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Abstract

In this thesis we consider a class of priors, Stick-breaking processes, and
compute their posterior distribution. For this posterior we prove consistency
results. Furthermore we prove consistency results based on mixtures from
stick-breaking processes.
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Chapter 1

Introduction

1.1 Flow of thesis

In this thesis we start by giving a short introduction to both Bayesian and
nonparametric statistics. Here we also introduce the Dirichlet process and
species sampling processes. After that, we introduce the stick-breaking pro-
cesses, which is a class of distributions which is a bit more restrictive than the
species sampling processes. The main object of study in this thesis will be
the stick-breaking processes. We start by studying simple properties of these
processes. After we have proven these simple properties we go on to compute
a posterior for the stick-breaking processes. Finally, using this description of
the posterior we can prove theorems about when the posterior is consistent.
We will both do this in the model where we have observations coming from
random measures which admit a stick-breaking representation and where we
use the stick-breaking representation in mixtures to build larger models.

1.2 Notation used

• For sequences (an)n∈N , (bn)n∈N we say that an is asymptotic to bn, de-
noted by an ∼ bn, if limn→∞

an
bn

= 1.

• If D is a distribution, X ∼ D means that X has probability measure

D, i.e. P(X ∈ A) = D(A). X1, X2, · · ·
iid∼ D means that Xi is an

independent sample from D and Xi
ind∼ Di means that the distribution

of Xi is Di and all the Xi are independent.

1



2 CHAPTER 1. INTRODUCTION

• If (X,X ) is a measurable space, then M(X) denotes the space of all
the probability measures on (X,X ), unless stated otherwise M(X) is
endowed with the topology of weak convergence.

• For random variables Y, Z the notation X|Y ∼ Z means that the con-
ditional distribution of X given Y is Z.

• Beta(a, b) =
∫ 1

0
va−1(1− v)b−1 d v.

• Be(a, b) is the Beta a, b distribution given by

Be(a, b)(A) =

∫
A
va−1(1− v)b−1 d v

Beta(a, b)
.

• If X is a random variable, then E [X] is the expected value of X. If F
is a σ-algebra, then E [X|F ] is the conditional expectation of X given
F . If Y is a random variable, E [X|Y ] = E [X|σ(Y )] where σ(Y ) is
the σ-algebra generated by the random variable Y . EX∼P [f(X)] is
the expected value of f(X) given that X is distributed according to
P . The obvious extensions to conditional expectations and conditional
distributions hold.

• First moment and second moment of a random variable X are E [X]
and E [X2] respectively. In general k-th moment of a random variable
is a name for E

[
Xk
]
.

• If X is a set, XN is the space of all sequences in X, equivalently, XN is
the space of all functions from N to X.

•
∐

is the coproduct, i.e. disjoint union in case of sets.

• If X1, · · · , Xn is a sample, X̂1, · · · , X̂m are the m distinct observa-
tions in the sample X1, · · · , Xn in order of first occurrence, and Nn =
(N1,n, · · · , NKn,n) is the vector of Kn elements, where Kn = m and Nj,n

is the number of times X̂j appeared in the sample X1, · · · , Xn.

• If x = (x1, · · · , xn) is a vector, then x−i = (x1, · · · , xi−1, xi+1, · · · , xn)
the same vector with the i-th coordinate left out.

• We define for every natural number n the set [n] = {1, · · · , n}.
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• The n simplex is the set of all n+ 1 tuples of nonnegative real numbers
adding up to 1: Sn = {(x1, · · · , xn+1) : xi ∈ R≥0,

∑n+1
i=1 xi = 1}. We

denote S∞ the set of sequences of nonnegative real numbers summing
to one.



Chapter 2

Prior knowledge

2.1 Introduction to Bayesian theory

We begin by introducing Bayesian theory and how it differs from the frequen-
tist approach to statistics. In basic frequentist statistics, we study observa-
tions from a process with certain parameters, and we want to estimate these
parameters. However, we do not consider these parameters as being random
variables themselves. In Bayesian statistics, we equip these parameters with
a distribution, which would denote our uncertainty of the process generating
the random variables, and then, given the new observations, we want to up-
date our knowledge of the process. This leads to the posterior. The data X
given θ follows a distribution Pθ, and θ comes from a prior Π.

A statistical model starts with a parameter space Θ, and for every pa-
rameter θ ∈ Θ a distribution Pθ. Often we assume more structure on the
parameter space Θ such as a topology or even a metric. These induce a
σ-algebra on Θ, the Borel σ-algebra.

Definition 2.1.1. Let X be a random variable. Let Θ be a measurable space.
A (proper) prior Π on Θ is a probability measure, such that the distribution
of X given θ is Pθ, where the distribution of θ is Π, i.e. θ ∼ Π, then
X|θ ∼ Pθ.

In parametric statistics we work with Θ some subset of Rn. In nonpara-
metric statistics we relax this assumption and allow our parameter space to
be much bigger. In parametric statistics, one has the parameter space Θ,
small, in some sense. Usually, we use Θ ⊂ Rn with the euclidean topology,

4



2.1. INTRODUCTION TO BAYESIAN THEORY 5

and there should be some ”nice” relation between θ ∈ Θ and Pθ. This is
usually encoded in smoothness conditions in theorems. The limitation of
these kinds of statistics is that the models have to be small, and we cannot
apply the standard methods to large models. For example, say you know
that the observations come from a density, and you want to find the density
which maximizes the likelihood of these observations. Putting larger and
larger spikes on the points we can make the likelihood arbitrarily large, so
there will not be a density which maximizes the likelihood. This means that
the main tool from parametric statistics, the MLE, will not work. The major
downside of using small models is that if the true distribution is outside the
small model, we will not be able to control how well our estimates are. One,
therefore, wishes to use models which can capture all distributions, and show
they always ”work”.

Definition 2.1.2. The posterior Π(·|X) is the conditional probability dis-
tribution of θ given X, in the model where X|θ ∼ Pθ and Π is the prior on
θ.

Note that the posterior distribution is unique Π almost surely. This
is often not a problem, however, for theorems about the behavior of the
posterior we cannot always conclude that every posterior for this prior will
behave as we want.

To compute the posterior is in many parametric cases easy due to Bayes
formula. If you have a dominated collection of measures Pθ, it is possible to
select densities pθ relative to some σ-finite dominating measure µ such that
the map (x, θ) 7→ pθ(x) is jointly measurable. Then a version of the posterior
distribution Π(·|X) is given by

Π(B|X) =

∫
B
pθ(X) d Π(θ)∫
pθ(X) d Π(θ)

Roughly, what we want from a good statistical model is that it will find
the true distribution in some sense. Notice that just stating that eventually,
with probability one we will find the true distribution will not work, because
sample variance would change our estimate. So what we want to do is state
that we can get arbitrarily close, in finite time, with probability tending to
one as one gets more data. This also has the advantage that while the truth
might not be a part of your parameter space, you can still talk about the
parameters which are close to your true distribution.
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In order to be able to speak about consistency, we need some topological
notion of closeness. So we introduce the setting which always holds when
talking about consistency and contraction rates. For every n ∈ N, let X(n)

be an observation in the sample space (X n,Xn) with distribution P n
θ indexed

by a parameter θ belonging to a first countable topological space Θ. Given
a prior Π on the Borel sets of Θ, we can act like the observations X(n) came
from Π and form the posterior Πn(·|X(n)).

Definition 2.1.3. The posterior distribution Πn(·|X(n)) is said to be (weakly)
consistent at θ0 ∈ Θ if, for all open neighborhoods U of θ0, Πn(U c|X(n))→ 0
in Pnθ0 probability, as n→∞. The posterior is said to be strongly consis-
tent at θ0 ∈ Θ if this convergence is in the almost-sure sense.

2.2 The Dirichlet process and discrete ran-

dom structures.

In order to define the Dirichlet process, we need to define the Dirichlet distri-
bution first. Let λk denote the Lebesgue measure on Rn. We can view the n
simplex as a subspace of Rn by sending (x1, · · · , xn+1) ∈ Sn to (x1, · · · , xn).
Since

∑n+1
i=1 xi = 1 this parametrizes the n simplex.

Definition 2.2.1. The Dirichlet distribution with parameters n, α1, · · · , αn
is a probability distribution on n− 1 simplex given by

A 7→ Γ(
∑n

i=1 αi)∏n
i=1 Γ(αi)

∫
A

n∏
i=1

xαii dλn−1(x−n).

We denote this distribution by Dir(n, α1, · · · , αn).

Because any random variable with a Dirichlet distribution lives on the
K − 1 simplex, the coordinates are nonzero and add up to one, so it can
function as a probability measure. This will be used to construct random
measures as in the next definition. In Bayesian nonparametrics there is a
process which is a main method of defining priors, namely the Dirichlet
process. We cite the definition from [1, ch. 4]

Definition 2.2.2. A random measure P on (X ,X) is said to possess a
Dirichlet process distribution DP(Mα) with base measure Mα, for M > 0
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and α a probability measure, if for every finite measurable partition A1, · · · , Ak
of X ,

(P (A1), · · · , P (Ak)) ∼ Dir(k;Mα(A1), · · · ,Mα(Ak)).

A priori it is not clear that the Dirichlet process exists. However, we
will see a theorem from Sethuraman which gives a representation showing
that such a process exists, namely, a process of this form has a stick-breaking
representation which can be used to generalize the Dirichlet process. In my
thesis, this is what we will be doing, and we try to derive the same kind
of consistency results for the more general class of distributions we will be
considering.

The following theorem by Sethuraman [1, theorem 4.12] gives an explicit
representation of the Dirichlet process.

Theorem 2.2.3. If θ1, · · ·
iid∼ α and V1, · · ·

iid∼ Be(1,M) are independent
random variables and Wj = Vj

∏j−1
l=1 (1− Vl), then

∑∞
j=1Wjδθj ∼ DP(Mα).

From the stick-breaking representation theorem, Theorem 2.2.3, by Sethu-
raman, we see that if P ∼ DP(Mα) then P is almost surely discrete. We can
study discrete random structures in a more general setting. This is first done
by studying exchangeable partitions, and then using the techniques and con-
cepts from the theory of discrete random structures to build a general class
of distributions which can used as priors.

If we sample from a random discrete measure, and then look at the tied
observations of this sample, we naturally get random exchangeable partitions
of finite sets. Conversely, if we specify a distribution on partitions in a clever
way, we can use this to create samples.

Recall that a partition {A1, · · · , Ak} of the finite set [n] is a decomposition
into disjoint subsets of [n] whose union is [n]. The cardinalities ni = |Ai| of
the sets in a partition of [n] are said to form a partition of n: an unordered set
{n1, · · · , nk} of natural numbers such that n =

∑k
i=1 ni. Note that here we do

remember how many times a specific value occured in this set, so that {2, 2}
is not the same as {2}. The sets in a partition are considered unordered, but
if we list the sets in a specific order, then the cardinalities match that order.
An ordered partition (n1, · · · , nk) of n is called a composition of n, and the
set of all compositions of n is denoted by Cn. The particular order by the
sizes of the smallest element in every Ai is called the order of appearance.
A random partition of [n] is a random element defined on some probability



8 CHAPTER 2. PRIOR KNOWLEDGE

space taking values in the set of all partitions of [n]. Its induced distribution
is a probability measure on the set of all partitions of [n].

Definition 2.2.4 (exchangeable partition). A random partition Pn of [n]
is called exchangeable if its distribution is invariant under the action of any
permutation of σ : [n] → [n]. Equivalently, a random partition Pn is called
exchangeable if there exists a symmetric function p : Cn → [0, 1] such that,
for every partition {A1, · · · , Ak} of [n],

P(Pn = {A1, · · · , Ak}) = P (|A1|, · · · , |Ak|).

The function p is called the exchangeable partition probability function (EPPF)
of Pn.

We want to extend this definition to partition structures, which are a way
to link partitions across n. The goal is to capture the behavior of looking
at the partition defined from the first n observations. So if we have a par-
tition coming from X1, · · · , Xn and we look at what partitions we can get
from X1, · · · , Xn+1, we are very restricted in what can happen, namely, only
one element of the partition can change, and this one will receive the extra
element n+ 1. This can be repeated if we want to include or leave out more
element.

Definition 2.2.5 ((infinite) exchangeable partition). An infinite exchange-
able random partition is a sequence (Pn)n∈N of exchangeable random par-
titions of [n] that are consistent in the sense that Pn−1 is equal to the partition
obtained from Pn by leaving out the element N , almost surely, for every N .
The function p : ∪∞N=1Cn → [0, 1] whose restriction Cn is equal to the ex-
changeable partition probability function of Pn is called the exchangeable
partition probability function (EPPF) of (Pn)n∈N.

If n = (n1, · · · , nk) is a vector, we denote nj+ to be the vector nj+ =
(n1, · · · , nj−1, nj + 1, nj+1, · · · , nk) for j ≤ k and (n1, · · · , nk, 1) if j = k+ 1.
If n ∈ Cn, then nj+ is an element in Cn+1. By being slightly loose with
specification, we can give a working definition of the predictive probability
function.

Definition 2.2.6. The predictive probability function is the function p =
(p1, p2, · · · ) with pj : ∪nCn → [0, 1] with

pj(n) =
p(nj+)

p(n)
, j = 1, · · · , k + 1,
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for every vector n with k distinct elements.

We note that the processes we will study will (often) be a special case of
species sampling models. For discussion and contrast, we will refer to these
processes as well.

We first start by defining a special kind of topological space, which has
a lot of nice properties. This space makes a lot of definitions behave better,
however we will not refer to these kinds of details in this thesis. It is however
needed to state the definition of a species sampling model.

Definition 2.2.7 (Polish space). A topological space X is called a Polish
space if it is a complete separable metric space relative to some metric that
generates the topology.

With the definition of Polish spaces, it becomes possible to state what a
species sampling process is.

Definition 2.2.8 (Species sampling model). A Species sampling model
is a pair consisting of a sequence (Xi) of random variables and a random

measure P such that X1, X2, · · · |P
iid∼ P. and P takes the form

P =
∞∑
j=1

Wjδθj + (1−
∞∑
j=1

Wj)G,

for θ1, θ2, · · ·
iid∼ G with G an atomless probability distribution on a Polish

space X , and an independent random subprobability vector (Wj). The ran-
dom distribution P in a SSM is called a Species sampling process. If∑∞

j=1Wj = 1, the species sampling process is called proper.

Lemma 2.2.9 (Lemma 3.4 of [1]). Let Vi
ind∼ Dj be a sequence of random

variables. Suppose that Wj = Vj
∏j−1

i=1 (1−Vi). Then W = (W1,W2, · · · ) ∈ S∞
if and only if E

[∏j
l=1(1− V )

]
→ 0 as j → ∞. For independent random

variables V1, V2, · · · this condition is equivalent to
∑∞

l=1 logE [1− Vl] = −∞.
In particular, for iid variables V1, V2, · · · it suffices that P(V1 > 0) > 0. If
for every k ∈ N the support of (V1, · · · , Vk) is [0, 1]k then the support of W
is the whole space S∞.

We can justify the name of the predictive probability functions with the
following lemma [1, Lemma 14.11].
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Lemma 2.2.10. The predictive distributions of variables X1, X2, · · · in the
species sampling model take the form X1 ∼ G and, for n ≥ 1,

Xn+1|X1, · · · , Xn ∼
Kn∑
j=1

pj(Nn)δX̃j + pKn+1G,

where the functions pj : ∪nCn → [0, 1] are the predictive probability functions
of the infinite exchangeable random partition generated by X1, X2, · · · . Here
Kn denotes the number of distinct observations of X1, · · · , Xn, X̃j is the j-
th distinct observation and Nn is the vector such that Nj,n is the number of
times the j-th distinct observation occurs in X1, · · · , Xn.

A concept that will appear often in the theory of discrete random struc-
tures are the size biased permutations. The intuition behind this is that
the locations θi all are independent and have the same distribution. This
means that if we pick any permutation of the weights, denoted by W σ, the
distribution of

F ′ =
∞∑
j=1

W σ
j δθj + (1−

∞∑
j=1

W σ
j )G

is equal to the distribution of

F =
∞∑
j=1

Wjδθj + (1−
∞∑
j=1

Wj)G.

So we cannot distinguish the order of W . It turns out that the size-biased
permutations are often the right thing to look at.

An element of the infinite simplex W ∈ S∞ naturally defines a probability
distribution on the natural numbers, namely Pw(I = i) = wi. In the concept
of proper species sampling processes, W is an element of the infinite simplex,
so every such random weight vector W defines such a distribution. Now if we
look conditional on W , the probabiity that I = i is exactly the probability
that we draw θi. Now because we do not know W , we cannot distinguish
between W and any permutation acting on W , so we look at the object which
has an invariant distribution under taking (random) permutations. It turns
out the right concept is size-biased permutations.

Definition 2.2.11. The size-biased permutation of a probability distri-
bution W = (wj) on N is the random vector (w̃1, w̃2, · · · ), for w̃j = wĨj , and

Ĩ1, Ĩ2, · · · the distinct values in an i.i.d. sequence with P(I = i|W ) = wi.
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Observe that taking the size biased permutation of a random vector in
size-biased order gives a vector with the same distribution as before.

From Lemma 2.2.10 we can deduce that you can actually specify a species
sampling process by actually specifying one of the following three pairs of
objects:

• G and the distribution of (Wj),

• G and the exchangeable partition probability function,

• G and the prediction probability function.

To express the exchangeable probability function in terms of the distri-
bution of W we have the following formula

Lemma 2.2.12 (theorem 14.14 [1]).

p(n1, · · · , nk) = E

[
k∏
j=1

W̃
nj−1
j

k∏
j=2

(1−
∑
i≤j

W̃i)

]
,

where W̃ again is the size-biased permutation of W .

Lemma 2.2.13 (Kingman’s formula for EPPF, ex 14.1 [1]). The EPPF of
a proper species sampling model can be written in the form

p(n1, · · · , nk) =
∑

1≤i1 6=···6=ik<∞

E

[
k∏
j=1

W
nj
ij

]
.

There is a kind of generalization of the Dirichlet process which is called
the Pitman-Yor process [3]. This exploits results [2] by Pitman which allows
you to give an explicit computation for the posterior. For details see [1,
chapter 14].

The Pitman-Yor process is a special kind of species sampling process. If
0 ≤ σ < 1 and base measure G then this admits a stick-breaking representa-
tion. It will be an example of a stick-breaking process which we will define
later. See [1, theorem 14.33] and [1, theorem 14.25]

Theorem 2.2.14. Let Vj
ind∼ Be(1−σ,M+jσ) and set W̃j = Vj

∏j−1
l=1 (1−Vl).

Let θ1, · · ·
iid∼ G. Suppose that P =

∑∞
i=1Wiδθi. Then the distribution of P is

given by the Pitman-Yor process, P ∼ PY(σ,M,G).
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We will contrast the new results in this thesis by the corresponding results
on Species sampling models, the Dirichlet process and the Pitman-Yor. In
the definition of stick-breaking processes we will not include the assumption
that the base measure G is atomless. However, for many theorems, we do
need this assumption.

Finally some object of interest is the support of a distribution.

Lemma 2.2.15 (Support). The support of a probability measure on the
Borel sets of a Polish space is the smallest closed set of probability one.
Equivalently, it is the set of all elements of the space for which every open
neighborhood has positive probability.

We will sometimes conflate this definition with a more vague concept of
support, namely for discrete distributions the points of positive probability.



Chapter 3

The stick-breaking process

In this chapter, we introduce the stick-breaking process and derive some first
properties. The Dirichlet process is the process we want to generalize. In
order to do so, we first look at a specific representation which some processes
have, namely of a stick-breaking process. The Dirichlet process has a stick-
breaking representation [1, Theorem 4.12]. We will first introduce stick-
breaking as a way to give a probability distribution on the infinite simplex.
Then we can use these weights to create the main object of study.

3.1 Introducing the stick-breaking process

We begin with a short discussion on how to define the process we want to
study. We want to find a process that generates probability measures, so
the goal is to figure out what requirements actually are needed to make this
happen.

Definition 3.1.1. Let (X,B) be a measurable space. Let α be a probabil-
ity distribution on (X,B). Let D be a distribution on [0, 1]. Given stick-

breaking weights Vi
ind∼ D, we define weights

Wi = Vi

i−1∏
j=1

(1− Vj)

If we let θi
ind∼ α, we can combine this into

F =
∞∑
i=1

δθiWi.

13
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We will now take a look at a couple of requirements we need to get the
properties we want. Then we can see how to create the precise definition.

Lemma 3.1.2. Suppose that F follows a distribution which admits the pre-
vious representation, then every instance of F is a measure.

Proof. F (∅) =
∑∞

i=1 δθi(∅)Wi. Because θi are random variables on X, we
know that δθi(∅) = 0 for all θi. Hence this sum is zero. For non-negativity,
we remark that the weights Wi ≥ 0 and δθi(A) ≥ 0, so F (A) is a sum of
non-negative real numbers, hence non-negative.

For additivity, we observe that, if we have disjoint Aj, then θi is in at
most one such Aj, so we get that

F (∪jAj) =
∞∑
i=1

δθi(∪jAj)Wi =
∞∑
i=1

∞∑
j=1

δθi(Aj)Wi.

Now we can use absolute summability of this sequence and monotone con-
vergence theorem to swap the order of summation, which gives

F (∪jAj) =
∞∑
j=1

∞∑
i=1

δθi(Aj)Wi =
∞∑
j=1

F (Aj).

In view of Lemma 2.2.9, if P(V1 > 0) > 0, this almost surely defines a
probability measure, since the measure of the total space is

∑∞
i=1Wi, which

is almost surely 1. So from now on, we assume this. This leads to the central
definition we work with:

So now we know what extra requirements we need to make such ran-
dom measures into probability measures. This gives rise to the main two
definitions.

Definition 3.1.3. We say that F has a stick-breaking representation
with base measure α and stick-breaking weight measure D iff, for

θ1, θ2, · · ·
iid∼ α, V1, · · ·

iid∼ D,Wi = Vi
∏i−1

j=1(1 − Vj), such that P(V1 > 0) > 0,
we have that F can be written as follows:

F =
∞∑
i=1

Wiδθi .

We write F ∼ SBP(α,D).
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Definition 3.1.4. We say that F has a stick-breaking representation
with different relative weight distributions with base measure α

and stick-breaking weight measures Dj iff, for θ1, θ2, · · ·
iid∼ α, Vj

ind∼ Dj,
Wi = Vi

∏i−1
j=1(1 − Vi), such that

∑∞
l=1 logE [1− Vl] = −∞, we have that F

can be written as follows:

F =
∞∑
i=1

Wiδθi .

We write F ∼ SBP(α, (Dj)).

The condition on the sum of logarithms of E [1− Vl] is to ensure that∑∞
i=1Wi = 1 almost surely.
Note that δθi(A) is one with probability α(A), so for a fixed set A, we

can see the distribution of F (A) as a random weighted sum of independent
Bernoulli α(A) variables, where the weights are given by the random vector
W = (W1,W2, · · · ).

Also, note that P is almost surely a discrete random measure.
Suppose that for every n the sum of the first n weights

∑n
i=1Wi is almost

surely smaller than 1. Then we can transform back to the stick-breaking
points by

Vi =
Wi

1−
∑i−1

j=1Wj

Lemma 3.1.5.
∑n

i=1Wi = 1−
∏n

i=1(1− Vi)

Proof. For N = 1 it is clear, and with induction Wn+1 + 1−
∏n

i=1(1− Vi) =
1− (1− Vn+1)

∏n
i=1(1− Vi).

Further, one readily sees that if you have a stick-breaking process with an
atomless base measure, then this defines a proper Species sampling model.
Obviously, not all Species sampling models are stick-breaking processes, how-
ever, there are also examples of Species sampling processes which have been
studied in practice which are not stick-breaking process priors. One such fam-
ily of examples is the family of Gibbs processes. Some of the Gibbs processes
are stick-breaking processes such as the Pitman-Yor process, but in general,
they have dependent distribution on the relative stick-breaking weights. For
an example, consider the Normalized Inverse-Gaussian processes. They ad-
mit a stick-breaking presentation with dependent distributions.

We start with a small but useful lemma on the sum of second moments
of stick-breaking process (with identical weight distributions).
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Lemma 3.1.6. Suppose V1, · · ·
iid∼ D. Then The stick-breaking weights Wi

have
∑∞

i=1 E [W 2
i ] =

E[V 2
1 ]

1−E[(1−V1)2]

Proof. We start by expanding the definition of the Wi in terms of Vi:

∞∑
i=1

E
[
W 2
i

]
=
∞∑
i=1

E

[
V 2
i

i−1∏
j=1

(1− Vj)2
]
.

Then using the independence of the Vi we get

∞∑
i=1

E
[
W 2
i

]
=
∞∑
i=1

E
[
V 2
i

] i−1∏
j=1

E
[
(1− Vj)2

]
.

Now we use that all the Vi ∼ D, so then we get the following equality:

∞∑
i=1

E
[
W 2
i

]
=
∞∑
i=1

E
[
V 2
1

] i−1∏
j=1

E
[
(1− V1)2

]
.

Now we can move the expectation of E [V 2
1 ] outside to get that the previous

term also equals

E
[
V 2
1

] ∞∑
i=1

i−1∏
j=1

E
[
(1− V1)2

]
.

Now we can count how many times we a term E [(1− V1)2] in the product,
this yields that

∞∑
i=1

E
[
W 2
i

]
= E

[
V 2
1

] ∞∑
i=1

E
[
(1− V1)2

]i−1
.

Using that E [(1− V1)2] ≤ 1 and the known limit of a geometric series we
finally get:

∞∑
i=1

E
[
W 2
i

]
=

E [V 2
i ]

1− E [(1− V1)2]
.



Chapter 4

Simple properties

In this chapter, we look at some simple properties of the stick-breaking dis-
tributions. In particular, we look at the mean and variance of integrals with
respect to these measures. The results in this chapter are used to compute
the posterior distribution in the next chapter.

4.1 Mean and variance of the stick-breaking

process

We can compute the mean and (co)variance of the random measure as follows

Proposition 4.1.1. Let F ∼ Π, with Π being a stick-breaking process with
base measure α and stick-breaking weights distributed according to Di. Let
A,B be measurable subsets of X. Then

E [F (A)] = α(A),

Var(F (A)) = α(A)α(Ac)
∞∑
i=1

E
[
W 2
i

]
,

Cov(F (A), F (B)) = (α(A ∩B)− α(A)α(B))
∞∑
i=1

E
[
W 2
i

]
.

This proposition has a natural specialization to the case where all the
stick-breaking weights have the same distribution. This yields

17
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Corollary 4.1.2. Let F ∼ Π, with Π being a stick-breaking process with base
measure α and stick-breaking weights distributed according to D. Let A,B be
measurable subsets of X. Then

E [F (A)] = α(A),

Var(F (A)) =
α(A)α(Ac)E [V 2

1 ]

1− E [(1− V1)2]
,

Cov(F (A), F (B)) =
(α(A ∩B)− α(A)α(B))E [V 2

1 ]

1− E [(1− V1)2]
.

Proof. We apply the previous proposition together with Lemma 3.1.6 which
states that

∞∑
i=1

E
[
W 2
i

]
=

E [V 2
1 ]

1− E [(1− V1)2]
.

The proof of the Proposition 4.1.1 is quite a long computation and is
broken down into several parts for clarity.

Proof. Computing the mean Let A be a measurable set. Then

EF (A) = E
∞∑
i=1

Wiδθi(A)

MCT
=

∞∑
i=1

EWiδθi(A)

iid
=

∞∑
i=1

EWiEδθi(A)

=
∞∑
i=1

EWiα(A)

= α(A)
∞∑
i=1

EWi

MCT
= α(A)E

∞∑
i=1

Wi

= α(A).
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Here the last step holds since
∑∞

i=1Wi is almost surely 1.
Computing the variance Let A be a measurable set. Then

Var (F (A)) = E
[
F (A)2

]
− E [F (A)]2

= E
[
F (A)2

]
− α(A)2

= E

[
(
∞∑
i=1

Wiδθi(A))2

]
− α(A)2

= E

[
∞∑
i=1

∞∑
j=1

WiWjδθi(A)δθj(A)

]
− α(A)2

= E

[
∞∑
i=1

∑
j 6=i

WiWjδθi(A)δθj(A)

]
+ E

[
∞∑
i=1

W 2
i δθi(A)2

]
− α(A)2.

We look at each of the components of this expression.

Rewriting E
[∑∞

i=1

∑
j 6=iWiWjδθi(A)δθj(A)

]
We start with

E

[
∞∑
i=1

∑
j 6=i

WiWjδθi(A)δθj(A)

]
.

We apply the monotone convergence theorem to move the expectation inside
the sum, so we get

E

[
∞∑
i=1

∑
j 6=i

WiWjδθi(A)δθj(A)

]
=
∞∑
i=1

∑
j 6=i

E
[
WiWjδθi(A)δθj(A)

]
.

We use that θi is independent of all the θj with j 6= i and Wj for all j, so we
can rewrite this expression into

∞∑
i=1

∑
j 6=i

E
[
WiWjδθi(A)δθj(A)

]
=
∞∑
i=1

∑
j 6=i

E [WiWj]E [δθi(A)]E
[
δθj(A)

]
.

We know the expectation of δθi(A), namely α(A), so we get

∞∑
i=1

∑
j 6=i

E [WiWj]E [δθi(A)]E
[
δθj(A)

]
= α(A)2

∞∑
i=1

∑
j 6=i

E [WiWj] .
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We use the monotone convergence theorem to move the innermost sum inside
the expectation, this yields

α(A)2
∞∑
i=1

∑
j 6=i

E [WiWj] = α(A)2
∞∑
i=1

E

[∑
j 6=i

WiWj

]
.

We can also move the Wi outside the inner summation, to get

α(A)2
∞∑
i=1

E

[∑
j 6=i

WiWj

]
= α(A)2

∞∑
i=1

E

[
Wi

∑
j 6=i

Wj

]
.

Then we know that
∑∞

j=1Wj is almost surely one, so
∑

j 6=iWj = 1 − Wi

almost surely. This gives

α(A)2
∞∑
i=1

E

[
Wi

∑
j 6=i

Wj

]
= α(A)2

∞∑
i=1

E [Wi(1−Wi)] .

We can simplify this into

α(A)2
∞∑
i=1

E [Wi(1−Wi)] = α(A)2
∞∑
i=1

E [Wi]− α(A)2
∞∑
i=1

E
[
W 2
i

]
.

Now we can use monotone convergence theorem again to take the first sum
inside the expectation, and use that

∑∞
i=1Wi is equal to 1 almost surely.

This yields

α(A)2
∞∑
i=1

E [Wi]− α(A)2
∞∑
i=1

E
[
W 2
i

]
= α(A)2

(
1−

∞∑
i=1

E
[
W 2
i

])
.

Rewriting E [
∑∞

i=1W
2
i δθi(A)2] We start with

E

[
∞∑
i=1

W 2
i δθi(A)2

]
.

We observe that δθi(A) is 1 if θi ∈ A and 0 otherwise, so δ2θi = δθi .

E

[
∞∑
i=1

W 2
i δθi(A)2

]
= E

[
∞∑
i=1

W 2
i δθi(A)

]
.
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We apply monotone convergence theorem to move the sum outside the ex-
pectation

E

[
∞∑
i=1

W 2
i δθi(A)

]
=
∞∑
i=1

E
[
W 2
i δθi(A)

]
.

We use the independence of Wi and θi to get

∞∑
i=1

E
[
W 2
i δθi(A)

]
=
∞∑
i=1

E
[
W 2
i Eδθi(A)

]
.

Then because E [δθi(A)] = α(A) we get

∞∑
i=1

E
[
W 2
i

]
E [δθi(A)] = α(A)

∞∑
i=1

E
[
W 2
i

]
.

Combining the results We had

E
[
F (A)2

]
= E

[
∞∑
i=1

∑
j 6=i

WiWjδθi(A)δθj(A)

]
+ E

[
∞∑
i=1

W 2
i δθi(A)2

]
− α(A)2.

We fill in

E

[
∞∑
i=1

∑
j 6=i

WiWjδθi(A)δθj(A)

]
= α(A)2

(
1−

∞∑
i=1

E
[
W 2
i

])
.

And

E

[
∞∑
i=1

W 2
i δθi(A)2

]
= α(A)

∞∑
i=1

E
[
W 2
i

]
.

This gives

E
[
F (A)2

]
= α(A)2

(
1−

∞∑
i=1

E
[
W 2
i

])
+ α(A)

∞∑
i=1

E
[
W 2
i

]
− α(A)2.

Then we can take out a factor α(A) to get

E
[
F (A)2

]
= α(A)

(
−α(A)

∞∑
i=1

E
[
W 2
i

]
+
∞∑
i=1

E
[
W 2
i

])
.
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This simplifies into

EF (A)2 = α(A)

(
(1− α(A))

∞∑
i=1

E
[
W 2
i

])
.

Now we use that 1− α(A) = α(Ac), which gives

EF (A)2 = α(A)α(Ac)
∞∑
i=1

E
[
W 2
i

]
.

Covariance
Let A,B be two measurable sets. Then we want to know the covariance

of F (A) and F (B). We expand the definition for covariance, which leads to

Cov(F (A), F (B)) = E [(F (A)− E [F (A)])(F (B)− E [F (B)])] .

We fill in the known value for E [F (A)] and E [F (B)], and this leads that the
previous term also equals

E [(F (A)− α(A))(F (B)− α(B))] .

We can now simplify the expression by taking known values outside and
repeating the known result on expectations. This leads to

Cov(F (A), F (B)) = E [F (A)F (B)]− α(A)α(B)

We expand the definition of F (A) and F (B), therefore

Cov(F (A), F (B)) = E

[
∞∑
i=1

∞∑
j=1

δθi(A)δθj(B)WiWj

]
− α(A)α(B).

Using the monotone convergence theorem we can move the expectation inside
the infinite sums, thus

Cov(F (A), F (B)) =
∞∑
i=1

∞∑
j=1

E
[
δθi(A)δθj(B)WiWj

]
− α(A)α(B).

We split the sums into summing over j 6= i and j = i, because this means
we sum terms WiWj where i 6= j and we sum W 2

i . This leads to the next
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equality

Cov(F (A), F (B)) =
∞∑
i=1

∑
j 6=i

E
[
δθi(A)δθj(B)WiWj

]
+

∞∑
i=1

E
[
δθi(A)δθi(B)W 2

i

]
− α(A)α(B).

We use that θi and θj and WiWj are independent and θi and Wi are inde-
pendent. We use that, for independent random variables, the expectation of
the product is the product of the expectations. Then

Cov(F (A), F (B)) =
∞∑
i=1

∑
j 6=i

E [δθi(A)]E
[
δθj(B)

]
E [WiWj] +

∞∑
i=1

E [δθi(A)δθi(B)]E
[
W 2
i

]
− α(A)α(B).

We know that E [δθi(A)] = α(A), similarly for δθj(B). Furthermore,
δθi(A)δθi(B) = δθi(A ∩ B). The expectation of this is α(A ∩ B). So this
leads to

Cov(F (A), F (B)) = α(A)α(B)
∞∑
i=1

∑
j 6=i

E [WiWj] +

α(A ∩B)
∞∑
i=1

E
[
W 2
i

]
− α(A)α(B).

We can move the sum over all the j inside the expectation using the monotone
convergence theorem, which leads to

Cov(F (A), F (B)) = α(A)α(B)
∞∑
i=1

E

[
Wi

∑
j 6=i

Wj

]
+

α(A ∩B)
∞∑
i=1

E
[
W 2
i

]
− α(A)α(B).

We use that
∑∞

j=1Wj = 1 almost surely, so that in expectation the sum∑
j 6=iWj equals 1 − Wi. Using this we get that the previous result also
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equals

α(A)α(B)
∞∑
i=1

E [Wi(1−Wi)] + α(A ∩B)
∞∑
i=1

E
[
W 2
i

]
− α(A)α(B).

We can simplify, move the sum inside the expectation and then use that∑∞
i=1Wi = 1 almost surely to get

Cov(F (A), F (B)) = α(A)α(B)(1−
∞∑
i=1

EW 2
i )+

α(A ∩B)
∞∑
i=1

E
[
W 2
i

]
− α(A)α(B).

We can cancel the α(A)α(B) terms so this also equals

−α(A)α(B)
∞∑
i=1

EW 2
i + α(A ∩B)

∞∑
i=1

E
[
W 2
i

]
.

We can simplify for one last time to get

(α(A ∩B)− α(A)α(B))
∞∑
i=1

E
[
W 2
i

]
.

Retrieving the distribution of the Dirichlet process For the Dirich-
let process Vi ∼ β(1,M), and 1 − Vi is then β(M, 1) distributed. Then
E [Vi] = 1

M+1
, E [1− Vi] = M

M+1
. The Variances are given by

Var(Vi) =
M

(1 +M)2(M + 2)
= Var(1− Vi).

So now we can compute the second moments by using E [X2] = Var(X) +
E [X]2. So

E
[
V 2
1

]
=

M

(M + 1)2(M + 2)
+

1

(M + 1)2
=

2m+ 2

(1 +m)2(M + 2)
.

E
[
(1− V1)2

]
=

M

(M + 1)2(M + 2)
+

M2

(M + 1)2
=
M2(M + 2) +M

(1 +M)2(M + 2)
.
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Hence, using simple algebra and canceling of terms we get:

E [V 2
1 ]

1− E [(1− V1)2]
=

2m+2
(1+m)2(M+2)

1− M2(M+2)+M
(1+M)2(M+2)

=
2M + 2

(M + 1)2(M + 2)−M2(M + 2)−m

=
2M + 2

M + 2 + 2M(M + 2) +M2(M + 2)−M2(M + 2)−M

=
2M + 2

2 + 2M(M + 2)

=
2M + 2

2M2 + 4M + 2

=
M + 1

M2 + 2M + 1

=
M + 1

(M + 1)2

=
1

M + 1
.

So indeed we get

Var(FA) =
α(A)α(Ac)

1 +M

If we have F ∼ DP(Mα).
The statement of proposition 4.3 from [1] and its proof hold almost ver-

batim, we only need to change the reference from proposition [1, proposition
4.2] to the previous computations and update the terms for the variance. For
completeness, we include the statement and the proof here. These lemmas
concern the integration of functions with respect to measures drawn from a
stick-breaking process prior.

