
Low Level GPU Performance
Characteristics Using Vendor Independent

Benchmarks

Navid Saremi - Utrecht University

Supervisors:

Vincent Hindriksen - StreamHPC
Jacco Bikker - Utrecht University

July 2018

1

Abstract

In parallel processing, GPUs are one of the most common devices used for com-
puting. Each GPU architecture is different than others and usually has difference
performance characteristics under different loads. In order for an application to run
at optimal performance when using GPUs as compute devices, it is necessary to know
the low level behavior of that device. In this study we first create a framework that is
device independent and can be compiled by each vendor’s native compiler. We then
classify the GPU hardware modules that have the most impact on performance and
create a series of benchmarks with different execution patterns and loads in order to
create an overview of the GPU’s performance characteristics. These characteristics
can then be used as a basis for other applications in order to use the results to op-
timize for a certain device or decide which device provides optimal performance for
that application.

The source code will be available at: https://github.com/ncrkblacksmith/low-
level-gpu-micro-benchmarks-HIP

2

Contents

1 Introduction 4

2 Graphics Processing Unit 6

3 GPU Programming Frameworks 11

4 Related Work 13

5 The Framework 17

6 Experiments 20

6.1 Cacheline Request Utilization . 20

6.1.1 Striped read and write vs Direct read and write 21

6.1.2 Striped Read vs Direct Read and Striped Write vs Direct Write 25

6.1.3 Using Vector Instructions and L1 Transfer Penalty 28

6.1.4 Conclusion . 34

6.2 Register Spilling . 36

6.3 Shared Memory . 38

6.4 Atomic Instructions . 41

7 Using the results of the framework 45

8 Conclusion 55

9 References 56

3

1 Introduction

In recent years, with the advancement of heterogeneous computing using GPUs and
the desire for parallel computation in all fields of science, a lack of understanding of
the performance characteristics of running an application in a massively parallel envi-
ronment can be felt when traditional analysis methods are insufficient in determining
the run-time performance of algorithms run in parallel environments. For example,
two different algorithms, both with a theoretical time complexity of O(n) might have
different run-time complexities when they are executed in a parallel processing envi-
ronment.

In this study, we analyze the low-level characteristics of recent high-end GPUs
(Produced by AMD and Nvidia) to determine what hardware resources could have
an impact on the performance of a given algorithm, by analyzing the usage of each
hardware resource and determining its impact on the execution time of the algorithm.
This is useful when a problem has a set of solutions but the run-time performance
may vary on different devices.

We focus our study on platform dependent optimizations and to do so we select
multiple basic low-level modules within the GPU that can have an impact on per-
formance. A list of such entities are: Global memory data communication, local
data communication, atomic instructions performance, registers available and regis-
ter spilling, hardware scheduler latency, data locality and cache utilization. Multiple
characteristics will be tested and their performance results discussed in future chap-
ters. Each hardware characteristic is related to the way a hardware resource is being
used.

We propose a series of platform independent tests in order to determine the capac-
ity of each GPU in each one of the hardware resources in order to determine which
optimizations are beneficial given the hardware and what the possible bottlenecks are
for each resource on each GPU.

Since we want to experiment of different GPU architectures from different vendors,
we use the HIP programming language [GHIP17], [BS17] for our experiments. The
main feature of HIP is that the source code is portable and it can be compiled using
the GPU’s native compiler for the target GPU. The other reason for selecting HIP is
because there is an ongoing dispute about performance of applications when written
in CUDA or OpenCL on each device [KK11], [JF11] which is out of the scope of this
research [NVCC18], [GHCC17].

The contribution of this work:

• We propose a classification of the GPU hardware into hardware modules that
can be tested in our experiments to find out their performance characteristics
under different loads.

• We propose a set of platform independent benchmarks to analyze each one these
modules on any given GPU.

4

• Using the results of our experiments we will select a practical algorithm that
makes use of most of the hardware modules and try to improve its performance
using the knowledge available through our experiments.

5

2 Graphics Processing Unit

The first generation of graphics processing units was only used to output images
created by the CPU to the display device. They lacked processing power and be-
ing programmable for doing anything else. With further development of 2D image
processing and the introduction of real-time 3D games, developers began creating
APIs for accessing the graphics hardware. The most notable API that we know now
was the OpenGL API library [KHR92] which was a hardware independent API for
real-time 3D graphics.

The early GPU architectures consisted of a fixed-function pipeline [KHR15] as
shown in Figure 2.1. The GPU required a list of vertices and a lighting model in
order to color them as desired. The programmer had to work with the hard-coded
shading model available the GPU in order to perform graphical operations. The
API provided some fixed functions for the programmer to choose from which mapped
approximately to the GPU hardware available.

Figure 2.1: OpenGL’s fixed function pipeline

With future generations of GPUs and APIs in the early 2000’s, Nvidia was the
first to introduce a GPU that was capable of running a shader program for every
vertex and pixel [NV01], although a very short program(Figure 2.2).

6

Figure 2.2: Programmable shading pipeline in earlier GPUs [CA17]

This allowed researchers to present their problem using graphic entities such as
vertices and pixels to the GPU and make use of the available hardware in order to run
their program. At first, researchers and programmers were using already available
graphics APIs such as OpenGL [KHR92], but after the introduction of general purpose
languages such as OpenCL[KHR09] and CUDA [CU18] which were close to the C
and C++, the researchers opted to use those languages. An example comparison
of standard C code running in sequential manner and the equivalent parallel CUDA
code can be seen in Figure 2.3.

Figure 2.3: Example CUDA code

7

The GPU’s massively parallel design allowed parallel processing paradigms to be-
come more relevant when writing programs on the GPUs. In this context GPUs were
also referred to as streaming processors [JB15]. The term stream processing is used
to describe a data-centric computing model in a parallel processing environment in
which each processor is working with a stream of data, as shown in Figure 2.4. This
model is used in applications that are compute-intense with high data locality and
data parallelism. This means that algorithms that could take advantage of GPUs are
algorithms that could divide their data into smaller pieces that have little to no data
dependency to each other and therefore each part can be executed separately. Each
one of these small pieces is called a stream and the GPU is running the same code
for each of its processors using a stream of data which is part of the total data.

Figure 2.4: Stream processing diagram [CB17]

In order to use the streaming model on the GPUs we will discuss some program-
ming terminology that is often used to describe each part of a streaming model on
the GPU. In a parallel environment there are multiple processing units available for
processing which are referred to as steaming processors . Data is divided into many
streams and each processor will perform an operation on the sequence of data assigned
to it. The more compute resources of the processor used the more occupied the device
is which could in theory result in more performance.

As shown in Figure 2.5 and Figure 2.6, at a high level the GPU consists of a set of
processing cores which are called streaming multiprocessors (or shading multiproces-
sors) or SM for short. Each with its own set of registers and ALU’s (Arithmetic Logic
Unit) and shared memory in order to perform simple operations on the data. The
registers and their data are only available to the processor. In addition to the proces-
sor’s local memory there is also an L2 cache on the device. At the highest level there
is global memory which is usually off-chip memory modules that have a high latency.
This hierarchy is similar to what is used in CPU’s. The first generations of GPU’s
did not have any cache hierarchy, because it was considered not to be beneficial for
streaming processors due to not reusing data often.

8

Figure 2.5: GPU architecture for one core [OR11]

Figure 2.6: GPU architecture [PM12]

Each processor is in charge of running multiple threads together and each thread
represents one stream of data. As figure 2.7 shows, a group of threads form a block of
threads and a group of blocks form a grid. The grid is basically the entire application
that will be run on the GPU. During run-time each processing core is in charge of
executing a block. But not all threads within a block are executed simultaneously.
The subset of threads that are executed together are referred to as a warp . Each
block is executed using multiple warps. The number of threads within a warp is
variable between different vendors, for example Nvidia uses warp size of 32 threads,
while AMD uses warp size of 64 threads. During run-time the processing core has
to decide which instructions to execute and in which order. Further parallelism can
be achieved by executing multiple instructions in a thread. This would provide more
work for the processing core to choose from. For example when one instruction
is requesting memory, during the time it takes for the memory controller to fetch
that memory the processing core can execute the next instruction. This concept is
commonly referred to as instruction level parallelism , ILP. ILP is very similar to out
of order execution , OOE in CPUs.

