute. Applying an symmetric preconditioner

to a symmetric matrix yields an asymmetric linear operator in the iterative solve. CG is only compatible with

symmetric matrices and thus GS preconditioning is not an option. The Successive Over Relaxation (SOR)

preconditioner applied to an iterative solve gives

xk+1 = xkω(D + αL)−1(Axk − b). (30)

and is, again, asymmetric. However, Symmetric SOR (SSOR) can be used in stead. By not only including

L and D, but also U in the preconditioner, symmetry is restored and integration with CG is possible. The

13

condition number for this method reduces the condition number by O(1/
√

(h)), rather than O(1/h). Jacobi,

GS and (S)SOR are always dependent on mesh resolution. These preconditioners could be useful for small

systems but may present problems for larger systems.

A better preconditioner would be to approximate A−1 by using ILU factorization. This method provides

high convergence rates as well as increased robustness (i.e. convergence probability). An ILU preconditioner

allows for a denser matrix by adding levels of fill. Fill increases the sparsity pattern of the preconditioner to A2

when one level of fill is used A3 when two levels of fill are used etc. Adding more levels increases robustness at

the cost of an increase in matrix multiplication time using the preconditioner.

Returning to Jacobi; the vector multiplications of A by x means that the approximations of x are coupled

to the matrix entries of A (the mesh). If an entry of xk is a bad approximation, it can only be corrected by its

direct neighbours in the mesh. If we take a value of x at the right of the domain which needs to be corrected

(assumed that the left of the domain is correct), it would take at least n iterations to reach the right column of

the domain, as a maximum of 1 column is corrected at every iteration.

So far, we have seen that not all preconditioners provide good solutions to the problem of efficiently iteratively

solving a linear system of equations. Mesh dependency on condition number is the major disadvantage of many

preconditioners. The multigrid method presents a less conventional way of preconditioning which is independent

of mesh size (equivalent when using it as a solving method seen in Figure 7) and, when correctly tuned and

using CG as solver, should provide textbook performance computing the solution in less than 10 iterations

(Balay et al., 2017a). Parameters of multigrid which can be tuned include the amount of multigrid levels used,

smoothing factor (which controls the amount of residual smoothing carried out at each iteration) and using a

v/w cycle (controlling how coarse and fine grids hierarchically communicate)

2.5 PETSc

Portable, Extensible Toolkit for Scientific Computation (PETSc) (Balay et al., 1997, 2017a,b) is a set of data

structures, routines and data types aimed at solving partial differential equations (PDE). It supports (scalable)

parallel computation through MPI, OpenCL and GPUs (CUDA). PETSc can be downloaded from the website

or through GitHub. The latter allows the user to update to newer versions through the command git pull.

After downloading or cloning using Git, PETSc is configured with or without options to install external

packages. These external packages include compilers such as g++, gfortran and gcc as well as linear algebra

packages such as LAPACK. If the user already has these installed there is no need to configure with those

extra options. Next, two PATHs need to be added to either ∼/.bashrc (when using a Linux distribution) or

∼/.bash profile (on OSX). The first path directs to the installation directory of PETSc while the second is

the architecture type found in this folder (e.g. arch-linux2-c-debug when using a Linux distribution).

A file called variables needs to be referenced in the Makefile of a program as it holds the reference to the

location of PETSC LIB. Finally, when one wishes to use the version of mpif90 that was configured with PETSc,

its location on the machine must be indicated. To integrate PETSc into a program, two statements need to be

called:

#include <petscXXX.h>

followed by

use petscXXX

where XXX specifies type of PETSc functionality such as petscksp for linear iterative solvers, petscvec for the

use of PETSc vectors or petscsnes for nonlinear solver functionality.

Variable types such as integers and reals correspond, in the PETSc data structure, as PetscInt and PetscReal

14

https://www.mcs.anl.gov/petsc/

respectively. Matrices and vectors are also supported. These objects can be declared as

Mat :: A

or

type(tMat) :: A.

Similarly, more types such as VEC, KSP, PC and DM are declared. Passing a null as an argument is significantly

easier in C than it is in F90. In C a null value is passed as NULL while in F90 the user must specify the type of

null (integer, real, character etc.). This is done by passing PETSC NULL XXX where XXX specifies the null type.

Routines from PETSc are powerful but can be confusing to use. Many options can be set for every call to a

function. To organize nearly all function options, the ”options file” or ”options database” can be used. In this

file, the user puts a list of function parameters in order to avoid having to hardcode them. A second advantage

is that function options can be changed without having to recompile the program. For a matrix, its type might

be specified in the options file as

-mat type MatType

where MatType is one of many matrix types. Complete lists of these options can be found in the PETSc manual.

However, it remains possible to also hardwire these options into the code using

MatSetType(Matrix,MatType)

but one can imagine that using many of these routines in an already large and complex code will not improve its

readability. Therefore, the use of the options database is preferred over hardwiring into the code. The user can

supply the name and location of the options file at runtime. Every PETSc code should start with the command

PetscInitialize()

and end with

PetscF inalize()

to indicate the beginning and end of a program. The options file can be given as an input in the PetscInitialize

routine. Applying the options file is carried out by the routine

XXXSetFromOptions()

where XXX is the type to apply the options to. Taking a matrix as an example, the routine becomes

MatSetFromOptions()

and thus reading the matrix type from the options file. Monitoring the behaviour of a code (i.e. monitoring

convergence of solving a linear system) is incredibly important. PETSc offers a suite of monitoring commands

which can track all the necessary information for the user. Specifying

-ksp monitor lg residualnorm

will open a X11 linegraph (lg) which plots live information throughout runtime in stead of printing it to the

terminal. Fortran and C do not use the same indexing. In an array of values, the first entry in a C array is 0 (0

indexed) while in Fortran the first spot in an array is at 1 (1 indexed). Feeding 1 indexed arrays to PETSc will

cause instabilities and crashes. To overcome this problem the user can give array indices to PETSc routines as

PETScRoutine(argument, argument, i− 1)

15

where PETScRoutine can be any PETSc call and i is the Fortran (1 indexed) index which is converted to 0

indexed.

The debugging procedure is made easier with the error variable. This variable can be given as an input/out-

put in every PETSc routine. The routine returns either a 0 or a non-zero. A return value of 0 indicates that

the routine was carried out without error whereas a non-zero value means that something went wrong. Thus,

checking the error return at every PETSc call is advisable.

To gain familiarity with PETSC subroutines and data structures, it is first implemented in simpleFEM.

When simpleFEM was confirmed to work properly with PETSc, it was put in ELEFANT. A graphic overview

is given in Figure 9. The basic version of simpleFEM has no external subroutines. This is why every part in

Figure 9 is structured in a sequential list.

As mentioned before, every PETSc program should begin with PetscInitialize. Next, PETSc vectors are

created. A vector can be duplicated if one desires the duplicant to have the same dimension. For example, in 9,

vector b can be created and is duplicated under the name of x. This is allowed because b and x have the same

length.

The solver environment is created next with calls to KSPCreate and KSPSetFromOptions. The latter reads

user input from the file specified with PetscInitialize. CSR storage is required by MatCreateSeqAIJWithArrays.

The basic version of simpleFEM does not include CSR storage, so this needed to be copied from ELEFANT first.

MatCreateSeqAIJWithArrays creates a sequential (SeqAIJ) matrix (Mat) out of CSR (WithArrays) arrays. It

takes care of preallocating storage for the user. According to the manual (Balay et al., 2017a), preallocating

arrays is a simple but efficient performance booster: ”By setting these parameters accurately, performance

during matrix assembly can be increased by more than a factor of 50”. The second advantage of using this

routine is that the user can freely change the entries in the CSR arrays without having to call the subroutine

again. It is done automatically. Thus, MatCreateSeqAIJWithArrays only has to be called once, at the beginning

of the program. In order to efficiently access and change entries in PETSc vectors VecGetArrayF90 is used.

From the name, it is deducted that this is a Fortran 90 specific subroutine. It uses a pointer array for pointing

to entries in the vectors. After the F90 right hand side vector is properly inserted into the PETSc vector, it is

ready for assembly. Matrix assembly is next, followed by specifying the block size. The block size (number of

degrees of freedom per node) of the system has to be specified for increasing efficiency of the algebraic multigrid

preconditioner. Just before the solve, the user specifies which matrix is used for solving and which is used for

preconditioning with KSPSetOperators. These matrices don’t necessarily have to be the same. Finally, the F90

solution vector is extracted from the PETSc vector and PETSc structures are properly destroyed and closed.

It is not very efficient to only use PETSc in small parts of a program in stead of using it as much as possible

everywhere in the code. For example, using a F90 matrix and a PETSc (C) matrix simultaneously, even though

they have the same exact entries, makes little sense. However, because the main structure of simpleFEM and

ELEFANT still had to remain the same, it was chosen not to completely rewrite the code. This gives us the

possibility to toggle PETSc on and off using one variable in the code.

3 Results / Numerical experiments

Practically testing these is an important step in the process of optimizing efficiency for any given problem. A

set of tests has been set up which offers a wide spectrum of geodynamic (related) simulations. Starting with

a 2D Stokes problem, complexity increases to a full 3D subduction/rollback system with inclusion of sticky air

and a weak zone accompanied by a non-linear rheology. All tests were run on an HP workstation with a 2.6Ghz

Intel Xeon E5 and 128GB of 2133Mhz DDR4 memory. Table 1 provides an overview of the experiments that

were carried out.

16

Figure 9: Overview of PETSc implementation in both simpleFEM and ELEFANT.

2D 3D

Experiment NSinker Tosi Annulus Cube Subduction

Viscosity Heterogeneous Heterogeneous Heterogeneous Homogeneous Heterogeneous

Grid type Square Square Trapezoidal Cubic Cubic

Time stepping No Yes Yes Yes Yes

Table 1: Overview of the performance experiments.

3.1 NSinker

The first test to examine preconditioner performance consists of a weak matrix experiencing pure shear (Duretz

et al., 2011). The original benchmark and analytical solution were presented by Schmid (2002) and Schmid and

Podladchikov (2003). Instead of one, multiple inclusions are implemented here. Consequently, no analytical

solution exists and thus this is not a true benchmark. The domain spans [0, 1]× [0, 1], uses Q1P0 square quadri-

lateral elements and employs free slip boundary conditions. The shape of the circular inclusion is something

that could also be observed in large geodynamic models such as subduction and mantle convection, making it

a relevant test.

