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Abstract

Virginia Meijer

A Model for Numerosity Adaptation

Research into numerosity perception has shown that the set size of a group of items
can be perceived by human species as well as non-human species through a similar
numerosity system. Further and more recent research has shown that this numeros-
ity system is susceptible to adaptation. However, the question which remains unan-
swered is “how does numerosity adaptation occur”.

This paper specifically investigates numerosity adaptation on a neural level. It
proposes a model for numerosity adaptation similar to adaptation in the primary
visual cortex (V1), but modified to the neural characteristics of numerosity neurons.
Using a MATLAB implementation of the model, results for the numerosity adapta-
tion model are computed through simulations of the implemented model. These
results are then compared to earlier found psychophysical results of numerosity
adaptation. Especially the results of two earlier studies (Aagten-Murphy & Burr,
2016; Tsouli et al., 2018) are compared to the model’s results.

This paper found that earlier results could be explained fully by the modified
V1 adaptation model, providing a working model for numerosity adaptation. Even
so, more research should be done to ascertain if the model provided fully explains
numerosity adaptation or only the part of it examined in this paper.

Keywords: numerosity perception, adaptation, modeling, tuning curves
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1 Introduction & Theoretical
background

1.1 Numerosity Perception

Numerosity refers to the set size of a group of items as shown in figure 1.1. Nu-
merosity can be perceived by humans species (Xu & Spelke, 2000; Barth et al., 2005;
Cantlon & Brannon, 2007), as well as by non-human species through a similar sys-
tem (Agrillo et al., 2012; Jones et al., 2013). These findings show that numerosity can
be defined as symbolic (numbers) as well as non-symbolic (for example dots).

(a) Numerosity 20 dots (b) Numerosity 40 dots (c) Numerosity 80 dots

FIGURE 1.1: THREE EXAMPLES OF NUMEROSITIES
Numerosities 20, 40 and 80 are respectively shown in the form of 20, 40 and 80 dots.

One theory for the way numerosity is perceived defines numerosity perception as
a number sense. According to the number sense theory numerosity perception mir-
rors primary sensory perception and thus should behave as a primary perceptual
attribute for which a dedicated perceptual system should exist (Anobile et al., 2016).
Evidence for the number sense theory has been found in the human parietal cortex,
in which neurons specifically tuned to the perception of certain numerosities along
with a network of topographic maps for numerosity perception has been found
(Harvey et al., 2013; Harvey & Dumoulin, 2017). Further evidence has been found
through the discovery of a topographic map for object size perception, which did
not fully coincide with the topographic numerosity map (Harvey et al., 2015). This
indicates that a dedicated system for numerosity perception exists.

Moreover, a trait which signifies a dedicated perceptual system exists is the abil-
ity to adapt and can be found in perceptual systems such as vision (for example
research by Thompson and Burr (2009) and King and Crowder (2018)) and audi-
tion (for example research by Parra and Pearlmutter (2007) and Schweinberger et al.
(2008)). Following the theory that numerosity behaves as a perceptual system, adap-
tation should occur for this system as well. Indeed, earlier research shows that nu-
merosity is susceptible to adaptation (Burr & Ross, 2008; Arrighi et al., 2014; Anobile
et al., 2016; Castaldi et al., 2016; Tsouli et al., 2018).
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Even though previous research has ascertained the attribute of adaptation for nu-
merosity perception, the question that remains unanswered is “how does numeros-
ity adaptation occur”. That is to say, does a model exist which can explain the adap-
tive behavior of numerosity?

1.2 Neural Adaptation

Neural adaptation refers to the recalibration on a neuron’s sensitivity after perceiv-
ing a stimulus to optimize perception in a particular system (Thompson & Burr,
2009; Mease et al., 2013). The individual neurons adapt which in turns changes the
neural population’s reaction to a stimulus. In other words, the change in the neu-
rons’ sensitivities results in a change in perception of the stimulus before and after
adaptation. Adaptation can occur at any stage of a perceptual system and, depend-
ing on its place in the hierarchy of the system, adaptation behaves in a different
manner (Kohn, 2007).

An example can be found in the visual system. Adaptation can occur in a lower-
order cortex such as the primary visual cortex (V1), where adaptation is strongest
for stimuli similar to the adapter. However, adaptation in a higher-order cortex such
as the middle temporal area (MT) adaptation for stimuli similar to the adapter is
weakest rather than strongest (Kohn & Movshon, 2004; Krekelberg et al., 2006).

There are three tuning curve properties which adaptation can influence. The first
property is the amplitude of the individual tuning curves, specifically the decrease
of the amplitude as a result of adaptation as shown in figure 1.2(a). A decrease in
amplitude results in a lesser excitation response of the neuron when presented a
stimulus similar to the adapter after adaptation (Jin et al., 2005; Kohn, 2007). This
results in a shift in perception of the stimulus after adaptation as seen in figure 1.3(a).

The second property is the width of the individual tuning curves, which may
narrow as result of adaptation and shown in figure 1.2(b). Narrowing of an individ-
ual tuning curve results in the neuron gaining specificity around the adapter. The
excitation response of the neuron should not be reduced much for a stimulus close
to the numerosity preference, but it should differ greatly if it is further from the
numerosity preference (Grill-Spector et al., 2006; Kohn, 2007). The reduced individ-
ual response cause a shift of the population excitation curve as seen in figure 1.3(b)
which ensures a shift in perception of the stimulus after adaptation.

The final property is the shifting of the individual tuning curves either towards
or away from the adapter, respectively an attractive or repulsive shift. Figure 1.2(c)
shows a repulsive shift. The shifting of an individual tuning curve results in a
change of numerosity preference for that particular neuron (Kohn & Movshon, 2004;
Jin et al., 2005; Clifford et al., 2007; Quiroga et al., 2016). A repulsive shift results in
a greater excitation response of neurons further away of the adapter and a reduced
excitation response of neurons closer to the adapter. An attractive shift results in
an opposite response, a greater response for stimuli similar to the adapter and a
reduced response for stimuli different from the adapter. Shifting of the individual
curves causes an overall shift of the population excitation curve as seen in figure
1.3(c) and thus a shift in perception of the stimulus after adaptation.
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(a) Amplitude reduction for individual tuning curves

(b) Width narrowing for individual tuning curves

(c) Shifting for individual tuning curves

FIGURE 1.2: EXAMPLES OF ADAPTATION PROPERTIES FOR ONE INDIVIDUAL CURVE
Figures (a), (b) and (c) show the effect of a decrease in amplitude, narrowing of the width and
shifting away from the adapter for an individual tuning curve with an adaptation strength
of 10%, respectively. Consider an arbitrary adapter α and an arbitrary stimulus β. For figures
(a) and (b) the shift shown resulted when α < β. For figure (c) the shift shown is the result
when α > β. The dotted lines represent the unadapted curves and the solid lines represent

the 10% adapted curves.
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(a) The effect of amplitude reduction on the population excitation response

(b) The effect of width narrowing on the population excitation response

(c) The effect of shifting on the population excitation response

FIGURE 1.3: EXAMPLES OF PERCEPTIONS SHIFTS FOR ADAPTATION PROPERTIES
Figures (a), (b) and (c) show the effect of the adapted individual responses on the perception
through the shift in perception for reduction of the amplitude, narrowing of the tuning width
and shifting of the curve, respectively. Consider an arbitrary adapter α and an arbitrary
stimulus β. For figures (a) and (b) the shift shown resulted for the condition α < β. For
figure (c) the shift shown is a result of the condition α > β. For all figures a population of
100 neurons is used. The blue dotted lines represent the excitation curves for the unadapted
population. The red lines represent adapted excitation curves. The shift in perception is
represent by the solid black line. If the shift in perception line leans to the right the shift
is attractive indicating overestimation. If the shift in perception line leans left the shift is

repulsive and for perception indicating underestimation of the second stimulus.
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1.3 Numerosity Adaptation

Considering there is no apparent model for numerosity adaptation yet, earlier found
models for neural adaptation of other primary senses and perceptual attributes should
be consulted as to how numerosity adaptation may work. The simplest known
model which can then be considered for numerosity adaptation is a model in which
only the first property, a decrease in amplitude of the tuning width, is influenced by
adaptation. Such models are often found for the adaptation of visual attributes in V1
such as orientation and spatial frequency (Wilson & Humanski, 1993; Jin et al., 2005;
Kohn, 2007; Thompson & Burr, 2009; King & Crowder, 2018). The individual tuning
curves for these attributes follow a Gaussian fit rather than the log Gaussian fit that
was found for numerosity neurons by Harvey et al. (2013). However, the principle
of adaptation remains the same as Heron et al. (2011) have shown that log Gaussian
fit neurons can also be reduced in amplitude while retaining their shape.

The adapted population excitation curve that follows from the individually adapted
tuning curves would shift compared to the unadapted population excitation curve.
The difference between the peak of the unadapted and adapted population excita-
tion curve represent the underestimation or overestimation of the perception of the
stimulus after adaptation.

Earlier research by Tsouli et al. (2018) has found on average a symmetrical shift in
perception of about 5 dots of the stimulus numerosity 40 shown after adaptation to
numerosities 20 and 80. Research done by Aagten-Murphy and Burr (2016) found
a symmetrical shift in perception of about 25% to 30% underestimation and over-
estimation of the stimulus numerosity 40 to adapter numerosities 20 and 80. In
comparison to Tsouli et al. (2018) the absolute number of dots underestimated or
overestimated for stimulus numerosity 40 to adapter numerosities 20 and 80 found
by Aagten-Murphy and Burr (2016) is asymmetrical. Research done by Castaldi
et al. (2016) does not provide a shift in perceived number of dots after adaptation,
but they found that when adapting to a higher numerosity of 80 the stimulus nu-
merosity 40 is underestimated when it is perceived after adaptation. Such an overall
underestimation of stimulus numerosity 40 is also seen in the research of Tsouli et
al. (2018) and of Aagten-Murphy and Burr (2016). According to both psychophys-
ical and fMRI research, the model should return an overall underestimation when
adapting to numerosity 80 with a stimulus numerosity 40.

In order to discover the relevance of the model as an explanation for the be-
havior of numerosity adaptation, the question which needs to be answered is how
well this model can explain earlier found results. Considering the model has to
account for both a symmetrical and asymmetrical shift in perception found for stim-
ulus numerosity 40 and adapter numerosities 20 and 80, the question arises which
parameters may cause the different shifts in perception found. Aagten-Murphy and
Burr (2016) used two different adaptation strengths in their research (1s and 5s adap-
tation), which indicates that adaptation strength influences the shift in perception of
the stimulus.
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Another parameter which may influence the shift in perception of the stimulus is
the tuning width. The width of the tuning curves influences the overlap between
the tuning curves; the wider the tuning curves the more overlap between the tuning
curves and the more neurons contribute to the overall perception of the stimulus.
The more neurons contribute to the overall perception, the stronger the adaptation
effect will be. The exception to this is when the tuning curves are so wide that there
is too much overlap. If the tuning curves overlap too much most of the population
will be adapted rather than the range surrounding the adapter.

For example when adapting to numerosity 20 to test the perception of a stimu-
lus numerosity 17. Since the overall perception of a stimulus consists of all neurons
which fire when presented the stimulus, the perception of numerosity 17 is based
upon the excitations of the neurons for numerosities 16, 17 and 18. The surrounding
area of about numerosities 15 to 25 should adapt. If the tuning width is too narrow
only the range of about 19 to 21 may adapt, which would not effect the perception
of the stimulus numerosity 17. However, if the tuning curves are a little wider the
range of about 15 to 25 would adapt, which would indeed effect the perception of
numerosity 17. Even so, if the tuning curves are too wide the range of about 14 to 26
may adapt, causing most of the tuning curves to adapt. Because most of the tuning
curves have been adapted the overall perception for numerosity 17 will not differ
before and after adaptation.

Yet it is difficult to work with tuning width since the tuning width of human tun-
ing curves is not known. Because of this lack of knowledge multiple combinations
of tuning width and adaptation strength might produce the same shift in perception.

So the research question to be examined is which combinations of tuning width and
adaptation strength parameters produce the earlier symmetrical shift in perception
found by Tsouli et al. (2018), the asymmetrical shift in perception found by Aagten-
Murphy and Burr (2016), and the overall underestimation of stimulus numerosity
40 after adaptation to numerosity 80 found by Castaldi et al. (2016).

1.4 A.I. Context

Research into numerosity adaptation is a relatively new subject. Though numeros-
ity perception has been researched before, the specific mechanisms of numerosity
adaptation remain unclear. Research on numerosity adaptation mostly employ psy-
chophysical methods and there is currently only one study examining numerosity
adaptation using fMRI (Castaldi et al., 2016).

There have been very few previous attempts to formalize numerosity adaptation,
which makes the research into numerosity adaptation especially relevant for the
field of artificial intelligence (A.I.). As mentioned in the previous section, an appar-
ent model for numerosity adaptation does not yet exist. The relevance of modeling
adaptive behavior is that with a model predictions can be made about numerosity
adaptation. These predictions can then be tested to reveal more about the working of
our numerosity perception system. Moreover, implementing a computational model
for numerosity adaptation provides a way to rapidly make predictions based upon
different parameters. Finally, a computational model of numerosity perception and
adaptation might pave the way for a A.I. system in which numerical estimation is
optimized. Such as a system can be used in real life applications such as maintaining
crowd control limits.
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2 Method & Materials

In order to find the optimum combinations of tuning width and adaptation strength
that produce the earlier found result, the method of the model needs to be specified
and simulations with the model must be done. As discussed earlier, the model used
here is a simple adaptation model in which only the amplitude of the individual
tuning curves is reduced. A mathematical specification of the model provides a the-
oretical description of the model. However, to run simulations and gain results with
the model an implemented model is necessary.

The following sections of this chapter describe the underlying mathematical model
of V1 adaptation. The last section describes the method used to simulate the research
question with the model, for which the implementation was done with MATLAB
version R2016b1.

An adaptation model with a Gaussian fit for the tuning curves was implemented
as well as a model with a log Gaussian fit using MATLAB (for the implementation
see appendices A.1 and A.2). The Gaussian fit tuning curves were used as a baseline
since earlier research shows that the tuning curves in the V1 mostly follow Gaussian
tuning (Wilson & Humanski, 1993; Westrick et al., 2016). The Gaussian fit model
can therefore be used as a validity check for the implementation of the adaptation
model. The log Gaussian fit curves are used for the numerosity tuning curves. The
log Gaussian fit model can then be used to find the optimum sets of parameters.

The implementation of the model is for one specific set of parameters. For an
implementation of the model with multiple sets of parameters see appendix A.3.
If multiple sets of parameters are used the model keeps track of which set of pa-
rameters produces which output. This is useful for comparing different comparison
between different sets of parameters and their outcomes.

