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Abstract

In the experimental calculation of the cohomology of moduli spaces of curves
of genus g, some parts have been found that relate to Siegel modular forms
of degree g, see [4] by Bergström, Faber and Van der Geer. However, there
are also other parts of the cohomology that are not understood. Some of
these parts seem to correspond to automorpic representations that Thomas
Mégarbané studied in [26]. Our task is to give an explanation for this corre-
spondence.

In this thesis we describe the setting of the problem, and give the argu-
ment for the correspondence with Siegel modular forms. We will also explain
the way to view these modular forms as automorphic forms and representa-
tions. Finally, we try to give an interpretation for some of the unexplained
parts of the cohomology by studying automorphic forms associated to even
lattices.
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Part I

Introduction
In order to make the structure of the thesis clearer the chapters are grouped
together in parts. This part contains the chapters that introduce the reader
to the contents and the form of this thesis. These chapters are specifically:

—Preface and Goals (p. 11).
—Prerequisites and Conventions (p. 15).
—Ch. 1, Overview of the Thesis (p. 17), where we give a concise expla-

nation of the most important things in the thesis. It might be a bit difficult
to fully comprehend everything at once, but it is meant as a quick way to
get to know the theory.

—Ch. 2, The Case of Elliptic Curves (p. 23). This chapter discusses the
example of modular forms occuring in the cohomology of the moduli space
of elliptic curves. As these curves are familiar for many mathematicians, it
is a good introduction to the subject. This example leads us to the first
interesting results.
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Preface and Goals

This is the master thesis of Koen Morel for finishing the studies Mathematical
Sciences at Utrecht University.

The point of this chapter is first to give a brief history of the research
on moduli spaces of curves and automorphic representations. After that, we
will state the goals of this thesis, and give an outline of the way we want to
reach these goals. A more thorough introduction to the mathematics in this
thesis will be given in Ch. 1.

Moduli Spaces of Curves

As a set, a moduli space is the set of isomorphism classes of certain (geo-
metric) objects. Our main focus of study is the moduli space of curves of a
certain genus. We are especially interested in the genus 3 case. (The genus
1 and genus 2 moduli spaces are better understood for our purposes.) Of
course the set of these curves is interesting already, but the moduli spaces
must be seen as geometric objects themselves, to capture how curves vary
in families. We therefore study them as algebraic varieties, schemes, or even
stacks.

Moduli spaces of curves have been studied for a long time. Pierre Deligne
and David Mumford came with a famous article in 1969 that established
the irreducibility of these spaces [11]. As the moduli spaces of curves are
notoriously complicated, for example in the sense that they are not smooth,
this is already quite an accomplishment. Other research revolved around the
different ways of constructing them, as well as trying to compactify them.

These moduli spaces are interesting objects in their own right, but they are
particularly interesting to study as they give us more insight in the theory
of algebraic curves. For example, a very basic property of a moduli space is
its dimension. The dimension of the moduli spaces of curves of genus g is 1
for g = 1 and 3g − 3 for g > 1. This exemplifies how many variables there
are to specify a curve of a certain genus.

A more specific reason with respect to this thesis for studying moduli
spaces is that it gives us a compelling example of a correspondence that is a
central theme in the Langlands program. This conjectured correspondence
is between Galois representations on the one hand and automorphic repre-
sentations on the other. Galois representations are found in a natural way
in the cohomology of the moduli spaces, and we relate them to automorphic
representations that on a first glance seem to have nothing to do with moduli
spaces of curves.
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Another situation where curves and automorphic representations (in the
form of classical modular forms) are related is in the Modularity Theorem
which allowed Andrew Wiles to prove Fermat’s Last Theorem. However,
the modular forms that play a role in this theorem are of weight 2 and
therefore of level > 1, and we will focus on modular forms (and automorphic
representations) of level 1. However, we do find level > 1 if we consider
curves with level structure.

Anyway, it is clear that there is an intruiging and perhaps unexpected con-
nection between algebraic curves and automorphic representations, which are
objects that are studied in completely different areas of mathematics. This
should give researchers the motivation to continue studying this connection,
and it gives us a reason for pursuing the subject of this thesis.

For more information on curves and their moduli spaces, we refer to Ch. 3
and Ch. 4.

History of Modular Forms and Automorphic Representations

As explained above, besides moduli spaces we also need to treat automorphic
representations. The first example of automorphic representations is given
by modular forms, which have been studied since the nineteenth century,
well before the generalization to automorphic forms and representations was
mentioned in the literature.

Classical modular forms are holomorphic functions on the upper half
plane (complex numbers with positive imaginary part) which satisfy a certain
transformation property. One of the interesting applications of the theory of
modular forms is in number theory. It gives an easy proof of certain identities
involving sums of powers of divisors. In this thesis they will occur as parts
in the cohomology of the moduli space of curves of genus 1 (elliptic curves).

A generalization of these classical modular forms that is useful for the
study of moduli spaces is Siegel modular forms, introduced by Carl Ludwig
Siegel in 1939 [31]. Bluntly speaking these are modular forms where the upper
half plane is replaced by a higher dimensional analogue. These modular forms
occur quite naturally in the cohomology of moduli spaces of abelian varieties.
Because there is a map with the right properties between the moduli space
of curves of genus g and the moduli space of abelian varieties of dimension g,
some of these Siegel modular forms will occur in the cohomology of moduli
spaces of curves.

However, as stated in the abstract, not all parts of the cohomology of
the moduli spaces of curves can be explained using Siegel modular forms.
Therefore, we may need an even further generalization of modular forms.
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These are called automorphic forms. Siegel modular forms are automorphic
forms for symplectic groups, but we can also define automorphic forms for
other linear algebraic groups. Most notably, we can consider certain (special)
orthogonal groups, and we will study the automorphic forms for these groups
using some theory of lattices.

We can realize automorphic forms as representations of the considered
algebraic group on a suitable vector space. We then speak of automorphic
representations. This point of view is particularly useful as it translates au-
tomorphic forms to the language of the Langlands program. Recent research
has adapted the perspective of automorphic representations.

The exact definitions of modular forms, automorphic forms and automor-
phic representations are given in Ch. 6, 7 and 8.

Recent Research

Faber and others have studied moduli spaces and their cohomology by cal-
culating the number of isomorphism classes of curves of a certain genus over
finite fields [12, 4]. We will explain the exact method in Sec. 5.3.

Chenevier-Lannes [8] and Chenevier-Renard [7] have done important work
in establishing what all automorphic representations are of small weight.

Mégarbané has found a way to calculate the trace of Hecke operators
acting on automorphic representations for certain special orthogonal groups
[26]. These Hecke traces are exactly the same as values that Faber finds in
parts of his calculations on the cohomology of moduli spaces of curves of
genus 3.

Goals of this Thesis

The goal of this thesis is to examine the role of automorphic forms and
automorphic representations in relation to the cohomology of moduli spaces
of curves and of abelian varieties. We tried to address this goal by pursuing
the following sub-goals:

—review the role of Siegel modular forms in the cohomology of these
moduli spaces,

—explain the automorphic representation point of view as used in the
articles of Chenevier & Lannes [8] and Chenevier & Renard [7], and

—try to explain the connection between the cohomology of the moduli
space of curves of genus 3 and the automorphic representations found by
Mégarbané [26].
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In Ch. 1 we will quickly sketch in what way we want to achieve these goals
and we will state the main results of the thesis. We will also explain what
the reader can expect in each of the chapters of the thesis.
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Prerequisites and Conventions

Prerequisites

We will assume undergraduate mathematics such as linear algebra, group
theory, topology, ring theory, etcetera. If the reader wants to review parts of
these subjects, there are more than enough books to find, and moreover all
that we really need can be found on the internet as well.

We will also assume knowledge of algebraic geometry including schemes
and sheaf cohomology. As this is the only part of the prerequisites that is
quite advanced, we might explain some basic things in Pt. II of the thesis.
Otherwise we will refer to Algebraic Geometry by Hartshorne [20], as this
contains all the things that we want to use.

The reader does not need to be familiar with classical modular forms, as
the basics of the theory are explained in this thesis, mostly in Ch. 2. However,
the readers who do know a little bit about the matter have an advantage, as
they do not need to get used to the theory and might better appreciate the
advances that are made in the thesis. We encourage the reader to indulge
in modular forms, as it has some surprising and nice applications and it has
become a major part of the modern mathematical research.

Some chapters in this thesis also have as prerequisite that earlier chapters
have to be read! For example the chapters 3–4–5 have to be read in order,
and the same holds for 6–7–8 and 9–10–11.

Style of the Thesis

As explained before, the chapters are grouped together in parts. Moreover,
many paragraphs of the text have a title, in order to make sure that it is
clear what the contents are of that piece of text. The precise hierarchy is
part–chapter–section–paragraph. Parts are enumerated by Roman numerals,
chapters by numbers, and sections by the number of the chapter that it is
in followed by a dot and the number of the section. Paragraphs are not
enumerated.

The chapters are written with priority for motivation of the theory and
intuition, so some details might be missing at some points. In that case there
are references that can be consulted if the reader is not happy with the lack
of details.

At the end of the thesis you can find the references (p. 93) and the in-
dex, containing keywords of the thesis (p. 97). The references are listed in
alphabetical order. In the index there are also symbols included, and they
are found alphabetically by how they are pronounced.
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Notation

We use the symbol ⊂ to indicate that we have a strict inclusion. The symbol
⊆ indicates an inclusion that might be an equality.

The complement of a set with respect to another set is denoted by r.
We may use a / as a division sign in order to manage vertical spacing.

Moreover, with a/bc we mean a/(bc) and not (a/b)c.
The imaginary part of a complex number z is denoted by Im z and the

real part by Re z.
In formulas abbreviations are denoted upright and variables in italic, at

least most of the time.
Equalities that give a definition are notated by :=, isomorphisms by ∼=,

and modulo congruences by ≡.
If we need to write a 2 × 2-matrices within the text, we may write the

matrix as (a, b; c, d). The ; indicates the start of a new matrix row.

We write A to denote the ring of adeles and Ẑ the finite adelic integers.

Other Conventions

If we talk about a ring, we assume it is commutative, it has a unit, and that
a ring morphism sends the unit to the unit of the target.

With the natural numbers we mean the positive integers, and we denote
this set by N.
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1 Overview of the Thesis

As stated before, the goal of the thesis is to examine the role of automor-
phic forms and automorphic representations in relation to the cohomology
of moduli spaces of curves and of abelian varieties. This is rephrased in
sub-goals:

—review the role of Siegel modular forms in the cohomology of these
moduli spaces,

—explain the automorphic representation point of view as used in the
articles of Chenevier & Lannes [8] and Chenevier & Renard [7], and

—try to explain the connection between the cohomology of the moduli
space of curves of genus 3 and the automorphic representations found by
Mégarbané [26].

In this chapter we will give an overview of the most important things
that will be treated in the thesis in order to understand the problem and get
closer to these goals. We start with the statement of the definition of moduli
spaces of curves in Sec. 1.1. Then in Sec. 1.2 we introduce Siegel modular
forms, which occur “naturally” in the cohomology of moduli spaces of curves.
In Sec. 1.3 we speak of other automorphic forms that we can consider and
might play a role as well. We end the chapter with Teichmüller modular
forms in Sec. 1.4, a variant of Siegel modular forms that is defined directly
on the moduli spaces of curves.

1.1 Moduli Spaces of Curves

Here we will give a quick definition of the coarse moduli space of curves of
genus g (as a scheme). Moduli spaces of curves are defined using families of
curves.

Definition 1.1. A family of curves of genus g is a morphism of schemes such
that each fiber is a curve of genus g.

With a curve we mean a complete and connected variety of dimension 1.
Let k be an algebraically closed field. The genus of a smooth curve C over k
is defined as dimH0(C,ΩC/k), where ΩC/k is the sheaf of relative differentials
of C over k. For the details we point forward to Ch. 3.

Definition 1.2. The (coarse) moduli space of curves of genus g, denoted by
Mg, is a variety satisfying:

(a) There is a bijection between Mg and the set of isomorphism classes
of smooth curves of genus g.

17



(b) Let X → T be a flat family of curves of genus g. Then we have a
morphism f : T → Mg in such a way that for all t ∈ T the curve Xt is in
the isomorphism class that corresponds with the point f(t) ∈Mg.

Universal Family

We speak of a coarse moduli space, as these moduli spaces miss a certain
property that we would like it to have: we want to have a universal family
C →Mg, but unfortunately for all g this is not possible. However, a universal
family does exist if we define Mg as a stack.

The Jacobian

An interesting fact of a curve of genus g is that we can construct from it
a principally polarized abelian variety of dimension g. The moduli space of
these abelian varieties is denoted by Ag. The resulting map t :Mg → Ag is
called the Torelli map, and it will play an important role in understanding
the automorphic forms occuring in the cohomology of Mg.

In Ch. 4 we will also talk about various related moduli spaces of curves as well
and also about the moduli space of principally polarized abelian varieties.

1.2 Siegel Modular Forms

Let g ∈ N and define the Siegel upper half space Hg as the set of sym-
metric complex g × g-matrices with positive definite imaginary part. The
symplectic group Sp2g(Z) acts on Hg by γZ = (CZ + D)(AZ + B)−1 for
γ = (A,B;C,D) ∈ Sp2g(Z) and Z ∈ Hg. We use this action to define Siegel
modular forms.

Definition 1.3. Let ρ : GLg(C) → GL(V ) be a representation with V a
finite dimensional C-vector space. We mean with a Siegel modular form of
weight ρ and degree n a function f : Hg → C with the following properties:

(a) the function satisfies the transformation condition

f(γZ) = ρ(CZ +D)f(Z)

for all γ = (A,B;C,D) ∈ Sp2g(Z) and all Z ∈ Hn.
(b) the function f is holomorphic and
(c) it is holomorphic at infinity.

18



We write Mρ(Sp2g(Z)) or Mρ(Sp2g) for the vector space of Siegel modular
forms of weight ρ and degree g. If we take g = 1, we see that this definition
just gives classical modular forms for SL2(Z).

We can view the moduli space of principally polarized abelian varieties of
dimension g as Ag ∼= Sp2g(Z)\Hg. For this reason, we can also define Siegel
modular forms as global sections of certain sheaves on Ag.

1.3 Other Automorphic Forms

It turns out that Siegel modular forms are part of a more general notion of
automorphic forms. The definition of an automorphic form is as follows.

Definition 1.4. Let G be any of the following groups:

SLn, GLn, Sp2g, SOn, SOp,q,

for some g, n, p, q ∈ N. Then we define an automorphic form ϕ for G as a
function

ϕ : G(Q)\G(A)/G(Ẑ)→ C

such that ϕ is square integrable with respect to the measure coming from
the unique G(A)-invariant Radon measure on G(Q)\G(A).

Note that automorphic forms can also be defined as a function ϕ :
G(Z)\G(R) → C, and that these definitions are equivalent. The adelic def-
inition is used in most modern literature as it is useful in the context of
automorphic representations.

Siegel modular forms of degree g will fit in this definition if we take G =
Sp2g, and they are a notorious example of automorphic forms. However, we
will also consider other automorphic forms, coming from the group G = SOn.
For this we need to study lattices.

Lattices

Let n ∈ N and let (xi) · (yi) =
∑
xiyi be the inner product on Rn. We denote

by q : Rn → R the quadratic form x 7→ x · x/2.