9

Figure 2.7: Blocks of threads [NV18]

10

3 GPU Programming Frameworks

Any language that allows the code running on the CPU to poll a GPU shader for
return values, can create a GPGPU framework.” [MH05]. In recent years, several
languages have been developed that provide a framework for programming on the
GPU such as: OpenCL, CUDA, C++ AMP, DirectCompute, etc.. It is important
to describe two terminologies used throughout this chapter. We divide the system
into two parts which will be called host and compute device . The host consists of a
system using a regular CPU and is not necessarily running in a parallel environment.
In this system the compute device is the GPU.

In parallel processing using a compute device, the host program and the GPU
device program are separate entities. The host process simply prepares the computing
device for execution on the data the host has transferred to the compute device for
its task.

One of the popular frameworks is OpenCL [KHR09] which is a vendor-independent
language, meaning that it can support a wide range of devices. This means that
OpenCL can run on a variety of hardware such as CPUs, GPUs and FPGAs. Covering
a lot of processors means that there is a high level of abstraction in the language that
will limit access to low level hardware instructions.

Nvidia launched CUDA in 2006. CUDA is a framework for using Nvidia’s own
GPUs in general purpose applications. The language used in CUDA was C and later
on C++. CUDA is mostly used when targeting Nvidia GPUs since it provides better
optimization and lower level access to the Nvidia hardware compared to OpenCL.
CUDA is the most popular framework in systems that are using Nvidia GPUs and
since its launch there has been a lot of libraries implemented specifically for CUDA,
which has attracted a lot of programmers.

To study the different aspects of GPUs in relation to algorithms, there first thing
to consider is a framework that gives access to the GPU device in order to execute
parallel application. Since we want to generalize our research to all hardware we
need to select a framework that is platform independent but also provides low level
access and optimization to the GPU hardware. Some frameworks would satisfy the
first requirement but they are not specialized enough to take advantage of the low-
level hardware of the GPUs. We thus need a framework in which the source code is
platform independent and can provide low level access to the hardware. This means
that the framework acts as a preprocessor and provides the necessary files for each
hardware’s native compiler in order to create executable files that can be run on the
host device and execute the parallel application on the compute device.

We chose the HIP language for this study. The HIP programming language is very
similar to CUDA, with a similar syntax and program structure. HIP was designed
to help converting CUDA code (which only runs on Nvidia devices) into portable
C++ code that can be compiled using AMD native compilers. HIP’s source code is
platform independent and can be compiled on each platform using that platform’s

11

native compiler (NVCC on Nvidia, HCC on AMD) which gives the freedom we need
in order to inspect the behavior of algorithms on each platform.

Figure 3.1: HIP compilation hierarchy [BSR17]

12

4 Related Work

Traditionally memory latency has always been a bottleneck for algorithms running
on a streaming processor. In the work done by Wen-mei Hwu [WH14], memory band-
width and load balance are two of the main challenges. Xinxin Mei and Xiaowen Chu
[XM16] also performed research on the memory hierarchy of GPUs using microbench-
marks in order to extract memory characteristics of a GPU device on different levels.
They observe that the difference in latency when accessing a higher-level memory
(such as global memory) compared with lower level memories (such as shared mem-
ory or cache). This shows that data locality on lower level memories could in theory
increase the performance of an application by reducing the latency of accessing a data
element from a lower level memory.

Recent GPU architectures make use of shared memory within each streaming pro-
cessor. Xinxin Mei and Xiaowen Chu [XM16] and Koki Hamaya and Satoshi Yamane
[KH17] focus on the shared memory throughput in their research. The shared mem-
ory in each processor is divided into multiple banks, where each bank can supply
4-bytes or 8-bytes. In theory, if memory requests from threads are mapped to one
bank, the requests are processed sequentially. This is in contrast to a situation where
each thread requests data from a different bank which can then be done in parallel.
As discussed in their study bank conflicts within active threads in a processor could
reduce the throughput of shared memory by a significant margin, preventing some
GPUs from even reaching 20% of their theoretical shared memory throughput. It is
thus essential to analyze memory access patterns on shared memory in order to find
and prevent possible bottlenecks.

In the work previously done in analyzing GPU behavior [SH09], we can find a
detailed description on how memory latency is hidden. When each multiprocessor is
executing a warp it may request a memory read/write instruction and when encoun-
tering a memory operation by a warp, the multiprocessor quickly swaps the warp for
another warp and queues up the memory operations requested by the previous warp.
While executing a new warp the memory operations of the previous warp will be
done in parallel and therefore when a warp is being stalled waiting for memory the
other warp starts executing and the execution of the next warp hides the latency of
previous warp by executing the new warp while waiting for the requests of previous
warp to be fulfilled.

In recent years GPU manufactures have opted to use HBM memories [JK14],
[MOC14] which use multichip-modules [WIKI13] and are closer to the processor die
than the traditional off-chip memories. The work done by Maohua Zhu et al. [MZ17]
shows that in order to optimize different applications for GPUs (for example AlexNet
[AK12] on Caffe [YJIA14] and Breadth-First Search) that use HBM memory, there
are certain considerations for fully exploiting the HBM memory’s performance. They
proposed a three-stage software pipeline in order to control memory transactions
for the algorithms in order to reduce the number of memory transactions between
the compute device and the host device that occur when OpenCL allocates memory
buffers in host and create a bottleneck because of using the PCI bus for data transfers

13

which has lower speed.

Several studies have analyzed and benchmarked the GPU’s memory operations in
order to find out characteristics of newer generations of GPU hardware and expose
possible limitations when it comes to memory operations. Xinxin Mei and Xiaowen
Chu [XM16] show that cache utilization on the GPU is different than that of the
traditional cache utilization on the CPU,. The main reason is size of the cache in
GPUs is much smaller compared to CPUs. The size of cache on the GPUs might vary
in run-time based on the size of shared memory an application might use. The memory
could be temporarily used when there is a high number of local variables required by
a single process. Later hardware generations have opted to increase shared memory
size and the number of simultaneous shared memory locations that can be accessed.
Dae-Hwan Kim’s research [DHK17] shows that if memory access is not coalesced,
that is if the access pattern, requests memory that is not being currently worked on,
or it does not utilize data locality for all threads (each thread requesting a different
part of memory) there is on average a 57 percent decrease in throughput on a pascal
GTX TITAN X.

Blem et al. [EB11] has used a set of benchmarks in order to find bottlenecks
and predict performance of an algorithm that is run on a SIMT device. In their
study they classify the bottlenecks into three categories: parallelism, control flow,
and memory limitations. A GPU simulator is then used for each algorithm in order
to determine which resources is the algorithm using and the occupancy level of each
one of the resources. After finding resource limitations the simulator then speculates
the potential speedup if that resource was to be fully utilized. It was noted that on
average 19x more speed achievable based on raw hardware characteristics, but that
there is no definitive way of determining how the algorithm should be altered in order
to achieve the peak performance.

While the general conception is that higher occupancy would result in higher
throughput because of more work being done in every cycle, the study done by Volkov.
[VV10] showed that this is not always the case. In the research, there are three cate-
gories that are being discussed and tested demonstrate where would lower occupancy
result in better performance: Hide arithmetic latency using fewer threads, hide mem-
ory latency using fewer threads, run faster by using fewer threads. Volkov [VV10]
argues that increasing instruction level parallelism (ILP) is another way of hiding
latency and shows that having more instructions per thread can optimize the execu-
tion pipeline usage and not halting execution when reaching an instruction that has
a higher latency.

