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Abstract 
 
The North Atlantic Oscillation (NAO) is an atmospheric circulation that dominates the climate 
variation over west-north Europe. It alters the pressure difference between the north and south air 
mass over the Atlantic Ocean, by either reinforcing or relieving the gap, so that the westwards storm 
track which drifts to Europe may shift north or south in winter. As a result, wind and surface solar 
irradiation over west Europe are redistributed. For intensively mitigating CO2 emission, vast 
integration of wind power and solar PV in the power system for electricity supply has been set on 
agenda. These weather-dependent and undispatchable generators are sensitive to climate variations. 
An in-depth understanding of the impact of the large-scale climate variation, i.e. the NAO, on the 
power system with high penetration of wind power and solar PV is pivotal for the low-carbon 
transition of the power system. This paper studied the impact of NAO on west Europe power 
system with the vast capacity installation of wind turbines and solar panels. By using the climate 
model data simulated from NAO scenario, the production profile of wind power and solar PV were 
estimated, which is then input into a model of the power system to simulate the system performances 
by the PLEXOS, the integrated energy modeling platform. Results show that the climate shift from 
negative NAO to positive NAO mainly enhances the system electricity production of wind power 
with 89.2 TWh in winter. Thermal generators are then replaced by the wind turbine. With more 
electricity supplied by wind power, the carbon emission, the generation cost and the electricity price 
in wintertime decline as much as 24.7 million tons, 5.6 €/MWh and 9.1 €/MWh respectively. 
Regions within the power system become more local sustained and the transmission load burden is 
relieved. The consequence of NAO shift on the power system is more profound with higher 
penetration of wind power. In addition, regions in the north have their wind production increased 
while south regions experience shrink of their wind power outputs.  
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Abbreviations  
DJF – December, January and February 
ECF –  European Climate Foundation  
EEZ – economic exclusive zone 
EWEA – European Wind Energy Association 
GWE – global warming effect 
iRES – intermittent renewable energy source 
KNMI – Royal Netherlands Meteorlogical Institute 
LHV – lower heating value 
NAO – North Atlantic Oscillation 
PV – photo voltaic  
RES – renewable energy source 
sNAO – summer North Atlantic Oscillation  
SSRD – shortwave surface radiation downward 
UCED – unit commitment and economic dispatch 

1. Introduction 
1.1 Rationale 
Renewable energy sources have a pivotal role in the power generation sector to realize the ambitious 
climate action target proposed by the European Commission. The aim is to reduce 80-95% of the 
pan-European 1990-level CO2 emissions by 2050 (Roadmap 2011). However, generating electricity 
by intermittent renewable energy sources (iRES1) is weather sensitive and is undispatchable in a 
power system. The high variability in weather conditions and climate variability on timescales ranging 
from weeks and months to inter-annual variability, can therefore bring uncertainty to the electricity 
supply of power system where iRES technologies are installed. Since wind power and solar PV will 
contribute more than 80% to the capacity growth of global renewables (IEA 2017), they will become 
more predominant in future power systems. Power generation will be more sensitive to climate 
variation. Therefore, cost-effectiveness and reliability of electricity supply can only be guaranteed 

                                                            

1The renewable energy sources (RES) consists of the intermittent (iRES) and the non-intermittent. 
The intermittent (iRES) includes offshore/onshore wind power and solar PV; the others refer to 
hydro power, biomass, geothermal and solar CSP, though insufficiently.  
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once we are prepared to the impacts. Understanding the performance of power system in the context 
of climate variation would be prerequisite and valuable to take measure.  

 

1.2 Background 
The North Atlantic Oscillation (NAO) is the most dominant mode of variability in the atmospheric 
circulation over the North Atlantic and Europe (Hurrell et al. 2003; Hurrell & Van Loon 1997; 
Hurrell 1995; Hurrell 1996; Kushnir 1999; Wallace & Gutzler 1981; van Loon & Rogers 1978). This 
mode of atmospheric variability, which is the most noticeable in wintertime (Hurrell et al. 2001; 
Hurrell et al. 2003; Greatbatch 2000), i.e. December, January and February, is caused by the variation 
of atmospheric pressure difference between the northern North Atlantic (Icelandic low pressure area) 
and the southern North Atlantic (Azores high pressure area). The difference of atmospheric pressure 
controls the position of the storm tracks and the strength of westerly winds towards Europe, on 
which much of the weather conditions as well as the climate of Europe depends. There are two 
phases of NAO, the positive phase and the negative phase (Figure 1). During the positive phase, the 
gradient of atmospheric pressure between Azores and Icelandic is enhanced, strengthening the 
westerly winds and shifting the storm tracks northwards. South Europe tend to have more sunny 
days in winter while an anomalously rainy, cloudy, humid and mild winter occurs from Scandinavia to 
Central Europe. During the negative phase, the gradient of atmospheric pressure diminishes, 
resulting in weaker westerly winds compared to the normal situation. This results in the situation 
where the storm tracks drift southwards towards the Mediterranean. As a consequence, rainy, cloudy, 
humid and mild winter occurs from Central Europe to the Mediterranean while anomalously sunny 
but cold winter occurs from Scandinavia to Central Europe (Trigo et al. 2002; Hurrell 1995). Several 
researches verified the significant effect and the contribution, to the variation of wind, precipitation, 
solar radiation and surface temperature in Europe, of the NAO (Chiacchio & Wild 2010; Pozo-
Vázquez & Tovar-Pescador 2004; Folland et al. 2009; Hurrell 1995; Hurrell 1996; Pozo-Vazquez et al. 
2011; Curtis et al. 2016a), which is suggested to explain more than 20% of the variation.  
 
The summer North Atlantic Oscillation (sNAO) is a counterpart of NAO in summer time, which is 
induced by the same mechanism, i.e. the variation of atmospheric pressure over the North Atlantic 
Ocean. The sNAO also changes the position of storm track and thus can exert a strong influence on 
northern European rainfall, temperature, and cloudiness. It is the principal determinant for summer 
extreme weather events, including flooding, drought, and heat stress in northwestern Europe 
(Folland et al. 2009), but the amount of variability in the summer circulation which is explained by 
the sNAO is less profound than the NAO in wintertime (Barnston & Livezey 1987). While a strong 
relation has been verified between NAO and the occurrence of winter extreme weather events like 
windstorms or sustained periods with calm and cold conditions (Thompson & Wallace 2001; Trigo et 
al. 2002; López-Moreno & Vicente-Serrano 2008), the impact of sNAO is more northerly located 
and with a smaller spatial scale than the impact of NAO in winter. For the reasons above, this study 
will leave out the sNAO and investigate only the impact of NAO in wintertime.  
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Figure 1. North Atlantic Oscillation. The black arrow represents the storm track of westly winds. The circle with ‘L’ 
represents the Icelandic low and the ‘H’ denotes the Azores high. The left image illustrates the positive phase of NAO 
and the right one illustrates the negative phase.  
 
The dependence of electricity generation from iRES on local weather conditions renders the power 
system vulnerable to the anomalies of climate and the climate extremes associated with the NAO. 
Extreme weather events such as storms and icing alter the efficiency of wind turbines by physical 
impacts (Pryor & Barthelmie 2010; Pryor & Barthelmie 2013). Wind turbines can only efficiently 
extract wind power between cut-in wind speed and cut-out wind speed (Twidell & Weir 2015). Wind 
speed in either extreme or calm weather conditions that is out of the range between the cut-out and 
the cut-in speed of wind turbine prevents the turbine from electricity generation, cutting down its 
capacity factor. The efficiency of solar panel increases with decreasing panel temperature and 
increasing solar irradiance (Wilbanks et al. 2008; Crook et al. 2011; Mavromatakis et al. 2010; Davy & 
Troccoli 2012), which, along with the intensity and duration of solar irradiation, determines the 
production of solar power.  
 
Climate variability and variations in the occurrence of extreme weather events in winter relate to 
divergent power generation as well as intermittent outage or surplus of power supply. The atypical 
patterns of ambient temperature, wind speed and surface solar irradiation (both intensity and 
duration) alter the economic dispatch of power system. In addition to merely involving large volume 
of iRES technology, our future energy system should, at the meantime, be able to cope with adverse 
weather and climate situations so that the adequacy, reliability and affordability of electricity supply 
are guaranteed. This challenge requires extensive synergy among the entire power system, including 
other types of generator, storage and transmission grids. In this sense, quantitative estimate of the 
impact of weather and climate variability on the entire power system is essential. The NAO is taken 
to be a first estimate to quantify the variations in the atmospheric circulation over the North Atlantic 
and Europe. 
 

1.3 Problem definition and research question 
Several studies have verified the significant impact of NAO on the wind and solar energy resources 
for power generation among European countries in terms of energy output and its spatial and 
temporal variability (Brayshaw et al. 2011; Ravestein 2016; Ely et al. 2013; Pozo-Vazquez et al. 2011; 
Jerez et al. 2013). These researches focused on the solitary power generation phase of either wind 
turbine or solar PV whereas the consequence of entire power system was lacking. The study of 
climate effects on iRES technology for the whole European power system usually investigates the 
impact of global climate change, e.g. (ECF 2010). New results suggest that the influence of climate 
change on the power output of PV and wind sectors is relatively limited, especially when compared 
with the influence of climate variability dominated by NAO (Ravestein 2016; Jerez, Tobin, et al. 2015; 
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Tobin et al. 2016; Tobin et al. 2015). A few studies examined the influence of NAO on iRES in the 
context of an integral power system. Curtis (2016a; 2016b) confirmed that the NAO had a significant 
impact on wind patterns, by which the switch of NAO from negative phase to positive phase could 
reduce the electricity price of Irish power system with 1.5 €/MWh and the variation of NAO phase 
could explain 10% variation of the CO2 emission intensity within the Irish electricity system. Since 
the NAO affects the climate of Europe, where an ambitious target to install iRES technology into the 
power system is established, it is of value to assess the performance of European power system with 
high iRES share influenced by NAO in the future. However, complete information pertaining to this 
dimension is still lacking. This study intends to fill this knowledge gap and it can add experience to 
the modelling of power system with climate impacts.  
 
Research question:  
What is the consequence of the NAO effect on the iRES electricity production in the European 
power system in 2050 with different RES scenarios where 40%, 60% and 80% of its electricity are 
supplied by RES, as well as on the techno-economic performance of the system?  

- Where and how much capacity will wind turbines and solar panels be installed?  
- What is the electricity generation profile of wind power and solar PV under the 2050 
climatic conditions of different NAO phases?  
- How effective does the iRES technology replace the capacity installation of (conventional) 
thermal generators in 2050?  
- What is the techno-economic performance of the European power system in 2050 
integrated with the estimated wind power and solar PV?  

• Capacity installation of other generators 

• Power generation profiles of full generation mix 

• Storage capacity 

• The variation of generation profile, electricity price and generation costs   

• Load burden of transmission lines  

• CO2 emissions  

• What is the role of each region in the power grids, importer or exporter?  
 

1.4 Research scope 
This research following the system setting of Brouwer et al. (2016). The geographical domain to be 
studied involves the western part of Europe which is divided into 6 regions (figure 2). Transmission 
networks between regions are involved whereas those within the region are overlooked. Techno-
economic parameters in 2035, of which the technological learning effect has been included, are used 
to represent the average level in 2050 so that no legacy power plant is necessary. Although we use 
annual data to simulate the power system, only winter months (December, January and February) are 
selected. The choice is in favor of highlighting the impact of the NAO, of which the effect is the 
most profound in wintertime, on the energy system because the high energy demand in winter 
implements stricter constraints on power generation. Climate factors are assumed to influence the 
electricity production of iRES exclusively. Although the other sectors in the power system, such as 
power demand, may also be influenced by climate change and variation, they are exempt from 
weather conditions for illustrating sharp insight about iRES.  
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Figure 2. Overview of the geographical scope. 

2. Methods 
2.1 Overview 
Long-term system adequacy of the power system with high iRES penetration is assessed in this 
research. Capacity installation of iRES is determined according to the energy scenarios proposed by 
ECF (2010), land availability restrictions as well as meteorological records in former periods about 
resource abundance of solar radiation and wind energy potential. Hourly electricity generation of the 
installed iRES per region in 2050 is calculated based on the climate model data simulated with the 
KNMI’14 scenarios (van den Hurk et al. 2014), in which variability in large-scale weather patterns 
and global climate change are considered. The PLEXOS tool is applied to emulate the performance 
of the constructed power system. It is a bottom-up integrated power system simulation modelling 
tool developed by Energy Exemplar (2017). Power production characters, demand load and 
transmission capacity are required to run the model for this research.  
 
At first, a geographical distribution of iRES capacity in different energy scenarios is identified. 
Secondly, the hourly electricity generation patterns of the implemented iRES under the simulative 
2050 weather conditions are calculated. Thirdly, other categories of power plants, together with 
demand loads and ancillary facilities, are introduced from pioneer researches. Furthermore, the 
integral profile of the assembled power system is run by the PLEXOS tool. Finally, the generation 
pattern of iRES technology and the techno-economic performance of the power system are assessed. 
Figure 3 gives an overview of the steps that are invoked in this research. Following passages in this 
chapter will particularize the procedures.  
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Figure 3. Overview of the input data, operation procedure and the outputs. 

 

2.2 Allocate capacity installation of wind turbine and solar panel 
Regional prognosis about the capacity installation of iRES had been made by Brouwer et al. (2016) 
based on Roadmap 2050 (ECF 2010) but gridded capacity installation was needed so that gridded 
weather data could be applied for more accurate estimation on electricity generation. Results of the 
gridded capacity distribution of onshore/offshore wind turbine and rooftop/utility solar panel can be 
found in section 4.1.  
 

2.2.1 Define energy scenarios of 2050 
Following the pathways in the research of ECF (2010), Brouwer et al. (2016) adopted three scenarios 
of power generation in 2050, of which the power production with RES are 80%, 60% and 40%, 
corresponding to 59%, 41% and 22% iRES on an energy basis respectively, from which the regional 
allocation of the iRES capacity (input 1.2) were derived. In this study, solar panels are classified into 
utility panel for large scale solar power plant and residential rooftop panel, following the assumption 
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in the research of ECF (2010) that either type occupies half of total solar PV installation. As a result, 
iRES refers to onshore/offshore wind power and utility/rooftop solar PV in this research. For each 
type of iRES, we selected one advanced commercial product to represent their average trends in 
2050. They are Vestas V117-3.3 MW turbine for onshore wind power, Vestas V164-8.0 MW for 
offshore wind power, Sunpower X21-345 (monocrystalline silicon) for rooftop solar panel and 
TrinaSolar TSM-PD14 (polycrystalline silicon) for utility solar panel. Relevant characteristics of the 
four technologies and their capacity installed per region can be found in appendix A.  
 

2.2.2 Appoint land availability of each type of landcover 
Land availability for iRES is dependent on the category of landcover (see Section 3.2.1). A survey on 
literature (Ordóñez et al. 2010; Mainzer et al. 2014; Deng et al. 2015; Hoogwijk et al. 2004; Bruninx 
et al. 2014; Hoefnagels & Junginger 2011) had been conducted by ir. William Zappa from the 
Copernicus Institute. It gives clues to determine the ratio of available land for the installation of wind 
turbine and solar panel under a certain landcover, from which we made the assumptions of land 
availability factor for each iRES and each landcover category. The survey and land availability 
assumptions can be found in appendix B.   
 

2.2.3 Construct the spatial grids for the area of interest 
Gridded geographical information, including population and landcover per grid (input 2 and 3), was 
processed by ArcGIS2. The area of interest encompasses both land and available ocean area of the 
regions. Based on the investigation done by EWEA (2013), we assume that offshore wind turbines in 
2050 would be installed within the EEZ of the region where water depth is less than 50 m and 

distance to shore is less than 100 km. A regular longitude-latitude grid with resolution of 0.25°×0.25° 
working grid, aligned with the resolution of climate model data in 2050, that covers the area was thus 
constructed to contain the geographical information as shown in figure 4. For each grid, the type and 
the scale of landcover and population (see Section 3.2.2) were counted.  

                                                            

2 A program developed by ESRI to manage, display and analyse data of geographical information 

systems (Environmental Systems Research Institute (ESRI) 2016). 
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Figure 4. Geographical grids of the research area (0.25°×0.25° res.).  

 

2.2.4 Evaluate installation priority of geo-grids for wind turbine and solar panel 
Installing the iRES facilities in each grid was determined by the population scale and the resource 
abundance. Offshore wind turbine can only be installed in the sea where population has little 
influence. Onshore wind turbine and utility solar plant are more likely to be constructed in the place 
with small population, whereas rooftop solar panel has a larger installation in the place where there 
are more people. Resource abundance consists of available land area for the iRES in each grid as well 
as the capacity factor of wind power and solar irradiation derived from historical weather records (see 
Section 3.2.3). Based on the proposed criteria, a score system, where a higher score indicates higher 
possibility of the grid to install the corresponding iRES facility, is established for each type of iRES 
technology in all grids of the area. Table 1 introduces the criteria.  

Table 1. Formulas to evaluate the priority of iRES installation.  

iRES technology Score Nominal score 

Wind 
Onshore 

S𝑖 =
𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑓𝑎𝑐𝑡𝑜𝑟 × 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑙𝑎𝑛𝑑 𝑎𝑟𝑒𝑎

(1 𝐺𝑟𝑖𝑑 𝑎𝑟𝑒𝑎⁄ + 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑑𝑒𝑛𝑠𝑖𝑡𝑦)
 

 nomi S𝑖,𝑗 =
ln (𝑆𝐶𝑖,𝑗+1)

ln (max (i) 𝑆𝐶𝑖,𝑗+1)
 

Offshore 

Solar 

Rooftop S𝑖 = SSRD × Available land area × Population 

Utility S𝑖 =
𝑆𝑆𝑅𝐷 × 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑙𝑎𝑛𝑑 𝑎𝑟𝑒𝑎

(1 𝐺𝑟𝑖𝑑 𝑎𝑟𝑒𝑎⁄ + 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑑𝑒𝑛𝑠𝑖𝑡𝑦)
 

*A grid is denoted by i, and j denotes each of the four types of technology. The denominator for wind 
turbine and utility PV is designed to avoid grids without inhabitants. The nominal score is a ratio 
between the score of one technology in a grid and the maximum score among all grids of the same 
technology. It allows the cross-technology comparison of priority in each grid.    
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2.2.5 Allocate the regional iRES capacity to grids  
Capacity of each type iRES technology is committed to fulfill the available land of the technology, 
using its capacity density, grid by grid in terms of the score ranking of the technology among all grids, 
until the capacity of the region is used up.  
 

2.3 Calculate hourly power generation per region for each climate scenario 
Hourly capacity factor is required for simulating the power system. However, climate model data is in 
either daily resolution (SSRD and temperature) or 6-hourly (wind speeds at hub height) resolution. 
Downscaling interpolation on the climate model data for hourly estimated values was therefore 
exercised as presented in appendix C.  
 
Hourly power generations per grid was estimated at first according to the capacity distribution and 
the gridded weather data in 2050 and then were aggregated in terms of the region to which they 
belonged. The generation was converted into capacity factor per region per hour for the PLEXOS 
model as the potential of iRES electricity production. Results can be found in section 4.2 of this 
potential generation pattern, built upon gridded geoinformation and weather data considering NAO 
in winter months, in comparison with that of Brouwer (2016) which is initially in regional scale.  
 

2.3.1 Wind power generation  
Formula 1 was used to calculate the hourly power generation of wind turbine.   

P𝑤𝑖𝑛𝑑 = 𝑃𝑖𝑛 ×𝑊𝑝𝑜𝑡 × 𝛿(𝑇) × 𝜂𝑜𝑝𝑡     (1) 
Where,  

P𝑤𝑖𝑛𝑑 = hourly power generation [MWh];  

𝑃𝑖𝑛 = installed capacity [MW];  

𝑊𝑝𝑜𝑡 = wind potential factor [unitless];  

𝛿(𝑇) = de-rated temperature factor [unitless]; 

𝜂𝑜𝑝𝑡 = 88% represents the operational efficiency which accounts for losses in turbine wake effects 

(7%), electrical conversion (2%) and other factors (3%), in accordance with other relevant research 
(Rivas et al. 2009; Myhr et al. 2014; McKenna et al. 2014; Tamura 2012).   
 
Wind potential factor was determined by the power curve method illustrated in formula 2. It is a 
simple but effective way to estimate potential power output under certain wind velocity suggested by 
Twidell and Weir (2015).  

𝑊𝑝𝑜𝑡 = {

0, 0 ≤ 𝑢 <𝑢𝑐𝑖  𝑜𝑟 𝑢 ≥ 𝑢𝑐𝑜
𝑢3−𝑢𝑐𝑖

3

𝑢𝑟
3−𝑢𝑐𝑜

3 ,    𝑢𝑐𝑖 ≤ 𝑢 < 𝑢𝑟

1,               𝑢𝑟 ≤ 𝑢 <𝑢𝑐𝑜

       (2)  

Where,  

𝑢 = instant wind speed at hub height at the hour [m/s], wind speed at 120m for onshore wind 
turbine and that at 100m for offshore wind turbine;  

𝑢𝑐𝑖 = cut-in wind speed of the turbine [m/s];  

𝑢𝑟 = rated wind speed of the turbine [m/s];  

𝑢𝑐𝑜 = cut-out wind speed of the turbine [m/s].  

The latter three speeds ( 𝑢𝑐𝑖 , 𝑢𝑟 , 𝑢𝑐𝑜 ) can be obtained from the wind curve offered by the 
manufacture of turbine. The values used in this research can be found in appendix D.  
 
Operational temperature range at hub height is provided by the manufacture. Wind turbine is to 
decelerate to avoid damage when the temperature is out of the range (de-rated temperature). 
Although the decrease of power generation is gradual, in this research we assume a sharp brake of 



MSc Thesis Research Energy Science Huang, Jiangyi, 5665825 

12 
 

the turbine when it comes to de-rated temperature for simplification. Formula 3 was used to calculate 
the de-rated factor.  

𝛿(𝑇) = {
1, T𝑚𝑖𝑛 ≤ 𝑇 ≤ 𝑇𝑚𝑎𝑥
0, T < 𝑇𝑚𝑖𝑛 𝑜𝑟 𝑇 > 𝑇𝑚𝑎𝑥

        (3)  

Where,  
T = operational temperature at the hub height;  

T𝑚𝑖𝑛 = lower bound of the operational temperature range;  

T𝑚𝑎𝑥 = higher bound of the operational temperature range.  
More detailed information about the calculation regarding specific assumption in this research can be 
found in appendix.  
 

2.3.2 Solar PV power generation  
Power generation by solar PV is usually calculated by adjusting the value under STC3 according to 
actual temperature and actual solar irradiation, as shown in formula 4.  

𝑃𝑠𝑜𝑙𝑎𝑟 = 𝑃𝑆𝑇𝐶 ×
𝐺

𝐺𝑆𝑇𝐶
× 𝑃𝑅𝑆𝑇𝐶 × 𝜂𝑇         (4)  

With 𝑃𝑅𝑆𝑇𝐶 = 90% represents performance ratio at STC, suggested by Freeman et al. (2013) and 
Philipps & Warmuth (2015);  

𝑃𝑆𝑇𝐶  = nominal capacity at STC [W];  
G = actual solar irradiation [W m-2];  
 

𝜂𝑇 = 1 + γ ∙ (𝑇𝑐 − 𝑇𝑆𝑇𝐶)        (5)  
Where,  

𝑇𝑐 = cell temperature;  

𝑇𝑆𝑇𝐶 = 25℃, temperature at STC;  

γ = power temperature coefficient which represents the efficiency change when Tc deviates from 
TSTC, of which the value are offered by the manufacture (see appendix).  
 
Cell temperature was estimated by a linear model (formula 6) proposed by Chenni (2007), as 

suggested in Jerez, Thais, et al. (2015), according to ambient temperature of the cell 𝑇𝑎 [℃] during 
the day light, actual solar irradiation G [W m-2] and wind speed at 10 m height u10 [m s-1].  

𝑇𝑐 = 0.943 ∙ 𝑇𝑎 + 0.028 [℃ ∙ 𝑚2 ∙ 𝑊−1] ∙ 𝐺 + (−1.528 [℃ ∙ s ∙ 𝑚−1]) ∙ 𝑢10 + 4.3℃        (6)  
To estimate 𝑇𝑎, we only have daily average, maximum and minimum temperatures in the outputs of 
EC-Earth model. The minimum temperature is usually attained at night and the maximum 
temperature is attained during daytime. Average temperature during daytime should be higher than 
the average of the whole day, between daily average and daily maximum. Hence, we estimate the 

value as 𝑇𝑎 =
𝑇𝑎𝑣𝑔+𝑇𝑚𝑎𝑥

2
, the average of maximum and average temperatures of the day.  

 

2.3.3 Power capacity factor and capacity credits  
Hourly capacity factor is required as the input of the PLEXOS program. It was calculated by dividing 
the hourly electricity generation of the region with the full load generation of the region at the hour.  
 

2.4 Simulate the power system in 2050 using the PLEXOS model 
The PLEXOS is an integrated modelling software developed by Energy Exemplar (2017) that use 
mathematical optimization algorithm to simulate power system. It was used in this research to build 
the power system model of western Europe in 2050 and simulate the performance of iRES power 
sector under the influence of NAO.  

                                                            

3 Standard Test Conditions (GSTC = 1000 W m⁻² irradiance, air mass 1.5, 25° C).  
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Brouwer (2016) built a power system model for the west Europe. In this research, our model was 
constructed upon that model by substituting the generation profiles of iRES in winter months 
(December, January and February). Brouwer’s model consists of a full generation mix of non-fossil 
generators, in which the iRES generators investigated in this study are included, as well as 
supplementary options of thermal/non-thermal generators, demand response (DR), interconnection 
capacities and electricity storage. It also provides data about the predicted electricity demands pattern 
and the transmission capacity proposed in the ECF energy pathway. The model employed LT plan 
and MT schedule to determine the optimal capacity installation of all generators except for that of 
iRES, which is fixed. Then the ST schedule was applied to optimize hourly unit commitment and 
economic dispatch (UCED) of all generators.  
 
(1) The LT plan is a mixed integer programming (MIP) tool to optimize investment decisions on 
yearly perspective, by minimize the sum of the net present value of build cost, Fixed Operation and 
Maintenance (O&M) costs and operational costs, while meeting minimum reliability and maximum 
emission requirements. The power system is simulated based on an energy-only market design.  
(2) The MT schedule translates annual constraints, such as hydropower generation and planned 
outages, to weekly constraints as an input to the ST schedule.  
(3) The ST schedule applies a mixed integer programming (MIP) based chronological optimization 
for UCED decisions via minimizing the total generation costs of power system, which is subject to 
five constraints (Exemplar 2014): 

(1) electricity supply and demand must be equivalent;  
(2) the flexibility of the generators;  
(3) limitation of transmission network capacity;  
(4) scheduled and random outages of power plants; and  
(5) the reserve requirement of the system for balancing.  