1In the implementation a function COG is used to calculate the center of gravity, a mea-
surement which relates to the middle point of the area under a curve. This function can be
found via https://nl.mathworks.com/matlabcentral/fileexchange/48451-find-the-center-of-gravity-
of-an-array?s_tid=prof_contriblnk.

https://nl.mathworks.com/matlabcentral/fileexchange/48451-find-the-center-of-gravity-of-an-array?s_tid=prof_contriblnk
https://nl.mathworks.com/matlabcentral/fileexchange/48451-find-the-center-of-gravity-of-an-array?s_tid=prof_contriblnk
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2.1 Mathematical Model Overview

The model can be divided into a three-step process:

1. The model generates a set number of unadapted individual tuning curves and
an unadapted population tuning curve based upon either a Gaussian or log
Gaussian fit.

2. After creating the tuning curves the model takes these same tuning curves and
a specified adapter to which it adapts the tuning curves.

3. The unadapted and adapted population excitation curves are calculated for
a specified stimulus. The curves are then compared in order to calculate the
peak shift in perception of the stimulus.

The outcome of a simulation of the model is a shift in perceived number of dots
(i.e. the peak of the excitation curve) for the specified model parameters. If the shift
is positive, the stimulus should be overestimated after adaptation. For example, a
stimulus of 20 dots may be perceived as 20 dots before adaptation but should be
perceived as more than 20 dots after adaptation. If the shift is negative, the stimulus
should be underestimated after adaptation.

2.2 Model Parameters

The parameters shown in table 2.1 are considered for the model.2 With the exception
of the parameters numerosity range and adaptation strength the parameters should be
given as natural numbers. As such, the parameters can be set to a value n ∈ N.
However, considering the literature, the limit of the human system for numerosity
estimation is 100. For higher numerosities estimation probably depends on a texture
density system (Anobile et al., 2016). This should be taken into consideration when
selecting parameters.

TABLE 2.1: THE PARAMETERS OF THE MODEL
In the left column the parameter names are given. The middle column shows explanations

of the parameters alongside an example value in the right column.

Parameter Info Example value

numerosity range The range of numerosities for which the individual numerosity
tuning curves are shown

0− 200

numerosity range step
size

The step size of the numerosity range. Increasing the step size
changes the resolution of the generated curves

0.1

maximum peak
numerosity

The maximum numerosity of the peak for which the individual
tuning curves are generated

100

σ The standard deviation with which the width of the individual
tuning curves is determined

0.5

number of neurons The number of neurons the model should generate individual
tuning curves for

20

adaptation strength The adaptation strength strength for the individual tuning curves
tuned to the adapter numerosity

25%

stimulus The numerosity for which the excitation curves should be
calculated

40

adapter The numerosity to which the individual tuning curves should be
adapted

20

2In the MATLAB implementation one parameter is used for the numerosity range and the numerosity
range step size. When specifying the parameters for a simulation of the model, the documentation of
the model should be consulted on the format of the combined parameter.
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2.3 Generating the Tuning Curves

Considering the parameters given as example values in table 2.1, the resulting tun-
ing curves for a Gaussian and a log Gaussian fit are shown in respectively figures 2.1
and 2.2. In the figures two types of spaces are considered, the linear and logarithmic
space. The difference can be seen along the x-axis, which increments either linearly
or logarithmic. Because for the generation of the Gaussian fit tuning curves no log-
arithmic equations are used, the Gaussian fit tuning curves are only shown in linear
space. However, for the generation of the log Gaussian fit tuning curves logarithmic
equations are used (see equation 2.4) which is why the logarithmic space should be
considered. The linear space can also be considered for the log Gaussian fit tuning
curves in order to compare the Gaussian and log Gaussian fit tuning curves. Figures
2.1(a) and 2.2(a), and figures 2.1(b) and 2.2(c) show that the Gaussian and log Gaus-
sian tuning curves are generated using the same method. However, figure 2.2(b)
shows that even though the method is the same, the logarithmic conversion for the
log Gaussian fit changes the individual tuning curves in linear space.3

The individual tuning curves are equally distributed across the numerosity range for
the Gaussian fit model, whereas for the log Gaussian fit model, the tuning curves are
distributed unequally to reflect the decrease in dedicated cortical space the higher
the numerosity found by Harvey et al. (2013). The standard deviation σ has a differ-
ent effect on the tuning widths for the Gaussian and log Gaussian fit neurons. For
the Gaussian fit neurons the tuning curves all have an equal width as is often found
in area V1 (Wilson & Humanski, 1993; Westrick et al., 2016). For the log Gaussian
tuning curves the width of the tuning curves is equal in logarithmic space. When
considering the curves in linear space the tuning width grows for each subsequent
neuron. As a result, the log Gaussian tuning curves follow the pattern found in ear-
lier research (Harvey et al., 2013). The subsequent growth of the tuning width allows
more narrow tuning widths for lower numerosities and broader tuning widths for
higher numerosities. In other words, the higher the numerosity the less specific the
tuning curves.

The mean changes for every subsequent neuron. The numerosity preference of each
neuron shifts when the mean increases. Because the mean increases per neuron, the
preference of the neuron increases which creates a distribution of the tuning curves
along the numerosity range. This change is seen in both the Gaussian and the log
Gaussian tuning curves. The mean is calculated per Gaussian fit neuron:

µi =
maximum peak numerosity

number o f neurons + 1
× ineuron (2.1)

For the log Gaussian fit the mean is calculated using the natural logarithm:

µi =
ln(maximum peak numerosity)

maximum neuron ∈ number o f neurons
× ineuron (2.2)

Where µi is the mean of the ith neuron in number of neurons. ineuron is the ith neuron
in number of neurons. maximum neuron ∈ neurons is the highest value in number of
neurons.

3Note that for a comparison between the two fits the σ used for the Gaussian fit should be the
exponent of the σ used for the log Gaussian fit to account for the logarithmic conversion of the σ.
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Using the numerosity range, σ and mean, the tuning curve for a particular neuron is
generated by calculating the sensitivity values for every x-value in the numerosity
range for that neuron. This is done for every neuron in number of neurons so that for
each neuron a tuning curve is generated. The calculation is done through either the
normal (shown in equation 2.3) or log normal (shown in equation 2.4) variant of the
probability density function (PDF):

Gaussian fit

unadapted sensitivityi = PDF(numerosity_range, µi, σ)

In other words, for every x in the numerosity range

unadapted sensitivityx
i =

1
σ×
√

2π
× e

−(x− µi)
2

2× σ2

(2.3)

Log Gaussian fit

unadapted sensitivityi = PDF(numerosity_range, µi, σ)

In other words, for every x in the numerosity range

unadapted sensitivityx
i =

1
x× σ×

√
2π
× e

−(ln x− µi)
2

2× (σ)2

(2.4)

Where unadapted sensitivityi is the generated tuning curve for the ith neuron in
number of neurons. unadapted sensitivityx

i is the unadapted sensitivity for numerosity
x in the tuning curve of the ith neuron in number of neurons.

(a) Gaussian individual tuning curves in linear space

(b) Gaussian population tuning curve

FIGURE 2.1: EXAMPLES OF GENERATED GAUSSIAN TUNING CURVES
Figure (a) shows the individual tuning curves and figure (b) shows the population tuning

curve for the Gaussian fit model. Both figures are shown in linear space.
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(a) Log Gaussian individual tuning curves in logarithmic space

(b) Log Gaussian individual tuning curves in linear space

(c) Log Gaussian population tuning curve

FIGURE 2.2: EXAMPLES OF GENERATED LOG GAUSSIAN TUNING CURVES
Figures (a) and (b) shown the individual tuning curves for the log Gaussian fit model in
respectively logarithmic and linear space. Figure (c) shows the population tuning curve
in logarithmic space. Note that in linear space the tuning width grows per subsequent
curve for the log Gaussian fit, because value x is used (as opposed to equation 2.3) in the

denominator of equation 2.4.
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2.4 Adapting the Tuning Curves

The adaptive behavior modeled here follows the principle of the adaptation process
found in area V1 and described in the previous section. The model only affects the
amplitude property of the individual tuning curves by decreasing the amplitude
based on the strength of the adaptation. The other two properties, the width of the
tuning curve and the shifting of the tuning curve are not affected. The individual
tuning curves retain their width and do not shift from place as shown in figure 2.3
below and as proposed by Jin et al. (2005).

FIGURE 2.3: SIMPLE V1 ADAPTATION FOR AN INDIVIDUAL NEURON
Only the amplitude of the tuning curve decreases while the width remains unchanged and
the curve does not shift. For adapter numerosity 50 the tuning curve is adapted at 25%, 50%
and 75%. The adapted curves are shown by the red, yellow and purple lines respectively.

The blue line shows the unadapted tuning curve.

Since in V1 most neuronal tuning curves follow a Gaussian fit figure 2.3 shows an
individual neuronal tuning curve with a Gaussian fit, rather than the log Gaussian fit
found for numerosity neurons. The method however, can also be applied to the log
Gaussian fitted tuning curves. In logarithmic space the adaptation of an individual
tuning curve will be exactly the same as for a Gaussian fitted tuning curve in the
linear space show in figure 2.3. Figure 2.4 shows the adaptation for a log Gaussian
fitted tuning curve in linear space.

FIGURE 2.4: SIMPLE V1 ADAPTATION FOR A LOG GAUSSIAN NEURON
For adapter numerosity 90 the tuning curve is adapted at 25%, 50% and 75%. The
adapted curves are shown by the red, yellow and purple lines respectively. The blue

line shows the unadapted tuning curve.
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As for our model, it adapts the neurons by changing the previously generated tuning
curves of these neurons. Per neuron an adaptation weight is determined. This adap-
tation weight ensures that neurons tuned to the adapter numerosity are reduced
most in amplitude. Moreover, this ensures that the further away neuron is tuned
from the adapter numerosity, the less the corresponding curve is reduced in ampli-
tude. The adaptation weight is based on the activation of the adapter numerosity for
that specific neuron:

adaptation weighti = adaptation strength× activation f or the adapteri (2.5)

Where adaptation weighti is the adaptation weight for the tuning curve of the ith

neuron in the number of neurons and activation f or the adapteri is the activation for
the adapter numerosity for the tuning curve of the ith neuron in the number of neurons.

The parameter adaptation strength is set as a ratio and indicates the adaptation strength
for the individual neurons who’s numerosity preference is equal to the adapter nu-
merosity. That is to say, the adaptation strength for the individual tuning curve
which is tuned to the adapter numerosity. For example, if adaptation strength is set to
a decrease of 50% the ratio for the adaptation strength would be 0.50.

The activation for the adapter numerosity is calculated per neuron as adaptation to
any point in the population will reduce the sensitivities of all neurons in the popu-
lation (Mollon, 1974). The higher the activation, the closer the neuron is tuned to the
adapter numerosity and the greater the adaptation should be as it has a larger influ-
ence on the overall adapted perception. Similarly, the lower the activation, the fur-
ther away the neurons is tuned and the smaller its influence on the overall adapted
perception. For example, when the adaptation strength is set to 50% the neuron with
its preference equal to the adapter numerosity will be adapted by 50%. The neurons
with preferences surrounding the adapter numerosity should adapt less than 50%.

The adaptation weight is then used to calculate the adapted sensitivity of the previ-
ously generated tuning curves:

adapted sensitivityx
i = unadapted sensitivityx

i × (1− adaptation weighti) (2.6)

Where adapted sensitivityx
i is the adapted sensitivity for numerosity x in the tun-

ing curve of the ith neuron in number of neurons. When the tuning curves do not
adapt, the adapted sensitivity will be equal to the unadapted sensitivity. On the
contrary, when the adaptation strength is set to 100% the adapted sensitivity will be
equal to zero.
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Continuing with our example parameters, an adaptation strength ratio of 0.25 and
an adapter numerosity of 20, figures 2.5 and 2.6 respectively show the adapted tun-
ing curves for the Gaussian and log Gaussian fit. Comparing figures 2.5(a) and 2.6(a)
shows that the adaptation works the same way for the individual tuning curves in
their respective linear and logarithmic spaces. However, comparing figures 2.5(a)
and 2.6(b) shows the different outcomes of the adaptation in linear space using the
same method.

(a) Adapted Gaussian individual tuning curves in linear space

(b) Adapted Gaussianpopulation tuning curve

FIGURE 2.5: EXAMPLES OF GENERATED GAUSSIAN TUNING CURVES
Figure (a) shows the individual tuning curves and figure (b) shows the population tun-
ing curve for the Gaussian fit model. Both figures are shown in linear space. The black
lines represent the unadapted curves. In figure (a) the red lines and in figure (b) the
blue line represents the adapted curves. The effect of adaptation is shown through the

resulting of the tuning curves around the adapter numerosity 20.
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(a) Adapted Log Gaussian individual tuning curves in logarithmic space

(b) Adapted Log Gaussian individual tuning curves in linear space

(c) Adapted Log Gaussianpopulation tuning curve

FIGURE 2.6: EXAMPLES OF ADAPTED LOG GAUSSIAN TUNING CURVES
Figures (a) and (b) shown the individual tuning curves for the log Gaussian fit model in
respectively logarithmic and linear space. Figure (c) shows the population tuning curve in
logarithmic space. In figures (a) and (c) the black lines represent the unadapted curves. In
figure (a) the red lines and in figure (c) the blue line represent the adapted curves. The
effect of adaptation is shown through the resulting of the tuning curves around the adapter

numerosity 20.
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2.5 Calculating Excitations and Shifts in Perception

When both the unadapted and adapted tuning curves have been created, the model
calculates the population excitation curves for a specified stimulus. The method for
calculating the excitation is much the same as calculating adaptation as an excitation
weight is used. This excitation weight is based upon the activation of the stimulus
for each individual tuning curve:

excitation weighti = activation f or the stimulusi (2.7)

Where excitation weighti is the excitation weight for the ith neuron and activation f or the stimulusi
is the activation of the chosen stimulus numerosity for the ith neuron.

With the excitation weight the population excitation curve is calculated by the fol-
lowing formulas:

excitationx
i = sensitivityx

i × excitation weighti × 10 (2.8)

population excitationx =
number o f neurons

∑
i=1

(excitationx
i ) (2.9)

Where excitationx
i is the excitation of a stimulus numerosity x for the ith neuron in

number of neurons. sensitivityx
i can refer to unadapted sensitivityx

i or adapted sensitivityx
i

depending on which population excitation curve is calculated. population excitationx

is the population excitation for the numerosity stimulus x.

From the population excitation curves the peaks of these curves are calculated. The
difference between the unadapted and adapted peaks provides an estimation for a
shift in perception. The shift in perception represents an underestimation or overes-
timation of the stimulus after adaptation compared to before adaptation. A positive
peak shift corresponds to overestimation of a stimulus after adaptation, whereas a
negative peak shift corresponds to underestimation.

2.6 Simulating the Research Question

Having specified the model and an implementation of it in MATLAB we first need
to know whether the implementation of our model works; a validity check must be
done for the Gaussian fit model. If the model shows adaptive behavior which corre-
sponds with earlier research the model is valid.

After validating the model, the optimum combinations of tuning width and
adaptation strength must be determined to answer the research question. In order
to find the optimum combinations the parameters σ for tuning width and adaptation
strength for adaptation strength must be varied per simulation. The other parame-
ters of the model must remain the same, else the combinations cannot be compared
against each other. A series of simulations will provide shifts in perception which
can be compared to earlier research to determine the optimum combinations.