The study also shows that reducing the number of threads and increasing the
number of registers used per thread would increase performance. This is due to the
fact that registers are much faster than shared memory in any device (up to 3x) and
therefore having more local data in registers (and hence less threads) would increase
data locality at a register level for the application.

Following up on the work done by Volkov [VV10] and Blem et al. [EB11], Lal et
al. [SL14] studied parallel kernels that have low occupancy but are constrained by

14

other factors: limited by number of blocks, limited by registers and limited by shared
memory. The research considers multiple factors when analyzing GPU resources:

• Instructions per cycle,

• Ratio of arithmetic instructions to total instructions

• Ratio of branch instructions to total instructions

• Ratio of memory instructions to total instructions

• Ratio of bandwidth utilized and bandwidth available

• Ratio of global memory instructions and global memory transactions

• Average utilization of SM core for issued cycles

• The fraction of total cycles where pipeline is stalled and could not issue instruc-
tions

• Number of active warps per SM

The study shows that when kernels are not limited by Instruction Level Parallelism
and are not running at full occupancy, increasing the occupancy further improves the
throughput of the kernel. It also denotes that kernels that run at full occupancy may
have low performance due to high bandwidth usage, low coalesced memory access
patterns or low utilization of SM cores.

Just focusing on hardware capabilities might not be enough for analyzing run-time
performance of a given algorithm. Thus a more detailed view of different algorithms
might be needed. Majumdar et al. [AM15] studies the behavior of multiple kernels
when more processing units are available in newer generations of hardware. The study
shows that in general, kernels are classified into three different categories:

• Compute-Bound Kernels: Kernels that have low amount of memory transactions
and benefited from more compute processors available to them. (38% of kernels
tested)

• Memory-Bound Kernels: These kernels are mostly bound by memory bandwidth
and not only do they not benefit from more processors but also increasing the
number of processors might result in conflicts at the L2 cache which in turn
actually slows down the kernels considerably. (30% of kernels tested)

• Balanced Kernels: these kernels have a compute to bandwidth ratio that allows
them to reach maximum performance. (16% of kernels tested)

• Kernels That Do Not Scale: These kernels suffer from algorithmic limitation
that does not allow them to scale when more bandwidth or compute processor
is available to them. (15% of kernels tested)

15

Based on the related research, we will focus our study on GPU memory hierar-
chy and available resources related to it. We will create a benchmark and define
experiments that stress parts of the GPU that are being used in almost every GPU
application. We will verify the results of some previous works whilst adding more
information about the behaviour of the device. Different execution configurations
will be experimented on to provide more insight about each module.

16

5 The Framework

The framework acts as a middle-ware between the host and the GPU and initializes
the GPU, makes the GPU execute the program, measures the time until completion
of the kernel and reports back the results to the user.

To measure the performance results of each benchmark there are some considera-
tions for normalizing the results in different situations:

• Select the size of data that the benchmark has to work on base on the type
and use this size for all others tests (even when using different data-types). For
example

megabytes<u int32 t >(128)
megabytes<u int64 t >(128)

which both result in exactly 128 megabytes of data which are being accessed by
different types.

• Run the benchmark for n iterations and measure the average time between kernel
launch and kernel finish in all iterations(default is n=100).

• Report the performance of that benchmark in the amount of data processed per
execution time(default is gigabytes/second).

• The data can then be presented in various forms using external applications.

The data is separated into to arrays, one for input and one for output. This separation
is done in tests that require the data not to be cached in order to measure the memory
modules performance in fetching them from the global memory. The benchmark also
needs to know which general operation it is going to perform. Other benchmarks can
be made using multiple operations together if the user desires. This is achieved using
template specializations for each operation. An example of an operation is provided
in Figure 5.1.

17

// k e rn e l op e r a t i on base s t r u c t
template<

c l a s s T,
unsigned i n t BlockSize ,
unsigned i n t ItemsPerThread ,
ke rne l operat ion mode KernelJob

>
s t r u c t k e rn e l op e r a t i on ;

// Sp e c i a l i z a t i o n f o r d i r e c t load / s t o r e
template<

c l a s s T,
unsigned i n t BlockSize ,
unsigned i n t ItemsPerThread

>
s t r u c t k e rne l ope ra t i on<T, BlockSize , ItemsPerThread , memory load s to re d i r ec t>
{

d e v i c e i n l i n e
void operator () (T∗ input , T∗ output)
{

T items [ItemsPerThread] ;
l o ad d i r e c t<T, ItemsPerThread , BlockSize>(items , input) ;
s t o r e d i r e c t<T, ItemsPerThread , BlockSize>(items , output) ;

}
} ;

// base ke rne l
template<

c l a s s T,
unsigned i n t BlockSize ,
unsigned i n t ItemsPerThread ,
c l a s s Operation = typename ke rn e l op e r a t i on

<T, BlockSize , ItemsPerThread , no operat ion > : : va lue type
>

g l o b a l
void ke rne l (T∗ input , T∗ output , Operation operat i on)
{

opera t i on (input , output) ;
}

Figure 5.1: Example kernel specialization for an operation. Each kernel operation structure is
corresponding to one operation. T is the type of data.

The first template argument is the type of the data the benchmark has to work
with. This can be anything from fundamental types like int, float, double to custom
structures defined for that benchmark. The second template argument will determine
the number of threads per each block. The third argument has some flexibility as to
what it specifies, for example in memory tests the third argument determines items
processed per thread, in shared memory benchmarks it is used for the number of
active banks for each kernel and for atomics it will determine which regions of output
are available for writing.

Using the template arguments each benchmark can create multiple kernels, each
for one configuration and run all kernels in order to benchmark each kernel. It is
important to note that we run the benchmarks for a specific size regardless of the
type we use as our base type. An example is provided in Figure 5.2.

18

run benchmark<T, 256 , 1 , memory load s to re d i r ec t >(megabytes<T> (1 2 8) , . . .) ;
run benchmark<T, 512 , 2 , memory load s to re d i r ec t >(megabytes<T> (1 2 8) , . . .) ;
run benchmark<T, 1024 , 4 , memory load s to re d i r ec t >(megabytes<T> (1 2 8) , . . .) ;
run benchmark<T, 32 , 8 , memory load s to re d i r ec t >(megabytes<T> (1 2 8) , . . .) ;
. . .

Figure 5.2: Creating a kernel for each configuration. T is the type of data.

Using the templates, an operation can be created in order to perform a benchmark
that will stress a certain part of the GPU. For example loading and storing from global
memory. The framework runs each kernel n times and measures its run time. After
the run is finished, we determine the kernel’s performance by considering the amount
of bytes it processed and the time it took to process that data. The final result is
given in gigabytes per second for each kernel. For an example of data gathered using
the framework for a certain benchmark, see Figure 5.3.

Device name : GeForce GTX 1080
L2 Cache s i z e : 2097152
Warp s i z e : 32
Shared memory per block : 49152
d i r e c t l o a d s t o r e <256,1> 110.696 GB/ s
d i r e c t l o a d s t o r e <256,2> 110.226 GB/ s
d i r e c t l o a d s t o r e <256,3> 106 .33 GB/ s
d i r e c t l o a d s t o r e <256,4> 109.859 GB/ s
d i r e c t l o a d s t o r e <256,5> 80.1591 GB/ s
d i r e c t l o a d s t o r e <256,6> 71.1674 GB/ s
d i r e c t l o a d s t o r e <256,7> 62.0664 GB/ s
d i r e c t l o a d s t o r e <256,8> 68.3808 GB/ s
d i r e c t l o a d s t o r e <256,9> 56 .223 GB/ s
d i r e c t l o a d s t o r e <256,10> 55.7024 GB/ s
d i r e c t l o a d s t o r e <256,11> 54.6475 GB/ s
d i r e c t l o a d s t o r e <256,12> 55.1145 GB/ s
d i r e c t l o a d s t o r e <256,13> 52.5941 GB/ s
d i r e c t l o a d s t o r e <256,14> 51.4011 GB/ s
d i r e c t l o a d s t o r e <256,15> 50.3878 GB/ s
d i r e c t l o a d s t o r e <256,16> 57.5653 GB/ s

Figure 5.3: Framework output example for a device

In our benchmarks we use 32-bit, 64-bit and 128-bit data-types to benchmark the
device and show each type’s results in a separate chart.