 
In this research, we conducted LT plan and MT schedule to determine the new optimal capacity 
installation of the system with updated iRES technology input in each case. The (ST) schedule on 
hour basis of selected weather years around 2050 was then run on the inputs of hourly capacity 
factors of iRES generators, their regional capacity installation, together with corresponding techno-
economic parameters, and other system settings in Brouwer’s model. Cost profile for iRES was 
assumed to be the same whereas the generation profiles were updated.  
 
Among the outputs from the PLEXOS platform, we are going to discuss the following indicators:  
 (1) capacity installation per category of generators for the entire area;  
 (2) burden loads of interregional transmission lines;  
 (3) CO2 emission and storage demand for the system;  
 (4) power generation of non-intermittent generators;  
 (5) capacity curtailment of demand and generation;  
 (6) unserved (shortage) and dumped (surplus) energy;  
 (6) electricity price and generation cost either of the system;  
 
Transmission loads are given on hourly capacity basis per connection line. Both directions are 
counted separately. In this research, we investigate the amount of electricity that is transmitted on 
certain line. This quantity is determined by formula (7).   

𝐸𝑇𝑖,∆𝑡 =∑(|ℎ𝑖,𝑡𝑗
+ | + |ℎ𝑖,𝑡𝑗

− |)

𝑡𝑛

𝑡0

        (7) 
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where 𝐸𝑇𝑖,∆𝑡 is the transmitted electricity on line i during period ∆𝑡; t denotes the concerned period, 

from t0 to tn, with ∆𝑡 = 𝑡𝑛 − 𝑡0 on hourly basis; h is the hourly flow of electricity on the line [MW]; 
the ‘+’ and ‘-’ denote the direction of the flow.  
 
In addition to the absolute value of transmitted electricity, the hourly average share to the maximum 
capacity of the line is also concerned. This can be calculated by formula (8).  

𝑠ℎ𝑎𝑟𝑒 𝑡𝑜 𝑡ℎ𝑒 𝑙𝑖𝑛𝑒 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 =
𝐸𝑇𝑖,∆𝑡

∆𝑡 ∙ 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑜𝑓 𝑙𝑖𝑛𝑒 𝑖
       (8) 

This indicator is useful to evaluate the pressure of electricity transmission on the power grids.  
 
Electricity price and generation costs are also given on hourly basis per region. To calculate the 
system value of both indicator and the average value over the study period, weighted average value 
concerning the relevant electricity quantity needs to be defined.  
 
For weighted system average value, formula (9) can be applied:  

avgX(t) =
∑ 𝑋𝑖(𝑡) ∙ 𝑄𝑖(𝑡)𝑖

∑ 𝑄𝑖(𝑡)𝑖
       (9) 

where avgX(t) is the weighted average value over the system; 𝑋𝑖(𝑡) denotes the hourly value per 

quantity, either the price or the cost for region i; and 𝑄𝑖(𝑡) is the relevant electricity quantity. For 
electricity price, we use hourly demand load of the region. For generation cost, we use hourly 
electricity production of the region.  
 

In terms of weighted average value over a certain period ∆𝑡, formula (10) is used:  

avgX𝑖 =
∑ 𝑋𝑖(𝑡) ∙ 𝑄𝑖(𝑡)
𝑡+∆𝑡
𝑡

∑ 𝑄𝑖(𝑡)
𝑡+∆𝑡
𝑡

       (10) 

where avgX𝑖 is the weighted average value over over the period. The rest notations follow the above 
descriptions.  
 

2.5 Assess the simulated results  

2.5.1 Box-whisker diagram  
Daily energy generation of iRES for the whole area is presented by the box-whisker diagram. The 
value of maximum, minimum, mean, median as well as quartiles and outliers can be displayed. In a 
box plot, the range between the first and the third quartile is called interquartile range (IQR). The 
minimum value is defined as 1.5 times of IQR below the first quartile and the maximum value is 
defined as 1.5 times of IQR above the third quartile. Values lay out of this range is the outlier. The 
box plot in this study is based on daily power generation of the iRES technology over the three 
winter months. It is useful to display the distribution and implied some information about the 
variation of the power generations of the iRES. The plots are compared against different weather 
years to observe the impact of NAO effect.  
 

2.5.2 Capacity credits  
Capacity credit is defined as the share of installed iRES capacity which reliably meets the electricity 
demands without compensation from other (thermal) generators. It represents the ability of iRES 
technology installation in replacing the capacity of non-intermittent renewable energy sources. It is 
calculated according to the mathematical definition proposed by OECD/IEA (2011):  

CC =
𝑚𝑎𝑥𝑡(𝐿𝑜𝑎𝑑(𝑡)) − 𝑚𝑎𝑥𝑡(𝑅𝑒𝑠𝐿𝑜𝑎𝑑(𝑡))

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑖𝑅𝐸𝑆
        (11) 

where CC denotes the capacity credits; 𝐿𝑜𝑎𝑑(𝑡)  is the hourly demand over the whole year; 

𝑅𝑒𝑠𝐿𝑜𝑎𝑑(𝑡) is the hourly residual demand over the whole year, and 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑖𝑅𝐸𝑆 is the installed 
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capacity of iRES technology. Residual demand refers to the demand that must be fulfilled by non-
interment renewables (OECD/IEA 2011) and is defined as: 

𝑅𝑒𝑠𝐿𝑜𝑎𝑑(𝑡) = 𝐿𝑜𝑎𝑑(𝑡) − 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑖𝑅𝐸𝑆(𝑡)        (12) 
where 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑖𝑅𝐸𝑆(𝑡) is the hourly power generation of certain iRES technology.  
 
In the research of OECD/IEA (2011), a specific calculation method which uses the expected peak 
residual demand rather than the maximum residual demand to counteract interannual variation of 
iRES production, assuming that the residual load is normally distributed. However, we only used data 
in winter months and statistical test showed that the distribution of our residual load did not obey 
normal distribution. In that case, we adopted the initial definition to calculate capacity credits.   
 

3. Data 
3.1 Weather data of 2050 

3.1.1 EC-Earth climate model and KNMI’14 scenario  
Weather plays a key role in estimating the electricity output of wind turbine and solar panel. Here we 
use simulated weather data from simulations of the climate around 2050 done by KNMI. There are 
16 runs of the EC-Earth V2.2 climate model to our disposal, each with a length of 30 years. The EC-
Earth climate simulations include the day-to-day variations in weather and the low-frequency 
variations associated with climate dynamics - including the variations in the NAO (Hazeleger et al. 

2010; Hazeleger et al. 2012). The simulations are downscaled to a 0.25°×0.25° resolution working 
grid (Ravestein et al. 2016) for the relevant output climate variables. Simulated winters are classified 
into four climate scenarios in a similar fashion as in the KNMI’14 scenarios. The simulated years are 
stratified in terms of two types of air circulation patterns as defined by the phases of the NAO 
(figure 5). The two climate phenomenon are assumed to function independently (van den Hurk et al. 
2014). Air circulation pattern is represented by positive NAO (high value) and negative NAO (low 
value). Simulated winters from the 2035-2050 and the 2051-2085 periods are taken to represent a 
weak and strong warming scenario and are taken to represent the two GWEs of global mean 

temperature rise in 2050 relative to the period of 1981-2010, i.e. 1 °C (moderate scenario G) and 2 °C 
(warm scenario W), corresponding to RCP 4.5 and RCP 8.5 emission scenarios in IPCC (2013) 
report (KNMI 2014).  

 
Figure 5. A sketch of KNMI’14 climate scenario. The horizontal direction denotes the global warming effect from 

moderate (1 °C increase) pathway to warm (2 °C increase) pathway. The vertical direction denotes the climate 
variation, i.e. the NAO effect from low (negative) value to high (positive)value. Four areas in the graph are 
separated for the simulated weather years. G and W represent the global warming against horizontal axis. H and L 
represent the climate variability against the vertical axis. For instance, the weather in WH area suggests the climate 
context of high global temperature rise and high NAO index.  
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3.1.2 Sample year selection and pertinent climate variables  
The scenario building sketched in section 3.1.1. produces four scenarios denoted by the sign of NAO 
index (negative or positive) and the path of climate change (warm or cold), i.e. -NAO & cold, -NAO 
& warm, +NAO & cold, +NAO & warm. In each scenario, we selected two weather years with 
maximum and minimum NAO index respectively, as a represent among the years with full range 
NAO index.  

Table 2. Selection of the weather year. 

Scenario category Sample year EC-earth model run NAO index 

Negative + cold 
071 11 -0.0448 

029 4 -4.5650 

Negative + warm 
055 9 -0.0650 

010 2 -3.6405 

Positive + cold 
082 11 4.1919 

019 3 0.0223 

Positive + warm 
034 4 4.4441 

036 4 0.0455 

Corresponding climate variables were gathered according to the method and technology setting, as 
shown in table 3. It should be noted that all outcome variables are either 6 hourly or daily value, 
whereas hourly values, especially for the wind speed at hub height and the SSRD, are necessary to 
calculate hourly electricity output of wind turbine and solar panel. Therefore, we conducted 
downscaling modification on variable 1 in line with Duffie and Beckman (2013, pp.37–40) and Craig 
(1984) and on variable 3 and 4 based on linear assumption of wind speed variation. A detailed 
information about the downscaling interpolation can be found in appendix C.  

Table 3. Relevant climate variables of EC-earth model.  

Variable Name Unit 

1. Daily shortwave surface radiation downward (SSRD)4 J/m2 

2. Daily average windspeed at 10 m height m/s 

3. 6 hourly windspeed at 100 m height m/s 

4. 6 hourly windspeed at 120 m height m/s 

5. Daily average temperature at 2 m height °C 

6. Daily maximum temperature at 2 m height °C 

7. Daily minimum temperature at 2 m height °C 

 

3.2 Geoinformation for capacity distribution 

3.2.1 Landcover  
Landcover information contains two types: the ocean data, which includes the water depth of sea, 
and the data of land which includes landcover class and the protected area. A bathymetry (ocean 
depth) data set from GEBCO 5  was used to obtain the water depth of the regions’ Exclusive 
Economic Zone (EEZ) within 100km from shore. Corine Land Cover (CLC) 2012 (EEA 2012) at 
250m resolution, combined with the nationally designated areas (CDDA) 6  which serves as the 

                                                            

4Both direct and diffuse radiation are included.  
5 http://www.gebco.net/data_and_products/gridded_bathymetry_data/ 
6 https://www.eea.europa.eu/data-and-maps/data/nationally-designated-areas-national-cdda-11 
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forbidden area for iRES installation, was used to label the landcover types within each spatial grid. 
The CLC classified landcover into 44 classes (EEA 1990, pp.21–25), to which we set the land 
availability for wind turbine and solar panel (see Section 2.2.2).  
 

3.2.2 Population  
A predicted population in 20257 was used. The prediction is based on 1990 global population and the 
SRES B2 Scenario (Gaffin et al. 2004), with a working grid of 15 minutes, in accordance to the 
resolution of the spatial grid. Population density was also calculated according to the area of each 
spatial grid.  
 

3.2.3 Historical weather records  
Gridded wind records was obtained from the ERA-20C (Poli et al. 2016) reanalysis data simulated by 
ECMWF, in which the 3-hourly average wind speed was extracted. Solar radiation was collected from 
satellite observation of daily short wave incoming radiation published by EUMETSAT’s CM SAF 
program (Posselt et al. 2012; EUMETSAT 2014). Both records cover a period of 30-year so that the 
effect of NAO in former years can be implicit.  
 

3.3 Data for power system model  
The PLEXOS requires techno-economic parameters and load patterns, pertaining to power 
generation, transmission and consumption, for all involved system options. For the wind turbines 
and the solar panels, the parameters were obtained from their manufactures (appendix A). Hourly 
production portfolio is needed as the input to the PLEXOS and this can be obtained in the methods 
(see Section 2.3). Parameters of other configurations were taken from Brouwer et al. (2016) as 
guaranteed, where biomass, geothermal, fossil fuel and nuclear power plants, demand response, 
transmission lines and demand loads are involved. A brief overview on the main components of the 
system configuration that selected from the previous research is given below. Detailed information 
can be found in Brouwer et al. (2016).  
 

3.3.1 Power plants  
Generators are classified into six groups as the input of the PLEXOS. Some important techno-
economic parameters are displayed in table 4. As the vintage plants are disregarded, all parameters of 
the projection in 2035 are used to represent the average situation in 2050.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                            

7 http://sedac.ciesin.columbia.edu/data/set/sdp-downscaled-population-grid-b2-1990-2025/data-
download#close 
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Table 4. Projected techno-economic parameters for 2035 (Brouwer et al. 2016). 

Category Power planta 

TCRb 
Investment 

Fixed 
O&M 

Variable 
O&M 

Full load 
efficiency 

Ramp rate 

€2012/kW €2012/kW €2012/MWh % LHV % of max capacity/min 

Non-intermittent 
renewables 

Biothermal 1644 37 3.0 45% 3.0% 

Geothermal 2151 44 0.0 100% 3.0% 

Hydropower 2059 52 0.0 100% 8.3% 

Pumped hydropower 1410 0 0.2 80% N.A. 

Conventional 
thermal power  

NGCC+CCS 1349 15 2.1 56% 4.5% 

Nuclear power 4841 103 1.0 33% 2.5% 

Peak load power  
NGCC 902 11 1.2 63% 4.5% 

Gas Turbine 438 10 0.8 42% 10.0% 

Demand 
management 

Air conditioning 17 4 

N.A. N.A. 

N.A. 

Freezer/refrigerator 43 11 

Heating  3 1 

shift 1h by 2h load 3 1 

shift 2h by 2h load 3 1 

Washing machines & 
dryers 

100 26 

Wind power 
Onshore 1402 37 0.0 -c 

Offshore 2655 83 0.0 -c 

Solar PV 
Rooftop 

700 17 0.0 -c 

Utility 
a Power plants only generate electricity: no combined heat and power plants are included.  
b The Total Capital Requirement (TCR) investment costs are calculated from the Total Overnight Costs (TOC) reported by the IEA 
(2014b). An interest percentage of 8% of is used 
during construction. The capital expenditures occur linearly during the construction phase (Oxera 2011).  
c Technical parameters for iRES technology are determined in this study (see table A-1).  

 

3.3.2 Demand load  
Demand load pattern for 2050 conditions had been estimated by extrapolating the historical 
electricity consumption records (ENTSO-E 2014) with respect to the IEA ETP’14 2DS scenario 
(IEA 2014a) which suggests an annual increases by 0.25% to 2800 TWh in 2050. Having realized the 
energy efficiency may improve and the structure of demand may alter, an alternative demand pattern 
was forecasted by van der Leij (2015). It projected efficiency developments in industry, transport, 
agriculture and energy sectors, together with per end-use demand of the residential and service 
sectors. Moreover, increased electrification of transport (to 23% of the passenger vehicle fleet) and 
heating (to 27–72% of residential and 15–58% of service sector heat demand, depending on the 
region) are included. Table 5 lists the annual demand loads per region as well as the demands in 
December, January and February.  
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Table 5. Regional demand loads. 

  

Annual demand Load profile [GW] Demand in DJF 
Share of 
the year TWh Max Average Minimum 

Standard 
deviation 

TWh 

British Isles 377 67 43 21 9 106 28% 

France 547 105 62 30 15 173 32% 

Germany & Benelux 737 114 84 48 13 192 26% 

Iberian Peninsula 326 57 37 7 6 87 27% 

Italy and Alpine States 478 85 55 29 11 126 26% 

Scandinavia 334 63 38 20 8 103 31% 

Total 2800 N.A. 787 28% 

 
Demand load is set to be fixed for all simulated cases. Although the three winter months take up 
around 25% of annual times, their energy demands are all more than 25% of the annual. This verifies 
our reason for the time interval choice for this research.  
 

3.3.3 Transmission and fuel prices 
The transmission capacity (table 6) is based on the medium interconnection case of Brouwer et al. 
(2016). It is fixed over different energy scenario.  

Table 6. Capacity of transmission lines.  

Unit: GW 
British 
Isles 

France 
Germany & 

Benelux 
Iberian 

Peninsula 
Italy and 

Alpine States 
Scandinavia 

Total 
outflow  

British Isles - 12.8 4.9 - - - 17.7 

France 12.8 - 19.9 27.4 13.1 - 73.2 

Germany & Benelux 4.9 19.9 - - 6.6 9.8 41.2 

Iberian Peninsula - 27.4 - - - - 27.4 

Italy and Alpine States - 13.1 6.6 - - - 19.8 

Scandinavia - - 9.8 - - - 9.8 

Total inflow 17.7 73.2 41.2 27.4 19.8 9.8 189.1 

Fuel prices (table 7) are based on the low-carbon 2DS scenario of the IEA Energy Technology 
Perspectives 2014 (IEA 2014a). The study predicts the ranges of some fuel prices but we only fix on 
one medium case for simplification.  

Table 7. Fuel prices in use.  

Fuel type Biomass Gas with CCS Gas for gas turbine Gas for NGCC Storage Uranium 

Price [€/GJ] 7.2 6.5 6.5 6.5 0.0 1.0 
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4. Results 
4.1 Capacity distribution of iRES 

 
Figure 6. Regional iRES capacity installation in RES80 scenario.  

 
Figure 6 presents the capacity installation of iRES technology in the six regions in RES80 scenario. 
The regions can be divided into two groups in terms of total iRES installation. Germany & Benelux 
owns the highest installation of more than 200 GW while the installations in the rest four areas, 
excluding Scandinavia, show similarly low levels at around 140 GW per region. The profile of 
installed iRES technology varies over regions. British Isles, Germany & Benelux and Scandinavia are 
dominated by wind power. France and Iberian Peninsula have equivalent installation between wind 
turbine and solar panel. Italy and Alpine States is dominated by solar power. Germany & Benelux has 
the most onshore wind capacity of about 120 GW. Although there is negligible capacity of offshore 
wind in Iberian Peninsula, its onshore wind capacity is even more than the total wind capacity in 
Scandinavia. Germany & Benelux and British Isles install most of offshore wind turbines, followed 
by Scandinavia. Regions can also be separated into two groups in terms of solar panel installation. 
Italy and Alpine States, Iberian Peninsula and France are the three hotpots for solar PV, where 50 to 
100 GW capacity are installed per region. The second group has a lower level of solar capacity 
installation at 10 to 40 GW in each region.   
 
Spatial features of the iRES capacity distribution are indicated in figure 7. Offshore wind turbines 
concentrate on the south-east coast of North Sea which is surrounded by British Isles, Germany & 
Benelux and Scandinavia. East and west coast of south British island and the north coast of France 
are also favorable to offshore wind capacity. Onshore wind turbines spread out over the whole 
Germany & Benelux and Irish. North-western France and north-eastern Spain are also diffused by 
wind turbines. Besides, it stretches along the coast of North Sea in Britain and Scandinavia. A 
quadrangle pattern around Tyrrhenian Sea is illustrated by the onshore wind turbine installation in 
Italy. The four corners which consist of two islands and two patches in the coastal zone are clustered 
with the capacity. Rooftop solar PV concentrates in the main cities over Europe continent. Utility 
solar PV prevails in the entire Italy and Alpine States and widely spread out in central Spain and 
Central France. Northern Germany and Ireland have clusters of utility solar capacity.  
 
Full profiles of capacity allocation for all three energy scenarios can be found in appendix A and the 
full profiles of spatial distribution are illustrated in appendix E. The rank of regions in terms of 
installed capacity and the internal allocation of the technology do not change too much in different 
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energy scenarios. An exception is Germany & Benelux where a sharp growth of onshore wind 
capacity in RES80 occurs. Because of this, Germany & Benelux transcends British Isles to be the area 
with the largest iRES capacity installation. In terms of spatial distribution, capacity distribution 
expands the general pattern with the increase of iRES installation plan but the core area for capacity 
installation remain the same. Although the regional allocation of iRES capacity is predefined, a 
specific spatial distribution of these allocated capacities could make difference on real power 
generation due to different weather conditions in each grid.  
 

 
(a) Onshore wind turbine 

 
(b) Offshore wind turbine 

 
(c) Rooftop PV 

 
(d) Utility PV 

Figure 7. Spatial illustration of iRES capacity in RES80 Scenario. 
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4.2 Distribution and variation of iRES power generation 
Daily power generation in winter is analyzed through box-whisker plot which shows the distribution 
of the results. In figure 8, the distribution of daily power generation per technology in RES80 energy 
pathway is presented and compared among the selected eight weather years. The boxes are arranged 
against years in increasing order of NAO index from minimum negative value to maximum positive 
value. A complete display of box-whisker plot for all three energy pathways is in appendix E.  
 
Onshore wind can generate 1900-2800 GWh electricity within the system per day on average, as the 
variance of NAO years. The interquartile range of its system daily production takes up less than half 
of the whole range. There is a fluctuated growth trend of wind power daily outputs against the 
increase of NAO index. With the NAO index increasing, the generation raises in negative NAO 
phase. Then in the positive phase, the generation drops a little and grows to the highest in the year of 
maximum positive NAO index. Power generations in moderate NAO years (of which the NAO 
index is close to zero) usually hold wider range of distribution. The lower boundary declines until 
moderate weather years and ascends to the maximum level in extreme positive NAO years. The 
minimum generation in the year can reach 45-50% of its mean level, which is significantly higher 
than the other years. It is suggested that positive extreme NAO years are favorable for onshore wind 
power as severe shortage of its power supply may not happen.  
 
Power generation from offshore wind of the system ranges from 1000 GWh to 1500 GWh per day 
on average in different NAO years. Its distribution follows a similar trend of variation as onshore 
wind despite its intra-period distribution is wider and more homogeneous. The boxes for offshore 
wind power are generally closer to both ends of the whisker. However, there is no outliers in 
offshore wind power production as in onshore wind power where there are ceiling outliers of 
production in weather years with extreme negative NAO index. The lower bound of the whiskers 
approaches to zero, indicating that severe shortage of offshore power supply during wintertime may 
occur.  
 
Daily power generation of rooftop and utility solar PV are almost the same and stable at around 230 
GWh per day on average, not changing with the variation of NAO year. Its daily production 
distribution is more concentrated in its lower half percentile but more widely distributed in the upper 
half percentile with some outliers. The variation of power generation distribution is not significant 
against weather years with NAO index, except that the power generations of both types of PV in 
extreme positive weather years are slight but significantly above the other years. There is also no 
observable difference of either the distribution or its variation between rooftop and utility technology. 
The lower boundaries of the solar power production in different weather years are rather high, which 
account for about 50% of the mean level and 20-40% of the maximum production. This suggests 
that a severe shortage of solar power supply is not likely to happen.  
 
Climate variation is indicated to mainly influence the generation pattern of wind power among the 
iRES. Besides, the global warming effect and different volume of iRES capacity installation in 
different energy scenarios do not induce significant effect on the distribution and variation pattern of 
iRES power generation.   
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(a) Onshore wind turbine 

 
(b) Offshore wind turbine 

 
(c) Rooftop PV 

 
(d) Utility PV 

Figure 8. Distribution of daily power generation [GWh] per iRES in winter months (DJF). The box plots represent total electricity output available per day per iRES 
technology. A bar in the box shows the median. A cross in the box shows the mean. In each plot, boxes of weather years are ordered with increasing NAO index as 
shown below.  

Chart for the order of weather years and their climate contexts.  

Weather Year 029 010 055 071 019 036 082 034 

NAO index -4.5650 -3.6405 -0.0650 -0.0448 0.0223 0.0455 4.1919 4.4441 

GWE cold warm warm cold cold warm cold warm 
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4.3 Capacity credits of iRES power generation  
As shown in figure 9, the capacity credits of total iRES power exhibit a strong trend of fluctuated 
growth as the variation of onshore wind power found in section 4.2. Values of the extreme positive 
years reach a high range between 12-18%. This means, for instance, that with 100GW installation of 
such iRES profiles, we can reliably support 12-18GW electricity demand through iRES without 
supplementary generators, namely, the same capacity of conventional generators can retire. On the 
other hand, the extreme negative year is unfavorable to iRES, of which the capacity credits can be as 
low as 4%. In general, iRES capacity has more profound effects of replacing non-renewables in 
positive NAO phase. In negative phase of climate variation, the global warming seems to affect the 
capacity credits. No matter the NAO index is higher or lower than its counterpart year with an index 
in the same level, the year in warm scenario shows a smaller credit. However, this situation cannot be 
clarified in positive phase since the NAO indexes of positive warm years are consistently higher than 
their counterpart cold years. Increasing the capacity installation of iRES drives down the capacity 
credits with 2-6%. One reason can be inferred that not all added capacity can coordinate with the 
demand load pattern due to the weather dependency of iRES power outputs. With the constraint of 
weather condition, a common situation should be that the larger volume of iRES power capacity, the 
lower its capacity credits.  

 
Figure 9. System capacity credits for total power generation of iRES technology over the year.  

 
If the total capacity credits are decomposed into each iRES technology (figure 10), some different 
trends are revealed. The capacity credits of wind power lay between 5-40%, which are above that of 
total iRES in the same energy pathway. On the other hand, solar PV can hardly replace non-
intermittent energy source and its credits approach zero.  
 
Only offshore wind power follows the general trend of total iRES credits against climate variation. 
The capacity credits of onshore wind power stabilize within 8-20% in negative and moderate positive 
NAO phases, which do not seem to be strongly influenced by the climate variation. Onshore and 
offshore wind power share the same rise in the capacity credits from a bottom in moderate positive 
year to the peak in extreme positive year. Both technologies are advantageous in extreme positive 
weather year. The capacity credits of onshore wind power are generally higher than the offshore, 
despite the larger scale of onshore wind capacity installation.  
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Capacity credits of solar PV are almost insensitive to the change of capacity installation, except for 
the abnormal pattern of utility PV in RES80 scenario. The variation of capacity credits of both 
rooftop and utility PV against NAO effect is also different from total iRES. A common situation 
shared by both technology is that the capacity credits perform slightly better in the intervals between 
either of the extreme phases and the moderate phase, which is almost inverse to the total trend.  
 