Since it is impossible to count the exact number of neurons in the brain, the num-
ber of neurons used in the simulation should not highly influence the outcome. To
check this, two values for number of neurons will be used in the simulations to deter-
mine if this parameter might also influence the shift in perception.
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3 Results

3.1 Baseline Gaussian Curves

TABLE 3.1: PARAMETERS USED IN THE GAUSSIAN FIT SIMULATION.
In the right column the parameter name is shown while in the left column the

parameter value used is shown.

Parameter Values used

numerosity range 0-160

numerosity range step size 0.1

maximum peak numerosity 120

σ 2.0 - 4.0 incremented by 0.1

number of neurons 50 and 100

adaptation strength 0% - 100% incremented by 10%

stimulus 40

adapter 35 and 45

Four different conditions were used to test the validity of the model and the simula-
tions were run with the parameters specified in table 3.1. The adapter numerosities
35 and 45 are chosen because they are equally apart from the chosen stimulus nu-
merosity of 40. Two different values for number of neurons are chosen to discern if
this parameter influences the shift in perception. The simulations were run for only
the Gaussian fit model. 21 different values for σ and 11 different values for adapta-
tion strength resulted in 231 combinations per condition and 924 simulations of the
Gaussian fit model in total. The resulting shifts in perception found for the different
combinations of σ and adaptation strength are shown in figure 3.1.

(a) Adapter 35 and 50 neurons (b) Adapter 45 and 50 neurons

FIGURE 3.1: PEAK SHIFTS IN PERCEPTION FOR STIMULUS 40
Figure (a) shows the shifts for adapter numerosity 35 and figure (b) shows the shifts for
adapter numerosity 45. The shifts are shown per combination of adaptation strength

and σ value. The underlying values of the color maps can be found in appendix B.1.
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The number of neurons seems to have almost no effect on the shift in perception (see
appendix B.1). The larger the σ, the larger the standard deviation and the width of
the tuning curves and figure 3.1 shows that the larger the σ, the larger the shift in
perception is. As hypothesized the tuning width of the course seems to influence
the shift in perception. Moreover, the stronger the adaptation strength, the larger the
shift in perception is as well. The largest shift in perception is found for the com-
bination of the largest σ and the strongest adaptation strength. Furthermore, figure
3.1 shows that, as expected, the shifts found for adapter numerosities 35 and 45 are
identical, safe that for adapter 35 the shift is positive whereas for adapter 45 the
shift is negative. Overall the simulations show that the adaptation behavior for the
model behaves as found in earlier research for neurons in the V1 area (Mollon, 1974;
Thompson & Burr, 2009; Jin et al., 2005).

3.2 Numerosity Log Gaussian Curves

To simulate the research question six different conditions were chosen to match the
conditions of earlier research (Aagten-Murphy & Burr, 2016; Tsouli et al., 2018). The
simulations were run with the parameters shown in table 3.2. The two different
values 50 and 100 were chosen for number of neurons to discern if the parameter in-
fluences the shift in perception. The simulations were run only for the log Gaussian
fit model. For the parameter σ 16 different values were used and for the parameter
adaptation strength 11 different values. This resulted in 176 combinations per condi-
tion, totaling in 1056 simulations of the model. The shifts in perception found per
combination of tuning width and adaptation strength are shown in figure 3.2.

TABLE 3.2: PARAMETERS USED IN THE LOG GAUSSIAN SIMULATIONS
In the right column the parameter name is shown while in the left column the

parameter value used is shown.

Parameter Values used

numerosity range 0-250

numerosity range step size 0.1

maximum peak numerosity 160

σ 0.1 - 1.6 incremented by 0.1

number of neurons 50 and 100

adaptation strength 0% - 100% incremented by 10%

stimulus 40

adapter 20, 40 and 80

Congruent with the results found for the Gaussian fit model, there is almost no dif-
ference in the shifts in perception found for conditions with the parameter number
of neurons set to 50 compared to the conditions with number of neurons set to 100 (see
appendix B.2). Also, as expected, figure 3.2 shows that the shifts in perception are
positive for adapter numerosity 20 and negative for adapter numerosity 80 repre-
senting overestimation and underestimation after adaptation, respectively.
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(a) Adapter 20 and 50 neurons (b) Adapter 40 and 50 neurons (c) Adapter 80 and 50 neurons

FIGURE 3.2: PEAK SHIFTS IN PERCEPTION FOR STIMULUS 40
The figures show the shifts in perception found for the three conditions with 50 neu-
rons. The shifts are shown per combination of adaptation strength and σ value. In
figures (a) and (c) the shifts in perception matching the results found by Tsouli et al.
(2018) and Aagten-Murphy and Burr (2016) are shown by the black and white squares,

respectively. The underlying values of the color maps can be found in appendix B.2.

3.2.1 Adapter Numerosity 20

Figure 3.2(a) shows that there are quite a few combinations of σ and adaptation
strength for which a shift of around 5 dots occurs as indicated by the black squared
markings. Furthermore, the asymmetrical shift found by Aagten-Murphy and Burr
(2016) is also found for certain combinations as indicated by the white squared mark-
ings. A trend that is clearly visible when looking at the figures is that for all simu-
lations with a adaptation strength of 0 or with a σ of 0.1 the shift in perception is so
small that it is not perceived. Another trend which holds until the σ value reaches
0.7 is that the larger the σ or stronger the adaptation strength, the larger the shift in
perception is as well. Between the σ values of 0.8 and 1.0 the shift in perception di-
minishes again.

A curiosity is that if the sigma is greater than 1.0 the shift in perception shifts to a
negative shift rather than the earlier found positive shift, which might be attributed
to the change in the form of the tuning curves with a σ value of 1.0 or higher. Fig-
ure 3.3 shows that the change in the shape causes the top of the tuning curve to
shift, which in the model translates to a shift in the preference of neurons. The shift
in preference might cause the adaptation to differ greatly, resulting in the negative
shifts in perception rather than the expected positive shifts in perception.

FIGURE 3.3: EXAMPLES OF σ VALUES IN LOG GAUSSIAN FIT CURVES
Two log Gaussian fit curves with a small and large σ value are shown by the

green and red curve, respectively. The µ value used for both curves is 0.
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3.2.2 Adapter numerosity 40

Tsouli et al. (2018) found an effect on when adapting to numerosity 40. However,
the effect was attributed to duration adaptation. Aagten-Murphy and Burr (2016)
also adapted to numerosity 40 in their experiment, but the adaptation showed no
significant change in the perceived number of dots. Even so, figure 3.2(b) shows
an interesting series of shifts in perception for adapter numerosity 40 which seem
positive for a σ value of 0.2 and negative for values of σ larger than 0.2. Following
this, the reduction of the shift in perception rather than the increase for σ values of 1.0
and larger for adapter numerosities 20 and 80 is also found for adapter numerosity
40. Additionally, for adapter numerosity 40 more combinations of σ and adaptation
strength values yield a shift in perception of 0.

3.2.3 Adapter Numerosity 80

Figure 3.2(c) shows that for adapter numerosity 80 all shifts in perception found, not
including 0, are negative. This is expected because considering an arbitrary adapter
α and stimulus β, there should be an underestimation when α < β (see section 1.2
and figures 1.2 and 1.3). The overall underestimation of stimulus numerosity 40
after adapting to numerosity 80 is a trend found in earlier research (Aagten-Murphy
& Burr, 2016; Castaldi et al., 2016; Tsouli et al., 2018). It is important to note that the
switch from positive to negative in the shift in perception that happened for adapter
numerosity 20 and a σ value larger than 1.0 does not happen vice versa for adapter
numerosity 80. However, just as found for adapter numerosity 20, for adapter 80
the shifts in perception get smaller rather than larger for σ values of 0.7 and larger.
Furthermore, the 25% to 30% shift found by Aagten-Murphy and Burr (2016) is also
found for certain combinations as marked by the white squares in figure 3.2(c).

3.2.4 Optimum Combination of Tuning Width and Adaptation Strength

Considering the different combinations found for adapter numerosities 20 and 80
that produce shifts in perception matching the earlier found results, a comparison
of the combinations yield the following combinations for which the symmetrical 5
dots shift in perception reported by Tsouli et al. (2018) is found:

• A adaptation strength ratio of 0.3 and a σ of 0.5

• A adaptation strength ratio of 0.3 and a σ of 0.8

• A adaptation strength ratio of 0.5 and a σ of 0.4

Moreover, the following combinations found the asymmetrical shift reported by
Aagten-Murphy and Burr (2016):

• A adaptation strength ratio of 0.5 and a σ of 0.6

• A adaptation strength ratio of 0.5 and a σ of 0.7

• A adaptation strength ratio of 0.7 and a σ of 0.5

Looking at all the combinations of adaptation strength ratio and σ found, the values
for σ which seem to overlap are between 0.4 and 0.8 while the adaptation strength
ratios seem to be at the lower end for the shift in perception found by Tsouli et al.
(2018) and at the higher end for the shift in perception found by Aagten-Murphy
and Burr (2016). In particular, the σ value of 0.5 allows for the reproduction of the
results found by both studies.
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4 Discussion

The goal was to determine if the model specified in section 2 could explain human
numerosity adaptation behavior. Specifically, the purpose was to determine which
combinations of tuning curve width and adaptation strength produce the results
found in earlier research. That is to say which combinations produce the symmetri-
cal shift in perception found by Tsouli et al. (2018), the asymmetrical shift in percep-
tion found by Aagten-Murphy and Burr (2016), and the overall underestimation of
a stimulus after adaptation when the stimulus is smaller than the adapter found by
Castaldi et al. (2016)?

To answer this question the shift in perception produced by specific combina-
tions of tuning width and adaptation strength were measured. At first, for the shift
in perception two different points of measurement were used. Firstly, the shift in
perception according to the peak (see section 1.2) as was used by (Jin et al., 2005).
Secondly, the shift in perception according to the center of gravity (COG) which re-
lates to the middle point of the area under the population excitation curve. However,
the COG shifts in perception found by the model were of a magnitude that was not
feasible (see appendix C). Because of this the COG measurement is not used further
in this paper.

However, before any shifts in perception could be calculated the model had to be
validated. To validate the model, the Gaussian fit variant of the model was tested
with four different conditions. The results found for these conditions correspond
with typical adaptation behavior found in the V1; a stronger adaptation strength in-
creased the resulting shift in perceived number of dots (Mollon, 1974; Thompson &
Burr, 2009; Jin et al., 2005). Because of this the implementation of the model in MAT-
LAB can be considered a valid representation of the mathematical model specified
earlier (see section 2).

After validating the model, the log Gaussian fit variation of the model was run for
six conditions in order to determine the optimum combinations of tuning width
and adaptation strength. Here three adapter numerosities were used (20, 40 and 80)
alongside a single stimulus numerosity 40. Congruent with earlier findings (Aagten-
Murphy & Burr, 2016; Castaldi et al., 2016; Tsouli et al., 2018), when adapting to
numerosity 80 an overall underestimation of the stimulus numerosity 40 was found
for all combinations. Furthermore, congruent with earlier psychophysical results
an overestimation of the stimulus numerosity 40 was found when adapting to nu-
merosity 20 (Aagten-Murphy & Burr, 2016; Tsouli et al., 2018). These findings do not
give an optimum combination of adaptation strength and tuning width, but do show
that at least a part of the human adaptive behavior of numerosity can be mimicked
through the model.
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In the six log Gaussian conditions σ values ranging from 0.1 to 1.6 were used. How-
ever, when log Gaussian fit curves are created using a σ value higher than 1.0 the
shape of the curve changes (see figure 3.3). This change can also be seen in the color
maps of figure 3.2. In the conditions with adapter numerosity 20 the resulting shifts
in perception turn negative instead of positive and in the conditions with adapter
numerosities 40 and 80 the shifts in perception decrease much faster than with a σ
value between 0.7 and 1.0. This shows that using log Gaussian fit tuning curves
has a limit. However, since the tuning width of human tuning curves is not known
this limit poses a constraint for modeling numerosity adaptation. Furthermore, in
the current model the natural logarithm was used to generate the log Gaussian fit
tuning curves. However the curves can also be generated with a common base 10
logarithm which might lessen the constraint. However, because another logarithm
is used the resulting shift in perception could also be influenced greatly. To deter-
mine the influence of the logarithm a model can be implemented which substitutes
the natural logarithms used in the current model and then it can be researched if the
logarithm greatly influences the shift in perception.

Another curious finding for the conditions with adapter numerosity 40 is that
for the higher adaptation strength values and a σ value of 0.2 the shift in perception
is positive rather than negative. For these parameter values the overlap between the
individual tuning curves is just right that after adaptation less tuning curves over-
lap than for the other combinations. Because of this, less neurons contribute to the
population’s response causing the shift in perception to become positive. Even so,
a definite trend can be seen when comparing an increase in tuning width or adap-
tation strength with the resulting shift in perception. For all conditions, except for
the aforementioned curiosity, the shift in perception increases when the adaptation
strength or tuning width increases. However, after a σ value of about 0.7 the shifts
in perception decrease, following the theory discussed in section 1.3 that very wide
tuning curves level the shift in perception.

To answer the research question, one optimum combination was found that pro-
duces the symmetrical shift in perception of about 5 dots in agreement with Tsouli
et al. (2018) and produces the asymmetrical shift in perception found by Aagten-
Murphy and Burr (2016) when adapting to numerosities 20 and 80. This further
shows that the model can mimic human behavior for at least the stimulus numeros-
ity 40. However, in order to fully explain numerosity adaptation through the model
presented here other stimulus numerosities should be considered. A possible way
to check the model’s relevance is to increase the data to test the model by using stim-
ulus numerosities which are either much lower (such as 4 or 5) or much higher (such
as 80) than the numerosity 40 used here.

It is worth mentioning that the differing shifts in perception found by Tsouli et
al. (2018) and Aagten-Murphy and Burr (2016) were produced through the same ex-
posure duration of adaptation (333 msec). This supports the idea that numerosity
adaptation does not only require exposure duration and that adaptation strength
does not equal exposure duration (Aagten-Murphy & Burr, 2016). This should be
taken into account when devising new experiments for numerosity adaptation based
upon the model.