19

6 Experiments

6.1 Cacheline Request Utilization

As discussed in Chapter 4, The most time consuming operations in a GPU are memory
operations. In GPUs the memory controller accesses the data in groups of bytes called
cachelines. This is similar to the way CPUs access memory. When a request is made
for a memory location, the memory controller has to find which cacheline includes
that location, fetch the cacheline and pass it to the streaming processor. After that
the data will be available in the streaming processors local L1 cache.

When the data is available on the local cache, they have to be written into the
streaming processor’s registers. Each active warp can create a number of memory
requests during its execution. However the number of cacheline requests at each cycle
can influence the performance of the application. In this chapter we will analyze the
performance of a device when performing memory operations with regards to the
number of cachelines requested and the access pattern.

In parallel applications, dividing the data between processing entities can be done
in different ways. Each distribution of data between processing entities has its own
performance characteristics. The distribution of data may be restricted to a certain
way defined by the application or it can be done freely as long as all the input data
is being processed.

In previous work done by Dae-Hwan Kim [DHK17], the coalesced memory access
pattern proved to be the most optimal for GPU applications. When threads within
a warp are requesting sequential memory locations the access is coalesced. In order
for successive instructions within a thread to have coalesced access we need an offset
for each instruction within a thread so that parallel instructions within a warp all
require sequential data. We call this pattern a striped pattern because of accessing
the memory in striped partitions as seen in Figure 6.1.

Another pattern for accessing memory is when each thread has to process se-
quential part of memory. This is in contrast to the striped pattern where sequential
memory locations belong to sequential threads. In this scenario the number of cache-
lines requested at each warp depends on the number of items assigned to each thread,
as shown in Figure 6.1.

The other consideration is whether the device supports certain data type that the
applications intends to use, such as vectors or half precision floats. Using vector data
types might have some benefits which will be later discussed in this chapter.

20

Figure 6.1: Memory access patterns

In this section we will would like to know the memory controller characteristics
when performing memory operations in different patterns. There are two main mem-
ory operations: read and write. The two operations vary in execution latency when
performed in different patterns. Therefore in our benchmarks we use a set of con-
figurations that mixes the memory operations and access patterns. We will use the
discussed patterns for benchmarking the memory operations done within a thread,
number of cacheline requests and the latency of transfering data between L1 cache
and registers within a streaming processor.

To make sure that the requests are actually accessing the global memory, we choose
a data size that is larger than the L2 cache. We do the analysis for warps of n threads
and how they behave under different loads. For this purpose we select a fixed amount
of threads per block that is a multiple of the number of threads per warp in the
device. We choose 256 threads(8 warps) per block.

6.1.1 Striped read and write vs Direct read and write

In the first set of benchmarks we use the each access pattern for both read and write.
After running the benchmarks, we analyze their performance with each configuration
and their performance on different devices. Figure 6.2, 6.3 shows the results of the
benchmark.

By comparing the results of the benchmarks, we see that the striped pattern has a
stable performance for the most part. The performance drop is due to register spilling
which will be discussed in the coming sections. The direct pattern on the other hand
starts to drop in performance after a certain items per thread for each device. To

21

investigate the drop in performance we need to see what is different between these
two patterns.

One of the main differences between the access patterns is the number of cache-
lines requested per instruction within a warp. In the striped pattern each warp
creates a constant number of cacheline requests per instruction regardless of the
number of items it is processing. The number of cachelines is equal to warp size
* sizeof(data type) / cacheline size . In the direct pattern the number of cachelines
requested per instruction is equal to warp size * sizeof(data type) * items per thread
/ cacheline size . Therefore the number of cachelines requested increases by the num-
ber of items per thread. In both AMD and Nvidia the cachelines are 128-bytes when
the data is not cached in L2.

When using the direct pattern, a thread is accessing 4 sequential integers, the
memory controller will create a cacheline request for the first instruction. The rest
of the instructions do not require to fetch a cacheline because the cacheline that
holds the data has already been requested by the first instruction. The memory
controller is not doing any work after the first instruction and the instructions after
the first one will only have the latency of transferring data from the L1 cache to the
registers. In contrast in the striped pattern one or more cachelines are requested at
each instruction. Therefore the memory controller is busy at each instruction unlike
the direct pattern.

Considering the result from the GTX 1080, it can be observed that the performance
drops if the items per thread is higher than 4. We can calculate the cacheline requests
in both patterns for 4 items per thread. In the striped pattern in both read/write
operations, at each instruction 1 cacheline is requested and warp size read/write oper-
ations are performed on that cacheline. This process is repeated for each instruction.
This suggests that the memory controller is capable of fetching 4 cachelines per cycle.

The AMD MI25 on the other hand has different characteristics. It is important to
note that the warp size is 64 in AMD devices. The drop in performance is happening
gradually from 4 items per thread onward similar to the GTX1080. In both patterns
each warp creates requests for 8 cachelines. In the striped pattern 2 cachelines are
requested at each instruction and warp size read/write operations are performed on
each cacheline.

22

Figure 6.2: Memory access pattern results with different configurations. Each row belongs to one
device and each column is for one pattern. The x-axis is items per thread which increases at each
iteration. The y-axis shows the performance in gigabytes per second. The color blue is used for
striped pattern and red is used for the direct pattern.

23

Figure 6.3: Memory access pattern results with different configurations - zooming in for better
showing at which configuration the performance starts dropping

To further investigate we need to separate read and write and benchmark them
separately. Using the first results we can use the striped pattern for read or write as
the pattern that does not create any bottlenecks and test the other one. Later on we
will use vector instructions to see their effects on memory transaction performance in
GPUs.

24

6.1.2 Striped Read vs Direct Read and Striped Write vs Direct Write

In this section we show the difference between read and write capabilities of the
device. We use two configurations for these benchmarks: 1. Striped read - direct
write 2. Direct read - striped write. The reason for this classification is that since the
striped pattern will not create any bottleneck, each configuration would only expose
the operation that is being done using the direct pattern.

Looking at the results of the striped read - direct write(Figure 6.4 and 6.5) for all
devices, we can observe that the capacity for read operations per cacheline is more
than the capacity of write operations per cacheline. From the results we can retrieve
the maximum number of read or write operations per cacheline on each device. This
value can then be used to change the execution pattern of an application on a device
based on the memory requests it makes.

Considering the GTX 1080, when using direct write and 4 32-bit integers per
thread, 4 cachelines can be fetched per 4 instructions and 8 write requests can be
executed per cacheline in each instruction. This is in contrast to the striped pattern
where 1 cacheline can be fetched per instruction and 32 write operations performed per
cacheline. When items per thread starts increasing to more than 4 the performance
drops significantly.

25

Figure 6.4: Memory access pattern results with different configurations

26

Figure 6.5: Memory access pattern results with different configurations - only showing up to 32
items per thread as this part is where the drop in performance happens

27

6.1.3 Using Vector Instructions and L1 Transfer Penalty

We investigated the effects of accessing global memory and its latency on the perfor-
mance of the application. However as mentioned in the beginning of this chapter using
vector data-types could have different performance characteristics while operating on
the same amount of data.

In this section we start using vectors data types to investigate their effect on
performance. After running the benchmarks we will compare the results with previous
sections. We would also compare the low level assembly of this sections benchmarks
with previous sections. This is useful when the same items per threads has different
performance characteristics when using vector data types.

In previous benchmarks all instructions were using 32-bit data types. They gave us
general information about the performance of any device when using 32-bit types for
basic memory operations. We would like to investigate whether the direct pattern’s
performance drop is due to memory controller capacity or because of the latency of
reading and writing from L1 cache. As it was mentioned before, when using the
direct pattern the first instruction creates a request for the cacheline but the rest of
the instructions will request data that has already been cached. But when using the
vector data type the transaction is done in less instructions. We ran the benchmarks
for both 64-bit and 128-bit vector types.