In conclusion, the NAO effect has influence on the efficacy of iRES in capacity substitution of non-
intermittent energy. However, the influences on wind power and solar PV are opposite. Extreme 
positive and moderate NAO effects are preferable to wind power but are adverse to solar PV. Solar 
PV is more favorable in the two intervals between extreme and moderate NAO effects. Wind power 
dominates the variation trend of the total iRES capacity credits. It seems that offshore wind power 
shapes the total trend although both its capacity credits and capacity installation are smaller than 
onshore wind power. A complete profile of capacity credits including regional details is presented in 
table E-1 of appendix E.  
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(a) Onshore wind power 

 
(b) Offshore wind power 

 
(c) Rooftop PV 

 
(d) Utility PV 

Figure 10.  System capacity credits per iRES technology over the year. 
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4.4 Outputs from the PLEXOS 
Due to time constraint of the project, only two weather years were simulated in the PLEXOS 
platform. Year 010 with least NAO index (-3.6405) and year 034 with highest NAO index (4.4441), 
both in warm GWE pathway, were selected. They are used to represent the negative phase and the 
positive phase of the NAO. In the following sections, we just name these two years ‘negative NAO 
year’ and ‘positive NAO year’ respectively. The selection is based on the common believe on the 
severe global warming and serves for comparing the impacts of NAO the effect from both phases. 
There are in total six cases that were simulated, as the combination of two weather years (010 and 
034) and three ECF energy pathways (RES40, RES60 and RES80). Although the PLEXOS runs the 
ST plan for UCED over the entire 2050, we are going to discuss the output indicators during winter 
months, except for the constant capacity installation over the year.  
 

4.4.1 Capacity installation portfolio 
The LT plan was first used to determine the optimal capacity installation of all types of power plants, 
including demand management capacity. The profiles were obtained from optimization in each case 
according the planned target in the energy scenarios where 40%, 60% and 80% of the electricity are 
supplied by the renewables. Figure 9 shows the proportion of each power plant category among the 
total capacity in the case. Table 8 shows the amount of capacity installation.  
 
As the capacity of renewable power is predefined, both its installation capacity and the capacity share 
of the total do not change in different weather years. Demand management keeps the same capacity 
of 36GW in no matter different weather years or energy scenarios. On the other hand, this means its 
proportion of total installed capacity shrinks as the total capacity rises. The proportions are the same 
against two NAO phases. With more iRES implemented, relatively less demand management is 
needed. The electricity demand can thus be better met. Climate variation does not seem to affect the 
status of demand response.   
 
In positive NAO year, there are always more peak load capacity and less conventional thermal power 
capacity than in negative NAO year. In the RES80 scenario where the most iRES capacity is installed, 
the difference of peak load capacity between the two weather years is also the largest. The share of 
peak load capacity remains at about 20% of the system total capacity with different iRES 
configurations, but that of conventional thermal power significantly shrinks from 25% to less than 
5%. This phenomenon indicates that the iRES technology can replace conventional thermal power 
but the power for peak load cannot be removed.  
 
Power generation of the iRES is variable, intermittent and undispatchable since it relies on weather 
conditions, on which the climate variation has influence. Its pattern cannot coordinate with the 
demand load pattern all the time. As a result, introducing larger volume of iRES may replace 
conventional thermal power for base load but it cannot cope with the elastic peak loads. Peak load 
generators which are flexible are thus requisite to compensate the demands during the shortage of 
iRES electricity supply. Climate variation seems to be able to alter the extent of the phenomenon. In 
positive NAO year, the importance of peak load power seems to be reinforced whereas it is 
weakened in negative NAO year. Further mechanism of the impact and the roles of wind power and 
solar PV will be explored in the following sections.  
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Figure 9. Share of capacity installation. 

 
Table 8. Capacity installation per category of technologies. 

Installed Capacity [GW] 

RES40 RES60 RES80 

010 034 010 034 010 034 

-3.6405 4.4441 -3.6405 4.4441 -3.6405 4.4441 

Non-intermittent renewables 150 150 178 178 211 211 

Conventional thermal power plants 242 222 157 142 85 50 

Peak load power plants 172 195 221 237 252 292 

Demand management 36 36 36 36 36 36 

Wind power 194 194 362 362 527 527 

Solar PV 120 120 210 210 300 300 

Total 914 917 1163 1165 1412 1416 
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4.4.2 Overview of system power generation mix  
As the demand loads are constant in all cases, the annual electricity generations of power system 
should also be the same if it is met. The PLEXOS outputs show that in all cases, the annual system 
power generation is 2831 TWh with the same quantity of system demand fulfilled. In winter months 
(DJF), both the supply and the demand are 801 TWh, taking up 28.3% of the annual. This result is 
higher than the demand inputs with 31 TWh over the year and 14 TWh in winter. The difference is 
probably due to the demand management in the system. Demand increase in winter months accounts 
for 45% of the total growth, which again verifies the importance of winter in the power system.  
 
Figure 10 (a) shows the system generation mix and (b) shows the change of its components over the 
winter month (DJF) in the RES80 ECF scenario. Recall that the system power generations and the 
capacity installations of either iRES technology in both years are the same. With the switch from 
negative NAO phase to the positive NAO phase, the power system reinforces its electricity 
production of both onshore and offshore wind power with 37.8 TWh and 51.5 TWh respectively, 
while the difference of solar PV between the two years is negligibly 2.7 TWh for both technologies. 
In addition, the NGCC with CCS and gas turbine reduce their productions with 66.4 TWh and 20.8 
TWh whereas the NGCC raise 23.3 TWh of its production.  
 
Hydropower and the NGCC with CCS are normally for base load supply. Gas turbine and the 
NGCC serve the peak load due to their flexibility. Note that the total peak load generations 
supported by the NGCC and gas turbine in either of the weather years are the same. With more wind 
power generation, base load generators can be replaced. The flexible peak load demand remains 
unchanged. However, more electricity from gas turbine, and accordingly, less from the NGCC, in 
negative NAO year with fewer wind power. Gas turbine is more flexible than the NGCC. It is usually 
employed when there are severe variation or shortage as during peak load hours. This suggests that 
the wind power generation is more variable in negative NAO phase.  
 
Positive NAO effect is suggested to be more favorable to wind power generation than the negative 
whereas the production of solar power does not seem to be strongly affected. Wind power can 
replace the base load generators. Negative NAO effect brings the power system with fewer wind 
power, which increases the base load supply from other generators. In addition, the more flexible gas 
turbine is needed in negative NAO phase with fewer iRES power supply.  
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(a) 

 
(b) 

Figure 10. (a) System power generation mix over winter months (DJF) in RES80. (b) Electricity production change of the generators in winter from 
negative NAO year (010) to the positive year (034). The total electricity produced by the system in winter is 801 TWh for both weather years.  

 
Figure 11 zooms into the regional electricity production over the wintertime. The NAO has different 
impact on the regional productions. Positive NAO effect elevates the total power generation in north 
regions (British Isles, Germany & Benelux and Scandinavia). The elevation is primarily rendered 
through the increase in wind power production. The impact on Scandinavia is not apparent because 
there is hydropower as a strong supplement. On the contrary, less electricity is produced in south 
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regions (Iberian Peninsula and Italy and Alpine States) together with a reduction in wind power 
generation. As France locates in the middle of Europe, the impact of the NAO sways in between. 
Positive NAO effect diminishes its total electricity production as for south regions but increase its 
wind power output, though the growth is weak. No significant change of solar power output can be 
found with different NAO effects.  
 
Internal structures of regional electricity production are different in terms of the NAO effect. In 
British Isles, the shrink in both total and wind power electricity during negative NAO phase adds the 
supply from gas turbine. In France, where the other generators keep the same when switch from 
positive NAO phase to the negative phase, power supply by gas turbine is raised and the region 
introduces the NGCC with CCS. In Germany & Benelux, reduced production in wind power in 
negative NAO phase is taken by large amount of the NGCC with CCS. Besides, the NGCC output 
in positive NAO phase is removed. Scandinavia uses more hydropower and biothermal power in 
negative NAO year to compensated wind power decline. The electricity production structure in 
Iberian Peninsula does not change with different NAO effects. In Italy and Alpine States, with more 
wind power production in negative NAO year, about half of the NGCC electricity is replaced by the 
NGCC with CCS.  

 

Figure 11. Regional power generation mix over winter months (DJF) in RES80. 
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4.4.3 Adequacy of electricity supply and demand 
As suggested by table 9, there is no unserved or dumped energy in all cases. The power system can 
perfectly balance energy supply and demand by mathematical optimization. Nevertheless, either 
demand capacity or generation capacity may be curtailed, which is influenced by the NAO. In RES40 
scenario, there are 25.9% of total hours in winter may have demand curtailment in negative NAO 
phase. Once it happens, on average 0.2% of the capacity at the hour to be discarded. However, in 
positive NAO phase, the trouble is thoroughly solved. If we have more renewables power like in 
RES60 and RES80 scenarios, curtailment may appear in generation but with rather low probability 
and low share to the total capacity. In positive NAO year, there are more times in winter with 
curtailments on generation (up to 4.8% vs. 2.2% in RES80) but smaller share of capacity (0.1% vs. 
2.2% in RES80) to be discarded compared with the situation of negative NAO phase. In this sense, 
the RES60 scenario is more adaptive than the others to climate variation as its generation curtailment 
level is the lowest and there is no demand curtailment.  

Table 9. System adequacy and shortage in winter months (DJF).  

Category Year NAO RES40 RES60 RES80 

Unserved Energy [MWh] 
010 -3.6405 0 0 0 

034 4.4441 0 0 0 

Dump Energy [MWh] 
010 -3.6405 0 0 0 

034 4.4441 0 0 0 

Demand Curtailed 

Time sharea 
010 -3.6405 25.9% 0.0% 0.0% 

034 4.4441 0.0% 0.0% 0.0% 

Average rateb 
010 -3.6405 0.2% 0.0% 0.0% 

034 4.4441 0.0% 0.0% 0.0% 

Generation 
Capacity Curtailed 

Time sharea 
010 -3.6405 0.0% 0.4% 2.2% 

034 4.4441 0.0% 1.2% 4.8% 

Average rateb 
010 -3.6405 0.0% 0.4% 2.2% 

034 4.4441 0.0% 0.1% 0.1% 
a The share of curtailment hours to the total hours in winter.  
b The average rate of curtailed capacity to the total demand/generation capacity of the 
hour when the curtailment happens.   

 
Detailed information can be found in table E-3, where the regional distribution of capacity 
curtailment is shown. It is suggested that demand curtailments are evenly distributed among all 
regions whereas the generation capacity curtailment concentrates in British Isles and Scandinavia 
where wind power is vastly introduced. Positive NAO effect has the same impact as for the system 
that it raises the opportunity of curtailment in the two regions but reduces the curtailed volume.  
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4.4.4 Storage and transmission  
Storage and transmission are two measures in a power system to balance demand and supply. Storage 
can deal with the temporal imbalance between supply and demand by storing electricity when the 
supply is surplus and releasing power when supply shortage occurs. Power transmission grids balance 
the supply and demand from spatial dimension, by exporting surplus production and importing 
electricity when a shortage happens.  
 
Storage capacity is useful and essential to compensate the intermittency and undispatchability of the 
iRES. An energy system with higher iRES penetration should need more storage capacity. In the 
power system model of this research, storage is assumed to be offered by pumped-hydropower and 
thus the cost is set to zero. The energy system can use as much storage capacity as it needs within the 
available limit. Table 10 presents the profile of system capacity that is used over the winter months.  

Table 10. Usage of system storage capacity in winter (DJF).  

Weather 
year 

010 034 010 034 

NAO 
index 

-3.6405 4.4441 -3.6405 4.4441 

Category 
Total stored 

electricity 
[TWh] 

Share of 
total 

production 

Total stored 
electricity 

[TWh] 

Share of 
total 

production 

Peak load 
[GW] 

Share of 
total 

capacity 

Peak load 
[GW] 

Share of 
total 

capacity 

RES40 67.3 8.4% 68.4 8.5% 125 13.7% 120 13.0% 

RES60 68.2 8.5% 68.6 8.6% 121 10.4% 116 9.9% 

RES80 68.5 8.6% 70.1 8.7% 118 8.4% 117 8.2% 

 
System storage does not variate too much in each case. In positive NAO year, there are more storage 
needed but the peak load is lower, compared with the negative NAO year. With more renewable 
energy introduced, more storage is used, in terms of both quantity and the share to the total 
production. However, the peak load declines in both quantity and the share.  
 
Power system with large share of iRES, especially the wind power, in positive NAO phase usually 
needs more capacity of supply-demand balance measures. In positive NAO phase, the storm track 
drifts northwards, bringing more winds to North Sea area where most of the wind turbines are 
installed. Higher wind power output may add to the variability and dispatchability of local power 
systems. More storage capacity is needed for the temporal variation and more transmission capacity 
is used to balance interregional demand and supply.  
 
Figure 11 shows the load of electricity transmission for the system over the winter period. More 
transmission load is required in positive NAO year., together with larger shares of the electricity 
online to either total energy production or the capacity constraints of the lines. The gap enlarges with 
increasing the RES electricity supply. Detailed information about interregional transmission lines can 
be found in table E-2 in appendix E. The positive NAO condition may strengthen the transmission 
load of outflow for north regions, such as Scandinavia, British Isles and Germany & Benelux, while 
relieve the outflow burden for south regions, including Iberian Peninsula and Italy and Alpine States. 
As France locates in the middle of the continent, the impact of NAO on its transmission load sways 
in between. 
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Figure 11. System electricity transmissions over the winter months (DJF). 

 
Regional electricity transportation is displayed in figure 12. The shift of NAO effect from negative to 
positive adds the electricity exports in Scandinavia and Germany & Benelux in all three ECF 
scenarios. Either of the three regions maintains its export at 15 TWh. For Italy and Alpine States, the 
effect is elusive. In the RES40 scenario, the NAO has no impact on its import status. In the RES60 
and the RES80 scenarios, the NAO switch from negative to positive alters the transmission status of 
the region from export 12 TWh to import 10 TWh. Although the transmission status of either 
Iberian Peninsula and British Isles is different with the ECF scenarios, effects of the NAO shift from 
negative to positive phase on them have the same direction. For Iberian Peninsula, electricity export 
is reduced by 4 TWh while the imports in RES60 and RES80 is dramatically raised by 15 TWh and 8 
TWh respectively. British Isles is altered in a contrary way in which its tiny electricity import is 
reduced while the export is largely enhanced to 19 TWh in RES80 and 13 TWh in RES60. The same 
NAO shift on the status in France relies on the ECF scenario, i.e. the iRES installation. It needs 11-
16 TWh more electricity import in the RES40 and the RES80 but 10 TWh less in the RES60.  
 
In negative NAO phase, interregional imbalance of power generation is relatively mild. This means 
more electricity demand can be locally supplied. On the other hand, positive NAO may result in a 
severe lack of electricity supply as 34 TWh as in Iberian Peninsula. Recall its total electricity 
production in winter (see section 4.4.2) which is about 60 TWh. The shortage accounts for half of 
the local production, i.e. one-thirds of its demand cannot be locally supported.  
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Figure 12. Regional total net electricity exchange over the winter months (DJF). The negative value denotes the local shortage in supply which 
needs net import. The positive value denotes the excessive local power supply that is exported.  

 
 

4.4.5 Generation costs and electricity prices  
Figure 13 presents the composition of generation costs. Total cost of per unit electricity generation 
consists of emission costs, the cost for start and shutdown the generators and the pure cost for 
energy generation. In positive NAO year, the total generation cost is significantly lower than in the 
negative year (17-22 €/MWh vs. 22-26 €/MWh). Its components in generation and emission shrink 
too whereas the generator start and shutdown cost increases slightly. The phenomenon is probably 
owing to that positive NAO effect brings more wind power to the system, with no charge in energy 
production. The slightly increase in generator start and shutdown costs implicates that the generation 
by thermal generators, for either base load or peak load, becomes more fluctuated.  

 

Figure 13. Profile of generation costs during winter months (DJF).  
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System electricity prices over the winter months (DJF) are presented in table 11. In positive NAO 
year, the average price can reach as low as 56.4 €/MWh with standard deviation of 16.1 €/MWh, 
either of which is smaller than that of the negative year, which is 65.4 €/MWh and 17.6 €/MWh 
respectively. Positive NAO effect lowers the price and stabilizes it as well. With the growth in the 
exploitation of the renewables, prices in both years falls considerably by about 8 units from RES40 to 
RES60 and then slip by about 3 units at RES80. However, the standard deviations change in a 
different way. In the positive year, it ascends slowly from RES40 to RES60 by 0.5 unit and then 
upraise 3.6 units from 12.5 €/MWh to 16.1 €/MWh in RES80. In negative NAO phase, it first drops 
dramatically 8.7 units to the minimum level at 13.8 €/MWh in RES60 and then is lifted to 17.6 
€/MWh. As a result, with RES60 energy scenario, the price gap between NAO phases remains the 
same as in the other scenarios but gap of stability narrows.  

Table 11. Profile of electricity price [€/MWh].  

Indicator Standard deviation Weighted average Minimum 

Year 010 034 010 034 010 034 

NAO -3.6405 4.4441 -3.6405 4.4441 -3.6405 4.4441 

RES40 22.5 12.0 76.1 67.5 10.7 10.7 

RES60 13.8 12.5 68.9 59.8 0.0 0.0 

RES80 17.6 16.1 65.4 56.4 0.0 0.0 

The cause of the price difference could mainly because of the extended exploitation of wind power 
in positive NAO phase. As presented in figure 14 about the generation/price/cost pattern, electricity 
price drops when vast wind electricity is supplied and it rises when wind power production decreases. 
Solar PV also has profound influence on system electricity price. It can drive down the price through 
its generation growth. However, as there seems no sensible change on the generation pattern of solar 
power caused by climate variation, it does not belong to the impact path of the NAO effect. Power 
generation by biothermal generator and gas turbine during peak hours is expensive, driving the price 
to as high as 85 €/MWh. The variability of wind power production may render the frequent use of 
biothermal generator and gas turbine for peak load. As presented in section 4.4.2, energy outputs 
from biothermal are equal between the two NAO years but the power system in positive NAO year 
has less gas turbine outputs. This implies a steadier wind electricity production and explains the lower 
price and costs in the positive phase.  
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(a) 

 
(b) 

Figure 14. Patterns of system price and generation cost in the sample week for (a) weather year 010 (NAO index = -3.6405) in the RES80 scenario, and (b) 
weather year 034 (NAO index = 4.4441) in the RES80 scenario. The weighted average electricity price over the regions is used to calculate the system average. 
Note that the hourly power generation of wind and solar is derived from 6 hourly/ daily climate model data projected for 2050.  
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4.4.6 System CO2 emissions  
Carbon dioxide is produced from burning fossil fuels without CCS measure. As illustrated in figure 
15, the power system in positive NAO phase which brings more wind power, has less CO2 
production as well as emission than in the negative phase. The gaps of CO2 production lay at about 
20 million tons in total over the winter months, which is mainly caused by the reduction of CO2 
storage. Taking the RES80 scenario for instance, the system in positive NAO phase largely expels the 
electricity supply from NGCC with CCS as discussed in section 4.4.2. That is why the stored carbon 
dioxide is much lower than in the negative phase. Nevertheless, with more wind power being 
introduced, the system CO2 production has already been mitigated from source.   

 

Figure 15. System CO2 production during the winter months (DJF). 

 

5. Discussion 
5.1 Limitations  

5.1.1 Limitations of research scope 
This research involves the NAO effect to the European power system with high penetration of iRES 
such as onshore/offshore wind power and rooftop/utility solar PV. The most profound effect of 
NAO that happens during winter months is considered, as well as the main components of the 
power system. However, despite the limitations of the power system constructed by Brouwer et al. 
(2016), several important and interesting parts are lacking due to the restriction of the project.  
 
Float wind turbine and concentrated solar power are excluded. These two types of renewable 
generator are suggested to play an important role in 2050. With float wind turbines installed, a larger 
area in North Sea can be available for offshore wind power (EWEA 2013), which can considerably 
add to the wind power supply. Solar CSP is a rather continuous renewable energy technology. It is 
more sensitive to temperature variation than solar PV due to its mechanism of work. This feature 
could result in that the NAO to be more influential on it than on solar PV. As most of the capacity 
of CSP is to be installed in Spain (Khetarpal 2016), Iberian Peninsula could substantially filled its lack 
in supply (see section 4.4.4).  
 
Temperature pattern variation, as a critical consequence of the NAO effect, is roughly interpolated 
into hourly data. Its impact on generation is also not thoroughly investigated. Thermal generators, no 
matter conventional or renewable, are dependent on temperature patterns in terms of thermal-power 
efficiency due to the restriction of thermodynamic laws. Besides, temperature variation could affect 
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the demand of heat, which is also a pivotal component in energy consumption. Investigating the 
parallel variation of demand and supply as well as the interaction between them of the power system 
caused by the NAO must be more inspiring.  
 
In this research, only the impact of the NAO in winter months was examined. The sNAO that 
happens in summer is not studied. It is inferred that the sNAO should have sensible impact on solar 
PV as its electricity output becomes higher. Besides, the status of Iberian Peninsula and Italy and 
Alpine States where large fleet of solar PV is installed can be more fairly evaluated if we consider the 
peak season for solar power harvest.  
 
Last but the most, we only investigated eight weather years in terms of iRES power production and 
simulated two weather years for the entire power system. The full range of power system 
performance in relative to NAO effect variation cannot be sufficiently revealed.  
 

5.1.2 Limitations of the assumptions  
The linear interpolation on wind data may underestimate the variation of wind power output. In 
downscaling of the solar resource, cloud effect is ignored. This may result in overestimate of its 
stability in power output. The treatment on temperature data is coarse, which undermines the 
estimation of NAO effect.  
 
In deploying the iRES technologies, only one model is applied for each. For wind power, resources 
at different hub heights are not counted, which can undermine the estimation of power generation 
and the representativeness of the impact from the NAO. The mechanism of capacity distribution 
that all available land in the grid are occupied if it has the priority may cause bias. Locating capacity 
installation is also determined by local demands. The bias on the distribution of rooftop solar panels 
is among the most apparent. Besides, solar PV production is estimated according to empirical 
formula, of which the tile effect as well as the shed effect are not explicit.  
 

5.2 Comparison to other literatures  
Our research confirms to the conclusion made by Curtis et al. (2016b) about the dependency of the 
NAO on the level of wind capacity within an electricity system. In that research on Irish power 
market, the shift of NAO from negative to positive could reduce the electricity price by 1.5 €/MWh. 
In this study, we find the reduction of the price can be 9 €/MWh. Curtis et al.(2016b) investigated 
the present power market where the installation of wind power is not as high as in our study. The 
impact of NAO is hence weakened.  
 
Variation of carbon emission was also reported to be as much as 10% in Irish power market (Curtis 
et al. 2016a). Our findings in carbon emission coincides with the research, especially in RES40 
scenario where the variation of carbon emission is around 15% relative to the change of NAO phase. 
Considering 40% renewable energy in a power system is higher than the 20% penetration (European 
Commission 2014) in present proportion in Ireland.  
 

5.3 Suggestion on further research  
Simulating the performance of the power system with the full profile of NAO years will be of great 
value to analyze the impact of this atmospheric circulation. Climate model data for the whole year is 
suggested to estimate the generation profile of the iRES so that the full profile of NAO effect of the 
year can be assessed. Once we find the boundary of the NAO effect on power system performance, 
a further research can be conducted to explore the optimal configuration of the power system to 
adapt to the variation of NAO.  
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6. Conclusion 
By analyzing the results of Europe power system with large share of iRES power installation, we find 
the following conclusions regarding to the impact of the NAO effect on the system.  

- In wintertime, the NAO mainly influences electricity outputs from wind power. Electricity 
produced by solar PV is not significantly affected.  

- Positive NAO phase is more favorable to the power system with high iRES penetration than 
the negative. It introduces more electricity supply from wind power than in the negative 
phase. Thermal generators are vastly replaced. As a result, the price and cost falls, carbon 
emission decreases, and more demand of the region can be locally supplied.  

- The effect of NAO is spatially variated. reinforces on wind power production occur in north 
regions of Europe (British Isles, Germany & Benelux and Scandinavia). In south regions 
(Iberian Peninsula and Italy and Alpine States), the inverse effect occurs, diminishing wind 
power production with slightly raise in solar power. For regions in the middle of Europe 
(France), the NAO impact elusively sways around.  

- Increasing the proportion of iRES power supply in the power system, especially the amount 
of onshore/offshore wind power, strengthens the impact of NAO phase variation.  
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Appendix 
 

Appendix A. Technical parameters of iRES technology and the capacity distribution 

Table A-1 The iRES technical specifications 

 
Wind turbines 

 
Solar PV panels 

Parameter Onshore Offshore Parameter Rooftop Utility 

Manufacture & Model Vestas V117 Vestas V164 Manufacture & Model Sunpower X21-345 TrinaSolar TSM-PD14 

Hub height (m) 120 100 Technology 
Monocrystalline 

Silicon 
Polycrystalline Silicon 

Rated power capacity 
(MW) 

3.3 8.0 
Nominal power capacity 

at STCa (W) 
345 325 

Operational efficiency 88% 88% Module efficiency 21.5% 16.8% 

Roter diameter - D (m) 117 164 
Power temperature 
coefficient (% °C-1) 

-0.30% -0.41% 

Module dimensionsb 
10D*5D = 
0.68 (km2) 

10D*5D = 
1.34 (km2) 

Module dimensions 
1.559m*1.046m = 

1.63m2 
1.956m*0.992m = 

1.94m2 

Power density (W m-2) 4.82 5.95 Power density (W m-2) 212 167 

Operational temperature 
range (°C) 

-20 to 30 -10 to 25 
Operational temperature 

range (°C) 
-40 to 85 -40 to 86 

a: Standard Test Conditions: 1000 W m⁻² irradiance, air mass coefficient 1.5, temperature 25° C 

b: Counting for wake effects 

 

Table A-2 iRES capacity distributions [GW] 

ECF 
Scenarios 

Technology 
British 
Isles 

France 
Germany & 

Benelux 
Iberian 

Peninsula 
Italy and 

Alpine States 
Scandinavia Total 

RES40 

Wind 
Onshore 38.0 16.3 27.1 32.6 10.9 21.7 146.5 

Offshore 15.1 3.8 18.7 0.2 0.0 9.0 46.8 

Solar 
Rooftop 6.7 11.1 8.9 14.4 14.4 4.4 59.9 

Utility 6.7 11.1 8.9 14.4 14.4 4.4 59.9 

RES60 

Wind 
Onshore 72.5 31.1 51.8 62.1 20.7 41.4 279.7 

Offshore 26.5 6.7 32.7 0.3 0.0 15.7 81.9 

Solar 
Rooftop 11.7 19.4 15.5 25.2 25.2 7.8 104.9 

Utility 11.7 19.4 15.5 25.2 25.2 7.8 104.9 

RES80 

Wind 
Onshore 85.0 64.8 117.4 68.8 30.0 40.5 406.6 

Offshore 38.8 9.8 47.9 0.4 0.0 23.1 120.1 

Solar 
Rooftop 9.0 27.7 22.2 36.0 47.9 7.5 150.1 

Utility 9.0 27.7 22.2 36.0 47.9 7.5 150.1 
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Appendix B Assumptions to land availability  

Table B-1 Available land factor assumptions  

CLC Classification Land availability assumption 

Level 1 Class Level 2 Class Level 3 Class 
Class 
Code 

O
n

sh
o

re
 W

in
d

 

O
ff

sh
o

re
 W

in
d

 

R
o

o
ft

o
p

 P
V

 

U
ti

lit
y 

P
V

 

A
rt

if
ic

ia
l 
su

rf
ac

es
 

Urban fabric 
Continuous urban fabric 111     10%   

Discontinuous urban fabric 112     6%   

Industrial, 
commercial and 
transport units 

Industrial or commercial units 121     7%   

Road and rail networks and 
associated land 122         

Port areas 123         

Airports 124         

Mine, dump and 
construction sites 

Mineral extraction sites 131         

Dump sites 132         

Construction sites 133         

Artificial, non-
agricultural 
vegetated areas 

Green urban areas 141         

Sport and leisure facilities 142         

Arable land 

Non-irrigated arable land 211 15%     0.34% 

Permanently irrigated land 212 15%     0.34% 

Rice fields 213 15%       

Permanent crops 

Vineyards 221 15%       

Fruit trees and berry plantations 222 15%       

Olive groves 223 15%       

Pastures Pastures 231 15%     0.34% 

Heterogeneous 
agricultural areas 

Annual crops associated with 
permanent crops 241 15%       

Complex cultivation patterns 242 15%       

Land principally occupied by 
agriculture, with significant areas 
of natural vegetation 243 15%     0.34% 

Agro-forestry areas 244         

F
o

re
st

 a
n

d
 s

em
i 
n

at
u
ra

l 

ar
ea

s 

Forests 

Broad-leaved forest 311         

Coniferous forest 312         

Mixed forest 313         

Scrub and/or 
herbaceous 
vegetation 
associations 

Natural grasslands 321 20%       

Moors and heathland 322 20%       

Sclerophyllous vegetation 323 20%       

Transitional woodland-shrub 324         

Open spaces with Beaches, dunes, sands 331         
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little or no 
vegetation 

Bare rocks 332         

Sparsely vegetated areas 333 20%     0.34% 

Burnt areas 334         

Glaciers and perpetual snow 335         

W
et

la
n

d
s Inland wetlands 

Inland marshes 411         

Peat bogs 412         

Maritime wetlands 

Salt marshes 421         

Salines 422         

Intertidal flats 423         

W
at

er
 b

o
d
ie

s Inland waters 
Water courses 511         

Water bodies 512         

Marine waters 

Coastal lagoons 521         

Estuaries 522         

Sea and ocean 523   30%     

*National designated area is not included where no technology can be installed.  