Definition 1.5. A lattice L ⊂ Rn is a free abelian group of rank n (that is
a subgroup of Rn with respect to addition) which also spans Rn as a vector
space, together with a quadratic form coming from the quadratic form q on
Rn.
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Definition 1.6. A lattice L ⊂ Rn is called even if x · x ∈ 2Z for all x ∈ L.
We denote by detL the determinant of L, which is defined as the deter-

minant of the Gram matrix of an arbitrary Z-base of L.
For n ≡ 0 (mod 8) the collection of even lattices L ⊂ Rn with detL = 1

is denoted by Ln. For n ≡ ±1 (mod 8) it is the notation for the collection of
even lattices L ⊂ Rn with detL = 2.

Lattices can be transformed by automorphisms on Rn, which are given by
elements of GLn(R). However, in general these do not preserve the quadratic
form defined on the lattice. The group of linear transformations that do
preserve the quadratic form is the orthogonal group On(R). In other words

On(R) = {γ ∈ GLn(R) : q ◦ γ = q}.

The subgroup of elements of On(R) that have determinant 1 is denoted by
SOn(R) and is called the special orthogonal group.

Definition 1.7. Let (ρ,W ) be a finite dimensional representation of SOn(R)
over C. Then we can define automorphic forms of weight W for SOn as
functions f : Ln → W for which f(γ · L) = ρ(γ) · f(L) for all γ ∈ SOn(R)
and L ∈ Ln. The vector space of such automorphic forms is denoted by
Mρ(SOn).

Of course we need to compare this definition with the general definition
of automorphic forms given in Def. 1.4.

Proposition 1.8. Let n ∈ N such that n ≡ −1, 0, 1 (mod 8). Then we have
the following description of the collection of even lattices Ln as defined in
Def. 1.6:

Ln ∼= SOn(Q)\SOn(A)/SOn(Ẑ).

This shows us that the functions in Def. 1.7 can be viewed as functions
on G(Q)\G(A)/G(Ẑ) for G = SOn, which is required in Def. 1.4 (a). Of
course we have to establish that these functions are square integrable as well
(Def. 1.4 (b)).

1.4 Teichmüller Modular Forms

Teichmüller modular forms are defined similar to the definition of Siegel
modular forms as certain global sections on the moduli spaceAg of principally
polarized abelian varieties of dimension g. We only need to replace Ag with
Mg.
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Ichikawa introduced Teichmüller modular forms in [21]. However, he only
defined scalar-valued ones. Because vector-valued Siegel modular forms are
found in the cohomology of Ag, it is also more natural to define vector-
valued Teichmüller modular forms. For the definition of these vector-valued
Teichmüller modular forms, we refer to Ch. 12. To give an idea, we already
introduce scalar-valued Teichmüller forms here.

Before we do that, we first need to introduce

E = π∗(ΩC/Mg), λ = ∧gE.

Here π : C → Mg is the universal curve and ΩC/Mg the relative sheaf of
differentials. This means that we should viewMg in this context as a stack.
The vector bundle E is called the Hodge bundle.

Definition 1.9. Let g > 1, and let Mg denote the moduli stack of smooth
curves of genus g. Then we define the space of Teichmüller modular forms
of weight h and genus g as

Tg,h = H0(Mg ⊗ C, λ⊗h).

It turns out that all Teichmüller modular forms for g = 2 can be con-
structed using pullbacks of Siegel modular forms of degree 2, using the Torelli
map t :M2 → A2. In a similar way we find Teichmüller modular forms for
g = 3, but not all Teichmüller modular forms are explained by Siegel mod-
ular forms anymore, since t : M3 → A3 is 2-to-1 as a morphism of stacks.
One such Teichmüller modular form not coming from a Siegel modular form
is χ9 of weight 9 for genus 3. Its square is equal to χ18, (a pullback of) a
certain Siegel modular form of weight 18.

To explain these other Teichmüller modular forms, it may be useful to
find maps similar to the Torelli map t, in order to lift other automorphic
forms. We are already quite certain that automorphic forms for SO7 or SO4,3

occur in the higher cohomology groups of M3, so they may be found as
Teichmüller modular forms (which are elements of H0-groups) as well.
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2 The Case of Elliptic Curves

Elliptic curves are one of the most studied objects in algebraic geometry and
number theory. They are very interesting in their own right, but they also
have many applications such as in number theory for the proof of Fermat’s
Last Theorem or in cryptography. Moreover, they occur in the subject of
the thesis as the first example that motivates the theory. Because it is such
an important example, we will give the basics of elliptic curves. For a more
complete introduction to elliptic curves we refer to [28].

Definitions of Elliptic Curves

There are plenty of ways to define elliptic curves. Here we give the construc-
tions that are used for our goal. Note that for now we take elliptic curves to
be defined over C, the complex numbers. The theory in subsequent chapters
does not require this restriction, but for the objective of this chapter, it is
more convenient.

Definition 2.1. An elliptic curve over C can be defined in the following
ways.

(a) A smooth curve over C of genus 1 together with a marked point. For
our practical purposes, a curve is smooth if it does not have singular points,
which are points on the curve where all partial derivatives of the defining
polynomial vanish. A curve of genus 1 is a smooth curve that can be defined
in P2 as the zero set of a degree 3 polynomial.

(b) A curve in the complex projective plane P2 isomorphic to the zero
set of the polynomial Y 2Z = X3 + aXZ2 + bZ3, for certain a, b ∈ C such
that the discriminant ∆ := 4a3 + 27b2 6= 0. The marked point is the point
(0 : 1 : 0).

(c) The quotient C/L, where L is a lattice in C. A lattice in C can be
defined as a sub-Z-module of rank 2 such that L ⊗Z R = C. In practice
this means that it is of the form L = ω1Z ⊕ ω2Z with ω1, ω2 ∈ C such that
ω1/ω2 6∈ R. The marked point is the image of the origin 0 ∈ C.

Proposition 2.2. Definitions (a), (b) and (c) of an elliptic curve as given
above in Def. 2.1 are equivalent.

The above statement is not trivial at all. Due to Def. 2.1 (c) we know
that the points of an elliptic curve form a group! In this case it comes from
the group structure on C, but we can also define the group structure on an
elliptic curve in the context of Def. 2.1 (a) and (b).
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Content of the Chapter

Now that we know what elliptic curves are, we will construct the moduli
space of elliptic curves in Sec. 2.1. In Sec. 2.2 we introduce classical modular
forms, and we will already see that there are some parallels with the way
we define elliptic curves. In Sec. 2.3 we reveal the connection between the
moduli space of elliptic curves and these modular forms by calculation of the
cohomology of certain local systems on the moduli space. It shows that we
succeed in this case to give the connection, but we will explain in Sec. 2.4
what the complications are if we consider curves of higher genus.

2.1 Moduli Space of Elliptic Curves

To construct the moduli space of elliptic curves, we have to keep in mind that
the points of the moduli space should correspond to isomorphism classes of
elliptic curves. We have to identify when two elliptic curves are isomorphic.
To do this, we use description (c) of Def. 2.1. Keep in mind though that this
construction does not meet the official definition of a moduli space that we
will give in Ch. 4.

Isomorphic Elliptic Curves

With the following results we want to establish a way of finding all isomor-
phism classes of elliptic curves, because this then allows us to construct the
moduli space.

Proposition 2.3. Two elliptic curves C/L and C/L′ are isomorphic if and
only if L′ = λL, where λ ∈ C∗ is a scalar.

Proof. “⇐=” This direction is easy, as we can construct an explicit isomor-
phism, namely that of multiplying with the scalar λ.

“=⇒” Suppose we have an isomorphism between two elliptic curves
C/L → C/L′. Then this isomorphism must lift to a group isomorphism
C → C with respect to the additive group structure on C. This can only
be z 7→ λz for some λ ∈ C∗. But then we must also have L′ = λL. Note
that for this argument we use the fact that an elliptic curve has a group
structure.
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The Moduli Space

We define the following subspace of the upper half plane H = {z ∈ C : Im z >
0}, called the fundamental domain:

D =

{
z ∈ H : |z| ≥ 1 and − 1

2
≤ Re z ≤ 1

2

}
.

Theorem 2.4. The moduli space of elliptic curves over C is given by D/ ∼,
where the equivalence relation ∼ is given by z ∼ −z for all z on the boundary
of D.

Proof. Because of Prop. 2.3, an isomorphism class of elliptic curves can be
represented by C/L, with L = Z⊕ τZ and τ ∈ H. Moreover, we can choose
τ in such a way that it lies in the fundamental domain D. If τ is on the
boundary, then either Re τ = ±1/2 or |τ | = 1. In both cases we see that
Z⊕ τZ = Z⊕ (−τ)Z. This proves our theorem.

We denote this moduli space byM1,1, where the first “1” emphasizes that
it is the moduli space of curves of genus 1, and the second “1” emphasizes
that 1 point is marked. By Def. 2.1 (a) these curves are all elliptic curves.
The theorem tells us that M1,1

∼= D/ ∼, with the equivalence relation ∼
explained above.

We have constructed our desired moduli space of elliptic curves. It is
the fundamental domain with the edges glued together in a certain way.
Topologically speaking this constructed space is homeomorphic to an open
disk. We will mention in Sec. 4.2 that M1,1 is isomorphic to the affine line,
and this has the topology of an open disk as well.

An Alternative Construction of M1,1

Alternatively, we can construct the moduli space asM1,1
∼= SL2(Z)\H, where

H is the upper half plane and SL2(Z) is the group of invertible 2×2-matrices
with entries in Z and determinant 1. These matrices act on an element z ∈ H
by (

a b
c d

)
z =

az + b

cz + d
.

Of course we have to check some things to make sure this is a well-defined
action, but this will be done later in Sec. 2.2, because we will coincidentally
also need this action for the definition of modular forms.

The lattices that define an elliptic curve only scale under the action of
SL2(Z). So they define isomorphic elliptic curves. To see this, consider
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L = Z ⊕ τZ, with τ ∈ H. The action of (a, b; c, d) ∈ SL2(Z) brings it to
(aτ+b)/(cτ+d), and this defines another lattice L′ = Z⊕(aτ+b)/(cτ+d)Z.
If we scale this by λ = cτ+d, we get λL′ = (cτ+d)Z⊕(aτ+b)Z, and this basis
gives the same lattice L, since the determinant of (a, b; c, d) is ad− bc = 1.

To see that this basis gives the same lattice, we calculate

d(aτ + b)− b(cτ + d) = adτ + bd− bcτ − bd = (ad− bc)τ = τ

and

−c(aτ + b) + a(cτ + d) = −acτ − bc+ acτ + ad = −bc+ ad = 1.

Now, using Prop. 2.3, we know that two lattices L = Z⊕τZ and L′ = Z⊕
τ ′Z with τ, τ ′ ∈ H define isomorphic elliptic curves if and only if L = λL′, and
by the discussion above, this happens if and only if τ ′ = γτ with γ ∈ SL2(Z).
So we conclude that we can also construct the moduli space of elliptic curves
as M1,1

∼= SL2(Z)\H.

Compactification of the Moduli Space

We end this section with an informal discussion of the compactification of
M1,1. This becomes useful later on in Sec. 2.3.

As M1,1 is homeomorphic to an open disc, we know we can compactify
it by adding one point. This point corresponds to the lattice L = Z ⊕ τZ
with τ →∞, so say L = Z ⊂ C. So our “curve” will come from C/L, which
now is a strip {z ∈ C : 0 ≤ z ≤ 1} with the two edges {z = 0} and {z = 1}
glued together. This does not meet the requirement of a curve, because it is
not compact yet. However, by adding the point at infinity, we get something
that is compact. Unfortunately, it has a singular point (namely the one at
infinity), and this makes it a stable curve. We will define stable curves in
Def. 3.7.

The resulting space is denoted byM1,1
∼= SL2(Z)\H, the stable compact-

ification of M1,1.

2.2 Classical Modular Forms

The starting point of the theory of automorphic forms is the notion of classical
modular forms (also called elliptic modular forms). Let us briefly recall the
definition.
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The Action of SL2(Z) on H

First some well-known notation: let R be a commutative ring, at first this
will be the integers Z or the real numbers R, but later we will also take R to
be the field of p-adic numbers, the ring of adeles, or the complex numbers.
Then we denote by GLn(R) the group of invertible n×n-matrices with entries
in R, alternatively the matrices that have determinant that is a unit in R.
We call this the general linear group. The subgroup SLn(R) of matrices with
determinant 1 is called the special linear group.

Let γ = (a, b; c, d) ∈ SL2(Z). The matrix γ acts on the upper half plane
H, the set of complex numbers with positive imaginary part, by sending a
point z ∈ H to (az + b)/(cz + d). We must not forget to check that the
denominator is non-zero and that the image of this map lies in H, because
otherwise this action is not well-defined. The first follows from the fact that
−d/c ∈ R does not lie in H if c 6= 0. This implies z 6= −d/c and therefore
cz + d 6= 0. In the case c = 0 then det γ = 1 implies that d 6= 0 so again
cz+d 6= 0. The second follows from the fact that Im γz = Im z/|cz+d|2 and
Im z > 0.

Definition of Modular Forms

We can use this action to define a classical modular form.

Definition 2.5. A function f from the upper half plane to the complex
numbers is said to be a modular form of weight k if

(a) the function satisfies the transformation property:

f(γz) = (cz + d)kf(z),

where γ is again an element of SL2(Z) with coefficients a, b, c, d;
(b) the function is holomorphic on H and
(c) the function is holomorphic at the cusp, in other words if Im z goes

to infinity. Alternatively requirement (c) can be formulated as a condition
on the growth of f as Im z grows.

The vector space of classical modular forms of weight k is denoted by
Mk(SL2(Z)) or Mk.

Example 2.6. The Eisenstein series of weight k is defined by Gk(z) =∑
(nz + m)−k, where the sum is over al (n,m) ∈ Z2 r {(0, 0)}. It con-

verges for all k > 2, and for odd k it is zero, as all the terms of the sum
cancel. The Eisenstein series G4 and G6 are of particular importance, as
they are the first examples of modular forms for SL2(Z), and they are of
weight 4 and 6 respectively.
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We will also normalize these functions to Ek = Gk/2ζ(k), where ζ is the
Riemann ζ-function. (We will later see why we want to normalize.)

The Vector Space of Modular Forms

Using the modular forms E4 and E6, we can generate all modular forms for
SL2(Z). Note that the product of modular forms f1 and f2 of weight k1 and
k2 is again a modular form, but now of weight k1 + k2. This follows from the
easy calculation

(f1f2)(gz) = f1(gz)f2(gz) = (cz + d)k1f1(z)(cz + d)k2f2(z)

= (cz + d)k1+k2(f1f2)(z).

Proposition 2.7. The ring ⊕kMk of modular forms is generated freely by
E4 and E6. This gives a dimension formula for the space of classical modular
forms of weight k for SL2(Z).

Sketch of proof. It should be clear that by multiplying combinations of
E4 and E6 we can find generators of the space of classical modular forms
of other weight. The proof that these generate all classical modular forms
relies on studying the fundamental domain of H for the action of SL2(Z), a
subset of H such that each orbit of the action has a point that lies in this
domain (p. 25). For more information on the fundamental domain, and a
proof that E4 and E6 generate all classical modular forms, consult [34, p. 6
& 10]. Moreover we must know that E4 and E6 generate all modular forms
freely, in the sense that there are no relations. This is shown in Lem. 2.8
below.