We run the benchmarks for 64-bit and 128-bit vector types. The results are avail-
able in Figure 6.6, 6.7, 6.8. Later in this section we will analyze the assembly code for
the 128-bit vector type vs the 32-bit data type. We have omitted the results for when
both read and write are using the striped pattern because using vector data-types
does not influence performance.

28

Figure 6.6: Direct pattern comparison between 64-bit and 128-bit vectors. 64-bit and 128-bit vector
types side by side for each device. On the left is the results for 64-bit and on the right for 128-bit
data type. Each row is representing one device.

29

Figure 6.7: Direct read striped write comparison between 64-bit and 128-bit vectors. 64-bit and
128-bit vector types side by side for each device. On the left is the results for 64-bit and on the right
for 128-bit data type. Each row is representing one device.

30

Figure 6.8: Striped read direct write comparison between 64-bit and 128-bit vectors. 64-bit and
128-bit vector types side by side for each device. On the left is the results for 64-bit and on the right
for 128-bit data type. Each row is representing one device.

Lookin at the results and comparing them from the results of the previous section,
we can see that when using the direct pattern, the vector data type has better stability

31

in performance when items per thread is increasing. This shows that when using scalar
instructions, the application is limited by transferring data to and from registers to
the L1 cache. Now that we are not limited by L1 latency per instruction we can
determine the number of cachelines that can be requested per instruction in a warp
for each device using formulas from the first section.

To show the difference between low level assembly files generated for each bench-
mark, we use simple block of code in Figure 6.7 as an example for when using vector
data-type, extract the assembly code and compare it to the benchmark that used
scalar data-type. The assembly code is available in Figures 6.8 and 6.9.

vec to r count = ItemsPerThread / 4 ;
b l o c k o f f s e t = hipBlockIdx x ∗ BlockS ize ∗ vec to r count ;
o f f s e t = b l o c k o f f s e t + hipThreadIdx x ∗ vec to r count ;
// f o r AMD dev i c e s a s p e c i f i c vec to r type had to be used
// so the compi le r c r e a t e s the c o r r e c t assembly
vec to r type items [vec to r count] ;

f o r (index = 0 ; index < vec to r count ; index++)
{

i tems [index] = i npu t v e c t o r i z e d po i n t e r [o f f s e t + index] ;
}

f o r (index = 0 ; index < vec to r count ; index++)
{

ou tpu t v e c t o r i z e d po i n t e r [o f f s e t + index] = items [index] ;
}

Figure 6.9: Device independent C++ source code - This is the source code that will be used for all
devices regardless of compiler in order to find differences between generated assembly code

In the vectorized kernel there is only 1 instruction for loading(Figure 6.8 - LD.E.128
and Figure 6.9 - flat load dwordx4) or storing(Figure 6.8 - ST.E.128 and Figure 6.9
- flat store dwordx4) the data to and from registers. When execution reaches the
load or store instruction in both benchmarks, the first step is to create a request for
fetching the cacheline. After the cacheline has been fetched it has to be transferred
to the register. In the kernel using the vector data-type, all the four 32-bit elements
of the vector are transferred into a register immediately, but in the scalar kernel only
one 32-bit data-type will be transferred into a register after fetching the cacheline.
Therefore in the scalar kernel the process of fetching data from L1 cache is repeated
three times. This creates an overhead of transferring data from and to L1 cache.

32

code f o r sm 30

/∗ VECTORIZED ∗/
MOV R1 , c [0 x0] [0 x44] ;
S2R R0 , SR CTAID .X;
PRMT R0 , RZ, 0x6540 , R0 ;
S2R R3 , SR TID .X;
LOP32I .AND R0 , R0 , 0 x 3 f f f f f 0 0 ;
IADD R0 , R0 , R3 ;
MOV32I R3 , 0x10 ;

ISCADD R4 .CC, R0 , c [0 x0] [0 x140] , 0x4 ;
IMAD.U32 . U32 . HI .X R5 , R0 , R3 , c [0 x0] [0 x144] ;
LD.E.128 R4 , [R4] ; /∗ load opera t i on ∗/
ISCADD R2 .CC, R0 , c [0 x0] [0 x148] , 0x4 ;
IMAD.U32 . U32 . HI .X R3 , R0 , R3 , c [0 x0] [0 x14c] ;
ST .E.128 [R2] , R4 ; /∗ s t o r e opera t i on ∗/
EXIT ;
BRA 0x80 ;
. .

/∗ SCALAR ∗/
MOV R1 , c [0 x0] [0 x44] ;
S2R R0 , SR CTAID .X;
MOV32I R5 , 0x4 ;
S2R R3 , SR TID .X;
IMAD R0 , R0 , 0x100 , R3 ;
SHL R0 , R0 , 0x2 ;
ISCADD R2 .CC, R0 , c [0 x0] [0 x140] , 0x2 ;

IMAD.U32 . U32 . HI .X R3 , R0 , R5 , c [0 x0] [0 x144] ;
LD.E R7 , [R2] ; /∗ load opera t i on ∗/
ISCADD R4 .CC, R0 , c [0 x0] [0 x148] , 0x2 ;
LD.E R9 , [R2+0xc] ; /∗ load opera t i on ∗/
LD.E R10 , [R2+0x8] ; /∗ load opera t i on ∗/
IMAD.U32 . U32 . HI .X R5 , R0 , R5 , c [0 x0] [0 x14c] ;
LD.E R8 , [R2+0x4] ; /∗ load opera t i on ∗/

ST.E [R4] , R7 ; /∗ s t o r e opera t i on ∗/
ST .E [R4+0xc] , R9 ; /∗ s t o r e opera t i on ∗/
ST .E [R4+0x8] , R10 ; /∗ s t o r e opera t i on ∗/
ST .E [R4+0x4] , R8 ; /∗ s t o r e opera t i on ∗/
EXIT ;
BRA 0xb0 ;
. .

Figure 6.10: Kernel assembly code CUDA - GTX1080

33

/∗ VECTORIZED ∗/
s load dwordx2 s [0 : 1] , s [4 : 5] , 0x0
s load dwordx2 s [2 : 3] , s [4 : 5] , 0x8
s l s h l b 3 2 s4 , s6 , 8
v or b32 e32 v0 , s4 , v0
v mov b32 e32 v1 , 0
v l s h l r e v b 6 4 v [4 : 5] , 4 , v [0 : 1]
s wa i t cn t lgkmcnt (0)
v mov b32 e32 v1 , s1
v add co u32 e32 v0 , vcc , s0 , v4
v addc co u32 e32 v1 , vcc , v1 , v5 , vcc
f l a t l oad dwordx4 v [0 : 3] , v [0 : 1] /∗ load opera t i on ∗/
v mov b32 e32 v6 , s3
v add co u32 e32 v4 , vcc , s2 , v4
v addc co u32 e32 v5 , vcc , v6 , v5 , vcc
s wa i t cn t vmcnt (0) lgkmcnt (0)
f l a t s t o r e dwo rdx4 v [4 : 5] , v [0 : 3] /∗ s t o r e opera t i on ∗/
s endpgm