 

Table B-2 Literature survey on available land for iRES installation  

Technology 

Land (sea) availability factor [%] 

Deng et al. (2015) Hoogwijk et al. 
(2004) 

Mainzer et al. 
(2014) 

Ordóñez et 
al. (2010) 

Hoefnagels & 
Junginger (2011) 

Bruninx et 
al. (2014) (Low/Mid/High) 

Onshore 
Wind 

Agricultural, Desert 
Grassland, Barren 
land: 3%/6%/10% 

Agricultural: 70% 
Grassland: 80% 

Forest: 10% 
    

Agricultural: 10%-35% 
Grassland: 50% 

Forest: 10% 
6% 

Offshore 
Wind 

0-10 km: 4%/5%/5% 
10-50 km: 0%/30%/40% 

50-200 km: 25%/60%/80% 
        3%b 

Utility PV 
(ground 
based) 

Agricultural: 
0.1%/0.5%/2% 

Grassland & Barren Land: 
0.5%/1%/3% 

      Agricultural: 0.5% 

Agricultural: 
0.1% 

Other free 
land: 2% 

Rooftop 
PVa 

33%   
Flat: 27% 

Pitched: 58% 

Flat: 51-55% 
Pitched: 16-

21% 
50% 40% 

a: Availability for rooftop PV is on the basis of roof area, not land area.  

b: 3% of the total area deemed suitable in an earlier study of approx. 750,000 km2 compared with 634,000 km2 in this study.  

     However, a much higher capacity density is assumed (15 MW km⁻²) for offshore wind which partly compensates for this. 
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Appendix C Interpolating climate model data into hourly value 
Downscaling process emphasizes on revealing the tendency of diurnal variation pattern of solar 
irradiation and wind which is substantial to the integration of iRES into power grids. Some 
subordinate effect would be ignored due to insufficient information.  
 

C.1 6-hour average wind speed 
Wind speed within the 6-hour time step is interpolated into hourly value by a simplified assumption 
of linear relation of the variation trend between time steps. This method is initiated from that wind 
speed is inclined to variate towards its future statue. Pressure gradience between atmosphere levels is 
one of the principal factors affecting surface wind speed. Air flows faster in high level of atmosphere 
than on the earth surface. During daytime, the air is heated up by absorbing infrared radiation from 
ground of which energy is supplied by solar radiation. Warm slow-moving air ascends while cold fast-
moving air descends, raising the surface wind speed. When it comes to the wind over sea surface, a 
similar effect happens predominantly in the evening. Owing to the high heat capacity of water, the 
solar energy radiated to the sea does not release but accumulates during daytime. After a whole day 
of sunshine, the absorbed energy releases at night to heat the air above sea surface so that explicit 
pressure gradience emerges. Therefore, although the variation patterns of surface wind speed differ 
from ground to sea, diurnal solar irradiation accounts for the change. To conclude, the tendency of 
wind variation during late night of the day can be inferred based on the wind statue in the previous 
late afternoon.  
 
In this research, the hourly variation of wind speeds during 00:00 to 06:00, 06:00 to 12:00 and 12:00 
to 18:00 are calculated according to the linear trend towards the next period, whereas the wind 
speeds in 18:00 to 24:00 is determined based on the variation trend from 12:00 to 18:00. The original 
average value is set to be the wind speed in the middle of its 6-hour period.  

𝑢𝑖

=

{
 

 
(𝑢𝑖1̅̅ ̅̅ − 𝑢𝑖0̅̅ ̅̅ )

6 − 1
× (𝑛 −

6 − 1

2
) + 𝑢𝑖0̅̅ ̅̅ , 𝑓𝑜𝑟 00: 00 − 06: 00, 06: 00 − 12: 00, 12: 00 − 18: 00 

(𝑢𝑖𝑜̅̅ ̅̅ − 𝑢𝑖−1̅̅ ̅̅ ̅̅ )

6 − 1
× (𝑛 −

6 − 1

2
) + 𝑢𝑖0̅̅ ̅̅ ,                                                                    𝑓𝑜𝑟 18: 00 − 24: 00

 

where:  

𝑢𝑖 : average wind speed of hour i, 𝑖 ∈ [0, 23] 𝑎𝑛𝑑 𝑖 ∈ 𝑅; 

𝑢𝑖0̅̅ ̅̅  : average wind speed in the period when the hour i involved;  

𝑢𝑖1̅̅ ̅̅  : average wind speed in the period after that of hour i;  

𝑢𝑖−1̅̅ ̅̅ ̅̅  : average wind speed in the period before that of hour i;  

𝑛 : the order of hour i in its period, 𝑛 = 𝑖 𝑚𝑜𝑑 6.  
Chaos effect which renders wind speed stochastic is important but it is not applicable to this research 
due to lacking data.  
 

C.2 Daily total SSRD 
The SSRD is interpolated hourly value according to the diurnal hourly distribution of extraterrestrial 
radiation which can be calculated per grid. Cloudiness effect is neglected in this circumstance because 
of the lack of cloud data.  

𝑅𝑖 = 𝑅𝑑 ×
𝑅𝑎ℎ
𝑅𝑎

 

where:  

𝑅𝑖 : surface solar irradiation in hour i;  

𝑅𝑎ℎ : extraterrestrial radiation in hour i;  

𝑅𝑎 : extraterrestrial radiation of the day.  
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The extraterrestrial radiations 𝑅𝑎ℎ  and 𝑅𝑎  for a specific date are determined using the formulas 
proposed by Duffie and Beckman (2013, pp.37–40), along with the method proposed by Craig (1984) 
to determine the day in the year.  
 

Appendix D Power curves for the turbines  

 
Figure D-1. Power curve of onshore wind turine.  

Source: https://en.wind-turbine-models.com/turbines/694-vestas-v-117-3.3  
 
 

 
Figure D-2. Power curve of offshore wind turbine (Vestas 2011).  

https://en.wind-turbine-models.com/turbines/694-vestas-v-117-3.3
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Appendix E Supplementary to the results   

   

   

   

   
Figure E-1. Spatial distribution of iRES installed capacity per energy GWEway. 



MSc Thesis Research Energy Science Huang, Jiangyi, 5665825 

52 
 

Unit: GWh RES40 RES60 RES80 

Wind  
power 

Onshore 

      

Offshore 
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Solar  
PV 

Rooftop 

      

Utility 

      

Figure E-2. Distribution of daily power generation per iRES in winter months (DJF) for all three energy pathways.  

Chart for the order of weather years and their climate contexts.  

Weather Year 029 010 055 071 019 036 082 034 

NAO index -4.5650 -3.6405 -0.0650 -0.0448 0.0223 0.0455 4.1919 4.4441 

GWE cold warm warm cold cold warm cold warm 
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Table E-1. Detailed capacity credits for all cases   

    RES40 RES60 RES80 

NAO -4.5650 Wind power Solar PV 
iRES 

Wind power Solar PV 
iRES 

Wind power Solar PV 
iRES 

GWE cold Onshore Offshore Rooftop Utility Total Onshore Offshore Rooftop Utility Total Onshore Offshore Rooftop Utility Total 

029 

BR 6.05% 10.53% 0.00% 0.75% 0.37% 5.17% 4.76% 7.56% 0.00% 0.78% 0.39% 4.61% 4.86% 6.25% 0.00% 0.78% 0.39% 5.00% 

FR 11.05% 3.72% 0.00% 0.00% 0.00% 4.59% 9.94% 3.95% 0.00% 0.00% 0.00% 4.16% 6.90% 3.99% 0.00% 0.00% 0.00% 3.46% 

GE 3.70% 7.26% 0.00% 0.00% 0.00% 2.98% 3.11% 5.55% 0.00% 0.00% 0.00% 2.43% 2.64% 4.49% 0.00% 0.00% 0.00% 2.04% 

IB 6.05% 0.00% 0.02% 0.02% 0.02% 3.87% 4.00% 0.00% 0.02% 0.02% 0.02% 2.60% 3.66% 0.00% 0.02% 0.02% 0.02% 2.10% 

IT 25.49% N.A. 0.00% 0.00% 0.00% 6.97% 23.08% N.A. 0.00% 0.00% 0.00% 6.72% 21.72% N.A. 0.00% 0.00% 0.00% 5.18% 

SC 1.25% 0.00% 0.00% 0.00% 0.00% 0.69% 1.71% 0.00% 0.00% 0.00% 0.00% 0.98% 1.72% 0.41% 0.00% 0.00% 0.00% 1.00% 

TOT 16.04% 13.23% 0.64% 0.11% 0.38% 7.88% 10.86% 9.31% 0.59% 0.11% 0.35% 6.11% 8.24% 8.69% 0.57% 0.12% 0.35% 5.09% 

NAO -3.6405 Wind power Solar PV 
iRES 

Wind power Solar PV 
iRES 

Wind power Solar PV 
iRES 

GWE warm Onshore Offshore Rooftop Utility Total Onshore Offshore Rooftop Utility Total Onshore Offshore Rooftop Utility Total 

010 

BR 5.52% 12.30% 0.00% 0.87% 0.44% 4.46% 4.12% 9.28% 0.00% 0.92% 0.46% 3.62% 4.22% 8.70% 0.00% 0.92% 0.46% 4.20% 

FR 7.34% 0.00% 0.00% 0.00% 0.00% 2.82% 7.38% 0.00% 0.00% 0.00% 0.00% 2.99% 5.36% 0.75% 0.00% 0.00% 0.00% 2.74% 

GE 3.64% 3.47% 0.00% 0.00% 0.00% 1.88% 3.13% 2.44% 0.00% 0.00% 0.00% 1.71% 2.77% 2.00% 0.00% 0.00% 0.00% 2.01% 

IB 4.22% 0.00% 0.02% 0.02% 0.02% 2.53% 2.27% 0.00% 0.02% 0.02% 0.02% 1.51% 2.06% 0.00% 0.02% 0.02% 0.02% 1.30% 

IT 25.49% N.A. 0.00% 0.00% 0.00% 6.97% 23.08% N.A. 0.00% 0.00% 0.00% 6.72% 18.65% N.A. 0.00% 0.00% 0.00% 4.45% 

SC 4.72% 0.03% 0.00% 0.00% 0.00% 2.60% 4.71% 0.37% 0.00% 0.00% 0.00% 2.76% 4.73% 0.54% 0.00% 0.00% 0.00% 2.60% 

TOT 18.68% 10.80% 0.63% 0.14% 0.39% 5.68% 13.97% 7.21% 0.61% 0.15% 0.38% 4.21% 12.48% 6.01% 0.57% 0.19% 0.38% 3.70% 

NAO -0.0650 Wind power Solar PV 
iRES 

Wind power Solar PV 
iRES 

Wind power Solar PV 
iRES 

GWE warm Onshore Offshore Rooftop Utility Total Onshore Offshore Rooftop Utility Total Onshore Offshore Rooftop Utility Total 

055 

BR 0.85% 7.52% 0.00% 0.92% 0.46% 2.55% 1.18% 5.80% 0.00% 0.95% 0.47% 2.84% 1.86% 5.21% 0.00% 0.95% 0.48% 3.72% 

FR 10.49% 0.82% 0.00% 0.00% 0.00% 4.11% 10.36% 0.59% 0.00% 0.00% 0.00% 4.25% 9.17% 0.43% 0.00% 0.00% 0.00% 4.60% 

GE 9.41% 18.62% 0.00% 0.00% 0.00% 7.27% 7.92% 13.49% 0.00% 0.00% 0.00% 5.39% 5.97% 11.06% 0.00% 0.00% 0.00% 3.66% 

IB 4.24% 0.00% 0.02% 0.02% 0.02% 2.51% 2.27% 0.00% 0.02% 0.02% 0.02% 1.49% 2.06% 0.00% 0.02% 0.02% 0.02% 1.29% 

IT 25.49% N.A. 0.00% 0.00% 0.00% 6.97% 23.08% N.A. 0.00% 0.00% 0.00% 6.72% 22.27% N.A. 0.00% 0.00% 0.00% 5.31% 

SC 5.97% 24.44% 0.00% 0.00% 0.00% 8.83% 6.02% 16.74% 0.00% 0.00% 0.00% 7.05% 6.05% 12.52% 0.00% 0.00% 0.00% 6.80% 

TOT 19.04% 8.29% 1.02% 0.16% 0.59% 6.95% 13.47% 8.64% 0.99% 0.16% 0.57% 6.85% 10.76% 9.77% 0.93% 0.23% 0.58% 5.44% 

NAO -0.0448 Wind power Solar PV 
iRES 

Wind power Solar PV 
iRES 

Wind power Solar PV 
iRES 

GWE cold Onshore Offshore Rooftop Utility Total Onshore Offshore Rooftop Utility Total Onshore Offshore Rooftop Utility Total 

071 

BR 3.99% 5.35% 0.00% 1.03% 0.52% 2.67% 3.40% 3.65% 0.00% 1.07% 0.53% 2.35% 3.34% 3.30% 0.00% 1.07% 0.53% 2.51% 

FR 20.97% 41.55% 0.00% 0.00% 0.00% 14.25% 16.43% 56.92% 0.00% 0.00% 0.00% 9.66% 12.28% 60.82% 0.00% 0.00% 0.00% 6.50% 

GE 9.41% 6.45% 0.00% 0.00% 0.00% 6.96% 8.53% 8.53% 0.00% 0.00% 0.00% 6.21% 6.34% 7.49% 0.00% 0.00% 0.00% 4.24% 

IB 7.89% 0.00% 0.02% 0.02% 0.02% 4.60% 4.47% 0.00% 0.02% 0.02% 0.02% 2.86% 4.08% 0.00% 0.02% 0.02% 0.02% 2.41% 

IT 25.49% N.A. 0.00% 0.00% 0.00% 6.97% 23.08% N.A. 0.00% 0.00% 0.00% 6.72% 18.53% N.A. 0.00% 0.00% 0.00% 4.42% 

SC 10.96% 20.64% 0.00% 0.00% 0.00% 10.70% 10.20% 16.85% 0.00% 0.00% 0.00% 9.46% 10.28% 11.81% 0.00% 0.00% 0.00% 8.77% 

TOT 19.19% 18.32% 0.19% 0.13% 0.16% 9.67% 15.88% 13.89% 0.18% 0.13% 0.16% 8.64% 15.57% 11.96% 0.17% 0.11% 0.14% 7.15% 

NAO 0.0223 Wind power Solar PV 
iRES 

Wind power Solar PV 
iRES 

Wind power Solar PV 
iRES 

GWE cold Onshore Offshore Rooftop Utility Total Onshore Offshore Rooftop Utility Total Onshore Offshore Rooftop Utility Total 
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019 

BR 8.39% 14.56% 0.00% 0.43% 0.21% 5.34% 5.54% 8.48% 0.00% 0.45% 0.23% 3.90% 5.17% 5.90% 0.00% 0.45% 0.22% 3.86% 

FR 18.81% 5.78% 0.00% 0.00% 0.00% 7.57% 14.98% 6.06% 0.00% 0.00% 0.00% 6.40% 9.76% 5.82% 0.00% 0.00% 0.00% 4.90% 

GE 9.41% 19.55% 0.00% 0.00% 0.00% 6.81% 7.86% 12.88% 0.00% 0.00% 0.00% 4.78% 4.46% 10.03% 0.00% 0.00% 0.00% 2.96% 

IB 4.51% 0.00% 0.02% 0.02% 0.02% 2.63% 2.61% 0.00% 0.02% 0.02% 0.02% 1.66% 2.39% 0.00% 0.02% 0.02% 0.02% 1.43% 

IT 25.49% N.A. 0.00% 0.00% 0.00% 6.97% 23.08% N.A. 0.00% 0.00% 0.00% 6.72% 18.82% N.A. 0.00% 0.00% 0.00% 4.49% 

SC 17.72% 37.43% 0.00% 0.00% 0.00% 16.69% 14.14% 36.12% 0.00% 0.00% 0.00% 9.82% 14.46% 26.56% 0.00% 0.00% 0.00% 9.21% 

TOT 19.27% 11.89% 0.99% 0.10% 0.54% 6.44% 12.70% 9.21% 0.91% 0.10% 0.50% 5.31% 9.68% 7.78% 0.87% 0.16% 0.52% 4.59% 

NAO 0.0455 Wind power Solar PV 
iRES 

Wind power Solar PV 
iRES 

Wind power Solar PV 
iRES 

GWE warm Onshore Offshore Rooftop Utility Total Onshore Offshore Rooftop Utility Total Onshore Offshore Rooftop Utility Total 

036 

BR 2.18% 0.93% 0.00% 1.17% 0.58% 1.58% 2.41% 1.19% 0.00% 1.24% 0.62% 1.81% 2.39% 1.89% 0.00% 1.23% 0.61% 2.10% 

FR 13.86% 17.99% 0.00% 0.00% 0.00% 7.48% 9.61% 19.31% 0.00% 0.00% 0.00% 5.59% 6.69% 24.71% 0.00% 0.00% 0.00% 4.26% 

GE 4.87% 5.73% 0.00% 0.00% 0.00% 3.76% 4.38% 6.98% 0.00% 0.00% 0.00% 3.94% 3.95% 7.78% 0.00% 0.00% 0.00% 3.99% 

IB 4.46% 0.00% 0.02% 0.02% 0.02% 2.66% 2.44% 0.00% 0.02% 0.02% 0.02% 1.60% 2.32% 0.00% 0.02% 0.02% 0.02% 1.43% 

IT 25.49% N.A. 0.00% 0.00% 0.00% 6.97% 23.08% N.A. 0.00% 0.00% 0.00% 6.72% 18.20% N.A. 0.00% 0.00% 0.00% 4.34% 

SC 6.68% 26.49% 0.00% 0.00% 0.00% 9.48% 5.99% 21.82% 0.00% 0.00% 0.00% 5.45% 6.00% 15.16% 0.00% 0.00% 0.00% 5.13% 

TOT 9.53% 12.58% 0.88% 0.18% 0.53% 7.47% 10.27% 9.22% 0.84% 0.18% 0.51% 6.63% 10.30% 7.80% 0.81% 0.20% 0.50% 5.74% 

NAO 4.1919 Wind power Solar PV 
iRES 

Wind power Solar PV 
iRES 

Wind power Solar PV 
iRES 

GWE cold Onshore Offshore Rooftop Utility Total Onshore Offshore Rooftop Utility Total Onshore Offshore Rooftop Utility Total 

082 

BR 14.16% 8.95% 0.00% 0.26% 0.13% 8.64% 9.80% 10.89% 0.00% 0.28% 0.14% 6.45% 8.84% 9.33% 0.00% 0.27% 0.14% 6.06% 

FR 30.75% 7.85% 0.00% 0.00% 0.00% 13.11% 19.76% 8.29% 0.00% 0.00% 0.00% 8.02% 12.06% 10.61% 0.00% 0.00% 0.00% 6.01% 

GE 9.41% 19.67% 0.00% 0.00% 0.00% 8.08% 6.64% 17.51% 0.00% 0.00% 0.00% 6.13% 4.13% 14.65% 0.00% 0.00% 0.00% 4.61% 

IB 7.49% 0.00% 0.02% 0.02% 0.02% 5.04% 4.03% 0.00% 0.02% 0.02% 0.02% 3.18% 3.69% 0.00% 0.02% 0.02% 0.02% 2.58% 

IT 25.49% N.A. 0.00% 0.00% 0.00% 6.97% 23.08% N.A. 0.00% 0.00% 0.00% 6.72% 17.69% N.A. 0.00% 0.00% 0.00% 4.22% 

SC 4.85% 40.12% 0.00% 0.00% 0.00% 14.71% 6.71% 25.53% 0.00% 0.00% 0.00% 12.27% 6.72% 27.30% 0.00% 0.00% 0.00% 12.32% 

TOT 21.15% 21.90% 1.43% 0.09% 0.76% 12.59% 25.02% 18.16% 1.34% 0.09% 0.72% 10.05% 19.10% 13.09% 1.28% 0.21% 0.74% 7.58% 

NAO 4.4441 Wind power Solar PV 
iRES 

Wind power Solar PV 
iRES 

Wind power Solar PV 
iRES 

GWE warm Onshore Offshore Rooftop Utility Total Onshore Offshore Rooftop Utility Total Onshore Offshore Rooftop Utility Total 

034 

BR 17.14% 28.85% 0.00% 0.05% 0.02% 13.00% 11.40% 26.60% 0.00% 0.05% 0.02% 8.38% 11.21% 21.83% 0.00% 0.05% 0.03% 7.76% 

FR 6.84% 24.73% 0.00% 0.00% 0.00% 2.63% 4.12% 14.14% 0.00% 0.00% 0.00% 1.67% 2.41% 9.66% 0.00% 0.00% 0.00% 1.21% 

GE 9.41% 16.17% 0.00% 0.00% 0.00% 8.40% 8.53% 13.54% 0.00% 0.00% 0.00% 6.82% 6.07% 13.07% 0.00% 0.00% 0.00% 4.21% 

IB 2.36% 0.00% 0.02% 0.02% 0.02% 2.21% 2.24% 0.00% 0.02% 0.02% 0.02% 2.07% 2.21% 0.00% 0.02% 0.02% 0.02% 1.74% 

IT 25.49% N.A. 0.00% 0.00% 0.00% 6.97% 23.08% N.A. 0.00% 0.00% 0.00% 6.72% 20.51% N.A. 0.00% 0.00% 0.00% 4.89% 

SC 18.64% 30.53% 0.00% 0.00% 0.00% 12.54% 11.87% 41.85% 0.00% 0.00% 0.00% 11.90% 12.05% 37.32% 0.00% 0.00% 0.00% 12.63% 

TOT 38.91% 27.13% 0.92% 0.06% 0.49% 17.14% 30.06% 19.38% 0.86% 0.05% 0.46% 15.12% 26.10% 15.85% 0.81% 0.15% 0.48% 12.41% 
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Table E-2. Load profile of transmission lines.  