In the NSinker test, the Stokes equation is solved for a 2D box with highly contrasting viscous and dense

circular inclusions with respect to the background material. The viscosity and density of the background

material are set to 1 and 0 respectively (Figure 10). High contrasting, sharp boundaries are known to have

17

a negative effect on solve time and are therefore a good test for testing preconditioners. All of the circular

inclusions are more dense and more viscous than their surroundings causing them to sink in the direction of

gravity. Gravity, here, is directed downwards (in the negative z-direction). The direction of gravity has no

impact on the accuracy of the solution.

Visualising z-velocities reveals that the inclusions are sinking towards the bottom (Figure 10). The 3 most

dense inclusions sink the fastest. The lightest disk (with a density closest to the surrounding material) sinks

the slowest, which could also be attributed to its relatively small size. The most dense inclusion, in the bottom

left, is very small and has a very low viscosity. It is not the fastest sinking body, even though it is so heavy.

Pressure distribution shows a gradient from high pressures at the bottom to low, and sometimes negative,

pressures at the top. Pressure is highest under faster sinking inclusions. The pressure under the largest body

is the highest overall.

Figure 11 shows computation time of the Stokes solve as a function of resolution. Excluding the direct solving

approach, multigrid preconditioning is the best option for this benchmark as it shows the lowest computation

time and scales with a shallow slopes compared to ILU. Increasing the number of multigrid levels from two

to four has a negative impact on the computation time. Therefore, applying the cheapest multigrid option,

one level of coarsening (i.e. two multigrid levels), yields the best results. The regression lines drawn in black

in Figure 11 are a best-fit scenario. As the coloured lines of, especially, multigrid are not perfectly linear in

log-log, the slopes of the regression lines are subject to some error. However, it remains certain that multigrid

preconditioning with two levels performs best when comparing iterative solving approaches.

Solving the system with a direct solver is more than an order of magnitude faster than using (preconditioned)

iterative solvers. Its slope is steeper than multigrid + CG, indicating that the performance trends of the direct

approach and multigrid preconditioning will intersect at very high resolution. This intersection point will be at

a resolution at which the model is not anymore sensible to run and thus the relatively high slope of the direct

solving approach is disregarded as a problem.

ILU preconditioners with and without infill are outperformed by both multigrid + CG and direct solvers.

Using higher levels of infill speeds up calculation by a minor factor. The slopes between ILU and multigrid are

so different that only using ILU at very low resolutions might be beneficial over multigrid.

3.2 Tosi

This benchmark has been extensively tested in Tosi et al. (2015). In that paper, many geodynamic codes were

tested and solutions were compared across a set of different tests. A few different modes were explored: a mobile

lid, in which the uppermost part of the 2D Cartesian box is actively part of the convecting regime, a stagnant

lid, in which the topmost part of the domain is not taking part in convection, and finally a periodic lid where

the system alternates between stagnant and mobile lids.

The version of this benchmark is a slight modification of the benchmark originally presented in Blankenbach

et al. (1989). The goal of this benchmark is to test simple thermal convection for a constant and temperature-

dependent viscosity. Various modern geodynamic-related codes have used this benchmark to validate their

results (Gerya and Yuen, 2003; Kronbichler et al., 2012; Davies et al., 2011; Leng and Zhong, 2008).

In the benchmark, the non-dimensional Boussinesq convection equations are solved. The inertia in the

fluid is considered negligible. Constant thermal diffusivity and thermal expansivity are assumed. The fluid is

isothermally heated from the bottom and cooled from the top using non-dimensionality resulting in 1 and 0

as temperatures for the bottom and top respectively. The left and right walls of the domain satisfy ∂T
∂x = 0,

simulating insulation. Free slip boundary conditions are imposed with no material being allowed to either leave

or enter the domain.

The setup that is used is Case 1 from Tosi et al. (2015) where the initial temperature profile is sinusoidal

18

and writes

Tinitial = (Lz − z) +
cos(πx) sin(π(Lz − z))

100
(31)

where x and z are the spatial coordinates (in the x/z coordinate system) and Lz is the domain size in the

z-direction.The Rayleigh Number is set to Ra = 102 and the parameters controlling the viscosity contrast due

to temperature and pressure are 105 and 1 respectively. A linear viscous rheology is assumed. This setup results

in stagnant lid behaviour (Figure 12).

Plotting computation time versus resolution reveals that multigrid performs best (Figure 13). Regression

lines shown in black indicate a slope of 1.16 for multigrid with one level of coarsening. This behaviour is

similar to the NSinker results where the performance of preconditioners scaled best when using a multigrid

preconditioner. A kink is observed in the multigrid results. The regression line was calculated with excluding

the data after the kink. If we were to take this data into account, the slope would increase. A similar kink

is observed in the ILU data. ILU preconditioners, in general, show steeper slopes. Increasing the levels of fill,

hereby increasing density of the preconditioning matrix and consequently increasing the computation cost of

applying it, yields an increase of performance, but does not outperform multigrid.

3.3 Annulus

The third test consists of an annulus in which two-dimensional whole Earth convection is simulated. The core

of the Earth, with a radius of approximately half that of Earth (Dziewonski and Haddon, 1974), is considered as

the hollow component of the annulus (Figure 14). The mesh is made up of regular quadrilateral elements which

are stretched along their radial axis as their distance to the core increases (Figure 15). The initial temperature

profile is described using a sinusoidal perturbation:

Tinitial = − r −Rcore

REarth −Rcore
∗ (Tcmb − Tsurface) + Tcmb +

ζ

100
(32)

where r is the distance from the core-mantle boundary (cmb) in km, Rcore is the radius of the core (in km),

REarth is the radius of the Earth in km, Tcmb is the temperature at the cmb, Tsurface is the temperature at

the surface of the earth and zeta is a random number between 0 and 1. The randomness is introduced in order

to stimulate asymmetrical convection. Temperature boundary conditions are set to Tcmb and Tsurf for the cmb

and surface of the Earth respectively.

Essentially, the ”Case 1” model from Tosi et al. (2015) is replicated in which temperatures are dimensionless.

Thus, Tcmb is 1 and Tsurf is 0. The Courant-Friedrich-Lewy condition (Courant et al., 1928) is set to 0.5.

Velocity boundary conditions are set to free-slip for both the cmb and surface of the Earth. The temperature

dependent viscosity is purely linear and is described as

µeff = µlinear = exp(γT ∗ T) (33)

where µeff is the effective viscosity in Pas, γT is a parameter governing the viscosity contrast owing to

temperature. Because of the dependency of viscosity on temperature, the initial viscosity structure is equal to

the initial temperature distribution.

The setup of temperature and viscosity evolves into a set of plumes which grow radially outward in a

mushroom type shape (Figure 14). Root Mean Square (RMS) velocities rapidly increase at the start of time

stepping. Asymmetry, caused by the randomness term (ζ in Eq. 32), stimulates neighbouring plumes to coalesce

into a single larger plume. These coalescing plumes correspond to bumps in the vrms profile as high velocities

are observed during fusion.

4 different preconditioners with CG are tested in this experiment (Figure 16). Using an ILU preconditioner

here results in long computation times. Increasing the levels of fill decreases computation time and shows a

marginally shallower slope of 1.49. A shallow slope, compared to ILU preconditioners, is observed if using

19

multigrid. This slope, however, is not linear in the log-log scale axis frame. It decreases at higher resolutions.

The slope of multigrid at lower resolutions is comparable to that of ILU at high resolutions.

Similar results are observed for the classic 2D box benchmark (Figure 13). The annulus test is merely a

change in geometry, while boundary conditions, viscosity and other parameters remain equivalent to that of

Tosi et al. (2015).

3.4 Convecting cube

A first step into modelling 3D subduction models is to run a simulation of an isoviscous cube. In this cube, the

initial temperature profile is linear from top to bottom and is includes a sinusoidal perturbation to stimulate

the evolution of up- and downwellings (Figure 17) and writes

Tinitial = Ttop +
Lz − z

Lz ∗ (Tb − Ttop)
− 100 cos

(
3.123πx

Lx

)
sin

(
πz

Lz

)
cos

(
3.26π(0.8y + 0.2x)

Ly

)
(34)

where Ttop and Tb are the initial temperature at the top and bottom of the cube (in degrees K) and Lx,Ly

and Lz specify the spatial dimensions of domain in the x, y and z direction (in km). The domain is of size

1000×1000×1000km. The imposed temperatures are 500K at the top of the domain and 4000K at the bottom

. Along the six faces of the cube free slip boundary conditions are imposed.

Viscosity in this test is set to µeff = 1021Pa s. By prescribing a non-uniform density, convection is stimulated.

The initial density distribution is linear with temperature and writes

ρinit = 3300(1− 10−5Tinit) (35)

where the density (ρ) is expressed in kg/m3. The result of this setup is a vigorously convecting domain (Figure

17) caused by the buoyancy forces that result from the temperature dependent density changes.

From Figure 11 it is observed that a direct solver can provide a fast solution to a system of linear equations.

However, this figure only visualizes raw computation speed. Operations required to carry out the solves of a

direct solver are N logN and N4/3 in 2D and 3D respectively (Li and Widlund, 2007). RAM usage required

for directly solving a system scales equally (Calo et al., 2011). Similarly, CPU times for running 3D simulations

are vizualised in May et al. (2013) and show a similar behaviour to memory requirements. Not only does the

size of the matrix increase when switching from 2D to 3D, but the sparsity of it decreases as well. Thus, when

comparing solving speeds using any solver of a 2D FEM matrix versus a 3D FEM matrix of the same size, the 2D

system would show a lower solving time. It is for this reason, direct solvers are not the preferred method when

running 3D models at even a moderate resolution, even when using the most powerful parallel supercomputer.

In order to test preconditioner performance five time steps of this convection test were carried out. The

results in Figure 18 represent the total computation time required for purely the solving part of the calculation.

The results reveal that ILU with 0 levels of infill performs the best. This preconditioner is the cheapest to apply.

increasing the levels of fill, hereby increasing the accuracy of the preconditioner, yield slower computation times.

Multigrid with one level of coarsening shows the highest slope, meaning it is not the preferred method for this

simulation, especially at higher resolutions. Finally, an overlap of computation time results is observed between

multigrid with more than one level of coarsening and ILU(2).

3.5 Subduction

So far, only simplified simulations of the realistic, large scale systems such as subduction or whole Earth mantle

convections, have been tested. These simple models are a critical factor in understanding the response of

preconditioners and solvers to varying conditions (i.e. viscosity, geometry of elements, 2D/3D etc.). A final

test to examine preconditioner performance is to run a realistic full 3D thermomechanically coupled subduction

model.