From this we calculate the dimension of the space of classical modular
forms of weight k by finding all the generators. For example the space of
classical modular forms of weight 12 is of dimension 2, as it is generated by
E3

4 and E2
6 , but that of weight 14 is of dimension 1, as it is only generated

by E6E
2
4 .

Lemma 2.8. The modular forms E4 and E6 are algebraically independent.

Proof. To show that E4 and E6 freely generate all modular forms, we have
to show that these are algebraically independent. We will do this in 2 steps.

Step 1: we show that E3
4 and E2

6 are not scalar multiples. Suppose on the
other hand that E3

4 = λE2
6 , for some λ ∈ C∗. Then the function f : E6/E4

would satisfy (a) of Def. 2.5 for k = 2. We can write f 2 = λE4 due to our
assumption. So f should be holomorphic and holomorphic at the cusp, which
is not true due to the fact that there are no modular forms of weight 2. (This
can be shown again using the fundamental domain [34, p. 10].)
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Step 2: any two modular forms f1, f2 of the same weight that are no
scalar multiples must be algebraically independent. Suppose on the contrary
that there is a polynomial p(X, Y ) ∈ C[X, Y ] such that p(f1(z), f2(z)) = 0
for all z ∈ H. The above polynomial will be the sum of modular forms
of different weights. Modular forms of different weights cannot cancel, so
pd(f1(z), f2(z)) = 0 for all z ∈ H for each homogeneous part pd of p. This
follows from the fact that modular forms of different weights transform dif-
ferently under the action of SL2(Z), according to Def. 2.5 (a).

Then pd(f1(z), f2(z))/f2(z)d is a polynomial of one variable f1(z)/f2(z).
As a non-zero polynomial has only finitely many zero’s, f1(z)/f2(z) must be
constant, so f1 and f2 are scalar multiples. Contradiction.

Applying step 2, E3
4 and E2

6 are algebraically independent and hence E4

and E6 are algebraically independent. (Because again modular forms can
only cancel if they are of the same weight.)

Prop. 2.7 says in particular that for each weight these spaces are finite
dimensional. We have seen that the calculation of the dimension of vector
spaces of classical modular forms can be done with elementary mathematics
and is quite easy. However this turns out to be a lot harder in the general-
ization to Siegel modular forms, which we will explain in Sec. 6.2. In many
situations the dimensions are not yet known, and in the case that there is a
result it is due to considerable effort in modern research.

Cusp Forms

If we check the transformation of a classical modular form f for the matrix
γ = (1, 1; 0, 1), we find f(z) = f(z + 1), so f is periodic with respect to
translations of 1. This allows us to write f as a Fourier expansion f(q) =∑∞

n=0 anq
n, with q = exp 2πiz. This is called the q-expansion of a classical

modular form. The expansion starts at n = 0 because we required modular
forms to be holomorphic at infinity.

Definition 2.9. A classical modular form is called a classical cusp form if
the constant term of the Fourier expansion is zero. Alternatively, if f(z)→ 0
as Im z goes to infinity.

The point at infinity is called the cusp of the fundamental domain. So a
classical modular form is called a cusp form if and only if it vanishes at the
cusp.

The space of classical cusp forms is denoted by Sk(SL2(Z)) or Sk.

Example 2.10. As E4 is of weight 4 and E6 is of weight 6 the function ∆
defined by the equation 1728∆ = E3

4 − E2
6 is a classical modular form of
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weight 12 called the delta or discriminant cusp form. Because the constant
term in the q-expansion vanishes (E4 and E6 have constant term 1, hence the
normalization in Ex. 2.6) it is actually a cusp form as well by Def. 2.9, and
the first to appear in terms of weight, since by Thm. 2.7 there is no way to
combine E4 and E6 to produce one of lower weight. This in turn gives a way
to find the dimensions of the space of cusp forms for SL2(Z) for a certain
weight. An alternative definition for this cusp form is by the q-expansion
∆(q) = q

∏
n(1 − qn)24. If we expand this product into a (Fourier) series,

then the coefficients of this series are denoted by τ(n). The τ -function was
studied in detail by Ramanujan.

Proposition 2.11. The first non-zero vector spaces of cusp forms are S12,
S16, S18, S20 and S22, and these all have dimension 1. Using these dimensions
together with the fact that dimSk+12 = 1 + dimSk gives us the dimensions
for all weights k.

There is a deep connection between classical modular forms and elliptic
curves, which has for example become apparent in the modularity theorem.
A nice introduction on this is given by [28, Ch. V].

More closely related to the subject of this thesis is the occurrence of
classical modular forms in certain cohomology of the moduli space of elliptic
curves, which for example has been shown in [10]. We will look at this
connection in Sec. 2.3 below.

2.3 Modular Forms in the Cohomology

We have seen that elliptic curves and classical modular forms already have
a lot in common: we encountered the action of SL2(Z) on the upper half
plane H both times, and the fundamental domain plays a role as well. We
now show the connection by calculating the cohomology of the moduli space
M1,1. Not all details are given yet. They can be expected in subsequent
chapters.

We first use that we can identify cusp forms Sk(SL2(Z)) ∼= H0(M1,1, ω
⊗k)

as global sections onM1,1, where ω is the canonical line bundle. These global
sections can be lifted to higher cohomology groups. We use the Shimura
isomorphism

H0(M1,1, ω
⊗k)⊕H0(M1,1, ω⊗k)→ H1

! (M1,1,Vk−2),

to obtain that H1
! (M1,1,Vk−2) ∼= Sk ⊕ Sk. With S we mean the space of

complex conjugates of cusp forms of weight k. The cohomology group H! is
called the inner cohomology and defined on p. 47, and Vk are local systems
defined on p. 48.
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2.4 Complications for Higher Genus

There are a few aspects that make the above calculations more complicated
if we replace M1,1 by a moduli space of curves of higher genus.

Problem 1: for higher genus there is no isomorphism anymore between
curves and abelian varieties, see Sec. 4.4. Abelian varieties are the higher
dimensional generalization of Def. 2.1 (c). So while there is still a notion of
modular forms on the moduli space of certain abelian varieties, there is no
immediate way to define modular forms on moduli spaces of curves of higher
genus.

Problem 2: we can partially still use abelian varieties, but the Siegel
modular forms that belong to those are not so easy to find as classical modular
forms. See Sec. 6.2.

Problem 3: in Sec. 2.3 we saw that modular forms can be seen as elements
of H0-groups. However, in the research the focus lies on finding modular
forms in higher cohomology groups of (local systems of) moduli spaces. So
how can we understand that modular forms appear in these higher cohomol-
ogy groups as well?
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Part II

Geometry
In this part are all the chapters that have something to do with algebraic
geometry. They mainly revolve around the moduli space of curves of genus
g. Below is a list of individual chapters.

—Ch. 3, Curves and their Jacobians (p. 35), where we introduce the
objects of the moduli spaces that we will be studying.

—Ch. 4, Moduli Spaces of Curves and Abelian Varieties (p. 39). This
chapter contains the definition of these moduli spaces, and gives a connection
between them.

—Ch. 5, Cohomology of Local Systems (p. 45). We eventually want to
calculate the cohomology of local systems of the moduli space of curves of a
certain genus, so in this chapter we will describe how we can try to do that.
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3 Curves and their Jacobians

A good way to start the discussion of moduli spaces of curves and of abelian
varieties is to look at the objects of these moduli spaces themselves. In all the
definitions below we work over an algebraically closed field k of characteristic
0, so we may as well take k = C.

3.1 Curves

Definition 3.1. A curve is a complete and connected variety of dimension
1. Here we use the notion of a variety for an integral separated scheme of
finite type over an algebraically closed field. The dimension of a variety is
simply defined as the dimension of the variety as a topological space (as in
the definition for any scheme).

Since varieties are defined as schemes over an algebraically closed field k,
the same holds true for curves. Therefore we should always view a curve as
a scheme together with a morphism from that scheme to Spec k.

Example 3.2. —The most basic example of a curve is the projective line
P1: it is complete and irreducible and of dimension 1.

—Another example is a plane curve. It lies in P2 and it is the variety
given by the zero set of an irreducible homogeneous polynomial in k[X, Y, Z]
of degree ≥ 1.

Definition 3.3. A variety X over k is smooth of relative dimension n if and
only if X is regular of dimension n [20, p. 268]. A scheme is regular if all
of its local rings are regular local rings. So we will call a curve smooth if it
is regular. A point is called a singular point if its local ring is not a regular
local ring.

Definition 3.4. The genus of a smooth curve C is defined as the dimension
of H0(C,ΩC/k), where ΩC/k is the sheaf of relative differentials of C over k
[20, p. 175]. The plural of genus is genera.

For the definition and calculation of the sheaf cohomology of curves, we
refer to [20, Ch. III and IV] and [15, Ch. 2].

Example 3.5. A smooth curve of genus 1 together with a point is called an
elliptic curve. See Def. 2.1 and more generally Ch. 2. It can be embedded in
P2 as a curve that is defined by a polynomial of degree 3 [20, p. 309]. This
polynomial can be given in the form of the equation Y 2Z = X3+aXZ2+bZ3,
for some a, b ∈ C such that the discriminant ∆ = 4a3 + 27b2 6= 0 [28, p. 50].
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Definition 3.6. An n-pointed curve C is a tuple (C, p1, . . . , pn) consisting
of the curve itself together with distinct points p1, . . . , pn ∈ C. The fact that
it is defined as a tuple stresses the fact that the points p1, . . . , pn ∈ C have
to be ordered.

Definition 3.7. A stable curve is a curve that has only nodes as singularities
and has only finitely many automorphisms. A node is a singular point with
multiplicity 2 that has distinct tangent directions.

Example 3.8. —Smooth curves of genus g ≥ 2 are stable curves. The case
g = 0 does not satisfy the condition finitely many automorphisms: every such
curve is isomorphic to P1 and the projective line has automorphism group
PGL2(k). Smooth curves of genus g = 1 are not stable either. Namely, let C
be such a curve. Then we know that it admits a group structure. Using the
group operation, we can define a map P 7→ P +Q that is an automorphism
of C for every Q ∈ C. Curves of g ≥ 2 fortunately do have finitely many
automorphisms, and this case is treated in [20, Ex. IV.2.5].

—The curve in P2 defined by XY Z = X3 + Y 3 is a stable curve that is
not smooth. It has a node at (0 : 0 : 1) ∈ P2 [16, p. 50].

Definition 3.9. Let C be a stable curve. Then we define the genus g = g(C)
of C to be the dimension of H1(C,OC).

Actually, the genus g of a smooth curve is traditionally defined as the
dimension of H0(C,ΩC/k) as in Def. 3.4. However, by Serre duality [20,
Ch. III.7], these coincide, so the definition of the genus of a stable curve
makes perfect sense.

Let n ≥ 0 and g 6= 0. It turns out that n-pointed stable curves of genus
g only exist if 2g − 2 + n > 0. This inequality follows from Ex. 3.8 together
with the fact that curves of genus 0 need 3 marked points and curves of
genus 1 need 1 marked point to make sure that there are only finitely many
automorphisms. The genus as defined in Def. 3.4 is often called the geometric
genus, and the genus as in Def. 3.9 the arithmetic genus.

3.2 Abelian Varieties

Now we jump to the next objects of study: abelian varieties. For this we
have to recall that a group variety G over an algebraically closed field is a
variety G, equipped with morphisms m : G × G → G and i : G → G such
that the set of closed points of G becomes a group under the multiplication
that is defined by the morphism m and with inverse map induced by the
morphism i.
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Definition 3.10. An abelian variety is a smooth connected complete group
variety over an algebraically closed field.

Example 3.11. —The first examples of abelian varieties are elliptic curves,
which were already mentioned in Def. 2.1 and Ex. 3.5. They are curves,
hence complete varieties, and we can define a group operation on them [20,
p. 321], so they turn out to be group varieties as well.

—Consider, for some g ≥ 1, the quotient Cg/L, where L is a lattice of
Cg. A lattice is a discrete subgroup of Cg such that the quotient is compact.
If we take g = 1, we retrieve the notion of a complex elliptic curve. It is an
abelian variety if and only if there exists a positive definite Hermitian form
H on Cg and an integral skew-symmetric form E on L such that E = ImH,
see [30, p. 267]. Every abelian variety of dimension g can be written as Cg/L.

Principal Polarization

We need to look at certain abelian varieties: for now only those that have a
principal polarization. A polarization of an abelian variety A is a morphism
λ : A→ A∨ with certain properties. Here A∨ is the dual abelian variety of A
given by Pic0A. A polarization is called principal if it is an isomorphism. In
the example above the Hermitian form gives the polarization of Cg/L. For
the details we can turn to [30, p. 271], [29, p. 120] or [14, p. 4].

An alternative way of defining the polarization on an abelian variety A,
is by writing A = Cg/L. We then define the polarization to be the Hermitian
form H of Ex. 3.11. Moreover, we use the skew-symmetric form E = ImH
to define the degree d ∈ N of the polarization. Namely, the number such
that d2 = (−1)gdetE. If we restrict this form to L × L then we get a map
with coefficients in Z. Together with the fact that E is skew-symmetric, we
know that such a d will exist. In the case that d = 1 we speak of a principal
polarization.

3.3 The Jacobian of a Curve

Abelian varieties are not only interesting on their own right: there is a con-
nection with curves. For each smooth complete curve C over an algebraically
closed field k we can construct an abelian variety over k called the Jacobian
variety of C.

The divisor class group ClC of a smooth curve C is the quotient of the
group of divisors on C by the group of principal divisors on C. The kernel
of the degree map ClC → Z is denoted by Cl0C.
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Definition 3.12. Let C be a smooth curve over an algebraically closed field
k. Then the abelian variety whose group of closed points is isomorphic to
Cl0C is called the Jacobian of C. We denote this abelian variety with J(C).

We could define it using the Picard group as well. A problem of Def. 3.12
is that it does not guarantee that there exists a Jacobian for each curve. We
will see below that for a curve of genus g = 1 the Jacobian does exist, but
for higher genus this is much more difficult. See for example [29, Ch. 6] for
a proof.

Proposition 3.13. An elliptic curve is isomorphic to its Jacobian.

This is essentially what we have used in Ch. 2. Of course this does not
hold for curves of higher genus. One fact that shows this is: curves of genus
> 1 do not admit a group structure, whereas the Jacobian always has a group
structure by definition.

Proposition 3.14. The Jacobian of a curve has the following two properties.
(a) The Jacobian of a smooth curve is principally polarized.
(b) The Jacobian of a smooth curve of genus g has dimension g.

Proof. (a) The Jacobian of a curve C can be written as J(C) = Cg/L,
where L ∼= H1(C,Z). Then the skew-symmetric form E can defined using
the intersection pairing H1(C,Z)×H1(C,Z)→ Z. This intersection pairing
is a bilinear form that is unimodular, and together with the fact that it is
skew-symmetric, we have detE = (−1)g, so in the end we have d = 1. We
conclude that J(C) is principally polarized.

(b) Let C be a curve of genus g and let J(C) be its Jacobian. Using the
definition of the Jacobian, we can write:

dim J(C) = dim Cl0C = dimH1(C,OC) = g,

where the last equality follows from Def. 3.9. So the genus of a curve is equal
to the dimension of its Jacobian.
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4 Moduli Spaces of Curves and Abelian Va-

rieties

Moduli spaces are algebraic varieties such that the points of the moduli
space correspond to certain objects in algebraic geometry. In this section
we will give the definitions of the moduli spaces of curves and the moduli
spaces of abelian varieties, and moreover we will try to give the relationship
between the two. These moduli spaces are the main objects of interest in the
thesis. In a later stage, we will try to say something about their cohomology,
and we would like to relate these cohomology groups (of local systems) to
automorphic forms.