Lemma 4.1.3. If P is distributed according to a stick-breaking process with
base measure α and stick-breaking weight distributions Dj, then for any mea-
surable functions φ, ψ for which the expression on the right-hand side is mean-
ingful,

E(Pφ) =

∫
φ dα,

Var(φ) =

∫
(φ−

∫
φ dα)2 dα

∞∑
i=1

E
[
W 2
i

]
,
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Cov(φ, ψ) = (

∫
φψ dα−

∫
φ dα

∫
ψ dα)

∞∑
i=1

E
[
W 2
i

]
.

Proof. We just apply the standard machinery for extending results about
integration from indicator function to general integrable functions, and the
results from Lemma 4.1.3.

Lemma 4.1.4. If P is distributed according to a stick-breaking process with
base measure α and stick-breaking weight distribution D, then for any mea-
surable functions φ, ψ for which the expression on the right-hand side is mean-
ingful,

E(Pφ) =

∫
φ dα,

Var(φ) =

∫
(φ−

∫
φ dα)2 dαEV 2

1

1− E [(1− V1)2]
,

Cov(φ, ψ) =
(
∫
φψ dα−

∫
φ dα

∫
ψ dα)E [V 2

1 ]

1− E [(1− V1)2]
.

Proof. The extension of the result from the previous proposition to this

proposition is just using Lemma 3.1.6, namely that
∑∞

i=1 E [W 2
i ] =

E[V 2
1 ]

1−E[(1−V1)2] .

4.2 Support of stick-breaking process.

We now write a theorem on the support of stick-breaking processes. We refer
to [1, Lemma 3.6].

Lemma 4.2.1 (Support of stick-breaking process). If (W1,W2, · · · ) are stick-

breaking weights based on stick lengths Vi
iid∼ D for a fully supported measure

D on [0, 1], independent of θi ∼ α where α has full support X , then the
stick-breaking process SBP(α,D) has full support M(X).

We can expand this theorem a bit further to the case where the base
measure is supported on a smaller set.

Lemma 4.2.2. The weak support of a stick-breaking process Π with base
measure α is H = {P ∈M(X) : supp(P ) ⊂ supp(α)}.
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The proof works the same, just restricting all the sets we consider to the
support of α, and observing that H is a closed set of probability 1. Also note
that by incorporating the observation of these two lemmas together with [1,
Lemma 3.5] we get

Lemma 4.2.3. Suppose the stick-breaking distribution weights Vj are drawn
from Dj, every Dj is fully supported on [0, 1] and the base measure α is
supported on A, then the stick-breaking process is fully supported on H =
{P ∈M : supp(P ) ⊂ supp(α)}.

4.3 Exchangeable partition probability func-

tions

Lemma 4.3.1. The exchangeable partition probability function corresponding
to a stick-breaking process with atomless base measure α and relative stick-
breaking weights D is given by

p(n1, · · · , nk) =
∑
σ∈Sk

k∏
j=1

E
[
V nσ(j)(1− V )

∑
σ(i)>j ni

]
1− E

[
(1− V )

∑
σ(i)≥j ni

] ,
Where V ∼ D.

Proof. By the assumption that α is atomless, the stick-breaking process ac-
tually becomes a proper species sampling process. By Lemma 2.2.13 we know
that for proper species sampling processes

p(n1, · · · , nk) =
∑

1≤i1 6=···6=ik<∞

E

[
k∏
j=1

W
nj
ij

]
.

Here Wj = Vj
∏j−1

i=1 (1 − Vi) and V1, V2, · · ·
iid∼ D. Hence we can rewrite this

into ∑
1≤i1 6=···6=ik<∞

E

[
k∏
j=1

V
nj
ij

ij−1∏
l=1

(1− Vl)nj
]
.

Now observe that if we sum over 1 ≤ i1 6= · · · 6= ik <∞, this is the same as
summing over all permutations of [k], and then summing over all assignments
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i1 < i2 < i3 < · · · . This gives

∑
σ∈Sk

∑
1≤i1<···<ik<∞

E

[
k∏
j=1

V
niσl
ij

j−1∏
l=1

(1− Vl)
niσ(l)

]
.

Now we know the powers p, q of V p
l (1 − Vl)q, namely p = nσj if there is an

ij such that l = iσ(j) and zero otherwise, and q is the sum of the counts nj
such that l < iσ(j), i.e.

∑
l:l<iσ(j)

nl. This allows us to factorize the product,

and then because all the Vl ∼ D we can sum the geometric series appearing.
This gives

p(n1, · · · , nk) =
∑
σ∈Sk

k∏
j=1

E
[
V nσ(j)(1− V )

∑
σ(i)>j ni

]
1− E

[
(1− V )

∑
σ(i)≥j ni

]



Chapter 5

The posterior distribution

5.1 The posterior of a species sampling pro-

cess

In this section, we will see how to find a description of the posterior and
some outline on how we want to proceed to try and give a nicer form for the
posterior. We start by observing that a stick-breaking process is a special case
of a species sampling process [1, Chapter 14], for which there is already an
established theory on how to find a description for the posterior. This uses the
size-biased permutation of the weights. However, size-biased permutations
are complicated objects to give closed-form expressions for, so the goal is to
also find a description which is easier to work with. [1, Theorem 14.18] states

Theorem 5.1.1. The posterior distribution of F in the model with obser-

vations X1, · · · , Xn|F
iid∼ F with F following a proper species sampling prior

with the weight sequences (Wj) = (W̃j) in size-biased order is the distribution
of

Kn∑
j=1

ŴjδX̃j +
∞∑

j=Kn+1

ŴjδX̂j ,

where X̃1, · · · , X̃Kn are the distinct values of X1, · · · , Xn in order of appear-
ance, Nj,n the number of times X̃j appeared in the sample, the variables

X̂Kn+1, · · ·
iid∼ α and Ŵ = (Ŵj) is an independent vector with distribution

29
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given by

E
[
f(Ŵ )|X1, · · · , Xn

]
=

E
[
f(W̃ )

∏Kn
j=1 W̃

Nj,n−1
j

∏Kn
j=2

(
1−

∑
i<j W̃i

)]
p(Nn)

,

where p is the EPPF of the species sampling model, and the expectation on
the right-hand side is under the prior distribution of (W̃i).

Recall that the EPPF is by [1, theorem 14.14], same statement in Lemma 2.2.12
equal to

p(n1, · · · , nk) = E

[
k∏
j=1

W̃
nj−1
j

k∏
j=2

(1−
∑
i≤j

W̃i

]
,

where W̃ again is the size-biased permutation of W .
This Theorem gives us a very implicit description of the posterior, how-

ever, we can also find an explicit posterior, where we do not have the problem
of having to compute the size-biased permutation. This form of the posterior
will enable us to get stronger statements on the behavior of the posterior,
see the chapter on consistency.

5.2 Introduction

So the goal is to find a posterior distribution. It is enough to study the
canonical process. In order to do this, we need to define all the objects. Let
(X ,X, α) be a probability space. Define Θ = (X × [0, 1])N(i.e. the countable
infinite product). This means Θ = {(θi, Vi)n∈N} the space of all sequences.
One then can view θi and Vi as maps from Θ to X and [0, 1] respectively, i.e.
if ω = (x1, v1, x2, v2, · · · ) ∈ Θ, then θi(ω) = xi a Vi(ω) = vi.

We define a distribution Π on Θ via θi
iid∼ α and Vi

iid∼ D, where D is a
probability measure on [0, 1] with density function f .

Π will be our prior, and we have a parametrization of the probabil-
ity measures on X by Pθ(A) =

∑∞
i=1 δθi(ω)(A)Vi(ω)

∏i−1
j=1(1 − Vj(ω)). For

every θ, V we can form a probability distribution Pθ,V defined by A 7→∑∞
i=1 δθi(A)Vi

∏j−1
j=1(1− Vj).

We modelX|θ, V ∼ Pθ,V . Now in order to create the canonical probability
on X ×Θ we define the following:

P(θ ∈ B,X ∈ A) =

∫
B

Pθ(A) d Π(θ).
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We know an expression for Pθ, so we can jot this down:

P(θ ∈ B,X ∈ A) =

∫
B

∞∑
i=1

δθi(θ)(A)Vi(θ)
i−1∏
j=1

(1− Vj(θ)) d Π(θ).

We will start with deriving the posterior in the setting where we have just
one observation. This allows us to start easy and makes the general proof
easier to follow.

5.3 Derivation of posterior

So Θ is a complicated probability space, and we can best study this via
cylindrical sets, so we look at sets B = {θ1 ∈ C1, V1 ∈ B1, · · · , θn ∈ Cn, Vn ∈
Bn}. It is enough to study those, since these generate the σ-algebra of the
infinite product. Thus we look at those.

So we start with the first lemma, which gives an expression for the prob-
ability that θ is in B and X is in A. This is what is what is needed to verify
the claim that something is the posterior.

Lemma 5.3.1.

P(θ ∈ B,X ∈ A) = α(A)
n∏
j=1

α(Cj)
n∏
j=1

∫
Bj

(1− v)f(v) d v+

n∑
i=1

(∏
k 6=i

α(Ck)

)
α(Ci ∩ A)

(
i−1∏
j=1

∫
Bj

(1− v)f(v) d v

)∫
Bi

vf(v) d v(
n∏

j=i+1

∫
Bj

f(v) d v

)
Roughly speaking, one can see this as conditioning on V1 up to Vn, then

seeing what is the probability that X came from θ1 up to θn and with what
probability. You can actually prove this in this way, but then we need to
modify the probability space so that we get a Θ̄ = Θ × N, introduce a
random variable I so that P(I = n|θ1, V1, · · · ) = Vn

∏n−1
j=1 (1 − Vj), and set

X|I = θI . Then you get that X|P ∼ P and can talk rigorously about X
coming from θi or not. You should interpret I as the the random variable
which remembers which θi was chosen when drawing the random variable X
from P .
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Proof.

P(θ ∈ C, V ∈ B,X ∈ A) = P(θ1 ∈ C1, V1 ∈ B1, · · · , θn ∈ Cn, Vn ∈ Bn, X ∈ A).

This is also equal to∫
C1

∫
B1

· · ·
∫
Cn

∫
Bn

∫
∏∞
j=n+1(X×[0,1])

∞∑
i=1

δθi(A)Vi

i−1∏
j=1

(1− Vj) d θ̄ dVn · · · dV1 d θ1

where θ̄ is integration over all the coordinates after the first n (or 2n depend-
ing how you count). We can split this sum into the first n terms, and the
tail:

∞∑
i=1

δθi(A)Vi

i−1∏
j=1

(1− Vj) =
n∑
i=1

δθi(A)Vi

i−1∏
j=1

(1− Vj)+

n∏
k=1

(1− Vk)
∞∑

i=n+1

δθi(A)Vi

i−1∏
j=n+1

(1− Vj).

Then if we compute the innermost integral, we get∫
∏∞
j=n+1(X×[0,1])

n∑
i=1

δθi(A)Vi

i−1∏
j=1

(1− Vj)+(
n∏
k=1

(1− Vk)

)
∞∑

i=n+1

δθi(A)Vi

i−1∏
j=n+1

(1− Vj) d θ̄.

We can use linearity to get that this also equals∫
∏∞
j=n+1(X×[0,1])

n∑
i=1

δθi(A)Vi

i−1∏
j=1

(1− Vj) d θ̄

+

∫
∏∞
j=n+1(X×[0,1])

(
n∏
k=1

(1− Vk)

)
∞∑

i=n+1

δθi(A)Vi

i−1∏
j=n+1

(1− Vj) d θ̄.

And then independence to evaluate the first integral and simplify the second

n∑
i=1

δθi(A)Vi

i−1∏
j=1

(1− Vj)+(
n∏
k=1

(1− Vk)

)∫
∏∞
j=n+1(X×[0,1])

∞∑
i=n+1

δθi(A)Vi

i−1∏
j=n+1

(1− Vj) d θ̄
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Proposition 4.1.1 says that the integral in this expression is α(A), so we get

n∑
i=1

δθi(A)Vi

i−1∏
j=1

(1− Vj) + α(A)
n∏
k=1

(1− Vj).

So we can substitute this back into the original equation and compute
those integrals. Using linearity we split this, and compute every term sepa-
rately. First we compute∫

C1

∫
B1

· · ·
∫
Cn

∫
Bn

α(A)
n∏
k=1

(1− Vj) dD(vn) dα(θn) · · · dD(v1) dα(θ1).

We use that D has a density, and independence to factor this integral, which
leads the solution

α(A)
n∏
j=1

α(Cj)
n∏
j=1

∫
Bj

(1− v)f(v) d v

Then we tackle the integrals of the first kind, now let i ∈ {1, · · · , n}, we want
to compute∫

C1

∫
B1

· · ·
∫
Cn

∫
Bn

δθi(A)Vi

i−1∏
j=1

(1− Vj) dD(vn) dα(θn) · · · dD(v1) dα(θ1).

We again use independence and the fact that D has a density to get(∏
k 6=i

α(Ck)

)
α(Ci∩A)

(
i−1∏
j=1

∫
Bj

(1− v)f(v) d v

)∫
Bi

vf(v) d v

(
n∏

j=i+1

∫
Bj

f(v) d v

)
Combining all the terms of the sums yields

P(θ ∈ B,X ∈ A) = α(A)
n∏
j=1

α(Cj)
n∏
j=1

∫
Bj

(1− v)f(v) d v+

n∑
i=1

(∏
k 6=i

α(Ck)

)
α(Ci ∩ A)

(
i−1∏
j=1

∫
Bj

(1− v)f(v) d v

)∫
Bi

vf(v) d v(
n∏

j=i+1

∫
Bj

f(v) d v

)
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This finishes the first half of the preparation. Remember that the goal
was to find a posterior probability P (B|x). For P (B|x) to be a posterior
distribution the following must hold: E [P (E|X)1A(X)] = P(ω ∈ E,X ∈ A).
We formulate a small lemma which allows easier computation of this expected
value.

Lemma 5.3.2.

E [P (E|X)1A(X)] =

∫
A

P (ω ∈ E|x) dα(x)

Proof. In order to compute this, we observe the following

E [P (E|X)1A(X)] = E [E [P (E|X)1A(X)|σ(X)]]

usingX|P∼P
= E [P (P (E|X)1A(X))]

Lemma 4.1.3
=

∫
A

P (E|x) dα(x)

Here the lemma used is the expected value of integration with respect to
Dirichlet Process/Stick-breaking process measure.

From this we can quite directly deduce the form the posterior has, namely

Lemma 5.3.3. A version of the posterior distribution is

P ({θ1 ∈ C1, V1 ∈ B1, · · · , θn ∈ Cn, Vn ∈ Bn}|x) =
n∏
i=1

α(Ci)
n∏
i=1

∫
Bi

(1− v)f(v) d v+

n∑
i=1

(
n∏

k=1,k 6=i

α(Ck))1Ci(x)
i−1∏
j=1

∫
Bj

(1− v)f(v) d v

∫
Bi

vf(v) d v
n∏

j=i+1

∫ n

Bi

f(v) d v

)
Proof. You just use previous lemma to verify if

E [P (B|X)1A(X)] = P(θ ∈ B,X ∈ A).

Thus we should compute
∫
A
P (B|x) dα. For this we observe that we can use

linearity to take the summation outside, integration of terms with indicator
function 1Ci(x) just replaces this term with α(Ci∩A) and the summand with-
out any indicator function gets a factor α(A). This results in the expression
we derived for P(θ1 ∈ C1, V1 ∈ B1, · · · , θn ∈ Cn, Vn ∈ Bn).
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5.4 Generalizing to n observations

Let α be the base measure, and D the weight measure. We want to compute

the posterior for n iid observations in the model P ∼ SBP(α,D) and Xi|P
iid∼

P . In order to do some we introduce some notation which makes this a lot
easier.

We set Θ = (X × [0, 1])N × Nn.

5.4.1 Computing the probability

We again start with a lemma which allows us to find the probability that X
is in A, θ is in B and V is in C. Again this is what we need to verify the
claim that something is the posterior.

Theorem 5.4.1. The probability P(X ∈ A, θ ∈ B, V ∈ C) equals

∑
(i1,··· ,in)∈Nn

(∏
j 6∈S

α(Cj)

)∏
j∈S

α(Cj ∩
⋂
k∈Tj

Ak)

 ∞∏
k=1

∫
Vk∈Bk

(1−v)#kv#
′k dD(v)

where

• S = S((i1, · · · , in)) = {i1, · · · , in}. Note |S| need not be n.

• For all j ∈ S: Tj = {k : ik = j} all the different k such that ik is equal
to an element of S, so equal to one of the different values i1, · · · , in
attain.

• #j =
∑n

k=1 1j<ik the number of ik such that j is smaller than ik.

• #′j =
∑n

k=1 1j=ik the number of ik such that j is equal to ik.

Proof. We introduce random variables, θi is the i-th X coordinate, Vi is
the i-th [0, 1] coordinate and Ii is the i-th N coordinate. We put distri-
butions on these coordinates. θi are all independently distributed accord-
ing to α. Independently of this, we make Vi independent sample of D.
We say Ii are, conditional on θ, V , independently distributed according to
P(Ii = n|θ, V ) = Vn

∏n−1
j=1 (1 − Vj). Then if we put Xi = θIi , we have that

Xi|θ, V
iid∼
∑∞

k=1 δθkVk
∏k−1

j=1(1− Vj).
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We observe that to know the distribution of P(θ ∈ C, V ∈ B,X ∈ A)
it is enough to know it on the σ-cylinders generating the infinite product,
so WLOG we assume C =

∏∞
j=1{θj ∈ Cj} and B =

∏∞
j=1{Vj ∈ Bj}, and

A =
∏n

j=1{Xj ∈ Aj}.
Then we want to compute P(θ ∈ C, V ∈ B,X ∈ A). What we can do is

actually compute∑
(i1,··· ,in)∈Nn

P(θ ∈ C, V ∈ B,X ∈ A, I = (i1, · · · , in)).

We can do this by conditioning on V, I, since for fixed (i1, · · · , in) we know
that the conditional probability P(θ ∈ C, V ∈ B,X ∈ A, I = (i1, · · · , in)) is
equal to∫
B

P(θ ∈ C,X ∈ A|I = (i1, · · · , in), V = v)P(I = (i1, · · · , in)|V = v) dD∞(v).

Then we know P(I = (i1, · · · , in)|V = v), namely
∏n

k=1

(
vk
∏k−1

j=1(1− vj)
)

.

This allows us to simplify P(θ ∈ C, V ∈ B,X ∈ A, I = (i1, · · · , in)) into∫
B

P(θ ∈ C,X ∈ A|I = (i1, · · · , in), V = v)
n∏
k=1

(
vk

k−1∏
j=1

(1− vj)

)
dD∞(v).

Now we observe that P(θ ∈ C,X ∈ A|I = (i1, · · · , in), V = v) does not
depend on V , so this simplifies into P(θ ∈ C,X ∈ A|I = (i1, · · · , in)), and
we can compute this. We observe that if Ii = n, then θn = XIi , and so that
if we want that θn ∈ Cn and Xi ∈ Ai, we also must have θn ∈ Ai. Thus we
get the intersections between all the sets Cn and Ai such that Ii = n. Note
that there can be multiple of those. In order to handle this we introduced
the following notation:

• S = S((i1, · · · , in)) = {i1, · · · , in}. Note |S| need not be n.

• #j =
∑n

k=1 1j<ik the number of ik such that j is smaller than ik.

• #′j =
∑n

k=1 1j=ik the number of ik such that j is equal to ik.

Using this notation, and using the remarks we can write down the con-
ditional probability P(θ ∈ C,X ∈ A|I = (i1, · · · , in)):(∏

j 6∈S

α(Cj)

)∏
j∈S

α(Cj ∩
⋂
k∈Tj

Ak)

 .
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Filling this back into our equation for P(θ ∈ C, V ∈ B,X ∈ A, I =
(i1, · · · , in)) we get that this equals∫

B

(∏
j 6∈S

α(Cj)

)∏
j∈S

α(Cj ∩
⋂
k∈Tj

Ak)

 n∏
k=1

(
vk

k−1∏
j=1

(1− vj)

)
dD∞(v).

Note that
(∏

j 6∈S α(Cj)
)(∏

j∈S α(Cj ∩
⋂
k∈Tj Ak)

)
indeed does not depend

on v so we can take it outside the integral, which yields(∏
j 6∈S

α(Cj)

)∏
j∈S

α(Cj ∩
⋂
k∈Tj

Ak)

∫
B

n∏
k=1

(
vk

k−1∏
j=1

(1− vj)

)
dD∞(v).

We can use the numbers #k and #′k to count how many factors vj and
(1 − vj) we get. This allows us the simplify the integral together with in-
dependence of the Vi and the fact that B consists of σ-cylinders. Then∫
B

∏n
k=1

(
vk
∏k−1

j=1(1− vj)
)

dD∞(v) equals

∞∏
k=1

∫
Vk∈Bk

(1− v)#kv#
′k dD(v).

We can combine this to find that the probability P(θ ∈ C, V ∈ B,X ∈ A, I =
(i1, · · · , in)) equals(∏

j 6∈S

α(Cj)

)∏
j∈S

α(Cj ∩
⋂
k∈Tj

Ak)

 ∞∏
k=1

∫
Vk∈Bk

(1− v)#kv#
′k dD(v).

So all that is left to do is to sum over all the possible values i1, · · · , in
can attain to get that P(θ ∈ C, V ∈ B,X ∈ A) equals

∑
(i1,··· ,in)∈Nn

(∏
j 6∈S

α(Cj)

)∏
j∈S

α(Cj ∩
⋂
k∈Tj

Ak)

 ∞∏
k=1

∫
Vk∈Bk

(1−v)#kv#
′k dD(v).

Now we can normalize the distribution
∏∞

k=1

∫
Vk∈Bk

(1 − v)#kv#
′k dD(v) by

multiplying and dividing by
∏maxj ij

k=1 E(1− v)#kv#
′k dD(v). This introduces

a probability distribution on Nn, namely we can define

P′(i1, · · · , in) ∝ E

[
n∏
j=1

Vij

ij−1∏
k=1

(1− Vk)

]
.
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This is what we will need to construct a description of the posterior.

5.4.2 Integration lemma

This lemma allows easier computation of the expectation which we need to
verify for the posterior.

Lemma 5.4.2. Let A be any set of the form A = {X1 ∈ A1, · · · , Xn ∈ An}.
Xi|P ∼ P iid from P , P ∼ Π. Then

E [f(X)1A(X)]

= E [E [f(X)1A(X)|θ, V ]]

=
∑

(i1,··· ,in)∈Nn
E [f(θi1 , · · · , θin)1A(θi1 , · · · , θin)]

∞∏
k=1

∫
(1− v)#kv#

′k dD(v)

Where we can compute the expectation for functions f which only care for
the (ordered set) of x̂i of distinct values Xi, Fi the indices where we observed
x̂i and nk how often it appeared:

∫
∩k∈F1Ak

· · ·
∫
∩k∈FmAk

f̂((x1, n1), · · · , (x̂m, nk)) dα(xm) · · · dα(x1)

where f̂((x1, k1), · · · , (xm, km)) is the function we get if we just count how
many appearances of x1 occurred into k1, etc.

Proof. Let A be any set of the form A = {X1 ∈ A1, · · · , Xn ∈ An}. Xi|P ∼ P
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iid from P , P ∼ Π. Then

E [f(X)1A(X)] = E [E [f(X)1A(X)|θ, V ]]

= E

 ∑
(i1,··· ,in)∈Nn

f(θi1 , · · · , θin)1A(θi1 , · · · , θin)
n∏
k=1

(
Vik

ik−1∏
j=1

(1− Vj)

)
=

∑
(i1,··· ,in)∈Nn

E

[
f(θi1 , · · · , θin)1A(θi1 , · · · , θin)

n∏
k=1

(
Vik

ik−1∏
j=1

(1− Vj)

)]

=
∑

(i1,··· ,in)∈Nn
E [f(θi1 , · · · , θin)1A(θi1 , · · · , θin)]E

[
n∏
k=1

(
Vik

ik−1∏
j=1

(1− Vj)

)]

=
∑

(i1,··· ,in)∈Nn
E [f(θi1 , · · · , θin)1A(θi1 , · · · , θin)]

∞∏
k=1

∫
(1− v)#kv#

′k dD(v)

Note that we can simplify this a bit further, because we can simplify the
expected value as well into∫

∩k∈TS1Ak
· · ·
∫
∩k∈TSmAk

f̂((x1, |Ts1|), · · · , (xm, |TSm|)) dα(xm) · · · dα(x1)

where f̂((x1, k1), · · · , (xm, km)) is the function we get if we just count how
many appearances of x1 occurred into k1, etc.

5.4.3 Partitions

So we are summing over all the possible assignments of (i1, · · · , in). We can
as well sum over all the partitions of [n], and then sum over the possible
assignments. Then what we can further do is sum over all the possible
different sizes of the elements of the partition.

Roughly speaking, when you observe x1, · · · , xn, you do not see what val-
ues i1, · · · , in take, but (if α is atomless) you observe a grouping of i1, · · · , in
into which ik are the same. So you get a partition of [n]. Technically you get
to know the partition almost surely. However, it turs out it is easier if we
forget a bit of information, namely, we can just forget the exact order of the
data, but just group on x̂i, the distinct observations in order of appearance,
and ki the number of xj that attains the value x̂i.
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We are going to sum over all the possible partitions, and then over all
possible assignments of i1, · · · , in which are equal on the partition. This
requires some careful thought on how we sum, because we want to only each
assignment i1, · · · , in once. Because we actually can observe such a partition,
we are in the situation we want to be. So let us rewrite both the probability
and the expected value after the integration lemma into this form.

We start by forming a lemma which allows us to rewriting the sum of
the indices {i1, · · · , in} into something allows us to integrate properly. This
lemma states that there is a bijection between two sets, namely the set of all
partitions of size m of [n] = {1, · · · , n} times Nm which remembers all the ij
which have the same value, and then just remembers which m distinct value
they attain, and the values of i1, · · · , in. We form this map by just looking
at the value of i1 and then look at which ik are equal to this, then look at
the first il which is different from i1 and look at the value of il and look for
which ik are equal to il, etc.

Lemma 5.4.3. Let

φ : Nn →
n∐

m=1

({partitions of size m of [n]} × {f1, · · · , fm : f1, · · · , fm all distinct in N})

be the map given above. Then this map is a bijection.

Proof. So we need to argue well definedness, injectivity and surjectivity.
The well definedness is clear from the fact that we group on those ik which

are the same, so we indeed map to

n∐
m=1

({partitions of size m of [n]} × {f1, · · · , fm : f1, · · · , fm all distinct ∈ N}) .

Now we tackle the injectivity and surjectvity. We will create an inverse
map. Suppose we are given a partition of [n], say F1, · · · , Fm and natural
numbers f1, · · · , fm. Since partitions are themselves unordered, wlog we can
assume Ak contains the smallest element of [n] not contained in ∪k−1j=1Aj, by
renaming the sets if needed. Define c(k) the natural number so that k ∈ Fc(k),
which exists because k ∈ [n] and the F form a partition of [n]. Then set
ik = fc(k). If we now apply φ, we look at the values ik which are equal to
i1 = f1. Since all fk are distinct, we know this means that if ij = i1 = f1, we
must have c(j) = 1. Repeat this argument for all distinct values of ik and
we see that we indeed map i1, · · · , in to F1, · · · , Fm, f1, · · · , fm.
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Note that we need these properties, because otherwise, if we would apply
this transformation we would be over- or undercounting. With this lemma
we can continue the derivation of the posterior. We denote X̂i for the i-th
distinct observation here i = 1, · · · ,m, and ni how often the observation X̂i

occurred. We again denote #j to be the count of all Ik such that Ik > j and
#′j to be the number of Ik such that Ik = j. We denote #̃j =

∑m
k=1 nk1j<ik

and #̃′j =
∑m

k=1 nk1ik=j.

Theorem 5.4.4 (Posterior of a stick-breaking process based on n observa-
tions). The posterior of a stick-breaking process with atomless base measure
α and stick-breaking weights D for observations x1, · · · , xn is, using the no-
tation above, given by the following hierarchical model: draw I = (i1, · · · , im)
proportional to

E

[
m∏
k=1

V nk
ik

ik−1∏
j=1

(1− Vj)nk1 all values of i1,··· ,im are distinct

]

Conditional on I,

• Draw θi for i 6= I1, · · · , Im from α independently.

• Set θIi = x̂i.

• Define distribution D̃j to be the map A 7→
∫
A(1−V )#̃jV #̃′j dD(v)∫
(1−V )#̃jV #̃′j dD(v)

.

• Draw Vj from D̃j, independently.

Proof. The proof is just combining the previous lemmas. Recall that P(θ ∈
C, V ∈ B,X ∈ A) equals

∑
(i1,··· ,in)∈Nn

(∏
j 6∈S

α(Cj)

)∏
j∈S

α(Cj ∩
⋂
k∈Tj

Ak)

 ∞∏
k=1

∫
Vk∈Bk

(1−v)#kv#
′k dD(v).

We now apply the transformation φ on these sums. Now we have explicit
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expressions for Tj, namely F1, · · · , Fm, S = {i1, · · · , im}.
n∑

m=1

∑
F1,··· ,Fm,

partion of [n]

∑
i1,··· ,im
distinct

(∏
j 6∈S

α(Cj)

)
∏
j∈[m]

α(Cij ∩
⋂
k∈Fj

Ak)

 ∞∏
k=1

∫
Vk∈Bk

(1− v)#kv#
′k dD(v).

This is what we want to end up with after applying the integration lemma.
So lets apply the integration lemma to the hypothesized posterior and verify.

Lets first expand the posterior for our sets A,B,C. So for fixed obser-
vations x1, · · · , xn we get a partition of distinct elements, so we know which
Cj our Xi must lie in. We denote by Z the normalization constant for the
probability

P(I = (i1, · · · , im) = E

[
m∏
k=1

V nk
ik

ik−1∏
j=1

(1− Vj)nk1 all values of i1,··· ,im are distinct

]
Z.

For fixed I = (i1, · · · , im) we can expand this easily using the indepen-
dence. This yields 1Cij (x̂i) for the probability that x̂i lies in Cij , the θi each

give a factor α(Ci) for i 6= i1, · · · , im, and we get the weights from Vj, all
multiplied together. We then sum this times the probability of choosing this
particular I, which yields

∑
i1,··· ,im
distinct

(∏
j 6∈S

α(Cj)

)∏
j∈[m]

1Cij
(x̂i)

∏∞k=1

∫
Vk∈Bk

(1− v)#̃kv#̃
′k dD(v)∏∞

k=1

∫
(1− v)#̃kv#̃′k dD(v)

P(I = (i1, · · · , in)).

Note that this probability cancels the numerator and yields a factor Z. So
we can simplify this further into

∑
i1,··· ,im
distinct

(∏
j 6∈S

α(Cj)

)∏
j∈[m]

1Cij
(x̂i)

 ∞∏
k=1

∫
Vk∈Bk

(1− v)#̃jv#̃
′j dD(v)Z.

We now apply the integration lemma to this, but we reformulate into par-
titions again, using the final remark of the integration lemma. We can for-
mulate the posterior in the form that it takes a partition of [n] and values
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x̂1, · · · , x̂m, because this is the transformation we apply as the first step into
computing the posterior. If we apply this, this leads to

E [P (B|X1, · · · , Xn)1A1,··· ,An(x1, · · · , xn)]

=
∑

(i1,··· ,in)∈Nn
E [f(θi1 , · · · , θin)1A(θi1 , · · · , θin)]

∞∏
k=1

∫
(1− v)#kv#

′k dD(v)

=
n∑

m=1

∑
F1,··· ,Fm

partition of [n]

∑
j1,··· ,jm
distinct

∫
∩k∈TS1Ak

· · ·
∫
∩k∈TSmAk

∑
i1,··· ,im
distinct(∏

j 6∈S

α(Cj)

)∏
j∈[m]

1Cij
(x̂j)

 ∞∏
k=1

∫
Vk∈Bk

(1− v)#̃jv#̃
′j dD(v)Z dα(xm) · · · dα(x1)

∞∏
k=1

∫
(1− v)#̃jv#̃

′j dD(v)

Now we can take the sum over i1, · · · , im, and the products
∏

j 6∈S α(Cj) and∏
k = 1∞

∫
Vk∈Bk

(1− v)#̃jv#̃
′j dD(v)Z outside the integrals and the sum over

j1, · · · , jm. Then we can evaluate the integrals. Because we only integrate
1Ci,j(x̂j) over

⋂
k∈Fj Ak with respect to measure α, we are left with the prod-

uct
∏m

j=1

(
α(Cij ∩

⋂
k∈Fj Ak)

)
. Doing this we get

=
n∑

m=1

∑
F1,··· ,Fm

partition of [n]

∑
i1,··· ,im
distinct

(∏
j 6∈S

α(Cj)

)∫
Vk∈Bk

(1− v)#̃jv#̃
′j dD(v)Z

∑
j1,··· ,jm
distinct

m∏
j=1

α(Cij ∩
⋂
k∈Fj

Ak)

 ∞∏
k=1

∫
(1− v)#̃jv#̃

′j dD(v)

Note that the product does not depend on the specific value of the j1, · · · , jm,
so we can take it in front, and then we are just computing 1

Z
, the normaliza-
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tion constant. So this cancels and we end up with

=
n∑

m=1

∑
F1,··· ,Fm

partition of [n]

∑
i1,··· ,im
distinct

(∏
j 6∈S

α(Cj)

)

∫
Vk∈Bk

(1− v)#̃jv#̃
′j dD(v)

m∏
j=1

α(Cij ∩
⋂
k∈Fj

Ak)


If we now reorder the terms we get what we want, namely

=
n∑

m=1

∑
F1,··· ,Fm

partition of [n]

∑
i1,··· ,im
distinct

(∏
j 6∈S

α(Cj)

)
 m∏
j=1

α(Cij ∩
⋂
k∈Fj

Ak)

∫
Vk∈Bk

(1− v)#̃jv#̃
′j dD(v).

Which is what we computed for P(θ ∈ B, V ∈ C,X ∈ A).

5.5 Generalization to distinct distributions

We can generalize outside the scope of stick-breaking processes, where the Vj
are still independent, but now each Vj has their own distribution Dj. Then
the same proof as above still holds, just with more notation to keep track of
the different distributions. This leads to the following theorem:

Theorem 5.5.1 (Posterior of a stick-breaking process based on n obser-
vations). The posterior of a stick-breaking process with atomless base mea-
sure α and stick-breaking weights Vi ∼ Di for observations x1, · · · , xn is,
using the notation above, given by the following hierarchical model: draw
I = (i1, · · · , im) proportional to

E

[
m∏
k=1

V nk
ik

ik−1∏
j=1

(1− Vj)nk1 all values of i1,··· ,im are distinct

]

Conditional on I,
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• Draw θi for i 6= I1, · · · , Im from α independently.

• Set θIi = x̂i.

• Define distribution D̃j to be the map A 7→
∫
A(1−V )#̃jV #̃′j dDj(v)∫
(1−V )#̃jV #̃′j dDj(v)

.

• Draw Vj from D̃j, independently.



Chapter 6

Consistency

In this chapter we study the consistency of the posterior, both in the standard
model and the mixtures case.

6.1 Consistency

Roughly, what we want from a good statistical model is that it will find
the true distribution in some sense. Notice that just stating that eventually,
with probability one we will find the true distribution will not work, because
sample variance would change our estimate. So what we want to do is state
that we can get arbitrarily close, in finite time, with probability tending to
one as one gets more data. This also has the advantage that while the truth
might not be a part of your parameter space, you can still talk about the
parameters which are close to your true distribution.

In order to be able to speak about consistency, we need some topological
notion of closeness. So we introduce the setting which always holds when
talking about consistency and contraction rates. For every n ∈ N, let X(n)

be an observation in the sample space (X n,Xn) with distribution P n
θ indexed

by a parameter θ belonging to a first countable topological space Θ. Given
a prior Π on the Borel sets of Θ, we can act like the observations X(n) came
from Π and form the posterior Πn

(
·|X(n)

)
.

Definition 6.1.1. The posterior distribution Πn

(
·|X(n)

)
is said to be (weakly)

consistent at θ0 ∈ Θ if, for all open neighborhoods U of θ0, Πn

(
U c|X(n)

)
→

0 in Pnθ0 probability, as n → ∞. The posterior is said to be strongly con-
sistent at θ0 ∈ Θ if this convergence is in the almost-sure sense.

46
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In general, we do not expect the family to be consistent, because it is to
big, however, we would like to derive easy tests to tell if it will be consistent
or not. For this, we hope to find a simple test, however, as the Pitman-Yor
process shows, the test will not be very easy, as already this process which
has a nice description fails to be consistent in case where the true distribution
is continuous. The Pitman-Yor process is an example of the stick-breaking
process with different stick-breaking weight distributions. We will see that
for a large class of stick-breaking processes, namely those with a continuous
density bounded away from zero, we do get consistency.

The stick-breaking processes are, as said before, an example of species
sampling models. For species sampling models there is a theorem which
classifies which distributions they get consistency for. However, the condition
is a very abstract one which is hard to make into something concrete.

6.2 Posterior consistency

6.2.1 Introduction of the topology.

Here we introduce the topology of convergence of bounded measurable func-
tions. We then compute the posterior integral of a bounded measurable
function.

Definition 6.2.1. We say that a sequence of measures µn converges point-
wise on bounded measurable functions to a measure µ if for every
bounded measurable function f we have µn(f)→ µ(f).

We will show that under some conditions on the distribution of V , the
posterior distribution of the stick-breaking process converges almost surely
to the true distribution in this setting.

We will use a simple lemma which gives a necessary and sufficient condi-
tion for consistency. This is [1, Lemma 6.4]

Lemma 6.2.2 (Consistency by functionals). If Ψ is a set of measurable real
functions on Θ so that

θm → θ0, if ψ(θm)→ ψ(θ0)∀ψ ∈ Ψ,

then the posterior distribution is (strongly) consistent at θ0 if for each ψ(θ)
the induced posterior is strongly consistent at ψ(θ0). If the functions ψ
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are uniformly bounded, then the latter is equivalent to the pair conditions
E
[
(ψ(θ)|X(n)

]
→ ψ(θ0) and var

(
ψ(θ)|X(n)

)
→ 0, in probability (or almost

surely).

Now because we can restrict the class of bounded functions to the class of
uniform bounded functions by just dividing by the bound on every function
if needed. This still generates the topology of pointwise convergence on
bounded measurable functions. Thus in order to prove the consistency of the
posterior with respect to this topology, it is enough to study the mean and
variance of functionals under this posterior.

