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Chapter 1

Introduction

Optimizing the management of business processes becomes more and more impor-
tant. Companies often use a software application to manage and provide informa-
tion about all enterprise’s data. Such systems are called ERP, which stands for Enter-
prise Resource Planning. ERP has two major functions:“(1) a unified enterprise view of
the business that encompasses all functions and departments; and (2) an enterprise database
where all business transactions are entered, recorded, processed, monitored, and reported"
(Umble et al., 2013).

An example of ERP-software is the software-package Profit, provided by a Dutch
IT-company AFAS Software BV. For our case study, we will use historical workflow
logging data from Profit. This thesis proposes a method for discovering occurrences
of a given workflow pattern in a set of workflow models with its main purpose is to
get a better understanding of what process (sub)structures represent the behavior in
workflows the best.

Workflow management is a technology for engineering business processes. Al-
though the term workflow does not have a clear definition, we say that it refers to
an organized set of tasks to accomplish some business process (Georgakopoulos et al.,
1995). The basic idea of a workflow model is to capture dependencies between pro-
cess tasks in a graph. For instance, when this graph contains a relation A → B, this
means that task A generally precedes task B in an instance of this workflow. Thus,
task B cannot be executed until task A is finished. Workflow modeling makes the
intended behavior or so-called flow of a business process clearer and can be used to
steer such processes in the right direction.
The goal of workflow mining is to revert this process, meaning that we try to find a
suitable workflow based on a given set of execution logs of a business process.

The remainder of this thesis is organized as follows. At first, we explain a short
example as a way to introduce the reader to the problem studied. Then, we discuss
the goal and purpose of this study. In Chapter 2 the workflow logging data available
at AFAS are described. In Chapter 3 we detail the problem and research questions.
Chapter 4 we introduce basic concepts used throughout this thesis. Chapter 5 sur-
veys a literature study and consists of related work. In Chapter 6 techniques used
in this thesis are explained. In Chapter 7, we present an approach for solving the
problem stated. In Chapter 8 we discuss several results of our approach by studying
a workflow pattern. Finally, Chapter 9 concludes this thesis and suggests several
directions for future work.

1.1 A Simple Example

To make things more concrete, we present a workflow represented as a petri net (see
Definition 5). Figure 1.1 shows the process of buying additional leave. In this case,
a manager and an administrator (admin) need to approve the request filled in by
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an employee. When one of them does not approve the request, the employee needs
to adjust the request and try again. The petri net in Figure 1.1 models the business
process described here. Petri nets consist of a set of so-called places (circles) and
transitions (squares). When you consider workflows as a finite-state machine, then
the places in the model are states and the transitions change the current state. The
starting state is represented by Start, whereas the workflow is finished when state
End is reached. Each transition stands for a specific event. According to Definition
2 we define an event as a combination of a task and a corresponding action. Each
transition is labeled by the description of the task it represents and the description
of the corresponding action. To make a clear distinction between these descriptions,
a vertical line (‘|’) is used to separate them. Considering that a workflow instance
begins in Start, then only the two transitions that are at the end of an outgoing arc of
Start can be triggered.

When for example Approve Manager|Accept is fired, the state of the workflow in-
stance is moved to the place labeled as Manager Accepted. Then, the task Approve
Admin is enabled, which has as actions Accept and Reject. Note that the combina-
tions of this task and its actions are translated into transitions. When the manager
or the administrator does not agree with the request, then the state gets changed to
place Rejected. From this state, the only option is to adjust the request and resend,
meaning that the whole process of approval by the manager and the administrator
gets repeated. Finally - when both agree - the workflow instance is finished.

FIGURE 1.1: Example workflow, representing the process of buying
additional leave. The dotted areas show occurrences of the approval

pattern.

Besides tasks and actions, there are workflow patterns. According to (Riehle
and Züllighoven, 1996), a pattern “is the abstraction from a concrete form which keeps
recurring in specific nonarbitrary contexts”. In other words, a pattern is an abstraction
of a concrete set of tasks and actions and is independent of the workflow language
used. An example is the OR-split workflow pattern, which is visible in Figure 1.1.
Since the approve-tasks have two actions and you may only choose one, you can see
these structures as OR-splits. However, a workflow pattern like the OR-split ignores
the actual meaning of events and only considers the control-flow.

