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Abstract

The game-based style of proofs [BR06, Sho04] is often used in cryptography to prove
properties of cryptographic primitives, such as the security of an encryption scheme.
Given the importance of cryptography in the modern world, there is considerable value
in being able to verify these proofs automatically. In this thesis, we develop a system for
expressing proofs of this form in the Agda programming language.
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Foreword

The goal of this research project was initially to develop a system for cryptographic
proofs in the Agda programming language. During the process, it became clear that the
construction of the system as a whole would not be feasible, and the project thus became
a number of experiments in Agda that were each intended to investigate a particular
feature of the design space.

The purpose of this thesis is to write up the results of these experiments and show
how they can be brought together. The code is available on GitHub1, and the text will
contain references to the files where relevant.2

Since formalisation in Agda is the point of the research, I assume that the reader
is familiar with the Agda programming language. There are several good introductions
online, for example by Ulf Norell [Nor09]. For later chapters, a passing familiarity with
category theory is also beneficial.

I would like to thank dr. Wouter Swierstra for agreeing to be my supervisor (despite
my thesis being in maths), and, together with Victor Cacciari Miraldo, for their time and
advice throughout the project. I would also like to thank dr. Jaap van Oosten, my tutor
and second supervisor, for allowing me to do this project (despite my master’s being in
maths), and for his guidance throughout the years of my master’s degree.

Anton Golov
27 July, 2018

1https://github.com/jesyspa/master-thesis
2All references are to Agda files in the above repository, relative to the src directory. For example

Probability/Class refers to the file https://github.com/jesyspa/master-thesis/tree/master/src/

Probability/Class.agda.
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Chapter 1

Introduction

Cryptography plays an essential role in the modern world: we trust that cryptographic
primitives will prevent unauthorised access to our data, securing our online activity,
banking information, and whatever else we wish to keep private. As such, it is important
to be able to verify that such primitives provide the guarantees they promise.

These guarantees are typically phrased as statements that no program can distinguish
between two given possibilities. The standard example, which we will return to often,
is that a good encryption scheme should not allow an attacker to tell what message had
been encrypted, even if the set of possible messages is very small.

Following Bellare and Rogaway [BR06], we will frame questions of this form as games
between a challenger and an adversary. The challenger represents the system we want to
prove secure, while the adversary represents an attacker. The challenger poses a challenge
to the adversary, and the adversary wins if it can correctly answer the challenge. If we
can show that no adversary can reliably win the game, we conclude that our system is
secure. On the other hand, we can prove a system to be vulnerable by exhibiting an
adversary that has a winning strategy.

To apply this to the aforementioned example, let us specify it in a more formal manner.
Let Alice be the challenger and Eve be the adversary. The protocol they follow to play
the game is as follows: Eve gives Alice two messages, m1 and m2. Alice generates an
encryption key and uses it to encrypt one of the messages, chosen at random. Alice gives
Eve the resulting ciphertext and poses the challenge: did she encrypt m1 or m2? Eve
wins if her answer is correct. This game is known as IND-EAV, indistinguishability in
the presence of an eavesdropper.

Eve can definitely win half of her games, just by choosing an answer at random. How
much better Eve can do is called her advantage. In order to show that an encryption
scheme is secure, we must show that any adversary’s advantage is close to zero. In order
to show that a scheme is not secure, we must show that there exists some adversary that
has high advantage.

When we want to put an upper bound on the advantage, we could analyse the game
and attempt to derive this bound directly. However, it is often simpler to modify the game
slightly and show that this modification does not change the advantage considerably.
We say that two games between which the difference in advantage is at most ε are ε-
indistinguishable. By constructing a sequence of ε-indistinguishable games, we can relate
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our initial (complicated) game to a much simpler one, where computing the advantage of
the adversary is trivial.

1.1 Games as Programs

We can regard a game as a sequence of actions performed by the players. Players may
perform computations, generate random bits, and make use of memory. As such, a de-
scription of a game or player can be seen as an imperative program in a non-determinsitic,
stateful programming language, the instructions of which correspond to the actions that
players may take.

Representing imperative programs in a functional language is a well-studied prob-
lem [Wad95], and can be solved using a monad that has operations corresponding to the
imperative instructions. We will show how this monad can be constructed explicitly in
chapter 2. For now, we will assume that there is a monad CryptoExpr ST that supports
the following operations, where ST is the type of the state that the players have access
to:1

uniform : (n : N) → CryptoExpr ST (BitVec n)
coin : CryptoExpr ST Bool
set-state : ST → CryptoExpr ST >
get-state : CryptoExpr ST ST

A term of type CryptoExpr ST A represents a computation that can generate random
bits and store and retrieve values of type ST , and that has a result of type A. We include
both uniform and coin for the sake of convenience, although one could be defined in terms
of the other.

We will now use this monad to formally specify an encryption scheme, as well as a
game between a challenger and an adversary that expresses a security property of this
scheme. We use the same example as above, indistinguishability in the presence of an
eavesdropper.

Let us begin by assuming that we have some type K for our keys, PT for our plaintext
messages, and CT for our ciphertext messages. To define an encryption scheme, we must
give the algorithm for generating a new key and for encrypting a message with a given
key. We can express this in Agda as a record.2

record EncScheme : Set1 where
field

keygen : ∀{st} → CryptoExpr st K
encrypt : ∀{st} → K → PT → CryptoExpr st CT

We express the fact that the encryption scheme should be stateless by requiring that
it work for any state type. This allows us to let the adversary choose the state type, as
we will see shortly.

1c.f. Syntactic/CryptoExpr. Note that our implementation uses techniques discussed in chapter 5 for
this definition. For a more direct implementation, but without support for state, c.f. Crypto/Syntax.

2c.f. Crypto/Schemes
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The adversary is given the chance to act twice during the game, first to generate
two plaintext messages, and then to guess which message has been encrypted. We again
represent this as a record, parametrised by the type of state ST that the adversary uses.3

record Adversary (ST : Set) : Set where
field

A1 : CryptoExpr ST (PT × PT )
A2 : CT → CryptoExpr ST Bool

It may seem strange that the adversary is not given access the plaintext messages it
generated earlier when it is asked to decide which was encrypted. This is because the
adversary can use get-state and set-state to store these messages if it needs to. We could
have made this flow of data explicit, but since we are modelling an imperative program
that can have internal state, this approach feels more natural.

Now we can introduce the game itself. As before, we let the adversary pick two
messages, generate a key, encrypt one of the messages based on a coin flip, and then let
the adversary guess which one it was. Altogether, this is a probabilistic computation that
returns true iff the adversary wins.4

IND-EAV : EncScheme → Adversary ST → CryptoExpr ST Bool
IND-EAV enc adv = do
m1 , m2 ← A1 adv
k ← keygen enc
b ← coin
let pt = if b then m1 else m2

ct ← encrypt enc k pt
b′ ← A2 adv ct
return $ b == b′

If we now fix an encryption enc and take an arbitrary adversary adv , we can reason
about the probability that evaluating IND-EAV enc adv returns true. If we can bound this
probability by 1

2 , then we can conclude that the encryption scheme enc is secure against
an eavesdropper attack. On the other hand, if we can find an adversary that wins with
high probability, we can conclude that the scheme is vulnerable against this attack.

1.2 Example: One-Time Pad (IND-EAV)

Let us see how we can reason about a game like the one demonstrated in the previous
section. For this example, we will use the One-Time Pad encryption scheme, which works
by XORing the message with a pre-determined key of the same length. Formally, this
can be described as follows. Fix an n : N. To generate the key, we take an n-bit vector
uniformly at random. To encrypt some message m of length n with a key k, take the
bitwise XOR of m and n. In Agda, this can be expressed as follows.5

3c.f. Crypto/EAV.
4c.f. Crypto/EAV again.
5c.f. Crypto/OTP.
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OTP : EncScheme
keygen OTP = uniform n
encrypt OTP key msg = return $ key ⊗msg

We can now rewrite this game to show that no matter the adversary chosen, it is
indistinguishable from a coin flip. Let us start by writing out the game, filling in the
definition of the encryption scheme:

IND-EAV-OTP1 : Adversary ST → CryptoExpr ST Bool
IND-EAV-OTP1 adv = do
m1 , m2 ← A1 adv
k ← uniform n
b ← coin
let pt = if b then m1 else m2

ct ← return $ k ⊗ pt
b′ ← A2 adv ct
return $ b == b′

First of all, we note that k and b are independent random variables and may thus be
reversed. By the monad laws, a bind followed by a return can be written as an fmap.
This gives us the following code:

IND-EAV-OTP2 adv = do
m1 , m2 ← A1 adv
b ← coin
let pt = if b then m1 else m2

ct ← fmap (λ k → k ⊗ pt) (uniform n)
b′ ← A2 adv ct
return $ b == b′

We can show that λ k → k ⊗ m is a bijection for any m : BitVec n, and since
applying a bijection to a uniform distribution produces another uniform distribution, we
may omit the fmap, giving us the following game:

IND-EAV-OTP3 adv = do
m1 , m2 ← A1 adv
b ← coin
ct ← uniform n
b′ ← A2 adv ct
return $ b == b′

We now see that b and b′ are independent random variables and can reorder these,
as well. We can also once more rewrite a bind followed by a return as an application of
fmap:

IND-EAV-OTP4 adv = do
m1 , m2 ← A1 adv
ct ← uniform n
b′ ← A2 adv ct
fmap (λ b → b == b′) coin
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Finally, we can show that λ b → b == b′ to be a bijection as well, giving us the last
game in the sequence:

IND-EAV-OTP5 adv = do
m1 , m2 ← A1 adv
ct ← uniform n
b′ ← A2 adv ct
coin

Since the outcome of IND-EAV-OTP5 is independent of adv , it is indistinguishable
from coin. Since the games are indistinguishable, the probability of drawing true from
IND-EAV-OTP1 is the same as from IND-EAV-OTP5. Since the advantage of any adversary
against IND-EAV-OTP5 is 0, it follows that it has advantage 0 against IND-EAV-OTP1 as
well, and thus we have shown that OTP is secure against an eavesdropper attack.6

1.3 Oracles

The above lets us reason about adversaries expressed in terms of the basic language of non-
determinsitic stateful computation. This is useful by itself, but by restricting adversaries
to this language, we are only considering the weakest kind of adversary possible. If we
want to strengthen our results, we need to develop a way of giving adversaries access to
computations they cannot perform themselves.

To give an example, a straightforward strengthening of the IND-EAV game is to give the
adversary access to the encryption function used by the challenger. Since this computation
depends on the key7, this cannot be expressed directly as a computation performed by
the adversary. Instead, we must give the adversary black-box access to the encryption
function.

A function provided to the adversary in this opaque way is called an oracle. Oracles
have all the power that the challenger and adversary have: they may generate random
bitstrings and have access to mutable state. However, the other players cannot inspect
the code or state of the oracle. This lets us precisely control the power of the adversary
by adjusting the information provided by the oracle. Given the importance of this, a
flexible and easy-to-use system for oracles has been a central focus of this work.

For the moment, we will assume that there are two operations provided by the oracle:
a way to initialise the oracle state with some value of type OracleState, and a way to
query the oracle function using an OracleArg argument to get an OracleResult response.
The types in question will depend on the game being played. We can represent this in
code by assumpting that CryptoExpr supports an additional two operations:8

init-oracle : OracleState → CryptoExpr ST >
call-oracle : OracleArg → CryptoExpr ST OracleResult

In chapter 5 we will show how this approach can be generalised to allow oracles with
different signatures in a straightforward manner, which is a noteworthy feature of our
system.

6c.f. Crypto/OTP.
7Which the adversary should not have access to!
8c.f. Syntactic/OracleExpr and Syntactic/OracleEval.
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We can now express a game that expresses a stronger security condition than IND-
EAV. In IND-EAV, we assumed that the adversary could choose two messages for the
challenger to encrypt, but could not perform the encryption. If the adversary also has
the power to encrypt messages of its choice, the game is known as indistinguishability
under a chosen plaintext attack, abbreviated IND-CPA. The name comes from the fact
that the adversary is allowed to choose one or more plaintext messages to be encrypted
by the oracle. Apart from the fact that the challenger has to initialise the oracle and the
adversary may query it, the game is identical.

Let us now look at the code. Since the oracle must have the key to encrypt messages,
OracleState = K . The query takes a plaintext and yields a ciphertext, so OracleArg =
PT and OracleResult = CT . The code is as follows:

IND-CPA : EncScheme → Adversary ST
→ CryptoExpr ST Bool

IND-CPA enc adv = do
m1 , m2 ← A1 adv
k ← keygen enc
init-oracle k
b ← coin
let pt = if b then m1 else m2

ct ← encrypt enc k pt
b′ ← A2 adv ct
return $ b == b′

However, we are not yet done. Apart from specifying the interaction between the
challenger and the adversary, we must also specify the behaviour of the oracle. Just like
the challenger and adversary, the oracle may store some state, in this case the key. In
this case, the oracle definition is straightforward: initialisation stores the encryption key,
and a query takes a plaintext message and returns it encrypted with the stored key. This
can be expressed in code as follows:

init-oracle-impl : K → CryptoExpr K >
init-oracle-impl = set-state

call-oracle-impl : PT → CryptoExpr K CT
call-oracle-impl pt = do
k ← get-state
encrypt enc k pt

We have now specified the IND-CPA game, just as we had specified IND-EAV earlier,
and can reason about it in the same ways, by fixing an encryption scheme and considering
an arbitrary adversary. Our goal is again to either upper bound the probability of any
adversary winning, or show that an adversary exists that wins the game with certainty.

If an adversary wins the IND-EAV game against some encryption scheme enc, the same
adversary can win the IND-CPA game against enc by ignoring the oracle. Conversely,
any game that is secure against IND-CPA is also secure against IND-EAV. We can thus
regard IND-CPA as a stronger claim about an encryption scheme, and we will see that it
is strictly stronger by showing that the One-Time Pad scheme is not secure against it.

Before we go on, let us note that we have not specified how the implementation of an
oracle can be combined with the implementation of the game, since one has state type ST
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and the other has state type K . The full details will be worked out in section 2.2; for now,
it suffices to remark that we can store both at once in a state of type ST × K . We will
use get-adv-state and get-oracle-state instead of get-state (and analogously for set-state)
when we want to disambiguate which component we are referring to.

1.4 Example: One-Time Pad (IND-CPA)

Let us now show that the One-Time Pad encryption scheme presented above is not secure
with respect to the IND-CPA game by constructing an adversary that wins the game with
probability 1. As before, we fix an n : N and set K = CT = PT = BitVec n. We
assume n > 0 , since otherwise there exists only one plaintext message.