6.2.2 Posterior consistency in case of Species sampling
process, Dirichlet processes and Pitman-Yor pro-
cess

In the general case of posterior species sampling processes, not much is known
about the consistency of the posterior distribution. We will introduce a gen-
eral theorem on the consistency of posterior distributions, and then one spe-
cific for the case of a Dirichlet or a Pitman-Yor process prior. The theorem
about the consistency of the Species sampling processes states. See [1, The-
orem 14.19] for a proof. The predictive probability functions pj(n) are given
by

pj(n) =
p( nj+)

p( n)
,

where p is the exchange probability partition function. We have written down
an expression for this, namely

p( n) = E

[
K∏
j=1

W̃
nj−1
j

K∏
j=2

(
1−

∑
i<j

W̃i

)]
.

And the notation nj+ means that we increase the j-th component of n by 1,
and if j is k + 1, where there are k distinct indices of n, we mean the vector
n with a 1 appended to the end.

Theorem 6.2.3. Let S be the support of the discrete part P d
0 of the probability

measure P0 = P c
0 + P d

0 . If P follows a species sampling process prior with
PPF (pj) satisfying, for nonnegative numbers αn = O(1) and numbers δn =
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O(1), and Nj,n counting how many times the j-th distinct observation occurs
in X1, · · · , Xj,

Kn∑
j=1:X̃j∈S

|pj(Nn)− αnNj,n + δn
n

| → 0 a.s. [P∞0 ],

Kn∑
i=1

Kn∑
j=1

|pi(Nn)pj(N
i+
n − pi(Nn)pj(Nn)| → 0 a.s. [P∞0 ],

Then the posterior distribution of P in the model X1, · · · , Xn|P
iid∼ P is

strongly consistent at P0 relative to the topology of pointwise convergence on
bounded measurable functions if both an → 1 and pKn+1(Nn) → 0 almost

surely. The latter two conditions are necessary if P d
0 6= 0 or G 6= P c0

||P c0 ||
,

respectively; and equivalent if P0 is discrete. Furthermore, if αn → α and
PKn+1(Nn)→ γ, and either pKn+2(N

Kn+1
n +)→ γ or γ = 0, then the posterior

distribution tends to αpd0 + βP c
0 + γG, for β =

1−α||P d0 ||−γ
||P c0 ||

.

The two states conditions state that prediction probability functions Pj(Nn)

and the sample frequency
Nj,n
n

should not differ to much, and that the vari-
ance in the model should go to zero almost surely. The problem with this
theorem is that it is very difficult to identify where the model is consistent,
we have conditions, but they are related to the true distribution. Further-
more, explicitly computing pj(Nn) and taking the limits might be hard. In
case of the Pitman-Yor process, we can get a better result, however, we will
not get the everywhere consistency. See [1, thm 14.38] for a proof..

Theorem 6.2.4. If P follows a Pitman-Yor PY(σ,M,G) process, then the

posterior distribution of P in the model X1, · · · , Xn|P
iid∼ P converges under

P0 relative to the weak tpology to P d
0 + (1 − σ)P c

0 + σξG, for ξ = ||P c
0 ||. In

particular, the posterior distribution is consistent if and only if P0 is discrete
or G is proportional to P c

0 or σ = 0.

As you can see, in this setting we have a very explicit condition for con-
sistency, however, it is not consistent for all distributions. This makes the
Pitman-Yor process less suitable for applications, as you can only apply this
if you know that the true distribution will be discrete. Note that the Dirich-
let process with atomless base measure is a Pitman-Yor process with σ = 0.
In the general case where we do not need to have a atomless base measure,
we also have a consistency result on the posterior of the Dirichlet process.
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6.2.3 Main result

The rest of this section is focusing on proving the consistency theorem and
stating a more general conjecture. The first theorem has a complete proof.
For the conjecture the proof is similar but we need to strengthen one lemma.
We give the strengthened version of that lemma as a conjecture. If we can ac-
tually prove this strengthened result, the rest of the lemmas can be modified
very easily to show that the consistency result extends to every distribution.

Theorem 6.2.5 (The stick-breaking process is consistent under regularity
conditions). Let α be an atomless measure. Suppose that the stick-breaking
distribution D admits a density f such that there exists constants a, b > 0
and a twice continuously differentiable function g on [0, 1] such that f(v) =
va−1(1 − v)b−1g(v) for v ∈ (0, 1). Let P0 be any distribution such that P0

does not both have infinitely many points of positive probability and a con-
tinuous part. Then the posterior in the model X1, · · · , Xn|P ∼ P , where
P ∼ SBP(α,D), as given in Theorem 5.4.4 is consistent with respect to the
topology of pointwise convergence on bounded measurable functions at P0.

Conjecture 6.2.6 (The stick-breaking process is consistent under regu-
larity conditions). Let α be an atomless measure. Suppose that the stick-
breaking distribution D admits a density f such that there exists constants
a, b > 0 and a twice continuously differentiable function g on [0, 1] such that
f(v) = va−1(1 − v)b−1g(v) for v ∈ (0, 1). Let P0 be any distribution. Then
the posterior in the model X1, · · · , Xn|P ∼ P , where P ∼ SBP(α,D), as
given in Theorem 5.4.4 is consistent with respect to the topology of pointwise
convergence on bounded measurable functions at P0.

We will give a rough sketch of the rest of this section. In the end it
turns out that the posterior distribution of the sample weights WIk is the
object we want to study. We want to know its asymptotic conditional mean
and variance. We start the search by introducing lemmas which allow us to
compute the limits. After we introduced the tools to compute the limits, we
find explicit expressions for the conditional moments. Then we analyze the
limiting behavior. In order to do this, we need to split the analysis into two
cases, weights corresponding to the observations from the discrete part of
the true distribution and to the total weight of the observations coming from
the continuous part of the true distribution. Then, using the expressions
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of the weights, we can start the proof of the main result, namely that the
posterior mean of P (f) converges to P0(f) and the posterior variance of P (f)
converges to zero, for f a bounded, non negative measurable function. This
then completes the proof.

6.2.4 Complementary lemmas

We will be using a few lemmas which can be directly stated without referring
to the details of the distribution we will be studying.

We start with a small lemma which allows us to compute some ratios of
expected values. We will apply this lemma many times during computation
of the consistency.

Lemma 6.2.7 (Ratio of expected values in case of beta distribution). Sup-

pose V ∼ β(a, b), then E[V x(1−V )y ]
E[(V z(1−V )w]

= B(x+a,y+b)
B(z+a,w+b)

.

Proof. It is enough to observe that E [(V x(1− V )y] = 1
B(a,b)

∫ 1

0
vx+a(1 −

v)y+b d v, and then the normalization constants cancel in the ratio.

We also introduce a small lemma which allows us to conclude that we
indeed converge. We have a ratio of sums, and we know for every term in
the sum that the ratios converge, so want that the ratio of sums converges.

Lemma 6.2.8 (Approximation of ratios of sums, part 1). Let an,m and bn,m
be two positive sequences for 1 ≤ m ≤ M such that for all 1 ≤ m ≤ M we

know an,m
bn,m
→ λ as n→∞, then

∑M
m=1 an,m∑M
m=1 bn,m

→ λ.

Proof. Consider cn,m = an,m
bn,m

. Then we can look at the minimum and maxi-

mum of cn,m over m. This yields two sequences

dn = min
m

cn,m

and
Dn = max

m
cn,m.

Clearly, both dn and Dn converge to λ. Observe that an,m = an,m
bn,m

bn,m and

hence
dn
∑
m

bn,m ≤
∑
m

an,m
bn,m

bn,m ≤ Dn

∑
m

bn,m



52 CHAPTER 6. CONSISTENCY

implies

dn
∑
m

bn,m ≤
∑
m

an,m ≤ Dn

∑
m

bn,m.

Using this we can now divide both above and below by
∑

m bn,m to get

dn ≤
∑

m an,m∑
m bn,m

≤ Dn

which, since both dn and Dn converge to λ implies∑
m an,m∑
m bn,m

→ λ.

The previous lemma is enough when working with only finite number of
discrete observations. However, if the number of distinct observations grows,
we need a stronger lemma. The next lemma is a fundamental lemma which
allows us to extend the computation to a much larger class of priors, at the
price of a more complicated statement.

Lemma 6.2.9 (Approximation of ratios of sums). Let Sn be a sequence of
sets. Let fn, gn : Sn → R+ be two sequences of positive functions which have
finite total sum: ∑

s∈Sn

fn(s) and
∑
s∈Sn

gn(s)

both exists. Suppose that for every n there exists a subset Tn of Sn such that

lim
n→∞

∑
s∈Tn gn(s)∑
s∈Sn gn(s)

= 1.

Suppose furthermore that

sup
n,s∈Sn

fn(s)

gn(s)
= L <∞

and that the lower and upper bounds

cn = inf
s∈Tn

fn(s)

gn(s)
and Cn = sup

s∈Tn

fn(s)

gn(s)

both converge to a limit λ. Then

lim
n→∞

∑
s∈Sn fn(s)∑
s∈Sn gn(s)

= λ.
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Proof. Define Un = Sn \ Tn. Observe that

lim
n→∞

∑
s∈Un gn(s)∑
s∈Sn gn(s)

= 1.

Then we can rewrite∑
s∈Sn fn(s)∑
s∈Sn gn(s)

=

∑
s∈Tn fn(s)∑
s∈Sn gn(s)

+

∑
s∈Un fn(s)∑
s∈Sn gn(s)

=

∑
s∈Tn fn(s)∑
s∈Tn gn(s)

∑
s∈Tn gn(s)∑
s∈Sn gn(s)

+

∑
s∈Un fn(s)∑
s∈Sn gn(s)

∑
s∈Un gn(s)∑
s∈Sn gn(s)

Now we can compute the limits for each term. First compute the limit of∑
s∈Tn fn(s)∑
s∈Tn gn(s)

. We can give both upper and lower bounds by Cn and cn, which

both converge to λ, so the limit of
∑
s∈Tn fn(s)∑
s∈Tn gn(s)

is λ. The limit of
∑
s∈Tn gn(s)∑
s∈Sn gn(s)

is

per hypothesis 1. The limit of
∑
s∈Un gn(s)∑
s∈Sn gn(s)

is 0, and 0 <
∑
s∈Un fn(s)∑
s∈Sn gn(s)

< L, so

that ∑
s∈Tn fn(s)∑
s∈Tn gn(s)

∑
s∈Tn gn(s)∑
s∈Sn gn(s)

+

∑
s∈Un fn(s)∑
s∈Sn gn(s)

∑
s∈Un gn(s)∑
s∈Sn gn(s)

→ λ.

This shows that ∑
s∈Sn fn(s)∑
s∈Sn gn(s)

→ λ.

In view of this lemma, we are interested in finding good sets Tn of all the
sets Sn which we are summing over. Here good means that there is some
form of uniform convergence of fn(s)

gn(s)
, and we are not ignoring to much of the

cases. Finding these sets will be the main game we will be playing. Here Sn
will be the sets of all possible permutations, gn(s) will be the probability of
a permutation under I, and fn(s) will be coming from the expected value of
WIk given a permutation σ.

Lemma 6.2.10 (asymptotic ratio of number of distinct observations from
discrete support). Let Kn be the number of distinct observations of the dis-
crete support from a distribution P0. Then

lim
n→∞

Kn

n
= 0 P0a.s.
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Proof. Denote S the support of the continuous part of P0. Let ε > 0. Let
µ1, · · · , µM de distinct support points such that P({µ1, · · · , µM}∪S) > 1− ε

3
.

Then there exists an m > 0 such that ∀n > N the number of observations of
µi in the data, Ni,n satisfies, for all 1 ≤ i ≤M ,

|Ni,n

n
− P(µi)| <

ε

3M

by the strong law of large numbers, almost surely. This means that there
are at most M + 2ε

3
n distinct observations of the discrete part. Picking

K ′ = max(K, 3M
ε

), we find that for all n > K ′ we have

Kn

n
≤ ε

Hence Kn
n
→ 0 P0 almost surely.

Lemma 6.2.11. Let Kn
n
→ 0. Then (1 +O( 1

n
))Kn → 1.

Proof.

(1 +O(
1

n
))Kn = exp(Kn log(1 +O(

1

n
))).

Now because the exponential function is continuous it is enough to show that

Kn log(1 +O(
1

n
))→ 0.

For this observe that we can Taylor expand x 7→ log(1+x) by O(x). Applying
this to something of O( 1

n
) yields that log(1 + O( 1

n
)) = O( 1

n
) and hence

KnO( 1
n
) converges to zero. This is what we wanted.

Next comes a lemma which now seems arbitrary, but is relevant to com-
pute limits of products appearing.

Lemma 6.2.12. Let Kn be a sequence of positive natural numbers such that
Kn
n
→ 0. Let p1,n be a sequence converging to p1 > 0. Let a, b > 0. Then,

uniformly in

• pi,n positive real numbers such that
∑Kn

i=1 pi,n = 1,

• all permutations σ of [Kn],
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np1,n + a

n
∑

i:σ(i)>σ(k) pi + b

σ(1)∏
j=1

n
∑

i:σ(i)>σ(j) pi + b∑
i:σ(i)≥σ(j) pi + a+ b

→ p1.

Proof. We rewrite every term in

np1,n + a

n
∑

i:σ(i)>σ(k) pi + b

σ(1)∏
j=1

n
∑

i:σ(i)>σ(j) pi + b∑
i:σ(i)≥σ(j) pi + a+ b

as follows:

np1,n + a

n
∑

i:σ(i)>σ(k) pi + a+ b
=

np1,n + b

n
∑

i:σ(i)>σ(k) pi + a+ b

np1,n + a

np1,n + b

and

n
∑

i:σ(i)>σ(j) pi + b∑
i:σ(i)≥σ(j) pi + a+ b

=
n
∑

i:σ(i)>σ(j) pi + b

n
∑

i:σ(i)≥σ(j) pi + b

n
∑

i:σ(i)≥σ(j) pi + b

n
∑

i:σ(i)≥σ(j) pi + a+ b
.

Now note that

np1,n + b

n
∑

i:σ(i)>σ(k) pi + a+ b

σ(1)∏
j=1

n
∑

i:σ(i)>σ(j) pi + b

n
∑

i:σ(i)≥σ(j) pi + b

telescopes to
np1,n + b

n
∑Kn

i=1 pi,n + b

and since
∑Kn

i=1 pi,n = 1 per assumption, we can simplify this to

np1,n + b

n+ b
→ p1.

Now we only have to look at the error factors, we want to show that these
converge to one. The first factor is easy, one shows directly that

np1,n + a

np1,n + b
→ 1.

For the second term
σ(1)∏
j=1

n
∑

i:σ(i)≥σ(j) pi + b

n
∑

i:σ(i)≥σ(j) pi + a+ b
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some more work is needed. Clearly this product is bounded above by 1, since
every term is less than 1. Now if we look at the smallest factor, this is

n
∑

i:σ(i)≥σ(1) pi + b

n
∑

i:σ(i)≥σ(1) pi + a+ b
.

We can study the worst case over all σ, namely σ(1) = Kn. Then this factor
becomes

np1,n + b

np1,n + a+ b

This gives

σ(1)∏
j=1

n
∑

i:σ(i)≥σ(j) pi + b

n
∑

i:σ(i)≥σ(j) pi + a+ b
≥
(

np1,n + b

np1,n + a+ b

)Kn
.

If we can show this converges to 1 we are done. Note that we can make this
term even smaller by decreasing b to zero. So we want to study(

np1,n
np1,n + a

)Kn
Note that np1,n

np1,n+a
= 1 +O( 1

n
) so we can apply Lemma 6.2.11, hence

(
np1,n

np1,n + a

)Kn
→ 0

Which means that

np1,n + a

n
∑

i:σ(i)>σ(k) pi + b

σ(1)∏
j=1

n
∑

i:σ(i)>σ(j) pi + b∑
i:σ(i)≥σ(j) pi + a+ b

→ p1.

We also want a lemma to control how bad some other terms can become.
We shall show they have no influence on the limit. We are primarily interested
in the case where k is equal to 1 or 2. However, this lemma will probably be
relevant (in some way) for future research (read a Bernstein-von Mises like
theorem, see [1, Chapter 12] and [4, chapter 10]).



6.2. POSTERIOR CONSISTENCY 57

Lemma 6.2.13. Let Kn be a sequence of positive natural numbers. Let p1,n
be a sequence converging to p1 > 0, such that np1,n are natural numbers. Let
k be a natural number. Let V be a random variable with density f such that
there exists a, b > 0 and a continuous function g bounded away from zero
such that f(v) = va−1(1− v)b−1g(v) for all v ∈ (0, 1). Then, uniformly in

• pi,n positive real numbers such that
∑Kn

i=1 pi,n = 1 and npi,n is a natural
number for all i.

• all permutations σ of [Kn]

σ(1)∏
j=1

1− E
[
(1− V )k+n

∑
i:σ(i)≥j pi,n

]
1− E

[
(1− V )n

∑
i:σ(i)≥j pi,n

] → 1.

Proof. First observe that

1− E
[
(1− V )k+j

]
1− E [(1− V )j]

≥ 1

since E [(1− V )j] is decreasing in j. This means that if we multiply by all

the missing factors
1−E[(1−V )k+j]
1−E[(1−V )j ]

for j natural numbers larger than np1,n, i.e.
we multiply by ∏n

j=np1,n

1−E[(1−V )k+j]
1−E[(1−V )j ]∏σ(1)

j=1

1−E
[
(1−V )

k+n
∑
i:σ(i)≥j pi,n

]
1−E

[
(1−V )

n
∑
i:σ(i)≥j pi,n

]
which is larger than one, we get

n∏
j=npi,n

1− E
[
(1− V )k+j

]
1− E [(1− V )j]

.

This is a telescoping product, telescoping to∏k
i=1(1− E

[
(1− V )n+k

]
)∏k

i=1(1− E [(1− V )np1,n+k−1])
.

This converges to 1, so we have an upper bound converging to 1, and a lower
bound of one, of

σ(1)∏
j=1

1− E
[
(1− V )k+n

∑
i:σ(i)≥j pi,n

]
1− E

[
(1− V )n

∑
i:σ(i)≥j pi,n

] .
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Hence this also converges to 1, uniformly for all σ and all assignments of
pi,n.

We need a bounded variation like property, but then for products instead
of sums. The following lemma gives sufficient conditions when this happens.

Lemma 6.2.14 (Product of fractions of evaluations of continuous function
remains bounded). Let g be a continuously differentiable function bounded
away from zero, then

sup
0≤s1<t1<···<sk<tk

k∏
i=1

g(si)

g(ti)

and

sup
0≤s1<t1<···<sk<tk

k∏
i=1

g(ti)

g(si)

are finite.

Proof. Because g is continuously differentiable and bounded away from zero,
we know that log g is continuously differentiable, and hence is bounded vari-
ation. Now observe that

sup
0≤s1<t1<···<sk<tk

k∏
i=1

g(ti)

g(si)
= exp sup

0≤s1<t1<···<sk<tk

k∑
i=1

(log(g(ti))− log(g(si))).

And sup0≤s1<t1<···<sk<tk
∑k

i=1(log(g(ti))− log(g(si))) is smaller than the total
variation norm, which is

sup
0≤s1<t1<···<sk<tk

k∑
i=1

|g(ti)− g(si)| <∞

Because log g is continuously differentiable.

We will use this property of variances in the proof of consistency.

Lemma 6.2.15. If (Xn)n∈N and (Yn)n∈N are two sequences of random vari-
ables such that Var(Xn)→ 0 and Var(Yn)→ 0. Then Var(Xn + Yn)→ 0.
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Proof. Var(Xn + Yn) = Var(Xn) + Var(Yn) + 2Cov(Xn, Yn). Per assumption
the first two terms converge to zero, so only need to check that Cov(Xn, Yn)→
0. For this observe that |Cov(Xn, Yn)| ≤

√
Var(Xn)Var(Yn). Thus the last

term converges to zero as well.

The following lemma is a technique to find convergent sequences. This
is a useful way to construct convergent sequences if you can create a double
sequence such that, if we take limits in the first coordinate, and then limits
in the second coordinate, we converge to the required answer. This is useful
to control error terms.

Lemma 6.2.16. Let (xn,k)n,k∈N be a double sequence of elements in a metric
space (X, d) such that for all k

lim
n→∞

xn,k = xk,

and
lim
k→∞

xk = x.

Then there exists a sequence (kn)n∈N such that

lim
n→∞

xn,kn = x.

Proof. Let (εn)n∈N be any decreasing sequence converging to zero. We want
to define Kn iteratively. For iteration i = 0 we pick N0 = 1. In iteration
i > 0 we pick Mi > 0 such that for all k ≥ Mi we know d(xk, x) < εi

2
. Now

pick Ni > 0 such that ∀n > Ni we have d(xn,Mi
, xMi

) < εi
2

. Set kNi = Mi and
for Ni−1 < n < Ni define kn = KNi−1

.
Now we show that limn→∞ xn,Kn = x. Let ε > 0. Then there exists an

i such that εi < ε (by convergence to zero of εi). Let n > Ni. Suppose
Nj ≤ n < Nj+1. Then d(xn,kn , xkn) <

εj
2

and d(xkn , x) <
εj
2

by construction.

d(xn,kn , x) ≤ d(xn,kn , xkn) + d(xkn , x)

≤ εj
2

+
εj
2

≤ εj < εi < ε

at Ni−1 ≤ n < Ni. Then Kn has the required property.

We recall a result on uniform convergent functions. We will apply this a
couple of times.
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Lemma 6.2.17 (Sum of uniformly convergent functions is uniformly conver-
gent). Suppose we have two sequences of functions fn, gn : Sn → R such that
fn converges uniformly to λ and gn converges uniformly to µ. Then fn + gn
converges uniformly to λ+ µ.

Proof. Let ε > 0. Since

sup
x∈Sn
|fn(x) + gn(x)− λ− µ| ≤ sup

x∈Sn
|fn(x)− λ|+ sup

x∈Sn
|gn(x)− µ|

Now pick N > 0 such that both

sup
x∈Sn
|fn(x)− λ| < ε

2

and
sup
x∈Sn
|gn(x)− µ| ≤ ε

2
.

These exists by uniform convergence of fn and gn to λ and µ respectively.

6.2.5 Preparation

In order to show the consistency of the posterior, we first want to study the
posterior. We will always work in the case that the base measure is atomless.
Recall that the posterior is given by: Draw I = (i1, · · · , im) proportional to

E

[
m∏
k=1

V nk
ik

ik−1∏
j=1

(1− Vj)nk1 all values of i1,··· ,im are distinct

]

Conditional on I,

• Draw θi for i 6= I1, · · · , Im from α independently.

• Set θIi = x̂i.

• Define distribution D̃j to be the map A 7→
∫
A(1−V )#̃fV nk#̃

′j dD(v)∫
(1−V )#̃fV #̃′j dD(v)

.

• Draw Ṽj from D̃j, independently.

In order to show the consistency of the posterior, we first want to study
the posterior itself in more details.
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Definition of the relevant random variables.

We will now study the posterior distribution in more detail. We are going
to find some descriptions of relevant random variables. Let m denote the
number of distinct observations, n the total number of observations, and pi
the sample frequency. We can compute properties of the posterior in this
setting.

In order to reduce the amount of explicitly writing the conditioning on
random variables, we introduce the following notation. Ẽ [·] = E [·|X1, · · · , Xn],
Ṽar(·) = Var(·|X1, · · · , Xn) and P̃(·) = P(·|X1, · · · , Xn).

Computation of the normalization constants

For the probabilities P̃(I = (i1, · · · , im)) we have an expression up to nor-
malization constants. We compute these constants now.

Lemma 6.2.18 (Distribution of I). Suppose we have Kn distinct observa-
tions in X1, · · · , Xn. Then

P̃(I = (i1, · · · , im)) =

Ẽ

[
m∏
l=1

V npl
il

il−1∏
j=1

(1− Vj)npl1 all values of i1,··· ,im are distinct

]

∑
σ∈SKn

m∏
l=1

Ẽ

V npσ−1(l) (1−V )
n

m∑
k=l+1

p
σ−1(k)


1−Ẽ

(1−V )
n
m∑
k=l

p
σ−1(k)


Proof. What we observe is that summing over i1, · · · , im all distinct is the
same as summing over all permutations σ : [m] → [m], and then summing
over all iσ(1) < iσ(2) < · · · < iσ(m). We can then also permute the weights p
and then we are done.

In details∑
i1,··· ,im
all distinct

Ẽ

[
m∏
k=1

V nk
ik

ik−1∏
j=1

(1− Vj)nk1 all values of i1,··· ,im are distinct

]

Introducing the permutations to fix the order of i1, · · · , im then gives

=
∑
σ∈SKn

∑
iσ(1)∈N

∑
iσ(2)>iσ(1)

· · ·
∑

iσ(m)>iσ(m−1)

P(I = i1, · · · , im)
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If we now also look at the swapped weights we get

=
∑
σ∈SKn

∑
i1<i2<···<im

Ẽ

[
m∏
l=1

V
npσ−1(l)

il

il−1∏
j=1

(1− Vj)npσ−1(l)

]

Can now factorize this using independence and counting how many times
terms appear, gives

=
∑
σ∈SKn

∑
i1<···<im

m∏
l=1

Ẽ

[
V npσ−1(l)(1− V )

n
m∑

k=l+1
pσ−1(k)

]
Ẽ

[
(1− V )

n
m∑
k=l

pσ−1(k)

]il−il−1−1

Now if we take this sum over the integers, we get that this equals

=
∑
σ∈SKn

m∏
l=1

Ẽ

[
V npσ−1(l)(1− V )

n
m∑

k=l+1
pσ−1(k)

]

1− Ẽ

[
(1− V )

n
m∑
k=l

pσ−1(k)

] .

From this lemma we can also deduce what the distribution of the permu-
tations σ are, namely

Corollary 6.2.19. Suppose we have Kn distinct observations in X1, · · · , Xn.
Then

P̃(Σ = σ) =

m∏
l=1

Ẽ

V npσ−1(l) (1−V )
n

m∑
k=l+1

p
σ−1(k)


1−Ẽ

(1−V )
n
m∑
k=l

p
σ−1(k)



∑
τ∈SKn

m∏
l=1

Ẽ

V npτ−1(l) (1−V )
n

m∑
k=l+1

p
τ−1(k)


1−Ẽ

(1−V )
n
m∑
k=l

p
τ−1(k)



.

The next lemma which is stated is a conjecture. We can show that there
should not be to many observations from the continuous part picked before
any specific observation X from the discrete part of the distribution. To be
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more precise, if the set of the permutations for which there are at most Kn

observations from the continuous part in front of the location of X. This
lemma is needed to get the consistency in case there is a continuous part and
the support of the discrete distribution is infinite.

The lemma we want is

Conjecture 6.2.20. Let mn denote the number of distinct observations. Let
An denote the sample of observations from the continuous part of the distri-
bution. Define Sn the space of permutations of [mn]. Let X̂k be an observa-
tion from the discrete part of the distribution. There almost surely exists a
sequence Kn such that Kn

n
→ 0 and such that the sequence of sets

Tn = {σ ∈ Sn|#{i ∈ An : σ(i) < σ(k)} ≤ Kn}.

is of asymptotic conditional probability 1.

One can observe from reversing the analysis for the Dirichlet process that
lemma holds if the stick-breaking weights are beta(1,M) distributed. We
want to show this holds in general.

What one can observe is that we can prove a weaker version of this state-
ment in case we have finitely many points with positive probability. This is
done in the relevant section. However, if we can prove this general lemma
we can extend the proofs of consistency to the last two cases as well.

We introduce some more notation, in order to keep the summations in
powers in check. We denote Tσ,r =

∑m
k=r npσ−1(k).

Explicit expression for moments of WIk

Note that we can compute Ẽ
[
W q
Ik

]
by using the tower property of the ex-

pectation. This yields

Ẽ
[
W q
Ik

]
= Ẽ

[
Ẽ [WIk |I]

]
=

∑
i1,··· ,im
all distinct

P̃(I = i)Ẽ [WIk |I = i] .

We know an explicit formula for the distribution of P̃(I = i), namely

P̃(I = i) =

Ẽ

[
m∏
l=1

V npl
il

il−1∏
j=1

(1− Vj)npl1 all values of i1,··· ,im are distinct

]
∑

σ∈SKn

m∏
l=1

Ẽ[V
np
σ−1(l) (1−V )

Tσ,l+1 ]
1−Ẽ[(1−V )

Tσ,l ]

.
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Thus in order to compute the moments of WIk it is useful to compute the
conditional moments first. The next lemma gives an expression for the con-
ditional moments.

Lemma 6.2.21 (q-th moment of WIk given I). If I = (i1, · · · , im), this
induces a permutation σ so that iσ(1) < · · · < iσ(m). Then define j1 = iσ(1)
and jl = iσ(l) − iσ(l−1) − 1.

Ẽ
[
W q
Ik
|I = i

]
=

Ẽ
[
V npk+q(1− V )Tσ,σ−1(k)+1

]
Ẽ
[
V npk(1− V )Tσ,σ−1(k)+1

]
Ẽ
[
(1− V )q+Tσ,σ−1(k)

]jσ(k)
Ẽ
[
(1− V )nTσ,σ−1(k)

]jσ(k)
∏

j<σ(k)

Ẽ
[
V npl(1− V )q+Tσ,l+1

]
Ẽ [V npl(1− V )Tσ,l+1 ]∏

j<σ(k)

Ẽ
[
(1− V )q+Tσ,l

]jl
Ẽ [(1− V )Tσ,l ]

jl
.

Proof. For this, we do the same trick, look at permutations to fix the order
of I1, · · · , Im and then look at iσ(1), iσ(2) − iσ(1) − 1, · · · , iσ(m) − iσ(m−1) − 1,
call these j1 · · · , jm. Then we get the following 4 terms appearing in the
conditional expectation of WIk

•
Ẽ
[
V npk+q(1−V )

T
σ,σ−1(k)+1

]
Ẽ
[
V npk (1−V )

T
σ,σ−1(k)+1

] .

•
Ẽ
[
(1−V )

q+T
σ,σ−1(k)

]jσ(k)
Ẽ
[
(1−V )

T
σ,σ−1(k)

]jσ(k)
• for l < σ(k) we get terms

Ẽ[V npl (1−V )
q+Tσ,l+1 ]

Ẽ[V npl (1−V )
Tσ,l+1 ]

.

• for l < σ(k) we get terms
Ẽ[(1−V )

q+Tσ,l ]
Ẽ[(1−V )

Tσ,l ]
jl

.



6.2. POSTERIOR CONSISTENCY 65

Now we have the conditional moment of WIk so we can compute the
unconditional (with respect to I) moment of WIk given the data.

Lemma 6.2.22 (q-th moment of WIk). Suppose we have Kn distinct obser-
vations in X1, · · · , Xn. Then

Ẽ
[
W q
Ik

]
=∑

σ∈SKn

Ẽ
[
V npk+q(1−V )

T
σ,σ−1(k)+1

]
1−Ẽ

[
(1−V )

q+T
σ,σ−1(k)

] ∏
l<σ(k)

Ẽ[V npl (1−V )
q+Tσ,l+1 ]

1−Ẽ[(1−V )
q+Tσ,l ]

∏
l>σ(k)

Ẽ[V npl (1−V )
Tσ,l+1 ]

1−Ẽ[(1−V )
Tσ,l ]∑

σ∈SKn

m∏
l=1

Ẽ[V
np
σ−1(l) (1−V )

Tσ,l+1 ]
1−Ẽ[(1−V )

Tσ,l ]

.

Proof. Recall that by using the tower formula

Ẽ
[
W q
Ik

]
= Ẽ

[
Ẽ
[
W q
Ik
|I
]]

=
∑

i1,··· ,im
all distinct

P̃(I = i)Ẽ
[
W q
Ik
|I = i

]
.

Now we can combine everything into one expression for Ẽ
[
W q
Ik

]
using the

sum formula, note that for fixed σ, j1, · · · , jm we can compute the product,
and then we can cancel terms, this gets rid of the normalization constants
in the expression for Ẽ

[
W q
Ik
|I
]
. We first ignore the normalization constant,

because this is a constant factor which we can add in the end. Then, for
fixed σ, j we get a product of the following 6 factors

• Ẽ
[
V npk+q(1− V )Tσ,σ−1(k)+1

]
.

• Ẽ
[
(1− V )q+Tσ,σ−1(k)

]
.

• for l < σ(k) we get terms Ẽ
[
V npl(1− V )q+Tσ,l

]
.

• for l < σ(k) we get terms Ẽ
[
(1− V )q+Tσ,l

]jl .
• for l > σ(k) we get terms Ẽ

[
V npl(1− V )Tσ,l+1

]
.

• for l > σ(k) we get terms Ẽ
[
(1− V )Tσ,l

]jl .
So after summing over all the assignments of j, and using the geometric
series, we get , for fixed σ the product of the following 6 factors
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• Ẽ
[
V npk+q(1− V )Tσ,σ−1(k)+1

]
.

• 1

1−Ẽ
[
(1−V )

q+T
σ,σ−1(k)

] .

• for l < σ(k) we get a term Ẽ
[
V npl(1− V )q+Tσ,l+1

]
.

• for l < σ(k) we get a term 1

1−Ẽ[(1−V )
q+Tσ,l ]

.

• for l > σ(k) we get a term Ẽ
[
V npl(1− V )Tσ,l+1

]
.

• for l > σ(k) we get a term 1

1−Ẽ[(1−V )
Tσ,l ]

.

Now if we multiply these together, sum them over all values of σ, and
multiply by the normalization constant. This gives the claimed value.

We also want to know the mixed first moment of WIkWIj , so we first
compute the conditional first moment.

Lemma 6.2.23 (first moment of WIkWIj given I). If I = (i1, · · · , iKn), this
induces a permutation σ so that iσ(1) < · · · < iσ(K)n). Then define j1 = iσ(1)
and jl = iσ(l)− iσ(l−1)− 1. If Ik > Im denote s = k and t = m and otherwise
s = m and t = k. Then

Ẽ [WIkWIm|I = i] =
Ẽ
[
V nps+q(1− V )Tσ,σ−1(s)+1

]
Ẽ
[
V nps(1− V )Tσ,σ−1(s)+1

] Ẽ
[
(1− V )q+Tσ,σ−1(s)

]jσ(s)
Ẽ
[
(1− V )Tσ,σ−1(s)

]
jσ(s)

Ẽ
[
V npl(1− V )q+Tσ,l+1

]
Ẽ [V npl(1− V )Tσ,l+1 ]

Ẽ
[
(1− V )q+Tσ,l

]
Ẽ [(1− V )Tσ,l ]

jl

Ẽ
[
V npt+q(1− V )Tσ,σ−1(t)+1

]
Ẽ
[
V npt(1− V )Tσ,σ−1(t)+1

] Ẽ
[
(1− V )q+Tσ,σ−1(t)

]jσ(t)
Ẽ
[
(1− V )Tσ,σ−1(t)

]
jσ(t)

Ẽ
[
V npl(1− V )q+Tσ,l+1

]
Ẽ [V npl(1− V )Tσ,l+1 ]

Ẽ
[
(1− V )q+Tσ,l

]
Ẽ [(1− V )Tσ,l ]

jl

.
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Proof. For this, we do the same trick, look at permutations to fix the order of
I1, · · · , IKn and then look at iσ(1), iσ(2)− iσ(1)−1, · · · , iσ(m)− iσ(Kn−1)−1, call
these j1 · · · , jKm . We do the case where Ik > Im, the other case follows by
swapping roles. Then we get the following 8 terms appearing in the definition
of WIk

•
Ẽ
[
V npk+q(1−V )

T
σ,σ−1(k)+1

]
Ẽ
[
V npk (1−V )

T
σ,σ−1(k)+1

] .

•
Ẽ
[
(1−V )

q+T
σ,σ−1(k)

]jσ(k)
Ẽ
[
(1−V )

T
σ,σ−1(k)

]
jσ(k)

• for σ(m) < l < σ(k) we get terms
Ẽ[V npl (1−V )

q+Tσ,l+1 ]
Ẽ[V npl (1−V )

Tσ,l+1 ]
.

• for l < σ(k) we get terms
Ẽ[(1−V )

q+Tσ,l ]
Ẽ[(1−V )

Tσ,l ]

jl

.

•
Ẽ
[
V npm+q(1−V )

T
σ,σ−1(m)+1

]
Ẽ
[
V npm (1−V )

T
σ,σ−1(m)+1

] .

•
Ẽ
[
(1−V )

q+T
σ,σ−1(m)

]jσ(m)

Ẽ
[
(1−V )

T
σ,σ−1(m)

]
jσ(m)

• for l < σ(m) we get terms
Ẽ[V npl (1−V )

q+Tσ,l+1 ]
Ẽ[V npl (1−V )

Tσ,l+1 ]
.

• for l < σ(m) we get terms
Ẽ[(1−V )

q+Tσ,l ]
Ẽ[(1−V )

Tσ,l ]

jl

.

We now know the conditional first mixed moment, which allows us to
compute the conditional first mixed moment.

Lemma 6.2.24 (first moment of WIkWIm). Let k and m be natural numbers.
Suppose we have Kn distinct observations in X1, · · · , Xn. Then Note that the
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sums run into the second line of the expression.

Ẽ
[
WIk

WIm

]
=

∑
σ∈SKn

Ẽ
[
V nps+1(1−V )

Tσ,σ(s)+1
]

1−Ẽ
[
(1−V )

1+Tσ,σ(s)
] Ẽ

[
V npt+1(1−V )

Tσ,σ(t)+1
]

1−Ẽ
[
(1−V )

2+Tσ,σ(t)
] σ(t)−1∏

l=1

Ẽ
[
V npl (1−V )

2+Tσ,l+1
]

1−Ẽ
[
(1−V )

2+Tσ,l
]

∑
σ∈SKn

Kn∏
l=1

Ẽ
[
V
np
σ−1(l) (1−V )

Tσ,l+1
]

1−Ẽ
[
(1−V )

Tσ,l
]

σ(s)−1∏
l=σ(t)+1

Ẽ
[
V npl (1−V )

1+Tσ,l+1
]

1−Ẽ
[
(1−V )

1+Tσ,l
] Kn∏

l=σ(s)+1

Ẽ
[
V
np
σ−1(l) (1−V )

Tσ,l+1
]

1−Ẽ
[
(1−V )

Tσ,l
]

1

Proof. Recall that by using the tower formula

Ẽ [WIkWIm ] = Ẽ
[
Ẽ [WIkWIm|I]

]
=

∑
i1,··· ,iKn
all distinct

P̃(I = i)Ẽ [WIkWIm|I = i] .