In this section we assume that the reader is familiar with the basic no-
tions of algebraic geometry, such as schemes. A well known resource for this
information is the book Algebraic Geometry by R. Hartshorne [20], which we
therefore use as the prerequisite theory of this thesis. Another reference is
The Red Book written by D. Mumford [30], but keep in mind that in this
book the outdated term “prescheme” is used for what everyone now calls a
scheme.

Although the use of schemes is quite abstract already, in the research of
moduli spaces it is not always the case that the language of schemes is an
adequate way of describing moduli spaces. Therefore moduli spaces can be
defined as Deligne-Mumford stacks as well. As the theory of stacks is even
more inaccessible than that of schemes, we try to avoid this way of defining
moduli spaces, at least for now.

In Ch. 3 we gave the definitions as well as a few properties of curves
and abelian varieties—the objects of which we will be studying the moduli
spaces. Now it is time to give the definitions of the various moduli spaces of
curves in Sec. 4.2. In Sec. 4.3 and 4.4 the definition of the moduli space of
abelian varieties together with the connection with moduli spaces of curves
are given.

In total we will give 5 definitions for different moduli spaces, which are all
pretty much the same, except for the objects of the moduli space. Therefore
it might be better to give just one definition of a moduli space, where we
might apply the language of category theory, and then apply this definition
to all the different objects that we want to consider. The same applies to the
definition of a family.
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4.1 Families of Curves

Definition 4.1. A family of curves of genus g is a morphism of schemes such
that each fiber is a curve of genus g. We defined curves in Def. 3.1.

Definition 4.2. A morphism of schemes f : X → Y is called flat if OX is a
flat OY -module.

We need families of curves to have the property of flatness, because it
assures us that they behave nicely. For example, the genus and the degree
of a curve are constant in a flat family of curves. For more information on
flat morphisms and flat modules, check [30, p. 215–219].

We will also need to consider the following families.

Definition 4.3. A family X → T of n-pointed curves of genus g is a mor-
phism of schemes such that each fiber is a curve of genus g, together with n
disjoint sections T → X.

A family of principally polarized abelian varieties of dimension g is a
morphism of schemes such that each fiber is a principally polarized abelian
varieties of dimension g.

4.2 Moduli Spaces of Curves

Definition 4.4. The fine moduli space M of curves of genus g is a variety
that has the following two properties:

(a) the points of M are in one-to-one correspondence with the isomor-
phism classes of smooth curves of genus g;

(b) there is a flat family C → M of curves of genus g such that for any
other flat family X → T of curves of genus g, there is a morphism T →M
such that X is the pull-back of C.

The family of curves C → M as described in Def. 4.4 (b) is called the
universal family or the universal curve of genus g. Unfortunately, there does
not exist a fine moduli space of curves of genus g. Therefore we have to
define a weaker version of moduli spaces: coarse moduli spaces.

If we do want to construct a fine moduli space of curves of genus g,
together with a universal curve, we have to define it as a stack, which is
a generalization of the notion of a scheme. It takes a lot of time to set
up the theory of stacks, so we will avoid it in this thesis, even though it
is a more convenient way to define moduli spaces. We refer to the book
Geometry of Algebraic Curves [1] and the website The Stacks Project : https:
//stacks.math.columbia.edu/.
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Definition 4.5. The (coarse) moduli space of curves of genus g, denoted by
Mg, is a variety satisfying:

(a) there is a bijection betweenMg and the set of isomorphism classes of
smooth curves of genus g;

(b) for a given flat family X → T of curves of genus g, we have a natural
morphism f : T → Mg such that for all t ∈ T the curve Xt is in the
isomorphism class of curves that corresponds with the point f(t) ∈Mg.

When we just speak of a moduli space in the context of schemes, we mean
a coarse moduli space, and not a fine one.

It should be clear that the definition of a fine moduli space implies that
it is a coarse moduli space as well. Namely let X → T be a flat family of
curves of genus g. Then there is the flat family C → M of curves of genus
g from Def. 4.4 (b) such that there exists a morphism T → M that makes
X the pull-back of C as in Def. 4.5 (b), which implies that the fiber Xt is in
the isomorphism class f(t).

We have already said that a fine moduli space of smooth curves of genus
g does not exist, but the fact that the coarse moduli spaces do exist, is not
trivial either. It is shown in [29, Thm. 5.11].

Example 4.6. Let’s take a look at the coarse moduli space M0 of curves
of genus 0. As we know every genus 0 curve is isomorphic to P1 and hence
we must haveM0 = {[P1]} to satisfy Def. 4.5 (a). We can take the constant
morphism T → M0 as the morphism f required in Def. 4.5 (b), because
trivially every fiber of a flat family X → T of curves of genus 0 is isomorphic
to P1.

Example 4.7. Example when g = 1, the moduli space M1,1 of elliptic
curves. A result in the theory of elliptic curves is that isomorphism classes
can be characterized by the j-invariant: two elliptic curves are isomorphic if
and only if they have the same j-invariant [20, p. 317]. As the j-invariant
take values in the whole field k, we have M1,1

∼= A1. We have seen another
description of this moduli space in Sec. 2.1.

For higher genera the characterization of Mg becomes a lot harder. For
g = 2 it turns out that the moduli space can be constructed as a quotient
of A3 with respect to an action of Z/5Z [30]. For g ≥ 3 there is no explicit
description of Mg at all. However, we do have a few properties of these
moduli spaces that have been proven in the literature [20, p. 347].

—The moduli spaces Mg are quasi-projective and irreducible.
—The dimensions of all the moduli spaces Mg are known. We have

already seen that dimM0 = 0 and dimM1 = 1. For all other genera g ≥ 2
we have the formula dimMg = 3g − 3.
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Definition 4.8. The (coarse) moduli space of n-pointed curves of genus g,
denoted by Mg,n, is a variety satisfying:

(a) the points of Mg,n are in bijection with the isomorphism classes of
smooth n-pointed curves of genus g;

(b) for a given flat family X → T of smooth n-pointed curves of genus g,
there exists a morphism f : T →Mg,n such that for all t ∈ T the curve Xt is
in the isomorphism class of n-pointed curves that corresponds to f(t) ∈Mg,n.

The problem with these moduli spaces Mg and Mg,n is that they are
not projective / complete. For example we have seen in Ex. 4.7 thatM1,1 is
only quasi-projective. In order to solve this, we define the moduli spaces for
stable curves.

Definition 4.9. The (coarse) moduli space of stable curves of genus g, de-
noted by Mg, is a variety with the property that

(a) the points of Mg are in one-to-one correspondence with the isomor-
phism classes of stable curves of genus g;

(b) for any flat family X → T of stable curves of genus g, we have a
morphism f : T → Mg such that for every t ∈ T the fiber Xt is in the
isomorphism class of stable curves determined by the point f(t) ∈Mg.

Definition 4.10. The (coarse) moduli space of stable n-pointed curves of
genus g, denoted by Mg,n, is a variety with the property that

(a) the points ofMg,n are in one-to-one correspondence with the isomor-
phism classes of stable n-pointed curves of genus g;

(b) for any flat family X → T of stable n-pointed curves of genus g, we
have a morphism f : T → Mg,n such that for every t ∈ T the fiber Xt is
in the isomorphism class of stable n-pointed curves determined by the point
f(t) ∈Mg,n.

Def. 4.9 gives a “compactification” of Mg, and Def. 4.10 is in the same
relation withMg,n. They are projective varieties, which is proven by Deligne,
Mumford, and Knudsen [19, p. 48]. The moduli spaces Mg and Mg,n are
therefore called the stable compactifications of Mg and Mg,n, respectively.

4.3 Moduli Spaces of Abelian Varieties

Definition 4.11. The (coarse) moduli space of principally polarized abelian
varieties of dimension g, denoted by Ag, is a variety satisfying

(a) the points of Ag are in one-to-one correspondence with the isomor-
phism classes of principally polarized abelian varieties of dimension g;

(b) for any flat family X → T of principally polarized abelian varieties
of dimension g, there exists a natural morphism f : T → Ag such that for
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each t ∈ T the fiber Xt is in the isomorphism class of the abelian variety
determined by the point f(t) ∈ Ag.

Since principally polarized abelian varieties for g = 1 are the same as
elliptic curves, their moduli spaces are also the same. It is given in Sec. 2.1
and Ex. 4.7.

We will see in Ch. 6 and Ch. 7 how we can construct the moduli space
of principally polarized abelian varieties explicitly. It turns out that the di-
mension of Ag is given by g(g + 1)/2.

Remark: Def. 4.11 above does not guarantee that the moduli space Ag is
uniquely determined. For this, we should add a universal property condi-
tion. The standard proof using universal properties gives us uniqueness of
Ag provided that Ag actually exists. The same remark applies to Def. 4.5,
4.8, 4.9 and 4.10.

4.4 The Torelli Map

Using the facts of Prop. 3.14 that we can construct a principally polarized
abelian variety of dimension g from a smooth curve of genus g, we get the
possibility to define a morphism t : Mg → Ag sending a curve C to its
Jacobian J(C) together with the principal polarization. It is called the Torelli
map.

The Torelli theorem states that this map is injective, in other words that
the Jacobian in combination with the principal polarization determines from
which curve it came. But there is also the possibility that a principally
polarized abelian variety does not come from a curve.

Theorem 4.12. (Torelli Theorem) The Torelli map t :Mg → Ag is injective
for all g.

Note that for g = 4 the map t is not open anymore, since dimM4 =
3g − 3 = 9 is not equal to dimA4 = g(g + 1)/2 = 10. And for higher genus
we do not have equal dimensions either.

If we look at the Torelli map in the setting of stacks, then Thm. 4.12
does not hold anymore. Namely, if we consider it as a morphism of stacks
for g = 3, the map is not an embedding, but it is 2-to-1.
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5 Cohomology of Local Systems

In this section we briefly discuss some cohomological notions that we need for
the thesis. One way to study schemes is with the `-adic cohomology, which is
étale cohomology with coefficients in Q`. One reason that étale cohomology
is used in algebraic geometry comes from the fact that the Zariski topology
of a variety is not fine enough. This has as a consequence for example that
the sheaf cohomology of constant sheaves is zero. Grothendieck defined a
new kind of “topology” on a scheme X, where the “opens” are given by étale
morphisms to X. In [28] a good introduction is given to the subject of étale
cohomology as well as the `-adic particular case.

Using this particular theory, we can calculate the cohomology of local
systems of the moduli spaces Mg, and this is interesting for at least one
reason: we can expect to find modular forms in these cohomology groups.
Our eventual goal is that we find new examples of modular / automorphic
forms in certain cohomology groups for higher genera such as g = 3, and that
we try to find an explanation for why they show up.

In Sec. 5.1, we give a very brief introduction to `-adic cohomology. After
that, in Sec. 5.2, we discuss the specific local systems that we want to study.
Finally we try to explain how to calculate the cohomology of local systems
using point counts over finite fields in Sec. 5.3.

5.1 `-Adic Cohomology

In what follows, let X be a scheme over a field k, and let ` be a prime number
not equal to the characteristic of k. We can define the `-adic cohomology of
X as follows. Let H i(Xét,Z/`nZ) be the étale cohomology of the (constant)
sheaf associated to the presheaf U 7→ Z/`nZ. We can take the inverse limit
of these cohomology groups over n ∈ N:

H i(Xét,Z`) := lim
←−

H i(Xét,Z/`nZ),

and obtain the étale cohomology of X with coefficients in Z`. Then the `-adic
cohomology is defined as the tensor product H i(Xét,Q`) := H i(Xét,Z`)⊗Z`

Q`.
As Q` is a field, the resulting cohomology groups are Q`-vector spaces.

Moreover, we have the property that the only non-zero cohomology groups
H i are those with 0 ≤ i ≤ 2n, with n the dimension of X.

We can do this construction for more general sheaves. For this we need
some definitions.
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Definition 5.1. A sheaf of Z`-modules on X (or an `-adic sheaf) is a collec-
tion Fn of sheaves and also morphisms fn+1 : Fn+1 → Fn with the following
properties:

(a) Fn is a constructible sheaf of Z/`nZ-modules, for all n, and
(b) the map fn+1 : Fn+1 → Fn gives us an isomorphism Fn+1/`

nFn+1 →
Fn, also for all n.

A sheaf of Q`-vector spaces is also a Z`-sheaf F = (Fn), except that we
define the cohomology groups differently:

H i(Xét,F) =
(

lim
←−

H i(Xét,Fn)
)
⊗Z`

Q`.

It is clear that the construction of H i(Xét,Q`) above is an example of this.
For the definition above we needed to know what a constructible sheaf

is. So for completeness we give the definition below. The collection of
sheaves Z/`nZ together with quotient maps fn+1 : Z/`n+1Z→ Z/`nZ satisfies
Def. 5.1 and therefore gives us a first example of a sheaf of Z`-modules.

Definition 5.2. A sheaf F on Xét is constructible if
(a) for every closed immersion i : Z → X with Z irreducible, there exists

a non-empty open subset U ⊆ Z such that (i∗F)|U is locally constant and
(b) the stalks of F are finitely generated.

The cohomology groups for sheaves of Q`-vector spaces are also Q`-vector
spaces. They have the property that they are finite dimensional if X is proper
over k.

Finally, we also give the notions of compactly supported cohomology and
inner cohomology.

Definition 5.3. Let F be a torsion sheaf on a variety X. We then define
the compactly supported cohomology as H i

c(Xét,F) := H i(Zét, j!F) where Z
is any complete variety containing X as a dense open subvariety and j is the
inclusion map.

A sheaf F is called a torsion sheaf if all the F(U) are torsion groups, in
other words if all the sections have finite order. The compactly supported
cohomology can be defined for the sheaves Z/`nZ, and taking the inverse
limit and tensoring with Q` we also obtain the compactly supported `-adic
cohomology.

One thing needed for the definition of compactly supported cohomology
of a variety X is that there exists a complete variety containing X as a dense
open subvariety. We have already seen that it is possible for the moduli
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spaces Mg to define a completion Mg. It is not obvious that every variety
does admit a completion, but it turns out that it is possible. However, there
might be more than one completion, and we actually have to show that the
definition above is independent of the use of the completion Z. See for this
[28, p. 119].

The image of the inclusion H i
c(Xét,F) → H i(Xét,F) is denoted by

H i
! (Xét,F) and is called the inner cohomology.

One thing that makes compactly supported cohomology particularly inter-
isting is that it allows us to generalize Poincaré duality. The standard result
is the following. If X is smooth and proper over k and has dimension n, then
H2n(X,Q`) is one dimensional, and

H i(X,Q`)×H2n−i(X,Q`)→ H2n(X,Q`)

is a perfect pairing for all 0 ≤ i ≤ 2n. More generally, we can give a similar
result for finite locally constant sheaf F in terms of compactly supported
cohomology.

5.2 Local Systems

Let π : Y → X be a morphism of schemes. Given a sheaf F on Yét, we define
π∗F as the sheaf on Xét with Γ(U, π∗F) = Γ(U ×X Y,F). The functor π∗
takes sheaves on Yét to sheaves on Xét. It is left exact, so we can take its
right derived functors, Riπ∗. So we can take a sheaf F on Yét and construct
the sheaf Riπ∗F on Xét. These are called the higher direct images of F .