20

In a paper by Schellart and Moresi (2013), the authors describe a 4000× 1600× 660 km domain in which a

one-layer overriding plate and a three-layer subducting oceanic plate sit on top of the low viscous upper mantle

(µum = 1.57× 1020). As this model provides an accurate description of subduction dynamics (according to the

authors), and the paper gives a detailed description of the setup used, this model is replicated in ELEFANT

to test preconditioner performance of a top of the line subduction model. The overriding plate is set to

µop = 200µum and the linear viscosities of the three-layered subducting plate are set to µmax = 1023 at the

top, followed by a viscous strong layer of 700µum and a lower weak layer of 40µum. An overview of this setup

is visualized in Figure 19, in which viscosities are dimensionless.

Along the side-faces and top face of the domain, free-slip boundary conditions are imposed. On bottom

boundary, representing the 660 km discontinuity, a zero-velocity is imposed. This boundary is impenetrable

and will encourage stagnation of the subducting plate. The initial slab angle is set to 29°. To show the evolution

of the system (Figure 20), a resolution of 100 × 41 × 17 is used leading to 69700 elements, 72144 nodes and a

matrix size of 229068× 229068. At this resolution, using a single thread of the HP workstation, calculating 450

time steps took 46 hours with a multigrid + CG inner solving approach.

For this type of modelling, the resolution is considered as low, with elements of size 38× 38× 38 km (when

using a resolution of 100×41×17 elements). In order to obtain a more detailed description of material behaviour,

the Marker and Cell method (MAC) is used (Harlow and Welch, 1965; van der Giessen and Aref, 2003). By

using massless particles distributed over the whole domain, materials with varying parameters can be traced

throughout even a highly deformed fluid. Within a single element, multiple (often tens or hundreds) of these

particles can be placed to get a more detailed picture than purely using the elements. Computing the advection

and building the markers is computationally costly. In this simulation 3.5% of total computation time consists

of marker calculations. For the analysis of solver performance only the pure solve time is taken into account

(i.e. marker calculation time is excluded).

The evolution of the subduction simulation is shown in Figure 20. The subducting slab sinks into the upper

mantle and stagnates at the 660 km discontinuity. The overriding plate forms a wedge in the trench zone.

The rate of thickening of the overriding plate in the wedge is considerably higher than in Schellart and Moresi

(2013). Furthermore, the bottom layer of the subducting plate shows a high amount of stretching along the side

of the plate. This behaviour is not observed in the original paper. In this paper, the slab folds over itself when

stagnating against the 660 km discontinuity. The results in Figure 20 do not show these geometries. Rather,

the subducting slab collapses onto itself. Interpretation of the results is limited by the resolution and marker

density. The thinning of the subducting plate (especially at time steps higher than 250) results in the visibility

of the individual markers. The resolution that is used is low and thus the amount of markers per cell is low.

Increasing the resolution and amount of makers could yield more accurate and better interpretable results.

The accumulative solve time of 5 time steps as a function of resolution is visualized in Figure 21. As only

three resolutions are tested, the black regression lines may not provide an accurate interpretation of the data

points. At lower resolutions, the relatively cheap ILU(0) preconditioner is preferred over multigrid, ILU(2)

and ILU(4). Higher levels of fill of the ILU preconditioner result in more expensive calculations. However,

the absolute number of iterations required for convergence decreases as more levels of fill are used (Figure

22). The cost of the individual calculations required for ILU(2) and ILU(4) is not fully counteracted by the

decrease in iterations because ILU(2) and ILU(4) yield the slowest computation times (Figure 21). In contrast

to ILU preconditioners, multigrid preconditioners do not require many more inner iterations when increasing

the resolution. Inner iteration count does not increase substantially (from 9 iterations at a low resolution to a

maximum of 12 iterations at a higher resolutions). This feature separates multigrid from many other forms of

preconditioning. Increasing the number of multigrid levels only results in a 1-iteration difference (11 iterations

compared to 12 for 2 and 4 multigrid levels respectively). Computation times of multigrid preconditioners are

similar. Multigrid with 1 level of coarsening outperforms the other multigrid approaches. Similar to ILU, the

preconditioner that is cheapest to apply, is the fastest.

21

Figure 10: Solution of the NSinker test using a resolution of 700 × 700 elements showing a) viscosity b) density c)

velocities in the z-direction d) pressure distribution with high pressures at the bottom and low pressures at the top.

 1

 10

 100

 1000

 10000

 10000 100000 1x10
6

S
o
lv

e
 t
im

e
 (

s
)

Degrees of Freedom

MG 2 levels, 0.910187
MG 3 levels, 1.112874
MG 4 levels, 0.975703

ILU(0), 1.502248
ILU(2), 1.456393
ILU(4), 1.521352
Direct, 1.197824

Figure 11: Performance scaling of 6 preconditioners with a CG solver and 1 direct solver case as a function of degrees

of freedom/matrix size.

22

Figure 12: Temperature evolution of the stagnant lid 2D box convection benchmark of 64 × 64 elements. The black

arrows visualize the velocity field. A convection cell forms at the bottom left and right of the domain

 1

 10

 100

 1000

 10000

 10000 100000 1x10
6

S
o
lv

e
 t
im

e
 (

s
)

Degrees of Freedom

MG 2 levels, 1.160508
ILU(0), 1.571480
ILU(2), 1.504745
ILU(4), 1.477691

Figure 13: Performance scaling of 4 preconditioners with a CG solver when calculating a single time step.

23

Figure 14: Left: quarter section of the annulus showing the initial temperature distribution. Right: Temperature

distribution after 200 time steps.

Figure 15: Wireframe representation of the annulus mesh showing stretched elements towards the center and near-

square elements on the outer boundary.

 10

 100

 1000

 10000

 100000 1x10
6

S
o
lv

e
 t
im

e
 (

s
)

Degrees of Freedom

MG 2 levels, 1.221230
ILU(0), 1.493065
ILU(2), 1.491134
ILU(4), 1.489953

Figure 16: Performance scaling of 4 preconditioners with a CG solver as a function of degrees of freedom/matrix size

for a single time step.

24

Figure 17: Time evolution of a convecting cube (30 × 30 × 30 elements) showing a 2250K isocontour coloured by

z-velocity. The colours on the faces of the cube represent temperature. The initial sinusoidal temperature profile evolves

into a system of multiple up- and downwellings.

 100

 1000

 10000

 1x10
6

S
o
lv

e
 t
im

e
 (

s
)

Degrees of Freedom

MG 2 levels, 1.578921
MG 3 levels, 1.192349
MG 4 levels, 1.250352

ILU(0), 1.238418
ILU(2), 1.166031

Figure 18: Solve time of five preconditioners with a CG solver for the convecting cube test when calculating 5 time

steps.

25

Figure 19: a) Overview of the initial domain showing the two plates in the upper mantle material. b) Side view of the

plates showing three-layered subducting plate and single-layered overriding plate as well as viscosity values used in the

original model. From Schellart and Moresi (2013).

26

Figure 20: Evolution of the subduction model. The colours represent the different materials. Four of the five materials

are visualized here. The upper mantle material is excluded for readability.

 100

 1000

 10000

 100000

S
o

lv
e

 t
im

e
 (

s
)

Degrees of Freedom

MG 2 levels, 1.426864
MG 3 levels, 1.423181
MG 4 levels, 1.456624

ILU(0), 1.578295
ILU(2), 1.874000
ILU(4), 1.569392

Figure 21: Performance of 6 preconditioners with a CG solver as a function of degrees of freedom for the subduction

simulation. Regression lines are plotted in black.

27

 0

 20

 40

 60

 80

 100

 120

 100000

A
v
e

ra
g

e
 n

u
m

b
e

r
o

f
in

n
e

r
it
e

ra
ti
o

n
s

Degrees of Freedom

MG 2 levels
MG 3 levels
MG 4 levels

ILU k=0
ILU k=2
ILU k=4

Figure 22: Inner iterations as a function of resolution for the subduction simulation. Multigrid requires the least

iterations and ILU(0) the most.

4 Discussion and conclusions

Preconditioning a system of linear equation is a tradeoff between accuracy and cost of setup and execution.

A very simple preconditioner (diagnoal/Jacobi) is very cheap to apply but only works for small and simple

problems. This simple preconditioner can work for isoviscous cases when the diagonal elements of A are all in

the same order of magnitude. Variations in the diagonal cause the preconditioner to perform very badly, even

though it is the cheapest preconditioner to apply.

Direct solvers are limited to a certain resolution of the system because of RAM and CPU usage issues.

RAM and CPU power that is needed for solving a system does not scale linearly with resolution. Thus, solving

a 100 × 100 × 100 cube would be impossible because it requires an excessive amount of RAM. Furthermore,

preconditioning a system when using a direct solving method is useless because a direct solve is based on

Gaussian elimination, making it independent of matrix and vector entry values.

Assuming a different non-zero structure (with respect to the operator in A~x = ~b) in the preconditioner is

the approach of non-zero fill-in types of Incomplete Lower Upper factorization preconditioning. Comparing

ILU(0) and ILU(2) in the case of a 3D isoviscous box reveals that making the matrix more dense, by applying

a denser preconditioner (relative to the matrix), makes the system too complex. Calculations carried out with

the non-zero structure of the matrix for 3D systems is already very costly. Thus, increasing the density further

complicates the computation.

Multigrid methods are per definition not the best for all problems. Tackling isoviscous problems proves to

be very inefficient with a multigrid preconditioner (Figure 18). However, when solving a system with (sharp)

viscosity contrasts, multi-grid preconditioning proves to be useful. The fact that efficient multi-grid implemen-

tation results in an independency on resolution is advantageous for high resolution simulations. Some tuning

could improve performance of the multi-grid preconditioner. The amount of levels used as well as the smoothing

factor of the residual are parameters which can be conveniently tweaked using PETSc.

Some preconditioner performance results show a kink in their slopes (Figures 13,16, 18, 21). This could have

multiple causes. First, the HP workstation used to run the models is under variable load at all times. At a

certain hour, all its cores may be unused while the next hour all of the 40 available threads are under 100% load

28

because of a separate parallel computation. Second, performance results of models which include time stepping

should be averaged over all the time steps. In many cases only a small amount of time steps were used because

of large computation times. To be able to acquire more accurate performance results, more time steps should

be carried out and an average should be calculated.

The advantage of multigrid over other preconditioners when simulating systems with viscosity contrasts

becomes obvious in Figure 22. The iterations required for inner convergence are significantly lower for multigrid

methods than ILU methods. This results in a direct increase in solve time. However, individual iterations of

multigrid preconditioned CG are more computationally expensive. Thus, five times less iterations does not

result in 5 times faster solve times. The lowering of iteration count is due to lowering of the condition numbers

of the matrix. Multigrid methods do a better job in approximating A−1 and when applying the preconditioner

to the matrix yields a matrix closer to the identity matrix.