Finally, the results show that modeling is a great tool to use in order to bridge the gap
between the earlier found data. It provides a way to easily and quickly compare dif-
ferent datasets. Furthermore, the results can be used for predictions of numerosity
adaptation behavior which can help the understanding of the numerosity system.
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A A MATLAB interpretation

A.1 Implementation of a Log Gaussian Fit Model

function output = run_lognormal ( adapter , stimulus , adaptat ion_strength , neurons , maxnumerosity , sigma , x )
% RUN_LOGNORMAL Run a s i m u l a t i o n o f t h e model which c r e a t e s and a d a p t s
% l o g Gauss ian n u m e r o s i t y n e u r a l tuning c u r v e s b a s e d on t h e p a r a m e t e r s :
%
% ADAPTER = t h e n u m e r o s i t y v a l u e t o which t h e n u m e r o s i t y tuning c u r v e s s h o u l d a d a p t
% ADAPTER always n e e d s t o be s p e c i f i e d
%
% STIMULUS = t h e n u m e r o s i t y v a l u e f o r which t h e e x i t a t i o n i s c a l c u l a t e d
% STIMULUS always n e e d s t o be s p e c i f i e d
%
% ADAPTATION_STRENGTH = t h e maximum amount o f a d a p t a t i o n t h a t t h e neuron with
% t h e a d a p t e r a s p r e f e r e n c e a d a p t s . Must be g i v e n as a r a t i o , e . g . 0 . 5
% f o r 50% a d a p t a t i o n
% I f not s p e c i f i e d , d e f a u l t ADAPTATION_STRENGTH i s s e t t o 0 . 5
%
% NEURONS = t h e amount o f n e u r o n a l tuning c u r v e s g e n e r a t e d by t h e model
% I f not s p e c i f i e d , d e f a u l t NEURONS i s s e t t o 100
%
% MAXNUMEROSITY = t h e maximum n u m e r o s i t y p r e f e r e n c e t h a t a neuron can r e a c h
% I f not s p e c i f i e d , d e f a u l t MAXNUMEROSITY i s s e t t o 100
%
% SIGMA = t h e s t a n d a r d d e v i a t i o n used f o r c a l c u l a t i o n o f t h e width o f t h e
% i n d i v i d u a l l o g n o r m a l tuning c u r v e s
% I f not s p e c i f i e d , d e f a u l t SIGMA i s s e t t o 0 . 5 ;
%
% X = t h e rangev i ew o f n u m e r o s i t i e s o v e r which tuning c u r v e s can s p r e a d .
% Should be g i v e n in t h e form o f an a r r a y o f i n t e g e r s such as :
% [ b e g i n n u m e r o s i t y : s t e p s i z e : endnumeros i ty ]
% I f not s p e c i f i e d , d e f a u l t X i s s e t t o [ 0 : 0 . 1 : 1 6 0 ]
%
% I n c l u d e p a r a m t e r s a s t h e f o l l o w i n g s e q u e n c e :
% RUN_LOGNORMAL( a d a p t e r , s t imulus , a d a p t a t i o n _ s t r e n g t h , neurons , maxnumerosity , sigma , x )
%
% See a l s o RUN_NORMAL and RUNME.

%% D e f a u l t v a l u e s i f no t d e t a i l e d in f u n c t i o n :
%I f on ly a d a p t e r and s t i m u s l u s a r e s p e c i f i e d
i f nargin == 2

adapta t ion_s t rength = 0 . 5 ;
neurons = 1 0 0 ;
maxnumerosity = 1 0 0 ;
sigma = 0 . 5 ;
x = [ 0 : 0 . 1 : 1 6 0 ] ;

%I f on ly a d a p t e r , s t i m u l u s and a d a p t a t i o n _ s t r e n g t h a r e s p e c i f i e d
e l s e i f nargin == 3

neurons = 1 0 0 ;
maxnumerosity = 1 0 0 ;
sigma = 0 . 5 ;
x = [ 0 : 0 . 1 : 1 6 0 ] ;

%I f on ly a d a p t e r , s t imulus , a d a p t a t i o n _ s t r e n g t h and neurons a r e s p e c i f i e d
e l s e i f nargin == 4

maxnumerosity = 1 0 0 ;
sigma = 0 . 5 ;
x = [ 0 : 0 . 1 : 1 6 0 ] ;

%I f on ly a d a p t e r , s t imulus , a d a p t a t i o n _ s t r e n g t h , neurons and maxnumeros i ty a r e s p e c i f i e d
e l s e i f nargin == 5

sigma = 0 . 5 ;
x = [ 0 : 0 . 1 : 1 6 0 ] ;
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%I f on ly a d a p t e r , s t imulus , a d a p t a t i o n _ s t r e n g t h , neurons , maxnumeros i ty and sigma a r e s p e c i f i e d
e l s e i f nargin == 6

x = [ 0 : 0 . 1 : 1 6 0 ] ;
end

%% C r e a t i n g t h e unadapted tuning c u r v e s ( i n d i v i d u a l , p o p u l a t i o n and n o r m a l i s e d p o p u l a t i o n c u r v e s )
% C a l c u l a t i n g s e n s i t i v i t y f o r t h e i n d i v i d u a l tuning c u r v e s p e r neuron :
for neuron = 1 : neurons

%C a l c u l a t e t h e mean o f a neuron
mean ( neuron ) = ( log ( maxnumerosity )/max ( neurons ) ) ∗ neuron ;
%S e t t i n g t h e s t a n d a r d d e v i a t i o n o f a neuron
std = sigma ;
%C a l c u l a t e t h e s e n s i t i v i t y o f e v e r y x−v a l u e p e r neuron
s e n s i t i v i t y ( neuron , : ) = lognpdf ( x , mean ( neuron ) , std ) ;

%Determine t h e maximum v a l u e o f t h e neuron
topval ( neuron ) = max ( s e n s i t i v i t y ( neuron , : ) ) ;

%S c a l e t h e tuning f u n c t i o n so t h a t t h e maximum s e n s i t i v i t y i s 1
yval1 ( neuron , : ) = s e n s i t i v i t y ( neuron , : ) / topval ( neuron ) ;

end

% C a l c u l a t e t h e s e n s i t i v i t y f o r t h e n o r m a l i s e d p o p u l a t i o n tuning c u r v e
t o t a l t u n e = sum( yval1 ) ;
noraml ised_tota l tune = t o t a l t u n e /max ( t o t a l t u n e ) ;

%% Adapt ing t h e g e n e r a t e d tuning c u r v e s a c c o r d i n g t o V1 a d a p t a t i o n
% Find t h e i n d e x number f o r t h e s t i m u l u s s p e c i f i e d in t h e f u n c t i o n in t h e
% rangev i ew o f n u m e r o s i t i e s in o r d e r t o d e t e r m i n e a d a p t a t i o n w e i g h t s
adapter_ in_array = find ( x==adapter ) ;

% Adapt t h e a m p l i t u d e o f t h e i n d i v i d u a l tuning c u r v e s
for adapted_neuron = 1 : neurons

%Determine t h e a d a p t a t i o n _ w e i g h t b a s e d on t h e a c t i v a t i o n o f t h e neuron
%f o r t h e x−v a l u e o f t h e a d a p t e r n u m e r o s i t y
adaptation_weight = adapta t ion_s t rength ∗ yval1 ( adapted_neuron , adapter_ in_array ) ;
%C a l c u l a t e t h e a d a p t e d s e n s i t i v i t y with t h e a d a p t a t i o n w e i gh t
yval2 ( adapted_neuron , : ) = yval1 ( adapted_neuron , : ) ∗ (1 − adaptation_weight ) ;

end

% C a l c u l a t e t h e s e n s i t i v i t y f o r t h e a d a p t e d n o r m a l i s e d p o p u l a t i o n tuning c u r v e
adapted_tota l tune = sum( yval2 ) ;
adapted_noramlised_total tune = adapted_tota l tune/max ( adapted_tota l tune ) ;

%% C r e a t e t h e p o p u l a t i o n e x i t a t i o n c u r v e s f o r t h e unadapted and a d a p t e d tuning c u r v e s
% Find t h e i n d e x number f o r t h e s t i m u l u s s p e c i f i e d in t h e f u n c t i o n in t h e
% rangev i ew o f n u m e r o s i t i e s in o r d e r t o d e t e r m i n e e x i t a t i o n w e i g h t s
s t imulus_ in_array = find ( x==st imulus ) ;

% C a l c u l a t e t h e unadapted i n d i v i d u a l e x i t a t i o n c u r v e s
for neuron = 1 : neurons

%Determine t h e e x c i t a t i o n _ w e i g h t b a s e d on t h e a c t i v a t i o n o f t h e neuron
%f o r t h e x−v a l u e o f t h e a d a p t e r n u m e r o s i t y
e x i t a t i o n _ w e i g h t = yval1 ( neuron , s t imulus_ in_array ) ;

%C a l c u l a t e t h e e x i t a t i o n c u r v e b a s e d on t h e e x i t a t i o n w e i gh t
e x i t a t i o n ( neuron , : ) = yval1 ( neuron , : ) ∗ ( e x i t a t i o n _ w e i g h t ) ∗10 ;

end

% C a l c u l a t e t h e a d a p t e d i n d i v i d u a l e x i t a t i o n c u r v e s
for neuron = 1 : neurons

adapted_exi ta t ion_weight = yval2 ( neuron , s t imulus_ in_array ) ;
adapted_ex i ta t ion ( neuron , : ) = yval2 ( neuron , : ) ∗ ( adapted_exi ta t ion_weight ) ∗10 ;

end

% C a l c u l a t e t h e unadapted and a d a p t e d p o p u l a t i o n e x i t a t i o n c u r v e
t o t a l e x i t a t i o n = sum( e x i t a t i o n ) ;
t o t a l a d a p t e d e x i t a t i o n = sum( adapted_ex i ta t ion ) ;

%% C a l c u l a t e t h e p e r c e p t i o n s h i f t s ( p eak and cog ) :
%C a l c u l a t e t h e p e r c e p t i o n s h i f t a c c o r d i n g t o t h e peak o f t h e e x i t a t i o n c u r v e
f indpeakbefore = find ( t o t a l e x i t a t i o n ==max ( t o t a l e x i t a t i o n ) ) ;
f i n d p e a k a f t e r = find ( t o t a l a d a p t e d e x i t a t i o n ==max ( t o t a l a d a p t e d e x i t a t i o n ) ) ;
peakbefore = x ( f indpeakbefore ) ;
peakaf ter = x ( f i n d p e a k a f t e r ) ;
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p e r c e p t i o n s h i f t p e a k = peakaf ter − peakbefore ;

%C a l c u l a t e t h e p e r c e p t i o n s h i f t a c c o r d i n g t o t h e c e n t e r o f g r a v i t y :
cogbefore = COG( t o t a l e x i t a t i o n ) ;
c o g a f t e r = COG( t o t a l a d a p t e d e x i t a t i o n ) ;
p e r c e p t i o n s h i f t c o g = c o g a f t e r − cogbefore ;

%% C r e a t e and f i l l t h e ou tp ut s t r u c t u r e with r e l e v a n t i n f o :
%C r e a t e t h e ou tp ut s t r u c t u r e :
output = s t r u c t ( ’ input ’ , { } , ’ p e r c e p t i o n s h i f t p e a k ’ , { } , ’ p e r c e p t i o n s h i f t c o g ’ , { } , ’ i n d i v i d u a l s e n s i t i v i t y b e f o r e ’ , { } , ’ i n d i v i d u a l s e n s i t i v i t y a f t e r ’ , { } , ’ p o p u l a t i o n s e n s i t i v i t y b e f o r e ’ , { } , ’ p o p u l a t i o n s e n s i t i v i t y a f t e r ’ , { } ) ;
%C r e a t e an i n p u t s t r u c t u r e as p a r t o f t h e o u tp ut s t r u c t u r e :
output ( 1 ) . input = s t r u c t ( ’ adapter ’ , { } , ’ s t imulus ’ , { } , ’ adapta t ion_s t rength ’ , { } , ’ neurons ’ , { } , ’ maxnumerosity ’ , { } , ’ s tandarddeviat ion ’ , { } , ’ numerosityrange ’ , { } ) ;

%F i l l t h e ou tp ut s t r u c t u r e :
output ( 1 ) . input ( 1 ) . adapter = adapter ;
output ( 1 ) . input ( 1 ) . s t imulus = st imulus ;
output ( 1 ) . input ( 1 ) . adapta t ion_s t rength = adapta t ion_s t rength ;
output ( 1 ) . input ( 1 ) . neurons = neurons ;
output ( 1 ) . input ( 1 ) . maxnumerosity = maxnumerosity ;
output ( 1 ) . input ( 1 ) . s tandarddeviat ion = sigma ;
output ( 1 ) . input ( 1 ) . numerosityrange = x ;
output ( 1 ) . p e r c e p t i o n s h i f t p e a k = p e r c e p t i o n s h i f t p e a k ;
output ( 1 ) . p e r c e p t i o n s h i f t c o g = p e r c e p t i o n s h i f t c o g ;
output ( 1 ) . i n d i v i d u a l s e n s i t i v i t y b e f o r e = yval1 ;
output ( 1 ) . i n d i v i d u a l s e n s i t i v i t y a f t e r = yval2 ;
output ( 1 ) . p o p u l a t i o n s e n s i t i v i t y b e f o r e = noraml ised_tota l tune ;
output ( 1 ) . p o p u l a t i o n s e n s i t i v i t y a f t e r = adapted_noramlised_total tune ;
output ( 1 ) . p o p u l a t i o n e x i t a t i o n c u r v e b e f o r e = t o t a l e x i t a t i o n ;
output ( 1 ) . p o p u l a t i o n e x i t a t i o n c u r v e a f t e r = t o t a l a d a p t e d e x i t a t i o n ;

A.2 Implementation of a Gaussian Fit Model

function output = run_normal ( adapter , stimulus , adaptat ion_strength , neurons , maxnumerosity , sigma , x )
% RUN_NORMAL Run a s i m u l a t i o n o f t h e model which c r e a t e s and a d a p t s
% Gauss ian n u m e r o s i t y n e u r a l tuning c u r v e s b a s e d on t h e p a r a m e t e r s :
%
% ADAPTER = t h e n u m e r o s i t y v a l u e t o which t h e n u m e r o s i t y tuning c u r v e s s h o u l d a d a p t
% ADAPTER always n e e d s t o be s p e c i f i e d
%
% STIMULUS = t h e n u m e r o s i t y v a l u e f o r which t h e e x i t a t i o n i s c a l c u l a t e d
% STIMULUS always n e e d s t o be s p e c i f i e d
%
% ADAPTATION_STRENGTH = t h e maximum amount o f a d a p t a t i o n t h a t t h e neuron with
% t h e a d a p t e r a s p r e f e r e n c e a d a p t s . Must be g i v e n as a r a t i o , e . g . 0 . 5
% f o r 50% a d a p t a t i o n
% I f not s p e c i f i e d , d e f a u l t ADAPTATION_STRENGTH i s s e t t o 0 . 5
%
% NEURONS = t h e amount o f n e u r o n a l tuning c u r v e s g e n e r a t e d by t h e model
% I f not s p e c i f i e d , d e f a u l t NEURONS i s s e t t o 100
%
% MAXNUMEROSITY = t h e maximum n u m e r o s i t y p r e f e r e n c e t h a t a neuron can r e a c h
% I f not s p e c i f i e d , d e f a u l t MAXNUMEROSITY i s s e t t o 100
%
% SIGMA = t h e s t a n d a r d d e v i a t i o n used f o r c a l c u l a t i o n o f t h e width o f t h e
% i n d i v i d u a l l o g n o r m a l tuning c u r v e s
% I f not s p e c i f i e d , d e f a u l t SIGMA i s s e t t o 2 . 1 ;
%
% X = t h e rangev i ew o f n u m e r o s i t i e s o v e r which tuning c u r v e s can s p r e a d .
% Should be g i v e n in t h e form o f an a r r a y o f i n t e g e r s such as :
% [ b e g i n n u m e r o s i t y : s t e p s i z e : endnumeros i ty ]
% I f not s p e c i f i e d , d e f a u l t X i s s e t t o [ 0 : 0 . 1 : 1 6 0 ]
%
% I n c l u d e p a r a m t e r s a s t h e f o l l o w i n g s e q u e n c e :
% RUN_NORMAL( a d a p t e r , s t imulus , a d a p t a t i o n _ s t r e n g t h , neurons , maxnumerosity , sigma , x )
%
% See a l s o RUN_LOGNORMAL and RUNME.
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%% D e f a u l t v a l u e s i f no t d e t a i l e d in f u n c t i o n :
%I f on ly a d a p t e r and s t i m u s l u s a r e s p e c i f i e d
i f nargin == 2

adapta t ion_s t rength = 0 . 5 ;
neurons = 1 0 0 ;
maxnumerosity = 1 0 0 ;
sigma = 2 . 1 ;
x = [ 0 : 0 . 1 : 1 6 0 ] ;