The encryption scheme can be broken using the fact that encrypt OTP is deterministic.
Since the adversary has access to the encryption function, it can use the oracle to find
the ciphertext that corresponds to each message. As long as the two chosen messages m1

and m2 are distinct, the challenger chose to encrypt m1 iff the given ciphertext is equal
to the ciphertext of m1.

In code, we need to choose two specific messages. Let all-zero n and all-one n be the
n-bit vectors that consist entirely of zeroes and ones respectively. They are distinct, since
n > 0 . To decide which message the challenger chose to encrypt, we query the oracle to
encrypt all-zero n, and respond with true iff this is equal to the given ciphertext.

This can be expressed in Agda as follows. Note that since we have chosen our messages
a priori, we do not need to store any state, and can choose ST = >.

IND-CPA-OTP-ADV : Adversary >
A1 IND-CPA-OTP-ADV = return (all-zero n , all-one n)
A2 IND-CPA-OTP-ADV ct = do
r ← call-oracle (all-zero n)
return $ ct == r

Let us write out IND-CPA with OTP, IND-CPA-OTP-ADV, and the definition of the
oracle filled in. As we mentioned, the combination of the adversary and oracle state
results in the state type being > × K .

It may seem strange to go to such lengths to define the oracle separately, only to
immediately inline it when we begin with the proof. However, recall that the purpose
of the separation was to prevent the adversary from accessing the oracle state. Since
we have chosen an adversary that does not does this, the separation does not play any
further role in this example.

The resulting code is as follows:

IND-CPA-OTP1 : CryptoExpr (> × K ) Bool
IND-CPA-OTP1 = do
m1 , m2 ← return $ all-zero n , all-one n
k ← uniform n
set-oracle-state k
b ← coin
let pt = if b then m1 else m2

ct ← return $ k ⊗ pt
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k ′ ← get-oracle-state
b′ ← return $ ct == k ′ ⊗ (all-zero n)
return $ b == b′

We use set-oracle-state instead of set-state here to disambiguate whose state we are
talking about. Since k is the last value stored in the oracle state, we know k = k ′.
We can also inline the definitions of m1 and m2. This gives us the following game,
indistinguishable from the previous:

IND-CPA-OTP2 = do
k ← uniform n
b ← coin
let pt = if b then m1 else m2

ct ← return $ k ⊗ pt
b′ ← return $ ct == k ⊗ (all-zero n)
return $ b == b′

By the monad laws, we can rewrite this game as follows, translating return statements
into let bindings and inlining the definition of ct :

IND-CPA-OTP3 = do
k ← uniform n
b ← coin
let pt = if b then all-zero n else all-one n

b′ = k ⊗ pt == k ⊗ (all-zero n)
return $ b == b′

We know that k ⊗· is an injective function, so k ⊗ v == k ⊗ w holds iff v ==w holds.
We can thus simplify the above to the following:

IND-CPA-OTP4 = do
k ← uniform n
b ← coin
let pt = if b then all-zero n else all-one n

b′ = pt == all-zero n
return $ b == b′

If b is true, then we compare all-zero n to all-zero n and get true, so the expression as
a whole is true. On the other hand, if b is false, we compare all-one n to all-zero n and get
false, so the expression as a whole is true as well. It follows that this game always yields
true, and so this adversary is guaranteed to win it.

1.5 Weaker Notions of Security

Having introduced oracles to allow for the strengthening of our security conditions, let
us consider the problem of expressing weaker notions of security. So far, we have looked
at concrete, information-theoretic security: the error term ε gave an explicit bound on
the advantage of the adversary, and our results followed from information theory. In this
section, we will look at asymptotic and computational security.
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A strong motivation to consider these topics arises in public key cryptography. Instead
of generating a single key that is used for both encryption and decryption, a public key
encryption scheme generates a public key that can be used for encrypting messages and
a private key that is needed to decrypt them. As the name suggests, the public key is
available to both the challenger and adversary, while only the challenger has the private
key.

In this setting, the adversary can guess a private key and check whether it corresponds
to the challenger’s public key. This improves the advantage of the adversary somewhat,
since the private key makes it possible to decrypt the message. If the adversary is allowed
to attempt this repeatedly, then the advantage will compound. Neverthelesss, public key
cryptography is effective in practice: this is because the probability of guessing the private
correctly is so small, the adversary would have to make a very large number of attempts,
making the attack impractical.

It is thus desirable to be able to express bounds on the resources an adversary may
use. We will see a simple form of this in section 2.3, where we will show how we can
bound the number of oracle queries an adversary makes.

In practice, we generally cannot say that an attacker will be able to perform at most
some number of queries. Instead, some encryption schemes allow the user to choose the
key length they want, letting them increase security as necessary. In this setting, we want
to show that the advantage of the adversary can be made arbitrarily small as the key
length goes to infinity. This also suggests a new class of constraints on the adversary: we
can require that the adversary only uses an amount of resources polynomial in the key
length.

Finally, arguments in cryptography often rely on conjectures such as P 6= NP . In
order to be able to formalise these arguments we need to be able to represent these
conjectures, and it turns out that this question is highly relevant to the question of
asymptotic bounds.

Ensuring that the above notions can be represented within our system was a key
design constraint for us. We will discuss how we achieve them in detail in section 3.5, but
they are worth keeping in mind throughout the development.

1.6 Generalised Games

In the introduction, we described games as being a formalisation of the notion that no
adversary can distinguish between two situations. We then introduced the challenger,
who would decide which of the situations occured. However, we could have also posed
the question more directly: is there any adversary that can reliably give different results
for the two situations?

The benefit of this formulation is that a claim phrased this way is much easier to reuse
in a portion of another game. If we know that no adversary can distinguish between games
X and Y , then we can replace X by Y in the context of another game and know that
this is a sound rewriting step. This also relates to the question of how we can express
security assumptions that we discussed in the previous section.

The games we have seen so far can all be expressed in this manner. In the case of
IND-EAV and IND-CPA, instead of asking whether the adversary can tell which message
was encrypted, we ask whether the adversary can tell whether they are in a game where
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the encrypted message is always the first or always the second. These two games that
correspond to IND-EAV are as follows:

IND-EAV1 : EncScheme → Adversary ST → CryptoExpr ST Bool
IND-EAV1 enc adv = do

m , ← A1 adv
k ← keygen enc
ct ← encrypt adv k m
A2 adv ct

IND-EAV2 : EncScheme → Adversary ST → CryptoExpr ST Bool
IND-EAV2 enc adv = do

, m ← A1 adv
k ← keygen enc
ct ← encrypt adv k m
A2 adv ct

If an adversary adv can distinguish between IND-EAV1 enc and IND-EAV2 enc for
some encryption scheme enc, then we can construct an adversary that reliably wins
IND-EAV enc by noting that IND-EAV can be rewritten as the following game:

IND-EAV : EncScheme → Adversary ST → CryptoExpr ST Bool
IND-EAV enc adv = do
b ← coin
b′ ← if b then IND-EAV1 enc adv else IND-EAV2 enc adv
return $ b ≡ b′

As such, this really is a generalisation of the notion of games we had considered up to
this point.

1.7 Summary

This concludes our exploration of the problem space. We have seen that to express
game-based proofs we need to be able to represent games, and need some set of rules
specifying when two games are ε-indistinguishable. If we wish to express stronger security
guarantees then our system must support the use of oracles, while expressing weaker
guarantees requires a way of imposing constraints on the class of adversaries. In the next
two chapters we will lay out the groundwork of our system, in chapter 4 we will discuss
how we can show that our system is correct, and finally in chapters 5 and 6 we will show
some techniques that can aid in the implementation of the system.

We are not the first to approach this problem. Several systems already exist for the
formalisation of cryptographical proofs, EasyCrypt9 and FCF [PM14] being two notable
examples. In this work, we have focused in particular on how we can leverage the power
of dependent types to simplify the problem. The primary difficulty of building such a
proof system is the verbosity of the resulting proofs:10 steps that were trivial on paper
may nevertheless require extensive proof in a formal setting. We will discuss these aspects
of our approach, and what can be done to improve on this point, in chapter 7.

9http://www.easycrypt.info
10c.f. Crypto/OTP.
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Chapter 2

Representing Games

In chapter 1, we modelled games as imperative programs, represented by terms in a
suitable monad. We had assumed the existence of a monad that supported the operations
we require. In this chapter, we will see how the free monad construction [Swi08, McB15]
can be used to define this monad explicitly. A monad constructed this way supports all
the required operations, but treats them syntactically, without giving them any further
interpretation.

Given that there exist monads both for stateful and probabilistic [EK06] computations,
a natural question is why we do not define our games in terms of those. This would
be possible, but makes the subsequent development considerably harder. The syntactic
approach we take allows us to inspect our games with greater detail. For example, there
is no way to check whether a term in the state monad makes use of the state, while
being able to do so is convenient for our purposes. Furthermore, as the term ‘free monad’
suggests, we can map our games into any monad that supports the required operations,
and so we lose nothing by delaying this interpretation until it is unavoidable.

We will start by constructing a monad for games that do not make use of an oracle. In
this case, the only operations we require are uniform, get-state and set-state from chapter 1.
We will then show how the same techniques can be used to extend this language to support
games that do make use of an oracle. Finally, we will show how the syntactic nature of
this representation can be used to impose constraints on an adversary.

2.1 Free Monads

From a syntactic point of view, a game with result type A can do one of two things:
immediately yield a value of type A, or execute some command and then map the response
to another game with result type A. Treating this as an inductive definition is the key
insight of the free monad construction [McB15]. For our three commands, the free monad
can be defined as follows:1

data CryptoExpr (ST : Set) : Set → Set where
Return : A → CryptoExpr ST A

1c.f. Syntactic/CryptoExpr; again, note that in the code, these are defined using techniques from
chapter 5.
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Uniform : (n : N) → (BitVec n → CryptoExpr ST A) → CryptoExpr ST A
GetState : (ST → CryptoExpr ST A) → CryptoExpr ST A
SetState : ST → (> → CryptoExpr ST A) → CryptoExpr ST A

When talking about games, we will refer to the constructor and first argument as
the command, and the second argument as the response handler or continuation. Note
that since > → X is isomorphic to X for every type X , we could have used ST →
CryptoExpr ST A → CryptoExpr ST A as the type of SetState. However, we use the
more verbose form for the sake of consistency with the other constructors.

Although this definition is entirely syntactic, there is an intended semantic meaning
we keep in mind: Uniform represents the generation of a uniformly random bit vector,
GetState represents a read from the state and SetState represents a write to the state.
We will only define this interpretation in chapter 4, but provides a useful intuition for the
constructions we do in this chapter and the next.

We can define the monadic actions uniform, set-state and get-state as terms in the
CryptoExpr ST monad by passing Return as the response handler:2

uniform : (n : N) → CryptoExpr ST (BitVec n)
uniform n = Uniform n Return

get-state : CryptoExpr ST ST
get-state = GetState Return

set-state : ST → CryptoExpr ST >
set-state st = SetState st Return

In order to show that CryptoExpr ST is indeed a monad, we take return = Return
and define fmap and >>= as follows:3

fmap : (A → B) → CryptoExpr ST A → CryptoExpr ST B
fmap f (Return a) = Return (f a)
fmap f (Uniform n cont) = Uniform n λ v → fmap f (cont v)
fmap f (GetState cont) = GetState λ st → fmap f (cont st)
fmap f (SetState st cont) = SetState st λ t → fmap f (cont t)

>>= : CryptoExpr ST A → (A → CryptoExpr ST B) → CryptoExpr ST B
Return a >>= f = f a
Uniform n cont >>= f = Uniform n λ v → cont v >>= f
GetState cont >>= f = GetState λ st → cont st >>= f
SetState st cont >>= f = SetState st λ t → cont t >>= f

We will see how we can avoid the repetitiveness of these definitions in chapter 5. For
convenience, we also define some derived operations:

coin : CryptoExpr ST Bool
coin = fmap head (uniform 1 )

modify : (ST → ST ) → CryptoExpr ST ST
modify f = do

2c.f. Syntactic/CryptoExprHelpers.
3Since we use the techniques outlined in chapter 5, these functions are generated for us; c.f. Syntactic/

CommandStructure.
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st ← get-state
let st ′ = f st
set-state st ′

return st ′

Since proving the equality between two games involves proving that their response
handlers are equal, we need functional extensionality to prove that CryptoExpr ST satisfies
the monad laws. Except for this, the proofs are straightforward.

This concludes the definition of CryptoExpr ST , bringing us again to where we were
at the beginning of section 1.1, but this time with no assumptions. The motivated reader
may wish to go back and check that the IND-EAV game presented there can be expressed
in this system.

2.2 Representing Oracles

We will now define another monad for games, which will allow us to express games where
the adversary has access to an oracle. As in section 1.3, we will assume that oracles
support two operations: init-oracle to initialise the oracle state and call-oracle to perform
a query to the oracle. We will consider how this set of operations can be extended in
chapter 5.

Recall that init-oracle takes an OracleState value to initialise the oracle with and gives
no response, while call-oracle takes an OracleArg and responds with an OracleResult. We
define OracleExpr ST , the type of games that use an oracle, as follows:4

data OracleExpr (ST : Set) : Set → Set where
Return : A → OracleExpr ST A
Uniform : (n : N) → (BitVec n → OracleExpr ST A) → OracleExpr ST A
GetState : (ST → OracleExpr ST A) → OracleExpr ST A
SetState : ST → (> → OracleExpr ST A) → OracleExpr ST A
InitOracle : OracleState → (> → OracleExpr ST A) → OracleExpr ST A
CallOracle : OracleArg → (OracleResult → OracleExpr ST A) → OracleExpr ST A

We could have used different names for the constructors that were already used in
CryptoExpr, but since the behaviour in each case is practically identical, we expect the
ambiguity to not cause any issues.

As in the case of CryptoExpr, we can define uniform, get-state, and set-state, and we
can now also define init-oracle and call-oracle in the same way. Similarly, the definitions
of fmap and >>= are straightforward extensions of those for CryptoExpr.

We can now specify games such as IND-CPA from section 1.3, but we must also be
able to define the behaviour of the oracles themselves. We do this much the same way we
specify adversaries, by defining a record that has interpretations for the operations. Note
that we define oracles using the CryptoExpr monad, not OracleExpr: the latter would allow
an oracle to call itself, potentially leading to a non-terminating game. The definition of
an oracle implementation is as follows:5

4c.f. Syntactic/OracleExpr.
5c.f. Syntactic/OracleEval, where this is called OracleImpl.
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record Oracle (OST : Set) : Set where
field

Init : OracleState → CryptoExpr OST >
Call : OracleArg → CryptoExpr OST OracleResult

We will use OST to refer to the type of the state that the oracle stores, and use AST
(instead of ST ) for the state type of the adversary.