Now we can combine everything into one expression for Ẽ [WIkWIm ] us-
ing the sum formula, note that for fixed σ, j1, · · · , jKm we can compute the
product, and then we can cancel terms, this gets rid of the normalization
constants in the expression for Ẽ

[
W q
Ik
|I
]
. We first ignore the normalization

constant, because this is a constant factor which we can add in the end.
Then, for fixed σ, j we get a product of the following 10 factors

• Ẽ
[
V nps+1(1− V )Tσ,σ(s)+1

]
.

• Ẽ
[
(1− V )1+Tσ,σ(s)

]js
.

• Ẽ
[
V npt+1(1− V )Tσ,σ(t)+1

]
.

• Ẽ
[
(1− V )2+Tσ,σ(t)

]jl .
• for l < σ(t) we get terms Ẽ

[
V npl(1− V )q+Tσ,l

]
.

• for l < σ(t) we get terms Ẽ
[
(1− V )q+Tσ,l

]jl .
• for σ(t) < l < σ(s) we get terms Ẽ

[
V npl(1− V )2+Tσ,l

]
.

• for σ(t) < l < σ(s) we get terms Ẽ
[
(1− V )2+Tσ,l

]jl .
• for l > σ(s) we get terms Ẽ

[
V npl(1− V )Tσ,l+1

]
.
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• for l > σ(s) we get terms Ẽ
[
(1− V )Tσ,l

]jl .
So after summing over all the assignments of j, and using the geometric
series, we get , for fixed σ the product of the following 10 factors

• Ẽ
[
V nps+1(1− V )Tσ,σ(s)+1

]
.

• 1

1−Ẽ
[
(1−V )

1+Tσ,σ(s)
] .

• Ẽ
[
V npt+1(1− V )Tσ,σ(t)+1

]
.

• 1

1−Ẽ
[
(1−V )

2+Tσ,σ(t)
] .

• for l < σ(t) we get a term Ẽ
[
V npl(1− V )2+Tσ,l+1

]
.

• for l < σ(t) we get a term 1

1−Ẽ[(1−V )
2+Tσ,l ]

.

• for σ(t) < l < σ(k) we get a term Ẽ
[
V npl(1− V )1+Tσ,l+1

]
.

• for σ(t)l < σ(k) we get a term 1

1−Ẽ[(1−V )
1+Tσ,l ]

.

• for l > σ(k) we get a term Ẽ
[
V npl(1− V )Tσ,l+1

]
.

• for l > σ(k) we get a term 1

1−Ẽ[(1−V )
Tσ,l ]

.

Now if we multiply these together, sum them over all values of σ, and
multiply by the normalization constant. This gives the claimed value.

We formulate a corollary from this discussion, which states that weights
corresponding to observations which have the same sample frequency are
identically distributed.

Corollary 6.2.25. Suppose Ni = Nj. Then both Ii and Ij are have the same
distribution and WIi and WIj are have the same distribution.

Proof. Note that the distribution of Ii and Ij only cares about all the per-
mutations and how many weight we assign to them, by Lemma 6.2.18 we
see that the Ii and Ij are the same. Similarly, if we look to distribution of
the weights, all that matters is how many times all the distinct observations
have occurred. This shows that the distribution of WIi = WIj .
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Note that the expressions for the first and second moment can alterna-
tively be derived from the predictive probability functions and the expression
for the EPPF as given in Lemma 4.3.1.

Lemma 6.2.26 (Bounded errors). The point-wise ratios in the fractions for
the q-th moments remain bounded:

Ẽ
[
V npk+q(1−V )

Tσ,σ(k)+1
]

1−Ẽ
[
(1−V )

q+Tσ,σ(k)
] ∏

l<σ(k)

Ẽ[V npl (1−V )
q+Tσ,l+1 ]

1−Ẽ[(1−V )
q+Tσ,l ]

∏
l>σ(k)

Ẽ[V npl (1−V )
Tσ,l+1 ]

1−Ẽ[(1−V )
Tσ,l ]

m∏
l=1

Ẽ[V
np
σ−1(l) (1−V )

Tσ,l+1 ]
1−Ẽ[(1−V )

Tσ,l ]

≤ 1.

Proof. Observe that in numerator the terms in the expected value have
nowhere lower exponent and in some places higher exponents. Because the
expected value Ẽ [V x(1− V )y] is nonincreasing in x and y we get that the
numerator is not larger than the denominator. This shows that the fraction
is less than 1, which is what we wanted to show.

6.2.6 Finding well behaved sets of permutations

In order to apply many of our lemmas, we need to have at most Kn terms
in the product, with Kn

n
converging to zero. For this we are going to prove a

weaker version of the conjecture.
We first start by finding an explicit distribution of I.

Lemma 6.2.27 (Distribution of I). Suppose that there are m points which
occur more than once, and bλnc points which occur exactly once. Then

P̃(I = (i1, · · · , im+bλnc)) =

Ẽ

[
m+bλnc∏
l=1

V npl
il

il∏
j=1

(1− Vj)npl1 all values of i1 · · · , im+bλnc are distinct

]
∑
σ∈Sm

∑
j0,··· ,jm

summing to bλnc

m∏
k=1

Ẽ
[
V
np
σ−1 (k)

(1−V )
jσ(k)+Tσ,j,k+1

]
1−Ẽ[(1−V )

Tσ,j,k ]

m∏
k=0

jσ(k)∏
r=0

Ẽ[V (1−V )
r+Tσ,j,k+1 ]

1−Ẽ[(1−V )
r+1+Tσ,j,k+1 ]

.

Proof. The cleanest way to prove this, is to observe that for a fixed per-
mutation, we get streaks of j0, · · · , jm weights corresponding to points we
observed only once. These all have observed sample frequency 1

n
, so filling

this in gives the claimed result.
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This technical lemma is in essence the proof of a weakened version of the
conjecture. We first do this for the case where the relative stick-breaking
weights are beta distributed, and then extend the result to the general case.

Lemma 6.2.28 (No large values of j0, · · · , jm−1 ). Let kn be a sequence such
that kn →∞. Suppose V ∼ Be(a, b). Then for all σ we will have

∑
j0,··· ,jm−1≤kn,jm≥0

summing to bλnc

m∏
k=1

Ẽ
[
V
np
σ−1 (k)

(1−V )
jσ(k)+Tσ,j,k+1

]
1−Ẽ[(1−V )

Tσ,j,k ]

m∏
k=0

jσ(k)∏
r=0

Ẽ[V (1−V )
r+Tσ,j,k+1 ]

1−Ẽ[(1−V )
r+1+Tσ,j,k+1 ]

∑
j0,··· ,jm

summing to bλnc

m∏
k=1

Ẽ
[
V
np
σ−1 (k)

(1−V )
jσ(k)+Tσ,j,k+1

]
1−Ẽ[(1−V )

Tσ,j,k ]

m∏
k=0

jσ(k)∏
r=0

Ẽ[V (1−V )
r+Tσ,j,k+1 ]

1−Ẽ[(1−V )
r+1+Tσ,j,k+1 ]

converges to 1.

Proof. Fix σ ∈ Sm. We start with the most extreme case, jm = bλnc, and
the other ji are zero. Then swapping to the case where there are j′i weights,
we can compute this as follows: first we move all the weights from jm to j′0,
then to j′1, etc. This makes computation easier. Then observe, if we decrease
jk by one, and increase jr by one, for k > r, the only thing that happens is
that at the end of the jk one weight disappears, all the weights between the k-
th observation and r-th observation of the discrete part (after reordering via
the permutation), have the exponent of the (1− V ) component decrease by
1, and there appears a new term in the streak jr, in the beginning. Nothing
else changes, because before the leftmost observation of jk we do not measure
this value, as well as after the rightmost value of jk. Also note that in the
most extreme case the terms

1

1− · · ·
are as large as they can get, so we can safely ignore these terms. Using this,
we can compute what happens when we swap a continuous observation from
jm to jk, when there are no weights from the continuous part between the
k-th and the m-th discrete weight, we just get a factor

Ẽ
[
V (1− V )Tσ,j,k,n

]
Ẽ [V (1− V )jm−1]

m∏
r=k

Ẽ
[
V npσ(r)(1− V )jk+Tσ,j,k+1,n

]
Ẽ [V npσ(r)(1− V )jk−1+Tσ,j,k+1,n ]

.
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The latter term we can compute as before. Because there are no continuous
observations between the discrete weights, the factor we get from

m∏
r=k

Ẽ
[
V npσ(r)(1− V )jk+Tσ,j,k+1,n

]
Ẽ [V npσ(r)(1− V )jk−1+Tσ,j,k+1,n ]

.

It is easy to compute, namely it is (asymptotic to)

m∏
r=k

jm + n
∑m

l=r+1 pσ(l),n

jm + n
∑m

l=r pσ(l),n
.

This telescoping product, and is telescoping to

jm
jm + n

∑m
l=k pσ(l),n

.

We can now pick the largest value that this can attain as an upper bound.
This then becomes asymptotic to

ν

ν +
∑m

l=k qσ(l)
.

If we want to bound the first term, again note that this term is largest when
jm is large. So then we apply Stirlings approximation to find what this is
asymptotic to. This yields (

ν +
∑m

l=k qσ(l)
ν

)1+α

.

Thus in total we can (asymptotically) bound the mass you gain by doing one
such swap from above by (

ν

ν +
∑m

l=k qσ(l)

)α
.

If we would now swap from the case where j0, · · · , jm−1 are all zero and
jm = bλnc to all other possible assignments, it is just summing

∑
j0,··· ,jm

summing to bλnc

m−1∏
r=0

((
ν

ν +
∑m

l=k qσ(l)

α
))jr

.
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If we now ignore the restriction on the sum and just sum over all the naturals,
we can sum this to get another upper bound using geometric sums, which
yields

m−1∏
r=0

1

1−
(

ν
ν+

∑m
l=k qσ(l)

)α .
So we have bounded mass. Now we are looking at the first kn observations,
where kn →∞. Since we actually have that every new term in the products
is decreasing and smaller than the stated upper bound we are actually going
to converge faster to the limit. So we are going to get asymptotic ratio 1
mass.

Lemma 6.2.29. Let kn be a sequence such that kn → ∞. Suppose V has
a density f such that f(v) = va−1(1 − v)b−1g(v) with g twice continuously
differentiable and bounded away from zero, a, b > 0. Then for all σ we will
have ∑
j0,··· ,jm−1≤kn,jm≥0

summing to bλnc

m∏
k=1

Ẽ
[
V
np
σ−1 (k)

(1−V )
jσ(k)+Tσ,j,k+1

]
1−Ẽ[(1−V )

Tσ,j,k ]

m∏
k=0

jσ(k)∏
r=0

Ẽ[V (1−V )
r+Tσ,j,k+1 ]

1−Ẽ[(1−V )
r+1+Tσ,j,k+1 ]

∑
j0,··· ,jm

summing to bλnc

m∏
k=1

Ẽ
[
V
np
σ−1 (k)

(1−V )
jσ(k)+Tσ,j,k+1

]
1−Ẽ[(1−V )

Tσ,j,k ]

m∏
k=0

jσ(k)∏
r=0

Ẽ[V (1−V )
r+Tσ,j,k+1 ]

1−Ẽ[(1−V )
r+1+Tσ,j,k+1 ]

converges to 1.

Proof. The proof of Lemma 6.2.28 holds almost verbatim. The only differ-
ence appears when we are doing the computation for the moments, then we
get extra error terms from the Stirling approximation. For any ε > 0 we
can pick the last nε weights in the permutation and estimate them by one.
Because we have exponential decay in n, they will contribute an error of at
most εn times an exponential function to the total weight, so this converges
to zero. Hence we can apply the Stirling approximation and estimate with
O(1/n) errors. This means that these errors contribute at most a constant
factor to the total mass, so the total mass is still bounded and the rest of
the argument holds.

Lemma 6.2.30 (Existence of good set). Suppose the true distirbution P0

does not have both infinitely many points of positive probability and a contin-
uous part. Suppose regularity conditions. Suppose X̂i has positive probability
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under P0, P0({X̂i}) > 0. Then, P0 almost surely, there exists a sequence
(Kn)n∈N such that Kn

n
→ 0 and sets

Tn = {σ ∈ SMn|σ(i) ≤ Kn}

such that
P̃(Tn)→ 1.

Proof. If the true distribution has infinitely many points of positive prob-
ability and no continuous part, by lemma Lemma 6.2.10 we know that the
number of distinct observations Kn is such that Kn

n
. Hence we can pick Ak to

be the set of all permutations of the observations. Otherwise, suppose P0 has
d points of positive probability. If P0 has no continuous part, we can again
pick all the permutations of the distinct observations. If P0 has a continuous
part as well, we apply Lemma 6.2.29 so that we find such a Kn and sets
of permutations. If P0 has no points of positive probability this lemma is
vacuously true.

6.2.7 Analysis of the asymptotic behavior of the mo-
ments of weights corresponding to observations
from discrete part

Our proof of consistency uses that the mean and the variance of the weights
corresponding to observations from the discrete part behave in the right way.
Namely, what we want is that the weight of a observation X̂i converges almost
surely to the true probability of observing X̂i, and the variance of this weight
converges almost surely to zero. This is the topic of this subsection.

We first show we converge uniformly to the right answer, which means
that upper and lower bounds converge to the right answer.

Lemma 6.2.31. Let Kn be a sequence such that Kn
n
→ 0. Suppose that

limn→∞ pl,n = pl. Let k > 0. Let An be a sequence of permutations such that
σ(l) ≤ Kn for all σ ∈ An. Assuming regularity conditions then uniformly in
all σ ∈ An:

Ẽ
[
V npk+q(1−V )

Tσ,σ(k)+1
]

1−Ẽ
[
(1−V )

q+Tσ,σ(k)
] ∏

l<σ(k)

Ẽ[V npl (1−V )
q+Tσ,l+1 ]

1−Ẽ[(1−V )
q+Tσ,l ]

∏
l>σ(k)

Ẽ[V npl (1−V )
Tσ,l+1 ]

1−Ẽ[(1−V )
Tσ,l ]

m∏
l=1

Ẽ[V
np
σ−1(l) (1−V )

Tσ,l+1 ]
1−Ẽ[(1−V )

Tσ,l ]

→ pkl
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Proof. We begin by canceling terms which appear both in the numerator and
denominator.

Ẽ
[
V npk+q(1−V )

Tσ,σ(k)+1
]

1−Ẽ
[
(1−V )

q+Tσ,σ(k)
] ∏

l<σ(k)

Ẽ[V npl (1−V )
q+Tσ,l+1 ]

1−Ẽ[(1−V )
q+Tσ,l ]

∏
l>σ(k)

Ẽ[V npl (1−V )
Tσ,l+1 ]

1−Ẽ[(1−V )
Tσ,l ]

m∏
l=1

Ẽ[V
np
σ−1(l) (1−V )

Tσ,l+1 ]
1−Ẽ[(1−V )

Tσ,l ]

=

Ẽ
[
V npk+q(1−V )

Tσ,σ(k)+1
]

1−Ẽ
[
(1−V )

q+Tσ,σ(k)
] ∏

l<σ(k)

Ẽ[V npl (1−V )
q+Tσ,l+1 ]

1−Ẽ[(1−V )
q+Tσ,l ]

σ(k)∏
l=1

Ẽ[V
np
σ−1(l) (1−V )

Tσ,l+1 ]
1−Ẽ[(1−V )

Tσ,l ]

By Lemma 6.2.13 we can ignore the
1−Ẽ[(1−V )x+q]
1−Ẽ[(1−V )x]

terms for computing the

limit uniformly, i.e.

Ẽ
[
V npk+q(1−V )

Tσ,σ(k)+1
]

1−Ẽ
[
(1−V )

q+Tσ,σ(k)
] ∏

l<σ(k)

Ẽ[V npl (1−V )
q+Tσ,l+1 ]

1−Ẽ[(1−V )
q+Tσ,l ]

σ(k)∏
l=1

Ẽ[V
np
σ−1(l) (1−V )

Tσ,l+1 ]
1−Ẽ[(1−V )

Tσ,l ]

=

Ẽ
[
V npk+q(1− V )Tσ,σ(k)+1

] ∏
l<σ(k)

Ẽ
[
V npl(1− V )q+Tσ,l+1

]
σ(k)∏
l=1

Ẽ [V npσ−1(l)(1− V )Tσ,l+1 ]

(1 +Rσ,n)

where

sup
σ∈An

|Rσ,n| → 0.

We now apply Lemma A.2 to every of these terms in the product. Thus
for every term in the product we write

Ẽ
[
V x(1− V )y+k

]
Ẽ [V x(1− V )y]

= (1 + rx,y,k)
k−1∏
i=0

y + b+ i

x+ y + a+ b− 1 + i
.
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So we get

Ẽ
[
V npk+q(1− V )Tσ,σ(k)+1

] ∏
l<σ(k)

Ẽ
[
V npl(1− V )q+Tσ,l+1

]
σ(k)∏
l=1

Ẽ [V npσ−1(l)(1− V )Tσ,l+1 ]

=

q−1∏
i=0

 npk,n + a+ i∑
j:σ(j)≥σ(k) npj,n + a+ b− 1 + i

σ(k)−1∏
l=1

∑
j:σ(j)≥l+1 npj,n + b+ i∑

j:σ(j)≥l npj,n + a+ b− 1 + i


σ(k)∏
l=1

(1 + rl)

Where we also know that
∏σ(k)

l=1 (1 + rl) → 1 uniformly, thus, for 1 + R′σ,n =∏σ(k)
l=1 (1 + rl) we know that supσ∈An |R′σ,n| → 0.
We finally apply Lemma 6.2.12 to every of these factors conclude that

q−1∏
i=0

 npk,n + a+ i∑
j:σ(j)≥σ(k) npj,n + a+ b− 1 + i

σ(k)−1∏
l=1

∑
j:σ(j)≥l+1 npj,n + b+ i∑

j:σ(j)≥l npj,n + a+ b− 1 + i


= pkl (1 +R′′σ,n)

where
sup
σ∈An

|R′′σ,n| → 0.

So that

Ẽ
[
V npk+q(1−V )

Tσ,σ(k)+1
]

1−Ẽ
[
(1−V )

q+Tσ,σ(k)
] ∏

l<σ(k)

Ẽ[V npl (1−V )
q+Tσ,l+1 ]

1−Ẽ[(1−V )
q+Tσ,l ]

∏
l>σ(k)

Ẽ[V npl (1−V )
Tσ,l+1 ]

1−Ẽ[(1−V )
Tσ,l ]

m∏
l=1

Ẽ[V
np
σ−1(l) (1−V )

Tσ,l+1 ]
1−Ẽ[(1−V )

Tσ,l ]

= pkl (1+R′′′σ,n)

with
sup
σ∈An

|R′′′σ,n| → 0.

Which shows that indeed uniformly in all σ we have that

Ẽ
[
V npk+q(1−V )

Tσ,σ(k)+1
]

1−Ẽ
[
(1−V )

q+Tσ,σ(k)
] ∏

l<σ(k)

Ẽ[V npl (1−V )
q+Tσ,l+1 ]

1−Ẽ[(1−V )
q+Tσ,l ]

∏
l>σ(k)

Ẽ[V npl (1−V )
Tσ,l+1 ]

1−Ẽ[(1−V )
Tσ,l ]

m∏
l=1

Ẽ[V
np
σ−1(l) (1−V )

Tσ,l+1 ]
1−Ẽ[(1−V )

Tσ,l ]

→ pkl .
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This means that we have a good set, uniform convergence on the good
set and bounded behavior, so we can compute the limit of the ratios which
appear.

Lemma 6.2.32. Suppose that the true distribution does not have both in-
finitely many points of positive probability and a continuous part. Suppose
P0(X̂k) = pk. Then

E
[
W q
Ik
|X1, · · · , Xn

]
→ pqk P0 a.s.

in the model where X1, · · · , Xn|P ∼ P and P ∼ SBP(α,D) where α is
an atomless base measure and D is a distribution on [0, 1] which admits a
Lebesgue density h and a, b > 0 and g a twice continuously differentiable
function on [0, 1] which is bounded away from zero such that h(v) = va−1(1−
v)b−1g(v) for all v ∈ (0, 1).

Proof. By Lemma 6.2.22

Ẽ
[
W q
Ik

]
=∑

σ∈Sm

Ẽ
[
V npk+q(1−V )

Tσ,σ(k)+1
]

1−Ẽ
[
(1−V )

q+Tσ,σ(k)
] ∏

l<σ(k)

Ẽ[V npl (1−V )
q+Tσ,l+1 ]

1−Ẽ[(1−V )
q+Tσ,l ]

∏
l>σ(k)

Ẽ[V npl (1−V )
Tσ,l+1 ]

1−Ẽ[(1−V )
Tσ,l ]∑

σ∈Sm

m∏
l=1

Ẽ[V
np
σ−1(l) (1−V )

Tσ,l+1 ]
1−Ẽ[(1−V )

Tσ,l ]

.

By Lemma 6.2.26 the pointwise errors remain bounded.
By the strong law of large numbers the sample frequency pk,n =

Nk,n
n

converges P0 almost surely to pk. By Lemma 6.2.30 we can P0 almost surely
find a sequence Kn and sets Tn such that

∑
σ∈Tm

m∏
l=1

Ẽ[V
np
σ−1(l) (1−V )

Tσ,l+1 ]
1−Ẽ[(1−V )

Tσ,l ]∑
σ∈Sm

m∏
l=1

Ẽ[V
np
σ−1(l) (1−V )

Tσ,l+1 ]
1−Ẽ[(1−V )

Tσ,l ]

→ 1.

So we restrict to the probability one set of X1, X2, · · · such that we indeed
have that pkn → pk and that there exists a sequence Kn and sets Tn as
stated above. By Lemma 6.2.31 applied with such observations X1, X2, · · · , a
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sequence Kn and sets An we have uniform convergence for every permutation
in An. This means we can apply Lemma 6.2.9 we conclude that

Ẽ
[
W k
Il
|X1, · · · , Xn

]
→ pkl P0 a.s.

Now we know the expressions for the moments, we can just collect the
results on the mean and the variance.

Lemma 6.2.33. Suppose that the true distribution does not have both in-
finitely many points with positive probability and a continuous part. Suppose
pk = P0({X̂k}). Then

E [WIk |X1, · · · , Xn]→ pk P0 a.s.

Var(WIk |X1, · · · , Xn)→ 0P0 a.s.

in the model where X1, · · · , Xn|P ∼ P and P ∼ SBP(α,D) where α is
an atomless base measure and D is a distribution on [0, 1] which admits a
Lebesgue density h and a, b > 0 and g a twice continuously differentiable
function on [0, 1] which is bounded away from zero such that h(v) = va−1(1−
v)b−1g(v) for all v ∈ (0, 1).

Proof. By Lemma 6.2.32 we know that

E [WIk |X1, · · · , Xn]→ pk

E
[
W 2
Ik
|X1, · · · , Xn

]
→ p2k

Hence

Var(WIk |X1, · · · , Xn) = E
[
W 2
Ik
|X1, · · · , Xn

]
− E [WIk |X1, · · · , Xn]2

→ p2k − p2k
= 0.

6.2.8 Analysis of the asymptotic behavior of first and
second moment of weight of observations from
continuous part

First we need some extra techniques to study the behavior. If you have these
results, we can then use them to prove the results we want.
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The expressions for the moments

The first step is getting expressions for the conditional moment of the sum
of the weights corresponding to observations in the continuous part.

We start by computing the sum of the q-th moments corresponding to
observations from the continuous part.

Lemma 6.2.34. Suppose P0 is the true distribution. Denote C = {i :
P({X̂i}) = 0}.

Ẽ

[∑
k∈Cn

W q
Ik

]
=

∑
σ∈Sm

∑
k∈Cn

Ẽ
[
V
npk,n+q

(1−V )
Tσ,σ(k)+1

]
1−Ẽ

[
(1−V )

q+Tσ,σ(k)
] ∏

l<σ(k)

Ẽ[V npl (1−V )
q+Tσ,l+1 ]

1−Ẽ[(1−V )
q+Tσ,l ]

∏
l>σ(k)

Ẽ[V npl (1−V )
Tσ,l+1 ]

1−Ẽ[(1−V )
Tσ,l ]∑

σ∈Sm

m∏
l=1

Ẽ[V
np
σ−1(l) (1−V )

Tσ,l+1 ]
1−Ẽ[(1−V )

Tσ,l ]

.

Proof. By linearity we can take the sum outside the expectation. Now we
have an expression for the moments of WIk by Lemma 6.2.22. If we apply
this we get

Ẽ

[∑
k∈Cn

W q
Ik

]
=

∑
k∈Cn

∑
σ∈Sm

Ẽ
[
V
npk,n+q

(1−V )
Tσ,σ(k)+1

]
1−Ẽ

[
(1−V )

q+Tσ,σ(k)
] ∏

l<σ(k)

Ẽ[V npl (1−V )
q+Tσ,l+1 ]

1−Ẽ[(1−V )
q+Tσ,l ]

∏
l>σ(k)

Ẽ[V npl (1−V )
Tσ,l+1 ]

1−Ẽ[(1−V )
Tσ,l ]∑

σ∈Sm

m∏
l=1

Ẽ[V
np
σ−1(l) (1−V )

Tσ,l+1 ]
1−Ẽ[(1−V )

Tσ,l ]

.

Note that every denominator in this sum is the same, so we can move the
sum over all the variables inside. If we then move it inside the summation
over all the permutations as well we get

Ẽ

[∑
k∈Cn

W q
Ik

]
=

∑
σ∈Sm

∑
k∈Cn

Ẽ
[
V
npk,n+q

(1−V )
Tσ,σ(k)+1

]
1−Ẽ

[
(1−V )

q+Tσ,σ(k)
] ∏

l<σ(k)

Ẽ[V npl (1−V )
q+Tσ,l+1 ]

1−Ẽ[(1−V )
q+Tσ,l ]

∏
l>σ(k)

Ẽ[V npl (1−V )
Tσ,l+1 ]

1−Ẽ[(1−V )
Tσ,l ]∑

σ∈Sm

m∏
l=1

Ẽ[V
np
σ−1(l) (1−V )

Tσ,l+1 ]
1−Ẽ[(1−V )

Tσ,l ]

.
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We can also find an expression for the first moment of products of weights
corresponding to observations of the continuous part.

Lemma 6.2.35. Let P0 be a distribution. We define Cn = {i : P0({X̂i}) =
0, Ni,n = 1}. Suppose there are Kn distinct observations. Then

Ẽ

 ∑
i,j∈C,i6=j

WIk
WIm

 =

∑
σ∈Sm

∑
s,t:σ−1(s),σ−1(t)∈Cn,s<t

Ẽ
[
V 2(1−V )

Tσ,s+1
]

1−Ẽ
[
(1−V )

1+Tσ,s
] Ẽ

[
V 2(1−V )

Tσ,t+1
]

1−Ẽ
[
(1−V )

2+Tσ,t
] t−1∏
l=1

Ẽ
[
V npl (1−V )

2+Tσ,l+1
]

1−Ẽ
[
(1−V )

2+Tσ,l
]

∑
σ∈SKn

Kn∏
l=1

Ẽ
[
V
np
σ−1(l) (1−V )

Tσ,l+1
]

1−Ẽ
[
(1−V )

Tσ,l
]

s−1∏
l=t+1

Ẽ
[
V npl (1−V )

1+Tσ,l+1
]

1−Ẽ
[
(1−V )

1+Tσ,l
] Kn∏

l=s+1

Ẽ
[
V
np
σ−1(l) (1−V )

Tσ,l+1
]

1−Ẽ
[
(1−V )

Tσ,l
]

1

in the model where X1, · · · , Xn|P ∼ P and P ∼ SBP(α,D) where α is
an atomless base measure and D is a distribution on [0, 1] which admits a
Lebesgue density h and a, b > 0 and g a twice continuously differentiable
function on [0, 1] which is bounded away from zero such that h(v) = va−1(1−
v)b−1g(v) for all v ∈ (0, 1).

Proof. From Lemma 6.2.24 We know that

Ẽ
[
WIk

WIm

]
=

2

∑
σ∈Sm

Ẽ
[
V nps+1(1−V )

Tσ,σ(s)+1
]

1−Ẽ
[
(1−V )

1+Tσ,σ(s)
] Ẽ

[
V npt+1(1−V )

Tσ,σ(t)+1
]

1−Ẽ
[
(1−V )

2+Tσ,σ(t)
] σ(t)−1∏

l=1

Ẽ
[
V npl (1−V )

2+Tσ,l+1
]

1−Ẽ
[
(1−V )

2+Tσ,l
]

∑
σ∈SKn

Kn∏
l=1

Ẽ
[
V
np
σ−1(l) (1−V )

Tσ,l+1
]

1−Ẽ
[
(1−V )

Tσ,l
]

σ(s)−1∏
l=σ(t)+1

Ẽ
[
V npl (1−V )

1+Tσ,l+1
]

1−Ẽ
[
(1−V )

1+Tσ,l
] Kn∏

l=σ(s)+1

Ẽ
[
V
np
σ−1(l) (1−V )

Tσ,l+1
]

1−Ẽ
[
(1−V )

Tσ,l
]

1

Now we use linearity twice to compute this for the sum. This gives

Ẽ

 ∑
i,j∈Cn,i 6=j

WIk
WIm

 =

∑
σ∈Sm

∑
i,j∈Cn,i 6=j

Ẽ
[
V nps+1(1−V )

Tσ,σ(s)+1
]

1−Ẽ
[
(1−V )

1+Tσ,σ(s)
] Ẽ

[
V npt+1(1−V )

Tσ,σ(t)+1
]

1−Ẽ
[
(1−V )

2+Tσ,σ(t)
] σ(t)−1∏

l=1

Ẽ
[
V npl (1−V )

2+Tσ,l+1
]

1−Ẽ
[
(1−V )

2+Tσ,l
]

∑
σ∈SKn

Kn∏
l=1

Ẽ
[
V
np
σ−1(l) (1−V )

Tσ,l+1
]

1−Ẽ
[
(1−V )

Tσ,l
]

σ(s)−1∏
l=σ(t)+1

Ẽ
[
V npl (1−V )

1+Tσ,l+1
]

1−Ẽ
[
(1−V )

1+Tσ,l
] Kn∏

l=σ(s)+1

Ẽ
[
V
np
σ−1(l) (1−V )

Tσ,l+1
]

1−Ẽ
[
(1−V )

Tσ,l
]

1
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Because we are only summing observations from the continuous part which
appeared once, we can simplify this a lot further using that the distribution
of WIi is the same for all i ∈ Cn Corollary 6.2.25. So we are only interested
in the which term of the permutation we are summing, so we can also take
a look at this sum, which means we can actually sum over the images of the
permutation, i.e. those s, t such that σ−1(s) and σ−1(t) lie in C. Because
we then know what the order is, we can restrict to the case where t < s and
double these values. This gives

Ẽ

 ∑
i,j∈Cn,i 6=j

WIk
WIm

 =

2

∑
σ∈Sm

∑
s,t:σ−1(s),σ−1(t)∈Cn,s<t

Ẽ
[
V 2(1−V )

Tσ,s+1
]

1−Ẽ
[
(1−V )

1+Tσ,s
] Ẽ

[
V 2(1−V )

Tσ,t+1
]

1−Ẽ
[
(1−V )

2+Tσ,t
] t−1∏
l=1

Ẽ
[
V npl (1−V )

2+Tσ,l+1
]

1−Ẽ
[
(1−V )

2+Tσ,l
]

∑
σ∈SKn

Kn∏
l=1

Ẽ
[
V
np
σ−1(l) (1−V )

Tσ,l+1
]

1−Ẽ
[
(1−V )

Tσ,l
]

s−1∏
l=t+1

Ẽ
[
V npl (1−V )

1+Tσ,l+1
]

1−Ẽ
[
(1−V )

1+Tσ,l
] Kn∏

l=s+1

Ẽ
[
V
np
σ−1(l) (1−V )

Tσ,l+1
]

1−Ẽ
[
(1−V )

Tσ,l
]

1

Another thing we will be interested in are expression for the sums of
streaks of continuous observations. We will formulate this in the form of
getting expressions of the moments of weights in case we have only observed
observations from the continuous part. The next lemmas in this subsection
are only used to compute those moments. The advantage of doing the com-
putation like this is that we get far easier to manipulate expressions where
we can compute the limiting behavior of.

We now study the distribution of the Ṽk, and the probabilities. For this we
transform to differences in order statistics, and compute the distribution of
that, and then account for the overcounting, but this drops as a normalization
term. We drop this factor immediately. Denote J to be the differences in
order statistics of I, so J1 = I(1), Jk = I(k) − I(k−1).

Lemma 6.2.36. The probability that the differences in order statistics are
j1, · · · , jn is given by:

P(J = (j1, · · · , jn)) =
n∏
j=1

Ẽ
[
(1− V )n+1−j]jj−1 n∏

j=1

(1− Ẽ
[
(1− V )n−j

]
)

Proof. First we look at the distribution of I, namely P(I = (i1, · · · , in)).
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This is proportional to

Ẽ

[
m∏
k=1

V nk
ik

ik−1∏
j=1

(1− Vj)nk1 all values of i1,··· ,im are distinct

]
.

We can count how many times each factor appears. The Vk with k < j1
appear, n times as a factor (1−V ), Vj1 appears as a factor V (1−V )n−1, the
Vk with J1 < k < J2 appear with a factor (1−V )n−1, Vj2 appears as a factor
V (1− V )n−2. If we generalize, if Jl < k < Jk+1, then Vk appears as a factor
(1− V )n−l, and Vjl appear as a factor V (1− V )n−l−1. So we can rewrite this
expectation using the independence of the Vl. Namely we get

P(J = (j1, · · · , jn)) ∝
n∏
l=1

Ẽ
[
V (1− V )n−l

] n∏
l=1

Ẽ
[
(1− V )n+1−k]jl

So we apply the geometric series n times to get the normalization. This gives

P(J = (j1, · · · , jn)) =
n∏
j=1

Ẽ
[
(1− V )n+1−j]jj−1 n∏

j=1

(1− Ẽ
[
(1− V )n−j

]
)

In case we only have observations of the continuous part we want to have
another expression.

Lemma 6.2.37. Suppose every observation appears once. Then the weights
of the l-th observation, ordering based on i1, · · · , in, are given by(

l∏
k=1

Ẽ
[
(1− V )n+2−k]

Ẽ [(1− V )n+1−k]

)jk−1
Ẽ [V (1− V )n+1]

Ẽ [V (1− V )n+1−l]

Ẽ
[
V 2(1− V )n−l

]
Ẽ [V (1− V )n−l]

Proof. The weights are given by

Ẽ

[
Ṽij

ij−1∏
k=1

(1− Ṽk)

]
,

where the distribution of Ṽk is given by

A 7→
∫
A

(1− V )nk#fV nk#
′j dD(v)∫

(1− V )#fV #′j dD(v)
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We get Ik − 1 times a factor of Ẽ
[
1− Ṽ

]
, which is

Ẽ [(1− V )n+2−j]

Ẽ [(1− V )n+1−j]
.

We get for k < j a factor

Ẽ
[
V (1− V )n−k

]
Ẽ [V (1− V )n−k]

.

And we get for k = j a factor

Ẽ [V 2(1− V )n−j]

Ẽ [V (1− V )n−j]
.

Combining all these factors gives the weight.(
l∏

k=1

EE
[
(1− V )n+2−k]

Ẽ [(1− V )n+1−k]

)jk−1( l−1∏
k=1

Ẽ
[
V (1− V )n+1−k]

Ẽ [V (1− V )n−k]

)
Ẽ
[
V 2(1− V )n−l

]
Ẽ [V (1− V )n−l]

.

Now we can telescope the product

l−1∏
k=1

Ẽ
[
V (1− V )n+1−k]

Ẽ [V (1− V )n−k]

into
Ẽ [V (1− V )n+1]

Ẽ [V (1− V )n+1−l]
.

Lemma 6.2.38. Suppose every observations appears exactly once, then the
sum of all the weights is given by

∑
i1,··· ,in distinct

m∑
l=1

Ẽ

[
Ṽil

il−1∏
k=1

(1− Ṽk)

]
P(I = (i1, · · · , im)

=
n−1∑
j=0

Ẽ [V (1− V )n+1]

Ẽ [V (1− V )j+1]

Ẽ [V 2(1− V )j]

Ẽ [V (1− V )j]

1− Ẽ [(1− V )n]

1− Ẽ [(1− V )j+2]
.
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Proof. We multiply the formula for the weights and the probability together.
From the previous two lemmas we know these, namely:(

l∏
k=1

Ẽ
[
(1− V )n+2−k]

Ẽ [(1− V )n+1−k]

)jk−1
Ẽ [V (1− V )n+1]

Ẽ [V (1− V )n+1−l]

Ẽ
[
V 2(1− V )n−l

]
Ẽ [V (1− V )n−l]

and

P(J = (j1, · · · , jn)) =
n∏
k=1

Ẽ
[
(1− V )n+1−k]jk−1 n∏

k=1

(1− Ẽ
[
(1− V )n−k

]
).

If we multiply these two we get(
l∏

k=1

Ẽ
[
(1− V )n+2−k])jk−1

Ẽ [V (1− V )n+1]

Ẽ [V (1− V )n+1−l]

Ẽ
[
V 2(1− V )n−l

]
Ẽ [V (1− V )n−l]

n∏
k=l+1

Ẽ
[
(1− V )n+1−k]jk n∏

k=1

(1− Ẽ
[
(1− V )n−k

]
)

We now look at the terms for which there are jk terms, these are:(
l∏

k=1

Ẽ
[
(1− V )n+2−k])jk−1 n∏

k=l+1

Ẽ
[
(1− V )n+1−k]jk .

Summing these over j1, · · · , jn ∈ N yields(
l∏

k=1

1

1− Ẽ [(1− V )n+2−k]

)
n∏

k=l+1

1

1− Ẽ [(1− V )n+1−k]
.

The rest does not change, so after summing over j1, · · · , jn we are left with

Ẽ [V (1− V )n+1]

Ẽ [V (1− V )n+1−l]

Ẽ
[
V 2(1− V )n−l

]
Ẽ [V (1− V )n−l]

n∏
k=1

(1− Ẽ
[
(1− V )n−k

]
)(

l∏
k=1

1

1− Ẽ [(1− V )n+2−k]

)
n∏
k=1

1

1− Ẽ [(1− V )n+1−k]
.
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Now we want to simplify

n∏
k=1

(1−Ẽ
[
(1− V )n+1−k])( l∏

k=1

1

1− Ẽ [(1− V )n+2−k]

)
n∏
k=1

1

1− Ẽ [(1− V )n+1−k]
.