%I f on ly a d a p t e r , s t i m u l u s and a d a p t a t i o n _ s t r e n g t h a r e s p e c i f i e d
e l s e i f nargin == 3

neurons = 1 0 0 ;
maxnumerosity = 1 0 0 ;
sigma = 2 . 1 ;
x = [ 0 : 0 . 1 : 1 6 0 ] ;

%I f on ly a d a p t e r , s t imulus , a d a p t a t i o n _ s t r e n g t h and neurons a r e s p e c i f i e d
e l s e i f nargin == 4

maxnumerosity = 1 0 0 ;
sigma = 2 . 1 ;
x = [ 0 : 0 . 1 : 1 6 0 ] ;

%I f on ly a d a p t e r , s t imulus , a d a p t a t i o n _ s t r e n g t h , neurons and maxnumeros i ty a r e s p e c i f i e d
e l s e i f nargin == 5

sigma = 2 . 1 ;
x = [ 0 : 0 . 1 : 1 6 0 ] ;

%I f on ly a d a p t e r , s t imulus , a d a p t a t i o n _ s t r e n g t h , neurons , maxnumeros i ty and sigma a r e s p e c i f i e d
e l s e i f nargin == 6

x = [ 0 : 0 . 1 : 1 6 0 ] ;
end

%% C r e a t i n g t h e unadapted tuning c u r v e s ( i n d i v i d u a l , p o p u l a t i o n and n o r m a l i s e d p o p u l a t i o n c u r v e s )
% C a l c u l a t i n g s e n s i t i v i t y f o r t h e i n d i v i d u a l tuning c u r v e s p e r neuron :
for neuron = 1 : neurons

%C a l c u l a t e t h e mean o f a neuron
mean ( neuron ) = ( neuron ∗ ( maxnumerosity /( neurons + 1 ) ) ) ;
%S e t t i n g t h e s t a n d a r d d e v i a t i o n o f a neuron
std = sigma ;
%C a l c u l a t e t h e s e n s i t i v i t y o f e v e r y x−v a l u e p e r neuron
s e n s i t i v i t y ( neuron , : ) = normpdf ( x , mean ( neuron ) , std ) ;

%Determine t h e maximum v a l u e o f t h e neuron
topval ( neuron ) = max ( s e n s i t i v i t y ( neuron , : ) ) ;

%S c a l e t h e tuning f u n c t i o n so t h a t t h e maximum s e n s i t i v i t y i s 1
yval1 ( neuron , : ) = s e n s i t i v i t y ( neuron , : ) / topval ( neuron ) ;

end

% C a l c u l a t e t h e s e n s i t i v i t y f o r t h e n o r m a l i s e d p o p u l a t i o n tuning c u r v e
t o t a l t u n e = sum( yval1 ) ;
noraml ised_tota l tune = t o t a l t u n e /max ( t o t a l t u n e ) ;

%% Adapt ing t h e g e n e r a t e d tuning c u r v e s a c c o r d i n g t o V1 a d a p t a t i o n
% Find t h e i n d e x number f o r t h e s t i m u l u s s p e c i f i e d in t h e f u n c t i o n in t h e
% rangev i ew o f n u m e r o s i t i e s in o r d e r t o d e t e r m i n e a d a p t a t i o n w e i g h t s
adapter_ in_array = find ( x==adapter ) ;

% Adapt t h e a m p l i t u d e o f t h e i n d i v i d u a l tuning c u r v e s
for adapted_neuron = 1 : neurons

%Determine t h e a d a p t a t i o n _ w e i g h t b a s e d on t h e a c t i v a t i o n o f t h e neuron
%f o r t h e x−v a l u e o f t h e a d a p t e r n u m e r o s i t y
adaptation_weight = adapta t ion_s t rength ∗ yval1 ( adapted_neuron , adapter_ in_array ) ;
%C a l c u l a t e t h e a d a p t e d s e n s i t i v i t y with t h e a d a p t a t i o n w e i gh t
yval2 ( adapted_neuron , : ) = yval1 ( adapted_neuron , : ) ∗ (1 − adaptation_weight ) ;

end

% C a l c u l a t e t h e s e n s i t i v i t y f o r t h e a d a p t e d n o r m a l i s e d p o p u l a t i o n tuning c u r v e
adapted_tota l tune = sum( yval2 ) ;
adapted_noramlised_total tune = adapted_tota l tune/max ( adapted_tota l tune ) ;

%% C r e a t e t h e p o p u l a t i o n e x i t a t i o n c u r v e s f o r t h e unadapted and a d a p t e d tuning c u r v e s
% Find t h e i n d e x number f o r t h e s t i m u l u s s p e c i f i e d in t h e f u n c t i o n in t h e
% rangev i ew o f n u m e r o s i t i e s in o r d e r t o d e t e r m i n e e x i t a t i o n w e i g h t s
s t imulus_ in_array = find ( x==st imulus ) ;

% C a l c u l a t e t h e unadapted i n d i v i d u a l e x i t a t i o n c u r v e s
for neuron = 1 : neurons
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%Determine t h e e x c i t a t i o n _ w e i g h t b a s e d on t h e a c t i v a t i o n o f t h e neuron
%f o r t h e x−v a l u e o f t h e a d a p t e r n u m e r o s i t y
e x i t a t i o n _ w e i g h t = yval1 ( neuron , s t imulus_ in_array ) ;

%C a l c u l a t e t h e e x i t a t i o n c u r v e b a s e d on t h e e x i t a t i o n w e i gh t
e x i t a t i o n ( neuron , : ) = yval1 ( neuron , : ) ∗ ( e x i t a t i o n _ w e i g h t ) ∗10 ;

end

% C a l c u l a t e t h e a d a p t e d i n d i v i d u a l e x i t a t i o n c u r v e s
for neuron = 1 : neurons

adapted_exi tat ion_weight = yval2 ( neuron , s t imulus_ in_array ) ;
adapted_ex i ta t ion ( neuron , : ) = yval2 ( neuron , : ) ∗ ( adapted_exi ta t ion_weight ) ∗10 ;

end

% C a l c u l a t e t h e unadapted and a d a p t e d p o p u l a t i o n e x i t a t i o n c u r v e
t o t a l e x i t a t i o n = sum( e x i t a t i o n ) ;
t o t a l a d a p t e d e x i t a t i o n = sum( adapted_ex i ta t ion ) ;

%% C a l c u l a t e t h e p e r c e p t i o n s h i f t s ( p eak and cog ) :
%C a l c u l a t e t h e p e r c e p t i o n s h i f t a c c o r d i n g t o t h e peak o f t h e e x i t a t i o n c u r v e
f indpeakbefore = find ( t o t a l e x i t a t i o n ==max ( t o t a l e x i t a t i o n ) ) ;
f i n d p e a k a f t e r = find ( t o t a l a d a p t e d e x i t a t i o n ==max ( t o t a l a d a p t e d e x i t a t i o n ) ) ;
peakbefore = x ( f indpeakbefore ) ;
peakaf ter = x ( f i n d p e a k a f t e r ) ;
p e r c e p t i o n s h i f t p e a k = peakaf ter − peakbefore ;

%C a l c u l a t e t h e p e r c e p t i o n s h i f t a c c o r d i n g t o t h e c e n t e r o f g r a v i t y :
cogbefore = COG( t o t a l e x i t a t i o n ) ;
c o g a f t e r = COG( t o t a l a d a p t e d e x i t a t i o n ) ;
p e r c e p t i o n s h i f t c o g = c o g a f t e r − cogbefore ;

%% C r e a t e and f i l l t h e ou tp ut s t r u c t u r e with r e l e v a n t i n f o :
%C r e a t e t h e ou tp ut s t r u c t u r e :
output = s t r u c t ( ’ input ’ , { } , ’ p e r c e p t i o n s h i f t p e a k ’ , { } , ’ p e r c e p t i o n s h i f t c o g ’ , { } , ’ i n d i v i d u a l s e n s i t i v i t y b e f o r e ’ , { } , ’ i n d i v i d u a l s e n s i t i v i t y a f t e r ’ , { } , ’ p o p u l a t i o n s e n s i t i v i t y b e f o r e ’ , { } , ’ p o p u l a t i o n s e n s i t i v i t y a f t e r ’ , { } ) ;
%C r e a t e an i n p u t s t r u c t u r e as p a r t o f t h e o u tp ut s t r u c t u r e :
output ( 1 ) . input = s t r u c t ( ’ adapter ’ , { } , ’ s t imulus ’ , { } , ’ adapta t ion_s t rength ’ , { } , ’ neurons ’ , { } , ’ maxnumerosity ’ , { } , ’ s tandarddeviat ion ’ , { } , ’ numerosityrange ’ , { } ) ;

%F i l l t h e ou tp ut s t r u c t u r e :
output ( 1 ) . input ( 1 ) . adapter = adapter ;
output ( 1 ) . input ( 1 ) . s t imulus = st imulus ;
output ( 1 ) . input ( 1 ) . adapta t ion_s t rength = adapta t ion_s t rength ;
output ( 1 ) . input ( 1 ) . neurons = neurons ;
output ( 1 ) . input ( 1 ) . maxnumerosity = maxnumerosity ;
output ( 1 ) . input ( 1 ) . s tandarddeviat ion = sigma ;
output ( 1 ) . input ( 1 ) . numerosityrange = x ;
output ( 1 ) . p e r c e p t i o n s h i f t p e a k = p e r c e p t i o n s h i f t p e a k ;
output ( 1 ) . p e r c e p t i o n s h i f t c o g = p e r c e p t i o n s h i f t c o g ;
output ( 1 ) . i n d i v i d u a l s e n s i t i v i t y b e f o r e = yval1 ;
output ( 1 ) . i n d i v i d u a l s e n s i t i v i t y a f t e r = yval2 ;
output ( 1 ) . p o p u l a t i o n s e n s i t i v i t y b e f o r e = noraml ised_tota l tune ;
output ( 1 ) . p o p u l a t i o n s e n s i t i v i t y a f t e r = adapted_noramlised_total tune ;
output ( 1 ) . p o p u l a t i o n e x i t a t i o n c u r v e b e f o r e = t o t a l e x i t a t i o n ;
output ( 1 ) . p o p u l a t i o n e x i t a t i o n c u r v e a f t e r = t o t a l a d a p t e d e x i t a t i o n ;
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A.3 Implementation of a Multiple Parameters Model

function output = runme ( d i s t r i b u t i o n , adapters , s t imul i , max_adaptations , neuronranges , maxnumerosities , sigmas , xs )
% RUNME Run a c a l c u l a t e d s e r i e s o f s i m u l a t i o n s b a s e d on t h e d i f f e r e n t v a l u e s
% g i v e n f o r t h e p a r a m e t e r s s p e c i f i e d :
%
% DISTRIBUTION = t h e d i s t r i b u t i o n used t o g e n e r a t e t h e tuning c u r v e s
% DISTRIBUTION can be one o f two v a l u e s : ’ normal ’ o r ’ l ognormal ’
% DISTRIBUTION s h o u l d a lways be s p e c i f i e d
%
% ADAPTERS = an a r r a y c o n t a i n i n g t h e d i f f e r e n t n u m e r o s i t y v a l u e s t o which
% t h e s i m u l a t e d tuning c u r v e s s h o u l d a d a p t
% ADAPTERS always n e e d s t o be s p e c i f i e d
%
% STIMULI = an a r r a y c o n t a i n i n g t h e d i f f e r e n t n u m e r o s i t y v a l u e s f o r which
% t h e unadapted and a d a p t e d e x i t a t i o n i s c a l c u l a t e d
% STIMULI a lways n e e d s t o be s p e c i f i e d
%
% MAX_ADAPTATIONS = an a r r a y c o n t a i n i n g t h e d i f f e r e n t maximum amounts o f
% a d a p t a t i o n t h a t t h e neuron with t h e a d a p t e r a s p r e f e r e n c e a d a p t s t o .
% Must be g i v e n as an a r r a y o f r a t i o s , e . g . [ 0 . 5 ] f o r 50% a d a p t a t i o n
% I f not s p e c i f i e d , d e f a u l t MAX_ADAPTATION i s s e t t o [ 0 . 5 ]
%
% NEURONRANGES = an a r r a y c o n t a i n i n g t h e d i f f e r e n t amounts o f n e u r o n a l tuning
% c u r v e s g e n e r a t e d by t h e model .
% I f not s p e c i f i e d , d e f a u l t NEURONRANGES i s s e t t o [ 1 0 0 ]
%
% MAXNUMEROSITIES = an a r r a y c o n t a i n i n g t h e d i f f e r e n t maximum n u m e r o s i t y
% p r e f e r e n c e s t h a t t h e tuning c u r v e s may r e a c h .
% I f not s p e c i f i e d , d e f a u l t MAXNUMEROSITY i s s e t t o [ 1 0 0 ]
%
% SIGMAS = an a r r a y c o n t a i n i n g t h e d i f f e r e n t s t a n d a r d d e v i a t i o n v a l u e s
% used f o r t h e c a l c u l a t i o n o f t h e w id t hs o f t h e n e u r o n a l tuning c u r v e s
% I f not s p e c i f i e d , d e f a u l t SIGMA i s s e t t o [ 0 . 5 ]
%
% XS = an a r r a y c o n t a i n i n g t h e rangev i ew numersoty a r r a y s o v e r which t h e
% t h e tuning c u r v e s can s p r e a d . Each rangev i ew s h o u l d be g i v e n in t h e
% from o f an i n t e g e r a r r a y : [ b e g i n n u m e r o s i t y : s t e p s i z e : endnumeros i ty ]
% I f not s p e c i f i e d , d e f a u l t X i s s e t t o [ [ 0 : 0 . 1 : 1 6 0 ] ]
%
% I n c l u d e t h e p a r a m e t e r s a s t h e f o l l o w i n g s e q u e n c e :
% RUNME( d i s t r i b u t i o n , a d a p t e r s , s t i m u l i , max_adap ta t i ons , neuronranges , maxnumeros i t i e s , s igmas , xs )
%
% See a l s o RUN_NORMAL and RUN_LOGNORMAL.