In order to reason about a game that involves oracles, we would like to merge all
the above components into a single game, much the same way we inlined the definitions
of the encryption scheme and adversary when reasoning about IND-EAV in section 1.2.
However, the process of combining a game expressed as an OracleExpr AST term and an
Oracle implementation is somewhat more complicated than the usage of an adversary in
a game, since we need to reconcile the types OracleExpr AST and CryptoExpr OST . In
section 1.3, we remarked this can be done by using CryptoExpr (AST × OST ) to store
both states at once. Let us now formalise this approach.

We start by defining the operations get-oracle-state, set-oracle-state, get-adv-state, and
set-adv-state, which we use for operating on the oracle and adversary components of the
state respectively. The definitions are as follows:

get-oracle-state : CryptoExpr (AST × OST ) OST
get-oracle-state = fmap snd get-state

get-adv-state : CryptoExpr (AST × OST ) AST
get-adv-state = fmap fst get-state

set-oracle-state : OST → CryptoExpr (AST × OST ) >
set-oracle-state ost = do
ast ← get-adv-state
set-state $ ast , ost

set-adv-state : AST → CryptoExpr (AST × OST ) >
set-adv-state ast = do
ost ← get-oracle-state
set-state $ ast , ost

One last function we need before we can define the gluing is a way of embedding the
terms that implement the oracle, which have type CryptoExpr OST A, into the game as
a whole, which has type CryptoExpr (AST × OST ) A. Fortunately, this is straightfor-
ward given the functions we defined above, since we can replace all uses of GetState by
get-oracle-state and set-state by set-oracle-state:6

embed : CryptoExpr OST A → CryptoExpr (AST × OST ) A
embed (Return a) = Return a
embed (Uniform n cont) = Uniform n λ v → embed (cont v)
embed (GetState cont) = get-oracle-state >>= λ st → embed (cont st)
embed (SetState st cont) = set-oracle-state st >>= λ t → embed (cont t)

Now we have all the tools necessary to define a function that combines a game that
uses an oracle and a definition of that oracle into a single game. The idea is much the same

6c.f. Syntactic/OracleEval again.
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as in embed: we replace uses of get-state and set-state by get-adv-state and set-adv-state
respectively, and use the embed function to embed the oracle implementation where it is
used.

eval : Oracle OST → OracleExpr AST A → CryptoExpr (AST × OST ) A
eval ocl (Return a) = Return a
eval ocl (Uniform n cont) = Uniform n λ v → eval ocl (cont v)
eval ocl (GetState cont) = get-adv-state >>= λ st → eval ocl (cont st)
eval ocl (SetState st cont) = set-adv-state st >>= λ t → eval ocl (cont t)
eval ocl (InitOracle st cont) = embed (Init ocl st) >>= λ t → eval ocl (cont t)
eval ocl (CallOracle arg cont) = embed (Call ocl arg) >>= λ r → eval ocl (cont r)

With this in place, we can represent the examples from section 1.3 within our system.
Most importantly, this gives us an automatic way of performing the inlining that we did
by hand in section 1.4, allowing us to detect when we have made a mistake.

We would like to highlight the role of the free monad construction in enabling this
straightforward approach to oracles. Had we defined CryptoExpr in a less syntactic way,
extending it with further operations would be far more difficult. As it is, such an extension
can be performed by adding more constructors to OracleExpr and adding corresponding
constructors to Oracle. We will see how this system can be improved further in chapter 5,
so that the definitions of fmap and >>= do not need to be updated when such changes
are made.

2.3 Constraints on Adversaries

We can now express all the games we have outlined in chapter 1. Let us tackle the
opposite problem: how can we place a restriction on what a CryptoExpr or OracleExpr
term may do, for example to restrict the class of adversaries?

We can start by considering a simple example: suppose that we want some portion
of our game to not have access to the state; for example, if we want to express that an
implementation of the oracle may not use the state. We could achieve this by removing
state from the games entirely, or by setting its type to >, but both of these are big
changes that affect the system as a whole. Instead, we can define a Stateless predicate on
terms ce : CryptoExpr ST A that holds only if ce does not use the GetState or SetState
constructors. We can define this as follows:7

data Stateless : CryptoExpr ST A → Set where
ReturnS : ∀ a → Stateless (Return a)
UniformS : ∀ n

→ {cont : BitVec n → CryptoExpr ST A}
→ (∀ v → Stateless (cont v))
→ Stateless (Uniform n cont)

If a game is expressed exclusively in terms of Return and Uniform, then we can con-
struct a corresponding proof term using ReturnS and UniformS by following the recursive

7c.f. Syntactic/StateBounds; note that in the code we separate the property of not writing to the
state and not reading from the state, but the difference is not significant.
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structure. However, if the game uses GetState or SetState, then no proof can exist, since
Stateless (GetState cont) and Stateless (SetState st cont) can be shown to be empty. We
can thus use the type Σ (CryptoExpr ST A) Stateless to represent, within Agda, the type
of games that use no state.

We can also use this technique to bound the number of times an adversary queries the
oracle, and restrict the adversary from reinitialising the oracle. We can make a predicate
BoundedOracleUse k b on terms ce : OracleExpr ST A that expresses that ce uses
CallOracle at most k times, and only uses InitOracle if b is true. Just like with Stateless,
we represent this in Agda by creating a datatype that mimics the recursive structure of
OracleExpr.8

data BoundedOracleUse : Bool → N → OracleExpr A → Set1 where
ReturnBOU : ∀ a → BoundedOracleUse b k (Return a)
UniformBOU : {cont : BitVec n → OracleExpr A}

→ (∀ v → BoundedOracleUse b k (cont v))
→ BoundedOracleUse b k (Uniform n cont)

GetStateBOU : {cont : ST → OracleExpr A}
→ (∀ st → BoundedOracleUse b k (cont st))
→ BoundedOracleUse b k (GetState cont)

SetStateBOU : {ce : OracleExpr A}
→ BoundedOracleUse b k ce
→ BoundedOracleUse b k (SetState st ce)

InitOracleBOU : {ce : OracleExpr A}
→ BoundedOracleUse false k ce
→ BoundedOracleUse true k (InitOracle st ce)

CallOracleBOU : {cont : OracleResult → OracleExpr A}
→ (∀ r → BoundedOracleUse b k (cont r))
→ BoundedOracleUse b (suc k) (CallOracle arg cont)

Note that in the InitOracleBOU case we prohibit the continuation from performing
any further InitOracleBOU calls, thus forcing initialisation to happen at most once, and
in CallOracleBOU, we decrease the number of allowed calls to the oracle by one. It is
worth mentioning that this is only a restriction on what the game is allowed to do: since
the ReturnBOU case does not restrict b or k , we do not require the game to perform any
actions. If we wanted to, we could achieve the latter effect by changing the ReturnBOU
constructor to have type ∀ a → BoundedOracleUse false 0 (Return a).

This approach works very well when we want to restrict some property of a ce :
CryptoExpr ST A (or OracleExpr) we receive as an input, since we can add an extra
parameter that represents a proof that ce satisfies some property. However, a drawback
of this approach is that when we construct a ce : CryptoExpr ST A, we must also
construct the corresponding proof. This is not difficult, since the proof term is completely
determined by ce itself, but it the kind of work we would like to automate.9

The straightforward way to do this in Agda would be to traverse the CryptoExpr ST A
structure and check that the conditions we impose are satisfied. In the case of Stateless,
this can be done, since BitVec n is finite. Given an enumeration all-bitvecs : (n : N) →

8c.f. Syntactic/BoundedOracleUse and Syntactic/BoundedOracleUseExample.
9A partial implementation of these ideas can be found in Syntactic/BoundedOracleUseExample.
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List (BitVec n) of all bit vectors of a given length, we can define a runtime predicate
isStateless? by recursion:

isStateless? : CryptoExpr ST A → Bool
isStateless? (Return a) = true
isStateless? (Uniform n cont)

= all (map (λ v → isStateless? (cont v)) (all-bitvecs n)
isStateless? (GetState ) = false
isStateless? (SetState ) = false

We can express the soundness of isStateless? in Agda by defining a function that takes
a proof that isStateless? ce is true and gives a proof of Stateless ce. Unfortunately, even
though this allows us to compute these proofs automatically, this approach is not useful
in practice: enumerating all bit vectors of length n will take time Ω(2n).

Instead, we require some way of generating a proof term based on the syntactic struc-
ture of a term. In chapter 6 we will show how we can use indexed monads to incorporate
a predicate such as BoundedOracleUse in the definition of OracleExpr. An alternative ap-
proach, which we have not had time to explore, is to use reflection to obtain a description
of the structure of a term as it is in the program code. This would allow the automatic
generation of proof terms using considerably less time.

Despite these shortcomings, the predicates we defined in this section satisfy the re-
quirements we posed in section 1.5, and thus we can now represent all games we had set
out to. In the next chapter, we will work out the system for reasoning about these games.
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Chapter 3

The Logic of Games

Throughout chapter 1, we argued that rewrite steps were valid because the games they
produced did not significantly differ from the games they were performed on. In this chap-
ter, we will define the notion of ε-indistinguishable to formalise this concept of ‘not sig-
nificantly different’, thereby specifying the logic that can be used to reason about games.
Keeping with the style of the previous chapter, our definition of ε-indistinguishability
will be purely syntactic, with no reference to an interpretation, which we will discuss in
chapter 4.

Before we dive into the technical details, let us consider what relation we would like to
capture. Two games with result type A being ε-indistinguishable means that up to some
error term ε, the probability of sampling any a : A from one is close to the probability
of sampling a from the other. An interesting point in our construction is that we will
formalise this notion with no reference to the individual elemenst of A.

We will start this chapter by looking at how we can define ε-indistinguishability in
classical probability theory, and what results hold there. We will then define the ε-
indistinguishability relation ≡Eε on terms of type CryptoExpr ST A and prove some results
about it. In particular, we will show that the full power of monads is not necessary to
represent arbitrary games: up to indistinguishability, every game has a fixed structure.

We will proceed to consider two basic variations of the ε-indistinguishability relation.
First of all, we will note that the relation we defined is too strong: there are games we
considered ε-indistinguishable in chapter 1, but which are not ε-indisindistinguishable in
this new system. This is because in our earlier examples, we ignored the final adversary
state when we reasoned about the games. To correct this, we will introduce a new relation
called result ε-indistinguishability that will make our proofs go through again. For the
second variation, we will show how ε-indistinguishability can be extended to games that
make use of an oracle.

Finally, we will consider how this system handles the requirements we posed in sec-
tion 1.5, such as asymptotic complexity and the usage of security assumptions in proofs.
We also discuss a number of problems we have been unable to solve.

Throughout this chapter, we will make use of the type Q of rational numbers to
represent probabilities. Our construction is independent of the implementation of the
rationals used, as long as arithmetic and ordering is supported.

21



3.1 Properties of Distributions

Before we start on a formalisation in Agda, let us recall how probability distributions
behave in classical mathematics. All of the material in this section is long-known and
completely standard, but we feel that this brief recap will serve as motivation for our
definition of ≡Eε In particular, we are interested in exploring how ≡Eε should interact
with monadic binding.

Since all of the distributions we will consider arise from a bounded number of coin flips,
we are interested exclusively in discrete probability distributions with finite support. We
will model a probability distribution X over a set A as a function fX : A→ R, where for
every a ∈ A, fX(a) gives the probability of drawing a from X. As usual, these functions
satisfy fX(a) ∈ [0, 1] and

∑
a∈A fX(a) = 1. If there is no risk of confusion, we will write

X(a) for fX(a).
To give a better understanding of this presentation, let us consider two examples that

we will need later:

• For any set A and any a ∈ A, the Dirac delta distribution 1a is the distribution
that always gives A, given by 1a(a) = 1 and 1a(x) = 0 if x 6= a.

• Let 2n be the set of bit vectors of length n. The uniform distribution Un is defined
by Un(v) = 2−n for every v ∈ 2n.

Given a distribution X over A and an A-indexed family of distributions Y over B, we
define the composite distribution XY over B by

XY (b) =
∑
a∈A

X(a)Ya(b).

It is an easy exercise to show that this this defines a probability distribution, and that
if X and each Ya have finite support, then XY also has finite support.

Given two distributions X and Y over the same set A, we denote the distance between
them as d(X,Y ) and define it as

d(x, y) =
1

2

∑
a∈A
|X(a)− Y (a)| .

The reader may notice that this is simply the l1 or Manhattan norm from linear
algebra scaled by 1

2 . The following theorem motivates this scaling:

Theorem 1. For every two probability distributions X,Y over some set A,

d(X,Y ) ≤ 1.

Proof. Since X and Y are distributions, they take values in [0, 1] and sum to 1. It follows
by the triangle inequality that

1

2

∑
a∈A
|X(a)− Y (a)| ≤ 1

2

(∑
a∈A
|X(a)|+

∑
a∈A
|Y (a)|

)
≤ 1.
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There is a connection between this notion of composition of probability distributions
and the way in which our games form a monad. Namely, let DA denote the set of
probability distributions over a set A. We can regard D− as a functor on Set and define
the action on a function f : A→ B by

Df (X)(b) =
∑

a∈f−1(b)

X(a).

More importantly for us, D− has the structure of a monad, with 1− being the unit and
composition of distributions being the bind!

We encourage the motivated reader to derive the monad multiplication and check the
monad laws. Our focus, however, lies on the interaction between the monadic structure
and the norm we defined.

Let us say that two probability distributions X and Y are ε-indistinguishable iff
d(X,Y ) ≤ ε. We will now demonstrate a number of properties that show how com-
position of probability distributions interacts with ε-indistinguishibility of distributions.
While this does not directly prove anything about games, it suggests what properties we
can reasonably expect to hold for them, and can thus guide what assumptions we make.

For the rest of this section, let A and B denote arbitrary sets.

Theorem 2. Let X,Y be distributions over A and let Z be an A-indexed family of
distributions over B. Then

d(XZ, Y Z) ≤ d(X,Y ).

Proof. Writing out the definition, for any b ∈ B,

|XZ(b)− Y Z(b)| =

∣∣∣∣∣∑
a∈A

(X(a)− Y (a))Za(b)

∣∣∣∣∣ .
By the triangle inequality,∑

b∈B

|XZ(b)− Y Z(b)| ≤
∑
b∈B

∑
a∈A
|X(a)− Y (a)| |Za(b)| .