We see that a part cancels, so we are left with

l∏
k=1

1− Ẽ
[
(1− V )n+1−k]

1− Ẽ [(1− V )n+2−k]
.

This telescopes to
1− Ẽ [(1− V )n]

1− Ẽ [(1− V )n+2−l]
.

So in the end we are left with

Ẽ [V (1− V )n+1]

Ẽ [V (1− V )n+1−l]

Ẽ
[
V 2(1− V )n−l

]
Ẽ [V (1− V )n−l]

1− Ẽ [(1− V )n]

1− Ẽ [(1− V )n+2−l]
.

This is for a fixed l, and we sum over l, thus after summing we are left with

n∑
l=1

Ẽ [V (1− V )n+1]

Ẽ [V (1− V )n+1−l]

Ẽ
[
V 2(1− V )n−l

]
Ẽ [V (1− V )n−l]

1− Ẽ [(1− V )n]

1− Ẽ [(1− V )n+2−l]
.

Now we can do a change of summation, by writing j = n− l, which yields

n−1∑
j=0

Ẽ [V (1− V )n+1]

Ẽ [V (1− V )j+1]

Ẽ [V 2(1− V )j]

Ẽ [V (1− V )j]

1− Ẽ [(1− V )n]

1− Ẽ [(1− V )j+2]
.

Next we can compute the expectation of the second moment. First ob-
serve that we can split the second moment into

Ẽ

[
n∑
i=1

W 2
Ii

+
∑

1≤i<j≤n

WIiWIj

]
.

Now we can compute each of these, note that swapping to the differences
in order statistics has no influence on this sum, because every term appears.
So with this observation we can repeat the previous proofs.
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Lemma 6.2.39 (Second moment of WJl given J). Suppose every observation
appears exactly once. Then the second moment of WJl conditional on J is
given by

Ẽ
[
W 2
Jl
|J
]

=

l−1∏
k=1

(
Ẽ
[
(1− V )n+3−k]

Ẽ [(1− V )n+1−k]

)jk−1
Ẽ [V (1− V )n+2]

Ẽ [V (1− V )n+1−l]
.
Ẽ [V (1− V )n+1]

Ẽ [V (1− V )n−l]

Ẽ
[
V 3(1− V )n−l

]
Ẽ [V (1− V )n−l]

.

The proof follows practically the same style as before, just note we take
second moment instead of first moment.

Proof. • We get, for k < l, a factor

Ẽ
[
V (1− V )n−k+2

]
Ẽ [V (1− V )n−k]

.

• We get, for k = l, a factor

Ẽ
[
V 3(1− V )n−l

]
Ẽ [V (1− V )n−l]

.

• And we get, for k ≤ j, Ik − 1 times a factor

Ẽ
[
(1− V )n+3−k]

Ẽ [(1− V )n+1−k]
.

So we can telescope the products of the factors k < l. Namely

l−1∏
k=1

Ẽ
[
V (1− V )n−k+2

]
Ẽ [V (1− V )n−k]

.

telescopes into
Ẽ [V (1− V )n+2]

Ẽ [V (1− V )n+1−l]
.
Ẽ [V (1− V )n+1]

Ẽ [V (1− V )n−l]
.

So in total we get

l−1∏
k=1

(
Ẽ
[
(1− V )n+3−k]

Ẽ [(1− V )n+1−k]

)jk−1
Ẽ [V (1− V )n+2]

Ẽ [V (1− V )n+1−l]
.
Ẽ [V (1− V )n+1]

Ẽ [V (1− V )n−l]

Ẽ
[
V 3(1− V )n−l

]
Ẽ [V (1− V )n−l]

.
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Lemma 6.2.40 (First moment of WJiWJj for i < j conditional on J). In
case every observation appears exactly once, the product of WIiWIj for i < j
has, conditional on J , expectation

Ẽ
[
WJiWJj |J

]
=

=
i∏

k=1

(
Ẽ
[
(1− V )n+3−k]

Ẽ [(1− V )n+1−k]

)Jk−1 j∏
k=i+1

(
Ẽ
[
(1− V )n+2−k]

Ẽ [(1− V )n−k]

)Jk−1

Ẽ [V (1− V )n+2]

Ẽ [V (1− V )n−i+1]

Ẽ [V (1− V )n+1]

Ẽ [V (1− V )n−i]

Ẽ [V (1− V )n−i+1]

Ẽ [V (1− V )n−j]

Ẽ [V 2(1− V )n−i+1]

Ẽ [V (1− V )n−i+1]

Ẽ [V 2(1− V )n−j+1]

Ẽ [V (1− V )n−j+1]
.

Proof. Here one has to distinguish a bit more cases, but the proof is essen-
tially the same as the previous two computations of the moments combined.

• We get, for k < i, a factor

Ẽ
[
V (1− V )n−k+2

]
Ẽ [V (1− V )n−k]

.

• We get, for k = i, a factor

Ẽ [V 2(1− V )n−i]

Ẽ [V (1− V )n−i]
.

• We get, for i < k < j, a factor

Ẽ
[
V (1− V )n−k+1

]
Ẽ [V (1− V )n−k]

.

• We get, for k = j, a factor

Ẽ [V 2(1− V )n−j]

Ẽ [V (1− V )n−j]

• We get, for k ≤ i, Jk − 1 times a factor

Ẽ [(1− V )n+3−j]

Ẽ [(1− V )n+1−j]
.
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• And finally we get, for i < k ≤ j, Jk − 1 times a factor

Ẽ [(1− V )n+2−j]

Ẽ [(1− V )n+1−j]
.

We can again telescope the factors smaller than i, and the factors between i
and j. This leads to

Ẽ
[
WJiWJj |J

]
=

=
i∏

k=1

(
Ẽ [(1− V )n+3−j]

Ẽ [(1− V )n+1−j]

)Jk−1 j∏
k=i+1

(
Ẽ [(1− V )n+2−j]

Ẽ [(1− V )n−j]

)Jk−1

Ẽ [V (1− V )n+2]

Ẽ [V (1− V )n−i+1]

Ẽ [V (1− V )n+1]

Ẽ [V (1− V )n−i]

Ẽ [V (1− V )n−i+1]

Ẽ [V (1− V )n−j]

Ẽ [V 2(1− V )n−i]

Ẽ [V (1− V )n−i]

Ẽ [V 2(1− V )n−j]

Ẽ [V (1− V )n−j]
.

Lemma 6.2.41 (Second moment of WJk ). Suppose every observation occurs
exactly once, then

Ẽ

[
n∑
j=1

W 2
Jj

]
=

n∑
j=1

1− Ẽ [(1− V )n]

1− Ẽ [(1− V )n+3−l]

1− Ẽ [(1− V )n−1]

1− Ẽ [(1− V )n+2−l]

Ẽ [V (1− V )n+2]

Ẽ [V (1− V )n+1−l]
.
Ẽ [V (1− V )n+1]

Ẽ [V (1− V )n−l]

Ẽ
[
V 3(1− V )n−l

]
Ẽ [V (1− V )n−l]

.

Proof. We know an expression for the second moment of WJk given J . We
now multiply this by the probability of J , and then sum over all the possible
assignments of J . Recall that the distribution of J is given by

P(J = (j1, · · · , jn)) =
n∏
k=1

Ẽ
[
(1− V )n+1−k]jk−1 n∏

k=1

(1− Ẽ
[
(1− V )n+1−k]).

This combined with the lemma on the conditional second moment of WJk ,
which states

Ẽ
[
W 2
Jl
|J
]

=

l−1∏
k=1

(
Ẽ
[
(1− V )n+3−k]

Ẽ [(1− V )n+1−k]

)jk−1
Ẽ [V (1− V )n+2]

Ẽ [V (1− V )n+1−l]
.
Ẽ [V (1− V )n+1]

Ẽ [V (1− V )n−l]

Ẽ
[
V 3(1− V )n−l

]
Ẽ [V (1− V )n−l]

.
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allows us to compute the expected value. We first only restrict ourselves to
the terms with an jk in it. This is the same as before for the first moment,
take the product, sum everything, get the 1

1−.. factors. Now observe that a
part cancels and we are left with

l∏
k=1

1− Ẽ
[
(1− V )n+1−k]

1− Ẽ [(1− V )n+3−k]
.

Now this telescopes to

1− Ẽ [(1− V )n]

1− Ẽ [(1− V )n+3−l]

1− Ẽ [(1− V )n−1]

1− Ẽ [(1− V )n+2−l]
.

The rest does not change with jk, so we can sum over this. This yields

1− Ẽ [(1− V )n]

1− Ẽ [(1− V )n+3−l]

1− Ẽ [(1− V )n−1]

1− Ẽ [(1− V )n+2−l]

Ẽ [V (1− V )n+2]

Ẽ [V (1− V )n+1−l]

Ẽ [V (1− V )n+1]

Ẽ [V (1− V )n−l]

Ẽ
[
V 3(1− V )n−l

]
Ẽ [V (1− V )n−l]

.

Summing over all the j leads to

Ẽ

[
n∑
j=1

W 2
Jj

]
=

n∑
j=1

1− Ẽ [(1− V )n]

1− Ẽ [(1− V )n+3−l]

1− Ẽ [(1− V )n−1]

1− Ẽ [(1− V )n+2−l]

Ẽ [V (1− V )n+2]

Ẽ [V (1− V )n+1−l]

Ẽ [V (1− V )n+1]

Ẽ [V (1− V )n−l]

Ẽ
[
V 3(1− V )n−l

]
Ẽ [V (1− V )n−l]

.

Lemma 6.2.42 (First moment of WIiWIj). Suppose every observation ap-
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pears exactly once, then

Ẽ

[ ∑
1≤i<j≤n

WJiWJj

]

=
∑

1≤i<j≤n

1− Ẽ [(1− V )n]

1− Ẽ [(1− V )n+3−l]

1− Ẽ [(1− V )n−1]

1− Ẽ [(1− V )n+2−l]

1− Ẽ [(1− V )n−i]

1− Ẽ [(1− V )n+2−j]

Ẽ [V (1− V )n+2]

Ẽ [V (1− V )n−i+1]

Ẽ [V (1− V )n+1]

Ẽ [V (1− V )n−i]

Ẽ [V (1− V )n−i+1]

Ẽ [V (1− V )n−j]

Ẽ [V 2(1− V )n−i]

Ẽ [V (1− V )n−i]

Ẽ [V 2(1− V )n−j]

Ẽ [V (1− V )n−j]
.

Proof. We know an expression for the first moment of WJiWJj given J . We
now multiply this by the probability of J , and then sum over all the possible
assignments of J . Recall that the distribution of J is given by

P(J = (j1, · · · , jn)) =
n∏
k=1

Ẽ
[
(1− V )n+1−k]jk−1 n∏

k=1

(1− Ẽ
[
(1− V )n+1−k]).

This combined with the lemma on the conditional first moment of WJiWJj ,
which states

Ẽ
[
WJiWJj |J

]
=

=
i∏

k=1

(
Ẽ
[
(1− V )n+3−k]

Ẽ [(1− V )n+1−k]

)Jk−1 j∏
k=i+1

(
Ẽ
[
(1− V )n+2−k]

Ẽ [(1− V )n−k]

)Jk−1

Ẽ [V (1− V )n+2]

Ẽ [V (1− V )n−i+1]

Ẽ [V (1− V )n+1]

Ẽ [V (1− V )n−i]

Ẽ [V (1− V )n−i+1]

Ẽ [V (1− V )n−j]

Ẽ [V 2(1− V )n−i+1]

Ẽ [V (1− V )n−1]

Ẽ [V 2(1− V )n−i]

Ẽ [V (1− V )n−i]
.

So we again take the product, sum everything, get the 1
1−.. factors. We

again only look at the terms where there was a Jk term, because the rest
does not change. We can compute these, and then look what resulting factor
we get. First observe that a part cancels and we are left with

i∏
k=1

1− Ẽ
[
(1− V )n+1−k]

1− Ẽ [(1− V )n+3−k]
.

j∏
k=i+1

1− Ẽ
[
(1− V )n+1−k]

1− Ẽ [(1− V )n+2−k]
.
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Now we do the telescoping per product, the first yields a telescoping product
of two terms, the second of one term. This yields

1− Ẽ [(1− V )n]

1− Ẽ [(1− V )n+3−l]

1− Ẽ [(1− V )n−1]

1− Ẽ [(1− V )n+2−l]

1− Ẽ [(1− V )n−i]

1− Ẽ [(1− V )n+2−j]
.

Combining this with the previous expression and summing over all the i, j
yields

Ẽ

[ ∑
1≤i<j≤n

WJiWJj

]

=
∑

1≤i<j≤n

1− Ẽ [(1− V )n]

1− Ẽ [(1− V )n+3−i]

1− Ẽ [(1− V )n−1]

1− Ẽ [(1− V )n+2−i]

1− Ẽ [(1− V )n−i]

1− Ẽ [(1− V )n+2−j]

Ẽ [V (1− V )n+2]

Ẽ [V (1− V )n−i+1]

Ẽ [V (1− V )n+1]

Ẽ [V (1− V )n−i]

Ẽ [V (1− V )n−i+1]

Ẽ [V (1− V )n−j]

Ẽ [V 2(1− V )n−i+1]

Ẽ [V (1− V )n−1]

Ẽ [V 2(1− V )n−i]

Ẽ [V (1− V )n−i]
.

Development of tools

We want to better understand the situation where all the observations have
occurred exactly once. It will turn out that later we can reduce to this case.
The following lemmas are the main tools we need to compute the limiting
behavior, in case every observation is unique. For the general case we will
need more techniques, which are then used to return to this computation.

This lemma is used to control the terms appearing when we analyze the
first moment.

Lemma 6.2.43 (First moment converges to 1.). Suppose V ∼ D where D
admits a density f such that there exists constants a, b > 0 and a twice
continuously differentiable function g bounded away from zero and f(v) =
va−1(1− v)b−1g(v) for all v ∈ (0, 1). Then

n−1∑
j=0

E [V (1− V )n+1]

E [V (1− V )j+1]

E [V 2(1− V )j]

E [V (1− V )j]

1− E [(1− V )n]

1− E [(1− V )j+2]
→ 1.
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Proof. In view of Lemma A.4 we can estimate

Kj =
E [V (1− V )n+1]

E [V (1− V )j+1]

E [V 2(1− V )j]

E [V (1− V )j]

1− E [(1− V )n]

1− E [(1− V )j+2]
.

By

Kj ≤
C

c
(
j + 1

n+ 1
)1+α

1

1− E [(1− V )3]
.

So then
J∑
j=1

Kj ≤ Const(
j + 1

n+ 1
)1+α

If J

n
1+α
2+α
→ 0 this sum converges to zero. This means we can ignore the first J

terms and apply Lemma A.5. Thus for all ε > 0, there exists an N > 0 such
that foor all n > N , the error of estimating the E [V s(1− V )j] for j > Jn is

(1− ε)g(0)
Γ(s+ α)

js+α
≤ E

[
V s(1− V )j

]
≤ (1 + ε)g(0)

Γ(s+ α)

js+α

And further

1− ε ≤ 1

1− E [(1− V )j+2]
≤ 1 + ε

If we apply this we get

(
1 + ε

1− ε
)3(

j + 1

n+ 1
)1+α

1 + α

j
≤ Kj ≤ (

1− ε
1 + ε

)3(
j + 1

n+ 1
)1+α

1 + α

j
.

If we now compute the sum
∑n

j=J Kj, we can estimate this by

n∑
j=J

(
j + 1

n+ 1
)1+α

1 + α

j

where the errors are given above. If we compute this sum, we get something
of the order

(n+ 1)1+α − (J + 1)1+α

(n+ 1)1+α
∼ 1.

So combining all this yields

n∑
i=1

WIi → 1.
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Next, we start working on the convergence of the second moment. For
this will use two lemmas controlling the convergence in two different cases,
and then approximate.

This lemma is used to control the terms appearing when we analyze the
sum of second moments.

Lemma 6.2.44 (Sum of second moments has zero contribution). Suppose
V ∼ D where D admits a density f such that there exists constants a, b > 0
and a twice continuously differentiable function g bounded away from zero
and f(v) = va−1(1− v)b−1g(v) for all v ∈ (0, 1). Then

n∑
j=1

1− E [(1− V )n]

1− E [(1− V )n+3−l]

1− E [(1− V )n−1]

1− E [(1− V )n+2−l]

E [V (1− V )n+2]

E [V (1− V )n+1−l]
.
E [V (1− V )n+1]

E [V (1− V )n−l]

E
[
V 3(1− V )n−l

]
E [V (1− V )n−l]

=
n∑
k=1

Kn+1−j → 0.

Proof. As said before, we can again approximate using Lemma A.4 to find
an upper bound. This yields

Kj ≤
C

c

1

1− E [(1− V )3]

1

1− E [(1− V )2]

(k + 1)1+α

(n+ 2)1+α
k1+α

(n− 1)1+α
1

k2

So if we look at
J∑
j=1

Kj

we see that this converges to zero as n → ∞ and J

n
1+2α
2+2α

→ 0. This means

that we can bound the estimates as in Lemma A.5 to get upper and lower
bounds. Let ε > 0. Then there exists an N > 0 such that for all n > N and
j > Jn we have

(1− ε)5 (k + 1)1+α

(n+ 2)1+α
k1+α

(n− 1)1+α
1

k2
≤ Kj ≤ (1 + ε)5

(k + 1)1+α

(n+ 2)1+α
k1+α

(n− 1)1+α
1

k2

So if we sum the Kj it is enough to compute what happens when we sum

n∑
j=J

(k + 1)1+α

(n+ 2)1+α
k1+α

(n− 1)1+α
1

k2
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Observe that this behaves as

n∑
j=1

j2+2α

n2+2α

1

j2
∼ n1+2α − J1+2α

n2+2α
∼ 1

n
.

So indeed the sum of second moments, E
[∑n

i=1W
2
Ii

]
, converges to zero as

n→∞.

This lemma is used to control the terms appearing when we analyze the
sum of mixed moments.

Lemma 6.2.45 (Sum of first moments of WIiWIj converges to 1). Suppose
V ∼ D where D admits a density f such that there exists constants a, b > 0
and a twice continuously differentiable function g bounded away from zero
and f(v) = va−1(1− v)b−1g(v) for all v ∈ (0, 1). Then

∑
1≤i<j≤n

1− E [(1− V )n]

1− E [(1− V )n+3−i]

1− E [(1− V )n−1]

1− E [(1− V )n+2−i]

1− E [(1− V )n−i]

1− E [(1− V )n+2−j]

E [V (1− V )n+2]

E [V (1− V )n−i+1]

E [V (1− V )n+1]

E [V (1− V )n−i]

E [V (1− V )n−i+1]

E [V (1− V )n−j]

E [V 2(1− V )n−i+1]

E [V (1− V )n−1]

E [V 2(1− V )n−i]

E [V (1− V )n−i]
→ 1.

Proof. We can first bound this by observing that the factors

1− E [(1− V )n]

1− E [(1− V )n+3−i]

1− E [(1− V )n−1]

1− E [(1− V )n+2−i]

1− E [(1− V )n−i]

1− E [(1− V )n+2−j]

are always between

1− E [(1− V )n]

1− E [(1− V )n+2]

1− E [(1− V )n−1]

1− E [(1− V )n+1]

1− E [(1− V )1]

1− E [(1− V )n]

and
1

1− E [(1− V )4]

1

1− E [(1− V )3]

1

1− E [(1− V )2]
.

Because the lower bound is convergent to 1 and always positive, we can find
a constant const > 0 such this constant is a lower bound for all n. This
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allows us to ignore these factors for now. Now look at

∑
1≤i<j≤n

E [V (1− V )n+2]

E [V (1− V )n−i+1]

E [V (1− V )n+1]

E [V (1− V )n−i]

E [V (1− V )n−i+1]

E [V (1− V )n−j]

E [V 2(1− V )n−i+1]

E [V (1− V )n−1]

E [V 2(1− V )n−i]

E [V (1− V )n−i]
.

We first get an upper bound by using Lemma A.4. This yields

C

c

∑
1≤i<j≤n

(n+ 1− i)1+α

(n+ 2)1+α
(n− i)1+α

(n+ 1)1+α
(n− j)1+α

(n− i+ 1)1+α
(n− i+ 1)1+α

(n− i+ 1)2+α
(n− j)1+α

(n− j)2+α
.

If we simplify this we get

2
C

c

∑
1≤i<j≤n

(n− j)1+α

(n+ 2)1+α
(n− i)1+α

(n+ 1)1+α
1

n− i+ 1

1

n− j

Note that

2
∑

1≤i<j≤n

(n− j)1+α

(n+ 2)1+α
(n− i)1+α

(n+ 1)1+α
1

n− i+ 1

1

n− j

∼ (
n∑
k=1

kα

n1+α
)2 −

n∑
k=1

k2α

n2+2α

where we see that
∑n

k=1
k2α

n2+2α → 0 as n→∞. The rest of this sum converges.
So if we now study

J∑
k=1

kα

n1+α
∼ 1

1 + α

J1+α

n1+α

we see that picking J such that J → ∞ and J
n
→ 0 this part of the sum

converges to zero as n → ∞. Looking back at what i and j correspond to
k ≤ J we see that this means n − i and n − j should be less than J . By
Lemma A.5 we can now approximate all the expectations uniformly. This
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yields upper and lower bounds of the form

2(
1− ε
1 + ε

)8(
1

1 + α
)2∑

1≤i<j≤n

(n+ 1− i)1+α

(n+ 2)1+α
(n− i)1+α

(n+ 1)1+α
(n− j)1+α

(n− i+ 1)1+α
(n− i+ 1)1+α

(n− i+ 1)2+α
(n− j)1+α

(n− j)2+α

≤ 2E

[ ∑
1≤i<j≤n

WJiWJj

]
≤

2(
1 + ε

1− ε
)8(

1

1 + α
)2∑

1≤i<j≤n

(n+ 1− i)1+α

(n+ 2)1+α
(n− i)1+α

(n+ 1)1+α
(n− j)1+α

(n− i+ 1)1+α
(n− i+ 1)1+α

(n− i+ 1)2+α
(n− j)1+α

(n− j)2+α
.

So we study those two bounds. For this it is enough to study

2
1

1 + α

2 (n+ 1− i)1+α

(n+ 2)1+α
(n− i)1+α

(n+ 1)1+α
(n− j)1+α

(n− i+ 1)1+α
(n− i+ 1)1+α

(n− i+ 1)2+α
(n− j)1+α

(n− j)2+α
.

If we use the same analysis as before to simplify etc, we find that this is again
asymptotic to

(
1

1 + α

n∑
k=1

kα

n1+α
)2.

And we know the term inside the square converges to one. This shows

2E

[ ∑
1≤i<j≤n

WJiWJj

]
→ 1.

These three lemmas form the core of the argument.

Analysis of the moments

The analysis of the weights of the continuous part is only done in case the
true distribution only has finitely many points with positive probability.

For the main tool to compute the limiting behavior of the fractions we
need to identify good sets, show we converge uniformly on those sets and we
stay everywhere bounded. This will now be the topic of the lemmas. We
already have the good sets, so we start the boundedness results.
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Lemma 6.2.46 (Errors in mean of weights of continuous part stay bounded).
The pointwise ratios in the derived expression for the sum of the mean of
the weights corresponding to observations from the continuous part remain
bounded, i.e. there exists an L > 0 such that for all σ ∈ SKn

∑
k∈Cn

Ẽ
[
V
npk,n+1

(1−V )
Tσ,σ(k)+1

]
1−Ẽ

[
(1−V )

1+Tσ,σ(k)
] ∏

l<σ(k)

Ẽ[V npl (1−V )
1+Tσ,l+1 ]

1−Ẽ[(1−V )
1+Tσ,l ]

∏
l>σ(k)

Ẽ[V npl (1−V )
Tσ,l+1 ]

1−Ẽ[(1−V )
Tσ,l ]

m∏
l=1

Ẽ[V
np
σ−1(l) (1−V )

Tσ,l+1 ]
1−Ẽ[(1−V )

Tσ,l ]

≤ L.

P0 almost surely in the model where X1, · · · , Xn|P ∼ P and P ∼ SBP(α,D)
where α is an atomless base measure and D is a distribution on [0, 1] which
admits a Lebesgue density h and a, b > 0 and g a twice continuously dif-
ferentiable function on [0, 1] which is bounded away from zero such that
h(v) = va−1(1− v)b−1g(v) for all v ∈ (0, 1).

Proof. We want to prove that in every fraction as derived in Lemma 6.2.34
the errors stay bounded. So by Lemma 6.2.34 we know

Ẽ

[∑
k∈Cn

WIk

]
=

∑
σ∈Sm

∑
k∈Cn

Ẽ
[
V
npk,n+1

(1−V )
Tσ,σ(k)+1

]
1−Ẽ

[
(1−V )

1+Tσ,σ(k)
] ∏

l<σ(k)

Ẽ[V npl (1−V )
1+Tσ,l+1 ]

1−Ẽ[(1−V )
1+Tσ,l ]

∏
l>σ(k)

Ẽ[V npl (1−V )
Tσ,l+1 ]

1−Ẽ[(1−V )
Tσ,l ]∑

σ∈Sm

m∏
l=1

Ẽ[V
np
σ−1(l) (1−V )

Tσ,l+1 ]
1−Ẽ[(1−V )

Tσ,l ]

.

So we want to show that uniformly in all σ ∈ SKn

∑
k∈Cn

Ẽ
[
V
npk,n+1

(1−V )
Tσ,σ(k)+1

]
1−Ẽ

[
(1−V )

1+Tσ,σ(k)
] ∏

l<σ(k)

Ẽ[V npl (1−V )
1+Tσ,l+1 ]

1−Ẽ[(1−V )
1+Tσ,l ]

∏
l>σ(k)

Ẽ[V npl (1−V )
Tσ,l+1 ]

1−Ẽ[(1−V )
Tσ,l ]

m∏
l=1

Ẽ[V
np
σ−1(l) (1−V )

Tσ,l+1 ]
1−Ẽ[(1−V )

Tσ,l ]

remains bounded. Observe that it does not matter for the distribution of
the weights of the continuous part, if we replace the weights of the i-th
distinct discrete observation by Ni observations which occur only once, since
we can bound uniformly by a constant factor, by Lemma 6.2.11. If we then
increase the sum by adding all these non-negative weights. Then P0 almost
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surely, we have only distinct observations, i.e. every observations occurs
only once. This means that we are in the situation where we only have
continuous observations. We then ask for the first moment of the weights of
all the continuous observations in the case where we only have continuous
observations. This is, as follows from Lemma 6.2.43 and Lemma 6.2.38,
convergent to 1. Hence indeed we stay bounded.

Lemma 6.2.47 (Errors of second moment of weights of continuous part stay
bounded). The errors in the ratios in the derived form for the sum of the
second moment of weights corresponding to observations from the continuous
part remain bounded. I.e. there exists an L > 0 such that for all σ ∈ SKn∑

k∈Cn
Ẽ
[
V
npk,n+2

(1−V )
Tσ,σ(k)+1

]
1−Ẽ

[
(1−V )

2+Tσ,σ(k)
] ∏

l<σ(k)

Ẽ[V npl (1−V )
2+Tσ,l+1 ]

1−Ẽ[(1−V )
2+Tσ,l ]

∏
l>σ(k)

Ẽ[V npl (1−V )
Tσ,l+1 ]

1−Ẽ[(1−V )
Tσ,l ]

m∏
l=1

Ẽ[V
np
σ−1(l) (1−V )

Tσ,l+1 ]
1−Ẽ[(1−V )

Tσ,l ]

≤ L

P0 almost surely in the model where X1, · · · , Xn|P ∼ P and P ∼ SBP(α,D)
where α is an atomless base measure and D is a distribution on [0, 1] which
admits a Lebesgue density h and a, b > 0 and g a twice continuously dif-
ferentiable function on [0, 1] which is bounded away from zero such that
h(v) = va−1(1− v)b−1g(v) for all v ∈ (0, 1).

Proof. We want to prove that in every fraction as derived in Lemma 6.2.34
the errors stay bounded. So by Lemma 6.2.34 we know

Ẽ

[∑
k∈Cn

W 2
Ik

]
=

∑
σ∈Sm

∑
k∈Cn

Ẽ
[
V
npk,n+2

(1−V )
Tσ,σ(k)+1

]
1−Ẽ

[
(1−V )

2+Tσ,σ(k)
] ∏

l<σ(k)

Ẽ[V npl (1−V )
2+Tσ,l+1 ]

1−Ẽ[(1−V )
2+Tσ,l ]

∏
l>σ(k)

Ẽ[V npl (1−V )
Tσ,l+1 ]

1−Ẽ[(1−V )
Tσ,l ]∑

σ∈Sm

m∏
l=1

Ẽ[V
np
σ−1(l) (1−V )

Tσ,l+1 ]
1−Ẽ[(1−V )

Tσ,l ]

.

This means we want to show that uniformly in all σ ∈ SKn we have that∑
k∈Cn

Ẽ
[
V
npk,n+2

(1−V )
Tσ,σ(k)+1

]
1−Ẽ

[
(1−V )

2+Tσ,σ(k)
] ∏

l<σ(k)

Ẽ[V npl (1−V )
2+Tσ,l+1 ]

1−Ẽ[(1−V )
2+Tσ,l ]

∏
l>σ(k)

Ẽ[V npl (1−V )
Tσ,l+1 ]

1−Ẽ[(1−V )
Tσ,l ]

m∏
l=1

Ẽ[V
np
σ−1(l) (1−V )

Tσ,l+1 ]
1−Ẽ[(1−V )

Tσ,l ]
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remains bounded. Observe that it does not matter for the distribution of the
weights of the continuous part, if we replace the weights of the i-th distinct
discrete observation by Ni observations which occur only once, since we can
bound uniformly by a constant factor, by Lemma 6.2.11. If we then increase
the sum by adding all these non-negative weights. P0 almost surely we have
every observation exactly once. This means we are in the situation where
we only have continuous observations. We then ask for the sum of second
moments of the weights of all the continuous observations in the case where
we only have continuous observations. This is, as computed in Lemma 6.2.44
and Lemma 6.2.41, convergent to 0. Hence indeed we stay bounded P0 almost
surely.

Lemma 6.2.48 (Errors of mixed moments of weights of continuous part stay
bounded). Suppose that the true distribution P0 = Pd + λPc where Pd is a
finite discrete distribution. Suppose we have Kn distinct observations. For
all permutations σ ∈ SKn

Ẽ

 ∑
i,j∈C,i6=j

WIk
WIm

 =

2

∑
s,t:σ−1(s),σ−1(t)∈C,s<t

Ẽ
[
V 2(1−V )

Tσ,s+1
]

1−Ẽ
[
(1−V )

1+Tσ,s
] Ẽ

[
V 2(1−V )

Tσ,t+1
]

1−Ẽ
[
(1−V )

2+Tσ,t
] t−1∏
l=1

Ẽ
[
V npl (1−V )

2+Tσ,l+1
]

1−Ẽ
[
(1−V )

2+Tσ,l
]

Kn∏
l=1

Ẽ
[
V
np
σ−1(l) (1−V )

Tσ,l+1
]

1−Ẽ
[
(1−V )

Tσ,l
]

s−1∏
l=t+1

Ẽ
[
V npl (1−V )

1+Tσ,l+1
]

1−Ẽ
[
(1−V )

1+Tσ,l
] Kn∏

l=s+1

Ẽ
[
V
np
σ−1(l) (1−V )

Tσ,l+1
]

1−Ẽ
[
(1−V )

Tσ,l
]

1
≤ L

P0 almost surely in the model where X1, · · · , Xn|P ∼ P and P ∼ SBP(α,D)
where α is an atomless base measure and D is a distribution on [0, 1] which
admits a Lebesgue density h and a, b > 0 and g a twice continuously dif-
ferentiable function on [0, 1] which is bounded away from zero such that
h(v) = va−1(1− v)b−1g(v) for all v ∈ (0, 1).

Proof. Observe that it does not matter for the distribution of the weights
of the continuous part, if we replace the weights of the i-th distinct discrete
observation by Ni observations which occur only once, since we can bound
uniformly by a constant factor, by Lemma 6.2.11. If we then increase the
sum by adding all these non-negative weights, we are in the situation where
we only have continuous observations. We then ask for the sum of all mixed
first moment of the weights of all the continuous observations in the case
where we only have continuous observations. This is, as we have seen in
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Lemma 6.2.45 and Lemma 6.2.42, convergent to 1. Hence indeed we stay
bounded.

In order to collect the results on uniform convergence, we split the result
into two parts, the ”head” of the permutation and the ”tail” of the permu-
tation. For those we need different techniques to control them. Namely,
everything in the ”head” of the permutation should converge to zero, and
everything in the ”tail” has to converge to the right value. This is what we
will do now.

Lemma 6.2.49 (Weights in front of discrete observations have zero contri-
bution). Suppose P0 = Pd+λPc with λ > 0. Define Cn = {i : P0({X̂i}) = 0}.
Let Tn be a sequence of permutations such that for all σ ∈ Tn Dn = {i ∈
Cn : ∃j : P0({X̂j}) > 0 and σ(i) ≤ σ(j)} has cardinality at most Kn with
Kn
n
→ 0. Then

∑
k∈Dn

Ẽ
[
V
npk,n+q

(1−V )
Tσ,σ(k)+1

]
1−Ẽ

[
(1−V )

q+Tσ,σ(k)
] ∏

l<σ(k)

Ẽ[V npl (1−V )
q+Tσ,l+1 ]

1−Ẽ[(1−V )
q+Tσ,l ]

∏
l>σ(k)

Ẽ[V npl (1−V )
Tσ,l+1 ]

1−Ẽ[(1−V )
Tσ,l ]∑

σ∈Sm

m∏
l=1

Ẽ[V
np
σ−1(l) (1−V )

Tσ,l+1 ]
1−Ẽ[(1−V )

Tσ,l ]

sup
σ∈Tn

∑
i∈Dn

Ẽ
[
W k
Ii

]
→ 0 P0 a.s.

in the model where X1, · · · , Xn|P ∼ P and P ∼ SBP(α,D) where α is
an atomless base measure and D is a distribution on [0, 1] which admits a
Lebesgue density h and a, b > 0 and g a twice continuously differentiable
function on [0, 1] which is bounded away from zero such that h(v) = va−1(1−
v)b−1g(v) for all v ∈ (0, 1).

Proof. We denote the weights in front of discrete observations by Dn = {i ∈
Cn : ∃j : P0({X̂j}) > 0 and σ(i) ≤ σ(j)}. Then |Dn| ≤ Kn. We first observe
that by Lemma A.3

Ẽ [V q(1− V )n]

Ẽ [V (1− V )n]
= (1 + rq,n)

q−1∏
i=0

1 + a+ i

1 + a+ b+ cn+ i
.

With
lim
n→∞

(1 + rq,n)Kn → 1.



6.2. POSTERIOR CONSISTENCY 101

By the strong law of large numbers, the number of the observations from the
continuous part of the true distribution divided by the total number of obser-
vations approaches λ. Because there are at most Kn weights corresponding
to observations of the continuous part of the true distribution in front of
weights corresponding to observations from the discrete part, and Kn

n
→ 0,

eventually there are at least λn
2

observations placed behind the weight we are
inspecting, hence the y in

Ẽ [V q(1− V )y]

Ẽ [V (1− V )y]

is at least λn
2

. If λ > 0 then λn
2
→ ∞. Note that every factor other factor

appearing is less than 1, and hence

sup
σ∈Tn

∑
i∈Dn

Ẽ [WIi ] ≤ Kn

Ẽ
[
V q(1− V )

λ
2
n
]

Ẽ
[
V (1− V )

λ
2
n
] P0 a.s..

Now since Kn
n
→ 0 we know thatKn

1+a
1+a+b+cn

→ 0. ThereforeKn

∏k−1
i=0

1+a+i
1+a+b+cn+i

→
0. We also know and (1 + rq,λ

2
n)→ 1. Hence

sup
σ∈Tn

∑
i∈Dn

Ẽ [WIi ]→ 0 P0 a.s.

Lemma 6.2.50 (Weights in the tail have asymptotic mass λ). Suppose P0 =
Pd + λPc with λ > 0. Define Cn = {i : P0({X̂i}) = 0}. Suppose Tn is a
sequence of sets of permutations such that Dn = {i ∈ Cn : ∃j : P0({X̂j}) >
0 and σ(i) ≤ σ(j)} has cardinality at most Kn with Kn

n
→ 0. Let En =

Cn \Dn. Then

∑
k∈En

Ẽ
[
V
npk,n+1

(1−V )
Tσ,σ(k)+1

]
1−Ẽ

[
(1−V )

1+Tσ,σ(k)
] ∏

l<σ(k)

Ẽ[V npl (1−V )
1+Tσ,l+1 ]

1−Ẽ[(1−V )
1+Tσ,l ]

∏
l>σ(k)

Ẽ[V npl (1−V )
Tσ,l+1 ]

1−Ẽ[(1−V )
Tσ,l ]

m∏
l=1

Ẽ[V
np
σ−1(l) (1−V )

Tσ,l+1 ]
1−Ẽ[(1−V )

Tσ,l ]

Converges uniformly to λ on Tn P0 almost surely in the model where X1, · · · , Xn|P ∼
P and P ∼ SBP(α,D) where α is an atomless base measure and D is a dis-
tribution on [0, 1] which admits a Lebesgue density h and a, b > 0 and g
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a twice continuously differentiable function on [0, 1] which is bounded away
from zero such that h(v) = va−1(1− v)b−1g(v) for all v ∈ (0, 1).

Proof. Observe that the image of En under σ is the tail of the permutation.
This means that there exists a natural number k such that i ∈ En if and only
if σ(i) > s. This means that, for all k ∈ En, the first s terms in the product

Ẽ
[
V
npk,n+1

(1−V )
Tσ,σ(k)+1

]
1−Ẽ

[
(1−V )

1+Tσ,σ(k)
] ∏

l<σ(k)

Ẽ[V npl (1−V )
1+Tσ,l+1 ]

1−Ẽ[(1−V )
1+Tσ,l ]

∏
l>σ(k)

Ẽ[V npl (1−V )
Tσ,l+1 ]

1−Ẽ[(1−V )
Tσ,l ]

m∏
l=1

Ẽ[V
np
σ−1(l) (1−V )

Tσ,l+1 ]
1−Ẽ[(1−V )

Tσ,l ]

are the same. Since they are all in front of k, they all have the +1 term in
the power. Note that s ≤ Kn + d, and Kn+d

n
→ 0. We want to study the

limiting behavior of this product. First observe that this product is∏
l<s

Ẽ[V npl (1−V )
1+Tσ,l+1 ]

1−Ẽ[(1−V )
1+Tσ,l ]

s∏
l=1

Ẽ[V
np
σ−1(l) (1−V )

Tσ,l+1 ]
1−Ẽ[(1−V )

Tσ,l ]

.