RES40 

  Unit 
British Isles France Germany & Benelux Iberian Peninsula Italy and Alpine States Scandinavia Total outflow 

010 034 010 034 010 034 010 034 010 034 010 034 010 034 

British Isles 
Load [TWh] 

- 
8.1 9.9 4.7 4.1 

- - - 
12.8 14.0 

Share to line capacity 30% 36% 44% 39% 34% 37% 

France 
Load [TWh] 8.6 7.8 

- 
4.8 2.0 2.9 4.3 15.6 13.7 

- 
31.9 27.8 

Share to line capacity  31% 29% 11% 5% 5% 7% 56% 49% 20% 18% 

Germany & 
Benelux 

Load [TWh] 4.8 5.2 19.6 27.2 
- - 

7.3 8.2 1.5 0.8 33.1 41.4 

Share to line capacity 45% 49% 46% 64% 51% 57% 7% 4% 38% 47% 

Iberian 
Peninsula 

Load [TWh] 
- 

9.3 7.7 
- - - - 

9.3 7.7 

Share to line capacity 16% 13% 16% 13% 

Italy and 
Alpine States 

Load [TWh] 
- 

2.9 2.7 4.9 3.8 
- - - 

7.8 6.6 

Share to line capacity 10% 10% 34% 27% 18% 15% 

Scandinavia 
Load [TWh] 

- - 
13.7 16.9 

- - - 
13.7 16.9 

Share to line capacity 66% 81% 66% 81% 

Total inflow 
Load [TWh] 13.3 13.0 39.8 47.5 28.0 26.9 2.9 4.3 22.9 21.9 1.5 0.8 108.5 114.3 

Share to line capacity 35% 34% 25% 30% 32% 30% 5% 7% 54% 52% 7% 4% 27% 28% 

RES60 

  Unit 
British Isles France Germany & Benelux Iberian Peninsula Italy and Alpine States Scandinavia Total outflow 

010 034 010 034 010 034 010 034 010 034 010 034 010 034 

British Isles 
Load [TWh] 

- 
9.9 19.8 3.8 6.7 

- - - 
13.7 26.5 

Share to line capacity 36% 72% 36% 63% 36% 70% 

France 
Load [TWh] 9.6 4.1 

- 
3.3 2.6 22.2 32.0 3.5 6.6 

- 
38.6 45.3 

Share to line capacity 35% 15% 8% 6% 38% 55% 12% 23% 25% 29% 

Germany & 
Benelux 

Load [TWh] 5.7 3.2 27.6 32.8 
- - 

6.8 9.9 0.3 0.5 40.4 46.3 

Share to line capacity 54% 30% 65% 77% 47% 69% 1% 2% 46% 53% 

Iberian 
Peninsula 

Load [TWh] 
- 

3.9 3.2 
- - - - 

3.9 3.2 

Share to line capacity 7% 6% 7% 6% 

Italy and 
Alpine States 

Load [TWh] 
- 

14.6 12.1 5.1 3.2 
- - - 

19.8 15.3 

Share to line capacity 52% 43% 36% 22% 47% 36% 

Scandinavia 
Load [TWh] 

- - 
16.6 19.3 

- - - 
16.6 19.3 

Share to line capacity 80% 93% 80% 93% 

Total inflow 
Load [TWh] 15.3 7.3 56.1 67.9 28.8 31.7 22.2 32.0 10.2 16.4 0.3 0.5 133.0 155.9 

Share to line capacity 40% 19% 36% 43% 33% 36% 38% 55% 24% 39% 1% 2% 33% 39% 

RES80 

  Unit 
British Isles France Germany & Benelux Iberian Peninsula Italy and Alpine States Scandinavia Total outflow 

010 034 010 034 010 034 010 034 010 034 010 034 010 034 

British Isles Load [TWh] - 12.0 19.8 4.0 6.7 - - - 16.0 26.5 
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Share to line capacity 44% 72% 38% 63% 42% 70% 

France 
Load [TWh] 8.9 4.1 

- 
4.5 2.6 26.0 32.0 6.8 6.6 

- 
46.2 45.3 

Share to line capacity 33% 15% 11% 6% 44% 55% 24% 23% 30% 29% 

Germany & 
Benelux 

Load [TWh] 5.7 3.2 26.2 32.8 
- - 

8.0 9.9 0.5 0.5 40.5 46.3 

Share to line capacity 54% 30% 62% 77% 56% 69% 2% 2% 46% 53% 

Iberian 
Peninsula 

Load [TWh] 
- 

4.5 3.2 
- - - - 

4.5 3.2 

Share to line capacity 8% 6% 8% 6% 

Italy and 
Alpine States 

Load [TWh] 
- 

12.0 12.1 4.6 3.2 
- - - 

16.5 15.3 

Share to line capacity 42% 43% 32% 22% 39% 36% 

Scandinavia 
Load [TWh] 

- - 
17.5 19.3 

- - - 
17.5 19.3 

Share to line capacity 84% 93% 84% 93% 

Total inflow 
Load [TWh] 14.6 7.3 54.7 67.9 30.6 31.7 26.0 32.0 14.9 16.4 0.5 0.5 141.3 155.9 

Share to line capacity 39% 19% 35% 43% 35% 36% 44% 55% 35% 39% 2% 2% 35% 39% 

 
 
  



MSc Thesis Research Energy Science Huang, Jiangyi, 5665825 

58 
 

Table E-3. Regional capacity curtailment profile.  

RES40 

Category Indicator Year NAO Britannica Gallia Germania Hispania Italia Scandinavia 

Demand curtailment 

Time share 
010 -3.6405 27% 26% 27% 26% 26% 23% 

034 4.4441 0% 0% 0% 0% 0% 0% 

Average rate 
010 -3.6405 0.13% 0.20% 0.69% 0.24% 0.07% 0.08% 

034 4.4441 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

Generation curtailment 

Time share 
010 -3.6405 0% 0% 0% 0% 0% 0% 

034 4.4441 0% 0% 0% 0% 0% 0% 

Average rate 
010 -3.6405 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

034 4.4441 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

RES60 

Category Indicator Year NAO Britannica Gallia Germania Hispania Italia Scandinavia 

Demand curtailment 

Time share 
010 -3.6405 0% 0% 0% 0% 0% 0% 

034 4.4441 0% 0% 0% 0% 0% 0% 

Average rate 
010 -3.6405 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

034 4.4441 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

Generation curtailment 

Time share 
010 -3.6405 1% 0% 0% 0% 0% 1% 

034 4.4441 6% 0% 0% 0% 0% 0% 

Average rate 
010 -3.6405 1.45% 0.00% 0.00% 0.00% 0.00% 1.22% 

034 4.4441 0.14% 0.00% 0.00% 0.18% 0.00% 0.08% 

RES80 

Category Indicator Year NAO Britannica Gallia Germania Hispania Italia Scandinavia 

Demand curtailment 

Time share 
010 -3.6405 0% 0% 0% 0% 0% 0% 

034 4.4441 0% 0% 0% 0% 0% 0% 

Average rate 
010 -3.6405 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

034 4.4441 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

Generation curtailment 

Time share 
010 -3.6405 2% 0% 2% 0% 0% 9% 

034 4.4441 7% 0% 4% 0% 0% 18% 

Average rate 
010 -3.6405 2.25% 0.00% 1.69% 0.19% 0.00% 9.04% 

034 4.4441 0.15% 0.00% 0.21% 0.25% 0.00% 0.13% 
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Table E-4. The profile of electricity prices and generation costs.  

 Unit: €/MWh RES40 

Category Generation Costs Price 

Indicator Generation Generator Start & Shutdown Emissions Total unit cost Standard deviation Weighted average Minimum 

Year 010 034 010 034 010 034 010 034 010 034 010 034 010 034 

NAO -3.6405 4.4441 -3.6405 4.4441 -3.6405 4.4441 -3.6405 4.4441 -3.6405 4.4441 -3.6405 4.4441 -3.6405 4.4441 

British Isles 18.7 11.2 0.5 0.4 5.1 1.9 24.4 13.6 22.8 13.1 76.8 69.3 52.5 45.5 

France 13.1 9.6 0.3 0.2 1.9 0.5 15.2 10.4 22.7 12.8 76.0 68.2 52.7 50.9 

Germany & Benelux 36.3 34.9 0.5 0.5 6.3 4.9 43.1 40.3 22.7 12.8 76.6 68.7 52.7 50.9 

Iberian Peninsula 23.5 23.7 0.5 0.4 4.1 3.0 28.1 27.1 22.7 12.8 76.4 68.5 52.7 50.9 

Italy and Alpine States 23.3 23.9 0.5 0.5 4.0 2.6 27.8 27.1 22.7 12.8 76.6 68.8 52.7 50.9 

Scandinavia 7.9 5.4 0.3 0.2 0.9 0.4 9.0 6.0 22.5 10.6 73.5 60.1 10.7 10.7 

System 21.6 19.3 0.4 0.4 3.8 2.4 25.8 22.0 22.5 12.0 76.1 67.5 10.7 10.7 

 Unit: €/MWh RES60 

Category Generation Costs Price 

Indicator Generation Generator Start & Shutdown Emissions Total unit cost Standard deviation Weighted average Minimum 

Year 010 034 010 034 010 034 010 034 010 034 010 034 010 034 

NAO -3.6405 4.4441 -3.6405 4.4441 -3.6405 4.4441 -3.6405 4.4441 -3.6405 4.4441 -3.6405 4.4441 -3.6405 4.4441 

British Isles 12.5 5.6 0.5 0.4 2.9 1.0 15.8 6.9 22.1 31.6 66.5 47.7 0.0 0.0 

France 12.6 14.1 0.4 0.3 2.0 2.4 15.1 16.8 12.0 9.8 71.1 66.4 50.9 39.8 

Germany & Benelux 33.8 29.3 0.6 0.6 3.6 2.9 38.0 32.8 12.4 10.0 70.3 64.4 50.9 39.8 

Iberian Peninsula 14.3 8.3 0.7 0.4 3.9 0.9 18.9 9.7 12.0 10.1 71.3 66.8 50.9 14.3 

Italy and Alpine States 27.3 21.5 0.5 0.5 3.7 2.3 31.5 24.3 11.9 9.7 70.8 66.8 50.9 45.2 

Scandinavia 5.6 2.0 0.3 0.2 0.6 0.1 6.5 2.4 23.5 23.7 60.3 37.9 0.0 0.0 

System 19.7 15.8 0.5 0.4 2.8 1.8 23.0 18.1 13.8 12.5 68.9 59.8 0.0 0.0 

 Unit: €/MWh RES80 

Category Generation Costs Price 

Indicator Generation Generator Start & Shutdown Emissions Total unit cost Standard deviation Weighted average Minimum 

Year 010 034 010 034 010 034 010 034 010 034 010 034 010 034 

NAO -3.6405 4.4441 -3.6405 4.4441 -3.6405 4.4441 -3.6405 4.4441 -3.6405 4.4441 -3.6405 4.4441 -3.6405 4.4441 

British Isles 11.3 5.7 0.5 0.4 3.4 1.3 15.2 7.5 27.2 35.7 62.6 39.2 0.0 0.0 

France 18.7 15.0 0.7 0.6 3.1 1.3 22.4 17.0 12.9 12.3 70.4 69.5 10.7 2.2 

Germany & Benelux 27.1 18.5 0.7 0.7 2.8 2.0 30.6 21.2 19.7 22.6 66.5 61.7 0.0 0.0 

Iberian Peninsula 13.1 12.3 0.7 0.7 2.8 1.8 16.6 14.8 13.0 13.1 70.7 69.6 4.9 0.0 

Italy and Alpine States 29.7 30.3 0.9 0.8 3.8 4.1 34.3 35.2 12.0 9.2 70.1 69.6 11.7 50.0 

Scandinavia 4.8 1.1 0.3 0.1 0.4 0.0 5.5 1.3 32.8 24.5 47.7 14.9 0.0 0.0 

System 19.0 14.8 0.6 0.6 2.8 1.8 22.4 17.2 17.6 16.1 65.4 56.4 0.0 0.0 

All values are calculated over the winter months (DJF). For system values, the weighted average method defined in section 2.4 is applied.   
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Appendix F Samples of Python codes used in the study  
F.1 Select weather years  
#!/usr/bin/env python3 

# -*- coding: utf-8 -*- 

 

' Select sample years with two ideas '  #文档注释 

 
""" 

__author__ ='Huang, Jiangyi' 

 

Created on 2017/06/18 

""" 

import numpy as np 

import re 

from netCDF4 import Dataset 

 

def __extract_val(x): #extract the character of digit in the string 

   return re.findall('[-+]?\d+[\.]?\d*',x) 

 

def __chr2digit(x): 

   try: 

      x = int(x) 

   except ValueError: 

      x = float(x) 

   return x 

 

'''1. Select years in terms of NAO index''' 

 

### extract text from file ### 

def removeEmpty(list): 

   new_list = [] 

   for val in list: 

      if val: 

         new_list.append(val) 

   return new_list 

 

with open('/net/bhw509/nobackup/users/huang/Data/Temp/NAO_index/Neg_DJF_cold.txt','r') as nc: 

#  

# D:\Workspace\Develop\Data\\Neg_DJF_cold.txt 

   neg_cold_r = nc.read() 

   neg_cold_r = neg_cold_r.split('\n') 

   neg_cold_r = removeEmpty(neg_cold_r) 

with open('/net/bhw509/nobackup/users/huang/Data/Temp/NAO_index/Neg_DJF_warm.txt','r') as nw: 

   neg_warm_r = nw.read() 

   neg_warm_r = neg_warm_r.split('\n') 

   neg_warm_r = removeEmpty(neg_warm_r) 

with open('/net/bhw509/nobackup/users/huang/Data/Temp/NAO_index/Pos_DJF_cold.txt','r') as pc: 

   pos_cold_r = pc.read() 

   pos_cold_r = pos_cold_r.split('\n') 

   pos_cold_r = removeEmpty(pos_cold_r) 

with open('/net/bhw509/nobackup/users/huang/Data/Temp/NAO_index/Pos_DJF_warm.txt','r') as pw: 

   pos_warm_r = pw.read() 

   pos_warm_r = pos_warm_r.split('\n') 

   pos_warm_r = removeEmpty(pos_warm_r) 

 

### convert plain text into data table ### 

 

def NAOindextable(x): 

   table_str = [] 

   for s in x: 

      table_str.append(__extract_val(s)) 

   table_digit = [] 

   for s in table_str: 

      s.pop(3) 

      sample = [] 

      for k in s: 

         k = __chr2digit(k) 

         sample.append(k) 

      # sample = dict(zip(['N', 'Member', 'Year', 'NAO'], sample)) 
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      table_digit.append(sample) 

   return table_digit 

 

neg_cold = NAOindextable(neg_cold_r) 

neg_warm = NAOindextable(neg_warm_r) 

pos_cold = NAOindextable(pos_cold_r) 

pos_warm = NAOindextable(pos_warm_r) 

total = [neg_cold, neg_warm, pos_cold, pos_warm] 

 

### Select process ### 

def search(table, *NAO): 

    y = []     

    for n in NAO: 

        #group = []         

        for i in range(len(table)): 

            if n == table[i][3]: 

                y.append(table[i])  # to avoid the same NAO index in different samples # 

        #y.append(group) 

    return y 

     

def getrange(table, lb, ub): #lb = lower boundary, ub = upper boundary 

    if lb>ub: 

        lb, ub = ub, lb 

    group = []     

    for i in range(len(table)): 

            if ((table[i][3]>=lb)and(table[i][3]<=ub)): 

                group.append(table[i])  

    return group,len(group) 

 

def maxNAO(table): 

    x = [] 

    for i in range(len(table)): 

        x.append(table[i][3]) 

    return max(x) 

 

def minNAO(table): 

    x = [] 

    for i in range(len(table)): 

        x.append(table[i][3]) 

    return min(x) 

     

### For selection 1: max and min for each scenario ### 

def select1(table): 

    return search(table, maxNAO(table), minNAO(table)) 

     

def getN(selection): 

    N = [] 

    for i in range(len(selection)): 

        n = []         

        for j in range(len(selection[i])):         

            n.append(selection[i][j][0]) 

        N.append(n) 

    return N 

 

def num2char(s): 

    if s<100 and s>-100: 

        return '0%d'%s 

    else: 

        return '%d'%s 

     

selection_1 = list(map(select1,total)) 

N = getN(selection_1) 

selected_N = [] # format selected years 

for s in N: 

    selected_N.append(list(map(num2char,s))) 

 

 

'''2. Copy and unzip relevant datafiles''' 

 

# full directory from other work stations: /net/bhw509/nobackup/... 
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import os 

 

def cpsamples(data,scenario, *N): # only for solar and wind so far 

    name = 

[['BC_Neg_DJF_cold','Neg_cold'],['BC_Neg_DJF_warm','Neg_warm'],['BC_Pos_DJF_cold','Pos_cold'],['BC_

Pos_DJF_warm','Pos_warm']] 

    for i in range(len(name)): 

        if scenario == name[i][0]: 

            for j in N:             

                os.system("cp /nobackup/users/huang/Data/Raw_data/Weather_data/%s/%s_*%s_*.nc* 

/nobackup/users/huang/Data/Selection_1/%s/"%(name[i][0],data,j,name[i][1])) 

            os.system("gunzip /nobackup/users/huang/Data/Selection_1/%s/*"%name[i][1]) 

    return None 

'''In Neg_warm, all relevant files are in .nc format already'''         

 

data = ['msl','T2','TN','TX','wind10','wind','SSRD'] 

scenarios = ['BC_Neg_DJF_cold','BC_Neg_DJF_warm','BC_Pos_DJF_cold','BC_Pos_DJF_warm'] 

 

for i in range(len(scenarios)): 

    cpsamples(data[5],scenarios[i],*[N for N in selected_N[i]]) 

    cpsamples(data[6],scenarios[i],*[N for N in selected_N[i]]) 

 
F.2 Interpolate weather data into hourly values   
F.2.1 SSRD  
#!/usr/bin/env python3 

# -*- coding: utf-8 -*- 

 

' a test module '  #文档注释 

 
""" 

__author__ ='Huang, Jiangyi' 

 

Created on 2017/06/21 

""" 

 

from netCDF4 import Dataset 

import numpy as np 

import math, time, sys # , os 

 

 

### 1. Create time zone ### 

def getLm(x): # for longitude between -180 to 180 

   if x<=0: 

      return abs(x) 

   elif x>0: 

      return 360-x 

 

def getLz(lon): #longitude: degree west of Greenwich 

   if (lon>=352.5)or(lon<7.5): 

      return 0 

   else: 

      for y in range(15,360,15): 

         if ((360-lon)>=(y-7.5))and((360-lon)<(y+7.5)): 

            return y 

 

d = sys.argv[1] 

''' 

'/net/bhw509/nobackup/users/huang/Data/Temp/Weather/Neg_cold/SSRD_Samp_080_month_01.nc' 

'D:\Workspace\Develop\Data\SSRD_Samp_080_month_01.nc' 

''' 

with Dataset(d, 'r') as rd: 

    time0 = rd.variables['time'][:] 

    lat0 = rd.variables['lat'][:] 

    lon0 = rd.variables['lon'][:] 

    rd0 = rd.variables['SSRD'][:] 

 

Lm = [] # longitude of the measurement site 

Lz = [] # longitude of the center of the local time zone 

for i in range(len(lon0)): 
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   Lm.append(getLm(lon0[i])) 

   Lz.append(getLz(Lm[i])) 

Lm = np.asarray(Lm) 

Lz = np.asarray(Lz) 

 

### 2. Daily extraterrestrial radiation R_a (MJ/d/m2) ### 

G = 0.0820 # solar constant, unit: MJ/d/min 

 

def getJ(dd,mm): # Is the sample year 2050 a leap year? 

   g = 9.016 

   p = 2  # constants 

   if mm<3: 

      p = 0 

   D = (dd-18)/24+1 # number of the day in the month 

   k = 275*mm/g-30+D 

   J = k.astype(int)-p # number of the day in the year 

   return J 

 

def mlp(new_axis,origin_array): 

    a = [] 

    for i in range(len(new_axis)): 

        a.append(new_axis[i]*origin_array) 

    return np.asarray(a) 

 

J = getJ(time0,1) 

 

dr = 1+0.033*np.cos(2*math.pi/365*J) # relative distance earth-sun 

delta = 0.409*np.sin(2*math.pi/365*J-1.39) # solar declination (rad) 

lat = 2*math.pi/360*lat0 

temp_var = -1*mlp(np.tan(delta),np.tan(lat)) 

 

def modify_arc(val): # modify the value to be valid for arc input 

   if val > 1: 

      return 1 

   elif val < -1: 

      return -1 

   else: 

      return val 

 

for i in range(len(temp_var)): 

   for j in range(len(temp_var[0,:])): 

      temp_var[i,j]=modify_arc(temp_var[i,j]) 

 

omgs = np.arccos(temp_var) # sunset hour angel (rad) 

 

R_a = 24*60/math.pi*G*\ 

np.transpose(dr*np.transpose((omgs*mlp(np.sin(delta),np.sin(lat))+\ 

np.sin(omgs)*mlp(np.cos(delta),np.cos(lat))))) 

 

### 3. Extraterrestrial radiation per hour of the day R_ah (MJ/hr/m2) ### 

 

t1 = 1 # time step = 1 hr 

 

def mad(new_axis,origin_array): 

   a = [] 

   for i in range(len(new_axis)): 

      a.append(new_axis[i]+origin_array) 

   return np.asarray(a) 

hr = np.asarray([i+0.5 for i in range(24)]) # standard clock time in the midpoint of the period 

# calculate omg 

b = 2*math.pi*(J-81)/364 

Sc = 0.1645*np.sin(2*b)-0.1255*np.cos(b)-0.025*np.sin(b) 

 

omg = math.pi/12*(mad(hr,mad(Sc,0.06667*(Lz-Lm)))-12) 

 

omg1 = omg - math.pi*t1/24 

omg2 = omg + math.pi*t1/24 

 

temp1 = np.transpose(mlp(np.sin(lat),(omg2-omg1)),(1,0,3,2))*np.sin(delta) 

temp2 = np.transpose(mlp(np.cos(lat),(np.sin(omg2)-np.sin(omg1))),(1,0,3,2))*np.cos(delta) 
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R_ah = np.transpose(12*60/math.pi*G*dr*(temp1+temp2),(0,3,1,2)) 

R_ah[R_ah<0] = 0 

 

### 4. general distribution ### 

distr = [] 

for i in range(len(lon0)): 

    lon = [] 

    for j in range(len(hr)): 

        r = R_ah[j,:,:,i]/R_a 

        r[np.isnan(r)]=0         

        lon.append(r) 

    distr.append(lon) 

distr = np.transpose(np.asarray(distr),(1,2,3,0)) 

 

### 5. decompose the original SSRD ### 

SSRD = [] 

for i in range(len(hr)): 

    SSRD.append(distr[i,:,:,:]*rd0) 

SSRD = np.asarray(SSRD) 

 

### 6. create netCDF file ### 

print('writing netcdf file...') 

d_new = sys.argv[2] 

''' 

'D:\Workspace\Develop\Data\\New\SSRD_Samp_080_month_01_hr.nc' 

'/nobackup/users/huang/Data/Temp/New/SSRD_Samp_080_month_01_hr.nc' 

''' 

with Dataset(d_new, 'w') as rd_new: 

    rd_new.createDimension('hour', len(hr)) 

    rd_new.createDimension('day', len(time0)) 

    rd_new.createDimension('lat', len(lat0)) 

    rd_new.createDimension('lon', len(lon0)) 

    rd_new.createDimension('SSRD', len(rd0)) 

 

    hour = rd_new.createVariable('hour', hr.dtype.char,('hour',)) 

    day = rd_new.createVariable('day', time0.dtype.char,('day',)) 

    lat = rd_new.createVariable('lat', lat0.dtype.char, ('lat',)) 

    lon = rd_new.createVariable('lon', lon0.dtype.char, ('lon',)) 

    rd_new.createVariable('SSRD', rd0.dtype.char, ('hour','day','lat','lon')) 

     

    hour[:] = hr-0.5 # start time of the hour 

    day[:] = (time0-18)/24 + 1 

    lat[:] = lat0 

    lon[:] = lon0 

    rd_new.variables['SSRD'][:] = SSRD 

 

    rd_new.description = "hourly SSRD" 

    rd_new.history = "Created " + time.ctime(time.time()) 

    rd_new.source = "daily SSRD from EC-earth" 

    lat.units = "degrees north" 

    lon.units = "degrees east" 

    hour.units = "hours from 00:00 to 23:00" 

    day.units = "date of the month" 

    rd_new.units = "J/hr/m2" 

 

rd_new = Dataset(d_new, 'r') 

rd_new.variables['SSRD'][:] 

rd_new.close() 

 

# os.remove(d_new)    

 
F.2.2 Windspeeds  
# -*- coding: utf-8 -*- 

""" 

Created on Fri Jun 16 14:06:05 2017 

 

@author: huang 

""" 
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#Calculate hourly data for wind speed 

 

import numpy as np 

from netCDF4 import Dataset 

import time, os, sys 

 

### import data from netCDF file ### 

''' 

dxx = '/nobackup/users/huang/Data/Temp/Weather/Neg_cold/wind_100_Samp_080_month_01_HH_xx.nc' 

dxx = 'D:\Workspace\Develop\Data\wind_100_Samp_080_month_01_HH_xx.nc' 

''' 

d00, d06, d12, d18 = sys.argv[1], sys.argv[2], sys.argv[3], sys.argv[4] 

d = [d00, d06, d12, d18] 

 

def readfile(d): 

    with Dataset(d, 'r') as ws: 

        windspeed = np.squeeze(ws.variables['speed'][:], axis=(1)) 

        time0 = ws.variables['time'][:] 

        lat0 = ws.variables['lat'][:] 

        lon0 = ws.variables['lon'][:] 

    return [windspeed, time0, lat0, lon0] 

 

# linear estimation for hourly wind speed 

def linear(sp1,sp2,interval = 6, mode = 'b'): # b = backwards, retrospective: obtain detailed sp1 

based on sp2 

    base = sp1                             # f = forwards, projective: obtain detailed sp2 based on 

sp1 

    if mode=='f': 

        base = sp2 

    sp = [] 

    k = (sp2 - sp1)/(interval-1) 

    for n in range(interval): 

        sp.append(base + (n-(interval-1)/2)*k) 

    return np.asarray(sp) 

 

# calculate the data files 

winddata = [] 

for s in d: 

    winddata.append(readfile(s)) 

winddata_00, winddata_06, winddata_12, winddata_18 = winddata 

 

windspeed_hr = np.concatenate((linear(winddata_00[0],winddata_06[0]),\ 

                               linear(winddata_06[0],winddata_12[0]),\ 

                               linear(winddata_12[0],winddata_18[0]),\ 

                               linear(winddata_12[0],winddata_18[0], mode='f')),0) 

windspeed_hr[windspeed_hr<0]=0 

# print('shape windspeed_hr:', np.shape(windspeed_hr)) 

# print('type windspeed_hr:', type(windspeed_hr)) 

# print(windspeed_hr.flags) 

 

### create netCDF file ### 

print('writing netcdf file...') 

hr = np.asarray([t for t in range(24)]) 

d_new = sys.argv[5] 

''' 

'D:\Workspace\Develop\Data\\New\wind_100_Samp_080_month_01_hr.nc' 

'/nobackup/users/huang/Data/Temp/New/wind_100_Samp_080_month_01_hr.nc' 

''' 

with Dataset(d_new, 'w') as ws: 

   ws.createDimension('hour', len(hr)) 

   ws.createDimension('day', len(winddata_00[1])) 

   ws.createDimension('lat', len(winddata_00[2])) 

   ws.createDimension('lon', len(winddata_00[3])) 

   ws.createDimension('speed', len(windspeed_hr)) 

 

   hour = ws.createVariable('hour', hr.dtype.char,('hour',)) 

   day = ws.createVariable('day', winddata_00[1].dtype.char,('day',)) 

   lat = ws.createVariable('lat', winddata_00[2].dtype.char, ('lat',)) 

   lon = ws.createVariable('lon', winddata_00[3].dtype.char, ('lon',)) 

   ws.createVariable('speed', windspeed_hr.dtype.char, ('hour','day','lat','lon')) 
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   hour[:] = hr 

   day[:] = winddata_00[1]/24+1 

   lat[:] = winddata_00[2] 

   lon[:] = winddata_00[3] 

   ws.variables['speed'][:] = windspeed_hr 

 

   ws.description = "hourly wind speed" 

   ws.history = "Created " + time.ctime(time.time()) 

   ws.source = "6 hourly wind speed from EC-earth" 

   lat.units = "degrees north" 

   lon.units = "degrees east" 

   hour.units = "hours from 00:00 to 23:00" 

   day.units = "date of the month" 

   ws.units = "m/s" 

 

ws = Dataset(d_new, 'r') 

ws.variables['speed'][:] 

ws.__dict__ 

ws.close() 

 
F.2.3 Temperature interpolation  
# -*- coding: utf-8 -*- 

""" 

Created on Thu Aug 10 13:24:08 2017 

 

@author: huang 

""" 

 

#Interpolate hourly temperature of the day 

 

import numpy as np 

from netCDF4 import Dataset 

import time, os, sys 

 