Since each Za is a probability distribution,
∑
b∈B |Za(b)| = 1, hence∑

b∈B

|XZ(b)− Y Z(b)| ≤
∑
a∈A
|X(a)− Y (a)| .

Theorem 3. Let X be a distribution over A and let Y,Z be A-indexed families of distri-
butions over B. Then

d(XY,XZ) ≤
∑
a∈A

X(a)d(Ya, Za).

Proof. Writing out the definition, for any b ∈ B,

|XY (b)−XZ(b)| =

∣∣∣∣∣∑
a∈A

X(a)(Ya(b)− Za(b))

∣∣∣∣∣ .
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As above, by the triangle inequality we get∑
b∈B

|XY (b)−XZ(b)| ≤
∑
b∈B

∑
a∈A
|X(a)| |Ya(b)− Za(b)|

and now using the non-negativity of X we get

1

2

∑
b∈B

|XY (b)−XZ(b)| ≤ 1

2

∑
a∈A

X(a)

(∑
b∈B

|Ya(b)− Za(b)|

)
=
∑
a∈A

X(a)d(Ya, Za)

This has two useful consequences.

Corollary 4. Let X be a distribution over A and let Y, Z be A-indexed families of dis-
tributions over B. If there is an ε such that d(Ya, Za) ≤ ε for every a ∈ A, then

d(XY,XZ) ≤ ε.

Corollary 5. Let n ∈ N and let X,Y be 2n-indexed families of probability distributions
over A. Then

d(UnX,UnY ) ≤ 1

2n

∑
v∈2n

d(Xv, Yv).

We hope that by providing this brief overview of the properties that hold of probability
distributions in classical mathematics, we have given the reader an intuition for what can
be expected from the Agda formalisation.

3.2 ε-Indistinguishability

With this classical intuition in hand, we can now define the relation of ε-indistinguishability
on games. Just like we defined games to be purely syntactic constructs, we define this
relation in a syntactic manner, by specifying an inductive data type that represents the
proofs of ε-indistinguishability.

The definition, in full detail, is available in the Agda code. However, the formulation
given there is too verbose to be insightful. We present the same inductive rules here in
a more understandable manner. After the definition, we will show the definition of one
such rule in its entirety; this should make clear both the precise meaning of the other
rules, and our reluctance to write them out in full.

As a final preparation, let us introduce two abbreviations that will be useful in the
(recursive) definition of ≡Eε itself. Let A and B be arbitrary types. Firstly, given two
games1 G and H , we will say “G and H are ε-indistinguishable” to mean G ≡Eε H .
Secondly, given two B -indexed families of games2 f and g and a function h : A → Q,
we say “f and g are h-indistinguishable” to mean that for every a : A, f a and g a are
(h a)-indistinguishable.

1That is, terms of type CryptoExpr ST A.
2That is, terms of type B → CryptoExpr ST A.
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Without further ado: for every non-negative ε : Q and every two types A and ST , let
≡Eε be the least binary relation on CryptoExpr ST A such that the following properties
hold:3

1. ≡Eε is reflexive and symmetric.

2. If G ≡Eε1 H and H ≡Eε2 I then G ≡Eε1+ε2 I .

3. Every two games are 1-indistinguishable.

4. For every n : N, if f and g are (BitVec n)-indexed families of games and f v ≡Eε g v
for every v : BitVec n, then Uniform n f ≡Eε Uniform n g .

5. If f and g are ST -indexed families of games and f st ≡Eε g st for every st : ST ,
then GetState f ≡Eε GetState g .

6. If f and g are >-indexed families of games and f tt ≡Eε g tt then for every st : ST ,
SetState st f ≡Eε SetState st g .

7. ≡Eε is closed under the state monad laws;

8. ≡Eε is closed under the reordering of uniform and get-state operations;

9. ≡Eε is closed under the reordering of uniform and set-state operations;

10. ≡Eε is closed under the insertion of uniform and get-state operations;

11. ≡Eε is closed under replacing consecutive occurences of uniform n and uniform m by
uniform (n + m).

12. ≡Eε is closed under application of bijections to uniform distributions.

13. If two 2n-indexed families of games f and g are h-indistinguishable, then uniform >>= f
and uniform >>= g are (

∑
v:2n h(v))-indistinguishable.

Let us write out rule 8 in its entirety. In Agda, the statement is as follows:

data ≡Eε (ST A : Set) : (ce cf : CryptoExpr ST A) → Set where
. . .
xchg-Uniform-GetState : ∀{n}

→ (cont : BitVec n → ST → CryptoExpr ST A)
→ (Uniform n λ v → GetState λ st → cont v st)

≡Eε (GetState λ st → Uniform n λ v → cont v st)
. . .

Translated to English, this reads: for every n : N and every continuation cont that
sends a bit vector and a state to a game, the following two actions are equivalent:

• generate a random bit vector v , retrieve the state st , and call cont v st ; and

• retrieve the state st , generate a random bit vector v , and call cont v st .

3c.f. Syntactic/Logic and Syntactic/EpsilonLogic. We define the case where ε = 0 separately as
that makes the proofs easier to work with, but this is not an essential difference.
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The other rules are similarly simple in meaning and obscure in formal statement.
Let us now go through a number of results that highlight the similarity of ≡Eε to the

notion of ε-indistinguishability we defined on probability distributions in section 3.1.4

Theorem 6. ≡Eε1 is a subrelation of ≡Eε2 if ε1 ≤ ε2.

Proof. The proof is by induction on the derivation of a ≡Eε1 b. All the cases are trivial:
for example, in the last axiom, we can take h′(v) = h(v) + ε2 − ε1. By induction, f and
g are h′-indistinguishable and the desired result follows.

In section 3.1 we discussed the importance of the fact that the distance between
probability distributions remains bounded under monadic binding. These properties can
be proved from our axioms.

Theorem 7. If G is a game with result type A and f and g are A-indexed families of
games that are ε-indistinguishable, then G >>= f ≡Eε G >>= h.

Proof. This is a straightforward recursion on the structure of G .

Theorem 8. If G ≡Eε H and f is a family of games, then G >>= f ≡Eε H >>= f .

Proof. This proof goes by induction on the derivation of G ≡Eε H . There are many cases,
but they are all straightforward.

A special case of ≡Eε arises for ε = 0. We denote this relation ≡E and say that
two games G and H satisfying G ≡E H are indistinguishable, dropping the ε. The ≡E
relation is of great practical value since it allows us to replace multiple occurences of a
subgame at once. This will be particularly important when we look at games that make
use of an oracle.

Now that we have investigated the basic properties of this logic, let us look at our first
useful result: that every game can be rewritten into a canonical form.5

Definition 9. We say that a game G : CryptoExpr ST A is in canonical form if there
exist functions f : ST → N, g : (st : ST ) → BitVec (f st) → ST , and
h : (st : ST ) → BitVec (f st) → A such that G is provably equal to

do
st ← get-state
v ← uniform $ f st
set-state $ g st v
return $ h st v

Theorem 10. Every G : CryptoExpr ST A is indistinguishable from a game in canonical
form.

Note that we do not need to assume that the state type ST is finite or has decidable
equality.

4c.f. Syntactic/LogicDerived.
5c.f. Syntactic/Reorder.
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Proof. The full proof is in the Agda code, and proceeds in two steps: we first construct f ,
g , and h and then show indistinguishability. In all cases, the construction is by recursion
on the structure of ce.

The key idea of the proof is to explicitly pass around the current state st and, in
the case of g and h, a sufficiently long vector of random bits. Since f does not have
access to such a bit vector (being the function that determines how much randomness
we require), it must enumerate all vectors of the right length when the recursion is on a
Uniform constructor. This makes it unfeasible to explicitly compute this canonical form,
but we can nevertheless reason with it.

The main difficulty in the proof is showing that the vector v : BitVec k provides a
sufficient number of random bits. This involves showing that whenever we recurse on a
call of the form Uniform n cont , we can prove n 6 k . Careful manipulation of the indices
can show this is indeed the case.

3.3 Result-Indistinguishability

It is tempting to assume that the notion of ε-indistinguishability we have just defined
represents ε-indistinguishability as we used the term in chapter 1. Unfortunately, the
situation is somewhat more nuanced.

In chapter 1, we considered games to be indistinguishable even if they had different
effects on the state of the adversary. We did not have this luxury when defining the notion
of ε-indistinguishability above, since we wanted ≡Eε to be a congruence, and thus closed
under bind.

When it comes to bounding the advantage of the adversary, however, we do not want
to distinguish outcomes based on the state of the adversary: two adversaries that both win
the game with probability 0.5 are equivalent for our purposes, even if we can distinguish
between them based on the effect they have on the state. As such, we want a weaker
notion of indistinguishability which we will call result-indistinguishability.

We do not have an axiomatisation of this relation,6 like we do of the ε-indistinguishability
relation, but we present a way of achieving a similar result in chapter 6.

3.4 Indistinguishability with Oracles

In order to reason about games involving oracles, we want to extend the notion of ε-
indistinguishability to pairs of games involving oracles and oracle definitions for these
games. We use the fact that we have the eval funcion, which can combine a game involving
an oracle and an oracle definition into a game that makes no mention of oracles. This
gives us a direct way of defining ε-indistinguishability on oracle game-implementation
pairs.

Formally speaking, given G and H of type OracleExpr AST A and ocl1 and ocl2 of
type Oracle OST , we say that (G , ocl1) ≡OEε (H , ocl2) iff eval ce ocl1 ≡Eε eval cf ocl2.
We will write G ≡OEε,ocl H if ocl is the same on both sides. We will also write ocl1 ≡Eε ocl2
iff for every ost : OracleState, Init ocl1 ost ≡Eε Init ocl2 ost and for every arg : OracleArg,
Call ocl1 arg ≡Eε Call ocl2 arg .

6For one possible approach, c.f. Syntactic/ResultLogic.
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This is a somewhat unsatisfactory solution, since this does not give us any reasoning
principles for ≡OEε , making the process of proof extremely manual. We will consider this
shortcoming in greater generality in section 5.7.

3.5 Generalised Security

As we have already remarked in section 1.5, in practice we often want to show security only
against adversaries that are restricted in the resources they may use. The prime example
of this is a restriction to adversaries that run in polynomial time. Restricting the problem
in this way allows us to use assumptions about what a polynomial-time algorithm can
and cannot do. This allows us to reason about the security of systems that depend on
problems like integer factorisation being hard; without such an assumption, since integer
factorisation can be performed in Agda, we cannot rule out that the adversary performs
the factorisation and thereby defeats our security scheme.

Within our system, we cannot create a type of polynomial-time adversaries, and so we
cannot express this restriction directly. However, we can still achieve the desired effect
by assuming that certain operations cannot be performed by any adversary. We do this
by assuming that certain games are unwinnable, using the generalised notion of games
described in section 1.6.

For example, let us consider the discrete logarithm problem. Given a cyclic group
G and a generator g, the Decisional Diffie-Hellman assumption states that it is hard to
distinguish the triple (ga, gb, gc) with a, b, c all uniformly random (with 0 ≤ a < |G|) from
(ga, gb, gab), with a, b uniformly random. We can phrase this as follows: let UG be the
uniform distribution over G. Then there is some ε such that the following two games are
ε-indistinguishable for any adversary adv :

do
st ← get-state
a ← UG

b ← UG

c ← UG

adv (pow g a , pow g b , pow g c)
set-state st

do
st ← get-state
a ← UG

b ← UG

adv (pow g a , pow g b , pow g a · b)
set-state st

Notice that we need to explicitly preserve the state due to our lack of a proper notion
of result-indistinguishability.

Nevertheless, we can then use this assumption to replace the usage of pow g (a · b)
in a proof with pow g c. For example, this is a key step in proving the security of the
ElGamal encryption scheme [Sho04]. By introducing this assumption we show that no
adversary can find a given pow g a, since otherwise they could take pow (pow g b) a and
compare it to the third component of the tuple.
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A possible downside to this approach is that our assumptions must all be phrased as
statements of indistinguishability of games. Another issue with this approach is that while
this allows us to reason about an arbitrary adversary as if it satisfied our assumptions, it
does not restrict the class of adversaries that we may use as a counterexample: it is thus
necessary to check the validity of any constructed adversaries by hand.

Finally, an assumption of this kind only states that such an ε exists, without any
bounds on the size of this ε. This is unsurprising: for any fixed problem size, a polynomial-
time adversary can still achieve arbitrarily good probability, because the property of being
polynomial-time is vacuous if the problem size is fixed.

This is not as severe an issue as it may seem: we can assume (without formalising
it in Agda) that ε is small, and interpret the indistinguishability results we come to in
this light. This is not uncommon in existing proofs [Sho04]. However, if we want a more
formal resolution to this problem, we can reason about asymptotic indistinguishability.

Instead of attempting to prove that games G and H are ε-indistinguishable, we can
instead look at families of games G and H parametrised by a security paraeter, and show
that they are f -indistinguishable for some vanishing function f .

3.6 Future Work

In this chapter, we have specified the foundations of a theory of indistinguishability of
games. An important further step is to develop a collection of lemmas based on this
theory that can act as rewrite rules for games. Bellare and Rogaway [BR06] have iden-
tified a number of techniques that are commonly used in cryptographical proofs, and a
formalisation of these would greatly improve the practical value of this theory.

In particular, the ‘identical until bad’ technique [Sho04] tells us that if two games X
and Y are identical unless some bad event F happens and F has probability ε, then X and
Y are in fact ε-indistiindistinguishable. For example, two games may be indistinguishable
unless two uses of uniform n result in the same bitstring, or if the adversary can find a
string that causes a hash collision. This technique is very useful, but it is hard to formalise
in our context: we may not be able to tell from the final state of the game whether the bad
event happened. As such, we need to show that the game is result-indistinguishable from
one that adds additional instrumentation to track the bad event, and then use the data
provided by this instrumentation to reason that the games can only differ in a minority
of cases. This is hard to do even in concrete scenarios, and a general solution would be
useful for formalising existing proofs.

We have also been unable to develop the equational theory with oracles to the same
point as the theory without them. There does not appear any fundamental reason we
could not find comparable results for canonical forms. However, these developments may
be better done in the context of section 5.6, where we perform a further generalisation of
oracles. The possible interactions between oracles and result-indistinguishability are also
an interesting matter of further study.