Now by Lemma 6.2.13 we can ignore the 1
1−Ẽ[··· ] terms as they will converge

uniformly to 1. Hence we want to study∏
l<s

Ẽ
[
V npl(1− V )1+Tσ,l+1

]
s∏
l=1

Ẽ [V npσ−1(l)(1− V )Tσ,l+1 ]
.

Now we can apply Lemma A.2. This gives that∏
l<s

Ẽ
[
V npl(1− V )1+Tσ,l+1

]
s∏
l=1

Ẽ [V npσ−1(l)(1− V )Tσ,l+1 ]
=

s∏
l=1

Tσ,l+1 + b

Tσ,l + a+ b
(1 +Rσ)

with supσ |Rσ| → 0. Since
Tσ,l+1

n
→ λ P0 almost surely, i.e. the number of

observations from the continuous part minus Kn divided by the total number
of observations converges to the probability of the continuous part by the
strong law of large numbers, we can apply Lemma 6.2.12 to conclude that

s∏
l=1

Tσ,l+1 + b

Tσ,l + a+ b
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converges uniformly to λ. Therefore∏
l<s

Ẽ
[
V npl(1− V )1+Tσ,l+1

]
s∏
l=1

Ẽ [V npσ−1(l)(1− V )Tσ,l+1 ]
→ λ.

uniformly in all σ ∈ Tn P0 almost surely.
Now we study the other part of the product, namely

Ẽ
[
V
npk,n+1

(1−V )
Tσ,σ(k)+1

]
1−Ẽ

[
(1−V )

1+Tσ,σ(k)
] ∏

s<l<σ(k)

Ẽ[V npl (1−V )
1+Tσ,l+1 ]

1−Ẽ[(1−V )
1+Tσ,l ]

∏
l>σ(k)

Ẽ[V npl (1−V )
Tσ,l+1 ]

1−Ẽ[(1−V )
Tσ,l ]

m∏
l=s+1

Ẽ[V
np
σ−1(l) (1−V )

Tσ,l+1 ]
1−Ẽ[(1−V )

Tσ,l ]

Now we study the other part of the product, namely

Ẽ
[
V
npk,n+2

(1−V )
Tσ,σ(k)+1

]
1−Ẽ

[
(1−V )

2+Tσ,σ(k)
] ∏

s<l<σ(k)

Ẽ[V npl (1−V )
2+Tσ,l+1 ]

1−Ẽ[(1−V )
2+Tσ,l ]

∏
l>σ(k)

Ẽ[V npl (1−V )
Tσ,l+1 ]

1−Ẽ[(1−V )
Tσ,l ]

m∏
l=s+1

Ẽ[V
np
σ−1(l) (1−V )

Tσ,l+1 ]
1−Ẽ[(1−V )

Tσ,l ]

Note that P0 almost surely, we only look at observations which have occurred
exactly one time. Therefore this is just the same as studying the weight
corresponding to the case where we only have a continuous part and have
|En| many observations. Since En → ∞ uniformly on Tn (|Cn| ≥ |En| ≥
|Cn|−Kn). So we can apply Lemma 6.2.38 to find that this product is equal
to

n−1∑
j=0

Ẽ [V (1− V )n+1]

Ẽ [V (1− V )j+1]

Ẽ [V 2(1− V )j]

Ẽ [V (1− V )j]

1− Ẽ [(1− V )n]

1− Ẽ [(1− V )j+2]
.

And then by Lemma 6.2.43 this converges uniformly on Tn to 1. Hence

Ẽ
[
V
npk,n+1

(1−V )
Tσ,σ(k)+1

]
1−Ẽ

[
(1−V )

1+Tσ,σ(k)
] ∏

l<σ(k)

Ẽ[V npl (1−V )
1+Tσ,l+1 ]

1−Ẽ[(1−V )
1+Tσ,l ]

∏
l>σ(k)

Ẽ[V npl (1−V )
Tσ,l+1 ]

1−Ẽ[(1−V )
Tσ,l ]

m∏
l=1

Ẽ[V
np
σ−1(l) (1−V )

Tσ,l+1 ]
1−Ẽ[(1−V )

Tσ,l ]

converges uniformly on Tn to λ P0 almost surely
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Lemma 6.2.51 (Second moment of weights in the tail converge to 0). Let
P0 = Pd + λPc where Pd is a discrete subprobabiity distribution and Pc is a
continuous probability distribution.

∑
k∈En

Ẽ
[
V
npk,n+2

(1−V )
Tσ,σ(k)+1

]
1−Ẽ

[
(1−V )

2+Tσ,σ(k)
] ∏

l<σ(k)

Ẽ[V npl (1−V )
2+Tσ,l+1 ]

1−Ẽ[(1−V )
2+Tσ,l ]

∏
l>σ(k)

Ẽ[V npl (1−V )
Tσ,l+1 ]

1−Ẽ[(1−V )
Tσ,l ]∑

σ∈Sm

m∏
l=1

Ẽ[V
np
σ−1(l) (1−V )

Tσ,l+1 ]
1−Ẽ[(1−V )

Tσ,l ]

Converges uniformly to zero in the model where X1, · · · , Xn|P ∼ P and
P ∼ SBP(α,D) where α is an atomless base measure and D is a distribution
on [0, 1] which admits a Lebesgue density h and a, b > 0 and g a twice contin-
uously differentiable function on [0, 1] which is bounded away from zero such
that h(v) = va−1(1− v)b−1g(v) for all v ∈ (0, 1).

The proof of this lemma resembles the proof of Lemma 6.2.50 a lot. The
only thing that changes is that we get higher moments, and thus the expres-
sions differ a tiny bit, and we need to refer to the lemma regarding the sum
of second moments instead of sum of first moments.

Proof. Observe that the image of En under σ is the tail of the permutation.
This means that there exists a natural number k such that i ∈ En if and only
if σ(i) > s. This means that, for all k ∈ En, the first s terms in the product

Ẽ
[
V
npk,n+2

(1−V )
Tσ,σ(k)+1

]
1−Ẽ

[
(1−V )

2+Tσ,σ(k)
] ∏

l<σ(k)

Ẽ[V npl (1−V )
2+Tσ,l+1 ]

1−Ẽ[(1−V )
2+Tσ,l ]

∏
l>σ(k)

Ẽ[V npl (1−V )
Tσ,l+1 ]

1−Ẽ[(1−V )
Tσ,l ]∑

σ∈Sm

m∏
l=1

Ẽ[V
np
σ−1(l) (1−V )

Tσ,l+1 ]
1−Ẽ[(1−V )

Tσ,l ]

are the same. Since they are all in front of k, they all have the +2 term in
the power. Note that s ≤ Kn + d, and Kn+d

n
→ 0. We want to study the

limiting behavior of this product. First observe that this product is

∏
l<s

Ẽ[V npl (1−V )
2+Tσ,l+1 ]

1−Ẽ[(1−V )
2+Tσ,l ]

s∏
l=1

Ẽ[V
np
σ−1(l) (1−V )

Tσ,l+1 ]
1−Ẽ[(1−V )

Tσ,l ]

.
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Now by Lemma 6.2.13 we can ignore the 1
1−Ẽ[··· ] terms as they will converge

uniformly to 1. Hence we want to study∏
l<s

Ẽ
[
V npl(1− V )2+Tσ,l+1

]
s∏
l=1

Ẽ [V npσ−1(l)(1− V )Tσ,l+1 ]
.

Now we can apply Lemma A.2. This gives that∏
l<s

Ẽ
[
V npl(1− V )1+Tσ,l+1

]
s∏
l=1

Ẽ [V npσ−1(l)(1− V )Tσ,l+1 ]
=

s∏
l=1

Tσ,l+1 + b+ 1

Tσ,l + a+ b+ 1

Tσ,l+1 + b

Tσ,l + a+ b
(1 +Rσ)

with supσ |Rσ| → 0. Since
Tσ,l+1

n
→ λ P0 almost surely, i.e. the number of

observations from the continuous part minus Kn divided by the total number
of observations converges to the probability of the continuous part by the
strong law of large numbers, we can apply Lemma 6.2.12 to conclude that

s∏
l=1

Tσ,l+1 + b+ 1

Tσ,l + a+ b+ 1

Tσ,l+1 + b

Tσ,l + a+ b

converges uniformly to λ2. Therefore∏
l<s

Ẽ
[
V npl(1− V )2+Tσ,l+1

]
s∏
l=1

Ẽ [V npσ−1(l)(1− V )Tσ,l+1 ]
→ λ2.

uniformly in all σ ∈ Tn P0 almost surely. Note that P0 almost surely, we only
look at observations which have occurred exactly one time. Therefore this is
just the same as studying the weight corresponding to the case where we only
have a continuous part and have |En| many observations. Since En → ∞
uniformly on Tn (|Cn| ≥ |En| ≥ |Cn| −Kn). So we can apply Lemma 6.2.41
to find that this product is equal to.

n∑
j=1

1− Ẽ [(1− V )n]

1− Ẽ [(1− V )n+3−l]

1− Ẽ [(1− V )n−1]

1− Ẽ [(1− V )n+2−l]

Ẽ [V (1− V )n+2]

Ẽ [V (1− V )n+1−l]
.
Ẽ [V (1− V )n+1]

Ẽ [V (1− V )n−l]

Ẽ
[
V 3(1− V )n−l

]
Ẽ [V (1− V )n−l]

.
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And then by Lemma 6.2.44 this converges uniformly on Tn to 0. Hence

Ẽ
[
V
npk,n+1

(1−V )
Tσ,σ(k)+1

]
1−Ẽ

[
(1−V )

1+Tσ,σ(k)
] ∏

l<σ(k)

Ẽ[V npl (1−V )
1+Tσ,l+1 ]

1−Ẽ[(1−V )
1+Tσ,l ]

∏
l>σ(k)

Ẽ[V npl (1−V )
Tσ,l+1 ]

1−Ẽ[(1−V )
Tσ,l ]

m∏
l=1

Ẽ[V
np
σ−1(l) (1−V )

Tσ,l+1 ]
1−Ẽ[(1−V )

Tσ,l ]

Converges uniformly on Tn to 0 P0 almost surely

Lemma 6.2.52 (Mixed terms in front of discrete weights do not contribute
anything on good sets). Suppose P0 = Pd +λPc with λ > 0. Define Cn = {i :

P0({X̂i}) = 0}. Suppose Tn is a sequence of sets of permutations such that

Dn = {i ∈ Cn : ∃j : P0({X̂j}) > 0 and σ(i) ≤ σ(j)} has cardinality at most
Kn with Kn

n
→ 0. Then

2

∑
i,j∈En

Ẽ
[
V 2(1−V )

Tσ,s+1
]

1−Ẽ
[
(1−V )

1+Tσ,s
] Ẽ

[
V 2(1−V )

Tσ,t+1
]

1−Ẽ
[
(1−V )

2+Tσ,t
] t−1∏
l=1

Ẽ
[
V npl (1−V )

2+Tσ,l+1
]

1−Ẽ
[
(1−V )

2+Tσ,l
]

Kn∏
l=1

Ẽ
[
V
np
σ−1(l) (1−V )

Tσ,l+1
]

1−Ẽ
[
(1−V )

Tσ,l
]

s−1∏
l=t+1

Ẽ
[
V npl (1−V )

1+Tσ,l+1
]

1−Ẽ
[
(1−V )

1+Tσ,l
] Kn∏

l=s+1

Ẽ
[
V
np
σ−1(l) (1−V )

Tσ,l+1
]

1−Ẽ
[
(1−V )

Tσ,l
]

1
→ 0 P0 a.s.

in the model where X1, · · · , Xn|P ∼ P and P ∼ SBP(α,D) where α is
an atomless base measure and D is a distribution on [0, 1] which admits a
Lebesgue density h and a, b > 0 and g a twice continuously differentiable
function on [0, 1] which is bounded away from zero such that h(v) = va−1(1−
v)b−1g(v) for all v ∈ (0, 1).

The main argument is the same as in Lemma 6.2.49. However, now we
have terms which are not yet in the ”convergent” part so we need to act a
bit more clever. The trick is to sum all the weights which are behind all the
discrete weights.

Proof. We split the problem into two parts, the sum such that both i, j ∈ Dn

and the sum such that i ∈ Dn, j 6∈ Dn. These require a bit different analysis.
The first is a straightforward modification of the proof of Lemma 6.2.49, but
now with two terms. This gives
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sup
σ∈Tn

2

∑
i,j∈Dn,j:σ(j)>σ(i)

Ẽ
[
V 2(1−V )

Tσ,s+1
]

1−Ẽ
[
(1−V )

1+Tσ,s
] Ẽ

[
V 2(1−V )

Tσ,t+1
]

1−Ẽ
[
(1−V )

2+Tσ,t
] t−1∏
l=1

Ẽ
[
V npl (1−V )

2+Tσ,l+1
]

1−Ẽ
[
(1−V )

2+Tσ,l
]

Kn∏
l=1

Ẽ
[
V
np
σ−1(l) (1−V )

Tσ,l+1
]

1−Ẽ
[
(1−V )

Tσ,l
]

s−1∏
l=t+1

Ẽ
[
V npl (1−V )

1+Tσ,l+1
]

1−Ẽ
[
(1−V )

1+Tσ,l
] Kn∏

l=s+1

Ẽ
[
V
np
σ−1(l) (1−V )

Tσ,l+1
]

1−Ẽ
[
(1−V )

Tσ,l
]

1

≤ K2
n

Ẽ
[
V 2(1− V )

λ
2
n+1

]
Ẽ
[
V (1− V )

λ
2
n+1

] Ẽ
[
V 2(1− V )

λ
2
n
]

Ẽ
[
V (1− V )

λ
2
n
] P0 a.s.

The same arguments as before apply so that this term is o(n2) and we
have K2

n terms, hence

K2
n

Ẽ
[
V 2(1− V )

λ
2
n+1
]

Ẽ
[
V (1− V )

λ
2
n+1
] Ẽ

[
V 2(1− V )

λ
2
n
]

Ẽ
[
V (1− V )

λ
2
n
] → 0

And thus

sup
σ∈Tn

2

∑
i,j∈Dn,j:σ(j)>σ(i)

Ẽ
[
V 2(1−V )

Tσ,s+1
]

1−Ẽ
[
(1−V )

1+Tσ,s
] Ẽ

[
V 2(1−V )

Tσ,t+1
]

1−Ẽ
[
(1−V )

2+Tσ,t
] t−1∏
l=1

Ẽ
[
V npl (1−V )

2+Tσ,l+1
]

1−Ẽ
[
(1−V )

2+Tσ,l
]

Kn∏
l=1

Ẽ
[
V
np
σ−1(l) (1−V )

Tσ,l+1
]

1−Ẽ
[
(1−V )

Tσ,l
]

s−1∏
l=t+1

Ẽ
[
V npl (1−V )

1+Tσ,l+1
]

1−Ẽ
[
(1−V )

1+Tσ,l
] Kn∏

l=s+1

Ẽ
[
V
np
σ−1(l) (1−V )

Tσ,l+1
]

1−Ẽ
[
(1−V )

Tσ,l
]

1

→ 0 P0 a.s.

For the other part of the claim, fix i ∈ Dn and then we sum all j 6∈ Dn.
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Using that all other factors which appear are less than one, we get

sup
σ∈Tn

2

∑
i∈Dn,j 6∈Dn

Ẽ
[
V 2(1−V )

Tσ,s+1
]

1−Ẽ
[
(1−V )

1+Tσ,s
] Ẽ

[
V 2(1−V )

Tσ,t+1
]

1−Ẽ
[
(1−V )

2+Tσ,t
] t−1∏
l=1

Ẽ
[
V npl (1−V )

2+Tσ,l+1
]

1−Ẽ
[
(1−V )

2+Tσ,l
]

Kn∏
l=1

Ẽ
[
V
np
σ−1(l) (1−V )

Tσ,l+1
]

1−Ẽ
[
(1−V )

Tσ,l
]

s−1∏
l=t+1

Ẽ
[
V npl (1−V )

1+Tσ,l+1
]

1−Ẽ
[
(1−V )

1+Tσ,l
] Kn∏

l=s+1

Ẽ
[
V
np
σ−1(l) (1−V )

Tσ,l+1
]

1−Ẽ
[
(1−V )

Tσ,l
]

1

≤ sup
σ∈Tn

∑
i∈Dn

Ẽ
[
V 2(1− V )

Tσ,σ(i)+1
]

Ẽ
[
V (1− V )

Tσ,σ(i)+1
]

∑
k∈En

Ẽ
[
V
npk,n+q

(1−V )
Tσ,σ(k)+1

]
1−Ẽ

[
(1−V )

q+Tσ,σ(k)
] ∏

l<σ(k)

Ẽ
[
V npl (1−V )

q+Tσ,l+1
]

1−Ẽ
[
(1−V )

q+Tσ,l
] ∏

l>σ(k)

Ẽ
[
V npl (1−V )

Tσ,l+1
]

1−Ẽ
[
(1−V )

Tσ,l
]

m∏
l=1

Ẽ
[
V
np
σ−1(l) (1−V )

Tσ,l+1
]

1−Ẽ
[
(1−V )

Tσ,l
]

.

From Lemma 6.2.50 we know that uniformly on all σ ∈ Tn we have∑
k∈En

Ẽ
[
V
npk,n+q

(1−V )
Tσ,σ(k)+1

]
1−Ẽ

[
(1−V )

q+Tσ,σ(k)
] ∏

l<σ(k)

Ẽ[V npl (1−V )
q+Tσ,l+1 ]

1−Ẽ[(1−V )
q+Tσ,l ]

∏
l>σ(k)

Ẽ[V npl (1−V )
Tσ,l+1 ]

1−Ẽ[(1−V )
Tσ,l ]

m∏
l=1

Ẽ[V
np
σ−1(l) (1−V )

Tσ,l+1 ]
1−Ẽ[(1−V )

Tσ,l ]

→ λ.

We know that uniformly over all σ ∈ Tn we have
∑

i∈Dn
Ẽ
[
V 2(1−V )

Tσ,σ(i)+1
]

Ẽ
[
V (1−V )

Tσ,σ(i)+1
] → 0

by Lemma 6.2.49 hence

sup
σ∈Tn

2

∑
i∈Dn,j 6∈Dn

Ẽ
[
V 2(1−V )

Tσ,s+1
]

1−Ẽ
[
(1−V )

1+Tσ,s
] Ẽ

[
V 2(1−V )

Tσ,t+1
]

1−Ẽ
[
(1−V )

2+Tσ,t
] t−1∏
l=1

Ẽ
[
V npl (1−V )

2+Tσ,l+1
]

1−Ẽ
[
(1−V )

2+Tσ,l
]

Kn∏
l=1

Ẽ
[
V
np
σ−1(l) (1−V )

Tσ,l+1
]

1−Ẽ
[
(1−V )

Tσ,l
]

s−1∏
l=t+1

Ẽ
[
V npl (1−V )

1+Tσ,l+1
]

1−Ẽ
[
(1−V )

1+Tσ,l
] Kn∏

l=s+1

Ẽ
[
V
np
σ−1(l) (1−V )

Tσ,l+1
]

1−Ẽ
[
(1−V )

Tσ,l
]

1

→ 0 P0 a.s.

This shows

2

∑
i,j∈En

Ẽ
[
V 2(1−V )

Tσ,s+1
]

1−Ẽ
[
(1−V )

1+Tσ,s
] Ẽ

[
V 2(1−V )

Tσ,t+1
]

1−Ẽ
[
(1−V )

2+Tσ,t
] t−1∏
l=1

Ẽ
[
V npl (1−V )

2+Tσ,l+1
]

1−Ẽ
[
(1−V )

2+Tσ,l
]

Kn∏
l=1

Ẽ
[
V
np
σ−1(l) (1−V )

Tσ,l+1
]

1−Ẽ
[
(1−V )

Tσ,l
]

s−1∏
l=t+1

Ẽ
[
V npl (1−V )

1+Tσ,l+1
]

1−Ẽ
[
(1−V )

1+Tσ,l
] Kn∏

l=s+1

Ẽ
[
V
np
σ−1(l) (1−V )

Tσ,l+1
]

1−Ẽ
[
(1−V )

Tσ,l
]

1
→ 0 P0 a.s.
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Lemma 6.2.53 (Mixed terms in the tail converge to λ2). Suppose the true
distribution P0 = Pd + λPc where Pc is a continuous probability distribution
and Pd is a finite discrete subprobability measure. Then

2

∑
s,t:σ−1(s),σ−1(t)∈En,s<t

Ẽ
[
V 2(1−V )

Tσ,s+1
]

1−Ẽ
[
(1−V )

1+Tσ,s
] Ẽ

[
V 2(1−V )

Tσ,t+1
]

1−Ẽ
[
(1−V )

2+Tσ,t
] t−1∏
l=1

Ẽ
[
V npl (1−V )

2+Tσ,l+1
]

1−Ẽ
[
(1−V )

2+Tσ,l
]

Kn∏
l=1

Ẽ
[
V
np
σ−1(l) (1−V )

Tσ,l+1
]

1−Ẽ
[
(1−V )

Tσ,l
]

s−1∏
l=t+1

Ẽ
[
V npl (1−V )

1+Tσ,l+1
]

1−Ẽ
[
(1−V )

1+Tσ,l
] Kn∏

l=s+1

Ẽ
[
V
np
σ−1(l) (1−V )

Tσ,l+1
]

1−Ẽ
[
(1−V )

Tσ,l
]

1

converges uniformly to λ P0 almost surely in the model where X1, · · · , Xn|P ∼
P and P ∼ SBP(α,D) where α is an atomless base measure and D is a
distribution on [0, 1] which admits a Lebesgue density h and a, b > 0 and g
a twice continuously differentiable function on [0, 1] which is bounded away
from zero such that h(v) = va−1(1− v)b−1g(v) for all v ∈ (0, 1).

The proof of this lemma resembles the proof of Lemma 6.2.50 a lot. The
only thing that changes is that we get higher moments, and thus the expres-
sions differ a tiny bit, and we need to refer to the lemma regarding the sum
of second moments instead of sum of first moments.

Proof. Observe that the image of En under σ is the tail of the permutation.
This means that there exists a natural number k such that i ∈ En if and only
if σ(i) > s. This means that, for all s, t such that s < t and σ−1(s), σ−1(t) ∈
En, the first u terms in the product

Ẽ
[
V 2(1−V )

Tσ,s+1
]

1−Ẽ
[
(1−V )

1+Tσ,s
] Ẽ

[
V 2(1−V )

Tσ,t+1
]

1−Ẽ
[
(1−V )

2+Tσ,t
] t−1∏
l=1

Ẽ
[
V npl (1−V )

2+Tσ,l+1
]

1−Ẽ
[
(1−V )

2+Tσ,l
]

Kn∏
l=1

Ẽ
[
V
np
σ−1(l) (1−V )

Tσ,l+1
]

1−Ẽ
[
(1−V )

Tσ,l
]

s−1∏
l=t+1

Ẽ
[
V npl (1−V )

1+Tσ,l+1
]

1−Ẽ
[
(1−V )

1+Tσ,l
] Kn∏

l=s+1

Ẽ
[
V
np
σ−1(l) (1−V )

Tσ,l+1
]

1−Ẽ
[
(1−V )

Tσ,l
]

1

are the same. Since they are all in front of i, j, they all have the +2 term
in the power. Note that s ≤ Kn + d, and Kn+d

n
→ 0. We want to study the
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limiting behavior of this product. First observe that this product is

∏
l<u

Ẽ[V npl (1−V )
2+Tσ,l+1 ]

1−Ẽ[(1−V )
2+Tσ,l ]

u∏
l=1

Ẽ[V
np
σ−1(l) (1−V )

Tσ,l+1 ]
1−Ẽ[(1−V )

Tσ,l ]

.

Now by Lemma 6.2.13 we can ignore the 1
1−Ẽ[··· ] terms as they will converge

uniformly to 1. Hence we want to study∏
l<u

Ẽ
[
V npl(1− V )2+Tσ,l+1

]
u∏
l=1

Ẽ [V npσ−1(l)(1− V )Tσ,l+1 ]
.

Now we can apply Lemma A.2. This gives that∏
l<u

Ẽ
[
V npl(1− V )1+Tσ,l+1

]
u∏
l=1

Ẽ [V npσ−1(l)(1− V )Tσ,l+1 ]
=

s∏
l=1

Tσ,l+1 + b+ 1

Tσ,l + a+ b+ 1

Tσ,l+1 + b

Tσ,l + a+ b
(1 +Rσ)

with supσ |Rσ| → 0. Since
Tσ,l+1

n
→ λ P0 almost surely, i.e. the number of

observations from the continuous part minus Kn divided by the total number
of observations converges to the probability of the continuous part by the
strong law of large numbers, we can apply Lemma 6.2.12 to conclude that

u∏
l=1

Tσ,l+1 + b+ 1

Tσ,l + a+ b+ 1

Tσ,l+1 + b

Tσ,l + a+ b

converges uniformly to λ2. Therefore∏
l<u

Ẽ
[
V npl(1− V )2+Tσ,l+1

]
u∏
l=1

Ẽ [V npσ−1(l)(1− V )Tσ,l+1 ]
→ λ2.

uniformly in all σ ∈ Tn P0 almost surely.



6.2. POSTERIOR CONSISTENCY 111

So now we study the other part of this expression

∑
s,t:σ−1(s),σ−1(t)∈En,s<t

Ẽ
[
V 2(1−V )

Tσ,s+1
]

1−Ẽ
[
(1−V )

1+Tσ,s
] Ẽ

[
V 2(1−V )

Tσ,t+1
]

1−Ẽ
[
(1−V )

2+Tσ,t
] t−1∏
l=u+1

Ẽ
[
V npl (1−V )

2+Tσ,l+1
]

1−Ẽ
[
(1−V )

2+Tσ,l
]

Kn∏
l=u+1

Ẽ
[
V
np
σ−1(l) (1−V )

Tσ,l+1
]

1−Ẽ
[
(1−V )

Tσ,l
]

s−1∏
l=t+1

Ẽ
[
V npl (1−V )

1+Tσ,l+1
]

1−Ẽ
[
(1−V )

1+Tσ,l
] Kn∏

l=s+1

Ẽ
[
V
np
σ−1(l) (1−V )

Tσ,l+1
]

1−Ẽ
[
(1−V )

Tσ,l
]

1

Note that P0 almost surely, we only look at observations which have
occurred exactly one time. Therefore this is just the same as studying the
weight corresponding to the case where we only have a continuous part and
have |En| many observations. Since En →∞ uniformly on Tn (|Cn| ≥ |En| ≥
|Cn|−Kn). So we can apply Lemma 6.2.42 to find that this product is equal
to. ∑

1≤i<j≤n

1− Ẽ [(1− V )n]

1− Ẽ [(1− V )n+3−l]

1− Ẽ [(1− V )n−1]

1− Ẽ [(1− V )n+2−l]

1− Ẽ [(1− V )n−i]

1− Ẽ [(1− V )n+2−j]

Ẽ [V (1− V )n+2]

Ẽ [V (1− V )n−i+1]

Ẽ [V (1− V )n+1]

Ẽ [V (1− V )n−i]

Ẽ [V (1− V )n−i+1]

Ẽ [V (1− V )n−j]

Ẽ [V 2(1− V )n−i]

Ẽ [V (1− V )n−i]

Ẽ [V 2(1− V )n−j]

Ẽ [V (1− V )n−j]
.

And then by Lemma 6.2.45 this converges uniformly on Tn to 1. Hence

2

∑
s,t:σ−1(s),σ−1(t)∈En,s<t

Ẽ
[
V 2(1−V )

Tσ,s+1
]

1−Ẽ
[
(1−V )

1+Tσ,s
] Ẽ

[
V 2(1−V )

Tσ,t+1
]

1−Ẽ
[
(1−V )

2+Tσ,t
] t−1∏
l=1

Ẽ
[
V npl (1−V )

2+Tσ,l+1
]

1−Ẽ
[
(1−V )

2+Tσ,l
]

Kn∏
l=1

Ẽ
[
V
np
σ−1(l) (1−V )

Tσ,l+1
]

1−Ẽ
[
(1−V )

Tσ,l
]

s−1∏
l=t+1

Ẽ
[
V npl (1−V )

1+Tσ,l+1
]

1−Ẽ
[
(1−V )

1+Tσ,l
] Kn∏

l=s+1

Ẽ
[
V
np
σ−1(l) (1−V )

Tσ,l+1
]

1−Ẽ
[
(1−V )

Tσ,l
]

1

Converges uniformly on Tn to 0 P0 almost surely

Now we have shown that the terms in the ”head” of the permutations
converge uniformly to zero and the terms in the ”tail” of the permutations
converge uniformly to the right answer. This allows us to compute the total
influence, which is basically collecting the results from the previous lemmas.
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Lemma 6.2.54 (First moments of weights have asymptotic mass λ). Suppose
P0 = Pd + λPc with λ > 0. Define Cn = {i : P0({X̂i}) = 0}. Suppose Tn
is a sequence of permutations such that Dn = {i ∈ Cn : ∃j : P0({X̂j}) >
0 and σ(i) ≤ σ(j)} has cardinality at most Kn with Kn

n
→ 0. Then∑

k∈Cn
Ẽ
[
V
npk,n+q

(1−V )
Tσ,σ(k)+1

]
1−Ẽ

[
(1−V )

q+Tσ,σ(k)
] ∏

l<σ(k)

Ẽ[V npl (1−V )
q+Tσ,l+1 ]

1−Ẽ[(1−V )
q+Tσ,l ]

∏
l>σ(k)

Ẽ[V npl (1−V )
Tσ,l+1 ]

1−Ẽ[(1−V )
Tσ,l ]

m∏
l=1

Ẽ[V
np
σ−1(l) (1−V )

Tσ,l+1 ]
1−Ẽ[(1−V )

Tσ,l ]

converges uniformly on Tn to λ P0 almost surely in the model where X1, · · · , Xn|P ∼
P and P ∼ SBP(α,D) where α is an atomless base measure and D is a dis-
tribution on [0, 1] which admits a Lebesgue density h and a, b > 0 and g
a twice continuously differentiable function on [0, 1] which is bounded away
from zero such that h(v) = va−1(1− v)b−1g(v) for all v ∈ (0, 1).

Proof. We use linearity to split this sum. Define En = Cn \Dn. This gives∑
k∈Cn

Ẽ
[
V
npk,n+q

(1−V )
Tσ,σ(k)+1

]
1−Ẽ

[
(1−V )

q+Tσ,σ(k)
] ∏

l<σ(k)

Ẽ[V npl (1−V )
q+Tσ,l+1 ]

1−Ẽ[(1−V )
q+Tσ,l ]

∏
l>σ(k)

Ẽ[V npl (1−V )
Tσ,l+1 ]

1−Ẽ[(1−V )
Tσ,l ]

m∏
l=1

Ẽ[V
np
σ−1(l) (1−V )

Tσ,l+1 ]
1−Ẽ[(1−V )

Tσ,l ]

=

∑
k∈Dn

Ẽ
[
V
npk,n+q

(1−V )
Tσ,σ(k)+1

]
1−Ẽ

[
(1−V )

q+Tσ,σ(k)
] ∏

l<σ(k)

Ẽ[V npl (1−V )
q+Tσ,l+1 ]

1−Ẽ[(1−V )
q+Tσ,l ]

∏
l>σ(k)

Ẽ[V npl (1−V )
Tσ,l+1 ]

1−Ẽ[(1−V )
Tσ,l ]

m∏
l=1

Ẽ[V
np
σ−1(l) (1−V )

Tσ,l+1 ]
1−Ẽ[(1−V )

Tσ,l ]

+

∑
k∈En

Ẽ
[
V
npk,n+q

(1−V )
Tσ,σ(k)+1

]
1−Ẽ

[
(1−V )

q+Tσ,σ(k)
] ∏

l<σ(k)

Ẽ[V npl (1−V )
q+Tσ,l+1 ]

1−Ẽ[(1−V )
q+Tσ,l ]

∏
l>σ(k)

Ẽ[V npl (1−V )
Tσ,l+1 ]

1−Ẽ[(1−V )
Tσ,l ]

m∏
l=1

Ẽ[V
np
σ−1(l) (1−V )

Tσ,l+1 ]
1−Ẽ[(1−V )

Tσ,l ]

Ẽ

[∑
i∈Cn

WIi

]
= Ẽ

[∑
i∈Dn

WIi

]
+ Ẽ

[∑
i∈En

WIi

]
Because∑

k∈Dn
Ẽ
[
V
npk,n+q

(1−V )
Tσ,σ(k)+1

]
1−Ẽ

[
(1−V )

q+Tσ,σ(k)
] ∏

l<σ(k)

Ẽ[V npl (1−V )
q+Tσ,l+1 ]

1−Ẽ[(1−V )
q+Tσ,l ]

∏
l>σ(k)

Ẽ[V npl (1−V )
Tσ,l+1 ]

1−Ẽ[(1−V )
Tσ,l ]

m∏
l=1

Ẽ[V
np
σ−1(l) (1−V )

Tσ,l+1 ]
1−Ẽ[(1−V )

Tσ,l ]
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converges uniformly on Tn to zero by Lemma 6.2.49 and

∑
k∈En

Ẽ
[
V
npk,n+q

(1−V )
Tσ,σ(k)+1

]
1−Ẽ

[
(1−V )

q+Tσ,σ(k)
] ∏

l<σ(k)

Ẽ[V npl (1−V )
q+Tσ,l+1 ]

1−Ẽ[(1−V )
q+Tσ,l ]

∏
l>σ(k)

Ẽ[V npl (1−V )
Tσ,l+1 ]

1−Ẽ[(1−V )
Tσ,l ]

m∏
l=1

Ẽ[V
np
σ−1(l) (1−V )

Tσ,l+1 ]
1−Ẽ[(1−V )

Tσ,l ]

converges uniformly on Tn to λ by Lemma 6.2.50 we can apply Lemma 6.2.17
which implies that

Ẽ

[∑
i∈Cn

WIi

]

converges uniformly on Tn to λ P0 almost surely.

Lemma 6.2.55 (Second moments of weights do not contribute anything on
good sets). Suppose P0 = Pd + λPc with λ > 0. Define Cn = {i : P0({X̂i}) =
0}. Suppose Tn is a sequence of permutations such that Dn = {i ∈ Cn : ∃j :
P0({X̂j}) > 0 and σ(i) ≤ σ(j)} has cardinality at most Kn with Kn

n
→ 0.

Then

∑
k∈Cn

Ẽ
[
V
npk,n+2

(1−V )
Tσ,σ(k)+1

]
1−Ẽ

[
(1−V )

2+Tσ,σ(k)
] ∏

l<σ(k)

Ẽ[V npl (1−V )
2+Tσ,l+1 ]

1−Ẽ[(1−V )
2+Tσ,l ]

∏
l>σ(k)

Ẽ[V npl (1−V )
Tσ,l+1 ]

1−Ẽ[(1−V )
Tσ,l ]∑

σ∈Sm

m∏
l=1

Ẽ[V
np
σ−1(l) (1−V )

Tσ,l+1 ]
1−Ẽ[(1−V )

Tσ,l ]

converges uniformly on Tn to 0 P0 almost surely in the model where X1, · · · , Xn|P ∼
P and P ∼ SBP(α,D) where α is an atomless base measure and D is a dis-
tribution on [0, 1] which admits a Lebesgue density h and a, b > 0 and g
a twice continuously differentiable function on [0, 1] which is bounded away
from zero such that h(v) = va−1(1− v)b−1g(v) for all v ∈ (0, 1).
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Proof. We use linearity to split this sum. Define En = Cn \Dn. This gives

∑
k∈Cn

Ẽ
[
V
npk,n+2

(1−V )
Tσ,σ(k)+1

]
1−Ẽ

[
(1−V )

2+Tσ,σ(k)
] ∏

l<σ(k)

Ẽ[V npl (1−V )
2+Tσ,l+1 ]

1−Ẽ[(1−V )
2+Tσ,l ]

∏
l>σ(k)

Ẽ[V npl (1−V )
Tσ,l+1 ]

1−Ẽ[(1−V )
Tσ,l ]∑

σ∈Sm

m∏
l=1

Ẽ[V
np
σ−1(l) (1−V )

Tσ,l+1 ]
1−Ẽ[(1−V )

Tσ,l ]

=

∑
k∈Dn

Ẽ
[
V
npk,n+2

(1−V )
Tσ,σ(k)+1

]
1−Ẽ

[
(1−V )

2+Tσ,σ(k)
] ∏

l<σ(k)

Ẽ[V npl (1−V )
2+Tσ,l+1 ]

1−Ẽ[(1−V )
2+Tσ,l ]

∏
l>σ(k)

Ẽ[V npl (1−V )
Tσ,l+1 ]

1−Ẽ[(1−V )
Tσ,l ]∑

σ∈Sm

m∏
l=1

Ẽ[V
np
σ−1(l) (1−V )

Tσ,l+1 ]
1−Ẽ[(1−V )

Tσ,l ]

+

∑
k∈En

Ẽ
[
V
npk,n+2

(1−V )
Tσ,σ(k)+1

]
1−Ẽ

[
(1−V )

2+Tσ,σ(k)
] ∏

l<σ(k)

Ẽ[V npl (1−V )
2+Tσ,l+1 ]

1−Ẽ[(1−V )
2+Tσ,l ]

∏
l>σ(k)

Ẽ[V npl (1−V )
Tσ,l+1 ]

1−Ẽ[(1−V )
Tσ,l ]∑

σ∈Sm

m∏
l=1

Ẽ[V
np
σ−1(l) (1−V )

Tσ,l+1 ]
1−Ẽ[(1−V )

Tσ,l ]

Because∑
k∈Dn

Ẽ
[
V
npk,n+2

(1−V )
Tσ,σ(k)+1

]
1−Ẽ

[
(1−V )

2+Tσ,σ(k)
] ∏

l<σ(k)

Ẽ[V npl (1−V )
2+Tσ,l+1 ]

1−Ẽ[(1−V )
2+Tσ,l ]

∏
l>σ(k)

Ẽ[V npl (1−V )
Tσ,l+1 ]

1−Ẽ[(1−V )
Tσ,l ]∑

σ∈Sm

m∏
l=1

Ẽ[V
np
σ−1(l) (1−V )

Tσ,l+1 ]
1−Ẽ[(1−V )

Tσ,l ]

converges uniformly on Tn to zero by Lemma 6.2.49 and

∑
k∈En

Ẽ
[
V
npk,n+2

(1−V )
Tσ,σ(k)+1

]
1−Ẽ

[
(1−V )

2+Tσ,σ(k)
] ∏

l<σ(k)

Ẽ[V npl (1−V )
2+Tσ,l+1 ]

1−Ẽ[(1−V )
2+Tσ,l ]

∏
l>σ(k)

Ẽ[V npl (1−V )
Tσ,l+1 ]

1−Ẽ[(1−V )
Tσ,l ]∑

σ∈Sm

m∏
l=1

Ẽ[V
np
σ−1(l) (1−V )

Tσ,l+1 ]
1−Ẽ[(1−V )

Tσ,l ]

converges uniformly on Tn to zero by Lemma 6.2.51 we can apply Lemma 6.2.17
which implies

∑
k∈Cn

Ẽ
[
V
npk,n+2

(1−V )
Tσ,σ(k)+1

]
1−Ẽ

[
(1−V )

2+Tσ,σ(k)
] ∏

l<σ(k)

Ẽ[V npl (1−V )
2+Tσ,l+1 ]

1−Ẽ[(1−V )
2+Tσ,l ]

∏
l>σ(k)

Ẽ[V npl (1−V )
Tσ,l+1 ]

1−Ẽ[(1−V )
Tσ,l ]∑

σ∈Sm

m∏
l=1

Ẽ[V
np
σ−1(l) (1−V )

Tσ,l+1 ]
1−Ẽ[(1−V )

Tσ,l ]

converges uniformly on Tn to 0 P0 almost surely.
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Lemma 6.2.56 (Mixed terms have asymptotic mass λ2 on good sets). Sup-

pose P0 = Pd + λPc with λ > 0. Define Cn = {i : P0({X̂i}) = 0}. Suppose

Tn is a sequence of permutations such that Dn = {i ∈ Cn : ∃j : P0({X̂j}) >
0 and σ(i) ≤ σ(j)} has cardinality at most Kn with Kn

n
→ 0. Then

2

∑
s,t:σ−1(s),σ−1(t)∈Cn,s<t

Ẽ
[
V 2(1−V )

Tσ,s+1
]

1−Ẽ
[
(1−V )

1+Tσ,s
] Ẽ

[
V 2(1−V )

Tσ,t+1
]

1−Ẽ
[
(1−V )

2+Tσ,t
] t−1∏
l=1

Ẽ
[
V npl (1−V )

2+Tσ,l+1
]

1−Ẽ
[
(1−V )

2+Tσ,l
]

Kn∏
l=1

Ẽ
[
V
np
σ−1(l) (1−V )

Tσ,l+1
]

1−Ẽ
[
(1−V )

Tσ,l
]

s−1∏
l=t+1

Ẽ
[
V npl (1−V )

1+Tσ,l+1
]

1−Ẽ
[
(1−V )

1+Tσ,l
] Kn∏

l=s+1

Ẽ
[
V
np
σ−1(l) (1−V )

Tσ,l+1
]

1−Ẽ
[
(1−V )

Tσ,l
]

1

converges uniformly on Tn to λ2 P0 almost surely in the model where X1, · · · , Xn|P ∼
P and P ∼ SBP(α,D) where α is an atomless base measure and D is a dis-
tribution on [0, 1] which admits a Lebesgue density h and a, b > 0 and g
a twice continuously differentiable function on [0, 1] which is bounded away
from zero such that h(v) = va−1(1− v)b−1g(v) for all v ∈ (0, 1).