The resolution for which the results of the subduction simulation are shown (Figure 20) is too low. In order

to acquire more accurate results, the resolution needs to increase. At each time step, the markers within a cell

get averaged to yield a cell-averaged variable (such as density or viscosity) for that cell. Increasing the amount

of markers can yield a more detailed picture of the model, however, there is a limit. If the standard resolution

of the model is not high enough, increasing the amount of markers will not add any more insights into the

dynamics of the system. The amount of markers used, as well as the accuracy of the model results, are separate

from the performance results. The fact that multigrid + CG performs the best when modelling subducting

still holds, independent of markers and accuracy of the model outcome compared to the paper by Schellart and

Moresi (2013).

The integration of PETSc into ELEFANT opens the door to experimentation with preconditioners and

solvers. By documenting the capabilities of PETSc I have shown that correctly tuned preconditioners and

solvers are able to achieve high levels of performance as well as increasing robustness of the solve step.

29

5 simPyFEM

Drawing more attention to the intricacies of modelling in Earth Sciences is an important step in capturing

student’s attention. By giving out a versatile and easy to understand tool, which can help to be the first step

into this field their interest is sparked. To make an already flexible code appealing to all the more people,

simpleFEM was rewritten to Python.

From the website of C. Thieulot (http://cedricthieulot.net/simplefem.html): ”SimpleFEM is a For-

tran code built for educational purposes. It showcases functional illustrations of the various features of a FEM

code: the mesh and its connectivity, the shape functions and their derivatives, the numerical integration, the

assembly phase, imposing the boundary conditions, and the system solve”. Fortran (90) is still a widely used

programming language in the scientific and banking community. It is a relatively simple and barebones language

experiencing fast purely numerical calculations compared to other languages.

SimpleFEM is an adaptive piece of code. Many different versions exist (Figure 23), with more renditions

about to arrive. The unadorned simpleFEM involves a 2D box with a uniform viscosity, density and temperature.

As a result, it is built with a clear structure and is easily adaptable. The simultaneous simplicity and versatility

make it well suited for educational purposes. A flaw is that a new version has got to be created when extending

simpleFEMs features. Thus one can not simply toggle features on and off like one can in ELEFANT. Python

can offer the user some of these on-off switch features without overcomplicating the code.

Python provides a more user-friendly language and structure than F90. It offers a wide variety in ”modules”

the user is able to import. Some of these modules include NumPy, a scientific computing package which offers

tools such as matrix multiplication, Fourier transforms and various solving methods for linear systems and

makes use of NumPy arrays (van der Walt et al., 2011) and MatPlotLib which is a plotting library with a

MATLAB-like interface.

Figure 23: Code overview of ELEFANT and simpleFEM showing the strong points of both codes. Where ELEFANT

uses toggles, simpleFEM branches out into separate versions of the same program.

Python forces the user to indent code to indicate looping or if-else structure. Especially, for less experienced

programmers, this is a good habit to pick up early on. When exploiting some of the packages, features and

parallel capabilities of Python, one can speed up numerical codes through a relatively simple procedure.

As Fortran 90 is not used by many organisations outside of the scientific and banking communities, teaching

students of Earth Sciences a second language is a smart choice. To kickstart this, some pre-existing code has

30

http://cedricthieulot.net/simplefem.html

to be rewritten. To achieve greater efficiency, and make the experience for students more streamlined, solver

and preconditioners will be implemented in the Python code, alongside the pre-existing direct BLAS/LAPACK

implementation. In this thesis, I will present a set of simpleFEM versions in Python and improve performance

of the Python code and compare it to its F90 predecessor. The code is called simPyFEM and instructions and

download links can be found on my GitHub (https://github.com/jobmos/simPyFEM).

In the end, if the user wants to run simPyFEM, nothing more is needed than the install of Anaconda

(Anaconda, 2018) which installs, additionally to Python, the most commonly used packages. No external

packages such as LINPACK, BLAS or gnuplot are required. Everything is contained in 1 file. This avoids

confusion for the students as well as them having the ability to easily tinker with the code at home. One of the

more easy ways to get Fortran code compiled and running on Windows machines is to install a UNIX terminal

emulator such as CygWin. This has proven to be cumbersome for many students. Python has its own program

for all operating systems, further increasing versatility. Python is an interpreted language; the program does

not need a preceding compilation step.

5.1 Methods

The basic version of simpleFEM directly communicates with LINPACK and BLAS to solve the linear system.

Two calls are required. The first call factors the matrix by gaussian elimination and estimates the condition

number of the matrix. The second carries out the solve of the linear system. Some additional variables, which

can be confusing for the user, are also fed as input/output. Python provides a more neat solution. One first

imports a module, in this case NumPy. The solve call to Numpy is as follows

x=numpy.linalg.solve(A,b)

and takes cares of everything behind the scenes. In the end, NumPy is still built on calls to LINPACK, but the

user is not exposed to this directly. Not only a direct method is included in the modules. Iterative solvers can

also be applied to linear systems using SciPy. Calling the conjugate gradient solve subroutine is handled in a

similar manner:

x,info=scipy.sparse.linalg.cg(A,b)

where x is the solution and info is a return integer providing information on solve convergence (0 meaning

a successful solve, and anything other than 0 indicates a non-convergent/divergent pattern in the residual).

Parameters which are not mandatory but may improve performance (initial guess, tolerance, maximum number

of iterations, preconditioners) can be given as additional input to the call. Many other popular iterative

methods, such as GMRES, MINRES, and biCGStab are also supported. For further documentation see the

SciPy documentation (https://docs.scipy.org/doc/).

Here I will present a number of tests comparing the performance of various solving techniques including direct

and iterative solves as well as penalty versus the Schur complement method using a diagonally preconditioned

conjugate gradient method and direct method as inner solve. In the measurements of solve time, the setup of

the program (setting boundary conditions, setting up the matrix and converting the matrix to CSR) will be

excluded, essentially producing a clean comparison of pure solve times. Tests are run on a 2013 MacBook Pro

with a dual core 2.6GHz Intel Core i5 (hyperthreaded up to 4 threads) and 8 GB of 1600MHz DDR3 RAM

unless mentioned otherwise.

When directly translating Fortran simpleFEM to Python simPyFEM, one has to account for indexing.

Fortran starts counting array indices at 1 while Python start at 0. Looping over the length of an array in

Fortran is: i = 1, 2, ..., n. In Python, a loop over array indices would be: i = 0, 1, ..., n− 1.

To stimulate experimentation with the code, some simple argument passing has been integrated. The user

can provide a resolution at which the model should be ran (Listing 1).

31

https://github.com/jobmos/simPyFEM
https://docs.scipy.org/doc/

1 if int(len(sys.argv)==3):

2 nnx=int(sys.argv [1])

3 nny=int(sys.argv [2])

4 else:

5 nnx=32

6 nny=32

Listing 1: Piece of Python code allowing for command line passing of resolution.

1 def solve_cg(A,B,guess=None):

2

3 solVecNorm=numpy.dot(B,B)

4 residual = []

5 max_its =1000

6

7 if not guess:

8 guess = numpy.zeros(Nfem)

9

10 r = B - sparse.csr_matrix.dot(A, guess)

11 p = r

12

13 for i in range(max_its):

14 Ap = sparse.csr_matrix.dot(A,p)

15 alpha = numpy.dot(r,r) / numpy.dot(p, Ap)

16 guess += alpha * p

17 r_new = r- alpha * Ap

18

19 if residual[i] < 1e-8 or i == max_its -1 :

20 if i == max_its -1:

21 print("No convergence , maximum iterations reached")

22 else:

23 print("Convergence reached: ",i," iterations.")

24 break

25

26 beta = numpy.dot(r_new ,r_new)/numpy.dot(r,r)

27 p_new = r_new + beta * p

28

29 p=p_new

30 r=r_new

31 return guess

Listing 2: Python function for the Conjugate Gradient algorithm. Translated from Algorithm 6.18 in Saad (2003).

Algorithm 2: Uzawa iteration

Input : A,G,~f ,~h

Output: ~v,p

1 Choose v0,p0

2 while not converged do

3 vk+1 = A−1(f −Gpk)

4 pk+1 = pk + α(GT vk+1 − h)

5 end

32

1 def solve_pcg(A,B,guess=None):

2

3 solVecNorm=numpy.dot(B,B)

4 residual = []

5 max_its =1000

6

7 if not guess:

8 guess = numpy.zeros(Nfem)

9

10 r = B - sparse.csr_matrix.dot(A, guess)

11 z = sparse.csr_matrix.dot(M,r)

12 p = z

13

14 for i in range(max_its):

15 Ap = sparse.csr_matrix.dot(A,p)

16 alpha = numpy.dot(r,z)/numpy.dot(Ap,p)

17 guess += alpha * p

18 r_new = r - alpha * Ap

19

20 residual.append(numpy.dot(r_new ,r_new)/solVecNorm)

21

22 if residual[i] < 1e-8 or i == max_its -1 :

23 print("No convergence , maximum iterations reached")

24 else:

25 print("Convergence reached: ",i," iterations.")

26 break

27

28 z_new = sparse.csr_matrix.dot(M,r_new)

29 beta = numpy.dot(r_new ,z_new) / numpy.dot(r,z)

30 p_new = z_new + beta * p

31 p=p_new

32 r=r_new

33 z=z_new

34 return guess

Listing 3: Python function for the Preconditioned Conjugate Gradient algorithm. Translated from Algorithm 9.1 in

Saad (2003).

When running a Python code in the terminal, the structure is as follows:

Python3 name of code.py argument1 argument2

and thus argv[0] is name of code.py and argv[1] & argv[2] correspond to the command line inputs argument1

and argument2 respectively. length(argv)=3 in the case that resolution is specified. Not stating resolution

results in setting the default of 32× 32 nodes.

The most convenient and easy way to solve the system of linear equations is to use the direct NumPy approach

numpy.linalg.solve(A,b). This takes the dense matrix A and vector b and returns the solution vector. A

better approach would be to execute a sparse direct solve which takes not the dense form of A but rather takes the

CSR form of A. Matrices can easily be converted from dense to sparse by using scipy.sparse.csr matrix(A)

and are solved by scipy.sparse.linalg.spsolve(A,b). In this manner, no further knowledge or complex

subroutines are exposed to the user. From a performance point of view, this is not ideal. However, the code

must remain easy to understand so a conversion is the preferred method.