To do so, construct for the sheaf F on Yét an injective resolution

0 −→ F −→ I0 −→ I1 −→ · · · .

This is possible as the category of sheaves on Yét has enough injectives. We
apply the functor π∗ to this exact sequence and we remove π∗F to obtain the
cochain complex

0 −→ π∗I0 d0−→ π∗I1 d1−→ · · ·
of which we will take the cohomology objects as Riπ∗F . In particular
R1π∗F = ker d1/im d0. The sequence above is really a complex since π∗
is left exact.

Proposition 5.4. The higher direct image Riπ∗F is the sheaf on Xét asso-
ciated with the presheaf U 7→ H i(U ×X Y,F).

If π∗ is exact, then Riπ∗F = 0 for all i > 0. This holds for π : Y → X a
closed immersion, or more generally for a finite map.
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Definition 5.5. A local system is the term used for a sheaf of modules L that
is locally constant on the space. In other words for each point of the space
there exists a neighborhood such that L restricted to that neighborhood is a
constant sheaf of modules.

We use V = R1π∗Q or V = R1π∗Q` and symmetric powers Vk := Symk(V)
of those. Here π denotes the map from the universal curve to the moduli
space for genus 1. For π∗ : C →Mg with g > 1 we define

Vλ := Symλ1−λ2(∧1V)⊗ Symλ2−λ3(∧2V)⊗ · · · ⊗ Symλg(∧gV),

where Sym denotes symmetric powers, ∧ denotes exterior powers and λ =
(λ1, . . . , λg) such that λ1 ≥ · · · ≥ λg ≥ 0. If we take λ = (k, 0, . . . , 0) then
we get the same Vk as defined above. The V, Vk and Vλ are all referred to
as local systems.

Theorem 5.6. (Leray spectral sequence.) Let π : Y → X be a morphism of
schemes. For any sheaf F on Yét we have a spectral sequence

Hr(Xét, R
iπ∗F)⇒ Hr+i(Yét,F).

Probably it would be interesting to explain what spectral sequences are.
For now we refer to the book [27]. Spectral sequences are used to relate
cohomology groups to each other. For example, the cohomology ofM1,n can
be found by looking at the cohomology for local systems.

Lefschetz Fixed-point Formula

The following will be useful for our calculation of the cohomology of local
systems. Assume that X is a smooth and proper scheme over k, and let
f : X → X be an automorphism with fixed points that are isolated. The
morphism f must have the property that each fixed point has multiplicity 1.
The most important example of such a morphism f will be the Frobenius,
denoted by Fq or Frobq, where q is a prime power. The “standard” Lefschetz
fixed-point formula is then given by:

L(f,X) =
∑
i

(−1)itr(f ∗ |H i(X,Q`)),

where L(f,X) is the number of points of X fixed by f , and f ∗ is the induced
map on the cohomology group [20, p. 453].

One problem of the standard Lefschetz fixed-point formula is that mod-
uli spaces should be viewed as stacks, and that we also want to study the
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cohomology of local systems instead of Q`. Reference [3] comes up with the
following generalized formula∑

x∈X(Fq)

tr(Frobq | Fx)
AutFq(x)

=
∑
i

(−1)itr(Frobq |H i
c(X,F)),

where F is any locally constant sheaf on X. So in particular the local systems
that we want to study can be applied. To explain the formula, informally
we have to count each fixed point with a factor one over the number of
automorphisms of that point, and this is due to the fact that we work with
a Deligne-Mumford stack now instead of a scheme.

5.3 Experimental Calculations

We will review the method used by Bergström, Faber and Van der Geer to
calculate the cohomology of local systems of moduli spaces of curves in order
to find automorphic representations (in particular Siegel modular forms). It
is explained in a nice way in an article by Faber and Pandharipande [13].

We want to calculate the number of automorphism classes of elliptic
curves over finite fields, so |M1,1(Fp)|. Here we have to keep in mind that
we have to count elliptic curves C over Fp with weight factor 1/|AutFp(C)|.
The result is |M1,1(Fp)| = p. If we consider curves of genus 1 with up to 10
marked points, we all get point counts that satisfy polynomial formulas in
p. However, if we consider 11 marked points, then suddenly |M1,11(Fp)| =
f11(p) − τ(p), where f11 is a polynomial of degree 11 and τ is the function
associated to the cusp form of weight 12 discussed in Ex. 2.10.
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Part III

Towards Automorphic
Representations
In this part we will first define Siegel modular forms, and the try to view
them as automorphic forms and as automorphic representations. The article
[2] is used for this purpose.

—Ch. 6, Modular Forms (p. 53).
—Ch. 7, Automorphic Forms (p. 59).
—Ch. 8, Automorphic Representations (p. 63).
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6 Modular Forms

The use of the term modular forms for different definitions might be a bit
confusing. So to make it clear from the start we use the terms classical mod-
ular form for the ones defined in Def. 2.5, scalar-valued Siegel modular forms
for Def. 6.5 and vector-valued Siegel modular forms for Def. 6.8. If we use
the term Siegel modular forms we mean one of the last two definitions and
the term modular forms can refer to any of the three.

As the theory of modular forms has become very successful and a vital part
in the mathematical research in many areas in the 20th century, the natural
thing to do was to generalize the definition of modular forms to functions
over a higher dimensional analogue of the upper half plane, but the way to
do this is not entirely obvious. However, Carl Ludwig Siegel was able to do
this, and this was the birth of Siegel modular forms.

Siegel modular forms are very interesting in the theory of moduli spaces as
well. As we have seen there is a natural connection between classical modular
forms and elliptic curves, which explains why classical modular forms come
up in the cohomology of M1,1. We would like to have something similar
happening inMg for higher genus, and this turns out be, to a certain extent,
in the form of Siegel modular forms.

In the research of moduli spaces of higher genus, Siegel modular forms
have for example been found in the cohomology for g = 2 in [12] and have
been conjectured to exist in the cohomology for g = 3 in [4]. These Siegel
modular forms occurring in the cohomology are actually vector-valued. They
can be defined quite easily and naturally as well and fortunately they can
also be seen as automorphic forms. It might be tempting to also expect Siegel
modular forms in the cases g > 3, but for these genera a complication arises.

In modern research, modular forms as well as Siegel modular forms are
all viewed in the language of automorphic forms. It might be interesting
to put the Siegel modular forms which appear in the cohomology of moduli
spaces in the context of automorphic forms and see if this point of view can
partly fill the gaps that are existing in the current understanding of these
cohomology groups.

The chapter is structured as follows. First, we will look in Sec. 6.1 at the
symplectic group and how it acts on the Siegel upper half space. In Sec. 6.2,
we define Siegel modular forms in the classical way, that is to say as functions
with values in C, and observe that they are a convincing generalization of
the original modular forms. In Sec. 6.3 the notion of vector-valued Siegel
forms is explained. We will see in Ch. 7 that we can associate automorphic
forms to them.

53



6.1 The Symplectic Group

Let us explain some notation. Fix a natural number g ∈ N. For R any
commutative ring, in our case it will be Z,R or C, let Sp2g(R) be the group
of matrices γ ∈ GL2g(R) with the property that γtJ2gγ = J2g, where J2g

denotes the 2g×2g-matrix of the form (0, Ig;−Ig, 0) and Ig denotes the g×g
identity matrix. We call this group the symplectic group.

Proposition 6.1. If γ = (A,B;C,D) ∈ Sp2g(R), with A,B,C,D all g × g-
matrices, the defining condition above is equivalent to the relations AtD −
CtB = Ig and AtC = CtA and BtD = DtB.

Proof. This follows immediately if we carry out the multiplication γtJ2gγ
with this γ and compare it to J2g. For the calculation we note that γt =
(At, Ct;Bt, Dt).

Definition 6.2. We denote by Hg the Siegel upper half space. It is defined as
the set consisting of symmetric complex g× g-matrices with positive definite
imaginary part.

It is clearly a generalization of the upper half plane as H1 = H.

Proposition 6.3. We can give an action of Sp2g(Z) on the Siegel upper half
space by γZ = (AZ +B)(CZ +D)−1, where γ = (A,B;C,D) ∈ Sp2g(Z) and
Z ∈ Hg. This action is well-defined.

Proof. First we have to check that CZ +D is invertible, which holds if and
only if it has non-zero determinant (as the matrix has coefficients in C). We
write Z = X+iY , where X and Y have real entries and Y is positive definite.
As a trick, we can calculate

(CZ +D)t(AZ +B)− (AZ +B)t(CZ +D)

= Z(CtA− AtC)Z + Z(CtB − AtD)+

(DtA−BtC)Z +DtB −BtD

= Z − Z = 2iY, (1)

where we use the relations of Prop. 6.1 for the second equality.
Now, suppose that (CZ + D)ξ = 0 has a solution. Then using Eq. (1)

we find that ξ
t
Y ξ = 0. As Y is positive definite, we must have that ξ = 0.

We conclude that det(CZ + D) 6= 0 as (CZ + D)ξ = 0 has only the trivial
solution.
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Next we show that γZ lies in Hg, in other words that it is symmetric
and that its imaginary part is positive definite. The first follows from the
calculation

(CZ +D)t(γZ − (γZ)t)(CZ +D)

= (CZ +D)t(AZ +B)− (AZ +B)t(CZ +D)

= Z − Zt = 0, (2)

where for the third equality we first expand and then use the same relations
from Prop. 6.1 as for the previous equation. We see that Z = Zt now implies
that gZ is symmetric as well. Combining Eq. (1) and Eq. (2), we find that
the imaginary part of γZ is positive definite:

(CZ +D)t(γZ − (γZ)t)(CZ +D)

= (CZ +D)t(AZ +B)− (AZ +B)t(CZ +D)

= 2iY.

We now know that the action is well-defined.

Constructing Ag
One thing which makes the action of Sp2g on the Siegel upper half space Hg so
interesting is that we can use it to construct the moduli space of principally
polarized abelian varieties of dimension g. This is essentially the same as
what we did in Ch. 2. There we found that M1,1

∼= SL2(Z)\H in Sec. 2.1
which translates in this setting to A1

∼= Sp2(Z)\H1. We can generalize this
to the following claim.

Proposition 6.4. Let g ∈ N. The moduli space Ag of principally polarized
abelian varieties can be constructed as

Ag ∼= Sp2g(Z)\Hg.

Proof. We use an element T ∈ Hg to define the lattice Zg⊕TZg ⊂ Cg. Using
this lattice we can construct a principally polarized abelian variety Cg/L.
It turns out that all isomorphism classes of principally polarized abelian
varieties can be represented using such a lattice Zg ⊕ TZg. So the Siegel
upper half space Hg parametrizes those abelian varieties.

The isomorphism class of Cg/L is independent of the action of Sp2g(Z)
on Hg. This follows from a similar calculation as done on p. 25. Conclusion:
Ag ∼= Sp2g(Z)\Hg.

Prop. 6.4 gives us the suspicion that Siegel modular forms, which are
defined below using the action of Sp2g(Z) on Hg, have everything to do with
Ag.
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6.2 Siegel Modular Forms

Definition 6.5. We mean with a scalar-valued Siegel modular form of weight
k and degree g a function f : Hg → C with the following properties:

(a) the function satisfies the transformation condition

f(γZ) = det(CZ +D)kf(Z)

for all γ = (A,B;C,D) ∈ Sp2g(Z) and all Z ∈ Hg.
(b) the function f is holomorphic and
(c) it is holomorphic at infinity, as in the definition of classical modular

forms.

Condition (c) of Def. 6.5 is actually only needed for degree g = 1. This
follows from the so-called Koecher principle, which is explained in [17, p. 191].

Of course a silly modular form for any weight here is the zero function.
Also for weight 0 all constant functions Hg → C are modular forms. As we
have seen in the definition of classical forms and as we will see in the future
definitions of vector-valued Siegel modular forms and automorphic forms, the
constant functions will always occur as trivial examples.

Example 6.6. Let us take a look at the case g = 1. In this case γ =
(A,B;C,D) ∈ Sp2(Z), with A,B,C,D ∈ Z, will have to satisfy the relation
AD − BC = 1, which shows that γ ∈ SL2(Z), and the transpose relations
become trivial. It tells us that Sp2(Z) is actually equal to SL2(Z). Also the
definition of H1 reduces to that of H. We conclude that Siegel modular forms
of dimension 1 coincide with classical modular forms for SL2(Z).

Example 6.7. There also exists a notion of Eisenstein series for scalar-
valued Siegel modular forms, called Klingen Eisenstein series, which is much
more involved compared to the Eisenstein series for classical modular forms.
However, a relative simple example of these for degree g is given by Eg,0,k =∑

det(CZ + D)−k, where the sum is over C,D coming from a full set of
representatives γ = (A,B;C,D) for the cosets GLg(Z)\GSp2g(Z). It turns
out that these are scalar-valued Siegel modular forms of weight k for each
even weight k > 2, see [17, p. 193]. For the definition of GSp2g(Z) we point
forward to p. 60.

In our definition of any modular form we required the transformation
property to hold under the action of the full modular group, so in our
case Sp2g(Z). We could instead take any so-called congruence subgroup of
Sp2g(Z), and this gives rise to modular forms of level > 1. For this thesis we
will focus on modular forms of level 1.
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6.3 Vector-valued Siegel Modular Forms

A representation of a group G on a vector space V over a field k is a group
homomorphism from G to GL(V ) (the group of all automorphisms of V ).

Definition 6.8. Let ρ : GLg(C) → GL(V ) be a representation with V a
finite dimensional C-vector space. We mean with a Siegel modular form of
weight ρ and degree g a function f : Hg → C with the following properties:

(a) the function satisfies the transformation condition

f(γZ) = ρ(CZ +D)f(Z)

for all γ = (A,B;C,D) ∈ Sp2g(Z) and all Z ∈ Hg.
(b) the function f is holomorphic and
(c) it is holomorphic at infinity.

Example 6.9. If we take the representation ρ = detk : GLg(C) → C we
return to the original definition of scalar-valued Siegel modular forms.

We can restrict ourselves to irreducible representations of GLg(C). To see
this, we consider two vector-valued Siegel modular forms f1 and f2 of degree
g, one of weight (ρ1, V1), the other of weight (ρ2, V2). We can now construct
a vector-valued Siegel modular form of weight (ρ, V1 ⊕ V2), where ρ : G →
GL(V1 ⊕ V2) is defined by γ 7→ diag(ρ1(γ), ρ2(γ)). This Siegel modular form
is given by f : Hg → V1 ⊕ V2, Z 7→ (f1(Z), f2(Z)). We can immediately
see that this is in fact a Siegel modular form if we try to write down the
transformation condition (a) of Def. 6.8 for f . It is therefore sufficient to
study only the case that we have irreducible representations as weights.

We can for example give the irreducible representations for g = 2, as
these are given by Symj ⊗ detk with j, k ∈ Z and j ≥ 0, with Symj the j-th
symmetric power of the standard representation. More generally, for any g ∈
N, the irreducible finite dimensional representations of GLg(C) correspond
one to one with tuples (λ1, . . . , λg) with λ1 ≥ . . . ≥ λg ≥ 0 decreasing non-
negative integers. This tuple specifies the representation

Symλ1−λ2(∧1V )⊗ Symλ2−λ3(∧2V )⊗ · · · ⊗ Symλg(∧gV ),

where V is the standard representation of GLg(C). The wedge symbol ∧i
denotes the i-th exterior power of V .