Proof. We use linearity to split this sum. Define En = Cn \Dn. This gives

2

∑
s,t:σ−1(s),σ−1(t)∈Cn,s<t

Ẽ
[
V 2(1−V )

Tσ,s+1
]

1−Ẽ
[
(1−V )

1+Tσ,s
] Ẽ

[
V 2(1−V )

Tσ,t+1
]

1−Ẽ
[
(1−V )

2+Tσ,t
] t−1∏
l=1

Ẽ
[
V npl (1−V )

2+Tσ,l+1
]

1−Ẽ
[
(1−V )

2+Tσ,l
]

Kn∏
l=1

Ẽ
[
V
np
σ−1(l) (1−V )

Tσ,l+1
]

1−Ẽ
[
(1−V )

Tσ,l
]

s−1∏
l=t+1

Ẽ
[
V npl (1−V )

1+Tσ,l+1
]

1−Ẽ
[
(1−V )

1+Tσ,l
] Kn∏

l=s+1

Ẽ
[
V
np
σ−1(l) (1−V )

Tσ,l+1
]

1−Ẽ
[
(1−V )

Tσ,l
]

1

= 2

∑
i,j∈En

Ẽ
[
V 2(1−V )

Tσ,s+1
]

1−Ẽ
[
(1−V )

1+Tσ,s
] Ẽ

[
V 2(1−V )

Tσ,t+1
]

1−Ẽ
[
(1−V )

2+Tσ,t
] t−1∏
l=1

Ẽ
[
V npl (1−V )

2+Tσ,l+1
]

1−Ẽ
[
(1−V )

2+Tσ,l
]

Kn∏
l=1

Ẽ
[
V
np
σ−1(l) (1−V )

Tσ,l+1
]

1−Ẽ
[
(1−V )

Tσ,l
]

s−1∏
l=t+1

Ẽ
[
V npl (1−V )

1+Tσ,l+1
]

1−Ẽ
[
(1−V )

1+Tσ,l
] Kn∏

l=s+1

Ẽ
[
V
np
σ−1(l) (1−V )

Tσ,l+1
]

1−Ẽ
[
(1−V )

Tσ,l
]

1

+ 2

∑
i∈Dn,j:σ(j)>σ(i)

Ẽ
[
V 2(1−V )

Tσ,s+1
]

1−Ẽ
[
(1−V )

1+Tσ,s
] Ẽ

[
V 2(1−V )

Tσ,t+1
]

1−Ẽ
[
(1−V )

2+Tσ,t
] t−1∏
l=1

Ẽ
[
V npl (1−V )

2+Tσ,l+1
]

1−Ẽ
[
(1−V )

2+Tσ,l
]

Kn∏
l=1

Ẽ
[
V
np
σ−1(l) (1−V )

Tσ,l+1
]

1−Ẽ
[
(1−V )

Tσ,l
]

s−1∏
l=t+1

Ẽ
[
V npl (1−V )

1+Tσ,l+1
]

1−Ẽ
[
(1−V )

1+Tσ,l
] Kn∏

l=s+1

Ẽ
[
V
np
σ−1(l) (1−V )

Tσ,l+1
]

1−Ẽ
[
(1−V )

Tσ,l
]

1
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Because

2

∑
i,j∈En

Ẽ
[
V 2(1−V )

Tσ,s+1
]

1−Ẽ
[
(1−V )

1+Tσ,s
] Ẽ

[
V 2(1−V )

Tσ,t+1
]

1−Ẽ
[
(1−V )

2+Tσ,t
] t−1∏
l=1

Ẽ
[
V npl (1−V )

2+Tσ,l+1
]

1−Ẽ
[
(1−V )

2+Tσ,l
]

Kn∏
l=1

Ẽ
[
V
np
σ−1(l) (1−V )

Tσ,l+1
]

1−Ẽ
[
(1−V )

Tσ,l
]

s−1∏
l=t+1

Ẽ
[
V npl (1−V )

1+Tσ,l+1
]

1−Ẽ
[
(1−V )

1+Tσ,l
] Kn∏

l=s+1

Ẽ
[
V
np
σ−1(l) (1−V )

Tσ,l+1
]

1−Ẽ
[
(1−V )

Tσ,l
]

1

converges uniformly on Tn to zero P0 almost surely by Lemma 6.2.52 and

2

∑
i∈Dn,j:σ(j)>σ(i)

Ẽ
[
V 2(1−V )

Tσ,s+1
]

1−Ẽ
[
(1−V )

1+Tσ,s
] Ẽ

[
V 2(1−V )

Tσ,t+1
]

1−Ẽ
[
(1−V )

2+Tσ,t
] t−1∏
l=1

Ẽ
[
V npl (1−V )

2+Tσ,l+1
]

1−Ẽ
[
(1−V )

2+Tσ,l
]

Kn∏
l=1

Ẽ
[
V
np
σ−1(l) (1−V )

Tσ,l+1
]

1−Ẽ
[
(1−V )

Tσ,l
]

s−1∏
l=t+1

Ẽ
[
V npl (1−V )

1+Tσ,l+1
]

1−Ẽ
[
(1−V )

1+Tσ,l
] Kn∏

l=s+1

Ẽ
[
V
np
σ−1(l) (1−V )

Tσ,l+1
]

1−Ẽ
[
(1−V )

Tσ,l
]

1

converges uniformly on Tnto λ2 P0 almost surely by Lemma 6.2.53 we can
apply Lemma 6.2.17

Hence

2

∑
s,t:σ−1(s),σ−1(t)∈Cn,s<t

Ẽ
[
V 2(1−V )

Tσ,s+1
]

1−Ẽ
[
(1−V )

1+Tσ,s
] Ẽ

[
V 2(1−V )

Tσ,t+1
]

1−Ẽ
[
(1−V )

2+Tσ,t
] t−1∏
l=1

Ẽ
[
V npl (1−V )

2+Tσ,l+1
]

1−Ẽ
[
(1−V )

2+Tσ,l
]

Kn∏
l=1

Ẽ
[
V
np
σ−1(l) (1−V )

Tσ,l+1
]

1−Ẽ
[
(1−V )

Tσ,l
]

s−1∏
l=t+1

Ẽ
[
V npl (1−V )

1+Tσ,l+1
]

1−Ẽ
[
(1−V )

1+Tσ,l
] Kn∏

l=s+1

Ẽ
[
V
np
σ−1(l) (1−V )

Tσ,l+1
]

1−Ẽ
[
(1−V )

Tσ,l
]

1

converges uniformly on Tn to λ2 P0 almost surely

Now we have shown that everything behaves well on the good sets and
all the terms appearing remain bounded, we can conclude that the ratios in
the expressions for the moments converge to the right answer. This will be
the subject of the next three lemmas.

Lemma 6.2.57. Suppose that the true distribution P0 = Pd + λPc where Pd
is a finite discrete distribution. Then

Ẽ

[∑
k∈C

WIk

]
→ λ P0 a.s..



6.2. POSTERIOR CONSISTENCY 117

in the model where X1, · · · , Xn|P ∼ P and P ∼ SBP(α,D) where α is
an atomless base measure and D is a distribution on [0, 1] which admits a
Lebesgue density h and a, b > 0 and g a twice continuously differentiable
function on [0, 1] which is bounded away from zero such that h(v) = va−1(1−
v)b−1g(v) for all v ∈ (0, 1).

Proof. We use the expression of

Ẽ

[∑
k∈C

WIk

]

derived in Lemma 6.2.34

Ẽ

[∑
k∈Cn

W q
Ik

]
=

∑
σ∈Sm

∑
k∈Cn

Ẽ
[
V
npk,n+q

(1−V )
Tσ,σ(k)+1

]
1−Ẽ

[
(1−V )

q+Tσ,σ(k)
] ∏

l<σ(k)

Ẽ[V npl (1−V )
q+Tσ,l+1 ]

1−Ẽ[(1−V )
q+Tσ,l ]

∏
l>σ(k)

Ẽ[V npl (1−V )
Tσ,l+1 ]

1−Ẽ[(1−V )
Tσ,l ]∑

σ∈Sm

m∏
l=1

Ẽ[V
np
σ−1(l) (1−V )

Tσ,l+1 ]
1−Ẽ[(1−V )

Tσ,l ]

.

Now we apply Lemma 6.2.30 to find good sets. This gives us a sequence
(Kn)n∈N and sets Tn of asymptotic probability one. This gives exactly what
we need to apply Lemma 6.2.54, which shows that on Tn

∑
k∈Cn

Ẽ
[
V
npk,n+q

(1−V )
Tσ,σ(k)+1

]
1−Ẽ

[
(1−V )

q+Tσ,σ(k)
] ∏

l<σ(k)

Ẽ[V npl (1−V )
q+Tσ,l+1 ]

1−Ẽ[(1−V )
q+Tσ,l ]

∏
l>σ(k)

Ẽ[V npl (1−V )
Tσ,l+1 ]

1−Ẽ[(1−V )
Tσ,l ]

m∏
l=1

Ẽ[V
np
σ−1(l) (1−V )

Tσ,l+1 ]
1−Ẽ[(1−V )

Tσ,l ]

converges uniformly to λ P0 almost surely. By Lemma 6.2.46 the errors re-
main bounded and hence we can apply Lemma 6.2.9 to conclude that almost
surely

Ẽ

[∑
k∈C

WIk

]
→ λ P0 a.s..
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Lemma 6.2.58. Suppose that the true distribution P0 = Pd + λPc where Pd
is a finite discrete distribution. Then

Ẽ

[∑
k∈C

WIk

]
→ 0 P0 a.s..

in the model where X1, · · · , Xn|P ∼ P and P ∼ SBP(α,D) where α is
an atomless base measure and D is a distribution on [0, 1] which admits a
Lebesgue density h and a, b > 0 and g a twice continuously differentiable
function on [0, 1] which is bounded away from zero such that h(v) = va−1(1−
v)b−1g(v) for all v ∈ (0, 1).

Proof. By Lemma 6.2.34 we can find an expression for Ẽ
[∑

k∈CnW
2
Ik

]
.

Ẽ

[∑
k∈Cn

W 2
Ik

]
=

∑
σ∈Sm

∑
k∈Cn

Ẽ
[
V
npk,n+2

(1−V )
Tσ,σ(k)+1

]
1−Ẽ

[
(1−V )

2+Tσ,σ(k)
] ∏

l<σ(k)

Ẽ[V npl (1−V )
2+Tσ,l+1 ]

1−Ẽ[(1−V )
2+Tσ,l ]

∏
l>σ(k)

Ẽ[V npl (1−V )
Tσ,l+1 ]

1−Ẽ[(1−V )
Tσ,l ]∑

σ∈Sm

m∏
l=1

Ẽ[V
np
σ−1(l) (1−V )

Tσ,l+1 ]
1−Ẽ[(1−V )

Tσ,l ]

.

Now we apply Lemma 6.2.30 to find good sets. This gives us a sequence
(Kn)n∈N and sets Tn of asymptotic probability one. This gives exactly what
we need to apply Lemma 6.2.55, which shows that on Tn

∑
k∈Cn

Ẽ
[
V
npk,n+2

(1−V )
Tσ,σ(k)+1

]
1−Ẽ

[
(1−V )

2+Tσ,σ(k)
] ∏

l<σ(k)

Ẽ[V npl (1−V )
2+Tσ,l+1 ]

1−Ẽ[(1−V )
2+Tσ,l ]

∏
l>σ(k)

Ẽ[V npl (1−V )
Tσ,l+1 ]

1−Ẽ[(1−V )
Tσ,l ]∑

σ∈Sm

m∏
l=1

Ẽ[V
np
σ−1(l) (1−V )

Tσ,l+1 ]
1−Ẽ[(1−V )

Tσ,l ]

converges uniformly to 0 P0 almost surely. By Lemma 6.2.47 the errors re-
main bounded and hence we can apply Lemma 6.2.9 to conclude that almost
surely

Ẽ

[∑
k∈C

WIk

]
→ 0 P0 a.s..
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Lemma 6.2.59. Suppose that the true distribution P0 = Pd + λPc where Pd
is a finite discrete distribution. Then

Ẽ

[∑
k∈C

WIk

]
→ λ2 P0 a.s..

in the model where X1, · · · , Xn|P ∼ P and P ∼ SBP(α,D) where α is
an atomless base measure and D is a distribution on [0, 1] which admits a
Lebesgue density h and a, b > 0 and g a twice continuously differentiable
function on [0, 1] which is bounded away from zero such that h(v) = va−1(1−
v)b−1g(v) for all v ∈ (0, 1).

Proof. By Lemma 6.2.35 we know an expression for the moment of the mixed
weights. This is

Ẽ

 ∑
i,j∈C,i6=j

WIk
WIm

 =

2

∑
σ∈Sm

∑
s,t:σ−1(s),σ−1(t)∈C,s<t

Ẽ
[
V 2(1−V )

Tσ,s+1
]

1−Ẽ
[
(1−V )

1+Tσ,s
] Ẽ

[
V 2(1−V )

Tσ,t+1
]

1−Ẽ
[
(1−V )

2+Tσ,t
] t−1∏
l=1

Ẽ
[
V npl (1−V )

2+Tσ,l+1
]

1−Ẽ
[
(1−V )

2+Tσ,l
]

∑
σ∈SKn

Kn∏
l=1

Ẽ
[
V
np
σ−1(l) (1−V )

Tσ,l+1
]

1−Ẽ
[
(1−V )

Tσ,l
]

s−1∏
l=t+1

Ẽ
[
V npl (1−V )

1+Tσ,l+1
]

1−Ẽ
[
(1−V )

1+Tσ,l
] Kn∏

l=s+1

Ẽ
[
V
np
σ−1(l) (1−V )

Tσ,l+1
]

1−Ẽ
[
(1−V )

Tσ,l
]

1

Now we apply Lemma 6.2.30 to find good sets. This gives us a sequence
(Kn)n∈N and sets Tn of asymptotic probability one. This gives exactly what
we need to apply Lemma 6.2.56, which shows that on good sets

2

∑
s,t:σ−1(s),σ−1(t)∈Cn,s<t

Ẽ
[
V 2(1−V )

Tσ,s+1
]

1−Ẽ
[
(1−V )

1+Tσ,s
] Ẽ

[
V 2(1−V )

Tσ,t+1
]

1−Ẽ
[
(1−V )

2+Tσ,t
] t−1∏
l=1

Ẽ
[
V npl (1−V )

2+Tσ,l+1
]

1−Ẽ
[
(1−V )

2+Tσ,l
]

Kn∏
l=1

Ẽ
[
V
np
σ−1(l) (1−V )

Tσ,l+1
]

1−Ẽ
[
(1−V )

Tσ,l
]

s−1∏
l=t+1

Ẽ
[
V npl (1−V )

1+Tσ,l+1
]

1−Ẽ
[
(1−V )

1+Tσ,l
] Kn∏

l=s+1

Ẽ
[
V
np
σ−1(l) (1−V )

Tσ,l+1
]

1−Ẽ
[
(1−V )

Tσ,l
]

1

converge uniformly to λ2 P0 almost surely. By Lemma 6.2.48 the errors re-
main bounded and hence we can apply Lemma 6.2.9 to conclude that almost
surely

Ẽ

[∑
k∈C

WIk

]
→ λ2 P0 a.s..
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Lemma 6.2.60. Suppose that the true distribution P0 = Pd + λPc where Pd
is a finite discrete distribution. Then

Ẽ

(∑
k∈C

WIk

)2
→ λ2 P0 a.s..

in the model where X1, · · · , Xn|P ∼ P and P ∼ SBP(α,D) where α is
an atomless base measure and D is a distribution on [0, 1] which admits a
Lebesgue density h and a, b > 0 and g a twice continuously differentiable
function on [0, 1] which is bounded away from zero such that h(v) = va−1(1−
v)b−1g(v) for all v ∈ (0, 1).

Proof. We first rewrite the square, this yields

Ẽ

(∑
k∈C

WIk

)2
 = Ẽ

[∑
k∈C

W 2
Ik

+
∑

i,j∈C,i6=j

WIiWIj

]
.

Then by Lemma 6.2.58 we know that

Ẽ

[∑
k∈C

W 2
Ik

]
→ 0 P0 a.s..

and by Lemma 6.2.59 we we also know that

Ẽ

[ ∑
i,j∈C,i6=j

WIiWIj

]
→ λ2 P0 a.s..

Hence

Ẽ

(∑
k∈C

WIk

)2
→ λ2 P0 a.s..

Finally we want to show that the variance of the weights in the continuous
part converge to zero.
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Lemma 6.2.61. Suppose that the true distribution P0 = Pd + λPc where Pd
is a finite discrete distribution. Then

Ṽar

(∑
k∈C

WIk

)2
→ 0 P0 a.s..

in the model where X1, · · · , Xn|P ∼ P and P ∼ SBP(α,D) where α is
an atomless base measure and D is a distribution on [0, 1] which admits a
Lebesgue density h and a, b > 0 and g a twice continuously differentiable
function on [0, 1] which is bounded away from zero such that h(v) = va−1(1−
v)b−1g(v) for all v ∈ (0, 1).

Proof. By Lemma 6.2.57 and Lemma 6.2.60 we know that

Ẽ

[∑
k∈C

WIk

]
→ λ P0 a.s.

and

Ẽ

(∑
k∈C

WIk

)2
→ λ2 P0 a.s..

Hence

Ṽar

(∑
k∈C

WIk

)2
 = Ẽ

(∑
k∈C

WIk

)2
− Ẽ

[∑
k∈C

WIk

]
→ λ2 − λ2 = 0.

6.2.9 The convergence of the posterior mean

So we have shown the weights in the posterior act nicely. We now use this
to show that indeed the posterior mean converges to the right answer.

The upcoming lemma is used to extend the convergence on arbitrary large
sets to convergence on the total space.

Lemma 6.2.62. Let Pn be a sequence of random probability measures and
P a probability measure. Let f be a bounded measurable function. Suppose
there exists a sequence of measurable sets Ak such that

E [Pn(1Akf)]→ P (1Akf) ∀k,
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and
P (Ak)→ 1

then
E [Pn(f)]→ P (f).

Proof. We begin by splitting f into 1Akf + 1Ack
f and then using linearity of

integration and expected values.

E [Pn(f)] = E
[
Pn(1Akf + 1Ack

f)
]

= E [Pn(1Akf)] + E
[
Pn(1Ackf)

]
.

If we denote an upper bound of f by F we can bound the second term:

E
[
Pn(1Ackf)

]
≤ FE

[
Pn(1Ack)

]
.

Now we look at the double sequence xn,k = (E [Pn(1Akf)] ,E
[
Pn(1Ack)

]
) with

the product metric. Note that limn→∞ xn,k = xk = (E [P (1Akf)] ,E
[
P (1Ack)

]
),

and limk→∞ xk = x = (P (f), 0) by dominated convergence theorem. By ap-
plying Lemma 6.2.16 we can extract a sequence kn such that limn→∞ xn,kn =
(P (f), 0). This implies that

E
[
Pn(1Aknf)

]
→ P (f)

and
E
[
Pn(1Acknf)

]
→ 0.

Thus
E [Pn(f)]→ p(f).

The next lemma allows us to use the results on the total weight coming
from the first moment to find the convergence of mean over the continuous
part of the true distribution.

Lemma 6.2.63. Let Cn = {i : P0({X̂i}) = 0} be the set of observations
coming from the continuous part of the true distribution. Then

E

[∑
i∈Cn

f(xi)WIi

]
=

∑m
i=1 f(xi)

|Cn|

m∑
i=1

E [WIi ] .
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Proof. First remark that the distribution of WIi is the same for every i ∈ Cn.
Let k ∈ Cn be arbitrary, then we can rewrite as follows

E

[∑
i∈Cn

f(xi)WIi

]
=
∑
i∈Cn

E [f(xi)WIi ]

=
∑
i∈Cn

f(xi)E [WIi ]

=
∑
i∈Cn

f(xi)E [WI1 ]

= E [WIk ]
∑
i∈Cn

f(xi)

= (

∑
i∈Cn E [WIi ]

|Cn|
)
∑
i∈Cn

f(xi)

= (
∑
i∈Cn

E [WIi ])

∑
i∈Cn f(xi)

|Cn|
.

This lemma states that the influence of the prior disappears.

Lemma 6.2.64. Let P0 be a distribution on X which does not have both
infinitely many points with positive probability and a continuous part.

E

 ∑
i:i 6=I1,··· ,IKn

Wi|X1, · · · , Xn

→ 0.

in the model where X1, · · · , Xn|P ∼ P and P ∼ SBP(α,D) where α is
an atomless base measure and D is a distribution on [0, 1] which admits a
Lebesgue density h and a, b > 0 and g a twice continuously differentiable
function on [0, 1] which is bounded away from zero such that h(v) = va−1(1−
v)b−1g(v) for all v ∈ (0, 1).

Proof. Define Cn = {i : P0({X̂i}) = 0}. Because we know
∑∞

i=1Wi = 1
almost surely, and for every ε > 0 we can pick discrete support points of the
true distribution µ1, · · · , µk such that P0 ({µ1, · · · , µk} ∪ Cn) ≥ 1 − ε

2
. Now

because we know the weights of these atoms and the weights corresponding
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to the continuous part both converge to the true probability, we can find
an N > 0 so that the total distance between the total weight given to the
continuous plus the weights corresponding to the selected discrete points
always stays within ε/2 of 1− ε

2
. Therefore, the total weight assigned to the

observations is at least 1 − ε. Thus we know that the total mass the other
weights can have is bounded above by ε.

The next lemma states that the posterior mean of converges on a collec-
tion of atoms.

Lemma 6.2.65. Let P0 be a distribution on X which does not have both
infinitely many points with positive probability and a continuous part. Let
A = {µ1, · · · , µm} be a subset of X . Let f be a nonnegative bounded measur-
able function on X . Then

E [P (1Af)|X1, · · · , Xn]→ P0(1Af) a.s.

in the model where X1, · · · , Xn|P ∼ P and P ∼ SBP(α,D) where α is
an atomless base measure and D is a distribution on [0, 1] which admits a
Lebesgue density h and a, b > 0 and g a twice continuously differentiable
function on [0, 1] which is bounded away from zero such that h(v) = va−1(1−
v)b−1g(v) for all v ∈ (0, 1).

Proof. The predictive posterior distribution gives that

E [P1Af |X1, · · · , Xn] =
∑
i:X̂i∈A

E [WIi |X1, · · · , Xn] f(X̂i)

+ α(1Af)
∑

i:i 6=I1,··· ,IKn

E [WIi |X1, · · · , Xn] .

By Lemma 6.2.64 we know that the latter term converges to zero. So it is
enough to show∑

i:X̂i∈A

E [WIi |X1, · · · , Xn] f(X̂i → P0(1Af) P0a.s.

Now by Lemma 6.2.33 the weights E [WIi |X1, · · · , Xn] converge almost
surely to the true probability P0(X̂k). Since we want to take the limit of the
(finite) sum we are done.
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The next lemma states that the posterior mean converges on the contin-
uous part.

Lemma 6.2.66. Let P0 be a distribution on X which does not have both
infinitely many points with positive probability and a continuous part. Let
A = {µ ∈ X : P0({µ}) > 0} be the collection of points of positive probability.
Let f be a nonnegative bounded measurable function on X . Then

E [P (1Acf)|X1, · · · , Xn]→ P0(1Acf) P0 a.s.

in the model where X1, · · · , Xn|P ∼ P and P ∼ SBP(α,D) where α is
an atomless base measure and D is a distribution on [0, 1] which admits a
Lebesgue density h and a, b > 0 and g a twice continuously differentiable
function on [0, 1] which is bounded away from zero such that h(v) = va−1(1−
v)b−1g(v) for all v ∈ (0, 1).

Proof. Suppose that the true distribution can be written as P0 = Pd + λPc,
where Pd is a discrete (sub)probability distribution and Pc is an atomless
probability distribution. The predictive posterior distribution gives that

E [P1Af |X1, · · · , Xn] = E

 ∑
i:X̂i 6∈A

f(X̂i)WIi |X1, · · · , Xn


+ α(1Af)

∑
i:i 6=I1,··· ,IKn

E [WIi |X1, · · · , Xn] .

Again by Lemma 6.2.64 we know that the second term converges to zero. So it
is enough to show that the first term converges to P0(1Acf). By Lemma 6.2.63
we know that for S = {i : X̂i ∈ Ac} and m being the cardinality of S we can
rewrite the in the following way:

E

 ∑
i:X̂i 6∈A

f(X̂i)WIi |X1, · · · , Xn

 =

∑m
i=1 f(X̂i)

|S|

m∑
i=1

E [WIi ] .

Now we have to compute two terms. First we show that∑m
i=1 f(X̂i)

|S|
→ PC(f).
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Note that the X̂i which lie in S are an iid sample from Pc, so by the strong
law of large numbers we know that indeed∑m

i=1 f(X̂i)

|S|
→ PC(f) P0 a.s.

Note that by Lemma 6.2.57

E

[
m∑
i=1

E [WIi ] |X1, · · · , Xn

]
→ λ P0 a.s.

Hence in total we get

E [P (1Acf)|X1, · · · , Xn]→ P0(1Acf) P0 a.s.

The next lemma states that the posterior mean converges on the total
space.

Lemma 6.2.67. Suppose P0 is a distribution with does not have both in-
finitely many points of positive probability and a continuous part. Suppose
that the base measure α is atomless and the relative stick-breaking weight
distribution D admits a density h and constants a, b > 0 and a twice contin-
uously differentiable function g : [0, 1]→ R which is bounded away from zero
such that h(v) = va−1(1 − v)b−1g(v) for v ∈ (0, 1). Let f be a non-negative
bounded measurable function. If P ∼ SBP(α,D) then

E [P (f)|X1, · · · , Xn]→ P0(f) P0 a.s.

Proof. Let P0 be a distribution which does not have both infinitely many
points of positive probability and a continuous part. DefineA = {µ ∈ X : P0({µ}) > 0}
the set of points of positive probability. For every n ∈ N we pick a finite set
Ak = {µ1, · · · , µm} such that P0(Ak ∪ Ac) > 1− 1

k
. Then P0(Ak ∪ Ac)→ 1.

Let f be a nonnegative bounded measurable function. Then by Lemma 6.2.65
we know

E [P (1Akf)|X1, · · · , Xn]→ P0(1Akf) P0 a.s.

Similarly from Lemma 6.2.66 it follows that

E [P (1Acf)|X1, · · · , Xn]→ P0(1Acf) P0 a.s.
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Because Ak and Ac are disjoint, we can use linearity to conclude that

E [P (1Ak∪Acf)|X1, · · · , Xn]→ P0(1Ak∪Acf) P0 a.s.

This works for every k, so we can apply Lemma 6.2.62 to conclude

E [P (f)|X1, · · · , Xn]→ P0(f) P0 a.s.

6.2.10 The convergence of the posterior variance

We have shown that the variance of the weights behave nicely. We now want
to extend this to control the variance integrals with respect to the posterior.

We want to show that we can bound the posterior variance on the full set
if we can control it on a sufficiently large set.

Lemma 6.2.68. Let Pn be a sequence of random probability measures and
P be a distribution such that Pn(1A) → P (1A) for every measurable set
A. Suppose that there exists a sequence of measurable sets Ak such that
E [Pn(1Akf)] → P (1Akf), P (Ak) → 1 and Var(Pn(Akf)) → 0 for all k.
Then Var(P0(f))→ 0.

Proof.

Var(Pn(f)) = Var(Pn(1Akf + 1Ack
f)

= Var(Pn(1Akf)) + Pn(1Ackf)))

So in view of Lemma 6.2.15 we only have to show that we can find a sequence
kn such that Var(Pn(1Aknf))→ 0 and Var(Pn(1Acknf)) converge to zero. We

denote Xn = Pn(1Aknf) and Yn = Pn(1Acknf), not denoting the dependence
on kn.

We start with the second requirement: Var(Yn) → 0. For this, we com-
pute the first and second moment. We denote the bound of f by F .

E [Yn] = E
[
Pn(1Acknf)

]
≤ E

[
Pn(1AcknF )

]
= FE

[
Pn(1Ackn )

]
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Now compute the second moment:

E
[
Y 2
n

]
= E

[
(Pn(1Acknf))2

]
≤ E

[
(FPn(1Ackn ))2

]
= F 2E

[
(Pn(1Ackn ))2

]
≤ F 2E

[
pn(1Ackn ))

]
.

So to show that Var(Y 2
n ) → 0 it is enough to show that E

[
pn(1Ackn ))

]
→ 0.

We are going to construct a sequence kn which does this and such that

Var(Xn) → 0 as well. Define zn,k = (E
[
Pn(1Aknf)

]
,E
[
pn(1Ackn ))

]
) a se-

quence in R2. Note that limn→∞ zn,k = zk = (E
[
pn(f1Akn ))

]
,E
[
pn(1Ackn ))

]
),

and limk→∞ zk = (0, 0). Now if we apply Lemma 6.2.16 we get a sequence kn

such that E
[
pn(1Ackn ))

]
→ 0 and Var(Pn(1Aknf)) → 0. Thus Var(Yn) →

0 and Var(Xn) → 0. This is exactly what is needed to conclude that
Var(Pn(f))→ 0.

The next lemma allows us to bound the covariances appearing from the
observations of the continuous part.

Lemma 6.2.69. Let P0 be a true distribution with P0 = Pd+λPc where Pd is
a finite discrete subprobability distribution and Pc is a continuous probability
distribution. Denote Cn = {i : P0({X̂i}) = 0}. Then for all i, j ∈ Cn∑

i,j∈Cn,i 6=j

|Cov(Wi,Wj|X1, · · · , Xn)| → 0 P0 a.s.

in the model where X1, · · · , Xn|P ∼ P and P ∼ SBP(α,D) where α is
an atomless base measure and D is a distribution on [0, 1] which admits a
Lebesgue density f and a, b > 0 and g a twice continuously differentiable
function on [0, 1] which is bounded away from zero such that f(v) = va−1(1−
v)b−1g(v) for all v ∈ (0, 1).

Proof. Because i, j ∈ Cn we know that almost surely, Ni = Nj = 1. By
exchangebility, Corollary 6.2.25, we know that∑

i,j∈Cn,i 6=j

|Cov(Wi,Wj|X1, · · · , Xn)|
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is just

n(n− 1)|Cov(Wi,Wj|X1, · · · , Xn)|

for i 6= j, i, j ∈ Cn. From Lemma 6.2.59 we know that Ẽ
[
WIjWIi

]
= λ2+o(1)

n(n−1)

and from Lemma 6.2.57 we know that Ẽ [WIi ] = λ+o(1)
n

. Now observe that

Cov(Wi,Wj|X1, · · · , Xn) = λ2+o(1)
2n(n−1 −

1
n

2
(λ2 + o(1)). Hence

2n(n− 1)|Cov(Wi,Wj|X1, · · · , Xn)| = |λ2 + o(1)− n(n− 1)

n2
(λ2 + o(1))| → 0.

Thus ∑
i,j∈Cn,i 6=j

|Cov(Wi,Wj|X1, · · · , Xn)| → 0.

We first recall a little result on the variance of bounded random variables.

Lemma 6.2.70. If Xn is a sequence of random variables on [0, F ] such that
E [Xn]→ 0, then Var(Xn)→ 0.

Proof. We know that E [Xn] 0. Now we want to compute E [X2
n]. This is

E [1Xn<1X
2
n + 1Xn≥1X

2
n]. We can split this using linearity. On Xn < 1 we

know that X2
n < Xn so E [1Xn<1X

2
n] < E [1Xn<1Xn]. Because Xn is non-

negative, we know that E [1Xn<1Xn] < E [Xn] → 0. Hence the first term
converges to zero. For the second term, observe that on 1Xn≥1 we know
that Xn ≥ 1. Suppose there exists c > 0 such that P (Xn ≥ 1) > c
for arbitrarily large n. Then E [1Xn ≥ 1Xn] > c for those n. However,
this means E [Xn] > c for those n, which is in contradiction with our as-
sumptions. Hence P(Xn ≥ 1) → 0. Because Xn ≤ F we can conclude
E [1Xn≥1X

2
n] ≤ F 2E [1Xn≥1] → 0. Hence the first and second moment of Xn

converge to zero, and therefore the variance of Xn converges to zero.

The variance coming from the prior contributes zero to the variance.

Lemma 6.2.71. Let P0 be a distribution on X which does not have both
infinitely many points whit positive probability and a continuous part. Then

Var(
∑

i:i 6=I1,··· ,IKn

f(θi)Wi)→ 0.
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in the model where X1, · · · , Xn|P ∼ P and P ∼ SBP(α,D) where α is
an atomless base measure and D is a distribution on [0, 1] which admits a
Lebesgue density f and a, b > 0 and g a twice continuously differentiable
function on [0, 1] which is bounded away from zero such that f(v) = va−1(1−
v)b−1g(v) for all v ∈ (0, 1).

Proof. From Lemma 6.2.64 we know that the first moment of
∑

i:i 6=I1,··· ,IKn
f(θi)Wi

conditional on the observations is asymptotically zero. Because f is bounded,
we know that ∑

i:i 6=I1,··· ,IKn

f(θi)Wi

is a bounded random variable. Hence we can apply Lemma 6.2.70 to conclude
that the variance converges to zero as well.

This lemma allows us to show that the variance of the integral on the
discrete part converges to zero.

Lemma 6.2.72. Let P0 be a distribution on X which does not have both
infinitely many points whit positive probability and a continuous part. Let
A = {µ1, · · · , µm} be a subset of X . Let f be a nonnegative bounded measur-
able function on X . Then

Var(P (1Af)|X1, · · · , Xn)→ 0 P0 a.s.

in the model where X1, · · · , Xn|P ∼ P and P ∼ SBP(α,D) where α is
an atomless base measure and D is a distribution on [0, 1] which admits a
Lebesgue density f and a, b > 0 and g a twice continuously differentiable
function on [0, 1] which is bounded away from zero such that f(v) = va−1(1−
v)b−1g(v) for all v ∈ (0, 1).

Proof. From the posterior predictive model we find

Var(P (1Af)|X1, · · · , Xn) = Var(
∑
i:X̂i∈A

f(X̂i)WIi

+
∑

i:i 6=I1,··· ,IKn

f(θi)Wi|X1, · · · , Xn)

This is the conditional variance of a sum of two random variables:∑
i:X̂i∈A

f(X̂i)WIi
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and ∑
i:i 6=I1,··· ,IKn

f(θi)Wi.

From Lemma 6.2.71 we know that the second term vanishes asymptotically.
In view of Lemma 6.2.70 it is enough to show that the variance of the first
term vanishes asymptotically as well. Note that this term is again a finite
sum. So we compute the conditional variance of every term. This is

Var(f(X̂i)WIi|X1, · · · , Xn) = f(X̂i)
2Var(WIi|X1, · · · , Xn).

The variance of this vanishes by Lemma 6.2.33, hence again by Lemma 6.2.70
we see that the variance of ∑

i:X̂i∈A

f(X̂i)WIi

converges to zero as well. This shows that

Var(P (1Af)|X1, · · · , Xn)→ 0 P0 a.s.