### import data from netCDF file ### 

''' 

dxx = '/nobackup/users/huang/Data/Temp/Weather/Neg_cold/T2_Samp_029_month_01.nc' 

dxx = 'D:\Workspace\Develop\Data\T2_Samp_029_month_01.nc' 

''' 

davg = sys.argv[1] 

 

# davg = '/nobackup/users/huang/Data/Temp/Weather/Neg_cold/T2_Samp_029_month_01.nc' 

# dmax = '/nobackup/users/huang/Data/Temp/Weather/Neg_cold/TX_Samp_029_month_01.nc' 

# dmin = '/nobackup/users/huang/Data/Temp/Weather/Neg_cold/TN_Samp_029_month_01.nc' 

 

# davg, dmax, dmin = sys.argv[1], sys.argv[2], sys.argv[3] 

 

def readfile(d,name): 

    with Dataset(d, 'r') as tp: 

        temperature = tp.variables[name][:] 

        time0 = tp.variables['time'][:] 

        lat0 = tp.variables['lat'][:] 

        lon0 = tp.variables['lon'][:] 

    return [temperature, time0, lat0, lon0] 

 

# make up missing values (oncean) with the max temperature at the same latitude 

def makeup(T): 

    T_new = [] 

    lat = T[2]; time = T[1] 

    for i in range(len(time)):  

        T_lat = [] 

        for j in range(len(lat)): 

            T_latmax = np.ma.max(T[0][i,j]) 

            T_lat.append(np.ma.filled(T[0][i,j],T_latmax)) 

        T_new.append(T_lat) 

    return [np.asarray(T_new),time,lat,T[3]] 

 

# calculate the data files 

T_new = makeup(readfile(davg,'T2')) 
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### create netCDF file ### 

print('writing netcdf file...') 

hr = np.asarray([t for t in range(24)]) 

d_new = sys.argv[2] 

''' 

'D:\Workspace\Develop\Data\\New\wind_100_Samp_080_month_01_hr.nc' 

'/nobackup/users/huang/Data/Temp/New/T2_Samp_080_month_01_hr.nc' 

''' 

with Dataset(d_new, 'w') as ws: 

    

   ws.createDimension('day', len(T_new[1])) 

   ws.createDimension('lat', len(T_new[2])) 

   ws.createDimension('lon', len(T_new[3])) 

   ws.createDimension('T2', len(T_new[0])) 

 

   day = ws.createVariable('day', T_new[1].dtype.char,('day',)) 

   lat = ws.createVariable('lat', T_new[2].dtype.char, ('lat',)) 

   lon = ws.createVariable('lon', T_new[3].dtype.char, ('lon',)) 

   ws.createVariable('T2', T_new[0].dtype.char, ('day','lat','lon')) 

 

   day[:] = T_new[1] 

   lat[:] = T_new[2] 

   lon[:] = T_new[3] 

   ws.variables['T2'][:] = T_new[0] 

 

   ws.description = "daily average temperature, use in hourly input" 

   ws.history = "Created " + time.ctime(time.time()) 

   ws.source = "daily T2 from EC-earth" 

   lat.units = "degrees_north" 

   lon.units = "degrees_east" 

   day.units = "date of the month" 

   ws.units = "K" 

 
F.2.4 Downscale to hourly values  
# -*- coding: utf-8 -*- 

""" 

Created on Fri Jun 30 10:23:13 2017 

 

@author: huang 

""" 

 

import os, glob, GWElib 

 

subfile = ['Neg_cold/','Neg_warm/','Pos_cold/','Pos_warm/'] 

subfile_hr = ['hr_Neg_cold/hr_','hr_Neg_warm/hr_','hr_Pos_cold/hr_','hr_Pos_warm/hr_'] 

d0 = '/nobackup/users/huang/Data/Selection_1/' 

 

def delfile(list,*char): # delete specific file       

    for c in char:     

        i = 0     

        while i < len(list): 

            if c in list[i]: 

                list.remove(list[i]) 

            else: 

                i+=1 

    return list 

 

# create folder if it doesn't exist 

for s in subfile: 

    GWElib.GWE(d0 + 'hr_' + s).mkdir(parents=True, exist_ok=True) 

 

### 1. obtain hourly solar irradiation ### 

expy1 = 'python /nobackup/users/huang/Data/Python/Completed/SSRD_hr.py '  

for i in range(len(subfile)): 

    initial = glob.glob(d0+subfile[i]+'SSRD_*')   

    GWElib.GWE(d0 + 'hr_' + subfile[i]).mkdir(parents=True, exist_ok=True) 

    for s in initial: 

        target = s.replace(subfile[i],subfile_hr[i])     

        cmd_SSRD = expy1 + s + ' ' + target   
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        os.system(cmd_SSRD) 

         

### 2. obtain hourly windspeed ### 

expy2 = 'python /nobackup/users/huang/Data/Python/Completed/windspeed_hr.py ' 

for i in range(len(subfile)): 

    initial = glob.glob(d0+subfile[i]+'wind_*_00.nc') 

    initial = delfile(initial,'month_11_','month_03_') 

    GWElib.GWE(d0 + 'hr_' + subfile[i]).mkdir(parents=True, exist_ok=True) 

    for s in initial: 

        source00 = s + ' ' 

        source06 = s.replace('_00','_06') + ' ' 

        source12 = s.replace('_00','_12') + ' ' 

        source18 = s.replace('_00','_18') + ' '        

        target = (s.replace(subfile[i],subfile_hr[i])).replace('_00','') 

        cmd_windspeed = expy2 + source00 + source06 + source12 + source18 + target   

        os.system(cmd_windspeed) 

for i in range(len(subfile)): 

    initial = glob.glob(d0+subfile[i]+'wind10_*.nc') 

    for s in initial: 

        target = (s.replace(subfile[i],subfile_hr[i])) 

        os.system('cp {0} {1}'.format(s,target)) 

 

### 3. obtain modified daily T2 for hourly use ### 

expy3 = 'python /nobackup/users/huang/Data/Python/Completed/daily_T2.py '  

for i in range(len(subfile)): 

    initial = glob.glob(d0+subfile[i]+'T2_*')   

    GWElib.GWE(d0 + 'hr_' + subfile[i]).mkdir(parents=True, exist_ok=True) 

    for s in initial: 

        target = s.replace(subfile[i],subfile_hr[i])     

        cmd_T2 = expy3 + s + ' ' + target   

        os.system(cmd_T2) 

 
 
F.3 Distribution of installed capacity  
F.3.1 Estimate iRES resources from previous weather records for capacity installation  
# -*- coding: utf-8 -*- 

""" 

Created on Tue Aug 15 14:30:05 2017 

 

@author: huang 

""" 

 

"""Evaluate solar and wind resource for each grid""" 

 

import numpy as np 

import pandas as pd 

from netCDF4 import Dataset 

from datetime import date, timedelta 

import time, csv 

 

# Abundency of solar radiation 

start_time = time.time()   # record time consumption 

## import data from netCDF file 

def coordinate_solar(d): 

    with Dataset(d, 'r') as crd: 

        lat = crd.variables['lat'][:] 

        lon = crd.variables['lon'][:] 

    return [lat,lon] 

 

def radiation(d): 

    with Dataset(d, 'r') as sr: 

        SSRD = np.squeeze(sr.variables['SIS'][:],axis=0) 

    return SSRD 

 

## mass operation 

d0_solar = '/nobackup/users/huang/Data/Historical/SSRD/' 

dtarget = '/nobackup/users/huang/Data/Historical/Output/' 

 

### generate time dateset 
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def timespan(start, end, delta): 

    curr = start 

    while curr <= end: 

        yield curr 

        curr += delta 

 

period = [] 

for result in timespan(date(1982, 1, 1), date(2015, 12, 31), timedelta(days=1)): 

    period.append(result.strftime('%Y%m%d')) 

 

latlon_solar = coordinate_solar(d0_solar+'SISdm'+period[0]+'0000002UDAVPOS01UD.nc') 

SSRD0 = radiation(d0_solar+'SISdm'+period[0]+'0000002UDAVPOS01UD.nc') 

SSRDf = radiation(d0_solar+'SISdm'+period[len(period)-1]+'0000002UDAVPOS01UD.nc') 

 

### Solar irradiation resource W/m2, daily average over the timespan (19820101-20151231) 

#SSRD = np.zeros(SSRD0[1].shape,dtype=SSRD0[1].dtype) 

d = [] 

for t in period: 

    d.append(d0_solar+'SISdm'+t+'0000002UDAVPOS01UD.nc') 

 

SSRD_mask = np.ma.array(list(map(radiation,d))).mean(axis=0)   #averaging values of several masked 

ndarrays 

SSRD = SSRD_mask.filled(0) 

 

std = np.std(SSRD) 

maxvalue = np.amax(SSRD) 

minvalue = np.amin(SSRD) 

 

## write to netCDF file 

with Dataset(dtarget+'SSRD', 'w') as rd_new: 

    rd_new.createDimension('lat', len(latlon_solar[0])) 

    rd_new.createDimension('lon', len(latlon_solar[1])) 

 

    lat = rd_new.createVariable('lat', latlon_solar[0].dtype.char, ('lat',))   #float64 

    lon = rd_new.createVariable('lon', latlon_solar[1].dtype.char, ('lon',))   #float64 

    rd_new.createVariable('SSRD', SSRD.dtype.char, ('lat','lon')) 

     

    lat[:] = latlon_solar[0] 

    lon[:] = latlon_solar[1] 

    rd_new.variables['SSRD'][:] = SSRD 

 

    rd_new.description = "daily average SSRD capacity over 19820101-20151231" 

    rd_new.history = "Created " + time.ctime(time.time()) 

    rd_new.source = "daily observational SSRD from 

https://wui.cmsaf.eu/safira/action/viewProduktSearch" 

    lat.units = "degrees north" 

    lon.units = "degrees east" 

    rd_new.units = "W/m2"  

    rd_new.max = maxvalue 

    rd_new.min = minvalue 

    rd_new.std = std 

'''     

f = Dataset(dtarget+'SSRD', 'r') 

a = f.variables['SSRD'][:] 

f.close() 

''' 

print("--- %s seconds ---" % (time.time() - start_time))   # record time consumption 

## write specific value to excel files 

with pd.ExcelFile('D:\Workspace\Develop\Data\Cap_distribution.xlsx') as xlsx: 

   grids = pd.read_excel(xlsx, 'Population_2025+Resource', index_col=0, parse_cols=[0,5,6,9])   

#dtype of lat and lon are by default float64 

 

f = Dataset('D:\Workspace\Develop\Data\weather_records\SSRD', 'r') 

lat = f.variables['lat'][:] 

lon = f.variables['lon'][:] 

SSRD = f.variables['SSRD'][:] 

f.close() 

 

grids=grids.assign(SSRD=0.000) 
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for i in grids.index: 

    for y in range(len(lat)): 

        if lat[y]==grids.lat[i]: 

            break  

    for x in range(len(lon)): 

        if lon[x]==grids.lon[i]: 

            break 

    grids.SSRD[i]=SSRD[y,x] 

 

grids.to_excel('D:\Workspace\Develop\Data\hist_solar.xlsx', sheet_name='Solar_resource') 

 

 

# Capacity factor of wind speeds 

start_time = time.time() 

## import data from netCDF file 

def coordinate_wind(d): 

    with Dataset(d, 'r') as crd: 

        lat = crd.variables['latitude'][:] 

        lon = crd.variables['longitude'][:] 

    return [lat,lon] 

 

def hour(d): 

    with Dataset(d, 'r') as hr: 

        hour = hr.variables['time'][:] 

    return hour 

 

def windspeed(d,start,interval): 

    with Dataset(d, 'r') as ws: 

        u = ws.variables['u100'][start:start+interval] 

        v = ws.variables['v100'][start:start+interval] 

        speed = np.power(u**2+v**2,0.5,dtype = np.float32) 

    return speed 

 

def prd(x,ui,ur,uo,ax=0): 

    return ((x>=ur)*(x<uo)+(x>=ui)*(x<ur)*np.power(x,3)/np.power(ur,3)).sum(axis=ax) 

     

## calculation 

d0_wind = '/nobackup/users/huang/Data/Historical/Wind/' 

 

latlon_wind = coordinate_wind(d0_wind+'windspeed_u+v_ERA-20C.nc') 

t = hour(d0_wind+'windspeed_u+v_ERA-20C.nc') 

 

n = 1000; start = 0; hr = 0 

while n == 1000: 

    u = windspeed(d0_wind+'windspeed_u+v_ERA-20C.nc',start,n) 

    if start==0: 

        Pon = np.zeros((u[0].shape),dtype = np.float32) 

        Poff = np.zeros((u[0].shape),dtype = np.float32) 

    n = len(u); start += n; hr += n 

    Pon = Pon + prd(u,3,13.5,25) 

    Poff = Poff + prd(u,4,14,25)  

 

CFon = Pon/hr; CFoff = Poff/hr 

 

CFon_max = np.amax(CFon); CFon_min = np.amin(CFon); CFon_std = np.std(CFon) 

CFoff_max = np.amax(CFoff); CFoff_min = np.amin(CFoff); CFoff_std = np.std(CFoff) 

## adjust grid 

CFon = np.delete(np.delete(CFon,0,0),220,1) 

CFoff = np.delete(np.delete(CFoff,0,0),220,1) 

lat_wind = np.delete(latlon_wind[0],0)+0.125 

lon_wind = np.delete(latlon_wind[1],220)+0.125 

 

## write to netCDF file 

with Dataset(dtarget+'windCF', 'w') as ws_new: 

    ws_new.createDimension('lat', len(lat_wind)) 

    ws_new.createDimension('lon', len(lon_wind)) 

 

    lat = ws_new.createVariable('lat', lat_wind.dtype.char, ('lat',))   #float32 

    lon = ws_new.createVariable('lon', lon_wind.dtype.char, ('lon',))   #float32 

    CF_onshore = ws_new.createVariable('CF_onshore', CFon.dtype.char, ('lat','lon')) 
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    CF_offshore = ws_new.createVariable('CF_offshore', CFoff.dtype.char, ('lat','lon')) 

     

    lat[:] = lat_wind 

    lon[:] = lon_wind 

    ws_new.variables['CF_onshore'][:] = CFon 

    ws_new.variables['CF_offshore'][:] = CFoff 

 

    ws_new.description = "average capacity factor per 3 hour over 19810101-20101231" 

    ws_new.history = "Created " + time.ctime(time.time()) 

    ws_new.source = "ERA-20C from ECMWF" 

    lat.units = "degrees north" 

    lon.units = "degrees east" 

    ws_new.units = "-"  

    CF_onshore.max = CFon_max; CF_onshore.min = CFon_min; CF_onshore.std = CFon_std 

    CF_offshore.max = CFoff_max; CF_offshore.min = CFoff_min; CF_offshore.std = CFoff_std 

     

     

print("--- %s seconds ---" % (time.time() - start_time)) 

 

## write specific value to excel files 

with pd.ExcelFile('D:\Workspace\Develop\Data\Cap_distribution.xlsx') as xlsx: 

   grids = pd.read_excel(xlsx, 'Population_2025+Resource', index_col=0, parse_cols=[0,5,6,9])   

#dtype of lat and lon are by default float64 

 

f = Dataset('D:\Workspace\Develop\Data\weather_records\windCF', 'r') 

lat = f.variables['lat'][:] 

lon = f.variables['lon'][:] 

CFon = f.variables['CF_onshore'][:] 

CFoff = f.variables['CF_offshore'][:] 

f.close() 

 

grids=grids.assign(CFonshore=0.000); grids=grids.assign(CFoffshore=0.000) 

for i in grids.index: 

    for y in range(len(lat)): 

        if lat[y] == grids.lat[i]: 

            break 

    for x in range(len(lon)): 

        if lon[x] == grids.lon[i]: 

            break 

    grids.CFonshore[i] = CFon[y,x] 

    grids.CFoffshore[i] = CFoff[y, x] 

 

grids.to_excel('D:\Workspace\Develop\Data\hist_windCF.xlsx', sheet_name='Wind_resource') 

 

# write info for distribution to csv file 

with pd.ExcelFile('D:\Workspace\Develop\Data\Cap_distribution.xlsx') as xlsx: 

   scenario = pd.read_excel(xlsx, 'Region_plan', index_col=0, dtype={'num': 'int'}) 

   cap = pd.read_excel(xlsx, 'Capacity_distribution', index_col=0, dtype={'OID *':'int'})   #dtype 

of lat and lon are by default float64 

cap.loc[1:len(cap.index),'RES40_onWind':'RES80_utilPV']=0. 

# or use cap.ix() as a more general way bu is not deprecated 

scenario.to_csv('D:\Workspace\Develop\Data\scenario.csv') 

cap.to_csv('D:\Workspace\Develop\Data\cap_distr_info.csv') 

 
F.3.2 Distribute capacities  
# -*- coding: utf-8 -*- 

""" 

Created on Mon Aug 28 13:29:48 2017 

 

@author: huang 

""" 

 

from netCDF4 import Dataset 

import numpy as np 

import pandas as pd 

import time 

 

scenario = pd.read_csv('D:\Workspace\Develop\Data\scenario.csv', index_col = 1) 

grids = pd.read_csv('D:\Workspace\Develop\Data\cap_distr_info.csv', index_col = 0) 

# '/nobackup/users/huang/Data/Cap_distribution/scenario.csv' 
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# '/nobackup/users/huang/Data/Cap_distribution/cap_distr_info.csv' 

 

tech_name = ['onWind','offWind','roofPV','utilPV'] 

scen_name = ['RES40','RES60','RES80'] 

 

rank_onWind = grids.nomi_onWind.sort_values(axis=0, ascending=False).reset_index().values 

rank_offWind = grids.nomi_offWind.sort_values(axis=0, ascending=False).reset_index().values 

rank_roofPV = grids.nomi_roofPV.sort_values(axis=0, ascending=False).reset_index().values 

rank_utilPV = grids.nomi_utilPV.sort_values(axis=0, ascending=False).reset_index().values 

 

tech_rank = np.transpose(np.asarray(\ 

   [rank_onWind, rank_offWind, rank_roofPV, rank_utilPV]),(1,0,2)) 

 

for sce in sce_name: 

   for i in range(len(tech_rank)): 

      for j in range(len(tech_rank[i])): 

         # info from tech score rank 

         num = tech_rank[i,j,0]; score = tech_rank[i,j,1] 

         # info from grids 

         ISO = grids.ISO[num] 

         tech_land = getattr(grids, 'Land_'+tech_name[j]+'_m2')[num] 

         # info from scenario 

         total_cap = getattr(scenario, ISO)[sce+'_'+tech_name[j]] 

         unit_P_nomi = getattr(scenario, 'unit_nominal_P_W')[sce+'_'+tech_name[j]] 

         unit_A = getattr(scenario, 'unit_area_m2')[sce+'_'+tech_name[j]] 

         # allocation 

         if total_cap > 0: 

            install_cap = unit_P_nomi * int(tech_land/unit_A) * pow(10,-6) # in MW 

            if total_cap > install_cap: 

               grids.set_value(num, sce + '_' + tech_name[j], install_cap) 

            else: 

               install_cap = (int(total_cap * pow(10,6)/unit_P_nomi)+1) * unit_P_nomi * pow(10,-6) 

               grids.set_value(num, sce + '_' + tech_name[j], install_cap) 

            scenario.set_value(sce + '_' + tech_name[j], ISO, total_cap - install_cap) 

         else: 

            grids.set_value(num, sce + '_' + tech_name[j], 0) 

 

# write data to csv file 

grids.to_csv('D:\Workspace\Develop\Data\cap_distr.csv') 

scenario.to_csv('D:\Workspace\Develop\Data\scenario_end.csv') 

 

start_time = time.time()   # record time consumption 

# write data to netCDF 

d1_win = 'D:\Workspace\Develop\Data\scenario.csv' 

d1_lin = '/nobackup/users/huang/Data/Cap_distribution/scenario.csv' 

scenario = pd.read_csv(d1_lin, index_col = 1) 

d2_win = 'D:\Workspace\Develop\Data\cap_distr.csv' 

d2_lin = '/nobackup/users/huang/Data/Cap_distribution/cap_distr.csv' 

distr = pd.read_csv(d2_lin, index_col = 0) 

d3_win = 'D:\Workspace\Develop\Data\distr_netCDF\\' 

d3_lin = '/nobackup/users/huang/Data/Cap_distribution/distr_netCDF/' 

d_target = d3_lin 

lat0 = np.arange(35.125,75.0,0.25); lon0 = np.arange(-14.875,40.0,0.25) 

for sce in sce_name: 

      for tech in tech_name: 

           

           d_new = d_target + sce + '_' + tech +'_'+ 'cap_distr.nc' 

           cap0 = np.zeros((len(lat0),len(lon0))) 

           for i in range(1,len(distr.index)+1): 

                 cap = getattr(distr, sce + '_' + tech)[i] 

                 if cap > 0:  

                     print(sce,tech,i,'/',len(distr.index)) 

                     for y in range(len(lat0)): 

                         for x in range(len(lon0)): 

                             if (lat0[y]==distr.lat[i] and lon0[x]==distr.lon[i]): 

                                 cap0[y,x] = cap 

            

           with Dataset(d_new, 'w') as f:  

               f.createDimension('lat', len(lat0)) 

               f.createDimension('lon', len(lon0)) 
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               f.createDimension('CAP', 1) 

                

               lat = f.createVariable('lat', lat0.dtype.char, ('lat',)) 

               lon = f.createVariable('lon', lon0.dtype.char, ('lon',)) 

               CAP = f.createVariable('CAP', cap0.dtype.char, ('lat', 'lon')) 

                

               lat[:] = lat0 

               lon[:] = lon0 

               f.variables['CAP'][:] = cap0 

                

               f.description = "Capacity distributin of " + tech + 'in' + sce 

               f.history = "Created " + time.ctime(time.time()) 

               f.source = "cap_distr.csv" 

               lat.units = "degrees_north" 

               lon.units = "degrees_east" 

               f.units = "MW" 

 

print("--- %s seconds ---" % (time.time() - start_time)) 

 

f = Dataset('directory', 'r') 

f.variables['CAP'][:] 

f.close() 

 
F.3.3 Plot the spatial distribution of installed capacity  
from netCDF4 import Dataset 

import numpy as np 

import matplotlib.pyplot as plt 

from mpl_toolkits.basemap import Basemap 

import pylab as pl 

 

#DEFINE FUNCTION """Replace every 0 with 'nan' and return a copy.""" 

def zero_to_nan(deltaT): 

   if deltaT == 0: 

      return float('nan') 

   else: 

      return deltaT 

     

 

 

### IMPORT NETCDF DATA ############################   

scenarios = ['RES40_','RES60_','RES80_'] 

techs = ['onWind','offWind','roofPV','utilPV'] 

 

clevs_onWind = [x for x in range(0,501,50)] 

clevs_offWind = [x for x in range(0,1001,100)] 

clevs_roofPV = [x for x in range(0,6001,500)] 

clevs_utilPV = [x for x in range(0,401,25)] 

 

for scen in scenarios: 

    for tech in techs:  

        CapacityDistribution = 

'/nobackup/users/huang/Data/Cap_distribution/distr_netCDF/{0}{1}_cap_distr.nc'.format(scen,tech) 

        print(CapacityDistribution) 

         

        fh = Dataset(CapacityDistribution, mode='r') 

         

        lons = fh.variables['lon'][:]; lats = fh.variables['lat'][:]; cap = fh.variables['CAP'][:] 

        print('lons', np.shape(lons)); print('lats', np.shape(lats)); print('CAP', np.shape(cap)) 

        fh.close() 

         

        ######## PLOT DATA #################################### 

        plotvar = np.full((len(lats),len(lons)),0) 

        for i in range(len(lats)): 

            for j in range(len(lons)): 

          

                   plotvar[i,j] = cap[i,j] 

 

        lon_0 = lons.mean() 

        lat_0 = lats.mean() 
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        m = Basemap(projection = 'stere', lat_0=lat_0, lon_0=lon_0, llcrnrlon=-9, 

                    llcrnrlat=33, urcrnrlon = 33, urcrnrlat = 72, resolution='i') 

         

        lon, lat = np.meshgrid(lons, lats) 

        x, y = m(lon, lat)                    

                                    

        cs = m.contourf(x,y,plotvar,eval('clevs_'+tech)) #clevs 

                    

        m.drawcoastlines() 

        #m.drawstates() 

        m.drawcountries() 

        #m.drawparallels(np.arange(-80.,81.,20.)) 

        #m.drawmeridians(np.arange(-180.,181.,20.)) 