A direct solver is not the only method of finding the solution to Ax = b in Python. An iterative method,

such as CG, is also supported. The routine scipy.sparse.linalg.cg supports both dense and sparse versions

of the linear operator, making it more versatile. To gain a better understanding of CG (and to optimize it),

I wrote out the algorithm as a Python function which is available as a function in the code and is open to

33

1 def uzawa1(KKK ,G,Nfem ,nel ,rhs_f ,rhs_h):

2 alpha=1e3

3 tol=1e-6

4 niter =250

5 KKKmem=KKK

6 V_diff = []

7 P_diff = []

8 for iter in range(0,niter):

9 B=rhs_f -numpy.matmul(G,Psol)

10 B=numpy.linalg.solve(KKK ,B)

11 Vsol=B

12 Psol=Psol+alpha*(numpy.matmul(G.transpose (),Vsol)-rhs_h)

13 V_diff.append(numpy.max(abs(Vsol -Vsolmem))/numpy.max(abs(Vsol)))

14 P_diff.append(numpy.max(abs(Psol -Psolmem))/numpy.max(abs(Psol)))

15 Psolmem=Psol

16 Vsolmem=Vsol

17 if max(V_diff[iter],P_diff[iter]) < tol or iter == niter -1 :

18 return (Vsol ,Psol ,V_diff ,P_diff)

Listing 4: Python code of the basic Uzawa algorithm.

exploration and experimentation (Listing 2). Similarly, the Jacobi preconditioned conjugate gradient algorithm

in translated to Python in Listing 3.

The above methods can be directly applied to the system Ax = b when a penalty method is applied. This

method is used for solving constrained optimization problems. It turns constrained problems into a set of

unconstrained problems. For the case of solving a system of linear equations, the solution obtained through

this method is not an exact one.

Inexact solutions may be appropriate for solving particular kinds of problems. For solving PDEs, however,

finding the exact solution is necessary. The parameters/variables of a PDE govern its spatial geometry which, if

too complex, results in non-convergence. An additional drawback of the penalty formulation is that decreasing

the penalty tolerance, hereby increasing accuracy of the solution (Bryan and Shibberu, 2005), yields an ill-

conditioned problem (Eq. 20 when the condition number C � 1).

A second method of solving the Stokes equations is to solve the saddle point Stokes (Eq. 8) using the Uzawa

method (Uzawa and Arrow, 1989). In Saad (2003), Algorithm 8.6 shows that the Uzawa iteration essentially

breaks down into two lines of calculations (Algorithm 2), wherein G denotes the gradient operator and GT the

divergence operator.

When substituting v (line 3 in Algorithm 2) into p (line 4 in Algorithm 2), we obtain

Sp = GTA−1f − h (36)

where S = GTA−1G denotes the Schur complement. Thus essentially, we are solving the system[
A G

0 −S

][
v

p

]
=

[
f

h−GTA−1f

]
(37)

An important observation is that the Schur complement needs not to be explicitly formed. Rather, the compu-

tation of A−1 is avoided by an inner solve which is allowed to be either a direct or iterative approach such as

CG to the problem

Axk+1 = f −Gp (38)

If line 4 in Algorithm 2 is obtained through CG, the system can be properly solved. The resulting algorithm in

Python is given in Listing 4. In this case the direct Python solve is used as an inner solve. Algorithm 2 suggests

an initial value for α. According to Braess (2007), the step size parameter α is assumed to be sufficiently small

34

1 def uzawa2(KKK ,G,Nfem ,nel ,rhs_f ,rhs_h):

2 alpha =1e3

3 tol=1e-6

4 niter =250

5 V_diff = []

6 P_diff = []

7

8 B=rhs_f -numpy.matmul(G,Psol)

9 B=numpy.linalg.solve(KKK ,B)

10 Vsol=B

11

12 for iter in range(0,niter):

13 q=rhs_h -numpy.matmul(G.transpose (),Vsol)

14 phi=numpy.matmul(G,q)

15 B=phi

16 B=numpy.linalg.solve(KKK ,B)

17 h=B

18 alpha=numpy.dot(q,q)/numpy.dot(phi ,h)

19 Psol=Psol -alpha*q

20 Vsol=Vsol+alpha*h

21 V_diff.append(numpy.max(abs(Vsol -Vsolmem))/numpy.max(abs(Vsol)))

22 P_diff.append(numpy.max(abs(Psol -Psolmem))/numpy.max(abs(Psol)))

23 Psolmem=Psol

24 Vsolmem=Vsol

25

26 if max(V_diff[iter],P_diff[iter]) < tol or iter == niter -1:

27 return (Vsol ,Psol ,V_diff ,P_diff)

Listing 5: Python code of the Uzawa algorithm including calculation of the optimal α.

in order to ensure convergence of the algorithm. We are able to calculate the optimal α exactly at each iteration

as follows

αk =
qk
′qk

(Gqk)′A−1Gqk
(39)

indicating that a system of the type Ax = Gqk needs to be solved. To solve this, a supplementary vector φk is

introduced yielding Listing 5.

Because the condition number of GTA−1G is high (Braess, 2007), a conjugate gradient approach is more

effective. The resulting algorithm is called the Uzawa Algorithm with Conjugate Directions in Braess (2007)

and, with the integration of sparse matrices is given in Listing 6.

5.2 Results

To document on the performance of simPyFEM, the three Uzawa methods as well as penalty formulations with

direct, CG and preconditioned CG will be critically tested. A test is run for which the analytical solution is

known. Body forces are described in the x and y direction as

b1 =((12.0− 24.0y)x4 + (−24.0 + 48.0y)x3 + (−48.0y + 72.0y2 − 48.0y3 + 12.0)x2+

(−2.0 + 24.0y − 72.0y2 + 48.0y3)x + 1.0− 4.0y + 12.0y2 − 8.0y3)
(40)

b2 =((8.0− 48.0y + 48.0y2)x3 + (−12.0 + 72.0y − 72y2)x2+

(4.0− 24.0y + 48.0y2 − 48.0y3 + 24.0y4)x− 12.0y2 + 24.0y3 − 12.0y4)
(41)

The Uzawa methods that are described in this thesis do not converge equally fast. Outer solver convergence (i.e.

the convergence rate of the three Uzawa methods) is tested with the SciPy sparse direct inner solve. For testing

35

1 def uzawa3(KKK ,G,Nfem ,nel ,rhs_f ,rhs_h):

2 tol=1e-6

3 niter =250

4 V_diff = []

5 P_diff = []

6

7 B=rhs_f -sparse.csr_matrix.dot(G,Psol)

8 B=spsolve(KKK_sparse ,B)

9 Vsol=B

10 q=rhs_h -sparse.csr_matrix.dot(GT,Vsol)

11 d=-q

12

13 for iter in range(0,niter):

14 phi=sparse.csr_matrix.dot(G,d)

15 B=phi

16 B=spsolve(KKK_sparse ,B)

17 h=B

18 alpha=numpy.dot(q,q)/numpy.dot(phi ,h)

19 Psol=Psol+alpha*d

20 Vsol=Vsol -alpha*h

21 qkp1=rhs_h -sparse.csr_matrix.dot(GT ,Vsol)

22 beta=numpy.dot(qkp1 ,qkp1)/numpy.dot(q,q)

23 dkp1=-qkp1+beta*d

24

25 V_diff.append(numpy.max(abs(Vsol -Vsolmem))/numpy.max(abs(Vsol)))

26 P_diff.append(numpy.max(abs(Psol -Psolmem))/numpy.max(abs(Psol)))

27 Psolmem=Psol

28 Vsolmem=Vsol

29 d=dkp1

30 q=qkp1

31

32 if max(V_diff[iter],P_diff[iter]) < tol or iter == niter -1 :

33 return (Vsol ,Psol ,V_diff ,P_diff)

Listing 6: Python code of the Uzawa algorithm known as Uzawa Algorithm with Conjugate Directions.

1E-09

1E-08

1E-07

1E-06

1E-05

0.0001

0.001

0.01

0.1

1

 1 10 100 1000

R
e
s
id

u
a
l

Iteration

Velocity Uzawa1
Pressure Uzawa1
Velocity Uzawa2

Pressure Uzawa2
Velocity Uzawa3

Pressure Uzawa3

Figure 24: Residuals of velocity and pressure for the three different Uzawa methods (Listings 4,5 and 6).

36

Variable Value

Matrix viscosity 1 Pa · s
Viscosity inclusion 103 Pa · s
Radius inclusion 0.25

Density inclusion 103 kg/m3

Midpoint inclusion (x) 0.5

Midpoint inclusion (y) 0.5

Table 2: Variables used in the circular inclusion test.

purposes, the maximum number of outer iterations is set to 1000. More than 1000 does not seem reasonable

in this case. The first Uzawa method does not converge (Figure 24) in less than the maximum number of

iterations. Velocity and pressure residuals decrease by approximately the same pattern but are more than two

orders of magnitude different at the final iteration.

The second Uzawa method is able to converge in less than 1000 iterations. Absolute pressure and velocity

residuals comparatively close and the difference between them decreases as the iterations continue. The last

Uzawa method is capable of performing convergence in 52 iterations and experiences a velocity residual decrease

of 4 orders of magnitude in the first 10 iterations. At iteration 30, a small plateau is reached with a subsequent

rapid decrease of 2 orders of magnitude in 15 iterations. For the coming tests, the third Uzawa method will be

used as it leads in performance.

To be able to explain CG convergence rates in the following part, condition number tests first need to be

carried out. Two tests are set up accordingly. The first consists of an isoviscous and isodense material inside

of a 2D box. Because of the body forces, a velocity field is generated. The second test consists of a 2D box

in which the user can specify the location, size, density and viscosity of any number of circular inclusions. To

promote experimentation, the very top of the simPyFEM code is dedicated to setting up the inclusions in a

clear and simple way (Listing 7).

As discussed previously, higher condition numbers of matrices used in iterative solving techniques result in a

slower convergence rate and thus longer solve times. A Python function was written to calculate the condition

number (Listing 8). Computing eigenvalues of large matrices is computationally costly. For this reason, relatively

small resolutions (from 16× 16 to 64) were used. A single dense and viscous inclusion was placed in the center

of the domain. Results are shown in Figure 25. Condition numbers for the penalty method are substantially

higher than the Schur complement method matrices. Applying a preconditioner to an isoviscous system has

no effect on the condition number (and thus the amount of iterations needed to reach convergence). Viscosity

contrasts are expressed in the matrix by variations in the diagonal. Thus, diagonally preconditioning a matrix

which has a constant diagonal (i.e. is isoviscous) only scales the eigenvalues by a constant factor. The scaling

of eigenvalues has no effect on the condition number as the ratio between smax and smin remains constant.