/∗ SCALAR ∗/
/∗ i n i t i a l i z a t i o n code removed due to space ∗/
f l a t l oad dwordx2 v [1 4 : 1 5] , v [1 4 : 1 5] /∗ load opera t i on ∗/
s nop 0
f l a t l oad dwordx2 v [1 2 : 1 3] , v [1 2 : 1 3] /∗ load opera t i on ∗/
s nop 0
f l a t l oad dwordx2 v [1 0 : 1 1] , v [1 0 : 1 1] /∗ load opera t i on ∗/
s nop 0
f l a t l oad dwordx2 v [8 : 9] , v [8 : 9] /∗ load opera t i on ∗/
v add co u32 e32 v4 , vcc , s2 , v4
v addc co u32 e32 v5 , vcc , v16 , v5 , vcc
v add co u32 e32 v6 , vcc , s2 , v6
v addc co u32 e32 v7 , vcc , v16 , v7 , vcc
v add co u32 e32 v0 , vcc , s2 , v0
v addc co u32 e32 v1 , vcc , v16 , v1 , vcc
s wa i t cn t vmcnt (0) lgkmcnt (0)
f l a t s t o r e dwo rdx2 v [2 : 3] , v [8 : 9] /∗ s t o r e opera t i on ∗/
s nop 0
f l a t s t o r e dwo rdx2 v [4 : 5] , v [1 0 : 1 1] /∗ s t o r e opera t i on ∗/
s nop 0
f l a t s t o r e dwo rdx2 v [6 : 7] , v [1 2 : 1 3] /∗ s t o r e opera t i on ∗/
s nop 0
f l a t s t o r e dwo rdx2 v [0 : 1] , v [1 4 : 1 5] /∗ s t o r e opera t i on ∗/
s endpgm

Figure 6.11: Kernel assembly code HCC - AMD MI25

In our previous sections the first drop in performance was due to having multiple
requests which had L1 latency but were accessing sequential data. The performance
drop first started because of executing multiple requests which had L1 latency and
later on because of cacheline fetching latency of the memory controller. In contrast in
the vectorized kernel there is no L1 latency and the drop in performance is solely due
to requesting more cacheline requests than what the memory controller could handle
in one cycle.

6.1.4 Conclusion

Considering the benchmarks results in this section we can conclude that the difference
in performance of different patterns and different items per thread is related to 2
factors:

34

1. Latency resulting from transferring data from global memory to L2 and L1
cache.

2. Latency of transferring data from the L1 cache to register.

The striped pattern still performs at optimal performance level, whether using
vector or scalar instructions. Using the striped pattern we request a cacheline at
each instruction and transferring data to and from L1 cache is done while the next
instruction’s memory request has been made due to ILP. Essentially next cacheline
request can be done simultaneously with the transferring of data from L1 cache to
registers of the previous instruction.

Finding the characteristics of each device, we can alter an applications execution
pattern and order to maximize the throughput of the memory controller for the
application. This enables user to prevent bottlenecks by analyzing memory access
patterns of the application and adjusting to device capabilities accordingly.

35

6.2 Register Spilling

The GPU consists of many streaming processors and each one has a certain amount
of registers available. The number of registers per streaming processor is varying
between different GPU architectures. At run-time the streaming processor assigns the
registers to threads for holding local variables. These registers are then occupied until
the thread’s corresponding block finishes execution. Since the number of registers is
limited, when number of registers required by a block of threads exceeds the amount
of registers available for a streaming processor, the streaming processor allocates
variables in higher level memory. This is called register spilling . Register spilling
causes heavy performance penalties, because the latency of accessing a register is
orders of magnitude lower than accessing higher level memory.

It is necessary to keep track of the amount of registers each block of threads needs.
When running the application on a device, knowing the number of registers per
streaming processor must be considered when deciding the execution configuration
for that application on that device. When this is not taken into account, it is likely
that running the application on another device casue register spilling and a drop in
performance.

In our previous benchmarks for memory operations, we first loaded data from
global memory to registers and then dispatched them to global memory. In this
case, the number of items that a thread has to process is exactly the number of
local variables it requires. Since we are only interested in the performance impact
of register spilling, we choose the results of the striped pattern a basis for analyzing
register spilling.

In the results shown in Figure 6.10, the Nvidia devices see a sharp decrease in
performance when the block of threads is requesting more registers than there are
available in the streaming processor. In contrast, the performance drop in AMD
devices happens more slowly and at multiple levels. This can be related to the fact
that the AMD devices used for benchmarking in this study, were all using HBM
memory whereas the available Nvidia devices did not have HBM memory. This could
also be because of the way each vendor handles register spilling, where AMD spills to
L1 memory then L2 but Nvidia spills directly to global memory. However we cannot
verify whether this is the case because we did not have access to an Nvidia device
which has HBM memory.

36

Figure 6.12: Register Spilling on different devices

37

6.3 Shared Memory

In the GPU memory hierarchy, each streaming processor has an amount of on-chip
memory with lower latency than the global memory dedicated to it. This memory is
accessible by the block of threads running on that streaming processor. This memory
has two purposes, first it is acting as the L1 cache for the streaming processor and
second it can be used as shared memory between threads running within a block on
that streaming processor, for passing data between each other to limit global memory
usage. Distributing this local memory between L1 cache and shared memory is done
at run-time when the device is aware of the amount of shared memory requested
by each block of threads. Although having threads communicate with each other is
against the principle of stream processing, in reality many applications benefit from
shared memory and use it.

Shared memory access is organized in n columns of m bytes. The columns are
referred to as banks and each bank has multiple rows as shown in Figure 6.11. At
any given cycle each bank can provide access to only one of its rows to any thread
that requests it.

Figure 6.13: Shared memory banks. Microway tech tips[MM13]

If two threads within a warp issue a shared memory request to the same bank, then

38

the access will be sequential, resulting in a performance penalty. All threads have
to wait for the threads with the bank conflict to finish processing before continuing
execution.

In this benchmark we will investigate the performance characteristics of each device
when different number of bank conflicts occur. Because accessing shared memory
has much lower latency than accessing global memory, we run the shared memory
operations part of our benchmark in a loop and repeat it multiple times.

In our shared memory benchmark we dynamically control the number of banks
that are being accessed by each warp at each iteration. We go from 1 active bank
to 32 active banks and test each configuration for read and write. The reason for
limiting banks to 32 is that all current GPU devices are using 32 wide banks.

Just like the benchmarks from previous sections, we have separated the read and
write results. Judging by the results shown in Figure 6.12, the main performance
factor when using shared memory is the number of bank conflicts. It can be observed
from Figure 6.12, that the throughput of shared memory is different on each device.

Even though shared memory bank conflicts serialize access and stall the execution
depending on the number of conflicts happening, reducing the bank conflicts to 50%
can greatly improve performance specially on AMD devices. The performance penalty
is proportional to the number of conflicts per bank and not total conflicts. For
example, when more than half the banks are active we will at most see 1 conflict per
bank which means the access has to be serialized for 2 threads to perform read/write
on the bank. It is worth noting that when only part of the threads within a warp are
active due to branching instructions managing shared memory access and preventing
bank conflicts might be easier. In most applications the exact amount of bank conflicts
cannot be calculated but the probability of such conflicts happening can be calculated.

39

Figure 6.14: Shared memory bank conflict performance

40

6.4 Atomic Instructions

In parallel applications ran on any multi-core device, two or more threads might want
to operate on the same memory location and its previous contents are important to
them. This is where atomic instructions are used. Atomic instructions synchronize
the access to a memory location by ordering the requests and executing them in order.
The cost of synchronizing access to a memory location is higher than a normal access.
Using atomic instructions will reduce the output performance of the application if the
latency of the atomic instruction cannot be hidden. Atomic instructions can be used
at each level of the GPU memory hierarchy. The access conflict may happen between
processing cores or within threads of the same block executing on the processing core.

In this chapter we investigate the performance characteristics of atomic instruc-
tions at each level when changing the number of atomic operations per memory
location at each iteration. Different vendors have different implementations of atomic
instructions for synchronizing access to a memory location. This could result in
varying performance levels for each device when an atomic conflict load is applied.

Every atomic instruction, regardless of the arithmetic operation it performs, still
includes a memory transaction and in this chapter we will also analyze the impact
of atomic conflicts per cacheline to see whether reducing the amount of conflicts per
cacheline while performing the same number of atomic instructions has any effect on
performance.

The benchmarks performed in this section:

1. Inter block conflict: All blocks share the same part of memory for their trans-
actions. Most memory transactions reside in the same cacheline.

2. Inter block conflict with cacheline padding: In this benchmark we create many
segments (each with more than 1 cacheline padding space between them) on the
output. We start with 1 activated segment and continue increasing the number of
segments.