        #m.drawmapboundary(fill_color='white', zorder=-1) 

        m.fillcontinents(color='0.9', lake_color='white', zorder=0) 

                    

        cbar = m.colorbar(cs) 

        cbar.set_label('Installed capacity in MW') 

        #cbar = m.colorbar(cs,ticks=[0, 50, 100, 150, 200, 250, 300]) 

        # Add Grid Lines 

        m.drawparallels(np.arange(-80., 81., 5.), labels=[1,0,0,0], fontsize=10) 

        m.drawmeridians(np.arange(-180., 181., 5.), labels=[0,0,0,1], fontsize=10) 

                    

        plt.title('{0} {1} capacity distribution'.format(scen,tech)) 

         

        savedir = 

'/nobackup/users/huang/Data/Cap_distribution/pictures/{0}{1}_cap_distr.png'.format(scen,tech) 

        plt.savefig(savedir) 

        print('savedir:', savedir) 

        plt.savefig(savedir) 

        plt.close() 

 
 
F.4 Prepare inputs of iRES for the PLEXOS  
F.4.1 Hourly power generation from iRES  
#!/usr/bin/env python3 

# -*- coding: utf-8 -*- 

 

""" 

__author__ ='Huang, Jiangyi' 

 

Created on 2017/09/05 

""" 

 

from netCDF4 import Dataset 

import numpy as np 

import pandas as pd 

import time, GWElib 

 

# Read technical profile 

''' 

with pd.ExcelFile('D:\Workspace\Develop\Data\Cap_distribution.xlsx') as xlsx: 

   turbine = pd.read_excel(xlsx, 'turbine', index_col=0) 

   panel = pd.read_excel(xlsx, 'panel', index_col=0) 

 

turbine.to_csv('D:\Workspace\Develop\Data\\turbine.csv') 

panel.to_csv('D:\Workspace\Develop\Data\\panel.csv') 

''' 

turbine = pd.read_csv('/nobackup/users/huang/Data/Cap_distribution/turbine.csv', index_col=0) 

panel = pd.read_csv('/nobackup/users/huang/Data/Cap_distribution/panel.csv', index_col=0) 

selection = pd.read_csv('/nobackup/users/huang/Data/Selection_1/sample.csv',index_col=0, dtype=str) 

 

d_weather = '/nobackup/users/huang/Data/Selection_1/hr_' 

d_cap = '/nobackup/users/huang/Data/Cap_distribution/distr_netCDF/' 

 

NAO = ['Neg_cold','Neg_warm','Pos_cold','Pos_warm'] 

tech_name = ['onWind','offWind','roofPV','utilPV'] 

scen_name = ['RES40','RES60','RES80'] 

# functions for technology 
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def onWind_month(scen,nao,year,month): 

    opt = 0.88  # operational efficiency 

    u_ci = turbine.Cut_in[tech_name[0]] 

    u_co = turbine.Cut_out[tech_name[0]] 

    u_r = turbine.Rated[tech_name[0]] 

    T_low = turbine.low_T[tech_name[0]] 

    T_high = turbine.high_T[tech_name[0]] 

    H = turbine.Hub_height[tech_name[0]] 

     

    with Dataset(d_cap+'{0}_{1}_cap_distr.nc'.format(scen,tech_name[0]),'r') as fp: 

        cap = fp.variables['CAP'][:]     

    with Dataset(d_weather+'{0}/hr_TN_Samp_{1}_month_{2}.nc'.format(nao,year,month),'r') as fp: 

        TN = fp.variables['Tn'][:] 

    with Dataset(d_weather+'{0}/hr_TX_Samp_{1}_month_{2}.nc'.format(nao,year,month),'r') as fp: 

        TX = fp.variables['Tx'][:]     

    with Dataset(d_weather+'{0}/hr_wind_{1}_Samp_{2}_month_{3}_HH.nc'.format(nao,H,year,month),'r') 

as fp: 

        u0 = fp.variables['speed'][:] 

        hr0 = fp.variables['hour'][:] 

        day0 = fp.variables['day'][:] 

        lat0 = fp.variables['lat'][:] 

        lon0 = fp.variables['lon'][:] 

         

    eff = (TN>=T_low)*(TX<=T_high)*((u0>=u_r)*(u0<u_co)*1 + \ 

        (u0>=u_ci)*(u0<u_r)*((np.power(u0,3)-np.power(u_ci,3))/(np.power(u_r,3)-np.power(u_ci,3)))) 

    P = cap * eff * opt # MWh per grid 

     

    GWElib.GWE(d_weather + 'Egen/{0}/'.format(scen)).mkdir(parents=True, exist_ok=True) 

    with Dataset(d_weather + 

'Egen/{0}/{0}_{1}_Samp_{2}_{3}_{4}'.format(scen,nao,year,month,tech_name[0]), 'w') as f:  

        f.createDimension('hour', len(hr0)) 

        f.createDimension('day', len(day0)) 

        f.createDimension('lat', len(lat0)) 

        f.createDimension('lon', len(lon0)) 

        f.createDimension('Gen', ) 

         

        hour = f.createVariable('hour', hr0.dtype.char, ('hour',)) 

        day = f.createVariable('day', day0.dtype.char, ('day',)) 

        lat = f.createVariable('lat', lat0.dtype.char, ('lat',)) 

        lon = f.createVariable('lon', lon0.dtype.char, ('lon',)) 

        f.createVariable('Gen', P.dtype.char, ('hour','day','lat', 'lon')) 

               

        hour[:] = hr0 

        day[:] = day0 

        lat[:] = lat0 

        lon[:] = lon0 

        f.variables['Gen'][:] = P 

                

        f.description = "hourly electricity generation of onWind" 

        f.history = "Created " + time.ctime(time.time()) 

        hour.units = "hours from 00:00 to 23:00" 

        day.units = "date of the month" 

        lat.units = "degrees_north" 

        lon.units = "degrees_east" 

        f.units = "MWh" 

     

    return '{0} {1} Samp_{2} {3} {4} complete'.format(scen,nao,year,month,tech_name[0]) # 

[hr0,day0,lat0,lon0,P] 

 

def offWind_month(scen,nao,year,month): 

    opt = 0.88 # operational efficiency 

    u_ci = turbine.Cut_in[tech_name[1]] 

    u_co = turbine.Cut_out[tech_name[1]] 

    u_r = turbine.Rated[tech_name[1]] 

    T_low = turbine.low_T[tech_name[1]] 

    T_high = turbine.high_T[tech_name[1]] 

    H = turbine.Hub_height[tech_name[1]] 

     

    with Dataset(d_cap+'{0}_{1}_cap_distr.nc'.format(scen,tech_name[1]),'r') as fp: 

        cap = fp.variables['CAP'][:]     



MSc Thesis Research Energy Science Huang, Jiangyi, 5665825 

76 
 

    with Dataset(d_weather+'{0}/hr_TN_Samp_{1}_month_{2}.nc'.format(nao,year,month),'r') as fp: 

        TN = fp.variables['Tn'][:] 

    with Dataset(d_weather+'{0}/hr_TX_Samp_{1}_month_{2}.nc'.format(nao,year,month),'r') as fp: 

        TX = fp.variables['Tx'][:] 

    with Dataset(d_weather+'{0}/hr_wind_{1}_Samp_{2}_month_{3}_HH.nc'.format(nao,H,year,month),'r') 

as fp: 

        u0 = fp.variables['speed'][:] 

        hr0 = fp.variables['hour'][:] 

        day0 = fp.variables['day'][:] 

        lat0 = fp.variables['lat'][:] 

        lon0 = fp.variables['lon'][:] 

           

    eff = (TN>=T_low)*(TX<=T_high)*((u0>=u_r)*(u0<u_co)*1 + \ 

        (u0>=u_ci)*(u0<u_r)*((np.power(u0,3)-np.power(u_ci,3))/(np.power(u_r,3)-np.power(u_ci,3)))) 

    P = cap * eff * opt # MWh per grid 

     

    GWElib.GWE(d_weather + 'Egen/{0}/'.format(scen)).mkdir(parents=True, exist_ok=True) 

    with Dataset(d_weather + 

'Egen/{0}/{0}_{1}_Samp_{2}_{3}_{4}'.format(scen,nao,year,month,tech_name[1]), 'w') as f:  

        f.createDimension('hour', len(hr0)) 

        f.createDimension('day', len(day0)) 

        f.createDimension('lat', len(lat0)) 

        f.createDimension('lon', len(lon0)) 

        f.createDimension('Gen', ) 

         

        hour = f.createVariable('hour', hr0.dtype.char, ('hour',)) 

        day = f.createVariable('day', day0.dtype.char, ('day',)) 

        lat = f.createVariable('lat', lat0.dtype.char, ('lat',)) 

        lon = f.createVariable('lon', lon0.dtype.char, ('lon',)) 

        f.createVariable('Gen', P.dtype.char, ('hour','day','lat', 'lon')) 

               

        hour[:] = hr0 

        day[:] = day0 

        lat[:] = lat0 

        lon[:] = lon0 

        f.variables['Gen'][:] = P 

                

        f.description = "hourly electricity generation of offWind" 

        f.history = "Created " + time.ctime(time.time()) 

        hour.units = "hours from 00:00 to 23:00" 

        day.units = "date of the month" 

        lat.units = "degrees_north" 

        lon.units = "degrees_east" 

        f.units = "MWh" 

     

    return '{0} {1} Samp_{2} {3} {4} complete'.format(scen,nao,year,month,tech_name[1]) # 

[hr0,day0,lat0,lon0,P] 

 

def roofPV_month(scen,nao,year,month): 

    G_stc = 1000 # W/m2 

    PR_stc = 0.9; T_stc = 25 # C     

    PT_coeff = panel.PT_coeff[tech_name[2]] 

    T_low = panel.low_T[tech_name[2]] 

    T_high = panel.high_T[tech_name[2]] 

     

    with Dataset(d_cap+'{0}_{1}_cap_distr.nc'.format(scen,tech_name[2]),'r') as fp: 

        cap = fp.variables['CAP'][:]    # (160,220) 

    with Dataset(d_weather+'{0}/hr_T2_Samp_{1}_month_{2}.nc'.format(nao,year,month),'r') as fp: 

        T2 = fp.variables['T2'][:]  # (31,160,220) 

    with Dataset(d_weather+'{0}/hr_TN_Samp_{1}_month_{2}.nc'.format(nao,year,month),'r') as fp: 

        TN = fp.variables['Tn'][:] 

    with Dataset(d_weather+'{0}/hr_TX_Samp_{1}_month_{2}.nc'.format(nao,year,month),'r') as fp: 

        TX = fp.variables['Tx'][:]  # (31,160,220) 

    with Dataset(d_weather+'{0}/hr_wind10_Samp_{1}_month_{2}.nc'.format(nao,year,month),'r') as fp: 

        V10 = fp.variables['speed'][:]  # (31,160,220) 

    with Dataset(d_weather+'{0}/hr_SSRD_Samp_{1}_month_{2}.nc'.format(nao,year,month),'r') as fp: 

        G = fp.variables['SSRD'][:]/3600  # (24,31,160,220) convert to W/m2 from J/hr/m2 

        hr0 = fp.variables['hour'][:] 

        day0 = fp.variables['day'][:] 

        lat0 = fp.variables['lat'][:] 
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        lon0 = fp.variables['lon'][:]     

     

    T_a = (T2 + TX)/2; T_c = 0.943 * T_a + 0.028 * G + (-1.528 * V10) + 4.3 

    eff_T = 1 + PT_coeff * (T_c - T_stc) 

    PR = PR_stc * eff_T 

    P = (cap * PR * G / G_stc) * (TN>=T_low)*(TX<=T_high)   # MWh per grid 

     

    GWElib.GWE(d_weather + 'Egen/{0}/'.format(scen)).mkdir(parents=True, exist_ok=True) 

    with Dataset(d_weather + 

'Egen/{0}/{0}_{1}_Samp_{2}_{3}_{4}'.format(scen,nao,year,month,tech_name[2]), 'w') as f:  

        f.createDimension('hour', len(hr0)) 

        f.createDimension('day', len(day0)) 

        f.createDimension('lat', len(lat0)) 

        f.createDimension('lon', len(lon0)) 

        f.createDimension('Gen', ) 

         

        hour = f.createVariable('hour', hr0.dtype.char, ('hour',)) 

        day = f.createVariable('day', day0.dtype.char, ('day',)) 

        lat = f.createVariable('lat', lat0.dtype.char, ('lat',)) 

        lon = f.createVariable('lon', lon0.dtype.char, ('lon',)) 

        f.createVariable('Gen', P.dtype.char, ('hour','day','lat', 'lon')) 

               

        hour[:] = hr0 

        day[:] = day0 

        lat[:] = lat0 

        lon[:] = lon0 

        f.variables['Gen'][:] = P 

                

        f.description = "hourly electricity generation of roofPV" 

        f.history = "Created " + time.ctime(time.time()) 

        hour.units = "hours from 00:00 to 23:00" 

        day.units = "date of the month" 

        lat.units = "degrees_north" 

        lon.units = "degrees_east" 

        f.units = "MWh" 

     

    return '{0} {1} Samp_{2} {3} {4} complete'.format(scen,nao,year,month,tech_name[2]) # 

[hr0,day0,lat0,lon0,P] 

 

def utilPV_month(scen,nao,year,month): 

    G_stc = 1000 # W/m2 

    PR_stc = 0.9; T_stc = 25 # C     

    PT_coeff = panel.PT_coeff[tech_name[3]] 

    T_low = panel.low_T[tech_name[3]] 

    T_high = panel.high_T[tech_name[3]] 

     

    with Dataset(d_cap+'{0}_{1}_cap_distr.nc'.format(scen,tech_name[3]),'r') as fp: 

        cap = fp.variables['CAP'][:]    # (160,220) 

    with Dataset(d_weather+'{0}/hr_T2_Samp_{1}_month_{2}.nc'.format(nao,year,month),'r') as fp: 

        T2 = fp.variables['T2'][:]  # (31,160,220) 

    with Dataset(d_weather+'{0}/hr_TN_Samp_{1}_month_{2}.nc'.format(nao,year,month),'r') as fp: 

        TN = fp.variables['Tn'][:] 

    with Dataset(d_weather+'{0}/hr_TX_Samp_{1}_month_{2}.nc'.format(nao,year,month),'r') as fp: 

        TX = fp.variables['Tx'][:]  # (31,160,220) 

    with Dataset(d_weather+'{0}/hr_wind10_Samp_{1}_month_{2}.nc'.format(nao,year,month),'r') as fp: 

        V10 = fp.variables['speed'][:]  # (31,160,220) 

    with Dataset(d_weather+'{0}/hr_SSRD_Samp_{1}_month_{2}.nc'.format(nao,year,month),'r') as fp: 

        G = fp.variables['SSRD'][:]/3600  # (24,31,160,220) convert to W/m2 from J/hr/m2 

        hr0 = fp.variables['hour'][:] 

        day0 = fp.variables['day'][:] 

        lat0 = fp.variables['lat'][:] 

        lon0 = fp.variables['lon'][:]     

     

    T_a = (T2 + TX)/2; T_c = 0.943 * T_a + 0.028 * G + (-1.528 * V10) + 4.3 

    eff_T = 1 + PT_coeff * (T_c - T_stc) 

    PR = PR_stc * eff_T 

    P = (cap * PR * G / G_stc) * (TN>=T_low)*(TX<=T_high)   # MWh per grid 

     

    GWElib.GWE(d_weather + 'Egen/{0}/'.format(scen)).mkdir(parents=True, exist_ok=True) 

    with Dataset(d_weather + 
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'Egen/{0}/{0}_{1}_Samp_{2}_{3}_{4}'.format(scen,nao,year,month,tech_name[3]), 'w') as f:  

        f.createDimension('hour', len(hr0)) 

        f.createDimension('day', len(day0)) 

        f.createDimension('lat', len(lat0)) 

        f.createDimension('lon', len(lon0)) 

        f.createDimension('Gen', ) 

         

        hour = f.createVariable('hour', hr0.dtype.char, ('hour',)) 

        day = f.createVariable('day', day0.dtype.char, ('day',)) 

        lat = f.createVariable('lat', lat0.dtype.char, ('lat',)) 

        lon = f.createVariable('lon', lon0.dtype.char, ('lon',)) 

        f.createVariable('Gen', P.dtype.char, ('hour','day','lat', 'lon')) 

               

        hour[:] = hr0 

        day[:] = day0 

        lat[:] = lat0 

        lon[:] = lon0 

        f.variables['Gen'][:] = P 

                

        f.description = "hourly electricity generation of roofPV" 

        f.history = "Created " + time.ctime(time.time()) 

        hour.units = "hours from 00:00 to 23:00" 

        day.units = "date of the month" 

        lat.units = "degrees_north" 

        lon.units = "degrees_east" 

        f.units = "MWh" 

     

    return '{0} {1} Samp_{2} {3} {4} complete'.format(scen,nao,year,month,tech_name[3]) # 

[hr0,day0,lat0,lon0,P] 

 

# calculate power generation 

start_time = time.time()   # record time consumption 

for scen in scen_name: 

    for nao in NAO: 

        for yr in [selection.loc[nao].Min,selection.loc[nao].Max]: 

            ## onshore turbine 

            print(onWind_month(scen,nao,yr,'01')); print(onWind_month(scen,nao,yr,'02')); 

print(onWind_month(scen,nao,yr,'12')) 

            ## offshore turbine 

            print(offWind_month(scen,nao,yr,'01')); print(offWind_month(scen,nao,yr,'02')); 

print(offWind_month(scen,nao,yr,'12')) 

            ## roofPV  

            print(roofPV_month(scen,nao,yr,'01')); print(roofPV_month(scen,nao,yr,'02')); 

print(roofPV_month(scen,nao,yr,'12')) 

            ## utilPV  

            print(utilPV_month(scen,nao,yr,'01')); print(utilPV_month(scen,nao,yr,'02')); 

print(utilPV_month(scen,nao,yr,'12')) 

 

    print("--- %s seconds ---" % (time.time() - start_time)) 

 

# construct csv file per region 

 

def readcdf(d): 

    with Dataset(d, 'r') as fr: 

        gen = fr.variables['Gen'][:]    # (24,31,160,220) 

        day0 = fr.variables['day'][:]  

    return [gen, day0] 

 

lat0 = np.arange(35.125,75.0,0.25); lon0 = np.arange(-14.875,40.0,0.25); hour0 = np.arange(1,25) 

grids = pd.read_csv('/nobackup/users/huang/Data/Cap_distribution/cap_distr.csv',index_col=0, 

usecols=[x for x in range(0,4)]+[x for x in range(23,35)]) 

 

def region_sum(cdf, ISO, tech, month):  # cdf: outputof readcdf(); region: ISO; tech: 

e.g.RES40_onWind 

    Egen = cdf[0]; day = cdf[1]     

    grids_region = grids[grids.ISO==ISO] 

    Egen_region = np.zeros((len(hour0),len(day)),dtype=np.float32) 

    for i in grids_region.index: 

        if getattr(grids_region,tech)[i]>0: 

            for y in range(len(lat0)): 
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                for x in range(len(lon0)): 

                    if (lat0[y]==grids_region.lat[i] and lon0[x]==grids_region.lon[i]): 

                        Egen_region += Egen[:,:,y,x] 

    return [np.transpose(Egen_region,(1,0)), month]   # return array shape = (31,24)     

                 

def buildDataFrame(*cdf_ISO):   # input form region_sum()     

    frames = []     

    new_col = ['Year','Month','Day']+[str(x) for x in range(1,len(hour0)+1)]     

    for f in cdf_ISO: 

        E = f[0]; m = f[1]  # E.shape = (31,24) 

        Day = np.arange(1,len(E)+1)         

        Month = np.full((len(E),),int(m),dtype=int) 

        Year = np.full((len(E),),2050,dtype=int) 

        df = pd.DataFrame(np.c_[Year,Month,Day,E]) 

        df.columns = new_col 

        frames.append(df) 

    frames = pd.concat(frames, ignore_index=True) 

    for s in ['Year','Month','Day']: 

        frames[s] = frames[s].astype(int) 

    return frames 

     

start_time_0 = time.time()   # record time consumption 

d0 = '/nobackup/users/huang/Data/Selection_1/hr_Egen/' 

ISO = ['BR','FR','GE','IB','IT','SC'] 

month = ['01','02','12'] 

for scen in scen_name: 

    GWElib.GWE(d_weather + 'Egen/{0}_csv/'.format(scen)).mkdir(parents=True, exist_ok=True)     

    for nao in NAO: 

        for yr in [selection.loc[nao].Min,selection.loc[nao].Max]: 

            ## onshore wind 

            start_time = time.time()   # record time consumption 

            E01 = readcdf(d0 + 

'{0}/{0}_{1}_Samp_{2}_{3}_{4}'.format(scen,nao,yr,month[0],tech_name[0])) 

            E02 = readcdf(d0 + 

'{0}/{0}_{1}_Samp_{2}_{3}_{4}'.format(scen,nao,yr,month[1],tech_name[0])) 

            E12 = readcdf(d0 + 

'{0}/{0}_{1}_Samp_{2}_{3}_{4}'.format(scen,nao,yr,month[2],tech_name[0])) 

             

            for regn in ISO: 

                df = buildDataFrame(region_sum(E01, regn, scen+'_'+tech_name[0], '01'), 

                                    region_sum(E02, regn, scen+'_'+tech_name[0], '02'), 

                                    region_sum(E12, regn, scen+'_'+tech_name[0], '12')) 

                df.to_csv(d_weather + 

'Egen/{0}_csv/{0}_{1}_Samp_{2}_{3}_{4}.csv'.format(scen,nao,yr,regn,tech_name[0]), index = False) 

                print('{0} {1} {2} {3} {4} complete'.format(scen,nao,yr,regn,tech_name[0])) 

            print("--- %s seconds ---" % (time.time() - start_time))             

             

            ## offshore wind 

            start_time = time.time()   # record time consumption 

            E01 = readcdf(d0 + 

'{0}/{0}_{1}_Samp_{2}_{3}_{4}'.format(scen,nao,yr,month[0],tech_name[1])) 

            E02 = readcdf(d0 + 

'{0}/{0}_{1}_Samp_{2}_{3}_{4}'.format(scen,nao,yr,month[1],tech_name[1])) 

            E12 = readcdf(d0 + 

'{0}/{0}_{1}_Samp_{2}_{3}_{4}'.format(scen,nao,yr,month[2],tech_name[1])) 

             

            for regn in ISO: 

                df = buildDataFrame(region_sum(E01, regn, scen+'_'+tech_name[1], '01'), 

                                    region_sum(E02, regn, scen+'_'+tech_name[1], '02'), 

                                    region_sum(E12, regn, scen+'_'+tech_name[1], '12')) 

                df.to_csv(d_weather + 

'Egen/{0}_csv/{0}_{1}_Samp_{2}_{3}_{4}.csv'.format(scen,nao,yr,regn,tech_name[1]), index = False) 

                print('{0} {1} {2} {3} {4} complete'.format(scen,nao,yr,regn,tech_name[1])) 

            print("--- %s seconds ---" % (time.time() - start_time))             

             

            ## roofPV 

            start_time = time.time()   # record time consumption 

            E01 = readcdf(d0 + 

'{0}/{0}_{1}_Samp_{2}_{3}_{4}'.format(scen,nao,yr,month[0],tech_name[2])) 

            E02 = readcdf(d0 + 
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'{0}/{0}_{1}_Samp_{2}_{3}_{4}'.format(scen,nao,yr,month[1],tech_name[2])) 

            E12 = readcdf(d0 + 

'{0}/{0}_{1}_Samp_{2}_{3}_{4}'.format(scen,nao,yr,month[2],tech_name[2])) 

             

            for regn in ISO: 

                df = buildDataFrame(region_sum(E01, regn, scen+'_'+tech_name[2], '01'), 

                                    region_sum(E02, regn, scen+'_'+tech_name[2], '02'), 

                                    region_sum(E12, regn, scen+'_'+tech_name[2], '12')) 

                df.to_csv(d_weather + 

'Egen/{0}_csv/{0}_{1}_Samp_{2}_{3}_{4}.csv'.format(scen,nao,yr,regn,tech_name[2]), index = False) 

                print('{0} {1} {2} {3} {4} complete'.format(scen,nao,yr,regn,tech_name[2]))  

            print("--- %s seconds ---" % (time.time() - start_time)) 

             

            ## utilPV 

            start_time = time.time()   # record time consumption 

            E01 = readcdf(d0 + 

'{0}/{0}_{1}_Samp_{2}_{3}_{4}'.format(scen,nao,yr,month[0],tech_name[3])) 

            E02 = readcdf(d0 + 

'{0}/{0}_{1}_Samp_{2}_{3}_{4}'.format(scen,nao,yr,month[1],tech_name[3])) 

            E12 = readcdf(d0 + 

'{0}/{0}_{1}_Samp_{2}_{3}_{4}'.format(scen,nao,yr,month[2],tech_name[3])) 

             

            for regn in ISO: 

                df = buildDataFrame(region_sum(E01, regn, scen+'_'+tech_name[3], '01'), 

                                    region_sum(E02, regn, scen+'_'+tech_name[3], '02'), 

                                    region_sum(E12, regn, scen+'_'+tech_name[3], '12')) 

                df.to_csv(d_weather + 

'Egen/{0}_csv/{0}_{1}_Samp_{2}_{3}_{4}.csv'.format(scen,nao,yr,regn,tech_name[3]), index = False) 

                print('{0} {1} {2} {3} {4} complete'.format(scen,nao,yr,regn,tech_name[3])) 

            print("--- %s seconds ---" % (time.time() - start_time)) 

             

print("--- %s seconds ---" % (time.time() - start_time_0)) 

     

'''Test area''' 

start_time = time.time()   # record time consumption 

lat0 = np.arange(35.125,75.0,0.25); lon0 = np.arange(-14.875,40.0,0.25); hour0 = np.arange(1,25) 

grids = pd.read_csv('/nobackup/users/huang/Data/Cap_distribution/cap_distr.csv',index_col=0, 

usecols=[x for x in range(0,4)]+[x for x in range(23,35)]) 

 

cdf=readcdf(d0+'RES40/RES40_Neg_cold_Samp_029_01_onWind') 

Egen = cdf[0]; day = cdf[1]     

grids_region = grids[grids.ISO=='GE'] 

Egen_region = np.zeros((len(hour0),len(day)),dtype=np.float32) 

for i in grids_region.index: 

    if grids_region.RES40_onWind[i]>0: 

        for y in range(len(lat0)): 

            for x in range(len(lon0)): 

                if (lat0[y]==grids_region.lat[i] and lon0[x]==grids_region.lon[i]): 

                    Egen_region += Egen[:,:,y,x]                     

print("--- %s seconds ---" % (time.time() - start_time)) 

 

start_time = time.time()   # record time consumption 

E = np.transpose(Egen_region,(1,0)); m = '01'  # E.shape = (31,24) 

Day = np.arange(1,len(E)+1)         

Month = np.full((len(E),),int(m),dtype=int) 

Year = np.full((len(E),),2050,dtype=int) 

df = np.c_[Year,Month,Day,E] 

df = pd.DataFrame(df) 

new_col = ['Year','Month','Day']+[str(x) for x in range(1,len(hour0)+1)] 

df.columns = new_col 

df1 = df.drop(df.index[[30]]) 

csv = pd.concat([df,df1], ignore_index=True) 

for s in ['Year','Month','Day']: 

        csv[s] = csv[s].astype(int) 

csv.to_csv(d_weather + 'Egen/test.csv', index = False) 

print("--- %s seconds ---" % (time.time() - start_time)) 

 

start_time = time.time()   # record time consumption 

# wind turbine production 

## onshore turbine 
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u_ci = turbine.Cut_in[tech_name[0]] 

u_co = turbine.Cut_out[tech_name[0]] 

u_r = turbine.Rated[tech_name[0]] 

T_low = turbine.low_T[tech_name[0]] 

T_high = turbine.high_T[tech_name[0]] 

P_r = turbine.Capacity_MW[tech_name[0]] 

H = turbine.Hub_height[tech_name[0]] 

 

with Dataset(d_weather+NAO[0]+'/hr_wind_{0}_Samp_029_month_01_HH.nc'.format(H),'r') as fp: 

    u = fp.variables['speed'][:] 

    hr = fp.variables['hour'][:] 

    day = fp.variables['day'][:] 

    lat = fp.variables['lat'][:] 

    lon = fp.variables['lon'][:] 

with Dataset(d_weather+NAO[0]+'/hr_TN_Samp_029_month_01.nc','r') as fp: 

   TN = fp.variables['Tn'][:] 

with Dataset(d_weather+NAO[0]+'/hr_TX_Samp_029_month_01.nc','r') as fp: 

   TX = fp.variables['Tx'][:] 

with Dataset(d_cap+'{0}_{1}_cap_distr.nc'.format(scen_name[0],tech_name[0]),'r') as fp: 

   cap = fp.variables['CAP'][:] 

eff = (TN>=T_low)*(TX<=T_high)*((u>=u_r)*(u<u_co)*1 + \ 

   (u>=u_ci)*(u<u_r)*((np.power(u,3)-np.power(u_ci,3))/(np.power(u_r,3)-np.power(u_ci,3)))) 