The penalty method is tested first. Resolution is increased in powers of 2 from 32×32 to 128×128 elements

in a unit square domain. Both tests (isoviscous & isodense and circular inclusion) were carried out in order to

investigate the effect of the condition number on iteration number and the convergence rate and solve times.

The variables used in the circular inclusion experiment are shown in Table 2. Velocity fields of both tests are

visualized in Figure 26.

High condition numbers are observed in Figure 25 when using the penalty method. This is directly reflected

in the number of iterations required for convergence (Figure 27). As discussed earlier applying a diagonal

preconditioner on an isoviscous system has no effect on the convergence. As expected, tests results show that

CG and PCG convergence are equal and only PCG is plotted for non-redundancy. High convergence rates appear

to be not only related to pure condition number. When comparing the condition numbers of preconditioned

A for an isoviscous case and circular inclusion case, the isoviscous condition number is higher by some orders

37

1 def variable_setup ():

2 #Resolution: you can also specify this at run -time

3 if (len(sys.argv)==3):nnx=int(sys.argv [1]);nny=int(sys.argv [2])

4 else: nnx = 32 ; nny = 32

5 #Spatial dimensions of the system:

6 Lx = 2.0 ; Ly = 1.0

7 #Gravity:

8 gx = 0.0 ; gy = -1.0

9 #Plotting solution(s):

10 plot_solution = True

11 #Sinkers:

12 use_sinkers = True

13 return (nnx ,nny ,Lx ,Ly ,gx ,gy ,plot_solution ,use_sinkers)

14

15 def sinker_setup ():

16 rho_matr = 1.0 #density of the matrix material

17 vis_matr = 1.0 #viscosity of the matrix material

18 n_sinker = 2 #number of inclusions

19

20 #Setup_sinker_arrays -----------------------------#

21 vis_sinker = numpy.zeros(n_sinker ,dtype=float)#

22 rho_sinker = numpy.zeros(n_sinker ,dtype=float)#

23 rad_sinker = numpy.zeros(n_sinker ,dtype=float)#

24 mid_sinker_x = numpy.zeros(n_sinker ,dtype=float)#

25 mid_sinker_y = numpy.zeros(n_sinker ,dtype=float)#

26 #--#

27

28 #Sinker 1

29 vis_sinker [0] = 1.0e3 #viscosity of the inclusion

30 rad_sinker [0] = 0.25 #radius of the inclusion

31 rho_sinker [0] = 1.0e3 #density of the inclusion

32 mid_sinker_x [0] = 0.5 #midpoint of the inclusion , x

33 mid_sinker_y [0] = 0.5 #midpoint of the sinker , y

34

35 #Sinker 2

36 vis_sinker [1] = 1.0e3 #viscosity of the inclusion

37 rad_sinker [1] = 0.15 #radius of the inclusion

38 rho_sinker [1] = 2.0e3 #density of the inclusion

39 mid_sinker_x [1] = 1.5 #midpoint of the inclusion , x

40 mid_sinker_y [1] = 0.5 #midpoint of the inclusion , y

41

42 return (rho_matr ,vis_matr ,n_sinker ,vis_sinker ,rad_sinker ,rho_sinker ,

mid_sinker_x ,mid_sinker_y)

Listing 7: First lines of simPyFEM code, consisting of two functions which set up parameters such as resolution and

dimensions of the system as well as sets up the geometries and parameters of the inclusions.

1 def compute_con_number(A):

2 eig_values = numpy.linalg.eigvalsh(A) #computation of eigenvalues

3 eig_val_min = abs(numpy.min(eig_values)) #minimum of eigenvalues

4 eig_val_max = abs(numpy.max(eig_values)) #maximum of eigenvalues

5 con_number = eig_val_max / eig_val_min #condition number

Listing 8: Python code to calculate the condition number of input matrix A.

of magnitude. This would imply faster convergence rates for the circular inclusion case. Comparing Figure 27

and Figure 29 reveals the opposite. PCG on an isoviscous box is able to converge in less than 2000 iterations,

whereas PCG applied to the circular inclusion case is not converging.

38

 1

 100

 10000

 1x10
6

 1x10
8

 1x10
10

 10 100

C
o

n
d

it
io

n
 n

u
m

b
e

r

Number of elements in x, y and z direction

Penalty, isoviscous, no preconditioner
Penalty, isoviscous, diagonal preconditioner
Penalty, sinker, no preconditioner
Penalty, sinker, diagonal preconditioner
Schur, isoviscous, no preconditioner
Schur, isoviscous, diagonal preconditioner
Schur, sinker, no preconditioner
Schur, sinker, diagonal preconditioner

Figure 25: Condition number scaling across small resolutions. For unpreconditioned CG solves, the condition number

increases with resolution. Applying the Jacobi preconditioner results in a constant condition number.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.000

0.002

0.004

0.006

0.008

0.010

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.5

1.0

1.5

2.0

2.5

Figure 26: Left: Velocity field in case of an isoviscous and isodense system. Right: Velocity field with a dense and

viscous circular inclusion placed in the center of the domain.

39

 1x10
-10

 1x10
-8

 1x10
-6

 0.0001

 0.01

 1

 100

 10000

 1x10
6

 1x10
8

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

R
e
s
id

u
a
l

Iteration

32x32x32

64x64x64

128x128x128

Figure 27: Convergence of Preconditioned Conjugate Gradient for an isoviscous box using the penalty method.

 1x10
-10

 1x10
-8

 1x10
-6

 0.0001

 0.01

 1

 100

 10000

 1x10
6

 1x10
8

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

R
e
s
id

u
a
l

Iteration

32x32x32

64x64x64

128x128x128

Figure 28: Convergence of Conjugate Gradient for three resolutions for the circular inclusion test using the penalty

method.

 1x10
-10

 1x10
-8

 1x10
-6

 0.0001

 0.01

 1

 100

 10000

 1x10
6

 1x10
8

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

R
e
s
id

u
a
l

Iteration

32x32x32

64x64x64

128x128x128

Figure 29: Convergence of Preconditioned Conjugate Gradient for the circular inclusion test using the penalty method.

40

0.000000010

0.000001000

0.000100000

0.010000000

1.000000000

100.000000000

 0 50 100 150 200 250

R
e
s
id

u
a
l

Iteration

128x128x128

64x64x64

32x32x32

0.000000010

0.000001000

0.000100000

0.010000000

1.000000000

100.000000000

 0 50 100 150 200 250

R
e
s
id

u
a
l

Iteration

128x128x128

64x64x64

32x32x32

Figure 30: Convergence of Preconditioned Conjugate Gradient for an isoviscous box using the Schur complement

method. Left: all data. Right: selected data for readability.

0.000000010

0.000001000

0.000100000

0.010000000

1.000000000

100.000000000

10000.000000000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

R
e
s
id

u
a
l

Iteration

128x128x128

64x64x64

32x32x32

0.000000010

0.000001000

0.000100000

0.010000000

1.000000000

100.000000000

10000.000000000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

R
e
s
id

u
a
l

Iteration

128x128x128

64x64x64

32x32x32

Figure 31: Convergence of Conjugate Gradient for three resolutions for the circular inclusion test using the Schur

complement method. Left: all data. Right: selected data for readability.

0.000000010

0.000001000

0.000100000

0.010000000

1.000000000

100.000000000

 0 50 100 150 200 250 300 350

R
e
s
id

u
a
l

Iteration

128x128x128

64x64x64

32x32x32

0.000000010

0.000001000

0.000100000

0.010000000

1.000000000

100.000000000

 0 50 100 150 200 250 300

R
e
s
id

u
a
l

Iteration

128x128x128

64x64x64

32x32x32

Figure 32: Convergence of Preconditioned Conjugate Gradient for the circular inclusion test using the Schur complement

method. Left: all data. Right: selected data for readability.

41

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 100

S
o
lv

e
 t
im

e
 (

s
)

Number of elements in x an y direction

Penalty CG
Penalty PCG

Penalty Direct
Schur CG

Schur PCG
Schur Direct

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 100

S
o
lv

e
 t
im

e
 (

s
)

Number of elements in x an y direction

Penalty Direct
Schur CG

Schur PCG
Schur Direct

Figure 33: Computation time of the solve. Left: isoviscous box where the Schur complement method with a direct

inner solver performs the worst. Right: circular inclusion test where the Schur complement method with a CG inner

solve performs the worst.

Similarly, the lower condition number of preconditioned A compared to non-preconditioned A in the case

of the circular inclusion test suggests faster convergence rates of PCG. However, convergence rate patterns

visualized in Figure 28 and 29 are nearly identical. In reality, when looking at the raw data, they are not equal.

Nevertheless, the premise that convergence rates are very low in a heteroviscous system using no, or a non-ideal,

preconditioner holds.

Low(er) condition numbers for A in a system such as Eq. 37 can result in higher convergence rates. This is

directly observed in Figures 30, 31 and 32. In contrast to the penalty method, where CG and PCG were not

able to converge in the case of the circular inclusion test, the Schur complement method is able to converge for

the three different cases. Once again, CG and Jacobi preconditioned CG are equal in an isoviscous system, and

only PCG is visualized (Figure 30) for non-redundancy. The residual decrease plots are more dense compared

to the penalty method as every inner (CG) solve is plotted. For higher resolutions, this can result in hundreds

of lines. For improved observation and interpretation of results, supplementary plots are provided which only

show three lines per resolution; one for the first, middle and last outer iteration.

The isoviscous system converges relatively quickly, in terms of iteration count, and the residual decrease

pattern is a straight line (when using a log-scale on the y-axis) (Figure 30). Non-preconditioned CG for the

circular inclusion experiences an up-and-down convergence pattern but reaches the tolerance in a relatively

straight line. PCG for the circular inclusion shows iteration counts similar to the isoviscous system. Iteration

counts are approximately 10 times lower compared to CG for the same problem. The convergence pattern,

however, is not a straight line. Rather, the residual shows a periodical increase and decrease a couple of times.

As discussed in the section about CG convergence, the number of iterations required for convergence is

predictable. A resolution increase of a factor of 2 would result in twice as many iterations (for well-conditioned

problems). We can observe this behaviour when using the Schur complement method (Figures 30, 31 and 32).

The number of iterations is an indicator for the convergence rate. However, when the individual iterations

are costly, one might seek a method with a slightly worse convergence rate but faster computation time. To

determine which solving method is the fastest, the two tests (isoviscous and circular inclusion boxes) are run for

resolution of 32× 32 to 128× 128 elements. As BLAS and LAPACK (libraries used by SciPy and NumPy) are

inherently parallel on MacBooks, the tests are run on the Linux workstation. The results are shown in Figure

33.