Siegel Operator and Siegel Cusp Forms

We finally want to mention that we can also define when Siegel modular
forms are called cusp forms, as a generalization of the cusp forms that we

57



defined for classical modular forms in Def. 2.9. This is important for us,
because it are the cusp forms that occur in the cohomology of moduli spaces
of curves. In order to give the definition, we first need to introduce the Siegel
operator.

Definition 6.10. Let g > 1. We define the Siegel operator Φ on the space
Mρ(Sp2g(Z)) by

Φf = lim
t→∞

f

(
Z 0
0 it

)
,

where f ∈Mρ(Sp2g(Z)), t ∈ R and Z ∈ Hg−1.

We can take this limit as we require Siegel modular forms to be holo-
morphic at infinity (and they automatically are for g > 1). The resulting
function Φf : Hg−1 → C turns out to be a Siegel modular form of degree
g−1. So the Siegel operator is a useful tool to construct Siegel modular forms
of a lower degree. But we can also use it to give the following definition.

Definition 6.11. A Siegel cusp form is a Siegel modular form f such that
Φf = 0. The space of cusp forms is denoted by Sρ(Sp2g(Z)) ⊆ Mρ(Sp2g(Z))
or simply Sρ. We write Sk(Sp2g(Z) for the space of scalar-values cusp forms
of weight k.
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7 Automorphic Forms

7.1 Definition

Before we can give our main definition of automorphic forms, we first have
to give an introduction to the adele ring.

Adeles

We start with the field of rational numbers Q. The rational numbers admit
several absolute values: the standard absolute value, but also the p-adic
absolute values with p prime. Taking the completion of Q with respect to
these different absolute values, gives us the field of real numbers R and the
fields of p-adic numbers Qp, respectively.

Taking the restricted product of all the Qp, with compact opens Zp con-
sisting of p-adic integers, i.e. p-adic numbers with p-adic absolute value at
most 1, we obtain the finite adeles Af . For the definition of the restricted
product and more on adeles, you can consult [9, Ch. 5].

We can define the ring of finite adelic integers in another way as the direct
product Ẑ =

∏
p prime Zp, where Zp is again the ring of p-adic integers. Then

we can define the ring of finite adeles as the tensor product Af := Q⊗Z Ẑ.
The ring of adeles is then the product A := R× Af .
In the definition of the adelic ring and actually in the whole definition of

automorphic forms we can use any global field instead of Q. However, we do
not need this generality at this point and stick to the rationals.

Groups used for the Definition

A group over which we will define automorphic forms will need to have the
following properties.

—Such a group has to be a locally compact group, which means that it
is a topological group with an underlying space that is locally compact and
Hausdorff. This is to be able to define a measure on the space.

—The group has to be able to be defined over both Q and over A. This
happens in practice when the group consists of matrices, because we can then
just change the entries to lie in Q or A.

There are many ways to give a satisfying definition for the group G. Many
authors require G to be reductive over Q as an algebraic group. Others
require it to be an affine group scheme of finite type over Z. But for now we
will just consider subgroups of GLn that are locally compact.
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Example 7.1. Examples of the groups that we will consider are G = GLn,
SLn, GSp2n, Sp2n, On or SOn. These are in practice the only groups for
which automorphic forms are defined.

The general symplectic group GSp2n mentioned in the example above is
defined as the group consisting of elements γ ∈ GL2n(R), for some commu-
tative ring R, such that γtJ2nγ = µ(γ)J2n for some µ(γ) ∈ GL1(R). The
function µ : GSp2n(R) → GL1(R) that is consequently defined is called the
multiplier homomorphism. It has Sp2n(R) as its kernel.

We can come across projective versions of these G(R), denoted by PG(R).
This is defined as the quotient of the group G(R) by its center. The elements
of PG(R) therefore correspond to the equivalence classes of the equivalence
relation γ ∼ λγ, with γ ∈ G(R) and λ ∈ R∗.

Proposition 7.2. Let G be a locally compact group over Q. Then we know
that on the space G(Q)\G(A) there exists a unique positive G(A)-invariant
Radon measure µ (up to scaling).

Proof. Due to the construction of A as a restricted product, the group G(A)
will be a locally compact group as well. Using the diagonal embedding Q→
A, we can show that Q is discrete in A, so we can use [9, Thm. 3.15], which
gives us the required measure µ.

Definition of Automorphic Forms

We are now ready for the definition of automorphic forms.

Definition 7.3. Let G be a locally compact (linear algebraic) group over Q.
Then we define an automorphic form ϕ for G as a function ϕ : G(Q)\G(A)→
C such that

(a) ϕ is square integrable with respect to the measure that we found in
Prop. 7.2 and

(b) ϕ is invariant under the right action of G(Ẑ).

With square integrable we mean that∫
G(Q)\G(A)

ϕ(γ)2 dµ

is finite with respect to the measure found in Prop. 7.2. If we define a norm
on G(Q)\G(A) as the square root of this integral, then this space becomes a
Hilbert space. The inner product is defined as

〈f, g〉 :=

∫
G(Q)\G(A)

f(γ)g(γ) dµ.
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Instead of giving the condition that an automorphic forms ϕ has to be
square integrable, we can impose the restriction that ϕ has to be slowly
increasing [6, p. 190 & 194]. However, this has its own drawback, as this
requires a norm on the domain of ϕ.

The definition above for automorphic forms in the adelic setting. However,
as an intermediate step, we could define “real” automorphic forms as func-
tions over G(Z)\G(R) that are square integrable with respect to the unique
positive G(R)-invariant Radon measure [9, Ch. 3].

We must note that automorphic forms are defined in many different ways
in the literature. Some definitions are equivalent, some are not, and some
definitions are in greater generality than others. For example, we could
also reformulate condition (b) of Def. 7.3 by defining automorphic forms as

functions G(Q)\G(A)/G(Ẑ) → C. We choose the definition as used in [8,
p. 117], as this is an article that contains some nice results that we may want
to study during the rest of the thesis.

Another Description of Ag
We can give another description of Ag than found before. This makes it more
clear why Ag and its associated Siegel modular forms have so much to do
with automorphic forms.

We have already seen that Ag ∼= Sp2g(Z)\Hg in Prop. 6.4. We first need
to rewrite Hg. Note that Sp2g(R) acts on Hg as well, exactly in the same way
as Sp2g(Z). Moreover, this action is transitive, so for all Z ∈ Hg there exists
a γ ∈ Sp2g(R) such that γ ·I = Z, where I is an n×n diagonal matrix with all
diagonal entries equal to the imaginary unit i. However, there are elements
that stabilize I, and denote this stabilizer subgroup by K. We then conclude
that Hg = Sp2g(R)/K, so Ag ∼= Sp2g(Z)\Sp2g(R)/K. For the last step of
translating this to adelic coefficients, we can use [7, Prop. 3.5]. Eventually
we get:

Ag ∼= Sp2g(Q)\Sp2g(A)/Sp2g(Ẑ)K.

7.2 Modular Forms as Automorphic Forms

We have to be able to decompose G(A) as G(A) = G(Q)G(R)G(Ẑ) in order
to define automorphic forms. If we use the so-called principle of strong
approximation on these groups G, we can establish this decomposition.

Example 7.4. Classical modular forms are automorphic forms for G = GL2.
To be more precise, let f : H→ C be a classical cusp form of weight k. We
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will first map f to a function ϕf on G(R), namely by defining ϕf (g) :=
(ci + d)−kf(gi). Here c and d are the bottom entries of g and i ∈ H is
the imaginary unit. This function will be an automorphic form in the real
setting.

In order to show that this ϕf is actually an automorphic form, we have
to show that it is invariant under the left action of G(Z) and that it is square
integrable. The first follows from the transformation property of f .

ϕf (γg) = (cγgi+ dγg)
−kf(γgi) = (cγgi+ dγg)

−k(cγgi+ dγ)
kf(gi)

= (cγgi+ dγ)
−k(cgi+ dg)

−k(cγgi+ dγ)
kf(gi) = ϕf (g).

Here we write cM and dM for the bottom entries of the matrix M denoted
in the subscript. We see that we can actually view ϕf as a function on
G(Z)\G(R). The square integrability is shown in [9, p. 96].

The final step is to view this as an adelic automorphic form as in Def. 7.3.
This can be achieved by finding an injection of L2(G(Z)\G(R)) into
L2(G(Q)\G(A)), as is done in [9, p. 171].

Example 7.5. Scalar-valued Siegel modular forms of degree n can be mapped
to functions on G(A) if we take G = GSp2n. Write an element of G(A) as
g = gQgRgẐ. If we have a scalar-valued Siegel modular form of weight k for
degree n, we send it to ϕf , defined by ϕf (g) = (CI + D)−kf(gRI). In this
case C and D are the bottom n × n-matrices of gR, and I is the diagonal
n × n-matrix with all diagonal entries equal to i. More information can be
found in [2].

Let f be a vector-valued Siegel modular form of weight ρ and degree g and
assume that ρ is irreducible. We can then associate to f a function on the
adelic group GSp2g(A). Define ϕ̃(γ) = ρ(CI + D)−1f(γRI). The notation
is the same as in Ex. 7.5. The problem now is that this defines a vector-
valued function on G(A), and in our definition of automorphic forms, they
are defined to be scalar-valued. To solve this issue, we take a non-zero linear
form L on V (which is just a linear map V → C) and define ϕ(γ) = L(ϕ̃(γ))
to obtain a scalar-valued function. This definition is dependent on the choice
of L, but if we look further to the automorphic representation associated to
ϕ (to be defined later), then the choice of L does not matter anymore. For
more information on the construction of an automorphic form from a vector-
valued Siegel modular form, we refer to [2, p. 194], where the whole method
is explained.
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8 Automorphic Representations

We have already seen modular forms and automorphic forms and we have
convinced ourselves why these are interesting things to study. It turns out
that there is another way of looking at these, and that is as representations.
There has been a lot of research on group representations, but on the other
hand the results have been for finite groups or compact groups for example,
and the groups that we want to study are a lot harder to tackle. Still though
it might give some interesting insights in the cohomology of moduli spaces,
and it at least gives us a different viewpoint rather than just considering
Siegel modular forms.

First in Sec. 8.1 we will give some basic definitions from representation
theory that we will need. In Sec. 8.2 we will introduce automorphic repre-
sentations, and we will try to associate these to modular and automorphic
forms in Sec. 8.3.

8.1 Basics of Group Representations

A representation of a group G on a vector space V is a pair (π, V ) with π
a group homomorphism G → GL(V ). With GL(V ) we mean the group of
automorphisms on V . If G is a topological group and V a Banach space,
then if G × V → V, (g, v) 7→ π(g)v is continuous we speak of a continuous
representation.

A subspace W of V that is invariant under the group action is called a
subrepresentation. It is of course a representation itself and can be written
as (π|GL(W ),W ). If V has exactly two subrepresentations, namely the zero-
dimensional subspace and V itself, then the representation is said to be
irreducible.

A unitary representation of a group G is a representation π of G on
a Hilbert space V , with inner product 〈∗, ∗〉, such that π(g) is a unitary
operator for every g ∈ G. This means that π(g) preserves the inner product
of the Hilbert space or in other words that 〈π(g)v, π(g)w〉 = 〈v, w〉 for all
v, w ∈ V .

The dimension of a representation G→ GL(V ) is the dimension of V .
The multiplicity of an irreducible subrepresentation W ⊆ V is defined as

the dimension of HomG(W,V ), which is the vector space of homomorphisms
W → V that commute with the action of G.
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8.2 Defining Automorphic Representations

For the theory of automorphic representations, just as for the theory of au-
tomorphic forms, we can choose various topological groups G for which we
give the definition. Some authors require G to be a reductive group. Oth-
ers require it to be a linear algebraic group, and for example Chenevier and
Lannes [8] give the definition for so called Z-groups, which are affine group
schemes of finite type over Z.

Choosing one of these definitions, we will mostly see the example G =
Sp2g for now. In this situation we look at G = G(A) and V =
L2(G(Q)\G(A)/Z) with Z the neutral component of the center of G(R).
As representation we take the right representation π defined by π(γ)ϕ(∗) =
ϕ(∗γ) for all γ ∈ G(A) and ϕ ∈ V . The inner product (p. 60) is invariant
under the right action of G(A) by Prop 7.2, so we see that π is a unitary
representation.

In this case we will only consider

A2(G) := L2(G(Q)\G(A)/Z ·G(Ẑ))

consisting of automorphic forms of level 1. As stated above, there is a repre-
sentation of G(R) on this space. Moreover, for every prime number p, there
is also the action of the group ring

Hp(G) := Z[G(Zp)\G(Qp)/G(Zp)].

The elements of this ring are called Hecke operators at p. Recall that the
elements of a convolution / group ring Z[Γ] of a group Γ over Z are map-
pings Γ→ Z of finite support, with multiplication of two mappings f and g
defined by convolution: f ∗ g : x 7→

∑
γ∈Γ f(γ)g(γ−1x). We want to study

A2(G) by considering the commuting actions of G(R) and the Hecke algebra
H(G) := ⊗pHp(G).

We denote Π(G) the set of isomorphism classes of the form π∞ ⊗ πf , with
π∞ a unitary irreducible representation of G(R) and πf a one dimensional
representation of the ring H(G).

We write m(π) for the multiplicity of π as a subrepresentation of A2(G).
It is finite according to a theorem by Harish-Chandra [18, Thm. 1.1].

Definition 8.1. A discrete automorphic representation of G is an element
of Π(G) with m(π) 6= 0. We denote by Πdisc(G) ⊆ Π(G) the subset of these
representations.
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Write:

A2(G) = A2
disc(G)⊕A2

cont(G) with A2
disc(G) = ⊕

π∈Πdisc(G)
m(π)π.

The space A2
disc(G) contains the subgroup A2

cusp(G) of cusp forms. We denote
by Πcusp(G) ⊆ Πdisc(G) the subset of elements that are subrepresentations in
A2

cusp(G).

8.3 Automorphic Forms as Representations

The above follows the definition of automorphic representations that has
been given in [8]. In the article [2] the definition is for G = PGSp2g, which is
therefore slightly different from what we have seen before. Since it is nicely
explained how we need to see Siegel modular forms as automorphic represen-
tations in this article, and since we want to follow it as correctly as possible,
we will work in this section with PGSp2g.

We will associate an automorphic representation of PGSp2n with a Hecke
eigenform of degree g. A Hecke eigenform is a Siegel modular form that is
an eigenvector under the action of all the Hecke operators for Sp2g(Z).

Let f be a cuspidal Hecke eigenform of degree n and weight k and let ϕf be
the corresponding automorphic form on G(A) defined as we did in Sec. 7.2 on
modular forms and automorphic forms. So ϕf lies in L2(Z(A)G(Q)\G(A)),
and moreover we can show that it will lie in the cuspidal subspace
L2

0(Z(A)G(Q)\G(A)). We can use the right action on this space to get all
right translates of ϕf . Denote with Vf the subspace that is spanned by all
these right translates.

Let π be an irreducible subrepresentation for Vf of the unitary repre-
sentation as defined on p. 64. We know that we can find such a π as it is
a fact that L2

0(Z(A)G(Q)\G(A)) decomposes discretely into representations
that are irreducible. Then this π will be an automorphic representation of
G(A) which is trivial on Z(A). Therefore we can view π as an automorphic
representation of PGSp2n(A).

We can do the same for vector-valued Siegel modular forms. Recall that
to define a (scalar valued) automorphic form from a vector valued Siegel mod-
ular form (values in V ), we had to compose it with a linear form V → C. The
choice of linear form L : V → C does not matter as we take right translates
to form the representation.