P = cap * eff # MWh per grid 

print("--- %s seconds ---" % (time.time() - start_time)) 

 

 

# roofPV 

start_time = time.time()   # record time consumption 

G_stc = 1000 # W/m2 

PR_stc = 0.9; T_stc = 25 # C     

PT_coeff = panel.PT_coeff[tech_name[2]] 

T_low = panel.low_T[tech_name[2]] 

T_high = panel.high_T[tech_name[2]] 

     

with Dataset(d_cap+'{0}_{1}_cap_distr.nc'.format(scen_name[0],tech_name[2]),'r') as fp: 

    cap = fp.variables['CAP'][:]    # (160,220) 

with 

Dataset(d_weather+'{0}/hr_T2_Samp_{1}_month_01.nc'.format(NAO[0],selection.loc[NAO[0]].Min),'r') as 

fp: 

    T2 = fp.variables['T2'][:]  # (31,160,220) 

with 

Dataset(d_weather+'{0}/hr_TN_Samp_{1}_month_01.nc'.format(NAO[0],selection.loc[NAO[0]].Min),'r') as 

fp: 

    TN = fp.variables['Tn'][:] 

with 

Dataset(d_weather+'{0}/hr_TX_Samp_{1}_month_01.nc'.format(NAO[0],selection.loc[NAO[0]].Min),'r') as 

fp: 

    TX = fp.variables['Tx'][:]  # (31,160,220) 

with 

Dataset(d_weather+'{0}/hr_wind10_Samp_{1}_month_01.nc'.format(NAO[0],selection.loc[NAO[0]].Min),'r') 

as fp: 

    V10 = fp.variables['speed'][:]  # (31,160,220) 

with 

Dataset(d_weather+'{0}/hr_SSRD_Samp_{1}_month_01.nc'.format(NAO[0],selection.loc[NAO[0]].Min),'r') 

as fp: 

    G = fp.variables['SSRD'][:]/3600  # (24,31,160,220) convert to W/m2 from J/hr/m2 

    hr0 = fp.variables['hour'][:] 

    day0 = fp.variables['day'][:] 

    lat0 = fp.variables['lat'][:] 

    lon0 = fp.variables['lon'][:]     

     

T_a = (T2 + TX)/2; T_c = 0.943 * T_a + 0.028 * G + (-1.528 * V10) + 4.3 

eff_T = 1 + PT_coeff * (T_c - T_stc) 

PR = PR_stc * eff_T 

P = (cap * PR * G / G_stc) * (TN>=T_low)*(TX<=T_high)   # MWh per grid 

print("--- %s seconds ---" % (time.time() - start_time)) 

 
F.4.2 Calculate capacity factors which the PLEXOS requires  
#!/usr/bin/env python3 

# -*- coding: utf-8 -*- 
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' this file functions to convert production profiles of ' 

'solar panel and wind turbine into proper PLEXOS input .csv file ' 

 

""" 

__author__ ='Huang, Jiangyi' 

 

Created on 2017/09/19 

""" 

 

import numpy as np 

import pandas as pd 

import time, GWElib, os 

from datetime import date, timedelta 

import matplotlib.pyplot as plt 

 

ISO = ['BR','FR','GE','IB','IT','SC'] 

map_name = dict(zip(ISO,['Bri','Gal','Ger','His','Ita','Sca'])) 

d_distr = 'D:\Workspace\Develop\Data\distr_netCDF' 

d_gen = 'D:\Workspace\Develop\Data\Generation_profile' 

 

NAO = ['Neg_cold','Neg_warm','Pos_cold','Pos_warm'] 

tech_name = ['onWind','offWind','roofPV','utilPV'] 

scen_name = ['RES40','RES60','RES80'] 

lat0 = np.arange(35.125,75.0,0.25); lon0 = np.arange(-14.875,40.0,0.25); hour0 = np.arange(1,25) 

 

start_time0 = time.time()   # record time consumption 

 

# count maximum capacity per region 

cap_distr = pd.read_csv('D:\Workspace\Develop\Data\cap_distr.csv',index_col=0, usecols=[x for x in 

range(0,2)]+[x for x in range(23,35)]) 

cap_distr = cap_distr.groupby('ISO').sum() 

 

indx_list = cap_distr.index.tolist() 

for i in range(len(indx_list)): 

   indx_list[i] = map_name[cap_distr.index[i]] 

cap_distr.index = indx_list 

 

GWElib.GWE('D:\Workspace\Develop\Data\PLEXOS').mkdir(parents=True, exist_ok=True) 

cap_distr.to_csv('D:\Workspace\Develop\Data\PLEXOS\Distr_region.csv') 

 

def timespan(start, end, delta):   # generate time dateset 

    curr = start 

    while curr <= end: 

        yield curr 

        curr += delta 

 

def standard_df(): 

   yyyy = []; mm = []; dd = [] 

   for result in timespan(date(2050, 1, 1), date(2050, 12, 31), timedelta(days=1)): 

      yyyy.append(result.strftime('%Y')) 

      mm.append(result.strftime('%m')) 

      dd.append(result.strftime('%d'))  # without 2050-02-29 

   E0 = np.zeros([len(dd), len(hour0)])  # E0.shape = (31,24) 

   day = np.full((len(dd),), dd, dtype=int) 

   month = np.full((len(mm),), mm, dtype=int) 

   year = np.full((len(yyyy),), yyyy, dtype=int) 

   new_col = ['Year', 'Month', 'Day'] + [str(x) for x in range(1, len(hour0) + 1)] 

   df0 = pd.DataFrame(np.c_[year, month, day, E0]) 

   df0.columns = new_col 

   for col in ['Year', 'Month', 'Day']: 

      df0[col] = df0[col].astype(int) 

   return df0 

 

def yr_gen(gen_csv):   # directory of generation profile (.csv) 

   df0 = standard_df() 

   month = np.unique(df0.Month) 

   # allocate into the standard df 

   gen = pd.read_csv(gen_csv) 

   gen = gen[-((gen.Month == 2) & (gen.Day == 29))]   # delete data of 2050-02-29 
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   for m in month: 

      if len(gen[gen.Month == m].index) != 0: 

         new_index = df0[df0.Month == m].index 

         gen_month = gen[gen.Month == m].set_index(new_index) 

         df0[df0.Month == m] = gen_month    # copy between dataframe can only success with the same 

index 

   return df0 

 

#df = 

yr_gen('D:\Workspace\Develop\Data\Generation_profile\RES40_csv\RES40_Neg_cold_Samp_029_BR_offWind.c

sv') 

#cap_distr = pd.read_csv('D:\Workspace\Develop\Data\PLEXOS\Distr_region.csv', index_col = 0) 

#cap = cap_distr.RES40_offWind[map_name['BR']] 

 

def cal_CF(yrgen, capmax, tech = 'solar'):     # tech - 'solar' or 'wind' 

   r_opt = 1 

   if tech == 'wind': 

      r_opt = 0.88     # operational loss in wind turbine 

   df0 = standard_df() 

   df0.iloc[:,3:] = yrgen / capmax * r_opt * 100 

   return df0 

 

def replace(CF_0,CF_1,*month):     # substitute values of CF_0 with values of CF_1, in specific 

month 

   df_0 = pd.read_csv(CF_0, index_col=False) 

   df_1 = pd.read_csv(CF_1, index_col=False) 

   for m in month: 

      df_0.iloc[df_0[df_0.Month == m].index, 3:] \ 

         = df_1.iloc[df_1[(df_1.MONTH == m) & (df_1.YEAR == 2050)].index, 3:] 

   df_0.to_csv(CF_0,index=False) 

   return None 

 

neg_cold = ['071','029'] 

neg_warm = ['055','010'] 

pos_cold = ['082','019'] 

pos_warm = ['034','036'] 

 

selection = pd.DataFrame(np.c_[neg_cold, neg_warm, pos_cold, pos_warm]) 

selection.columns = NAO 

selection.index = ['Max', 'Min'] 

 

print("--- %s seconds ---" % (time.time() - start_time0)) 

 

print('processing for capacity factor...') 

start_time1 = time.time() 

month_NAO = [1,2,12]; month_yr = [x for x in range(1,13)] 

month_replace = list(set(month_yr)-set(month_NAO)) 

for scen in scen_name: 

    for nao in NAO: 

      for yr in [getattr(selection,nao).Min, getattr(selection,nao).Max]: 

         GWElib.GWE('D:\Workspace\Develop\Data\PLEXOS\Samp_{0}'.format(yr)).mkdir(parents=True, 

exist_ok=True) 

         for region in ISO: 

            ## roofPV, name as RegPV_rf.csv 

            cap_max = getattr(cap_distr, '{0}_{1}'.format(scen, tech_name[2]))[map_name[region]] 

            CF_PV_rf = cal_CF(yr_gen('D:\Workspace\Develop\Data\Generation_profile' 

                               '\{0}_csv\{0}_{1}_Samp_{2}_{3}_{4}.csv' 

                               .format(scen, nao, yr, region, tech_name[2])), 

                          cap_max, tech = 'solar') 

            CF_PV_rf.to_csv('D:\Workspace\Develop\Data\PLEXOS\Samp_{1}\{0}_{2}_rfPV.csv' 

                        .format(scen, yr, map_name[region]), index=False) 

            replace('D:\Workspace\Develop\Data\PLEXOS\Samp_{1}\{0}_{2}_rfPV.csv' 

                  .format(scen, yr, map_name[region]), 

                  'D:\Workspace\Develop\Data\control_CF\{0}PV.csv' 

                  .format(map_name[region]),*month_replace) 

 

            ## utilPV, name as RegPV_ut.csv 

            cap_max = getattr(cap_distr, '{0}_{1}'.format(scen, tech_name[3]))[map_name[region]] 

            CF_PV_ut = cal_CF(yr_gen('D:\Workspace\Develop\Data\Generation_profile' 

                               '\{0}_csv\{0}_{1}_Samp_{2}_{3}_{4}.csv' 
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                               .format(scen, nao, yr, region, tech_name[3])), 

                          cap_max, tech = 'solar') 

            CF_PV_ut.to_csv('D:\Workspace\Develop\Data\PLEXOS\Samp_{1}\{0}_{2}_utlPV.csv' 

                        .format(scen, yr, map_name[region]), index=False) 

            replace('D:\Workspace\Develop\Data\PLEXOS\Samp_{1}\{0}_{2}_utlPV.csv' 

                  .format(scen, yr, map_name[region]), 

                  'D:\Workspace\Develop\Data\control_CF\{0}PV.csv' 

                  .format(map_name[region]), *month_replace) 

 

            ## PV in total, name as RegPV.csv, PV = PV_rf + PV_ut, this file is used to fit the 

original PLEXOS model 

            CF_PV = CF_PV_rf + CF_PV_ut 

            for s in ['Year', 'Month', 'Day']: 

               CF_PV[s] = CF_PV_ut[s].astype(int) 

            CF_PV.to_csv('D:\Workspace\Develop\Data\PLEXOS\Samp_{1}\{0}_{2}_PVtot.csv' 

                      .format(scen, yr, map_name[region]), index=False) 

            replace('D:\Workspace\Develop\Data\PLEXOS\Samp_{1}\{0}_{2}_PVtot.csv' 

                  .format(scen, yr, map_name[region]), 

                  'D:\Workspace\Develop\Data\control_CF\{0}PV.csv' 

                  .format(map_name[region]), *month_replace) 

 

            ## onshore wind, name as RegOnW.csv 

            cap_max = getattr(cap_distr,'{0}_{1}'.format(scen,tech_name[0]))[map_name[region]] 

            CF_onW = cal_CF(yr_gen('D:\Workspace\Develop\Data\Generation_profile' 

                              '\{0}_csv\{0}_{1}_Samp_{2}_{3}_{4}.csv' 

                              .format(scen,nao,yr,region,tech_name[0])), 

                        cap_max, tech = 'wind') 

            CF_onW.to_csv('D:\Workspace\Develop\Data\PLEXOS\Samp_{1}\{0}_{2}_OnW.csv' 

                       .format(scen,yr, map_name[region]), index = False) 

            replace('D:\Workspace\Develop\Data\PLEXOS\Samp_{1}\{0}_{2}_OnW.csv' 

               .format(scen,yr, map_name[region]), 

               'D:\Workspace\Develop\Data\control_CF\{0}OnW.csv' 

               .format(map_name[region]),*month_replace) 

 

            ## offshore wind, name as RegOffW.csv 

            cap_max = getattr(cap_distr, '{0}_{1}'.format(scen, tech_name[1]))[map_name[region]] 

            CF_offW = cal_CF(yr_gen('D:\Workspace\Develop\Data\Generation_profile' 

                              '\{0}_csv\{0}_{1}_Samp_{2}_{3}_{4}.csv' 

                              .format(scen, nao, yr, region, tech_name[1])), 

                         cap_max, tech = 'wind') 

            CF_offW.to_csv('D:\Workspace\Develop\Data\PLEXOS\Samp_{1}\{0}_{2}_OffW.csv' 

                        .format(scen, yr, map_name[region]), index = False) 

            try:   # not all region install offWind in the base model 

               replace('D:\Workspace\Develop\Data\PLEXOS\Samp_{1}\{0}_{2}_OffW.csv' 

                  .format(scen,yr, map_name[region]), 

                  'D:\Workspace\Develop\Data\control_CF\{0}OffW.csv' 

                  .format(map_name[region]),*month_replace) 

            except FileNotFoundError: 

               print('csv file for {0} offshore wind not found'.format(region)) 

 

            print('{0} {1} {2} {3} completed'.format(scen, nao, yr, region)) 

print("--- %s seconds ---" % (time.time() - start_time1)) 

 

# Extract filename list 

print('building file name list for substitution in PLEXOS...') 

GWElib.GWE('D:\Workspace\Develop\Data\PLEXOS\File_list').mkdir(parents=True, exist_ok=True) 

dir0 = 'D:\Workspace\Develop\Data\PLEXOS' 

samp_year = ['071','029','055','010','082','019','034','036'] 

 

for sc in scen_name: 

   for yr in samp_year: 

      os.system('dir {0}\Samp_{1}\*W.csv > {0}\File_list\samp_{1}_wind.csv'.format(dir0, yr)) 

      os.system('dir {0}\Samp_{1}\*PV.csv > {0}\File_list\samp_{1}_PV.csv'.format(dir0, yr)) 

 
F.5 Calculate other parameters  
F.5.1 Capacity credits  
#!/usr/bin/env python3 

# -*- coding: utf-8 -*- 
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' a test module '  #文档注释 

 
""" 

__author__ ='Huang, Jiangyi' 

 

Created on 2018/01/10 

""" 

 

import numpy as np 

import pandas as pd 

 

 

# File directory 

dir_CC = 'D:\Workspace\Develop\Data\Capacity_credits' 

dir0 = 'D:\Workspace\Develop\Data\PLEXOS' 

 

# constants 

region = ['Bri', 'Gal', 'Ger', 'His', 'Ita', 'Sca'] 

ISO = ['BR', 'FR', 'GE', 'IB', 'IT', 'SC', 'TOT'] 

tech_name = ['onWind','offWind','roofPV','utilPV'] 

tech_short = ['OnW','OffW','rfPV','utlPV'] 

scen_name = ['RES40','RES60','RES80'] 

tech_category = ['Onshore wind','Offshore wind','rooftop PV','Utility PV','PV total','iRES'] 

year = ['010', '019', '029', '034', '036', '055', '071', '082'] 

 

# functions 

def df_tolist(df): 

   list = df['1'].tolist() 

   for i in range(2,25): 

      list+=df['{0}'.format(i)].tolist() 

   return list 

 

def cal_CC(load, gen, capacity): 

   # LDC = sorted(load, reverse=True) 

   Res = load - gen 

   # ResLDC = sorted(Res, reverse=True) 

 

   return (max(load) - max(Res)) / capacity 

 

# inputs: capacity distribution, hourly loads, iRES generation 

cap_distr = pd.read_csv(dir0 + '\Distr_region.csv', index_col = 0) 

hr = 8760 

CC_Samp = [] 

for yr in year: 

   CC_RES = [] 

   for scen in scen_name: 

      CC_table = [] 

      load_all = np.zeros([hr,]); cap_tot = np.zeros([len(tech_category),]); gen_tot = 

np.zeros([len(tech_category),hr]) 

      for rg in region: 

         load = pd.read_csv(dir_CC + '\Loads\{0}LoadAlt.csv'.format(rg), index_col=0) 

         load = load[load.index == 2050] 

         load = np.asarray(df_tolist(load)) 

         load_all += load 

         # CF in % 

         OnW = pd.read_csv(dir0 + '\Samp_{0}\{1}_{2}_OnW.csv'.format(yr, scen, rg), index_col = 0) 

         OffW = pd.read_csv(dir0 + '\Samp_{0}\{1}_{2}_OffW.csv'.format(yr, scen, rg), index_col=0) 

         rfPV = pd.read_csv(dir0 + '\Samp_{0}\{1}_{2}_rfPV.csv'.format(yr, scen, rg), index_col = 0) 

         utlPV = pd.read_csv(dir0 + '\Samp_{0}\{1}_{2}_utlPV.csv'.format(yr, scen, rg), index_col = 

0) 

 

         cap_distr_OnW = getattr(cap_distr, '{0}_onWind'.format(scen))['{0}'.format(rg)] 

         cap_distr_OffW = getattr(cap_distr, '{0}_offWind'.format(scen))['{0}'.format(rg)] 

         if rg == 'Ita': 

            cap_distr_OffW = 0 

         cap_distr_rfPV = getattr(cap_distr, '{0}_roofPV'.format(scen))['{0}'.format(rg)] 

         cap_distr_utlPV = getattr(cap_distr, '{0}_utilPV'.format(scen))['{0}'.format(rg)] 

 

         cap_PV = sum([cap_distr_rfPV, cap_distr_utlPV]) 

         cap_iRES = sum([cap_distr_OffW, cap_distr_OnW, cap_distr_rfPV, cap_distr_utlPV]) 
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         gen_OnW = np.asarray(df_tolist(OnW)) / 100 * cap_distr_OnW 

         gen_OffW = np.asarray(df_tolist(OffW)) / 100 * cap_distr_OffW 

         if rg == 'Ita': 

            gen_OffW = np.zeros([hr,]) 

         gen_rfPV = np.asarray(df_tolist(rfPV))/100 * cap_distr_rfPV 

         gen_utlPV = np.asarray(df_tolist(utlPV))/100 * cap_distr_utlPV 

 

         gen_PV = sum([gen_rfPV, gen_utlPV]) 

         gen_iRES = sum([gen_OffW, gen_OnW, gen_rfPV, gen_utlPV]) 

 

         CC_OnW = cal_CC(load, gen_OnW, cap_distr_OnW) 

         CC_OffW = cal_CC(load, gen_OffW, cap_distr_OffW) 

         if rg == 'Ita': 

            CC_OffW = 'N.A.' 

         CC_rfPV = cal_CC(load, gen_rfPV, cap_distr_rfPV) 

         CC_utlPV = cal_CC(load, gen_utlPV, cap_distr_utlPV) 

         CC_PV = cal_CC(load, gen_PV, cap_PV) 

         CC_iRES = cal_CC(load, gen_iRES, cap_iRES) 

 

         CC_region = [CC_OnW, CC_OffW, CC_rfPV, CC_utlPV, CC_PV, CC_iRES] 

         CC_table.append(CC_region) 

 

         cap_tot += np.asarray([cap_distr_OffW, cap_distr_OnW, cap_distr_rfPV, cap_distr_utlPV, 

cap_PV, cap_iRES]) 

         gen_tot += np.asarray([gen_OffW, gen_OnW, gen_rfPV, gen_utlPV, gen_PV, gen_iRES]) 

 

      load_tot = np.ones([len(tech_category),hr]) * load_all 

      CC_tot = [] 

      for x in range(len(tech_category)): 

         CC_tot.append(cal_CC(load_tot[x], gen_tot[x], cap_tot[x])) 

 

      CC_table.append(CC_tot) 

      CC_table = np.asarray(CC_table) 

      df_CC = pd.DataFrame(CC_table, index = ISO, columns = tech_category) 

      print('Samp_{0}_{1} completed'.format(yr, scen)) 

 

      CC_RES.append(df_CC) 

 

   CC_RES = pd.concat(CC_RES, axis = 1, join_axes = [CC_RES[0].index]) 

   CC_Samp.append(CC_RES) 

CC_Samp = pd.concat(CC_Samp, axis=0) 

 

iter_index = [year, ISO]; multiindex = pd.MultiIndex.from_product(iter_index) 

iter_col = [scen_name, tech_category]; multicol = pd.MultiIndex.from_product(iter_col) 

CC_Samp.index = multiindex; CC_Samp.columns = multicol 

CC_Samp.to_csv(dir_CC+'\capacity_credits.csv', index = True) 

 

writer = pd.ExcelWriter(dir_CC+'\capacity_credits.xlsx') 

CC_Samp.to_excel(writer, 'Raw_outputs') 

writer.save() 

print('Program is completed!') 

 
F.5.2 iRES power generation in an average week in winter months  
#!/usr/bin/env python3 

# -*- coding: utf-8 -*- 

 

' a test module '  #文档注释 

 
""" 

__author__ ='Huang, Jiangyi' 

 

Created on 2018/01/24 

""" 

 

import datetime, calendar, openpyxl 

import pandas as pd 

import numpy as np 
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region = ['Bri', 'Gal', 'Ger', 'His', 'Ita', 'Sca'] 

ISO = ['BR', 'FR', 'GE', 'IB', 'IT', 'SC'] 

tech_name = ['onWind','offWind','roofPV','utilPV'] 

scen_name = ['RES40','RES60','RES80'] 

year = ['010', '019', '029', '034', '036', '055', '071', '082'] 

weather = ['Neg_warm', 'Pos_cold', 'Neg_cold', 'Pos_warm', 'Pos_warm', 'Neg_warm', 'Neg_cold', 

'Pos_cold'] 

tech_category = ['Onshore wind','Offshore wind','rooftop PV','Utility PV', 'Loads'] 

days = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday'] 

dict_yr = dict(zip(year, weather)) 

 

# functions 

def sum_df(df_list): 

   last = list(df_list[0])[len(list(df_list[0]))-1] 

   try: 

      int(last) 

   except ValueError: 

      print('No data available.') 

      return None 

   if int(last) < 1: 

      print('No data available.') 

      return None 

   for i in range(1,len(df_list)): 

      df_list[0].loc[:, '1':last] = df_list[0].loc[:, '1':last].add(df_list[i].loc[:, '1':last], 

axis='columns') 

   return df_list[0] 

 

def df_tolist(df, axis = 0):      # 0: row to list; 1: column to list 

   if axis == 1: 

      list = df['1'].tolist() 

      for i in range(4,28): 

         list += df['{0}'.format(i)].tolist() 

      return list 

   else: 

      list = df.loc[days[0], :].tolist() 

      for d in days[1:]: 

         list += df.loc[d,:].tolist() 

      return list 

 

def week_val(df): 

   df = df[(df.Month == 1) | (df.Month == 2) | (df.Month == 12)].reset_index(drop=True) # for loads 

   df = df[-((df.Month == 2) & (df.Day == 29))].reset_index(drop=True)       # delete data of 2050-

02-29 and update index 

   weekdays = [] 

   for i in range(len(df)): 

      date = datetime.datetime(2050, df.Month[i], df.Day[i]) 

      weekdays.append(calendar.day_name[date.weekday()]) 

   df.insert(3, 'Weekday', weekdays) 

   df = df.loc[:, 'Weekday':'24'] 

   df = df.groupby('Weekday', as_index=True).mean() 

   df = df.reindex(index=days) 

 

   val = df_tolist(df, axis = 0) 

   iterables = [df.index.tolist(),[x for x in range(1,25)]] 

   multiindex = pd.MultiIndex.from_product(iterables, names=['Day', 'Hour']) 

   df = pd.Series(val, index = multiindex) 

 

   return df 

 

# 1. data processing - to average week in winter months 

dir_gen = 'D:\Workspace\Develop\Data\Generation_profile' 

dir_load = 'D:\Workspace\Develop\Data\Capacity_credits\Loads' 

dir_target = 'D:\Workspace\Develop\Data\Avg_week_DJF' 

 

load_tot = [] 

for rg in region: 

   load = pd.read_csv(dir_load+'\{0}LoadAlt.csv'.format(rg)) 

   load = load[load.Year == 2050] 

   load_tot.append(load) 
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load_tot = week_val(sum_df(load_tot)) 

# load_tot.to_csv(dir_target + '\Total_weekly_load.csv', index = True, float_format='%.2f') 

 

results_Samp = [] 

for yr in year: 

   results_RES = [] 

   for scen in scen_name: 

      gen_OnW = []; gen_OffW = []; gen_rfPV = []; gen_utlPV = [] 

      for rg in ISO: 

         gen_OnW.append(pd.read_csv(dir_gen+'\{0}_csv\{0}_{3}_Samp_{1}_{2}_onWind.csv'.format(scen, 

yr, rg, dict_yr[yr]))) 

         gen_OffW.append(pd.read_csv(dir_gen + 

'\{0}_csv\{0}_{3}_Samp_{1}_{2}_offWind.csv'.format(scen, yr, rg, dict_yr[yr]))) 

         gen_rfPV.append(pd.read_csv(dir_gen + 

'\{0}_csv\{0}_{3}_Samp_{1}_{2}_roofPV.csv'.format(scen, yr, rg, dict_yr[yr]))) 

         gen_utlPV.append(pd.read_csv(dir_gen + 

'\{0}_csv\{0}_{3}_Samp_{1}_{2}_utilPV.csv'.format(scen, yr, rg, dict_yr[yr]))) 

 

      gen_OnW = week_val(sum_df(gen_OnW)) 

      gen_OffW = week_val(sum_df(gen_OffW)) 

      gen_rfPV = week_val(sum_df(gen_rfPV)) 

      gen_utlPV = week_val(sum_df(gen_utlPV)) 

 

      result = pd.concat([gen_OnW, gen_OffW, gen_rfPV, gen_utlPV, load_tot], axis=1, 

join_axes=[load_tot.index]) 

      results_RES.append(result) 

 

   result = pd.concat(results_RES, axis = 1, join_axes=[results_RES[0].index]) 

   results_Samp.append(result) 

   print('Samp_{0} completed'.format(yr, scen)) 

 

result = pd.concat(results_Samp, axis = 1, join_axes=[results_Samp[0].index]) 

columns = [year, scen_name , tech_category] 

multicol = pd.MultiIndex.from_product(columns) 

result.columns = multicol 

 

writer = pd.ExcelWriter(dir_target+'\Weekly_generation.xlsx') 

result.to_excel(writer, 'Raw_outputs') 

writer.save() 

 

print('Program is completed!') 
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