The variance coming from the observations from the continuous part of
the true distributions have zero variance:

Lemma 6.2.73. Let P0 be a distribution on X which does not have both
infinitely many points with positive probability and a continuous part. Let
A = {µ ∈ X : P0({µ}) > 0} be the collection of points of positive probability.
Let f be a nonnegative bounded measurable function on X . Then

Var(P (1Acf)|X1, · · · , Xn)→ 0 P0 a.s.

in the model where X1, · · · , Xn|P ∼ P and P ∼ SBP(α,D) where α is
an atomless base measure and D is a distribution on [0, 1] which admits a
Lebesgue density f and a, b > 0 and g a twice continuously differentiable
function on [0, 1] which is bounded away from zero such that f(v) = va−1(1−
v)b−1g(v) for all v ∈ (0, 1).



132 CHAPTER 6. CONSISTENCY

Proof. The predictive posterior distribution gives that

Var(P (1Acf |X1, · · · , Xn) = Var(
∑
i:X̂i 6∈A

f(X̂i)WIi

+
∑

i:i 6=I1,··· ,IKn

f(θi)Wi|X1, · · · , Xn)

Again this is conditional variance of a sum of two random variables∑
i:X̂i 6∈A

f(X̂i)WIi

and ∑
i:i 6=I1,··· ,IKn

f(θi)Wi.

The conditional variance of the second term vanishes asymptotically, so we
only have to study the first.

Var(
∑
i:X̂i 6∈A

f(X̂i)WIi |X1, · · · , Xn) =
∞∑
i=1

f(X̂i)
2Var(WIi |X1, · · · , Xn)

+
∑
i 6=j

f(X̂i)f(X̂j)Cov(WIi ,WIj)

Now we want to find an upper bound, so we estimate this from above by
taking the absolute values of the covariances and the maximal value f can
attain, say F . This gives

Var(
∑
i:X̂i 6∈A

f(X̂i)WIi |X1, · · · , Xn) ≤
∞∑
i=1

F 2Var(WIi |X1, · · · , Xn)

+ F 2
∑
i 6=j

|Cov(WIi ,WIj)|

Now because the sum of the absolute values of these covariances converges
to zero, we can study the limiting behavior of this bound by studying

Var(
∑
i:X̂i 6∈A

WIi |X1, · · · , Xn) =
∞∑
i=1

Var(WIi |X1, · · · , Xn)

+
∑
i 6=j

Cov(WIi ,WIj)
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And we have shown in Lemma 6.2.61 that this converges to zero. Hence

Var(
∑
i:X̂i 6∈A

f(X̂i)WIi |X1, · · · , Xn)

converges P0 almost surely to zero, which is what was needed to show that

Var(P (1Acf)|X1, · · · , Xn)→ 0 P0 a.s.

The variance converges to zero.

Lemma 6.2.74. Suppose P0 is a distribution with does not have both in-
finitely many points of positive probability and a continuous part. Suppose
that the base measure α is atomless and the relative stick-breaking weight
distribution D admits a density f and constants a, b > 0 and a twice contin-
uously differentiable function g : [0, 1]→ R which is bounded away from zero
such that f(v) = va−1(1 − v)b−1g(v) for v ∈ (0, 1). Let h be a non-negative
bounded measurable function. If P ∼ SBP(α,D) then

Var(P (f)|X1, · · · , Xn)→ 0 P0a.s.

Proof. Let P0 be a distribution which does not have both infinitely many
points of positive probability and a continuous part. Denote A = {µ ∈ X :
P0({µ} > 0} the set of points with positive probability. For every N ∈ N we
pick a finite set Ak = {µ1, · · · , µm} such that P0(Ak ∪ Ac) > 1 − 1

k
. Then

P0(Ak ∪ Ac) → 1. Let f be a nonnegative bounded measurable function.
Then by Lemma 6.2.72 we know

Var (P (1Akf)|X1, · · · , Xn)→ 0 P0 a.s.

Similarly from Lemma 6.2.73

Var (P (1Acf)|X1, · · · , Xn)→ 0 P0 a.s.

Thus by Lemma 6.2.15 , and using that Ak and AC are disjoint, it follows
that

Var (P (1Ak∪Acf)|X1, · · · , Xn)→ 0 P0 a.s.

This holds for every k thus we can apply Lemma 6.2.68 to conclude that

Var (P (f)|X1, · · · , Xn)→ 0 P0 a.s.
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6.2.11 General statement

Here we prove the general statement. It is just a collection of the results
so far, with a bit of work to combine the last two sections into a general
statement.

Theorem 6.2.75 (The stick-breaking process is consistent under regularity
conditions). Let α be an atomless measure. Suppose that the stick-breaking
distribution D admits a density f such that there exists constants a, b > 0
and a twice continuously differentiable function g on [0, 1] such that f(v) =
va−1(1 − v)b−1g(v) for v ∈ (0, 1). Let P0 be any distribution such that P0

does not both have infinitely many points of positive probability and a con-
tinuous part. Then the posterior in the model X1, · · · , Xn|P ∼ P , where
P ∼ SBP(α,D), as given in Theorem 5.4.4 is consistent with respect to the
topology of pointwise convergence on bounded measurable functions at P0.

Proof. The proof consists of case checking and some computations. The main
idea is to apply Lemma 6.2.2. So fix f a bounded measurable function. Now
we want to show that E [P (f)|X1, · · · , Xn] → P0(f) P0 almost surely and
Var (P (f)|X1, · · · , Xn)→ 0 P0 almost surely.

By Lemma 6.2.67 we know that E [P (f)|X1, · · · , Xn]→ P0(f) P0 almost
surely and by Lemma 6.2.74 we know that Var (P (f)|X1, · · · , Xn) → 0 P0

almost surely. This shows consistency.

If we also assume the conjecture, then we can extend the results further
to the following theorem:

Conjecture 6.2.76 (The stick-breaking process is consistent under regu-
larity conditions). Let α be an atomless measure. Suppose that the stick-
breaking distribution D admits a density f such that there exists constants
a, b > 0 and a twice continuously differentiable function g on [0, 1] such that
f(v) = va−1(1 − v)b−1g(v) for v ∈ (0, 1). Let P0 be any distribution. Then
the posterior in the model X1, · · · , Xn|P ∼ P , where P ∼ SBP(α,D), as
given in Theorem 5.4.4 is consistent with respect to the topology of pointwise
convergence on bounded measurable functions at P0.

The proof is mostly the same, except we also need to refer to the con-
vergence of the first and second moment if there are infinitely many points
of positive probability and a continuous part. The same arguments would
apply except we need a new lemma to show that the bad event only occurs
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with asymptotic probability zero. Currently we have shown a proof that the
weights corresponding to observations from the continuous part in the tail
converge almost surely to the right value if there are finitely many points of
positive probability in the true distribution. However, these proofs can be
adapted by showing that if you fix d points µ1, · · · , µd of positive probabil-
ity under the true distribution, and one looks at the weights in the tail, i.e.
behind those, then one can bound the influence of the rest by considering up-
per and lower bounds. The rest of the arguments do not need to be changed
except that we now need to refer to the more general lemma.

6.3 Consistency of Mixtures

We will first quote a theorem which we will state without proof, then we
quote a theorem on the consistency of Dirichlet Processes, and then we show
how to modify the proof to work in a more general situation.

We first need some introductory notation. dH is the Hellinger metric,
N(ε,Pn, d) is the covering number of Pn by ε sized d balls. For more infor-
mation on covering numbers, we refer to [1, AppendixC]. This allows us to
formulate the consistency by entropy Theorem, as stated in [1, theorem6.23].
Finally we denote KL(Π) to be the set of all densities which admit the Kull-
back Leibler property. The Kullback-Leibler property states that every ε ball
in the space of densities around a density p0 with respect to the Kullback
Leibler divergence dKL(p, p0 gets positive prior mass. The Kullback Leibler

divergence dKL(p, p0) =
∫

log p(x)
p0(x)

p(x) dx, which is the relative entropy of p
with respect to p0. We will later study how big the set of densities with the
Kullback Leibler property is.

Theorem 6.3.1. Given a distance d that generates convex balls and satisfies
d(p0, p) ≤ dH(p0, p) for every p, suppose that for every ε > 0 there exists
partitions P = Pn,1∪Pn,2 of the parameter space and a constant C > 0, such
that, for sufficiently large n,

• logN(ε,Pn,1, d) ≤ nε2.

• Π(Pn,2) ≤ e−Cn.

Then the posterior distribution in the model X1, · · ·Xn|p
iid∼ p and p ∼ Π is

strongly consistent relative to d at every p0 ∈ KL(Π).
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Using this theorem, we can prove the main theorem on the consistency
of Dirichlet process mixtures. Again we first introduce some notation and
then cite the theorem. Let pF,φ(x) =

∫
ψ(x; θ, φ) dF (θ) for a given family of

probability densities x 7→ φ(x; θ, φ), indexed by the two parameters θ ∈ Θ ⊂
Rk and φ ∈ Φ ⊂ Rl. Equip F with the Dirichlet process prior and φ by some
other prior π. This yields [1, theorem 7.15].

Theorem 6.3.2. If for any given ε > 0 and n, there exists subsets Θn ⊂ Rk

and Φn ⊂ Rl and constants an, An, bn, Bn > 0 such that

• ||ψ(·; θ, φ)− ψ(·; θ′, φ′)||1 ≤ an||θ − θ′|| + bn||φ− φ′||, for all θ, θ′ ∈ Θn

and φ, φ′ ∈ Φn.

• Diam(Θn) ≤ An and Diam(Φn) ≤ Bn.

• log(anAn) ≤ c log n for some C > 0 and log(bnBn) ≤ nε2

8l
.

• max(α(Θc
n), π(Φc

n)) ≤ e−Cn for some C > 0.

Then the posterior distribution Πn(·|X1, · · · , Xn) for pF,φ in the model

X1, · · · , Xn|(F, φ)
iid∼ pF,φ, for (F, φ) ∼ DP(Mα) × π, is strongly consistent

relative to the total variation norm at every p0 in the Kullback-Leibler support
of the prior of pF,φ.

Proof. We want to apply the consistency by entropy theorem Theorem 6.3.1,
with d equal to the L1-distance divided by 2. This satisfies d(p0, p) ≤
dH(p0, p). For given ε > 0, we set Nn ∼ nδ

logn
and δ small enough, to be

determined later. Then we define

Pn,1 = {
∞∑
j=1

wjφ(·; θj, φ) : (wj) ∈ S∞,
∑
j≥N

wj ≤
ε

8
, θ1, · · · , θN ∈ θn, φ ∈ Φn}.

Then the prior density pF,φ is contained in Pn,1, unless
∑

j≥Nn wj ≥
ε
8
, or at

least one of θ1, · · · , θNn
iid∼ α fall outside Θn, or φ 6∈ Φn. It follows that

Π(Pcn,1) ≤ P (
∑
j>Nn

Wj ≥
ε

8
) +Nnα(Θc

n) + π(Φc
n).

The last two terms are exponentially small by assumption and the choice of
N . We delegate the proof that P (

∑
j>Nn

Wj ≥ ε
8
) is exponentially small to

the end.
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Now we give a bound for the ε covering number of Pn,1. The functions of

the form
∑N

j=1wjψ(·; θj, φ) with (w1, · · · , wNn) ∈ SN form an ε
4
-net over Pn,1

for the L1 norm. To construct an 3ε
4

-net over these finite sums we restrict
(w1, · · · , wNn) to an ε

4
-net over SNn , restrict (θ1, · · · , θNn) to an ε

4an
-net over

Θn and φ to an ε
4bn

-net over Φn. The cardinality of such a net is bounded
above by

(
20

ε
)Nn(

12Anan
ε

)kNn(
12Bnbn

ε
)l.

Taking logs and rewriting yields log(N(ε,Pn,1, || · ||1) ≤ nε2 as required, for
δ small enough.

Now we tackle the problem of showing that P (
∑

j>Nn
Wj ≥ ε

8
) is expo-

nentially small. The stick-breaking weights satisfy Wj = Vj
∏j−1

s=1(1−Vs), for

Vs
iid∼ Be(1, α), and sumj>Nnwj =

∏Nn
j=1(1−Vj). Since − log(1−Vl) possesses

an exponential distribution, Rn := − log
∑

j>Nn
Wj is gamma distributed

with parameters Nn and M , and hence P (Rn ≤ r) ≤ (Mr)Nn

Nn!
. Therefore, the

first term is bounded above by (
eM log( 8

ε

Nn
)Nn , which is exponentially small, by

the choice of Nn, for any δ > 0.

We will generalize this theorem to the general case of stick-breaking
weights, not just the β(1,M) case.

Theorem 6.3.3. Let Π be a stick-breaking process with base measure α and
stick-breaking weights distributed according to D. Suppose that either D ad-
mits a bounded Lebesgue density or D is a discrete measure which does not
put mass arbitrarily close to 0. If for any given ε > 0 and n, there exists
subsets Θn ⊂ Rk and Φn ⊂ Rl and constants an, An, bn, Bn > 0 such that

• ||ψ(·; θ, φ)− ψ(·; θ′, φ′)||1 ≤ an||θ − θ′|| + bn||φ− φ′||, for all θ, θ′ ∈ Θn

and φ, φ′ ∈ Φn.

• Diam(Θn) ≤ An and Diam(Φn) ≤ Bn.

• log(anAn) ≤ c log n for some C > 0 and log(bnBn) ≤ nε2

8l
.

• max(α(Θc
n), π(Φc

n)) ≤ e−Cn for some C > 0.

Then the posterior distribution Πn(·|X1, · · · , Xn) for pF,φ in the model where
X1, · · · , Xn conditional on (F, φ) is iid from pF,φ, for (F, φ) ∼ Π × π, is
strongly consistent relative to the total variation norm at every p0 in the
Kullback-Leibler support of the prior of pF,φ.
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In order to generalize the theorem, we observe that we only need to change
the proof to get exponentially small decay, and we can pick Nn = d nδ

logn
e. The

next lemma gives us a way to find exponential decay.

We use the notation from the proof of theorem 7.15, except we work with
the general process, so Vl ∼ D for some distribution D.

Lemma 6.3.4. Suppose there exists a C > 0 and a sequence k(n) which

solves E(1−V1)k(n) ≤ elog(n)(
log λk(n)−cn

nδ ) for all natural numbers n > m. Then
P (
∏Nn

i=1 Vi ≥ λ) ≤ e−Cn for all n ≥ m.

Proof. We apply the Markov inequality. We often work with Nn = nδ
logn

,
which is smaller, but at most 1 smaller.

P (
Nn∏
i=1

(1− Vi) ≤ λ) ≤ E(
∏Nn

i=1(1− Vi))k(n)

λk(n)

iid
=

∏Nn
i=1 E(1− Vi)k(n)

λk(n)

=
(E
[
(1− Vi)k(n)

]
)Nn

λk(n)

assumption

≤ (elog(n)(
log λk(n)−cn

nδ ))Nn

λk(n)

≤ elog(n)(
log λk(n)−cn

nδ ) nδ
logn

λk(n)

=
e(

log λk(n)−cn
nδ )nδ

λk(n)

=
elog λk(n)−cn

λk(n)

=
elog λk(n)e−cn

λk(n)

=
λk(n)e−cn

λk(n)

= e−cn.

So indeed, we have exponential decreasing probability.
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We observe that we can rewrite the bound in the following ways:

elog(n)(
log λk(n)−cn

nδ ) = n−
c
δλ

k(n) logn
δn

= n
log λk(n)−cn

nδ

= n
logλ
δ

k(n)
n
− c
δ

We will use the first equality now:
Next question is to actually show that there are distributions which solve

this decay. Read X as 1− V .

Lemma 6.3.5. Suppose that EXk ≤ M
k

. Then we have exponential decay

P (
Nn∏
i=1

Xi ≥ λ) ≤ e−cn

Proof. We want to show that for a fixed we can find a C > 0 and a k : N→ N,
where k can depend on λ and δ and C can depend on δ.

M

k
≤ n−

c
δλ

k logn
δn

This is equivalent with (by multiplying left and right by kn
C
δ )

Mn
c
δ ≤ kλ

k logn
δn

We can take logarithms on both sides to get

c

δ
log n+M ≤ log k +

k log n

δn
log λ

If we pick k = −δn
logn log λ

. Filling this out into the equation gives

c

δ
log n+M ≤ log(

−δn
log n log λ

) +
( −δn
logn log λ

) log n

δn
log λ

We can simplify this into

c

δ
log n+M ≤ log n+ log δ − log(− log n log λ)− 1

which holds when C < δ for large enough n.
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Lemma 6.3.6. Let V have an almost surely bounded density f with respect
to the Lebesgue measure, then V has exponential decay:

Proof. we estimate the k − th moment of 1− V by

EXk =

∫ 1

0

xkf(1− x) dx

≤
∫ 1

0

sup
y∈[0,1]

f(y) dx

= sup
y∈[0,1]

f(y)

∫ 1

0

xk dx

= sup
y∈[0,1]

f(y)
1

k + 1

= O(
1

k
)

Now we can apply the second lemma to gain what we want.

Corollary 6.3.7. Let V have a continuous density f . Then we have expo-
nential decay.

Proof. Because [0, 1] is compact, f attains a maximum, and it is positive so
it bounded. Now apply previous lemma.

Note that these bounds are not the sharpest they can get, in the sense
that there is most likely a bigger collection of probability measures which
would lead to a consistent posterior. For example, densities which blow
up at 1 or 0 might still be fine, and densities which have decay like 1

logn

are probably the tightest we can get. Furthermore, we would like to point
out that most discrete distributes are fine. As long as they do not put
mass in every neighborhood around zero, since, for a given λ, the product of∏n

i=1(1−Vi) is smaller than λ. let m be smallest value Vi can attain, and set
N = log λ

log(1−m)
. Then almost surely, for enough observations, i.e. Nn ≥ N we

have that the probability that the product exceeds λ is zero, so we indeed
have exponential decay. This works for all λ so we also get consistency there.
We like to point out that discrete distributions V which do not put mass
near 0 have k-th moments of 1− V which decreases like (1−m)k.

Further, note that attaining zero with positive probability just leads to
throwing away the δXi terms where the Vi was zero, so we can also just sum
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over all the weights where we did not attain the zero. Those weights are
distributed according to the reweighed distribution where we just removed
zero, which leads to consistency. The only problem is if Vi can attain values
arbitrarily close to 0. In this case, the simple argument fails and you need
to find another method of checking consistency.

This shows that if we use numerical simulations, we get the same consis-
tency results as for the density case, because if we approximate densities on
floats, we cannot get arbitrarily close to zero, so we actually are consistent.

In the end we have proven theorem Theorem 6.3.3.
Now the question is, how large is the space of densities in the Kullback

Leibler support. For this there exists a general theoreom which gives what
we want, namely [1, Theorem 7.3]. This states

Theorem 6.3.8. Assume that

• χ is bounded, continuous and positive everywhere,

•
∫
p0(x) log p0(x) dx <∞.

• −
∫
p0(x) log inf ||y||<δ p0(x− y) dx <∞, for some δ > 0.

•
∫
||y||<||x||η χ(x − y) ≥ χ(x) for large ||x|| and a function χ that is de-

creasing as its arguments moves away from zero and satisfies

−
∫
p0(x) logχ(2x|x|η(dx <∞,

for some η ∈ (0, 1).

Then p0 ∈ KL(Π) for the prior Π on pf =
∫
h−dχ((·−µ)/h) d f(µ, h) induced

by a prior on F with full support on M(Rd × (0,∞)); and also for the prior
on pF,h =

∫
h−dχ((·−µ)/hu) dF (µ) induced by a product prior on (F, h) with

full support on M(Rd)× (0,∞).

In this case the second claim is relevant for stick-breaking mixtures. Here
we see that if the stick-breaking weights are distributed according to a dis-
tribution fully supported on [0, 1] we can apply this theorem.
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Discussion and future research

7.1 Discussion

In the computation of the posterior, we assumed that the base measure α
was atomless. If not, then if you have twice the same observation, you do
not know if they come from the same θi or not. One can try to correct
for this. However, the description would become pretty complicated very
quickly, so we choose to restrict ourselves to easier to handle models. In the
chapter of consistency, we restricted ourselves to the case where the relative
stick-breaking distributions are all the same. This has the advantage that
the expression we encounter all become a lot easier to handle. Moreover, as
Theorem 6.2.4 on the posterior consistency of the Pitman-Yor process shows,
we cannot expect to get a theorem that states that every choice of prior will
be consistent for every true distribution. We also restricted to distributions
of the relative stick-breaking weights which admitted a density f with a
particular nice form, namely it could be written as vα−1(1−v)β−1g(v) with g
continuous and bounded away from zero. Both the fact that it is continuous
and that it is bounded away from zero are probably needed. If one lets
go of the continuity requirement, one can consider f ∝ 1

(x− 1
2
)2

. However,

then the argument we used to control some errors would not work, and
they can grow beyond any bound. Similarly, if we consider the function
given by f(v) = 31v< 1

3
, then the posterior likely will fail to be consistent for

the Bernoulli random variables. Thus we will need both arguments. One
objection against this counterexample might be that one could also consider
functions with zeros of finite order. In that case the constructed proof might

142
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still work. However, we need to replace some approximation arguments.

7.2 Possible future research

In the chapter on consistency, we only considered priors in which all the
relative stick-breaking distributions where the same. For consistency in the
mixture case this is clearly not needed, as we can inspect from one of the
first conditions given in the proofs. It is actually enough if the expected
values of E[(1 − Vj)] are decreasing quickly enough, where quick enough is
something like eW (n)−W (n+1) where W is the Lambert W function (inverse
map of x 7→ x log x). There is room for improvement here, as this is only
based on considering the first moments of (1 − Vj). Note as well that in
case everything has the same distribution the moments of (1 − Vj) will not
be decreasing but constant, so there is a clear gap in the requirements. It
would be interesting to note if this gap is just an artifact of the proof, or if
there is a real fundamental thing going on when all the relative stick-breaking
distributions are the same.

Something we alluded to in the text, a Bernstein-von Mises like theorem
related theorem will probably exists. Bernstein-von Mises theorems state
some form of asymptotic normality of the posterior distribution, and the
tools to research this have been already obtained. With Lemma 6.2.9 and
the form of the moments of the posterior we can start computing this. The
only possible problem would be that the

√
n factor blows up some errors

which possibly do not converge to zero when blowing up by
√
n. We are

pretty sure this will not happen, as both Lemma 6.2.13 and Lemma 6.2.12
give strong indications that the convergence error terms appearing naturally
have bounded influence. If we look at the general case instead of β(a, b)
random variables, we also need to approximate the ratios with Lemma A.2,
however, again we have a strong form of convergence. These arguments are
probably strong enough to give the convergence of all the moments to the
standard normal moment.

People are not just interested in consistency. Another concept people are
interested in is contraction rates, which, roughly, give how quick you converge
to the true distribution. Recall the definition of consistency Definition 6.1.1

Definition 7.2.1. The posterior distribution Πn(·|X(n)) is said to be (weakly)
consistent at θ0 ∈ Θ if, for all open neighborhoods U of θ0, Πn(U c|X(n))→ 0
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in Pnθ0 probability, as n→∞. The posterior is said to be strongly consis-
tent at θ0 ∈ Θ if this convergence is in the almost-sure sense.

Roughly speaking, a contraction rate of a posterior measures how quick
the posterior converges to the right hypothesis. A contraction rate is an
upper bound, so they are not unique. A contraction rate is a strengthening
of the result of consistency.

Definition 7.2.2. A sequence εn is a posterior contraction rate at the
parameter θ0 with respect to the semimetric d if Πn

(
θ : d(θ, θ0) ≥Mnεn|X(n)

)
→

0 in P
(n)
θ0

probability, for every Mn → ∞. If all experiments share the same

probability space and the convergence to zero takes place almost surely [P
(∞)
θ0

],
then εn is said to be a posterior contraction rate in the strong sense.

The Dirichlet process mixtures has optimal contraction rates up to log-
arithmic factors. If you look at the proof of this, most of the arguments
carry naturally to the case of stick-breaking processes. In fact, in case of
the proof of [1, Theorem 9.9], there is one lemma, [1, Lemma 9.14] which
does not carry over directly to the general setting. So if one would find an
alternative for this lemma you can immediately get results on contraction
rates for stick-breaking processes.

As a fourth point, the computation of the posterior distribution can face
some problems with numerical stability if one implements this naively. For
practical results, a quick and stable algorithm would be very valuable. Even
if one might be able to do draws from the posterior, a quick algorithm to
approximate the moments of WIk would be valuable.
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Appendix A

Stirling approximation and
bounds

Lemma A.1 (Stirling approximation 1). Let V be a random variable with
density f such that there exists α, β > 0 and a continuous function g bounded
away from zero such that f(v) = vα−1(1− v)β−1g(v). Then

lim
x,y→∞

E[V x(1− V )y]

g( x+a
x+y+a+b

)Be(x+ a, y + b)
= 1

Proof. Let ε > 0. Because g is continuous and [0, 1] is compact, g has upper
and lower bounds, call them L and l respectively. Because g is positive it is
bounded between 0 < l and L. There exists an δ > 0 such that |g(v)−g(w)| <
ε
3

for all v such that |v − w| < δ. We can do this for all w ∈ [0, 1]. This
yields an open cover for the interval [0, 1] which is compact. Hence we can
extract a finite subcover. Over this finite subcover, we can extract the largest
diameter of the opens, which we will call D. We now look at a few steps
needed for this estimation.

We first recall the variance of the Be(x, y) distribution. This is xy
(x+y)2(x+y+1)

,
and the expected value is µ = x

x+y
. Now we can apply Chebychev to compute

the mass in an small area around the mean. This yields

P(|X − µ| > k) <
σ2

k2
.

Note that

P(|X − x

x+ y
| > k) =

∫ µ−k
0

vx−1(1− v)y−1dv +
∫ 1

µ+k
vx−1(1− v)y−1 d v∫ 1

0
vx−1(1− v)y−1 d v

.
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Thus Chebyshevs inequality implies

∫ µ−k
0

vx−1(1− v)y−1dv +
∫ 1

µ+k
vx−1(1− v)y−1 d v∫ 1

0
vx−1(1− v)y−1 d v

<
σ2

k2

and

1− σ2

k2
≤
∫ µ+k
µ−k v

x−1(1− v)y−1 d v∫ 1

0
vx−1(1− v)y−1 d v

≤ 1.

If we want to compute the integral
∫ 1

0
vx+a−1(1− v)y+a−1g(v) d v we can split

into the integral over [0, x+a
x+y+a+b

−D], [ x+a
x+y+a+b

+D, 1] and the area between

( x+a
x+y+a+b

−D, x+a
x+y+a+b

+D).

Hence we can estimate the integrals of the first and second intervals be-
tween 0 and L

∫
I
vx+a−1(1−v)y+b−1 d v, where I is the first or second interval.

On the third interval we can estimate g(v) by g( x+a
x+y+a+b

)± ε
3
.

(g(
x+ a

x+ y + a+ b
− ε

3
)

∫ x+a
x+y+a+b

+D

x+a
x+y+a+b

−D
vx+a−1(1− v)y+b−1 d v

≤
∫ 1

0

vx+a−1(1− v)y+b−1g(v) d v ≤

L(

∫ x+a
x+y+a+b

−D

0

vx+a−1(1− v)y+b−1 d v +

∫ 1

x+a
x+y+a+b

+D

vx+a−1(1− v)y+b−1 d v)+

(g(
x+ a

x+ y + a+ b
) +

ε

3
)

∫ x+a
x+y+a+b

+D

x+a
x+y+a+b

−D
vx+a−1(1− v)y+b−1 d v
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If we divide now by g( x+a
x+y+a+b

)
∫ 1

0
vx+a−1(1− v)y+b−1 d v we get

(g( x+a
x+y+a+b

− ε
3
)
∫ x+a
x+y+a+b

+D

x+a
x+y+a+b

−D vx+a−1(1− v)y+b−1 d v

g( x+a
x+y+a+b

)
∫ 1

0
vx+a−1(1− v)y+b−1 d v

≤
∫ 1

0
vx+a−1(1− v)y+b−1g(v) d v

g( x+a
x+y+a+b

)
∫ 1

0
vx+a−1(1− v)y+b−1 d v

≤

L(
∫ x+a
x+y+a+b

−D
0 vx+a−1(1− v)y+b−1 d v +

∫ 1
x+a

x+y+a+b
+D

vx+a−1(1− v)y+b−1 d v)

g( x+a
x+y+a+b

)
∫ 1

0
vx+a−1(1− v)y+b−1 d v

+

(g( x+a
x+y+a+b

) + ε
3
)
∫ x+a
x+y+a+b

+D

x+a
x+y+a+b

−D vx+a−1(1− v)y+b−1

g( x+a
x+y+a+b

)
∫ 1

0
vx+a−1(1− v)y+b−1 d v

d v

Using Chebychev we can now bound every integral in here, namely

(1−
σ2
x,y

D2
) ≤

∫ x+a
x+y+a+b

+D

x+a
x+y+a+b

−D vx+a−1(1− v)y+b−1 d v∫ 1

0
vx+a−1(1− v)y+b−1 d v

≤ 1

This means we can bound the terms of the g( x+a
x+y+a+b

) ± ε
3
. The first term

can be estimated below by

(1− ε

3l
)(1−

σ2
x,y

D2
).

The last term can be estimated above by

1 +
ε

3l
.

The term with the bounds of L can be estimated above by

Lσ2
x,y

D2
.

This means we got to pick x, y so large that

|1− (1− ε

3l
)(1−

σ2
x,y

D2
)| < ε
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and

|1− (1 +
ε

3l
+
Lσ2

x,y

D2
)| < ε.

If we rewrite these expressions a bit we get that we are searching for a bound
on x, y such that

σ2
x,y < D2(1− 1− ε

1− ε
3l

).

and

σ2
x,y <

D2

L

(3l + 1)ε

3l

Now if x > or y > z then σ2
x,y <

1
z
. So pick

z = max(
L

D2

3l

(3l + 1)ε
,

1

D2(1− 1−ε
1− ε

3l
)
).

Then for all min(x, y) > z we have that indeed

|1− E[V x(1− v)y]

g( x+a
x+y+a+b

)
∫ 1

0
vx+a−1(1− v)y+b−1 d v

| < ε.

We want a stronger version of Stirling approximation, where we control
the error of estimating the two ratios. This shows up in the proof of the
theorem which shows consistency in case there is an infinite discrete support.

Lemma A.2 (Stirling with control on error terms). Let k > 0. Let V
be a random variable with density f such that there exists α, β > 0 and a
twice continuous differentiable function g bounded away from zero such that
f(v) = vα−1(1 − v)β−1g(v). Then for all x, y > 0 there exists a real number
rs,y such that

E[V x(1− V )y+k]

E[V x(1− V )y]
= (1 + rx,y,k)

k−1∏
i=0

y + b+ i

x+ y + a+ b− 1 + i

with for all positive sequences Kn with Kn
n
→ 0 and every sequence of positive

real numbers pn converging to q > 0

lim
n→∞

sup
x≤n

(1 + |rx,npn,k|)Kn = 1. ∀k
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Proof. First observe that the variance of a β(a, b) distributed random variable
is ab

(a+b)2(a+b+1)
. Then we can estimate∫ 1

0

vx+a−1(1− v)y+b−1g(v) d v

by applying Taylors formula to g around µ = x+a−1
x+y+a+b−1 . If we do this we get

g(v) = g(µ) + g′(µ)(v − µ) + g′′(ξ)(v − µ)2.

Because g′′ is continuous, it has finite bounds l ≤ g′′(v) ≤ L, so we can give
bounds. If we integrate these we get∫ 1

0

vx+a−1(1− v)y+b−1(g(µ) + g′(µ)(v − µ) + l(v − µ)2) d v

≤
∫ 1

0

vx+a−1(1− v)y+b−1g(v) d v ≤∫ 1

0

vx+a−1(1− v)y+b−1(g(µ) + g′(µ)(v − µ) + L(v − µ)2) d v.

Recognizing the expressions for the variance and expectation of a Beta(a, b)
distributed random variable, we see that this integral is

g(µ)

∫ 1

0

vx+a−1(1− v)y+b−1 d v+

l
(x+ a)(y + b)

(x+ y + a+ b)2(a+ b+ x+ y + 1)

∫ 1

0

vx+a−1(1− v)y+b−1 d v

≤
∫ 1

0

vx+a−1(1− v)y+b−1g(v) d v ≤

g(µ)

∫ 1

0

vx+a−1(1− v)y+b−1 d v+

L
(x+ a)(y + b)

(x+ y + a+ b)2(a+ b+ x+ y + 1)

∫ 1

0

vx+a−1(1− v)y+b−1 d v.

Now if y ∼ n and x ≤ n this error is of order at most 1
n
. Hence we can

rewrite this as

(1 +O(
1

n
))g(

x+ a− 1

y + b− 1
)

∫ 1

0

vx+a−1(1− v)y+b−1 d v.
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Note that (1 +O( 1
n
))Kn → 1 for all Kn

n
→ 0 by Lemma 6.2.11. Now compute

g( x+a−1
x+y+a+b−1)

g( x+a−1
x+y+a+b−2)

.

This is by differentiability of g of order 1
n

and hence we get a term of the form

(1 +O( 1
n
)). Hence we can apply Lemma 6.2.11 to get that

(
g( x+a−1
x+y+a+b−1

)

g( x+a−1
x+y+a+b−2

)

)Kn
converges to 1. We can do this for both terms in

E[V x(1− V )y+k]

E[V x(1− V )y]
.

This means that this converges to

Beta(x+ a− 1, y + b+ k − 1)

Beta(x+ a− 1, y + b− 1)
=

k−1∏
i=0

y + b+ i

x+ y + a+ b− 1 + i

and
lim
n→∞

sup
x≤n

(1 + |rx,npn,k|)Kn = 1. ∀k

If we inspect the previous proof, we can conclude that the next lemma
also holds:

Lemma A.3 (Stirling with control on error terms). Let k > 0. Let V
be a random variable with density f such that there exists α, β > 0 and a
twice continuous differentiable function g bounded away from zero such that
f(v) = vα−1(1 − v)β−1g(v). Then for all x, y > 0 there exists a real number
rs,y such that

E[V x+k(1− V )y]

E[V x(1− V )y]
= (1 + rx,y,k)

k−1∏
i=0

x+ a+ i

x+ y + a+ b− 1 + i

with for all positive sequences Kn with Kn
n
→ 0 and every sequence of positive

real numbers pn converging to q > 0

lim
n→∞

sup
x≤n

(1 + |rx,npn,k|)Kn = 1. ∀k
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Lemma A.4 (Bounds on estimation). Suppose that V has a density f such
that f(v) = vα−1(1 − v)β−1g(v) for v ∈ (0, 1) and g a continuous function
bounded away from 0, α, β > 0. There exists 0 < c < C < ∞ such that for
all s ≥ 0 and j ≥ 1 we can bound the expectation E[V s(1− V )j] by

c

js+α
≤ E[V s(1− V )j] ≤ C

js+α
.

Proof. We start by observing that g is bounded between l and L. This means
directly that

l

∫ 1

0

vs+a−1(1− v)j+b−1 d v < E[V s(1− V )k] < L

∫ 1

0

vs+a−1(1− v)j+b−1 d v.

So if we can find uniform bounds for s ∈ [0, S] for
∫ 1

0
vs+a−1(1 − v)j+b−1 d v

we are done. For this observe we can use the known expression for Beta(s+
a, j + b) in terms of the Γ function. This is

Beta(s+ a, j + b) =
Γ(s+ a)Γ(j + b)

Γ(s+ a+ j + b)
.

Here Γ(s+ a) is bounded away from zero and infinity for all s ∈ [0, S], so we
can can absorb the maximal and minimal contribution of this term into the
constants. This leaves us to analyze

Γ(j + b)

Γ(j + s+ a+ b)
.

For this we can apply the Stirling approximation for the Γ function. This
yields an approximation with bounded error terms. We can again absorb
these factors into the constants, so this yields

Γ(j + b)

Γ(j + a+ b+ s)
≈

( j+b
e

)j+b
√

2π(j + b)

( s+a+j+b
e

)s+a+j+b
√

2π(j + a+ sb)

= ea+s
1

(1 + s+a
j+b

)j+b
(

j

s+ a+ j + b
)s+a(

j + b

s+ a+ j + b
)
1
2

1

js+a
.

The first four terms are bounded away from zero and infinity, so we can again
absorb these into the error terms. This yields that for all S > 0 there exists
constants c, C > 0 such that for all s ∈ [0, S], all j > 0 we have

c

js+a
≤ E[V s(1− V )j] ≤ C

js+a
.
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Lemma A.5. With the same notation as the previous lemma

E[V s(1− V )j] = g(0)
Γ(s+ α)

js+α
(1 + rs(j))

where sup0≤s≤S rs(j)→ 0 as j →∞, for any S <∞.

Proof. The proof idea is the same as in Lemma A.1. Let ε > 0. Pick δ > 0
such that |g(v)− g(0)| < ε for all δ > 0. Then we can estimate∫ 1

0

vx+a−1(1− v)j+b−1g(v) d v

by

(g(0)− ε)
∫ δ

0

vx+a−1(1− v)j+b−1 d v

≤
∫ 1

0

vx+a−1(1− v)j+b−1g(v) d v ≤

(g(0) + ε)

∫ δ

0

vx+a−1(1− v)j+b−1 d v + L

∫ 1

δ

vx+a−1(1− v)j+b−1 d v.

Picking j large enough so that the mean + standard deviation of a beta
distributed random variable are less than δ, which is to state, we pick j large
enough so that for all ∈ [0, S] we have

x+ a

x+ j + a+ b
+

√
(x+ a)(j + b)

(x+ j + a+ b)2(x+ j + a+ b+ 1)
≤ δ

For this observe we can bound the mean plus k standard deviation this
expression by

S + a

S + j + a+ b
+ k

√
(S + a)(j + b)

(j + a+ b)3
.

which decreases to zero as j →∞. Thus there exists J > 0 such that for all
j > 0 this inequality holds. Using the same bounds as before we find that
we can get an uniform error bound by approximating

E[V x(1− V )j]

g(0)
∫ 1

0
vx+a−1(1− v)j+b−1 d v

.
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Next we approximate this Beta integral using Stirlings approximation for
Beta integrals. This yields that

∫ 1

0
vx+a−1(1− v)j+b−1 d v with uniform error

bounds for x ∈ [0, S]. Combining these two errors gives the uniform bounds
as claimed.
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