%% D e f a u l t v a l u e s i f no t d e t a i l e d in f u n c t i o n :
%I f on ly d i s t r i b u t i o n , a d a p t e r s and s t i m u l i a r e s p e c i f i e d
i f nargin == 3

max_adaptations = [ 0 . 5 ] ;
neuronranges = [ 1 0 0 ] ;
maxnumerosities = [ 1 0 0 ] ;
sigmas = [ 0 . 5 ] ;
xs = [ [ 0 : 0 . 1 : 1 6 0 ] ] ;

%I f on ly d i s t r i b u t i o n , a d a p t e r s , s t i m u l i and m a x _ a d a p t a t i o n s a r e s p e c i f i e d
e l s e i f nargin == 4

neuronranges = [ 1 0 0 ] ;
maxnumerosities = [ 1 0 0 ] ;
sigmas = [ 0 . 5 ] ;
xs = [ [ 0 : 0 . 1 : 1 6 0 ] ] ;

%I f on ly d i s t r i b u t i o n , a d a p t e r s , s t i m u l i , m a x _ a d a p t a t i o n s and n e u r o n r a n g e s a r e s p e c i f i e d
e l s e i f nargin == 5

maxnumerosities = [ 1 0 0 ] ;
sigmas = [ 0 . 5 ] ;
xs = [ [ 0 : 0 . 1 : 1 6 0 ] ] ;

%I f on ly d i s t r i b u t i o n , a d a p t e r s , s t i m u l i , max_adap ta t i ons , n e u r o n r a n g e s and m a x n u m e r o s i t i e s a r e s p e c i f i e d
e l s e i f nargin == 6

sigmas = [ 0 . 5 ] ;
xs = [ [ 0 : 0 . 1 : 1 6 0 ] ] ;

%I f on ly d i s t r i b u t i o n , a d a p t e r s , s t i m u l i , max_adap ta t i ons , neuronranges , m a x n u m e r o s i t i e s and s igmas a r e s p e c i f i e d
e l s e i f nargin == 7

xs = [ [ 0 : 0 . 1 : 1 6 0 ] ] ;
end
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%The two d i s t r i b u t i o n s t o c h e c k f o r
dis t r ibut ioncheck lognormal = ’ lognormal ’ ;
d is t r ibut ionchecknormal = ’ normal ’ ;

%% T r a n s f e r t h e i n p u t d a t a i n t o an a r r a y o f s t r u c t u r e s
s imulat ions = length ( adapters )∗ length ( s t i m u l i )∗ length ( max_adaptations )∗ length ( neuronranges )∗ length ( maxnumerosities )∗ length ( sigmas )∗ s ize ( xs , 1 ) ;
input = s t r u c t ( ’ adapter ’ , { } , ’ s t imulus ’ , { } , ’ max_adaptation ’ , { } , ’ neurons ’ , { } , ’ maxnumerosity ’ , { } , ’ sigma ’ , { } , ’ x ’ , { } ) ;
n=1;

for adapter = adapters
for st imulus = s t i m u l i

for max_adaptation = max_adaptations
for neurons = neuronranges

for maxnumerosity = maxnumerosities
for inputsigma = sigmas

for x = 1 : s ize ( xs , 1 )
input ( n ) . adapter = adapter ;
input ( n ) . s t imulus = st imulus ;
input ( n ) . max_adaptation = max_adaptation ;
input ( n ) . neurons = neurons ;
input ( n ) . maxnumerosity = maxnumerosity ;
input ( n ) . sigma = inputsigma ;
input ( n ) . x = xs ;
n = n+1;

end
end

end
end

end
end

end

%% Run t h e s i m u l a t i o n s
% Save t h e ou tp ut o f e v e r y run in a s t r u c t u r e and s a v e t h i s s t r u c t u r e in an
% a r r a y o f s t r u c t u r e s . A s i m u l a t i o n o f 10 runs s h o u l d have 10 o ut put
% s t r u c t u r e s in t h e f i n a l o u t p u t s t r u c t u r e a r r a y .

%Run t h e s i m u l a t i o n s with t h e l o g Gauss ian d i s t r i b u t i o n
i f strcmp ( d i s t r i b u t i o n , ’ lognormal ’ ) == 1

for run = 1 : s imulat ions
output ( run ) = run_lognormal ( input ( run ) . adapter , input ( run ) . stimulus , input ( run ) . max_adaptation , input ( run ) . neurons , input ( run ) . maxnumerosity , input ( run ) . sigma , input ( run ) . x ) ;

end
%Run t h e s i m u l a t i o n s with t h e Gauss ian d i s t r i b u t i o n
e l s e i f strcmp ( d i s t r i b u t i o n , ’ normal ’ ) == 1

for run = 1 : s imulat ions
output ( run ) = run_normal ( input ( run ) . adapter , input ( run ) . stimulus , input ( run ) . max_adaptation , input ( run ) . neurons , input ( run ) . maxnumerosity , input ( run ) . sigma , input ( run ) . x ) ;

end
end

% Save t h e s i m u l a t e d d a t a t o a f i l e which i s s a v e d in t h e same f o l d e r a s
% t h e MATLAB f i l e s
save ( ’ s imulat ionoutput ’ , ’ output ’ ) ;



VIII

B Shifts in Perception Tables

B.1 Baseline Gaussian Curves

Conditions with number of neurons set to 50

TABLE B.1: THE RESULTING PEAK SHIFTS FOR 35/40/50
Per combination of adaptation strength and σ the resulting peak shift in perception is shown.
The shifts are shown for the set of Gaussian fit model simulations in which the parame-
ter adapter is set to numerosity 35, the parameter stimulus is set to numerosity 40 and the

parameter number of neurons is set to 50 neurons.

XXXXXXXXXXXXXXXXXXX

adaptation
strength

standard deviation
σ

2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3

0.2 0.1 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.6 0.7 0.7

0.3 0.2 0.2 0.3 0.3 0.4 0.4 0.5 0.5 0.5 0.6 0.6 0.7 0.7 0.8 0.8 0.9 0.9 0.9 1.0 1.0 1.1

0.4 0.2 0.3 0.4 0.4 0.5 0.5 0.6 0.7 0.7 0.8 0.8 0.9 1.0 1.0 1.1 1.2 1.2 1.3 1.3 1.4 1.4

0.5 0.3 0.4 0.4 0.5 0.6 0.6 0.7 0.8 0.9 1.0 1.0 1.1 1.2 1.3 1.3 1.4 1.5 1.6 1.7 1.7 1.8

0.6 0.3 0.4 0.5 0.6 0.7 0.8 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2

0.7 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.3 2.4 2.5

0.8 0.4 0.5 0.6 0.7 0.8 0.9 1.1 1.2 1.3 1.4 1.5 1.6 1.8 1.9 2.0 2.1 2.3 2.4 2.5 2.6 2.8

0.9 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.3 1.4 1.5 1.7 1.8 1.9 2.1 2.2 2.3 2.5 2.6 2.7 2.9 3.0

1 0.5 0.6 0.7 0.9 1.0 1.1 1.2 1.4 1.5 1.6 1.8 1.9 2.1 2.2 2.4 2.5 2.7 2.8 2.9 3.1 3.2

TABLE B.2: THE RESULTING PEAK SHIFTS FOR 45/40/50
Per combination of adaptation strength and σ the resulting peak shift in perception is shown.
The shifts are shown for the set of Gaussian fit model simulations in which the parame-
ter adapter is set to numerosity 45, the parameter stimulus is set to numerosity 40 and the

parameter number of neurons is set to 50 neurons.

XXXXXXXXXXXXXXXXXXX

adaptation
strength

standard deviation
σ

2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3

0.2 -0.1 -0.2 -0.2 -0.2 -0.2 -0.3 -0.3 -0.3 -0.4 -0.4 -0.4 -0.5 -0.5 -0.5 -0.5 -0.6 -0.6 -0.6 -0.6 -0.7 -0.7

0.3 -0.2 -0.2 -0.3 -0.3 -0.4 -0.4 -0.5 -0.5 -0.5 -0.6 -0.6 -0.7 -0.7 -0.8 -0.8 -0.9 -0.9 -0.9 -1.0 -1.0 -1.1

0.4 -0.2 -0.3 -0.4 -0.4 -0.5 -0.5 -0.6 -0.7 -0.7 -0.8 -0.8 -0.9 -1.0 -1.0 -1.1 -1.2 -1.2 -1.3 -1.3 -1.4 -1.4

0.5 -0.3 -0.4 -0.4 -0.5 -0.6 -0.6 -0.7 -0.8 -0.9 -1.0 -1.0 -1.1 -1.2 -1.3 -1.3 -1.4 -1.5 -1.6 -1.7 -1.7 -1.8

0.6 -0.3 -0.4 -0.5 -0.6 -0.7 -0.8 -0.8 -0.9 -1.0 -1.1 -1.2 -1.3 -1.4 -1.5 -1.6 -1.7 -1.8 -1.9 -2.0 -2.1 -2.2

0.7 -0.4 -0.5 -0.6 -0.7 -0.8 -0.9 -1.0 -1.1 -1.2 -1.3 -1.4 -1.5 -1.6 -1.7 -1.8 -1.9 -2.0 -2.1 -2.3 -2.4 -2.5

0.8 -0.4 -0.5 -0.6 -0.7 -0.8 -0.9 -1.1 -1.2 -1.3 -1.4 -1.5 -1.6 -1.8 -1.9 -2.0 -2.1 -2.3 -2.4 -2.5 -2.6 -2.8

0.9 -0.5 -0.6 -0.7 -0.8 -0.9 -1.0 -1.2 -1.3 -1.4 -1.5 -1.7 -1.8 -1.9 -2.1 -2.2 -2.3 -2.5 -2.6 -2.7 -2.9 -3.0

1 -0.5 -0.6 -0.7 -0.9 -1.0 -1.1 -1.2 -1.4 -1.5 -1.6 -1.8 -1.9 -2.1 -2.2 -2.4 -2.5 -2.7 -2.8 -2.9 -3.1 -3.2
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Conditions with number of neurons set to 100

TABLE B.3: THE RESULTING PEAK SHIFTS FOR 35/40/100
Per combination of adaptation strength and σ the resulting peak shift in perception is shown.
The shifts are shown for the set of Gaussian fit model simulations in which the parame-
ter adapter is set to numerosity 35, the parameter stimulus is set to numerosity 40 and the

parameter number of neurons is set to 100 neurons.

XXXXXXXXXXXXXXXXXXX

adaptation
strength

standard deviation
σ

2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3

0.2 0.1 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.6 0.7 0.7

0.3 0.2 0.2 0.3 0.3 0.4 0.4 0.5 0.5 0.5 0.6 0.6 0.7 0.7 0.8 0.8 0.9 0.9 0.9 1.0 1.0 1.1

0.4 0.2 0.3 0.4 0.4 0.5 0.5 0.6 0.7 0.7 0.8 0.8 0.9 1.0 1.0 1.1 1.2 1.2 1.3 1.3 1.4 1.4

0.5 0.3 0.4 0.4 0.5 0.6 0.6 0.7 0.8 0.9 1.0 1.0 1.1 1.2 1.3 1.3 1.4 1.5 1.6 1.7 1.7 1.8

0.6 0.4 0.4 0.5 0.6 0.7 0.8 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2

0.7 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.3 2.4 2.5

0.8 0.4 0.5 0.6 0.7 0.8 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.8 1.9 2.0 2.1 2.3 2.4 2.5 2.6 2.8

0.9 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.3 1.4 1.5 1.7 1.8 1.9 2.1 2.2 2.3 2.5 2.6 2.7 2.9 3.0

1 0.5 0.6 0.7 0.9 1.0 1.1 1.2 1.4 1.5 1.7 1.8 1.9 2.1 2.2 2.4 2.5 2.7 2.8 2.9 3.1 3.2

TABLE B.4: THE RESULTING PEAK SHIFTS FOR 45/40/50
Per combination of adaptation strength and σ the resulting peak shift in perception is shown.
The shifts are shown for the set of Gaussian fit model simulations in which the parame-
ter adapter is set to numerosity 45, the parameter stimulus is set to numerosity 40 and the

parameter number of neurons is set to 100 neurons.

XXXXXXXXXXXXXXXXXXX

adaptation
strength

standard deviation
σ

2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3

0.2 -0.1 -0.2 -0.2 -0.2 -0.2 -0.3 -0.3 -0.3 -0.4 -0.4 -0.4 -0.5 -0.5 -0.5 -0.5 -0.6 -0.6 -0.6 -0.6 -0.7 -0.7

0.3 -0.2 -0.2 -0.3 -0.3 -0.4 -0.4 -0.5 -0.5 -0.5 -0.6 -0.6 -0.7 -0.7 -0.8 -0.8 -0.9 -0.9 -0.9 -1.0 -1.0 -1.1

0.4 -0.2 -0.3 -0.4 -0.4 -0.5 -0.5 -0.6 -0.7 -0.7 -0.8 -0.8 -0.9 -1.0 -1.0 -1.1 -1.2 -1.2 -1.3 -1.3 -1.4 -1.4

0.5 -0.3 -0.4 -0.4 -0.5 -0.6 -0.6 -0.7 -0.8 -0.9 -1.0 -1.0 -1.1 -1.2 -1.3 -1.3 -1.4 -1.5 -1.6 -1.7 -1.7 -1.8

0.6 -0.4 -0.4 -0.5 -0.6 -0.7 -0.8 -0.8 -0.9 -1.0 -1.1 -1.2 -1.3 -1.4 -1.5 -1.6 -1.7 -1.8 -1.9 -2.0 -2.1 -2.2

0.7 -0.4 -0.5 -0.6 -0.7 -0.8 -0.9 -1.0 -1.1 -1.2 -1.3 -1.4 -1.5 -1.6 -1.7 -1.8 -1.9 -2.0 -2.1 -2.3 -2.4 -2.5

0.8 -0.4 -0.5 -0.6 -0.7 -0.8 -1.0 -1.1 -1.2 -1.3 -1.4 -1.5 -1.6 -1.8 -1.9 -2.0 -2.1 -2.3 -2.4 -2.5 -2.6 -2.8

0.9 -0.5 -0.6 -0.7 -0.8 -0.9 -1.0 -1.2 -1.3 -1.4 -1.5 -1.7 -1.8 -1.9 -2.1 -2.2 -2.3 -2.5 -2.6 -2.7 -2.9 -3.0

1 -0.5 -0.6 -0.7 -0.9 -1.0 -1.1 -1.2 -1.4 -1.5 -1.7 -1.8 -1.9 -2.1 -2.2 -2.4 -2.5 -2.7 -2.8 -2.9 -3.1 -3.2



Appendix B. Shifts in Perception Tables X

B.2 Numerosity Log Gaussian Curves

Conditions with number of neurons set to 50

TABLE B.5: THE RESULTING PEAK SHIFTS FOR 20/40/50
Per combination of adaptation strength and σ the resulting peak shift in perception is shown.
The shifts are shown for the set of log Gaussian fit model simulations in which the param-
eter adapter is set to numerosity 20, the parameter stimulus is set to numerosity 40 and the

parameter number of neurons is set to 50 neurons.