For both tests, the penalty method with a direct solver performs the best. The non-convergence of penalty

CG/PCG for the isoviscous case at resolution of higher than 64×64 and non-convergence of the circular inclusion

case for CG and PCG observed in Figure 27, 28, 29 is the reason for exclusion of these methods in Figure 33.

Measuring computation time for non-convergent solutions is meaningless.

42

It has already been stated that the condition numbers of CG and PCG are equal for an isoviscous case.

Consequently, they require the same amount of iterations to reach convergence. However, because the PCG

method requires more matrix-vector and vector-vector multiplications than CG, PCG performs slightly worse in

terms of solve time. The direct solve in combination with the penalty method results in the lowest computation

times for both the isoviscous test and circular-inclusion-test. In case of the circular inclusions, CG and PCG

are only able to converge when used as an inner solve in one of the Uzawa methods. Excluding the penalty

method, PCG performs the best followed by the direct solve and CG.

Another point of attention is that in the above mentioned tests, all matrix multiplications were carried out

using the sparse CSR format of the matrices. On account of code simplicity, the matrices are built up in their

dense form. Conversion from dense to sparse is carried out by SciPy:

A sparse=scipy.sparse.csr matrix(A)

Sparse matrix multiplications can the be carried out through:

C=sparse.csr matrix.dot(A,B)

where A is a sparse matrix and B can either be a sparse matrix or a vector. The time-save derived from

the numerous, now sparse, matrix multiplications is sufficiently large compared to the computation time of

conversions of A and P from dense to sparse to include it in the algorithms.

5.3 Discussion and conclusions

Not every solver is applicable to every problem that it is exposed to. The penalty method can perform well

with the help of a direct solver. Using iterative solvers with a penalty method is not a good choice. The high

condition numbers of penalty method matrices (i.e. ill-conditioned matrices) are not suitable and result in very

low convergence rates, up to the point where it is unusable even for lower resolutions. The condition number of

the matrices can be lowered in the case of the circular inclusion test by applying the diagonal preconditioner.

Although, because of the inherently poor convergence rate of CG and Jacobi PCG with penalty methods, the

high performance lags behind.

The Schur complement method opens the door to experimenting with preconditioners and solvers. Low

condition numbers result in higher convergence rates without over-complicating the code. Here, the effect

of applying a diagonal preconditioner results in a significant speed-up of the convergence rate (one order of

magnitude for the circular inclusion test). Surprisingly, for the circular inclusion test, using a sparse direct

solver as inner solve is vastly slower than PCG. The speed of the direct solver could be improved by, for

example, specifying that the matrix is SPD. Because scipy.sparse.linalg.spsolve does not support this

format, no further optimization of the direct solve is possible at this point in time, leaving PCG as the best

inner solve for the Schur complement method.

Further improvements to solving the system could be made by also integrating other iterative solvers such

as GMRES, Flexible GMRES and BiCGSTAB. Additional preconditioners can also be setup by students in the

coming years as I have made compute preconditioner() function in which the user formulates the precondi-

tioning matrix. Examples of preconditioners which might perform well are ILU, ICC and SSOR.

The tools that Python provides prove to be useful in the assessment of code performance. Integrated

functions for calculating eigenvalues, for example, allow us to compute condition numbers of matrices in a simple

way. Conversion of dense to CSR storage (or many other sparse formats) is also a powerful and convenient tool

to have access to in many cases when working with large numerical calculations.

By translating the code from Fortran to Python, the first step to finite element modelling as well as a basic

understanding of solvers and preconditioners becomes more accessible to students. For them it might suffice to

only use the penalty method with a direct solver, which could be useful when carrying out simple simulations.

43

Others might find a use in the Schur complement method using iterative solvers and are able to write their

own solvers and preconditioner functions in Python and add them to the project. This opens up the path for

simPyFEM to become a powerful, yet easy to understand educational tool for the understanding of geodynamic

behaviour coded in a modern programming language which is easy to adapt.

References

Amestoy, P. R., Duff, I. S., L’Excellent, J.-Y., and Koster, J. (2001). MUMPS: A General Purpose Distributed

Memory Sparse Solver, pages 121–130. Springer Berlin Heidelberg, Berlin, Heidelberg.

Anaconda (2018). Anaconda, stable release 5.0.2. https://www.anaconda.com/.

Balay, S., Abhyankar, S., Adams, M. F., Brown, J., Brune, P., Buschelman, K., Dalcin, L., Eijkhout, V., Gropp,

W. D., Kaushik, D., Knepley, M. G., May, D. A., McInnes, L. C., Rupp, K., Sanan, P., Smith, B. F., Zampini,

S., Zhang, H., and Zhang, H. (2017a). PETSc users manual. Technical Report ANL-95/11 - Revision 3.8,

Argonne National Laboratory.

Balay, S., Abhyankar, S., Adams, M. F., Brown, J., Brune, P., Buschelman, K., Dalcin, L., Eijkhout, V., Gropp,

W. D., Kaushik, D., Knepley, M. G., May, D. A., McInnes, L. C., Rupp, K., Smith, B. F., Zampini, S., Zhang,

H., and Zhang, H. (2017b). PETSc Web page. http://www.mcs.anl.gov/petsc.

Balay, S., Gropp, W. D., McInnes, L. C., and Smith, B. F. (1997). Efficient management of parallelism in object

oriented numerical software libraries. In Arge, E., Bruaset, A. M., and Langtangen, H. P., editors, Modern

Software Tools in Scientific Computing, pages 163–202. Birkhäuser Press.

Bangerth, W. (2013). http://www.math.colostate.edu/~bangerth/videos.html.

Bangerth, W., Burstedde, C., Heister, T., and Kronbichler, M. (2012). Algorithms and data structures for

massively parallel generic adaptive finite element codes. ACM Trans. Math. Softw., 38(2):14:1–14:28.

Bijwaard, H., Spakman, W., and Engdahl, E. R. (1998). Closing the gap between regional and global travel

time tomography. Journal of Geophysical Research: Solid Earth, 103(B12):30055–30078.

Blankenbach, B., Busse, F., Christensen, U., Cserepes, L., Gunkel, D., Hansen, U., Harder, H., Jarvis, G., Koch,

M., Marquart, G., Moore, D., Olson, P., Schmeling, H., and Schnaubelt, T. (1989). A benchmark comparison

for mantle convection codes. Geophysical Journal International, 98(1):23–38.

Borzi, A. and Schulz, V. (2009). Multigrid methods for PDE optimization. SIAM Review, 51(2):361–395.

Braess, D. (2007). Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics. Cambridge

University Press, 3 edition.

Bryan, K. and Shibberu, Y. (2005). Penalty functions and constrained optimization. Lecture notes from

Rose-Hulman Institute of Technology.

Calo, V. M., Collier, N. O., Pardo, D., and Paszyński, M. R. (2011). Computational complexity and memory

usage for multi-frontal direct solvers used in p finite element analysis. Procedia Computer Science, 4:1854 –

1861. Proceedings of the International Conference on Computational Science, ICCS 2011.

COMSOL (2014). https://www.comsol.com/blogs/much-memory-needed-solve-large-comsol-models/.

Courant, R., Friedrichs, K., and Lewy, H. (1928). Über die partiellen Differenzengleichungen der mathematis-

chen Physik. Mathematische Annalen, 100:32–74.

44

http://www.mcs.anl.gov/petsc
http://www.math.colostate.edu/~bangerth/videos.html
https://www.comsol.com/blogs/much-memory-needed-solve-large-comsol-models/

Davies, D. R., Wilson, C. R., and Kramer, S. C. (2011). Fluidity: A fully unstructured anisotropic adaptive mesh

computational modeling framework for geodynamics. Geochemistry, Geophysics, Geosystems, 12(6):n/a–n/a.

Davis, T. A. (2004). Algorithm 832: Umfpack v4.3—an unsymmetric-pattern multifrontal method. ACM Trans.

Math. Softw., 30(2):196–199.

de Groot, L., Pimentel, A., and Di Chiara, A. (2016). The multimethod palaeointensity approach applied to

volcanics from terceira: Full-vector geomagnetic data for the past 50 kyr. Geophysical Journal International,

206(1):590–604.

Dongarra, J. and Sullivan, F. (2000). Guest editors’ introduction: The top 10 algorithms. Computing in Science

and Engg., 2(1):22–23.

Duretz, T., May, D. A., Gerya, T. V., and Tackley, P. J. (2011). Discretization errors and free surface sta-

bilization in the finite difference and marker-in-cell method for applied geodynamics: A numerical study.

Geochemistry, Geophysics, Geosystems, 12(7):n/a–n/a. Q07004.

Dziewonski, A. and Haddon, R. (1974). The radius of the core-mantle boundary inferred from travel time and

free oscillation data; a critical review. Physics of the Earth and Planetary Interiors, 9(1):28 – 35.

Falgout, R. D. (2006). An introduction to algebraic multigrid. Computing in Science and Engg., 8(6):24–33.

Fedorenko, R. (1964). The speed of convergence of one iterative process. USSR Computational Mathematics

and Mathematical Physics, 4(3):227 – 235.

Floricich, M., Large, S., Jones, D., Helmi, A., and Lörtzer, G. (2011). Conditioning reservoir model and aiding

well planning using probabilistic seismic inversion in a central north sea field. In Conditioning reservoir model

and aiding well planning using probabilistic seismic inversion in a Central North Sea Field, volume 2, pages

1059–1063.

Fullsack, P. (1995). An arbitrary lagrangian-eulerian formulation for creeping flows and its application in

tectonic models. Geophysical Journal International, 120(1):1–23.

Gerya, T. (2010). Introduction to Numerical Geodynamic Modelling. Cambridge University Press.

Gerya, T. V. and Yuen, D. A. (2003). Characteristics-based marker-in-cell method with conservative finite-

differences schemes for modeling geological flows with strongly variable transport properties. Physics of the

Earth and Planetary Interiors, 140(4):293 – 318.

GNU (2014). https://people.sc.fsu.edu/~jburkardt/py_src/fem2d_bvp_linear/fem2d_bvp_linear.

html.

Guerri, M., Cammarano, F., and Tackley, P. (2016). Modelling earth’s surface topography: Decomposition of

the static and dynamic components. Physics of the Earth and Planetary Interiors, 261:172 – 186.

Harlow, F. H. and Welch, J. E. (1965). Numerical calculation of time-dependent viscous incompressible flow of

fluid with free surface. The Physics of Fluids, 8(12):2182–2189.