Finally, not all conseuences of the point-free presentation of indistinguishability we
have given here are clear to us. In particular, we may wish to work with the support of
a distribution, and we do not yet know how this can be expressed in this system.
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Chapter 4

Interpreting Games

With the logic we have developed in hand, we can tackle questions about games being
ε-indistinguishable. However, if we are to be convinced that our results have any meaning,
we must first show that our system is at the very least not trivial: if every game G :
CryptoExpr ST Bool could be shown to be ε-indistinguishable from coin then our proof
would have little weight behind it. It would be even better if we could show that our
notion of indistinguishability can be expressed as a relation on a type that explicitly
models probability distributions, rather than on a purely syntactic description of games.

To this end, we will define the notion of a model of our logic and construct a non-
trivial model based on the Haskell Dist monad due to Erwig and Kollmansberger [EK06].
Using this model, we can show that our logic does not prove coin ≡Rst return true or
return false ≡Rst return true.

Although our model will be internal to Agda, we see at present no reason to formalise
the model theory: in particular, the notion of a distance relation and the category of mod-
els of game logic that we introduce in this chapter are tools for conceptual understanding,
not constructions in Agda.

4.1 Distance Relations

Before we set about defining our models, we would like to identify the key properties of
≡Eε and give a name to relations of this kind. This is merely a matter of convenience, to
save us the trouble of listing these properties every time we wish to use them.

Our definition of ≡Eε in section 3.2 was inspired by the notion of ε-indistinguishability
we defined in section 3.1. The latter expressed that an upper bound held on the distance
between two elements. In the case of ≡Eε , we cannot express this distance function
directly, but this is nevertheless the intuition we are attempting to capture. This inspires
the following definition:

Definition 11. A family of binary relations R− indexed by non-negative rationals is a
distance relation on A if for all a, b, c : A and all non-negative ε1, ε2 : Q,

• Rε(a, a);

• if Rε(a, b) then Rε(b, a);
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• if Rε1(a, b) and Rε2(b, c) then Rε1+ε2(a, c); and

• if Rε1(a, b) and ε1 ≤ ε2 then Rε2(a, b).

Clasically, it is easy to see that if d is a metric on a set A, then Rε(a, b) := d(a, b) ≤ ε
defines a distance relation on A. However, the notion of a distance relation is more flexible.
Note, in particular, that a binary relation on A is, in Agda, a function A → A → Set,
meaning that there may be multiple proofs that Rε(a, b) holds. This is indeed the case
with ≡Eε , since we can use symmetry twice to obtain a new proof, unequal to the previous.

We will now use the fact that the objects we are working with have more structure
than plain sets, or even types: they are in the domain of a monad. In section 3.1, we have
seen that there is a certain interaction between ε-indistinguishability and the monadic
structure. We capture this with the following two definitions:

Definition 12. We say a family of distance relations R−− defined on the range of a functor

F is functorial if whenever R
F (A)
ε (a, b) and f : A→ B, then R

F (B)
ε (F (f)(a), F (f)(b)).

For the following definition we will denote monadic binding of a : M(A) with f : A→
M(B) by aB f := µM (M(f)(a)).

Definition 13. We say a functorial family of distance relations R−− defined on the range
of a monad M is monadic if the following two conditions hold:

• if RM(A)(a, b) and f : A→M(B), then RM(B)(aB f, bB f); and

• if f, g : A→M(B) and for every x : A, RM(B)(f(x), g(x))), then for any a : M(A),
RM(B)(aB f, aB g).

In other words, a functorial family of distance relations is closed under fmap, while a
monadic family of distance relations is closed under bind. Closure under return does not
need to be assumed, since distance relations are reflexive.

Once again, we have chosen to present this notion in a mathematical manner, since
we feel this gives a better understanding. Translating this formalisation into Agda is a
straightforward exercise, but introduces considerable clutter that obstructs the meaning.

4.2 Models of Game Logic

In chapter 2, we defined games in a purely syntactic manner, and we then defined a
syntactic distance relation on these games. We can regard this as our first example of
a model of game logic. However, this model gives us few tools to show that two games
are not ε-indistinguishable. As such, we would like to define other models, where such a
proof is easier to perform.

Since our construction of games was parametrised over a state type ST , so too we will
parametrise our construction of models of game logic. However, for convenience, we will
assume that ST has decidable equality. We have not encountered existing proofs that
relied on a state type with non-decidable equality, so we do not consider this a particularly
great limitation.

In the following, we define what it means to be a model, and then construct a cate-
gory of these models. The categorically disinclined reader may ignore everything except
Theorem 14, but we feel that this brief exposition highlights the structure of the matter
at hand.
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Definition 14. A model of game logic is a monad M together with a monadic distance
relation ≈Eε and a valuation function J K : CryptoExpr ST A → M A such that for any
games G and H , if G ≡Eε H , then JGK ≈Eε JH K.

This definition can be rephrased in categorical terms by considering the syntactic
model in a suitable category and taking the coslice:

Definition 15. Let Pre-MGL (pre-models of game logic) be the category whose objects
are monads M together with a monadic distance relation ≈Eε and whose morphisms are
monad morphisms that preserve ≈Eε .

Recall that given a category C and an object A of C, the coslice category (or under
category) A � C is the category where the objects are morphisms out of A (in C), and the
morphisms from an object φ : A→ B to ψ : A→ C are morphisms f : B → C such that
f ◦ φ = ψ.

Let us now enote the coslice category CE � Pre-MGL by MGL.

Theorem 16. A model of game logicM is an object in MGL.

Proof. LetM be a model of game logic. The underlying monad and the distance relations
give rise to an object in Pre-MGL. The valuation function gives a monad morphism
which, by definition of a model of game logic, preserves the distance relation.

On the other hand, letM be an object in MGL. Its codomain is a Pre-MGL object.
Regarding M as a valuation function, this gives rise to a model of game logic.

This result allows us to use standard theorems about coslice categories to analyse the
model theory of game logic. In particular, it tells us that the identity function on CE
is the initial object in MGL, meaning that our syntactic model is initial, as we would
expect. Furthermore, since Pre-MGL has a terminal object 1 (given by the constant
singleton monad), the unique map from CE to 1 gives us a terminal model. In general,
limits in MGL correspond to the limits of the underlying objects in Pre-MGL [Lan98].

4.3 List Model

Let us now regard a specific model based on the Dist monad [EK06], in which we can
compute whether two games over a type A with decidable equality are ε-indistinguishable.
This material has not been fully worked out in Agda, but the claims we make pertain to
finite objects (lists of rational numbers) and, as such, can be shown to hold constructively.1

Furthermore, the construction relies in several places on equality being decidable. This
is a serious issue. However, we think that the results we present here are worth stating
despite this. For now, we will assume that all types involved have decidable equality, and
analyse this assumption at the end of this section.

We represent a probability distribution over a type A as a list of pairs of elements of
A and their corresponding probabilities. Our two basic distributions, return a and coin,
can thus be represented as follows:

return : A → Dist A
return a = (a , 1 ) :: []

1For a partial implementation, c.f. Distribution/List and the modules it exports.
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coin : Dist Bool
coin = (false , 1/2) :: (true , 1/2) :: []

Any uniform distribution can be constructed by repeated calls to coin. We can define
bind as follows:

[] >>= f = []
((a , p) :: xs) >>= f = map (λ q → p · q) (f a) ++ (xs >>= f )

The resulting Dist monad structure is in fact isomorphic to the WriterT (Q , · · ·) List
monad. We use the latter in our implementation, as it allows for better separation of
concerns; in particular, the monad laws for Dist follow from the monad laws for Writer
and List. However, the difference is insignificant to us here, and the direct presentation
is clearer.

There is a slight complication that we need to address here. We require that an
distance relation on A identify every two elements of A at ε = 1. We would like to define
the ε-indistinguishability relation on distributions with the help of a distance function,
much as we did in section 3.1. However, this definition fails if we allow ‘distributions’
with negative elements, or ‘distributions’ that sum to more than 1.

In order to deal with this problem properly, we would need to have every distribution
carry around a proof of its validity. However, this is very inconvenient from a programming
perspective: these proofs must be maintained at all times, which makes it inconvenient
to perform recursion on the list structure. As such, it is more convenient to instead make
a separate type ValidDist xs that represents a proof that xs is a valid distribution. We
can then show that validity is preserved by bind. Our implementation lacks this feature,
but as we will see, the reliance on these assumptions is minor.

For the purposes of this section, we will continue to work with the Dist monad but
assume that any distribution xs has a corresponding ValidDist xs proof.

The concrete nature of Dist allows us to provide two further operations that are not
supported by CryptoExpr ST : computing the support of a distribution and the probability
of drawing a specific element.

Since we have assumed that all types we are dealing with have decidable equality, we
can define a function uniques : List A → List A that, given a list, returns the list of
unique elements it has. We can then define

support : Dist A → List A
support xs = uniques (map fst xs)

Computing the probability of sampling a particular element is a matter of finding all
occurences of this element and summing the corresponding probabilities:

sample : Dist A → A → Q
sample xs a = sum $ map snd $ filter (isYes ◦ a == · ◦ fst) xs

We can now verify that our definition of bind corresponds to the one defined in sec-
tion 3.1.

Theorem 17. For every xs : Dist A, f : A → Dist B and b : B, the following
expression is equal to sample (xs >>= f ) b:

sum $ map (λ a → · · · (sample xs a) (sample (f a) b)) (support xs)
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This is a result we have been unable to show in Agda. The difficulty lies in finding
a suitable value to perform induction on: in our attempts, neither xs nor support xs
provided enough structure to carry through the argument.

The monad Dist provides us with a suitable interpretation of probability, but it does
not allow us to interpret stateful computations. For this last functionality, we use the
StateT ST monad transformer.2 Since this is a monad transformer, coin lifts into it, and
we use the usual get-state and set-state to interpret the corresponding operations. As we
have seen in chapter 5, specifying these there base operations extends to a unique monad
morphism from CryptoExpr ST to StateT ST Dist.

As above, we assume that given g : StateT ST Dist A, for any st : ST , g st is a valid
probability distribution with a corresponding proof ValidDist (g st).

We can now define a notion of distance between distributions. We make use of a union
function that merges two lists and removes duplicates.

distance : (xs ys : Dist A) → Q
distance xs ys = 1/2 · sum (map f sup)

where sup = union (support xs) (support ys)
f a = sample xs a − sample ys a

We say that g1 ≈Eε g2 iff for every st : ST , distance (g1 st) (g2 st) 6 ε. Unfortu-
nately, we have not shown that this relation is a distance relation within Agda, nor that it
is preserved under the valuation. Since these statements can be shown constructively in
a classical phrasing of this problem, and the statements we make are about finite objects,
we expect the proofs to be formalisable in Agda as well.

Throughout this section, we have assumed that every type has decidable equality. This
is, of course, not the case. It is not clear how we can best deal with this. The following
trick allows us to nevertheless define the ≈Eε relations: for g1 and g2 in StateT ST Dist A,
we say that g1 ≈Eε g2 iff for every st : ST and every proof that A has decidable equality,
distance (g1 st) (g2 st) 6 ε. This is a type that behaves as our earlier definition
for decidable A. However, we cannot prove properties such as congruence under fmap if
indistinguishability is defined this way.

Another option is to only define indistinguishability for result types that have decid-
able equality. This, however, means that this is no longer a model of game logic.

Yet another option is to require finiteness of the state type and regard our StateT ST Dist
functor as an endofunctor on the category of sets with decidable equality. This requires
the additional assumption of functional extensionality. At present, this is the cleanest
solution, but it is not clear whether all games we may want to express can be expressed
this way.

4.4 Future Work

Throughout this chapter, it is clear that our work on the list model is incomplete. We have
intentionally chosen not to prioritise this aspect of the development, since our primary
concern was with the development of the logic of games. As we have seen, indistinguisha-
bility can be used both when proving that a game does and that a game does not have

2c.f. Utility/State/Normal.
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a winning strategy, so proofs that two games are not indistinguishable are of less inter-
est. However, a completely formalised model would nevertheless put the logic on firmer
footing.

In this chapter, we have considered an approach where probability is formalised using
lists. This is not the only possibility, and has the considerable drawback that it only works
for distributions with finite support. Another approach is to use the continuation monad
(A → Q) → Q. Work in this direction has been done by Ramsey and Pfeffer [RP02]. Of
course, our general formulation of the notion of a model allows for the posing of questions
such as the nature of the product of two models.

Finally, the focus of this chapter has been on models that satisfy soundness properties
with respect to our logic. We have not given any attention to questions of completeness.
What extensions would have to be made to our axioms to make the list model complete,
for example, would be an interesting further research question.
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Chapter 5

Command Structures

In chapter 2, we saw the definitions of CryptoExpr and OracleExpr and their corresponding
functor and monad instances, and remarked that they contain considerable duplication.
In this chapter we will look at how the free monad construction can be performed in a
parametrised way, allowing us to automatically generate these types and functions over
them by specifying the operations that we want them to support.

This chapter is primarily of interest as a guide to the accompanying code. The ideas
presented are not new; they are laid out by McBride [McB15]. We wish to nevertheless
present these constructions in some depth, as this serves as a good introduction to the
more general case we will consider in section 6.5.

5.1 Definition

We have seen the following pattern in CryptoExpr and OracleExpr: one constructor is a
Return, while the others take a command and then a continuation to handle a response
to that command. We start by capturing the structure of commands and responses:1

record CmdStruct : Set1 where
field

Command : Set
Response : Command → Set

5.2 Free Monads

Given a command structure C , the corresponding free monad should have a constructor
for Return and a constructor for each command, taking a continuation for its response.
We can encode this structure directly in Agda.2

data FreeMonad : Set → Set where
Return-FM : A → FreeMonad A
Invoke-FM : (c : Command C ) → (Response c → FreeMonad A) → FreeMonad A

1c.f. Syntactic/CommandStructure and Interpretation/Complete/InteractionStructure.
2c.f. Syntactic/CommandStrcuture again, as well as Interaction/Complete/FreeMonad.
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The usual catamorphism construction [MFP91] gives us a uniform way to operate on
these values:

CommandAlgebra : Set → Set
CommandAlgebra R = (c : Command C ) → (Response c → R) → R

fold-algebra : CommandAlgebra R → (A → R) → FreeMonad A → R
fold-algebra alg f (Return-FM a) = f a
fold-algebra alg f (Invoke-FM c cont) = alg c (λ r → fold-algebra alg f (cont r))

Note that we can regard Invoke-FM as an algebra with result FreeMonad R. We will
denote this algebra by id-Alg. The instances for functor, applicative, and monad now
follow immediately:

fmap-FM : (A → B) → FreeMonad A → FreeMonad B
fmap-FM f = fold-algebra id-Alg (Return-FM ◦ f )

ap-FM : FreeMonad (A → B) → FreeMonad A → FreeMonad B
ap-FM mf ma = fold-algebra id-Alg (flip fmap ma) mf

bind-FM : FreeMonad A → (A → FreeMonad B) → FreeMonad B
bind-FM m f = fold-algebra id-Alg f m

Note that return is already defined by Return-FM.
Put together, this allows us to extend our games with new operations without having

to define the monadic structure each time. This is of little theoretical interest, but makes
for a more straightforward implementation.