XXXXXXXXXXXXXXXXXXX

adaptation
strength

standard deviation
σ

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0.1 0 0.1 0.5 1.1 1.6 1.9 1.7 1.3 0.7 0.2 -0.1 -0.3 -0.3 -0.3 -0.3 -0.2

0.2 0 0.1 1.0 2.3 3.4 4.1 3.9 2.9 1.6 0.4 -0.3 -0.7 -0.8 -0.7 -0.6 -0.4

0.3 0 0.2 1.4 3.4 5.3 6.6 6.3 4.9 2.7 0.7 -0.6 -1.3 -1.4 -1.3 -1.0 -0.7

0.4 0 0.2 1.9 4.5 7.2 9.2 9.1 7.2 4.1 1.1 -1.0 -2.0 -2.2 -1.9 -1.5 -1.0

0.5 0 0.3 2.3 5.6 9.2 11.9 12.2 10.1 6.1 1.6 -1.6 -3.1 -3.2 -2.7 -2.1 -1.4

0.6 0 0.3 2.7 6.6 11.1 14.0 15.5 13.4 8.6 2.4 -2.6 -4.6 -4.5 -3.7 -2.7 -1.8

0.7 0 0.4 3.1 7.6 12.9 17.0 18.8 17.0 11.8 3.5 -4.5 -7.0 -6.2 -4.8 -3.5 -2.3

0.8 0 0.4 3.5 8.5 14.6 19.0 22.0 20.8 15.9 5.3 -8.5 -9.9 -8.0 -6.0 -4.2 -2.8

0.9 0 0.4 3.8 9.4 16.1 22.0 24.9 24.5 20.4 8.2 -14.1 -12.1 -9.4 -6.9 -4.9 -3.2

1 0 0.5 4.1 10.1 17.5 24.2 27.4 27.6 24.4 11.6 -16.4 -13.2 -10.1 -7.5 -5.4 -3.6

TABLE B.6: THE RESULTING SHIFTS IN PEAK PERCEPTION FOR 40/40/50
Per combination of adaptation strength and σ the resulting peak shift in perception is shown.
The shifts are shown for the set of log Gaussian fit model simulations in which the param-
eter adapter is set to numerosity 40, the parameter stimulus is set to numerosity 40 and the

parameter number of neurons is set to 50 neurons.

````````````````````̀

max.
adaptation

standard deviation
σ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0.1 0 0 0 0 0 -0.1 -0.4 -0.6 -0.9 -0.9 -0.8 -0.7 -0.5 -0.4 -0.3 -0.2

0.2 0 0 0 0 -0.1 -0.3 -0.9 -1.5 -2.0 -2.0 -1.8 -1.5 -1.1 -0.8 -0.6 -0.3

0.3 0 0 0 0 -0.1 -0.5 -1.7 -2.8 -3.4 -3.4 -3.0 -2.4 -1.8 -1.3 -1.0 -0.6

0.4 0 0 0 0 -0.1 -0.9 -2.8 -4.5 -5.3 -5.2 -4.4 -3.5 -2.6 -1.9 -1.3 -0.8

0.5 0 0 0 0 -0.2 -1.7 -4.7 -7.0 -7.8 -7.3 -6.2 -4.8 -3.5 -2.5 -1.7 -1.1

0.6 0 0 0 0 -0.5 -3.6 -8.2 -10.7 -11.0 -9.9 -8.1 -6.2 -4.5 -3.2 -2.2 -1.3

0.7 -1.5 -2.1 -3.1 -4.1 -6.2 -10.5 -14.0 -15.1 -14.4 -12.5 -10.1 -7.7 -5.6 -3.9 -2.6 -1.6

0.8 -4.2 9.1 -10.6 -13.5 -16.1 -18.2 -19.4 -19.0 -17.4 -14.8 -11.9 -9.1 -6.6 -4.6 -3.1 -1.9

0.9 -5.2 12.4 -13.3 -16.7 -19.6 -21.7 -22.5 -21.6 -19.4 -16.5 -13.3 -10.2 -7.5 -5.2 -3.6 -2.2

1 -5.8 14.3 -14.7 -18.3 -21.4 -23.5 -24.2 -23.1 -20.7 -17.6 -14.2 -11.0 -8.2 -5.8 -4.0 -2.5

TABLE B.7: THE RESULTING SHIFTS IN PEAK PERCEPTION FOR 80/40/50
Per combination of adaptation strength and σ the resulting peak shift in perception is shown.
The shifts are shown for the set of log Gaussian fit model simulations in which the param-
eter adapter is set to numerosity 80, the parameter stimulus is set to numerosity 40 and the

parameter number of neurons is set to 50 neurons.

XXXXXXXXXXXXXXXXXXX

adaptation
strength

standard deviation
σ

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0.1 0 -0.1 -0.5 -1.1 -1.6 -1.9 -1.9 -1.7 -1.4 -1.2 -0.8 -0.6 -0.4 -0.3 -0.2 -0.1

0.2 0 -0.1 -1.0 -2.1 -3.2 -3.9 -4.0 -3.5 -3.0 -2.4 -1.8 -1.3 -0.9 -0.6 -0.4 -0.2

0.3 0 -0.2 -1.4 -3.1 -4.8 -5.8 -6.1 -5.5 -4.7 -3.7 -2.8 -2.0 -1.4 -0.9 -0.7 -0.4

0.4 0 -0.2 -1.8 -4.0 -6.2 -7.7 -8.2 -7.6 -6.5 -5.1 -3.8 -2.8 -1.9 -1.3 -0.9 -0.5

0.5 0 -0.3 -2.2 -4.9 -7.6 -9.5 -10.3 -9.6 -8.3 -6.6 -5.0 -3.6 -2.5 -1.7 -1.1 -0.6

0.6 0 -0.3 -2.5 -5.7 -8.8 -11.1 -12.2 -11.5 -10 -8.1 -6.1 -4.4 -3.0 -2.0 -1.4 -0.8

0.7 0 -0.4 -2.9 -6.4 -9.9 -12.6 -13.8 -13.3 -11.6 -9.5 -7.2 -5.3 -3.6 -2.4 -1.6 -1.0

0.8 0 -0.4 -3.2 -7.0 -10.8 -13.8 -15.2 -14.8 -13.1 -10.8 -8.3 -6.1 -4.2 -2.9 -1.9 -1.1

0.9 0 -0.4 -3.5 -7.6 -11.6 -14.8 -16.4 -16.0 -14.3 -11.9 -9.3 -6.9 -4.8 -3.3 -2.2 -1.3

1 0 -0.5 -3.7 -8.1 -12.3 -15.7 -17.4 -17.0 -15.3 -12.9 -10.2 -7.6 -5.4 -3.7 -2.4 -1.5



Appendix B. Shifts in Perception Tables XI

Conditions with number of neurons set to 100

TABLE B.8: THE RESULTING SHIFTS IN PEAK PERCEPTION FOR 20/40/100
Per combination of adaptation strength and σ the resulting peak shift in perception is shown.
The shifts are shown for the set of log Gaussian fit model simulations in which the param-
eter adapter is set to numerosity 20, the parameter stimulus is set to numerosity 40 and the

parameter number of neurons is set to 100 neurons.

XXXXXXXXXXXXXXXXXXX

adaptation
strength

standard deviation
σ

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0.1 0 0.1 0.5 1.1 1.7 1.9 10.8 1.2 0.7 0.2 -0.2 -0.3 -0.4 -0.3 -0.3 -0.2

0.2 0 0.1 1.0 2.3 3.5 4.1 30.8 20.8 1.5 0.4 -0.4 -0.7 -00.8 -0.7 -0.6 -0.4

0.3 0 0.2 1.4 3.4 5.4 6.5 6.2 4.6 2.5 0.6 -0.7 -1.3 -1.4 -1.2 -1.0 -0.7

0.4 0 0.2 1.9 4.5 7.3 9.1 9.0 6.9 3.9 0.9 -1.1 -2.0 -2.2 -10.8 -1.4 -1.0

0.5 0 0.3 2.3 5.6 9.2 110.8 12.0 9.7 5.7 1.3 -10.8 -3.1 -3.2 -2.6 -2.0 -1.3

0.6 0 0.3 2.7 6.6 11.1 14.5 15.2 12.9 8.1 1.9 -2.9 -4.6 -4.5 -3.6 -2.6 -1.8

0.7 0 0.4 3.1 7.6 12.9 17.2 18.5 16.4 11.2 2.8 -4.9 -6.9 -6.1 -4.7 -3.3 -2.2

0.8 0 0.4 3.5 8.5 14.6 19.6 21.6 20.2 15.2 4.3 -8.9 -9.7 -7.9 -5.8 -4.1 -2.7

0.9 0 0.4 3.8 9.4 16.2 21.9 24.5 23.9 19.6 6.5 -14.1 -11.9 -9.2 -6.7 -4.7 -3.1

1 0 0.5 4.1 10.1 17.6 23.9 27.0 26.9 23.7 9.0 -16.2 -12.9 -9.9 -7.3 -5.2 -3.5

TABLE B.9: THE RESULTING SHIFTS IN PEAK PERCEPTION FOR 40/40/100
Per combination of adaptation strength and σ the resulting peak shift in perception is shown.
The shifts are shown for the set of log Gaussian fit model simulations in which the param-
eter adapter is set to numerosity 40, the parameter stimulus is set to numerosity 40 and the

parameter number of neurons is set to 100 neurons.

````````````````````̀

max.
adaptation

standard deviation
σ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0.1 0.0 0.0 0.0 0.0 0.0 -0.1 -0.4 -0.7 -0.8 -0.9 -0.8 -0.6 -0.5 -0.4 -0.3 -0.2

0.2 0.0 0.0 0.0 0.0 0.0 -0.3 -0.9 -1.6 -1.9 -2.0 -1.8 -1.4 -1.1 -0.8 -0.5 -0.3

0.3 0.0 0.0 0.0 0.0 0.0 -0.6 -1.7 -2.8 -3.4 -3.3 -3.0 -2.3 -1.8 -1.3 -0.9 -0.6

0.4 0.0 0.0 0.0 0.0 -0.1 -1.0 -2.9 -4.6 -5.2 -5.1 -4.4 -3.4 -2.6 -1.8 -1.2 -0.8

0.5 0.0 0.0 0.0 0.0 -0.2 -1.9 -4.9 -7.1 -7.7 -7.2 -6.1 -4.7 -3.5 -2.4 -1.6 -1.0

0.6 0.0 0.0 0.0 0.0 -0.5 -4.0 -8.4 -10.7 -10.8 -9.7 -7.9 -6.0 -4.4 -3.0 -2.0 -1.3

0.7 -1.1 2.2 -3.1 -4.1 -6.3 -10.8 -14.0 -15.1 -14.2 -12.2 -9.9 -7.5 -5.4 -3.7 -2.5 -1.6

0.8 -3.9 9.1 -10.6 -13.5 -16.0 -18.1 -19.2 -18.8 -17.0 -14.5 -11.6 -8.8 -6.4 -4.4 -2.9 -1.8

0.9 -5.0 12.4 -13.3 -16.7 -19.5 -21.6 -22.3 -21.3 -19.1 -16.1 -13.0 -9.9 -7.3 -5.1 -3.4 -2.1

1 -5.7 14.3 -14.7 -18.3 -21.3 -23.5 -24.0 -22.8 -20.3 -17.2 -13.9 -10.7 -8.0 -5.6 -3.8 -2.4

TABLE B.10: THE RESULTING SHIFTS IN PEAK PERCEPTION FOR 80/40/100
Per combination of adaptation strength and σ the resulting peak shift in perception is shown.
The shifts are shown for the set of log Gaussian fit model simulations in which the param-
eter adapter is set to numerosity 80, the parameter stimulus is set to numerosity 40 and the

parameter number of neurons is set to 100 neurons.

XXXXXXXXXXXXXXXXXXX

adaptation
strength

standard deviation
σ

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0.1 0 -0.1 -0.5 -1.1 -1.5 -1.9 -1.8 -1.7 -1.3 -1.1 -0.8 -0.6 -0.4 -0.3 -0.2 -0.1

0.2 0 -0.1 -1.0 -2.1 -3.1 -3.8 -3.8 -3.5 -2.9 -2.3 -1.7 -1.2 -0.9 -0.6 -0.4 -0.2

0.3 0 -0.2 -1.4 -3.1 -4.7 -5.8 -5.9 -5.4 -4.5 -3.6 -2.7 -1.9 -1.4 -0.9 -0.6 -0.4

0.4 0 -0.2 -1.8 -4.0 -6.1 -7.7 -8.0 -7.4 -6.2 -4.9 -3.7 -2.6 -1.9 -1.2 -0.8 -0.5

0.5 0 -0.3 -2.2 -4.9 -7.5 -9.4 -10 -9.4 -8.0 -6.4 -4.8 -3.4 -2.4 -1.6 -1.0 -0.6

0.6 0 -0.3 -2.5 -5.7 -8.7 -11.1 -11.9 -11.3 -9.7 -7.8 -5.9 -4.2 -3.0 -2.0 -1.3 -0.8

0.7 0 -0.4 -2.9 -6.4 -9.8 -12.5 -13.5 -13.0 -11.3 -9.1 -7.0 -5.0 -3.5 -2.3 -1.5 -0.9

0.8 0 -0.4 -3.2 -7.0 -10.7 -13.7 -14.9 -14.5 -12.7 -10.4 -8.0 -5.8 -4.1 -2.7 -1.8 -1.1

0.9 0 -0.4 -3.5 -7.6 -11.5 -14.7 -16.1 -15.7 -13.9 -11.5 -9.0 -6.6 -4.7 -3.1 -2.0 -1.2

1 0 -0.5 -3.7 -8.1 -12.2 -15.6 -17.1 -16.7 -14.9 -12.5 -9.9 -7.3 -5.2 -3.5 -2.3 -1.4



XII

C COG Shift in Perception

The center of gravity (COG) relates to the middle point of the area under the popula-
tion excitation curve. Because of this the COG changes when the shape of the curve
changes, also when the peak does remain the same. Adaptation can have an effect
on the COG just as it has an effect on the peak of the population excitation curve.
This is why a COG shift in perception can be calculated as well. However, in this
model the magnitude of the COG shifts were too large to be a meaningful measure.