Heinrich, H. (1965). S. g. mikhlin, variational methods in mathematical physics. (international series of mono-

graphs in pure and applied mathematics. ZAMM - Journal of Applied Mathematics and Mechanics, 45(4):270–

270.

Hestenes, M. R. and Stiefel, E. (1952). Methods of Conjugate Gradients for Solving Linear Systems. Journal

of Research of the National Bureau of Standards, 49(6):409–436.

Ho, N., Olson, S. D., and Walker, H. F. (2015). Accelerating the Uzawa Algorithm. ArXiv e-prints.

45

https://people.sc.fsu.edu/~jburkardt/py_src/fem2d_bvp_linear/fem2d_bvp_linear.html
https://people.sc.fsu.edu/~jburkardt/py_src/fem2d_bvp_linear/fem2d_bvp_linear.html

Horn, R. A. and Zhang, F. (2005). Basic properties of the schur complement. In Zhang, F., editor, The Schur

complement and its applications, chapter 2, pages 17–46. Springer, New York.

Ismail-Zadeh, A. and Tackley, P. (2010). Computational Methods for Geodynamics. Cambridge University Press.

J N Reddy, D. (2005). An Introduction to the Finite Element Method. McGraw-Hill Education.

Jacobi, C. G. J. (1845). Uber eine neue auflosungsart der bei der methode der kleinsten quadrate vorkommenden

linearen gleichungen. Astronomische Nachrichten, 22:297–306.

Karato, S.-i. (2008). Deformation of Earth Materials: An Introduction to the Rheology of Solid Earth. Cambridge

University Press.

Kronbichler, M., Heister, T., and Bangerth, W. (2012). High accuracy mantle convection simulation through

modern numerical methods. Geophysical Journal International, 191(1):12–29.

Leng, W. and Zhong, S. (2008). Viscous heating, adiabatic heating and energetic consistency in compressible

mantle convection. Geophysical Journal International, 173(2):693–702.

Li, J. and Widlund, O. B. (2007). On the use of inexact subdomain solvers for bddc algorithms. Computer

Methods in Applied Mechanics and Engineering, 196(8):1415 – 1428. Domain Decomposition Methods: recent

advances and new challenges in engineering.

Li, X. S. (2005). An overview of superlu: Algorithms, implementation, and user interface. ACM Trans. Math.

Softw., 31(3):302–325.

Liu, W. and Vinter, B. (2015). Speculative segmented sum for sparse matrix-vector multiplication on heteroge-

neous processors. Parallel Computing, 49:179 – 193.

Lowrie, W. (2007). Fundamentals of Geophysics. Cambridge University Press.

Maffione, M., Thieulot, C., van Hinsbergen, D. J. J., Morris, A., Plümper, O., and Spakman, W. (2015).

Dynamics of intraoceanic subduction initiation: 1. oceanic detachment fault inversion and the formation of

supra-subduction zone ophiolites. Geochemistry, Geophysics, Geosystems, 16(6):1753–1770.

Mancktelow, N. S. (2002). Finite-element modelling of shear zone development in viscoelastic materials and

its implications for localisation of partial melting. Journal of Structural Geology, 24(6):1045 – 1053. Micro

structural Processes: A Special Issue in Honor of the Career Contributions of R.H. Vernon.

May, D., Brown, J., and Pourhiet, L. L. (2015). A scalable, matrix-free multigrid preconditioner for finite element

discretizations of heterogeneous stokes flow. Computer Methods in Applied Mechanics and Engineering,

290:496 – 523.

May, D., Sanan, P., Rupp, K., Knepley, M., and Smith, B. (2016). Extreme-scale multigrid components within

petsc. In Extreme-scale multigrid components within PETSc.

May, D., Schellart, W., and Moresi, L. (2013). Overview of adaptive finite element analysis in computational

geodynamics. Journal of Geodynamics, 70(Supplement C):1 – 20.

May, D. A., Brown, J., and Pourhiet, L. L. (2014). ptatin3d: High-performance methods for long-term litho-

spheric dynamics. In SC14: International Conference for High Performance Computing, Networking, Storage

and Analysis, pages 274–284.

Meurant, G. (1999). Computer Solution of Large Linear Systems. Studies in Mathematics and Its. North-

Holland.

46

Mikhlin, S. (1971). The numerical performance of variational methods. Wolters-Noordhoff Series of Monographs

and Textbooks on Pure and Applied Mathematics. Wolters-Noordhoff Publishing.

Murakami, M., Hirose, K., Kawamura, K., Sata, N., and Ohishi, Y. (2004). Post-perovskite phase transition in

mgsio3. Science, 304(5672):855–858.

Pinchover, Y. and Rubinstein, J. (2005). An Introduction to Partial Differential Equations. Number v. 10 in

An introduction to partial differential equations. Cambridge University Press.

Quinquis, M. E., Buiter, S. J., and Ellis, S. (2011). The role of boundary conditions in numerical models of

subduction zone dynamics. Tectonophysics, 497(1):57 – 70.

Reddy, J. (1986). Applied functional analysis and variational methods in engineering. McGraw-Hill Ryerson,

Limited.

Reddy, J. (2002). Energy Principles and Variational Methods in Applied Mechanics. Wiley.

Reddy, J. (2004). An Introduction to Nonlinear Finite Element Analysis. OUP Oxford.

Reddy, J. and Gartling, D. (2010). The Finite Element Method in Heat Transfer and Fluid Dynamics, Third

Edition. Computational Mechanics and Applied Analysis. Taylor & Francis.

Saad, Y. (2003). Iterative Methods for Sparse Linear Systems. Society for Industrial and Applied Mathematics,

Philadelphia, PA, USA, 2nd edition.

Saad, Y. and Schultz, M. H. (1986). Gmres: A generalized minimal residual algorithm for solving nonsymmetric

linear systems. SIAM Journal on Scientific and Statistical Computing, 7(3):856–869.

Schellart, W. P. and Moresi, L. (2013). A new driving mechanism for backarc extension and backarc shortening

through slab sinking induced toroidal and poloidal mantle flow: Results from dynamic subduction models

with an overriding plate. Journal of Geophysical Research: Solid Earth, 118(6):3221–3248.

Schenk, O. and Gartner, K. (2006). On fast factorization pivoting methods for sparse symmetric indefinite

systems. ETNA. Electronic Transactions on Numerical Analysis [electronic only], 23:158–179.

Schmid, D. W. (2002). Finite and infinite heterogeneities under pure and simple shear. PhD thesis, ETH Zurich.

Schmid, D. W. and Podladchikov, Y. Y. (2003). Analytical solutions for deformable elliptical inclusions in

general shear. Geophysical Journal International, 155(1):269–288.

Schubert, G., Turcotte, D., and Olson, P. (2001). Mantle Convection in the Earth and Planets. Mantle

Convection in the Earth and Planets. Cambridge University Press.

Seidel, L. (1874). Uber ein verfahren die gleichungen, auf welche die methode der kleinsten quadrate fuhrt, sowie

lineare gleichungen uberhaupt, durch successive annaherung aufzulosen. Bayer. Akad. Wiss. Math. Phys. Kl.

Abh., 11:81–108.

Tackley, P. J. (2008). Modelling compressible mantle convection with large viscosity contrasts in a three-

dimensional spherical shell using the yin-yang grid. Physics of the Earth and Planetary Interiors, 171(1):7 –

18. Recent Advances in Computational Geodynamics: Theory, Numerics and Applications.

Thieulot, C. (2011). FANTOM: Two- and three-dimensional numerical modelling of creeping flows for the

solution of geological problems. Physics of the Earth and Planetary Interiors, 188:47–68.

Thieulot, C. (2014). Elefant: a user-friendly multipurpose geodynamics code. Solid Earth Discussions, 6:1949–

2096.

47

Thieulot, C. (2017). Analytical solution for viscous incompressible stokes flow in a spherical shell. Solid Earth,

8(6):1181–1191.

Thieulot, C. (2018). Ghost: Geoscientific hollow sphere tesselation. Solid Earth Discussions, 2018:1–14.

Thornton, C. (2000). Numerical simulations of deviatoric shear deformation of granular media. Géotechnique,

50(1):43–53.

Tosi, N., Stein, C., Noack, L., Hüttig, C., Maierová, P., Samuel, H., Davies, D. R., Wilson, C. R., Kramer, S. C.,

Thieulot, C., Glerum, A., Fraters, M., Spakman, W., Rozel, A., and Tackley, P. J. (2015). A community

benchmark for viscoplastic thermal convection in a 2-d square box. Geochemistry, Geophysics, Geosystems,

16(7):2175–2196.

Uzawa, H. and Arrow, K. J. (1989). Iterative methods for concave programming, pages 135–148. Cambridge

University Press.

van der Giessen, E. and Aref, H. (2003). Advances in Applied Mechanics. Number v. 39 in Advances in Applied

Mechanics. Academic Press.

van der Vorst, H. A. (1992). Bi-cgstab: A fast and smoothly converging variant of bi-cg for the solution of

nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Computing, 13(2):631–644.

van der Walt, S., Colbert, S. C., and Varoquaux, G. (2011). The numpy array: A structure for efficient numerical

computation. Computing in Science Engineering, 13(2):22–30.

Van Hinsbergen, D., Lippert, P., Dupont-Nivet, G., McQuarrie, N., Doubrovine, P., Spakman, W., and Torsvik,

T. (2012). Greater india basin hypothesis and a two-stage cenozoic collision between india and asia. Proceed-

ings of the National Academy of Sciences of the United States of America, 109(20):7659–7664.

Wesseling, P. (2004). An Introduction to Multigrid Methods. An Introduction to Multigrid Methods. R.T.

Edwards.

Young, D. (1954). Iterative methods for solving partial difference equations of elliptic type. Transactions of the

American Mathematical Society, 76(1):92–111.

Zhong, S., Yuen, D., and Moresi, L. (2007). Numerical Methods for Mantle Convection, volume 7. Elsevier.

Zhong, S., Zuber, M. T., Moresi, L., and Gurnis, M. (2000). Role of temperature-dependent viscosity and

surface plates in spherical shell models of mantle convection. Journal of Geophysical Research: Solid Earth

(1978–2012), 105(B5):11063–11082.

48

	Introduction
	Geodynamic modelling
	ELEFANT
	Governing equations
	Finite elements
	Challenges and goal

	Methods
	Matrices
	Time complexity
	Solvers
	Preconditioners
	PETSc

	Results / Numerical experiments
	NSinker
	Tosi
	Annulus
	Convecting cube
	Subduction

	Discussion and conclusions
	simPyFEM
	Methods
	Results
	Discussion and conclusions