5.3 Example: Games

Let us now consider how we can express our constructions from chapter 2 using this
approach. We will start by taking a simplistic but straightforward approach, and then
refine it in section 5.5 to allow for greater flexibility. To begin, we can define the type of
commands a CryptoExpr supports, and the corresponding responses, to get the CryptoExpr
monad:3

data CryptoCmd : Set where
Uniform : N → CryptoCmd
GetState : CryptoCmd
SetState : ST → CryptoCmd

CryptoCS : CmdStruct
Command CryptoCS = CryptoCmd
Response CryptoCS (Uniform n) = BitVec n
Response CryptoCS GetState = ST
Response CryptoCS (SetState ) = >
CryptoExpr : Set → Set
CryptoExpr = FreeMonad CryptoCS

Defined this way, we get the functor and monad instances of CryptoExpr for free. We
can repeat this construction for OracleExpr by adding two new commands:4

3c.f. Syntactic/CryptoExpr.
4c.f. Syntactic/OracleExpr, but note that this is not the approach taken there.
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data OracleCmd : Set where
Uniform : N → OracleCmd
GetState : OracleCmd
SetState : ST → OracleCmd
InitOracle : OracleState → OracleCmd
CallOracle : OracleArg → OracleCmd

OracleCS : CmdStruct
Command OracleCS = OracleCmd
Response OracleCS (Uniform n) = BitVec n
Response OracleCS GetState = ST
Response OracleCS (SetState ) = >
Response OracleCS (InitOracle ) = >
Response OracleCS (CallOracle ) = OracleResult

OracleExpr : Set → Set
OracleExpr = FreeMonad OracleCS

Being able to define OracleExpr this way already saves us a considerable amount of
duplication compared to our construction in chapter 2, and we could choose to stop here
and define the gluing of oracles by hand, as we had done earlier. However, we may
note that OracleCmd is an extension of CryptoCmd. This can be used to not only obtain
a yet more compact presentation, but also give a more elegant definition of the oracle
implementation type Oracle.

5.4 Combining Command Structures

There are two questions we need to tackle in order to define OracleExpr in a more compos-
able way: how can we combine two command structures in one, and how can we express
the implementation of one command structure in another?

We define a binary operation ]CS on command structures that represents taking the
disjoint union of their commands, with the responses to each command staying unchanged.
We can express this directly in Agda:5

]CS : (C1 C2 : CmdStruct) → CmdStruct

Command (C1 ]CS C2) = Command C1 ] Command C2

Response (C1 ]CS C2) (left c) = Response C1 c

Response (C1 ]CS C2) (right c) = Response C2 c

If we regard FreeMonad C1 A as a term with result A that may use commands from
C1, then FreeMonad (C1 ]CS C2) A is a term with result A that may use commands from
both C1 and C2. This, therefore, solves the first half of our problem. For the future, we
remark that ]CS has an identity, namely the command structure with no commands:

0CS : CmdStruct

Command 0CS = ⊥
Response 0CS ()

5c.f. Syntactic/CSConstructs and Interaction/Complete/InteractionStructure.
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For the second half, we need to ask what an interpretation of C1 in C2 means. A
simple approach would be to map the commands of C1 to the commands of C2 and map
the responses in the other direction,6 but this would be too restrictive: an implementation
could consist of only a single command, rather than an arbitrary monadic term. Instead,
to implement a command structure C1 in terms of a command structure C2, we send
every command c of C1 with response type R c to a term in the free monad of C2 with
result R c. In code, this is given as7

Impl : (C1 C2 : CmdStruct) → Set
Impl C1 C2 = (c : Command C1) → FreeMonad C2 (Response C1 c)

This choice is in line with the development performed by McBride [McB15] on free
monads, and in fact every such implementation of C1 in terms of C2 gives rise to a
unique monad morphism from FreeMonad C1 to FreeMonad C2. Moreover, we can define
a function of the following type:

parallel-impl : Impl C1 C2

→ Impl D1 D2

→ Impl (C1 ]CS D1 ) (C2 ]CS D2 )

We invite the reader to go back and check that the Oracle type defined earlier is in
fact, up to isomorphism, an example of an implementation. In the next section, we will
make this explicit.

5.5 Example: Oracle Implementations

Previously, we defined CryptoCS and OracleCS entirely independently. However, the latter
is an extension of the former. Using the ]CS operation defined above, we can make this
explicit in our Agda code:8

data OracleCmd : Set where
InitOracle : OracleState → OracleCmd
CallOracle : OracleArg → OracleCmd

OracleBaseCS : CmdStruct
Command OracleBaseCS = OracleCmd
Response OracleBaseCS (InitOracle ) = OracleResult
Response OracleBaseCS (CallOracle ) = >
OracleCS : CmdStruct

OracleCS = CryptoCS ]CS OracleBaseCS

OracleExpr : Set → Set
OracleExpr = FreeMonad OracleCS

6Although we skim over this idea, this is in fact a very useful notion, as it gives rise to a category of
command structures. Unfortunately, while being undeniably interesting, this category has not proven to
be useful in any concrete way.

7c.f. Syntactic/CommandStructure and Interaction/Complete/Implementation. The latter is more
faithful to this presentation.

8c.f. Syntactic/OracleExpr.
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Defining OracleExpr this way gives us more information than our initial definition: we
have now made explicit that in order to implement an oracle in terms of our base language,
we must define a term of type Impl OracleBaseCS CryptoCS. By using parallel-impl above,
we can extend this to an Impl OracleCS CryptoCS, giving rise to a function OracleExpr A →
CryptoExpr A.

There is a problem with this approach, namely in the usage of state. In section 2.2,
we had allowed for two state types, AST and OST , for the adversary and oracle state
respectively. However, here we have used the same type ST , and the implementation of
OracleCS in terms of CryptoCS proposed above would merge the operations. This is not
the expected behaviour.

We can rectify this by parametrising CryptoCS by the type of the state, and then
showing that there is an implementation of CryptoCS AST ]CS CryptoCS OST in terms
of CryptoCS (AST × OST ). With this change in place, the composition of implemen-
tations corresponds to the eval function defined in section 2.2. However, unlike in the
earlier development, we have been left with no ad-hoc choices once we specified what
the permitted commands were. We could use this technique to add further players, for
example to specify the adversary as a player explicitly, or to modify the oracle interface,
and the effects of these changes would be propagated automatically.

5.6 Multiplayer Systems

In the example above, we have seen how we can express the relationship between the
adversary and the oracle explicitly. We would like to generalise this notion to be able
to represent an arbitrary N -player system, where player i may make use of the public
interface of player j iff i < j. This makes it possible to specify the games in a more
modular manner. Moreover, we conjecture that this approach can give rise to a uniform
way of extending the notion of ε-indistinguishability on games to a similar notion on such
larger systems.

Let us start by considering the following example: how would we represent the IND-
CPA game as a four-player system, the four players being the challenger, encryption
scheme, adversary, and oracle? It may seem strange to include “encryption scheme”
in this list, but being able to do so easily is an important benefit of this approach. By
phrasing the problem this way, we can perform all the gluing of players at once, simplifying
the system as a whole.

Each of the four players has the basic core language CryptoCS, parametrised by their
state type. The challenger and encryption scheme are stateless, while the adversary has
state AST and the oracle has state OST . The interfaces are as follows:9

Command ChallengerCS = >
Response ChallengerCS tt = Bool

data EncSchemeCmd : Set where
keygen : EncSchemeCmd
encrypt : K → PT → EncSchemeCmd

Command EncSchemeCS = EncSchemeCmd
Response EncSchemeCS keygen = K

9c.f. Interaction/Complete/Example.
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Response EncSchemeCS (encrypt ) = CT

data AdversaryCmd : Set where
gen-messages : AdversaryCmd
guess-coin : CT → AdversaryCmd

Command AdversaryCS = AdversaryCmd
Response AdversaryCS gen-messages = PT × PT
Response AdversaryCS (guess-coin ) = Bool

We have already seen the definition of OracleBaseCS, which defines the oracle. We
will refer to it as OracleCS in this section for the sake of uniformity.

The command structures are as we would expect: the possible actions and their
arguments are captured in the command data structures, and the responses are the result
types of these action. Having phrased it this way, we see that the types EncScheme and
Adversary ST we defined in chapter 1 are in fact equivalent to

∀{st} → Impl EncSchemeCS (CryptoExpr st)

and Impl AdversaryCS (CryptoExpr ST ) respectively. This supports our four-player ap-
proach: types that we had to write out explicitly in the past are now generated for us.

Note that the command structure for the challenger has a single command that rep-
resents running the entire game. Represented this way, the game itself is an implemen-
tation, rather than simply a CryptoExpr term. This suggests that the right notion of
ε-indistinguishability should be in terms of implementations.

The implementations we need to have a complete description of the game are as
follows:

• an implementation of the oracle in terms of the base language;

• an implementation of the adversary in terms of the oracle and the base language;

• an implementation of the encryption scheme in terms of the base language; and

• an implementation of the challenger in terms of the encryption scheme, adversary,
and the oracle.

Since we choose the encryption scheme, it is not a problem if the encryption scheme
also has access to the adversary and the oracle: we can simply consider encryption schemes
that make no use of this access. In code, the above thus becomes

Impl OracleCS (CryptoCS OST )

Impl AdversaryCS (CryptoCS AST ]CS OracleCS)

Impl EncSchemeCS (CryptoCS > ]CS AdversaryCS

]CS OracleCS)

Impl ChallengerCS (CryptoCS > ]CS EncSchemeCS

]CS AdversaryCS

]CS OracleCS)

We will now define a structure that, given a list of interfaces and their corresponding
base languages, represents a list of implementations like the above. Such an “N -player
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implementation” is either an empty list, or an implementation of the first interface in
terms of the first base language and the other interfaces, together with an N -player10

implementation of the tails.11

sumCS : List CmdStruct → CmdStruct

sumCS = foldr ]CS 0CS

data N -Impl : (infc base : List CmdStruct) → Set where
[] : N -Impl [] []

:: : {C1 D1 : CmdStruct} {CS DS : List CmdStruct}
→ (Impl C1 (D1 ]CS sumCS CS ))
→ N -Impl CS DS
→ N -Impl (C1 :: CS ) (D1 :: DS )

Given an N -Impl CS DS , we can construct an Impl (sumCS CS ) (sumCS DS ), exactly
as we wanted: in the recursive case, when CS is of the form C1 :: CS ′ and DS is
of the form D1 :: DS ′, this can be done by implementing C1 ]CS CS ′ in terms of
D1 ]CS CS ′ ]CS CS ′ using the first implementation, then merging the two occurences
of CS ′, and finally implementing CS ′ in terms of DS ′ by recursion.

With this result, we have developed a general method of constructing types such as
EncScheme, Adversary, and Oracle in a manner that is independent of the number of
players involved. While not essential for any specific example, we feel this would be an
important part of any larger system that made use of command structures. This is a
direct generalisation of the constructs in chapter 2.

5.7 Future Work

While the notion of an N -player implementation is helpful in constructing games, by
itself it does not solve our problem of reasoning about games. For this, a compara-
ble generalisation of the material of chapter 3 would be needed. Specifically, a way to
automatically generalise a notion of ε-indistinguishability from the base language to an
N -player implementation, would be invaluable.

The primary difficulty here lies in the fact that a player may make use of a later
player’s interface multiple times, making a slight change in the implementation of the
latter compound. As we have seen in section 2.3, limiting the number of times an operation
is used is possible but involves constructing appropriate proof terms, which would make
the proofs even more verbose.

10Or, perhaps more correctly, (N − 1)-player.
11The full implementation of this can be found in Interaction/Complete/Combine. Due to the ver-

bosity, we only present the key ideas here.
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Chapter 6

Indexed Monads

Let us return to the problem of enforcing an upper bound on the number of times the
adversary may query the oracle. In section 2.3 we have seen a way of imposing such
a bound by defining an additional data structure which can only be constructed if the
bound is respected. In this chapter, we will explore an alternative approach that makes
use of McBride’s notion of an indexed monad [McB11].

A major frustration with the usage of an additional datatype for imposing a boundary
on the adversary is that we must explicitly construct the proof, despite its structure being
determined by the structure of the game it refers to. We can avoid this by encoding the
same proof information in the OracleExpr type itself. Fixing an ST type for the (adversary)
state, we may imagine the following datatype to work:1

data OracleExpr : N → Set → Set where
Return : A → OracleExpr k A
Uniform : . . . → (. . . → OracleExpr k A) → OracleExpr k A
GetState : . . . → (. . . → OracleExpr k A) → OracleExpr k A
SetState : . . . → (. . . → OracleExpr k A) → OracleExpr k A
InitOracle : . . . → (. . . → OracleExpr k A) → OracleExpr k A
CallOracle : . . . → (. . . → OracleExpr k A) → OracleExpr (suc k) A

Indeed, a term of type OracleExpr k A can make at most k calls to the oracle. However,
this näıve attempt fails to be a monad: the CallOracle case of bind does not go through.
This is to be expected, since binding may change the number of oracle calls performed.
As such, we need to extend our notion of a monad to allow terms to have an index, and
allow the bind to modify this index.

6.1 Definition

In functional programming, we are used to the term monad referring specifically to mon-
ads on the category of types and terms of the language we are using. However, the

1We have not expressed this type explicitly, but Interaction/Indexed/Memory gives a simpler example
based on these ideas.
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mathematical definition of monad can refer to endofunctors on any category. The follow-
ing is simply a specialisation of this definition to the category of types and terms indexed
by some type S .

Definition 18. Given any type S , the category SetS is the category with functions
S → Set as its objects and S -indexed families of functions as its morphisms.