3. Intra block conflict: Each block of threads share a part of memory and conflicts
can happen between threads of the same block. At each iteration only a segment
of the block output is available which results in conflicts between threads within a
block.

For better comparison between different vendors we put the results of Nvidia
GTX1080 and AMD MI25 next to each other in the following charts. In these charts
we are interested in the performance of the device for different conflict counts. At
each iteration we select the number of segments that are active for use. The fewer
active segments, the higher the probability of a conflict. The first charts are done
using a padding between output locations so that each segment contains a full cache-
line. In the intra block conflict charts, each block has its own segment which has as
many elements as it has threads. At each iteration a number of items is activated for
writing and all threads have to write to those locations only.

41

Figure 6.15: Atomic operation performance considering conflicts - scaled for both devices. Left
column shows results for the Nvidia GTX 1080 and the right column shows results for AMD MI25.
Each row shows the results of a different benchmark.

42

Figure 6.16: Atomic operation performance considering conflicts for AMD R9NANO.

Figure 6.17: Atomic operation performance considering conflicts for Nvidia GTX 970M

The results indicate that different vendor’s atomic implementations have different

43

behaviour for varying atomic loads. We focus on the GTX1080 and AMD MI25
results provided in Figure 6.13. Using a cacheline padding between output items we
see that both devices quickly reach stable performance when the number of activated
segments is more than 8. This means that the conflict between different executing
blocks is no longer the bottleneck. However it is worth noting that AMD devices do
not benefit as much compared to Nvidia devices.

When blocks of threads have internal conflicts, the GTX1080 gains performance
when the number of activated items starts increasing, until it reaches warp size num-
ber of activated items. After that the performance starts dropping by more items
being activated. This suggests that limiting intra block conflicts to one warp and not
allowing different warps to conflict with each other can help atomics performance.
The AMD MI25 starts gaining performance steadily throughout iterations by acti-
vating more items. There is a significant jump at 64 items activated (again size of a
warp in AMD devices) but continues to gain performance the more items are activated
and hence the less conflicts happen between threads within a block.

Without using a padding between outputs the performance is decreased. The
GTX1080 is the most vulnerable to this as using no padding increases the amount
of conflicts per cacheline by the number of active blocks. Allowing more items to be
active wont show any significant benefit. The AMD MI25 suffers from the same thing
but it starts recovering performance when more items are activated. This suggests
that there is a higher capacity for atomic instructions per cacheline within the AMD
MI25 device compared to GTX1080.

44

7 Using the results of the framework

In order to optimize a GPU application using the results of Chapter 6, we must
analyze the code to find the execution patterns for each of the modules discussed in
Chapter 6. After that we can focus on each set of instructions and the module they
are interacting with and decide which configuration is optimal for that particular
module.

The first module to consider are memory transactions, because as the results have
shown to have a big impact on performance if used in an inefficient way. When we
look at memory transactions we have to consider data-types, size of transactions,
number of cachelines used, and data dependency.

We can examine the application to see whether it can benefit from shared memory
or not. In streaming processing in general it is assumed that the data is not going to
be read or written more than once. In practice we find that a lot of algorithms reuse
a set of data multiple times. If the set of data that is being reused multiple times is
local to a group of threads or can be localized so that it is used by a block of thread,
shared memory can be used as a replacement for global memory for that data set for
better performance. Instead of having multiple requests to global memory, the data
set is written to the shared memory once and then used by all threads for processing
and then the results can be written back to global memory. This will help increase
performance by reducing the amount of global memory transactions and replacing
them with shared memory transactions which have a much lower latency.

And finally, if the application uses atomic instructions, we can analyze the atomic
instructions used and see what is the optimal ordering and pattern for that device.

We select the histogram algorithm to apply our optimizations to. Histogram cal-
culation is a common used method in image processing and machine learning. It was
introduced by Karl Pearson in 1895. A histogram is a representation of the distri-
bution of data over quantified bins. The näıve histogram implementation consists of
reading the input data, finding out which bin the data belongs to and then increasing
the value of that bin. In a sequential processing unit the histogram calculation will be
done with an algorithm complexity of O(n). In this chapter we port a näıve histogram
algorithm into a SIMT environment which uses GPUs as compute accelerators and
try to improve it using our previous results.

M.E.R. Berger [MERB15] study on histograms shows that when running histogram
algorithms in a SIMT environment, they mostly suffer from write-collisions. The
histogram algorithms write conflicts closely resembles that of the birthday paradox:
”In a group of 21 people, there is an approximately 50% chance of a collision in
birthdays to occur”. Atomic conflicts have an impact on the performance of the
application.

Atomic instructions were not available in the earlier GPU generations. They were
implemented for each level (global, shared, ...) by each generation, which resulted in

45

more performance in the histogram calculation as researchers started to use the divide
and conquer technics combined with available atomic instructions such as the work
done by [RS07] and [MERB15] in order improve histogram calculations performance
using the current generation of hardware.

We start with the näıve implementation of the histogram algorithm. Afterwards we
perform the steps mentioned in the beginning of this chapter to improve performance
and show the results on multiple devices. The algorithm will be ran using different
bin counts and different execution patterns on each of the available devices. For
this benchmark we use a randomly generated input data. It should be noted that
in general histogram performance is sensitive to input distribution, but in this study
we are focusing more on the general optimizations than optimizations specific to
histogram algorithm.

In the näıve implementation, we port the sequential CPU code to the GPU and
run it using different configurations. In the results shown in Figure 7.1 it can be seen
that the performance is low when the bin count is small and therefore the number
of conflicts is high. With more bins available the performance goes up until reaching
peak performance on all devices. However it is noticable that the Nvidia devices
suffer heavily under high write conflict loads and the performance does not increase
by a significant margin. In contrast, the AMD devices quickly start performing faster
when the bin count is increased. This was shown in the previous chapter’s results
for atomics when no padding was used for output, see Figure 6.13, Figure 6.14. It
is worth noting that changing the number of items per thread only slightly decreases
the performance overall, which is due to reading input using the direct pattern in the
näıve implementation.

Figure 7.1: naive implementation results

46

In previous Chapter, we discussed memory access patterns and cacheline utilization.
We focus on reading data from the input and then on writing to output. In the next
implementation we try to first change the input reading pattern. As discussed
before, histogram algorithms suffer from write conflicts, and therefore changing the
reading pattern should not have a large impact on the performance.

47

Figure 7.2: Striped read implementation results

48

As shown by the results in Figure 7.2, the performance per bin count has not
changed. However the performance is now more stable when using different number
of items per thread as opposed to the näıve implementation especially on AMD
devices.

In the next implementation, we change the way the algorithm writes to the output.
Based on our results from previous chapter, the amount of atomic write operations
per cacheline can affect performance. We saw that adding padding to output so that
the atomic operations are spread between multiple cachelines improved performance
especially for Nvidia devices. In the next implementation we use a padding between
our output memory locations so that neighboring output locations are in different
cachelines. This may seem a waste of memory but in these benchmarks we are
interested in performance.

49

Figure 7.3: Output with padding implementation results

50

Looking at the results of Figure 7.3, we see that although all devices benefit from
using a padding between output memory locations the AMD devices do not benefit
when the bin count is higher than a certain number. Nvidia devices continue to
perform better as the bin count increases. The difference suggests that we have
reached a limitaion in the AMD hardware for atomics.

In the histogram algorithm, the output is being reused multiple times. This
suggests that having a temporary output in shared memory for each block could
result in fewer global memory transactions and conflicts. Therefore in this
implementation we use the shared memory for temporary block output and after the
block has finished processing the input the end result which is in shared memory
will be then added to the global memory output.

In this implementation, we see that the performance increases when items per
thread is increasing for all devices. When each block of threads has its own
histogram in shared memory it will have to output them to global memory output
when finished completing its own histogram. Therefore the total number of global
memory atomic transactions is related to the total number of blocks required for the
input data. By increasing the items per thread, the total number of blocks required
will decrease and therefore there are less global memory atomic transactions after
each block has finished processing. Therefore the performance will increase by
increasing the number of items per thread until register spilling occurs.