We can also immediately construct the automorphic representation belonging
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to f ∈ Sk(Sp2g(Z)) as follows: for π∞ we take the lowest weight representa-
tion πk constructed in [2, 3.5] and for πp we take the spherical principal series
representation of PGSp2n(Qp) with certain Satake parameters. The precise
formulation requires of course a lot of work, but it is nice to see that we
can also directly connect modular forms with automorphic representations,
instead of using automorphic forms as an intermediate step.

We can construct the representation associated to vector-valued Siegel
modular forms just as in the scalar-valued case, except that we have to be
careful with π∞. The representation of GLn(C) used for the vector valued
Siegel modular form plays an important role in choosing π∞ here.

We have now seen how we can connect modular forms with automorphic
representations. This correspondence is quite strong. For example, the L-
functions for a modular form and its representation coincide, and the lifting
of modular forms to automorphic forms is invariant under the Hecke action.
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Part IV

Lattices
Besides using modular forms to construct automorphic forms (for Sp2g), as
we have seen in Sec. 7.2, we can also use lattices. Using this second approach,
we obtain examples of automorphic representations for groups such as On,
SOn and SOp,q. It might be the case that these automorphic representations
are occurring in the cohomology of moduli spaces as well, and maybe these
representations can explain parts for which the occurrence is not understood.
In fact, Mégarbané has found an automorphic representation for SO4,3 which
he calls ∆23,13,5 [26]. This representation has presented itself in the calcu-
lations of Faber and others as well, looking at local systems with weight
λ = (11, 3, 3) for genus g = 3 [4].

On the other hand we can construct Siegel modular forms with the help of
the θ-series of a lattice, so this makes lattices interesting as well. So all in all
the concept of lattices is a very important one in the theory of automorphic
forms and represenations.

The following chapters can be found in this part:
—Ch. 9, Lattices (p. 69).
—Ch. 10, Orthogonal Groups (p. 73). These groups are defined using the

lattices defined in the previous chapter, and they are used to define certain
automorphic representations in the next chapter.

—Ch. 11, Automorphic Forms for Orthogonal Groups (p. 75).
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9 Lattices

Lattices are part of a more general definition, namely quadratic groups. We
will follow the article of Chenevier and Renard [7] in the definitions that
follow.

9.1 Quadratic Groups

Let L be an abelian group. Recall that a quadratic form q : L→ Z is a map
satisfying

—q(n · x) = n2 · q(x) for all n ∈ Z and x ∈ L and
—the map L× L→ Z defined by (x, y) 7→ x · y = q(x+ y)− q(x)− q(y)

is a bilinear form.

Definition 9.1. The term quadratic groups is used for abelian groups that
are free of finite rank and are equipped with a quadratic form.

A quadratic group L with quadratic form q has a determinant det(L) ∈ Z,
which is by definition the determinant of the symmetric bilinear form x · y
associated to q. We say that L is non-degenerate if det(L) = ±1 or ±2, but
this is by no means standard terminology. Notice that x ·x = q(2x)−2q(x) =
2q(x) and therefore x · x is even, which implies that the map (x, y) 7→ x · y
is alternating on L/2L. This has as consequence that det(L) = ±1 only if n
even and det(L) = ±2 only if n odd.

We will finally define the signature of a quadratic group as the signature
(p, q) of its quadratic form. It turns out that for non-degenerate quadratic
groups p − q ≡ −1, 0, 1 (mod 8), so there are no quadratic forms with a
signature that does not satisfy the congruence.

Positive Definite Case

In the positive definite case, that is to say (p, q) = (n, 0), we can view the
quadratic group L as a lattice in euclidean space L ⊗ R. Consider for this
the standard euclidean space Rn with inner product (xi) · (yi) :=

∑
i xiyi and

denote Ln the set of lattices L ⊆ Rn coming from a non-degenerate quadratic
group. In other words: if we restrict the map x 7→ x · x/2 to L and use it as
quadratic form then L becomes a non-degenerate quadratic group.

Root Systems

We can study these lattices using root systems. Let R ⊂ Rn be a root system
of rank n with the property that x · x = 2 for all x ∈ R.
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Definition 9.2. We use the following notion of a root system R ⊂ Rn:
—R is a finite set that generates Rn, and 0 6∈ R;
—x · x = 2 for all x ∈ R (as we have already stated);
—x · y ∈ Z for all x, y ∈ Z;
—for all x ∈ R, reflections through the hyperplane of x leave R stable.

An important result in the theory of root systems is that irreducible
components of a root system R can be classified: they are of type A, D, or
E. If we denote by ei ∈ Rn the standard basis elements of Rn, then these
types are given by

An = {±(ei − ej) : 1 ≤ i < j ≤ n+ 1} ⊂ Rn+1,

Dn = {±ei ± ej : 1 ≤ i < j ≤ n} ⊂ Rn,

E8 = D8 ∪ {(xi) = (±1/2, . . . ,±1/2) :
∏

i xi > 0} ⊂ R8,

E7 = A7 ∪ {(xi) = (±1/2, . . . ,±1/2) :
∑

i xi = 0} ⊂ R8.

Here we must note that the ±-signs are independent from each other. So for
example Dn contains 2n(n− 1) elements. In the list above, the root system
E6 is omitted because we do not need it in this thesis. It should be clear
that the root system An is a root system of rank n, even though we defined
it embedded in Rn+1. The same holds for E7.

Root Lattices

The set R generates a lattice in Rn that we call L(R), and we will see this
is a quadratic group through the quadratic form x 7→ x · x/2. This is called
the root lattice that is associated with R. It contains exactly the same
information as R because of the property that R = {x ∈ L(R) : x ·x = 2}. It
turns out that the root lattices A1, E7, E8 and E8⊕A1, respectively belonging
to the root systems A1, E7, E8 and E8 t A1, are non-degenerate, and they
are of rank 1, 7, 8 and 9. These are also the only ones of rank < 15. Note
that confusion can arise due to the notation. We choose to denote the root
systems with upright letters and their associated lattices with italics.

9.2 Theta Series

We will later show how we can use the lattices as defined above to define
automorphic forms for SOn. But we can also use them to construct Siegel
modular forms, automorphic forms for Sp2g. They can be realized as the θ-
series of a lattice. This has for example been done by Chenevier and Lannes
to make automorphic forms out of even unimodular lattices [8, Ch. V].
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We will quickly explain how this works. Pick an even unimodular lattice
L ⊆ Rn and choose a degree g. Then the θ-series of L for degree g is defined
as

θg(L) =
∑
v∈Lg

qv·v/2.

Here v = (vi) is a g-tuple of lattice points of L, and qv·v/2 = eπi tr((v·v)τ)

with τ ∈ Hg and v · v = (vi · vj)i,j a g × g Gramian matrix. In this case
vi · vj is given by the inner product on Rn. It turns out that θg(L) is a
scalar-valued Siegel-modular form of degree g and of weight n/2 (for the full
modular group Sp2g(Z)).

We have the following classification of even unimodular lattices for n < 32.
There is a unique one for n = 8, up to rotations and reflections of On(R).
There are 2 for n = 16 and finally 24 in dimension n = 24. Even unimodular
lattices exist only if n is a multiple of 8, and the number of them explodes as
n grows. For example for n = 32 it is known that there are already millions.
These lattices will all give examples of modular forms (but of course these
modular forms are not all distinct: for example for g = 1 we already know
that there are not that many modular forms).
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10 Orthogonal Groups

Define for each commutative ring R the subgroup OL(R) of the general linear
group Aut(L ⊗ R) that consists of elements g such that qR ◦ g = qR. Here
the notation qR has the following meaning: the quadratic form q can be
extended to R, and we denote this by qR : L ⊗ R → R. In this way we get
the orthogonal group scheme OL ⊆ AutL over Z associated with L.

Now assume that L is non-degenerate. If n is even, then OL is a smooth
group scheme over Z. It has exactly two connected components, and we shall
write SOL ⊆ OL for the neutral component. If n is odd, we simply define
SOL as the kernel of the determinant. In each case it turns out that SOL is
reductive over Z, and even semi-simple if n 6= 2, which are properties that
allow us to define automorphic forms for them. This is a reason for working
with SOL rather than OL.

10.1 Positive Definite Case

In general dimension n = 8k + s, with s = −1 or 0 or 1 we get an example
of a positive definite non-degenerate quadratic group Ln by looking at the
direct sums E7 ⊕Ek−1

8 or Ek
8 or Ek

8 ⊕A1. We will simply write On and SOn

for OLn and SOLn if we have to deal with these lattices. Keep an eye on the
fact that for higher rank these are not anymore the unique lattices with that
particular rank.

10.2 Indefinite Case

More generally, if p ≥ q > 0 are integers, and if p − q ≡8 −1 or 0 or 1,
then it turns out that non-degenerate quadratic groups with signature (p, q)
are unique, so we can simply write SOp,q for their special orthogonal group
schemes. We can also give a concrete description. For example, if we take
p = q + 1, then we can define Oq+1,q as follows.

Definition 10.1. Let R be a commutative ring. The group Oq+1,q(R) con-
sists of elements γ ∈ GL2q+1(R) that satisfy

γtJγ = J, with J =

0q Iq
Iq 0q

2

 ,

where 0q is the q× q-matrix with all entries equal to zero, and Iq is the q× q
identity matrix. In this way the quadratic form is preserved under the action
of Oq+1,q. For γ to be in SOq+1,q we furthermore require that det γ = 1.
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In low dimensions these groups coincide with groups that we already
know. We then have the following isomorphisms over Z:

SO1,1
∼= Gm, SO2,1

∼= PGL2 and SO3,2
∼= PGSp4.

Let us show the last isomorphism as an example. Consider the conjugation
action of PGSp4(R) on matrices of the form

x3 x2 0 −x1

x5 −x3 x1 0
0 x4 x3 x5

−x4 0 x2 −x3

 ,

with x1, . . . , x5 ∈ R. These matrices have the property that AJ4 = J t
4A, with

J4 as defined on p. 54. We define a quadratic form on this 5-dimensional space
by tr(A2)/2 = 2x1x4 +2x2x5 +2x2

3. Then there are subgroups of finite rank of
this space of matrices with addition as group operation that form quadratic
groups of signature (3, 2). The conjugation action of PGSp4(R) corresponds
precisely to the action of the special orthogonal group of these quadratic
groups, because it leaves the quadratic form invariant.
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11 Automorphic Forms for SO-groups

We start with a description of the space of automorphic forms for SOn. We
use the definition as given in the thesis of Mégarbané and his articles (for
example [26]).

11.1 Definition

Definition 11.1. Let (W, ρ) be a finite dimensional representation of SOn(R)
over C. Then we can define automorphic forms of weight ρ for SOn as
functions f : Ln → W for which we have f(γ · L) = ρ(γ) · f(L) for all
γ ∈ SOn(R). The vector space of such automorphic forms is denoted by
Mρ(SOn).

It is possible to show that Mρ(SOn) is a finite dimensional vector space
for all n and all weights ρ. It is property that we also have seen for Mk(SL2)
and Mρ(Sp2g).

We have got the isomorphism

Ln ∼= SOn(Q)\SOn(A)/SOn(Ẑ)

which allows us to view the functions f as described above as automorphic
forms for G = SOn [8, p. v].

As we have seen, Mégarbané uses the term automorphic form for the def-
inition above, even though it does not satisfy Def. 7.3 straight away. I think
the definition also resembles Def. 6.8 of vector-valued Siegel modular forms,
as this is also defined in terms of a representation.

Of course we can also define automorphic forms for the groups SOp,q and
the associated lattices of signature (p, q). In this section the choice was
made to give the definition only for the case SOn for the time being.

11.2 Kneser Neighbours and Hecke Operators

With regard to lattices, we can define so-called Kneser neighbours of a lattice
L. These are lattices that are related to L in a certain way. We use the Kneser
neighbours to describe the Hecke operators acting on Ln.

Definition 11.2. Let A be a finite abelian group. Two lattices L,L′ ∈ Ln are
A-Kneser neigbours, or A-neighbours for short, if L/(L∩L′) ∼= L′/(L∩L′) ∼=
A. If A = Z/pZ, then we speak of p-neighbours.
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Definition 11.3. Let A be a finite abelian group. For a lattice L ∈ Ln we
define TA(L) as the formal sum over all A-neighbours of L. In this way we
obtain a Hecke oparator TA that we can view as an endomorphism of Z[Ln].
If A = Z/pZ then we denote the Hecke operator by Tp.

The elements f ∈ Mρ(SOn) can be seen as functions Z[Ln] → W . The
Hecke operators act on Ln and thus we can define an action on Mρ(SOn) as
well. In formulas this action is given by

TA(f)(L) :=
∑

L′∈VA(L)

f(L′),

where VA(L) is the set of A-neighbours of L.
It is a fact that the operators TA that we just defined over the vector

space Mρ(SOn) have the following property: there exists a basis of Mρ(SOn)
of elements that are eigenvectors for all TA at the same time.

The Hecke operators give us a way to study (the properties of) automor-
phis forms. Moreover, it should hold that the trace of the Hecke operators
agrees with the trace of the Frobenius morphisms on the `-adic cohomology
groups of local systems on moduli spaces. So Hecke operators give us a way
to link automorphic forms with the cohomology of moduli spaces.

11.3 Calculating Hecke Eigenvalues

In this paragraph we will shortly explain how Mégarbané calculated the Hecke
traces of a number of automorphic forms for special orthogonal groups. It are
these traces that have been compared with calculations done by Bergström,
Faber and Van der Geer.

Let n ∈ N such that n ≡ −1, 0, 1 (mod 8), and let L ∈ Ln be a lattice.
We write SO(L) = {γ ∈ SOn(R) : γL = L}.

We are particularly interested for the method for n = 7, because those
Hecke traces seem to correspond to certain automorphic representations in
the cohomology of M3. So we can restrict ourselves to the case n = 7, 8, 9.
Let L0 ∈ Ln (for example L0 = E7 for n = 7). The group SO(L0) acts
naturally on the set of A-neighbours of L0 denoted by VA(L0). Write Vi for
the orbits of this action, and take for each i an element gi ∈ SOn(R) such
that we have giL0 ∈ Vi. Using this notation, we can write down a formula
for the traces of Hecke operators acting on spaces of automorphic forms for
SOn.

Theorem 11.4. Let n = 7, 8 or 9, let A be a finite abelian group and let
(ρ,W ) be a finite dimensional representation of SOn(R). Using the above
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notation, we have the following formula

tr(TA |Mρ(SOn)) =
1

|SO(L0)|
∑
i

|Vi| ∑
γ∈SO(L0)

tr(γgi |W )


for the traces of the Hecke operators TA acting on the space Mρ(SOn) of
automorphic forms for SOn.

This formula is very useful: we only need to have a good description
of the representations of SOn(R) and of the lattices of Ln to get to know
everything we want to know about Mρ(SOn). The only problem may be that
the calculations can become difficult to do by hand. Mégarbané made use
of a computer program to do the calculations for n = 7, 8, 9 as presented
in [26]. The results of all his calculations can be found on his web page
http://megarban.perso.math.cnrs.fr/tracehecke.html.
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Part V

Making the Connection
In Pt. II we have looked at the moduli space of curves of genus g. In Pt. III we
have looked at Siegel modular forms, automorphic forms, and automorphic
representations. Now it is time to try and relate these parts to each other.