We define the morphisms in Agda as follows:

 : (S → Set) → (S → Set) → Set
A B = ∀ {s } → A s → B s

Given a function (S → Set) → (S → Set), we can regard it as a functor if it has a
corresponding action on morphisms. This gives rise to the notion of an S -indexed functor
on Set, or endofunctor on SetS , as follows:2

record IxFunctor {S : Set} (F : (S → Set) → (S → Set)) : Set1 where
field

fmapi : (A B) → (F A F B)

Together with the usual notion of a natural transformation, this gives rise to the
category of endofunctors and natural transformations between them. The notion of an
indexed monad now arises naturally:3

record IxMonad {S : Set} (M : (S → Set) → (S → Set)) : Set1 where
field

overlap {{ ixfunctor-super}} : IxFunctor M

returni : A M A

joini : M (M A) M A

Just as with normal monads, the bind operation is of more use if our goal is to write
programs. It can be defined in terms of fmapi and joini just as in the non-indexed case:

>>=i : M A s → (A M B) → M B s

m >>=i cont = joini (fmapi cont m)

This type signature looks a lot more familiar if we flip the order of the arguments to
get (A M B) → (M A → M B).

A useful intuition is that a term m : M A s is a computation that starts at state
s and ends at some (unknown) state s ′. Since s ′ is not known, the continuation must
work for any s ′. This is essential to avoid the problem we encountered when we tried to
implement bind for OracleExpr at the begining of the chapter. However, on the face of it,
this seems very restrictive: in our example, this means that the continuation must work
no matter how many oracle queries may still be made. Can it query the oracle at all?

Fortunately, the Atkey construction [McB11] can be used to work around this limita-
tion.

2c.f. Algebra/Indexed/Functor.
3c.f. Algebra/Indexed/Monad.
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6.2 The Atkey Construction

An important feature of indexed monads is that the type of the result may depend on the
index. That is, unlike our definition of OracleExpr above, the type of an indexed monad
is (S → Set) → S → Set rather than S → Set → Set. This means that in the call
m >>=i f , the type of values f operates on depends on the index at which it is used.

The original Atkey construction [McB11] makes use of this by constructing a type
that is empty except at one selected index. This can be defined as follows:4

data Atkey (A : Set) : S → S → Set where
V : A → Atkey A s s

Suppose we have an indexed monad M , a term m : M (Atkey A s ′) s, and a
continuation cont : A → M B s ′. We can use bind as follows:

m >>=i λ {(V a) → cont a }

In the context of the lambda, we know that the only value Atkey A s ′ s ′′ can attain is
V a, and thus s ′ ≡ s ′′. The case we provided typechecks, since f a : M B s ′. Since all
other cases are empty, we do not have to write them out. The expression as a whole has
type M B s.

There are a number of variations on this construction. We will explore one generali-
sation in particular that will come in useful later.

Suppose that we have a monadic computation that starts at an index s and that yields
a value of type A. How can we express that given the value a : A returned, we know the
state s ′ that the computation ended at? For example, suppose that we have an oracle
that may refuse queries: it returns a value of type Maybe OracleResult. If the query was
refused, the number of uses does not go down. We know that if we query the oracle at
state suc k , we end up in either state k (if we get just x ) or suc k (if we get nothing). We
thus want an indexed type which contains values of the form just x at index k and the
value nothing at index suc k , and is empty elsewhere.

We can solve this using a dependent Atkey construction as follows, where f : A → S
is the function that indicates the ending state for a given value a : A.

data DepAtkey (A : Set) (f : A → S ) : S → Set where
DepV : (a : A) {s : S } → (pf : s ≡ f a) → DepAtkey A f s

Consider the expression m >>=i λ {(DepV a refl) → ?}. Matching on the pf
argument lets us rewrite the type of the hole to M B (f a). It follows that a continuation
to a term m : M (DepAtkey A f ) s corresponds to a function (a : A) → M B (f a).

Interestingly, this type arises as the left Kan extension of the functor const A : A →
Set along f : A → S , where A and S are seen as discrete categories.

6.3 Oracle Query Bounds

Let us return to our motivating example. We can define the OracleExpr type from above
as follows:

4c.f. Algebra/Indexed/Atkey.
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data OracleExpr (A : N → Set) : N → Set where
Return : A k → OracleExpr A k
Uniform : . . . → (. . . → OracleExpr A k) → OracleExpr A k
GetState : . . . → (. . . → OracleExpr A k) → OracleExpr A k
SetState : . . . → (. . . → OracleExpr A k) → OracleExpr A k
InitOracle : . . . → (. . . → OracleExpr A k) → OracleExpr A k
CallOracle : . . . → (. . . → OracleExpr A k) → OracleExpr A (suc k)

The definitions of fmap, bind, and return all proceed like their non-indexed counter-
parts. However, the smart constructors need a change, since Return has the wrong type
to be a continuation for the other constructors. Instead, we use the Atkey construction:

uniform : N → OracleExpr (Atkey N k) k
uniform n = Uniform n λ v → Return (V v)

The other smart constructors are similar, except that call-oracle has type OracleArg →
OracleExpr (Atkey OracleResult k) (suc k) to indicate that it uses up one call to the oracle.

Effectively, we have now merged the call-counting portion of BoundedOracleUse from
section 2.3 into the OracleExpr type. One big benefit of this merge is that we retain this
information under binding without having to separately manipulate a proof term. We can
also extend this system to track other properties, such as how many bits of randomness
are necessary, whether the state has been accessed, and whether the oracle has been
initialised.

Unfortunately, this solution also has some considerable drawbacks. While we can keep
track of many things in this way, we cannot easily choose to track some things and ignore
others, and the increasing number of type parameters makes the code hard to read. We
will expand on what might be done about this in section 6.7 and chapter 7.

6.4 Player State Types

Indexed monads can play another role in the development of games. Recall that we had
to introduce separate notions of indistinguishability and result-indistinguishability, since
the initial and final state of the game are not of interest to us when deciding who won.
This is rather unfortunate, as the logic of indistinguishability is far more straightforward.

Using indexed monads we can avoid this problem by allowing the players to mod-
ify the type of their state during execution. This allows us to specify that a game
starts and ends with state type >, making the notions of indistinguishability and result-
indistinguishability coincide. Within it, the adversary may switch to a different type of
state to store whatever information it needs, as long as it sets the type back to > when
it is done.

We would like to define CryptoExpr as follows:

data CryptoExpr : (Set → Set) → Set → Set where
Return : A s → CryptoExpr A s
Uniform : (n : N) → (BitVec n → CryptoExpr A s) → CryptoExpr A s
GetState : (s → CryptoExpr A s) → CryptoExpr A s
SetState : s ′ → (> → CryptoExpr A s ′) → CryptoExpr A s
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Unfortunately, this definition does not type-check: the Return constructor is polymor-
phic in s : Set, and so CryptoExpr A s has type Set1, not Set. This problem can be
remedied by giving CryptoExpr the type (Set → Set1) → Set → Set1, but this is very
impractical. For one, since Agda does not have universe cumulativity, such an approach
requires our Atkey constructions to also be in Set1 (or universe-polymorphic), and the
code quickly becomes unmaintainable.

A more manageable solution is to define a universe U and an evaluation function
eval : U → Set, and let CryptoExpr be a U -indexed monad. This has the added benefit
of letting us impose constraints on state types by our choice of U : for example, we can
ensure that all state types have decidable equality.

A natural question to ask is whether the state monad transformer we used in order to
define the list interpretation can be generalised to this context. This is indeed the case:
although it has the same universe size issues as CryptoExpr, fixing an S -indexed monad
M , some custom universe U , and a function eval : U → Set we can define:5

IxStateT : (U × S → Set) → U × S → Set
IxStateT A (u , s) = eval u → M (λ s ′ → Σ U λ u ′ → eval u ′ × A (u ′ , s ′)) s

This code can be a little confusing due to the overloaded meaning of ‘state’: on the
one hand, it refers to the pair u , s that we have on the type level, and on the other to
the values of type eval u that we pass around on the value level. To disambiguate, we
will refer to the former as the ‘index’ and to the latter as the ‘message’.

The definition of IxStateT can then be expressed as follows: a term of IxStateT A (u , s)
is a function that takes a message of type u and returns a monadic action in M at index
s which has, as result value at index s ′, a new message type u ′, a message of that type,
and a value of type A (u ′ , s ′). If you squint, this resembles the type U → M (U , A)
of a non-indexed state monad transformer.

The definition of modify is less complicated and makes it clear why this approach
works:

modify : (eval u → eval u ′) → IxStateT (Atkey (eval u ′) (u ′ , s)) (u , s)
modify f v = return (u ′ , fv , V fv))

where fv = f v

Here, v is the message. We apply the function f to it, and then store the new message
type, the new message, and give as result the new message wrapped in an Atkey. The
definitions of get and set can, fortunately, be derived from this, and the definitions of
bind and return are straightforward.

With this development in place, we believe that the interpretations described in chap-
ter 4 can be replicated in this context, while resolving entirely the question of result-
indistinguishability in a straightforward manner.

6.5 Interaction Structures

In chapter 5, we saw a way of encoding the command-response structure in a way that
allowed us to generate the corresponding free monad automatically. Interaction structures
allow us to do the same in the indexed context.

5c.f. Utility/State/Indexed/FromUniverseTransformer and other files in that directory.
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Let S be our index type. An interaction structure consists of a type of commands
Command s for each s : S , a type of responses Response c for each command c :
Command s, and a next state next c r for each c : Command s and r : Response c.

We can implement this in Agda:6

record IntStruct (S : Set) : Set where
field

Command : S → Set
Response : {s : S } → Command s → Set
next : {s : S } (c : Command s) (r : Response c) → S

An interaction structure over a state type S gives rise to a free indexed monad over
S as follows:7

data FreeMonad (IS : IntStruct S ) : (S → Set) → (S → Set) where
Return-FM : A s → FreeMonad IS A s
Invoke-FM : (c : Command IS s) → ((r : Response IS c)

→ FreeMonad IS A (next IS c r))
→ FreeMonad IS A s

This follows the usual pattern we have seen before: to invoke a particular operation,
we specify it (with all parameters) and then we provide a continuation that handles the
possible responses. The fmap and bind functions are also straightforward generalisations:

fmap-FM : A B → FreeMonad IS A FreeMonad IS B
fmap-FM f (Return-FM a) = Return-FM (f a)
fmap-FM f (Invoke-FM c cont) = Invoke-FM c λ r → fmap-FM f (cont r)

bind-FM : A FreeMonad IS B → FreeMonad IS A FreeMonad IS B
bind-FM f (Return-FM a) = f a
bind-FM f (Invoke-FM c cont) = Invoke-FM c λ r → bind-FM f (cont r)

We have flipped the arguments of bind-FM to emphasise the indexed structure.

6.6 Multiplayer Systems

Just like in the non-indexed case, we can consider the question of how to create an
N -player implementation. The essential construction does not change, but we have to
redefine the implementation and the ]CS operation in this context.

For the definition of Impl, we need the DepAtkey construction we defined earlier. An
important note here is that the structure we are interpreting may be indexed over a
different set than the structure we are interpreting it in. For this purpose we take the Sf
map, which relates states in the one to states in the other.8

Impl : (IS : IntStruct S1) (M : (S2 → Set) → S2 → Set) (Sf : S1 → S2)
→ Set

6c.f. Interaction/Indexed/InteractionStructure.
7c.f. Interaction/Indexed/FreeMonad.
8c.f. Interaction/Indexed/Implementation.
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Impl IS M Sf
= (c : Command IS s) → M (DepAtkey (Response IS c) (Sf ◦ next IS c)) (Sf s)

Note that if both S1 and S2 are singletons then this definition is equivalent to the
definition of Impl from chapter 5.

The definition of ]CS in this context is more complicated. The problem is that in
general, while C ]CS C can be implemented in terms of C , this does not carry over
into the indexed case. This can be resolved by defining two different constructions on
interaction structures, one of which is used for combining interfaces and the other for
combining base languages.

Let us start with the construction for base languages. The essential property we use
is that our base languages do not in any way influence each other’s state. This allows us
to use the following definition, which appears to be a straightforward generalisation of
]CS :9

⊕ : IntStruct S1 → IntStruct S2 → IntStruct (S1 × S2)
Command (IS1 ⊕ IS2) (s1 , s2) = Command IS1 s1 ] Command IS2 s2
Response (IS1 ⊕ IS2) {s1 , s2} (left c) = Response IS1 c
Response (IS1 ⊕ IS2) {s1 , s2} (right c) = Response IS2 c
next (IS1 ⊕ IS2) {s1 , s2} (left c) r = next IS1 c r , s2
next (IS1 ⊕ IS2) {s1 , s2} (right c) r = s1 , next IS2 c r

Just like the ]CS construction, this construction has a unit, and we can fold over
this construction. We are cheating slightly here: in reality, the argument to sumIS is not
simply a list, since it may store elements of type IntStruct S for any S . We correct this
in the code, but the difference is not essential here.

1IS : IntStruct >
Command 1IS tt = ⊥
Response 1IS {tt} ()

next 1IS {tt} ()

sumIS = foldr ⊕ 1IS

The ⊕ construction defined above can be seen as taking two interaction structures and
combining their state orthogonally, so that commands that influence one state component
do not influence the other. However, this is not how players interact: if the oracle may
be queried n times and an adversary command uses k of these queries, the challenger
must be aware of this. Essentially, the state of every player must include the state of all
players that they can issue commands to. To capture this notion, we introduce a second
operation on interaction structures denoted ⊕/∼ . It can be seen as the ⊕ operation
from above with a quotient applied to the state space. Again, we define a fold over this
operation as well.10

⊕/∼ : IntStruct (S1 × S2) → IntStruct S2 → IntStruct (S1 × S2)
Command (IS1 ⊕/∼ IS2) (s1 , s2) = Command IS1 (s1 , s2) ] Command IS2 s2
Response (IS1 ⊕/∼ IS2) {s1 , s2} (left c) = Response IS1 c

9c.f. Interaction/Indexed/InteractionStructure.
10c.f. Interaction/Indexed/QuotientTensor.
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Response (IS1 ⊕/∼ IS2) {s1 , s2} (right c) = Response IS2 c
next (IS1 ⊕/∼ IS2) {s1 , s2} (left c) r = next IS1 c r
next (IS1 ⊕/∼ IS2) {s1 , s2} (right c) r = s1 , next IS2 c r

sumIS
/∼ = foldr ⊕/∼ 1IS

With these choices in place, we can construct N -player implementations as we did
before. The Agda formulation is not enlightening, so we will not present it here.11 The
essential point is that just as we could use an implementation of C1 in terms of D1 and
sumCS CS and an implementation of sumCS CS in terms of sumCS DS to obtain an
implementation of C1 ]CS sumCS CS in terms of D1 ]CS sumCS DS in the command
structure case, here we achieve the same result, with the important distinction that we
now have two ways of combining interaction structures. The choice that has worked
for our purposes is as follows: an implementatino of C1 in terms of D1 ⊕ sumIS

/∼ CS

and an implementation of sumIS
/∼ CS in terms of sumIS DS gives an implementation of

C1 ⊕/∼ sumIS
/∼ CS in terms of D1 ⊕ sumIS DS .