51

Figure 7.4: Histogram per block in shared memory implementation results

52

Figure 7.4 shows the results of the implementation. As the results show the
performance is much better when using shared memory to reduce global conflicts
and memory transactions. We see that the number of items per thread also starts
influencing the performance as global atomic conflicts are reduced significantly. It
can be seen that the Nvidia devices are more sensitive to items per thread and are
reaching a bottleneck when using less items per thread. This suggests that at lower
items per thread the implementation is not using the cacheline write capacity of
each streaming processor to its fullest at low items per thread.

For the final implementation we add the output padding to our shared memory
implementation to see whether it improves performance. This implementation is
similar to the shared memory implementation and only differs in the writing pattern
to the output array in global memory.

Figure 7.5: Histogram per block in shared memory with output padding implementation results

53

As shown in Figure 7.5, the Nvidia devices gain performance by using the padding
specially when using fewer items per thread but the AMD devices do not benefit
from this.

54

8 Conclusion

In this study we created a framework for benchmarking GPU hardware modules and
evaluate their performance characteristics under different loads and patterns. The
framework’s source code is vendor independent and the HIP compiler can use both
AMD and Nvidia compilers to create the machine code. This allowed us to write
high level C/C++ code for both devices with minor vendor specific code, in order to
observe the device behavior under out application load.

We selected low level hardware modules and created benchmarks to apply various
loads to those modules and gathered their performance characteristics and
presented them in Chapter 6. The results showed that each GPU device’s
performance characteristics is unique and in order to use that device in an optimal
way, there are certain things to consider in execution order and pattern.

We selected an algorithm that makes use of all the hardware modules that were
benchmarked. We created a näıve solution for the algorithm and proceed to improve
its performance using the results of our experiments.

In the end we can conclude that when writing an application that is going to use a
compute device such as the GPU, we have to be aware of the performance
characteristics of the device the application has to be executed on. This helps us in
choosing the best practices in accordance to our device and not making blind
decisions that could affect performance.

In the future, work we would like to add an automation for extracting some hard
coded numbers that we used like shared memory banks or cacheline size, in order to
fully future-proof the framework in the case of any of the aforementioned values
change with newer hardware generations.

Also creating and adding benchmarks which only focus on the ALU in the GPU will
further increase our insight about the device and help us improve more algorithms
by finding most efficient and optimal solutions, performance wise.

55

9 References

[AK12] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with
deep convolutional neural networks. Advances in neural information.

[AM15] Abhinandan Majumdar, Gene Wu and Kapil Dev ”A Taxonomy of GPGPU
Performance Scaling”

[BS17] Ben Sander and Gregory Stoner, ROCm: An open platform for GPU
computing exploration. https://github.com/ROCm-Developer-Tools/HIP

[BSR17] http://gpgpu10.athoura.com/ROCMGPGPUKeynote.pdf

[CA17] http://www.creativeapplications.net/news/gpu-performance-101/

[CB17] https://cullenboyytech.wordpress.com/17/08/10/what-is-parallel-processing-
system/

[CN11] Cedric Nugteren Gert-Jan van den Braak Henk Corporaal Bart Mesman,
High Performance Predictable Histogramming on GPUs: Exploring and Evaluating
Algorithm Trade-offs

[CPP13] C.P.Patidar and Meena Sharma, Histogram Computations on GPUs
Kernel using Global and Shared Memory Atomics

[CU18] https://docs.nvidia.com/cuda/pdf/CUDACP rogrammingGuide.pdf

[DHK17] Dae-Hwan Kim Evaluation Of The Performance Of GPU Global Memory
Coalescing

[EB11] E. Blem, M. Sinclair, and K. Sankaralingam, “Challenge Benchmarks that
Must be Conquered to Sustain the GPU Revolution,” in Proceedings of the 4th
Workshop on Emerging Applications for Manycore Architecture.

[EK15] Elias Konstantinidis, Yiannis Cotronis, A Practical Performance Model for
Compute and Memory Bound GPU Kernels

[GHIP17]
https://gpuopen.com/compute-product/hip-convert-cuda-to-portable-c-code/

[GHCC17]
https://gpuopen.com/compute-product/hcc-heterogeneous-compute-compiler/

[JB15] http://www.jonathanbeard.io/blog/15/09/19/streaming-and-dataflow.html

[JK14] Joonyoung Kim and Younsu Kim, HBM: Memory Solution for
Bandwidth-Hungry Processors

[JWC65] James W. Cooley and John W. Tukey, An Algorithm for the Machine
Calculation of Complex Fourier Series

56

[KH17] Koki Hamaya, Satoshi Yamane, Detecting Bank Conflict of GPU Programs
Using Symbolic Execution

[KHR15] https://www.khronos.org/opengl/wiki/FixedFunctionP ipeline

[KHR92] https://www.khronos.org/opengl/

[KHR09] https://www.khronos.org/opencl/

[KK11] Kamran Karimi, Neil G. Dickson and Firas Hamze, A Performance
Comparison of CUDA and OpenCL

[JF11] Jianbin Fang, Ana Lucia Varbanescu and Henk Sips, A Comprehensive
Performance Comparison of CUDA and OpenCL

[MERB15] M.E.R. Berger, High Performance Histograms on SIMT and SIMD
Architectures

[MH05] Mapping Computational Concepts to GPUs - Mark Harris

[MM13] https://www.microway.com/hpc-tech-tips/gpu-memory-types-performance-
comparison/

[MOC14] Mike O’Connor, Highlights of the HighBandwidth Memory (HBM)
Standard

[MZ17] Maohua Zhu, Youwei Zhuo, Chao Wang, Wenguang Chen and Yuan Xie,
Performance Evaluation and Optimization of HBM-Enabled GPU for Data-intensive
Applications

[NV13] https://nvlabs.github.io/cub/structcub11devicehistogram.html

[NVCC18] http://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html

[NV18] http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

[NV01] http://www.nvidia.com/page/geforce3.html

[OR11] Ofer Rosenberg, Introduction to GPU Architecture

[PM11] Paulius Micikevicius, Local Memory and Register Spilling

[PM12] Paulius Micikevicius, GPU Performance Analysis and Optimization

[RS07] Ramtin Shams and R. A. Kennedy, Efficient Histogram Algorithms for
Nvidia CUDA Compatible Devices

[SH09] Sunpyo Hong and Hyesoon Kim, An Analytical Model for a GPU
Architecture with Memory-level and Thread-level Parallelism Awareness

[SL14] Sohan Lal, Jan Lucas, Michael Andersch Mauricio Alvarez-Mesa, Ahmed
Elhossini, Ben Juurlink GPGPU Workload Characteristics and Performance

57

Analysis

[TP18]
https://www.tutorialspoint.com/parallelalgorithm/parallelalgorithmintroduction.htm

[VV10] V. Volkov, “Better Performance at Lower Occupancy,” in GPU Technology
Conference, 10.

[WH14] W. mei Hwu, “What is ahead for parallel computing,” Journal of Parallel
and Distributed

Computing, vol. 74, no. 7, pp. 2574–2581

[WIKI07] https://en.wikipedia.org/wiki/CUDA

[WIKI13] https://en.wikipedia.org/wiki/Multi-chipmoduleChipstackMCMs

[WIKI STRP] https://en.wikipedia.org/wiki/Streamprocessing

[XM16] Xinxin Mei and Xiaowen Chu, Dissecting GPU Memory Hierarchy through
Microbenchmarking

[YJIA14] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S.
Guadarrama, and T. Darrell. Caffe: Convolutional Architecture for Fast Feature
Embedding. Arxiv,

[YJIAO10] Y. Jiao, H. Lin, P. Balaji, W. Feng, Power and Performance
Characterization of Computational Kernels on the GPU

58