The problem we try to solve is to find a given workflow pattern within a work-
flow model. However, we look beyond the purely syntactic scope of patterns and
include semantics or contextual meaning of a pattern (i.e. semantical workflow pat-
terns). To give an example, we can say that the workflow in Figure 1.1 contains
a pattern which we call the approval pattern. This pattern represents the decision
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whether some change in the system gets accepted or not. As you can see, such a
decision occurs two times in the workflow example: the manager needs to approve
the request and also the administrator needs to approve this (indicated as the dotted
areas in Figure 1.1). So when we try to find occurrences of the approval pattern, we
would like to see these two parts of the workflow in the result of our query.

1.2 Purpose Of This Study

As a business company using ERP-software, you can use workflows provided with
your ERP-software package or create your own workflow. Provided workflow tem-
plates are general workflows which represent very common business processes most
companies are likely to use. When you would like to have a workflow for a very spe-
cific process, you might have to assemble your own workflow structure. However,
setting up such a workflow can become quite complex which can easily lead to er-
rors in the model defined. Especially when you have to consider multiple different
use cases.
To remove the burden of giving the user the option to define a workflow on such a
low level by itself, we want to study workflow patterns on a higher level. This way,
we abstract from a low-level representation of a workflow and use these high-level
patterns to describe processes in an organization.

In the eyes of an IT-company which develops and sells ERP-software, it is impor-
tant to know which processes are most common in a company and what kind of
steps are most important in workflows. Of course, having a good insight into the
usage of workflows will be very helpful when you want to deliver a workflow man-
agement system. The goal of this research project is getting a better understanding
of the high-level workflow patterns1.

From the literature study (Chapter 5) can be concluded that many others studied
workflow mining and pattern matching. Where most of them focus on one issue, we
tackle a combination of problems: (1) the discovery of workflow models, given a col-
lection of workflow logs and (2) the discovery of such patterns in workflow models
(see Figure 1.2).

1From now on, we use the term workflow pattern in the context of semantical workflow patterns,
unless stated otherwise.
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FIGURE 1.2: High-level overview of our problem. (1) A collection of
workflow logs need to be translated into workflow models, (2) these
workflow models are then searched for occurrences of workflow pat-

terns.
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Chapter 2

Workflow Data from Profit

This chapter mainly describes several qualitative properties of workflow logging
data from Profit. The workflow log’s structure is discussed in Chapter 7.

2.1 Data Quality

Unfortunately, we do not have access to the workflow models used by customers
of Profit. Profit itself only consists of templates and basic workflows, but many
processes use a workflow which has been customized. Customers can change a
standard workflow or design a completely new workflow model which suits their
needs. Since the configuration of workflows can be done by the customer, these
versions are not stored in one central unit, but every environment keeps track of the
workflows it uses. Since the event logs are based on these models - and our approach
is dependent on these models - we need to translate these logs into models (step (1)
in Figure 1.2). Furthermore, the workflow logs of models which are changed over
time are quite hard to work with. A workflow log W of workflow model w gets
simply extended when an event is executed for w. Suppose that w gets changed into
w′ at some point in time. In this case, W first has a set of events based on w but also
contains events based on w′. Since there is at first no clear distinction which events
belong to which workflow model, we try to group events based on the labels they
use. One solution to this issue is explained in Chapter 7, where we try to discover
when a workflow model is changed by keeping track of event description and their
id’s. Whenever a description of an event is changed, but their id is known already,
then we can conclude that this is a change in the model. However, this approach
does not discover changes in the model when new tasks or actions get added or
removed. These changes only add or remove an event to the model, but does not
alter an event. Thus, the ability to discover changes made to a workflow model is
limited. Another solution would be to remove workflow logs from the dataset when
we discover that the workflow model is changed.

Lastly, we ignore workflow instances which consist of incomplete information.
This means that in case that some field is empty for some event in this instance, we
remove the instance from the workflow log. We do not want incomplete workflow
instances to influence the resulting model.

2.2 Data Size

The dataset we used for this thesis, is a collection of workflow logs of the top 64
customer environments based on the number of workflows they actively used, and
consists of 4731 workflow logs. Some of these 64 environments are test environments
of customers. A customer can use a test environment to test a new workflow model
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before actually adding this model to the customer environment itself. Although
these environments could contain more noise in their workflow logs, we included
them in our research because we are interested in every type of usage of workflow
models.