This gives rise to the same kind of N -player implementation that we already discussed
in the case of command structures in chapter 5. In fact, this saves us a considerable
amount of work: the generalisation of simple games to games with oracles follows in its
entirety from this construction. However, we also run into the same issue: we do not yet
know how to generalise ε-indistinguishability from a definition on the base language to
a general definition. As such, just like in the previous case, the proofs of equality will
necessarily be low-level compared to the expressions of the games themselves.

6.7 Future Work

Indexed monads are a very powerful tool, but their verbosity and lack of modularity
makes them unappealing to use directly. In section 6.3 we have seen how they can be
used to restrict what games we consider well-formed. If we have two such constraints, we
have no way to express them separately and then enable one or both depending on our
present needs. It would be interesting to see whether such a system could be developed.
This could also lead to a more concise formulation of what effect a monadic action has
on the index.

Also in the oracle example, we glossed over the fact that the number of permitted calls
to the oracle does not ever increase. As such, given an m : OracleExpr A k we only need
an f : A i → OracleExpr A i that works for i ≤ k, not one that works for every i. This
is explored by Visser et al. [BPRT+17], and appears to rely on a categorical structure on
the index set. Expressing the conditions and resulting definition of bind explicitly could
be of interest.

11c.f. Interaction/Indexed/Telescope.
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Chapter 7

A Language for Cryptography

In the course of the last chapters, we have developed a way of representing cryptographic
games as monadic action, developed an equational theory of indistinguishability between
games, and shown how we can extend and simplify this with the help of indexed monads.
We have also seen that this construction can be done in a modular manner using com-
mand or interaction structures. One question remains: what must be done to turn these
developments into a practical system for reasoning about cryptography?

7.1 A Complete System

There are a number of questions that fall within the scope of this thesis, but that have not
been able to resolve due to time constraints. We have already discussed them in greater
depth at the end of the relevant chapters, but let us recap the key points.

In chapter 3, we defined the notions of an ε-normal form and an (ε, st)-normal form
for CryptoExprs. However, we did not prove a similar result for OracleExprs. This is
unfortunate, as many game-playing proofs rely on a transformation to this kind of normal
form [Sho04].

A planned topic for chapter 3 was the “identical until bad” proof technique [Sho04],
which states that if games X and Y are different only in the case of a bad event F
happening, then X and Y are ε-indistinguishable, with ε being the probability of F . This
is a very useful proof step, but we have not found a way to express it in Agda. The
problem is that the bad event F is often implicit in the game: for example, the event
may be “two calls to uniform n return the same bitstring” or “the adversary finds a hash
collision.” Instrumenting the game code to state when F occurs can be a non-trivial
problem even in concrete cases; a general solution would be of great value.

In chapter 5, we developed the N -player implementation construction and showed how
we can systematically fold such an implementation into a single game. If an ε-relation
like indistinguishability was defined on this game, then this fold gave rise to an ε-relation
on the whole implementation. However, this induced relation is inconvenient to work
with: we would like to be able to express our indistinguishability proofs in terms of the
implementations themselves, and then show via a lemma that the indistinguishability of
their folds follows. The difficulty lies in striking a balance between what can be shown
and how much bookkeeping this requires.
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In chapter 4, we present a list-based model of game logic. We have constructed the
carrier of this model in Agda, but we have not verified all of the properties we require
of it. The proofs involved are typically not hard conceptually, but require many steps to
formulate in Agda. This suggests that a proof system for arguments about lists may be
an interesting project in its own right.

Another important issue with this model is the treatment of types that lack decidable
equality. This issue is made particularly frustrating by the fact that in cryptography,
our problem domain, every value we may want to discuss can be represented as a bit-
string; as such, the question of types without decidable equality does not arise in practice.
Nevertheless, it is a blemish in our theory.

The last issue worth mentioning is that our model theory is specified in the non-indexed
case. We see no fundamental obstacles to generalising the argument to the indexed case,
but we have not done so ourselves.

7.2 Further Possibilities

The greatest obstacle in using the ideas we have presented is the verbosity. Even in the
non-indexed case, expressing the indistinguishability of two games will typically involve
multiple applications of the fact that indistinguishability is a congruence under bind. In
the indexed case, the situation is even worse, as the indices may also need to be explicitly
specified.

We expect that reflection could be used to tackle these issues. Ulf Norell’s agda-prelude1

library features tactics: these allow the user to write by pf , where pf is some equality
proof, and allow the library to find a proof of the type expected by the context. A similar
technique could be used for proofs of ε-indistinguishability to automatically find the ap-
plications of congruence needed to prove a theorem. The pinnacle of this approach would
be to allow the user to invoke an external SMT solver.

Reflection could also be used to take non-indexed descriptions of games and generate
corresponding indexed versions. This would free up the syntactic burden from the pro-
grammer, while retaining the extra safety. However, it is not clear whether this can be
done without considerable loss of expressive power.

The use of command and interaction structures to simplify the defintion of games also
induces some syntactic burden. In particular, specifying implementations and their folds
is done in a style that is unfriendly to the user. A language with dedicated syntactic
constructs for defining an N -player implementation could make the process significantly
easier, while still benefiting from our abstract approach under the hood.

Such a language would benefit from the development of appropriate tooling. In our
experiments in Agda, we found ourselves repeating the game we were operating on many
times as we made minor changes to it. These games could (at least partially) be generated
automatically based on the rewrite rules we applied. However, we were unable to do this
within Agda. This is even more important in the indexed case, where we do not want to
make the user write out every index, but do want to display this index if the user asks
for it.

1https://github.com/UlfNorell/agda-prelude
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7.3 Conclusions

In this thesis, we have laid a foundation for a system for reasoning about indistinguisha-
bility in cryptography. There is still considerable engineerign work to be done before
practical proofs can be expressed, but we nevertheless consider this a successful proof of
concept that shows the viability of a syntactic approach to this problem.

The primary drawback we have discovered when using Agda is that automating even
very simple proofs is difficult. In particular, it is not sufficient to specify what rewrite
step we wish to apply, but also precisely where. This causes significant duplication, since
often almost the entire game has to be written out as part of the rewrite step.

Another problem arises when we introduce indexing to our games: the correctness of
the code with respect to indices must be specified inline with the code itself. For example,
if we want to pass a BitVec n to a function that takes a BitVec k , we must first provide a
proof that n ≡ k and then use a rewrite rule or transport. This obscures the primary logic
of the code; in an ideal system, we could write the code first and then prove it correct
separately.

However, we feel that these issues are primarily ones of presentation, and not inherent
to the approach we are taking. The usage of N -player implementations to represent the
interactions between the challenger, adversary, and oracle makes it possible to statically
enforce constraints on what the players can do, that are hard to express otherwise. As far
as we know, this usage of command and interaction structures is novel, and we consider
this the primary contribution of this work.
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Appendix A

Notation

For the reader’s convenience, we include an overview of the Agda features that we use in
this text. This is by no means a comprehensive introduction to Agda, nor do we include
all features used in the accompanying code. Our purpose is primarily to make the text
accessible to readers with a purely mathematical background.

A more thorough overview can be found at https://agda.readthedocs.io/en/v2.

5.4.1/.

A.1 Built-in Types

Agda can be regarded as an implementation of the dependently typed λ-calculus λΠ,
corresponding to the internal language of locally (bi)Cartesian closed categories. In par-
ticular, finite product and and coproduct types exist, as do function types, dependent
function types, and dependent product types. The notation for these types is as follows:

• The empty type is denoted ⊥.

• The unit type is denoted > and has a single element tt : >.

• The product of types A and B is denoted A × B . Elements of this product are
pairs a , b with a : A and b : B .

• The coproduct of types A and B is denoted A ] B . Elements of this coproduct are
of the form left a with a : A or right b with b : B .

• The type of functions from A to B is denoted A → B . We shall give several
examples of function definitions in section A.3. Functions are associated to the
right, so A → B → C denotes A → (B → C ).

• The type of dependent functions that take an a : A and return a B a is denoted
(a : A) → B . They are defined in the same way as non-dependent functions.

• The type of dependent pairs that contain an a : A in the first component and a
B a in the second are denoted Σ A B .
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Additionally, Agda has an ω-indexed hierarchy of universes: all basic types are of type
Set, which itself is of type Set1, and so on. We also assume that the types N of natural
numbers, Bool of Booleans, and Q of rational numbers are already available, together
with the usual arithmetic and comparison operations on them.

Finally, equality in Agda is expressed by means of an equality type a ≡ b. We will
discuss this type in section A.5.

A.2 Expressions

Since Agda is based on the λ-calculus, the two most important kinds of expressions it
provides are uses of variables and function application. The first is what it would appear.
The second is denoted by juxtaposition, so a b denotes the application of a to b. Function
application associates to the left, so a b c denotes (a b) c.

Since operations such as addition are better written in infix form, Agda allows defi-
nitions of names to choose a different syntax for their use. This is done by denoting the
locations of the arguments by underscores. We will see this usage in the definition of
+ below, which defines addition as an infix operator. Another common usage is for the
if-then-else construction:

if then else : Bool → A → A → A
if true then e1 else e2 = e1
if false then e1 else e2 = e2

Most syntax we use will be based on mathematical notation, and so will be familiar to
the reader. One important exception is the $ operator, which is another way of denoting
function application. The expression a $ b simply means (a) (b), but $ has extremely low
precedence, making it suitable for writing terms such as square $ 2 ] 1 , which evaluates
to 9 , rather 5 , as it would if we wrote square 2 ] 1 .

A.3 Value Definitions

In order to introduce a name in Agda, we specify its type and then give its definition.
The syntax is as follows, with the first line giving the type, and the second giving the
definition. A definition of the form f x y = . . . defines a function f that takes parameters
x and y .

five : N
five = 2 + 3

square : N → N
square x = x · x

In some cases, Agda can deduce the type of a name without it being explicitly specified.
We will avoid using this for the sake of clarity.

Functions can also be defined with the use of lambda expressions. The following is
equivalent to the definition of square above:

square : N → N
square = λ x → x · x
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A.4 Type Definitions

Agda supports two ways of defining new data types: data and record definition.
A data definition inductively defines a type by specifying all of the ways in which it

can be constructed. For example, the following defines the type of natural numbers:

data N : Set where
zero : N
suc : N → N

We call zero and suc constructors. Give such a definition, we can define functions by
induction on the constructors:

+ : N → N → N
zero + m = m
suc n + m = suc (n + m)

Agda allows recursive definitions like the above, as long as it can prove that the
recursion is well-founded. If the set of possible cases is empty, we can replace the argument
by () and omit the body, such as in the following example:

absurd : ⊥ → A
absurd ()

In order to do pattern-matching in lambda expressions, the body of the lambda must
be enclosed in curly braces. We can, for example, define:

pred : N → N
pred = λ {(suc k) → k ; zero → zero}

The other way of defining a new data type is a record definition, which defines a type
by the fields it must provide. For example, the following defines the type of monoids over
a type A:1

record Monoid (A : Set) : Set where
field

op : A → A → A
e : A

We can define the addition monoid on the natural numbers as follows:

Addition : Monoid N
op Addition n m = n ] m
e Addition = 0

As a final note, we remark that Agda allows for implicit arguments in definitions of
functions and types. These are placed within curly braces and do not need to be specified
when the corresponding name is used, as long as Agda can deduce the value from other
arguments. For example, the identity function is written as follows:

1Technically, a proper definition would include the monoid laws, but these are typically omitted.
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id : ∀{A} → A → A
id x = x

Since in a usage such as id 5 , Agda knows that A must be N since that is the type
of 5 , we can omit the argument. In this text we will generally omit implicit arguments
entirely, trusting the user to replace them; this allows us to focus on the substance of the
matter.

A.5 Equality

In Agda, we can express equality of terms on the type level using the ≡ type. An element
of type a ≡ b is a proof that a and b are equal. If that is the case, there is a single
constructor refl : a ≡ a; otherwise, the type is empty. The Agda type system is aware
of this, so pattern matching on refl simplifies type goals. For example, the following
expresses the symmetry of equality:

sym : ∀ {a b} → a ≡ b → b ≡ a
sym pf = ?

We call ? a ‘hole’, and use it to denote a piece of the program we have not yet written.
Here, the type of the hole is b ≡ a. However, if we pattern match on pf , then this type
changes:

sym : ∀ {a b} → a ≡ b → b ≡ a
sym refl = ?

Here, the type of ? is a ≡ a, since we know that a and b are equal, and may thus
replace b by a in the goal. We can thus complete the definition:

sym : ∀ {a b} → a ≡ b → b ≡ a
sym refl = refl

This is how equality is handled in proofs. Equality of values at runtime is handled
separately: essentially, when we ask whether two natural numbers n and m are equal, we
want a proof of n ≡ m or a proof of neg (n ≡ m). This is performed using the equality
comparison operator n == m.

While these proofs are very useful in the code, having to convert from a proof to a
Boolean explicitly clutters up the code and does not aid in understanding. As such, we
will (especially in chapter 1) understand n == m as true if n and m are equal and false
otherwise. This is purely a matter of syntactic convenience, but makes the code read
much more naturally. The proper way of writing this would be isYes n == m.

A.6 Monads

In a purely functional programming language such as Agda, functions are pure: they
produce a single output based on their input, deterministically. However, sometimes we
wish for a function to do more: for example, to also make use of some state. An ingenious
approach to this problem is to make use of the structure of monads [Wad95].
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The situation is best illustrated by an example. The product-exponent adjunction
gives rise to a monad State S A = S → (S × A). In addition to the action on
morphisms (denoted fmap), unit (denoted return) and multiplication (denoted join), we
can construct the following monadic actions:

>>= : State S A → (A → State S B) → State S B
a >>= f = join (fmap f a)

>> : State S A → State S B → State S B
a >> b = a >>= const b

get : State S S
get = λ s → s , s

set : S → State S >
set s = λ → s , tt

This allows us to write code like the following:

counter : State N N
counter = get >>= λ n

set (n + 1 ) >>
return (n + 1 )

We can use this to encode stateful programs in a functional programming language.
However, the notation is somewhat unfortunate. Agda therefore provides us with a syn-
tactic sugar, using which we can write the above as follows:

counter : State N N
counter = do
n ← get
set $ n + 1
return $ n + 1

Apart from the state monad, numerous others have been found to be useful. A number
of examples are covered by Moggi [Mog91].
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