Congruent with the peak shift in perception, the number of neurons does not influ-
ence the shift in perception much. However, comparing the result tables for the peak
shift in perception (tables B.5 to B.10) and for the COG shift in perception (tables C.1
to C.6) there is a big difference between both: the COG shifts in perception are of
a much larger magnitude than the peak shifts in perception. The large magnitude
of the COG shifts in perception become more recognizable when looking at figure
C.1 and the underlying tables of the color maps (tables C.1 to C.6). Considering the
color maps a shift in perception of almost -300 dots is measured. This cannot be a
possible psychophysical reaction as the shift would mean that the second stimulus
is perceived as negative, less than 0 dots.

Overall, the magnitudes of the shifts in perception found do not in any way match
the earlier found psychophysical data (Aagten-Murphy & Burr, 2016; Tsouli et al.,
2018). Because of this, the shifts in perception are not included in the results.

(a) Adapter 20 and 50 neurons (b) Adapter 40 and 50 neurons (c) Adapter 80 and 50 neurons

FIGURE C.1: COLOR MAPS INDICATING SHIFTS IN PERCEPTION FOR STIMULUS 40
The figures show the shifts in perception according to the COG found for the three condi-
tions with 50 neurons. The shifts are shown per combination of adaptation strength and
σ value. The underlying values of the color maps can be found in tables C.1, C.2 and C.3.
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Conditions with number of neurons set to 50

TABLE C.1: THE RESULTING SHIFTS IN COG PERCEPTION FOR 20/40/50
Per combination of adaptation strength and σ the resulting COG shift in perception is shown.
The shifts are shown for the set of simulations in which the parameter adapter is set to nu-
merosity 20, the parameter stimulus is set to numerosity 40 and the parameter number of

neurons is set to 50 neurons.

hhhhhhhhhhhhhhhhhhhhhhadaptation strength

standard deviation
σ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0.1 0 0.69 4.55 10.6 16.13 18.33 16.96 13.21 8.51 3.96 0.23 -2.46 -4.13 -4.96 -5.17 -4.96

0.2 0 1.36 9.06 21.37 32.87 37.79 35.45 28.08 18.39 8.66 0.42 -5.63 -9.4 -11.22 -11.59 -11.01

0.3 0 2.01 13.49 32.23 50.12 58.29 55.53 44.83 29.94 14.29 0.51 -9.84 -16.31 -19.33 -19.76 -18.52

0.4 0 2.65 17.83 43.1 67.74 79.71 77.19 63.67 43.55 21.15 0.42 -15.65 -25.71 -30.16 -30.4 -28.05

0.5 0 3.26 22.05 53.88 85.53 101.82 100.32 84.77 59.67 29.61 -0.08 -24.06 -39.07 -45.18 -44.69 -40.4

0.6 0 3.86 26.13 64.44 103.24 124.29 124.63 108.15 78.78 40.22 -1.42 -37 -59.15 -66.97 -64.55 -56.79

0.7 0 4.44 30.04 74.66 120.56 146.64 149.61 133.58 101.29 53.61 -4.65 -58.63 -91.57 -100.31 -93.15 -79.11

0.8 0 4.99 33.76 84.37 137.12 168.24 174.4 160.26 127.12 70.33 -12.53 -98.85 -148.4 -153.87 -135.49 -110.06

0.9 0 5.53 37.25 93.42 152.48 188.28 197.74 186.49 154.85 89.62 -33.04 -183.16 -253.11 -239.21 -197.05 -152.6

1 0 6.05 40.48 101.63 166.16 205.79 217.84 209.2 179.66 104.71 -89 -350.48 -395.98 -335.75 -269.15 -205.74

TABLE C.2: THE RESULTING SHIFTS IN COG PERCEPTION FOR 40/40/50
Per combination of adaptation strength and σ the resulting COG shift in perception is shown.
The shifts are shown for the set of simulations in which the parameter adapter is set to nu-
merosity 40, the parameter stimulus is set to numerosity 40 and the parameter number of

neurons is set to 50 neurons.

hhhhhhhhhhhhhhhhhhhhhhadaptation strength

standard deviation
σ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0.1 0.47 2.04 5.14 9.45 10.71 7.32 2.11 -2.55 -5.77 -7.56 -8.21 -8.08 -7.48 -6.64 -5.72 -4.80

0.2 1.04 4.48 11.29 20.67 23.37 15.97 4.50 -5.87 -13.11 -17.09 -18.46 -18.04 -16.56 -14.56 -12.40 -10.31

0.3 1.73 7.43 18.68 34.10 38.45 26.27 7.22 -10.29 -22.66 -29.40 -31.55 -30.56 -27.75 -24.11 -20.29 -16.67

0.4 2.58 11.02 27.62 50.23 56.51 38.66 10.29 -16.38 -35.46 -45.75 -48.68 -46.61 -41.76 -35.78 -29.69 -24.07

0.5 3.61 15.40 38.48 69.64 78.20 53.63 13.70 -25.02 -53.25 -68.18 -71.70 -67.62 -59.60 -50.21 -41.00 -32.75

0.6 4.87 20.74 51.63 92.92 104.14 71.73 17.33 -37.79 -78.97 -100.08 -103.55 -95.76 -82.68 -68.28 -54.74 -43.00

0.7 6.41 27.18 67.33 120.41 134.74 93.42 20.80 -57.48 -117.90 -147.20 -148.78 -134.06 -112.90 -91.12 -71.55 -55.16

0.8 8.22 34.69 85.50 151.78 169.61 118.55 23.04 -89.17 -179.31 -218.42 -213.29 -186.04 -152.37 -120.02 -92.18 -69.67

0.9 10.22 42.89 105.13 185.17 206.50 145.26 21.47 -141.20 -276.14 -321.40 -299.07 -252.32 -201.97 -155.92 -117.36 -86.97

1 12.14 50.65 123.55 216.00 239.81 167.97 10.68 -220.18 -402.55 -429.32 -379.68 -317.98 -256.16 -197.74 -147.35 -107.45

TABLE C.3: THE RESULTING SHIFTS IN COG PERCEPTION FOR 80/40/50
Per combination of adaptation strength and σ the resulting COG shift in perception is shown.
The shifts are shown for the set of simulations in which the parameter adapter is set to nu-
merosity 80, the parameter stimulus is set to numerosity 40 and the parameter number of

neurons is set to 50 neurons.

hhhhhhhhhhhhhhhhhhhhhhadaptation strength

standard deviation
σ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0.1 0 -1.63 -8.76 -15.36 -18.46 -18.93 -17.9 -16.11 -14.04 -11.96 -10.02 -8.28 -6.76 -5.46 -4.37 -3.47

0.2 0 -3.21 -17.65 -31.98 -39.39 -40.96 -38.98 -35.14 -30.56 -25.93 -21.59 -17.72 -14.36 -11.53 -9.17 -7.23

0.3 0 -4.73 -26.59 -49.85 -63.07 -66.66 -63.93 -57.73 -50.11 -42.32 -35.02 -28.53 -22.96 -18.29 -14.44 -11.31

0.4 0 -6.21 -35.5 -68.86 -89.74 -96.64 -93.53 -84.68 -73.37 -61.66 -50.68 -40.98 -32.71 -25.84 -20.24 -15.74

0.5 0 -7.62 -44.26 -88.83 -119.49 -131.42 -128.59 -116.85 -101.09 -84.54 -69.01 -55.34 -43.79 -34.3 -26.65 -20.56

0.6 0 -8.98 -52.76 -109.39 -152.11 -171.27 -169.75 -154.99 -134 -111.57 -90.46 -71.95 -56.43 -43.8 -33.74 -25.82

0.7 0 -10.27 -60.83 -129.97 -186.89 -215.74 -216.92 -199.35 -172.53 -143.25 -115.47 -91.13 -70.84 -54.49 -41.59 -31.57

0.8 0 -11.49 -68.33 -149.76 -222.25 -262.94 -268.4 -248.77 -216.2 -179.58 -144.28 -113.16 -87.25 -66.49 -50.29 -37.84

0.9 0 -12.64 -75.06 -167.67 -255.47 -308.55 -319.22 -299.02 -262.36 -219.36 -176.6 -138.11 -105.81 -79.97 -59.94 -44.71

1 0 -13.73 -80.84 -182.37 -282.52 -345.01 -359.6 -340.92 -304.45 -259.06 -211 -165.65 -126.57 -95.02 -70.62 -52.22
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Conditions with number of neurons set to 100

TABLE C.4: THE RESULTING SHIFTS IN COG PERCEPTION FOR 20/40/100
Per combination of adaptation strength and σ the resulting COG shift in perception is shown.
The shifts are shown for the set of simulations in which the parameter adapter is set to nu-
merosity 20, the parameter stimulus is set to numerosity 40 and the parameter number of

neurons is set to 100 neurons.

hhhhhhhhhhhhhhhhhhhhhhadaptation strength

standard deviation
σ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0.1 0 0.69 4.55 10.59 16.04 18.14 16.67 12.87 8.17 3.67 0 -2.62 -4.22 -5 -5.17 -4.94

0.2 0 1.36 9.06 21.34 32.69 37.4 34.88 27.38 17.66 8.01 -0.1 -5.98 -9.6 -11.3 -11.59 -10.95

0.3 0 2.01 13.49 32.18 49.85 57.72 54.68 43.77 28.8 13.22 -0.37 -10.45 -16.66 -19.46 -19.73 -18.41

0.4 0 2.65 17.83 43.04 67.38 78.96 76.08 62.26 41.96 19.57 -0.93 -16.61 -26.24 -30.32 -30.32 -27.84

0.5 0 3.26 22.05 53.8 85.08 100.92 98.98 83.03 57.61 27.42 -2.07 -25.5 -39.84 -45.36 -44.5 -40.02

0.6 0 3.86 26.13 64.35 102.71 123.25 123.11 106.16 76.26 37.27 -4.32 -39.17 -60.22 -67.11 -64.12 -56.13

0.7 0 4.44 30.04 74.55 119.96 145.48 147.96 131.41 98.35 49.73 -8.94 -61.95 -93.01 -100.19 -92.23 -77.96

0.8 0 4.99 33.76 84.24 136.45 166.98 172.69 158.03 123.91 65.31 -19.16 -104.17 -150.09 -152.95 -133.59 -108.07

0.9 0 5.53 37.24 93.28 151.75 186.94 196 184.34 151.55 83.18 -44.13 -192.03 -253.89 -236.18 -193.35 -149.29

1 0 6.05 40.48 101.48 165.37 204.37 216.1 207.16 176.39 96.27 -109.1 -361.67 -391.82 -330.04 -263.75 -200.9

TABLE C.5: THE RESULTING SHIFTS IN COG PERCEPTION FOR 40/40/100
Per combination of adaptation strength and σ the resulting COG shift in perception is shown.
The shifts are shown for the set of simulations in which the parameter adapter is set to nu-
merosity 40, the parameter stimulus is set to numerosity 40 and the parameter number of

neurons is set to 100 neurons.

hhhhhhhhhhhhhhhhhhhhhhadaptation strength

standard deviation
σ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0.1 0.48 2.04 5.14 9.38 10.42 6.87 1.65 -2.91 -6.00 -7.68 -8.24 -8.06 -7.43 -6.58 -5.65 -4.73

0.2 1.05 4.48 11.28 20.53 22.75 14.97 3.49 -6.67 -13.63 -17.35 -18.53 -17.98 -16.43 -14.40 -12.24 -10.15

0.3 1.74 7.43 18.67 33.86 37.43 24.64 5.52 -11.66 -23.54 -29.83 -31.64 -30.43 -27.50 -23.81 -20.00 -16.40

0.4 2.58 11.02 27.62 49.88 55.03 36.24 7.73 -18.48 -36.83 -46.38 -48.75 -46.33 -41.31 -35.28 -29.22 -23.66

0.5 3.61 15.40 38.47 69.16 76.16 50.28 10.03 -28.12 -55.25 -69.04 -71.68 -67.10 -58.85 -49.42 -40.28 -32.14

0.6 4.87 20.74 51.62 92.28 101.46 67.26 12.22 -42.27 -81.85 -101.17 -103.31 -94.79 -81.45 -67.07 -53.68 -42.12

0.7 6.40 27.18 67.32 119.58 131.34 87.61 13.74 -64.00 -122.02 -148.43 -147.98 -132.31 -110.91 -89.29 -70.01 -53.94

0.8 8.20 34.69 85.48 150.75 165.43 111.18 13.33 -98.82 -185.12 -219.36 -211.27 -182.95 -149.24 -117.29 -89.98 -67.98

0.9 10.17 42.89 105.10 183.92 201.54 136.18 8.13 -155.65 -283.75 -320.74 -294.78 -247.30 -197.29 -151.99 -114.29 -84.68

1 12.05 50.65 123.52 214.54 234.12 157.08 -7.29 -240.73 -409.51 -424.80 -373.11 -311.62 -250.18 -192.53 -143.22 -104.41

TABLE C.6: THE RESULTING SHIFTS IN COG PERCEPTION FOR 80/40/100
Per combination of adaptation strength and σ the resulting COG shift in perception is shown.
The shifts are shown for the set of simulations in which the parameter adapter is set to nu-
merosity 80, the parameter stimulus is set to numerosity 40 and the parameter number of

neurons is set to 100 neurons.

hhhhhhhhhhhhhhhhhhhhhhadaptation strength

standard deviation
σ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0.1 0 -1.63 -8.76 -15.38 -18.49 -18.9 -17.78 -15.94 -13.85 -11.77 -9.84 -8.12 -6.63 -5.35 -4.28 -3.4

0.2 0 -3.21 -17.65 -32.01 -39.43 -40.87 -38.7 -34.73 -30.11 -25.48 -21.18 -17.36 -14.07 -11.29 -8.97 -7.07

0.3 0 -4.73 -26.59 -49.89 -63.13 -66.47 -63.41 -57.01 -49.31 -41.54 -34.31 -27.93 -22.46 -17.88 -14.11 -11.05

0.4 0 -6.21 -35.5 -68.93 -89.79 -96.29 -92.68 -83.52 -72.1 -60.43 -49.59 -40.05 -31.95 -25.24 -19.77 -15.37

0.5 0 -7.62 -44.26 -88.91 -119.52 -130.84 -127.29 -115.08 -99.18 -82.72 -67.41 -54.01 -42.72 -33.46 -26 -20.06

0.6 0 -8.98 -52.76 -109.48 -152.08 -170.36 -167.8 -152.41 -131.25 -109 -88.22 -70.1 -54.96 -42.67 -32.87 -25.17

0.7 0 -10.27 -60.83 -130.06 -186.75 -214.35 -214.13 -195.73 -168.73 -139.71 -112.42 -88.64 -68.89 -52.99 -40.47 -30.73

0.8 0 -11.49 -68.33 -149.85 -221.94 -260.91 -264.55 -243.91 -211.15 -174.88 -140.25 -109.89 -84.71 -64.58 -48.87 -36.8

0.9 0 -12.64 -75.06 -167.75 -254.91 -305.74 -314.24 -292.97 -256.09 -213.47 -171.47 -133.94 -102.57 -77.55 -58.17 -43.43

1 0 -13.73 -80.84 -182.44 -281.64 -341.38 -353.79 -334.26 -297.55 -252.31 -204.87 -160.51 -122.54 -92.02 -68.44 -50.66
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