—Ch. 12, Teichmüller Modular Forms (p. 81). Here we introduce Te-
ichmüller modular forms, the analogue of Siegel modular forms, as certain
global sections onMg. Beware that these are not automatically automorphic
forms, but we will try to construct them as lift of automorphic forms.

—Ch. 13, To Higher Cohomology Groups (p. 83). With Teichmüller
modular modular forms we study automorphic forms occurring in H0-groups
of Mg. However, we can also find them in higher cohomology groups.

—Ch. 14, Using a Map Towards Lattices (p. 85). We are especially
interested in automorphic forms for SO-groups found in the cohomology of
M3. One way of understanding this connection is by trying to associate
lattices to curves of genus 3.
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12 Teichmüller Modular Forms

12.1 Introducing Teichmüller Modular Forms

Teichmüller modular forms have been introduced by Ichikawa in [21]. In
short, he defined them as global sections of line bundles on the moduli space
of curves of a certain genus. The notion of Teichmüller modular forms is an
analogy of Siegel modular forms, which are global sections of line bundles (or
vector bundles) on the moduli space of principally polarized abelian varieties
of a certain dimension. The name comes from the Teichmüller space.

Definition 12.1. Ichikawa introduces Teichmüller modular forms in [21] as
sections in

Tg,h(R) := Γ(Mg ⊗R, λ⊗h),
with h ≥ 1 the weight, R a commutative ring (we will predominantly take
R = C here), and λ an invertible sheaf on Mg that is defined as

λ := ∧gπ∗(ΩC/Mg),

where π : C → Mg is the universal curve and ΩC/Mg the relative sheaf of
differentials. This means that we should view Mg as a stack in order to
give this definition. The space of Teichmüller modular forms for genus g, of
weight h and over R is thus denoted by Tg,h(R).

Ichikawa subsequently points out that Tg,h(k) is finite dimensional for
every field k with characteristic 6= 2, a property that we are used to in the
context of “regular” modular forms.

Furthermore, it is obvious that we can generalize the definition so that we
can also speak of vector-valued Teichmüller modular forms. Vector-valued
Siegel-modular forms will also fit in via t.

The result of the second article of Ichikawa [22] is that the graded ring of
scalar-valued Teichmüller modular forms for g = 3 is generated by pullbacks
of scalar-valued Siegel modular forms of degree g = 3 together with χ9, a
Teichmüller modular form of weight 9. The proof relies on the properties of
t :M3 → A3 and is quite straightforward.

An interesting question might be: are there Teichmüller modular forms
that do not come from automorphic forms. The form ξ9 might be a candidate.

12.2 Vector-valued Teichmüller Modular Forms

As said before, Ichikawa introduced Teichmüller modular forms in [21]. In
all the articles he wrote on Teichmüller modular forms, he only considered
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and defined scalar-valued ones, just as we did in Def. 12.1. However, vector-
valued Teichmüller modular forms are more useful since vector-valued Siegel
modular forms are found in the cohomology of Ag and therefore also in the
cohomology of Mg (see our discussion above).

But before we can define those, we first need to introduce the Hodge
bundle E = π∗(ΩC/Mg). Here π : C → Mg is the universal curve and the
vector bundle E is called the Hodge bundle. Notice that for the scalar-valued
definition we already used the Hodge bundle as follows: λ = ∧gE. Now, let
ρ = (a1, . . . , ag) with ai ∈ Z≥0. Then we define Eρ to be the vector bundle
obtained from E by applying the Schur functor associated to the irreducible
representation of GLg(C) with highest weight

(a1 + · · ·+ ag, a2 + · · ·+ ag, . . . , ag−1 + ag, ag).

Definition 12.2. Let g > 1, and letMg denote the moduli stack of smooth
curves of genus g. Then we define the space of Teichmüller modular forms
of weight ρ and genus g as

Tg,ρ = H0(Mg ⊗R,Eρ).

We can compare this with the definition of scalar-valued Teichmüller mod-
ular forms by taking ρ = (0, . . . , 0, h).

Pullbacks of Siegel modular forms always yield Teichmüller modular forms.
It turns out that each Teichmüller modular forms for g = 2 equals a pullback
of a Siegel modular form of degree 2 up to an integral power of χ10, a Siegel
modular form of weight 10.

We also find Teichmüller modular forms for g = 3 with help of the Torelli
map, but not all Teichmüller modular forms are pullbacks of Siegel modular
forms anymore, since t : M3 → A3 is 2-to-1 as a morphism of stacks. One
such Teichmüller modular form not coming from a Siegel modular form is χ9

of weight 9 for genus 3. Its square is equal to χ18, (a pullback of) a certain
Siegel modular form of weight 18.

To explain these other Teichmüller modular forms, it may be useful to
find maps similar to the Torelli map t, in order to lift other automorphic
forms. We are already quite certain that automorphic forms for SO7 or SO4,3

occur in the higher cohomology of groups of M3, so they may be found as
Teichmüller modular forms (which are elements of H0-groups) as well.

82



13 To Higher Cohomology Groups

In Ch. 12 we talked about ways to find automorphic forms inH0 of the moduli
spaces of curves. However, originally, in the work of Bergström, Faber and
Van der Geer, the automorphic forms occur in the higher cohomology groups
of local systems.

In my opinion, there are two ways to understand these higher cohomology
groups. The first way is to first understand the higher cohomology groups of
local systems of moduli spaces of abelian varieties, and then identify them
with higher cohomology groups of moduli spaces of curves via the Torelli
map.

The second way is to first understand the Teichmüller modular forms,
that is, the H0-groups of moduli spaces of curves. After that, we can try to
relate the higher cohomology groups with these H0-groups. For this we may
use tools such as the Hodge decomposition and the Leray spectral sequence.
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14 Using a Map Towards Lattices

The automorphic forms for G = SO7 found by Mégarbané may be explained
in the cohomology of M3 by constructing a map M3 → L7 with the right
properties. This follows from the fact that we have the identification L7 =
SO7(Q)\SO7(A)/SO7(Ẑ). Similarly, we may want to look at G = SO4,3 and
associated lattices of signature (4, 3).

It may be a bit naive to think that this is the way to give the explanation.
However, there are three arguments to give that make this method seem
reasonable.

(1) We have the isomorphisms PGL2
∼= PGSp2

∼= SO2,1 and PGSp4
∼=

SO3,2, see p. 74. So these special orthogonal groups really have something to
do with Mg.

(2) We have to find some structure in curves of genus 3 and higher. One
way to do this could be to associate lattices (which have a group structure)
to these curves.

(3) Where else would the automorphic forms that are found in the coho-
mology of M3 come from? We know that some are in fact Siegel modular
forms coming from the Torelli map t :M3 → A3, but there are also automor-
phic forms in the cohomology that are not coming from Siegel modular forms.

There are a few articles in recent research that explain a construction for
curves of genus g = 3 that might be useful in our search of such a map.

—A complex hyperbolic structure for the moduli space of curves of genus
three by Shigeyuki Kondō [23].

—Moduli of plane quartics, Göpel invariants and Borcherds products by
Shigeyuki Kondō [24].

—On occult period maps by Stephen Kudla and Michael Rapoport [25].

14.1 Constructing Lattices of Rank 7

Before we give the construction of a lattice isomorphic to E7 from a curve
of genus 3 that is nonhyperelliptic, we have to know what hyperelliptic and
nonhyperelliptic curves are. For completeness, we explain this here.

Hyperelliptic and Nonhyperelliptic Curves

A curves C of genus 1, or an elliptic curve, has the special property that
there is a morphism from C to P1 of degree 2. We want to consider curves
of higher genus with the same property.
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Let C be a curve of genus g ≥ 2. If there exists a finite morphism
f : C → P1 of degree 2, then C is called hyperelliptic. Needless to say, if
such a morphism does not exist, then C is called nonhyperelliptic.

For genus 3 there exist both hyperelliptic curves and nonhyperelliptic
curves. The subvariety of M3 of hyperelliptic curves of genus 3 is 5 dimen-
sional [20, Ex. IV.5.5.6]. As M3 has dimension 6, we conclude that curves
of genus 3 are in general nonhyperelliptic curves, so it is not a big problem
if we limit ourselves to these nonhyperelliptic curves. They are represented
by smooth curves in P2 of degree 4.

A Construction for Curves of Degree 4

We will first restrict our study of genus 3 curves to those that are not hyper-
elliptic. The construction below comes from [23].

As stated before, a nonhyperelliptic curve of genus 3 is represented by
a smooth plane curve C of degree 4. We can give a double cover S of P2

that is branched along C. Namely, if C is defined by the degree 4 poly-
nomial f(X, Y, Z), then we take the variety defined by f(X, Y, Z) = T 2 in
P(1, 1, 1, 2). (So for the weighted projective space we take homogeneous co-
ordinates (X : Y : Z : T ).)

Apparently, S can be obtained from P2 by blowing up at 7 general points.
Let e0 be the pull-back of the class of a line on P2 and for 1 ≤ i ≤ 7 let ei
be the classes of exceptional curves of these blow-ups. Then e2

0 = 1, e2
i = −1

for all 1 ≤ i ≤ 7, and ei · ej = 0 for all i 6= j. Put

α0 = e0 − e1 − e2 − e3 and αi = ei − ei+1 for 1 ≤ i ≤ 6.

Then the {αi} generate a lattice that is isometric to E7, where E7 is the root
lattice associated to the root system E7 as introduced on p. 70. The term
isometric means that the quadratic form defined on them is identical. So as
quadratic groups these lattices are equal. The quadratic form in this case is
defined by using the intersection pairing as bilinear form.

Alternative Construction

Alternatively, consider the covering transformation σ of S over P2. Appar-
ently the αi are constructed in such a way that σ(αi) = −αi for 0 ≤ i ≤ 6.
So put

H− := {x ∈ H2(S,Z) : σ∗(x) = −x},

then also H− ∼= E7. Of course we have to check that H− is of rank 7, and
that the bilinear form defined by the cup product will give the right quadratic
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form.

It might be interesting to note that in [24], which is a subsequent article
of [23] by Kondō, automorphic forms are mentioned as well, associated to a
similar construction as given above. However, those automorphic forms are
meromorphic and of level > 1, so they are not directly useful in our context.

14.2 Abelian Varieties of Dimension 7

Finally, I want to talk about an interesting fact from the article by Kudla
and Rapoport [25]. For this they use a construction of another lattice coming
from [23].

Let C be a smooth non-hyperelliptic curve of genus g = 3, so we can
assume that C is a smooth curve in P2 of degree 4. Let X be the four cyclic
cover of P2 branched along C (in contrast to the surface S we considered in
Sec. 14.1 that was a twofold cover of P2). Let τ be a covering transformation
of X of order 2. Then we define

L− = {x ∈ H2(X,Z) : τ ∗(x) = −x}

This turns out to be a lattice of rank 14. We must note that this lattice has
determinant 28, so it is degenerate according to Sec. 9.1 and therefore the
research of Chenevier-Lannes, Chenevier-Renard, and Mégarbané does not
apply.

However, it is still quite interesting, as we can use this lattice to con-
struct an abelian variety. This abelian variety is of dimension 7, and has a
polarization of degree 26. So these abelian varieties are different from the
principally polarized ones that we have studied in Pt. II. If we denote by
B7 the moduli space of these abelian varieties constructed above, and by
N3 the moduli space of smooth non-hyperelliptic curves of genus 3, then
we get a map N3 → B7. Moreover, as a morphism of schemes this is an
open embedding [25, Thm. 7.1]. So if we can give a description of modular
/ automorphic forms living on B7, we can immediately lift these to obtain
Teichmüller modular forms on M3!
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Part VI

End Matter
We end this thesis with a conclusion (p. 91), where we also describe some
applications and give suggestions for further research. After the conclusion
the references (p. 93) and the index (p. 97) can be found.
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Conclusion

The goal of the thesis is to examine the role of automorphic forms and au-
tomorphic representations in relation to the cohomology of moduli spaces of
curves and abelian varieties. We can summarize our findings as follows.

—Siegel modular forms are defined in a natural way as global sections
of certain vector bundles over the moduli space Ag of principally polarized
abelian varieties of dimension g. Due to the Torelli map t :Mg → Ag these
Siegel modular forms can also be pulled back toMg. However, for g ≥ 4 we
have dimMg 6= dimAg, so such a pullback could vanish and in any case the
cohomology on Ag associated to a Siegel modular form will be very different
from the cohomology on Mg associated to the pullback. And also for g = 3
we cannot explain all automorphic representations in the cohomology by
pulling back Siegel modular forms. We therefore need alternatives to the
Torelli map in order to study the automorphic forms that are found in its
cohomology.

—Siegel modular forms can be viewed as automorphic forms or represen-
tations. They are automorphic forms for G = Sp2g. But we can also define
automorphic forms for special orthogonal groups for example.

—The automorphic forms for G = SO7 found by Mégarbané may be
explained in the cohomology of M3 by constructing a map M3 → L7 with
the right properties such that we can lift the automorphic froms toM3. This
follows from the fact that we have the identification

L7
∼= SO7(Q)\SO7(A)/SO7(Ẑ)

and the automorphic forms for SO7 are defined on the space on the right
hand side. Similarly, we may want to look at G = SO4,3 and associated
lattices of signature (4, 3).

Applications

Of course with any form of scientific research it is tempting to ask for the
purpose of this research. This is not always easy to answer, especially when
it comes to fundamental mathematical research. Still though it can be use-
ful to think about it, and in my opinion, there are 3 particular uses for the
things that have been described in this thesis, at least in other mathematical
research.

(1) It gives us a way to find examples of automorphic representations. One
thing that makes automorphic representations so inaccessible in comparison
to classical modular forms is that there are very few concrete examples of
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automorphic representations, and moreover it might be unclear in what way
we can obtain these representations. We have seen that we can find automor-
phic representations in the cohomology of moduli spaces. In fact, Bergström,
Faber and Van der Geer used their calculations to predict the existence of
Siegel modular forms of certain weights for degree 2 and 3.

(2) It gives us more insight in the moduli spaces of curves. Moduli spaces of
curves are notoriously difficult to study, as we generally do not have explicit
constructions for them and know little about them, especially for higher gen-
era. Calculating the cohomology of these spaces is one way of trying to get
a better understanding.

(3) It is an extensive example of the Langlands correspondence between au-
tomorphic representations and Galois representations. If we consider `-adic
cohomology (of moduli spaces of curves for example), then we can connect
`-adic representations to it. With the things that we have done in this thesis,
we can interpret these as automorphic representations as well.

These kinds of correspondences between representations are conjectures
that are part of the Langlangds program. The Langlands program is one of
the most important topics in modern mathematical research.

Further Research

A number of suggestions for further research are listed below.

(1) Trying to find more automorphic representations. This can for exam-
ple be done by extending the work of Chenevier-Renard [7], or by trying to
calculate the cohomology of local systems for curves of genus 4.

(2) We have seen that the Torelli map has been very useful in explaining
automorphic representations for Sp2g in the cohomology of local systems of
moduli spaces of curves of genus g. However, it does not explain everything,
so it will be useful to find new maps that can explain the automorphic rep-
resentation in the cohomology of moduli spaces, especially for g ≥ 3. In
particular, it might be interesting to elaborate on the beginning that was
made in Ch. 14.

(3) Studying automorphic representations in the cohomology of other mod-
uli spaces. For example, the moduli space of curves with level structure will
have something to do with automorphic representations of level > 1.
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