For each environment, we took every workflow event executed between 1 Jan-
uary 2017 and 31 March 2017. We have chosen this period because of the problem
described in Figure 2.1. Since we want to obtain workflow models based on this
dataset, it is crucial that this collection of workflow logs consists of complete work-
flow instances. In other words, we want to base our models on instances from which
we know every event executed. Incomplete instances are those from which we do
not know every event between its starting - and ending event. This last group of
instances is seen as unwanted since they are an incorrect representation of the work-
flow model. For this reason, we tried to filter out instances which are started before
1 January 2017 or were still executing events after 31 March 2017. Note that the last
case is not an airtight solution. We assume that most workflow instances are fin-
ished at this point in time (April 2018), but we cannot be 100% sure that there are
no instances which are still alive. Unfortunately, there is no easy way to confirm
this automatically. Thus, although we are able to filter out most of the incomplete
instances within the set time period, there is still a small possibility that incomplete
instances are included in our dataset. Still, we expect that this group of instances is
only a small portion of the total collection and has little influence on the resulting
workflow models.

FIGURE 2.1: Overview of possible lifetime of a workflow instance.
Red arrows represent instances which are not completely contained
within the time period. Green arrows represent instances which are

fully contained within the time period.

Due to privacy reasons, the dataset we use is not publicly available.
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Chapter 3

Problem and Goal

The challenge which we undertake in this thesis is to reason about behavior in work-
flows. We try to achieve this by studying so-called higher level workflow patterns
and the way such patterns are being used. In short, we will try to answer the follow-
ing research questions:

1. How can we find variations of assumed1 workflow patterns, given a collection
of workflow models?

(a) How do we define a workflow pattern and what semantics should be
included?

(b) How can we determine which workflow model contains a workflow pat-
tern?

(c) What variations of a workflow pattern exists?

When we can find occurrences of a given workflow pattern, then it is also possi-
ble to find workflow patterns based on their frequency.

As a case study, we use data provided by AFAS Software BV (Chapter 2). AFAS
is interested in the way customers use workflows and with this thesis we have cre-
ated a tool which they can use for studying workflow patterns. Note that we want
to look further than the syntactic value of a pattern (1a). We propose a method that
is able to discover pattern occurrences based on their syntax and semantics.

We try to capture behavioral properties of a workflow pattern from which AFAS
is confident that these are part of their workflow system. However, how these pat-
terns are actually used is often unknown. Recall the approval pattern described in
Chapter 1. AFAS is aware of the existence of this pattern, but they are interested
in behavioral properties such as the number of times the pattern occurs repetitively
within a workflow. This pattern is mainly used and is studied in more detail in
Chapter 8.

Creating a tool which is able to detect occurrences of a given workflow pattern
can help AFAS to improve their workflow engine in their upcoming product, called
NEXT. To be able to discover workflow patterns, we need to look at situations where
this pattern is present (1b). In other words, we want to know what variations of a
workflow pattern exists in a given set of workflow models (1c).

1AFAS would like to study a specific set of patterns present in the workflow models used in Profit.
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Chapter 4

Preliminaries

Let us state some basic definitions which we use throughout this thesis.

Definition 1 (Workflow (Georgakopoulos et al., 1995)). A workflow W is an organized
set of tasks to accomplish some business process.

Definition 2 (Task, actions and events). A task is a subprocess of a workflow. Each
task t has a set of actions A = [a1, ..., am], which is enabled when this task is enabled
in the workflow (see Definition 5). When an action ai of task t is triggered, t is
completed and the workflow instance proceeds to the next task (or is finished). The
execution of some (t, ai) is called an event.

Definition 3 (Workflow log). A workflow log L is a collection of traces t of some work-
flow W. A trace T consists of a set of events E, where each event e ∈ E contains
information about the execution of some event in the workflow instance i.

Definition 4 (Workflow pattern). A workflow pattern p is a connected subgraph of a
workflow W, i.e. p ⊂ W, ap ⊂ A, tp ⊂ T, such that this pattern represents a specific
objective O.

Recall the approval pattern from the example workflow in Figure 1.1. In this
case, the objective O is the approval of something.

Definition 5 (Petri net (Van der Aalst, 1998)). A petri net is a triple (P, T, F):

• P = {p1, p2, · · · , pm} is a finite set of places,

• T = {t1, t2, · · · , tn} is a finite set of transitions (P ∩ T = ∅ and P ∪ T = ∅),

• F ⊆ (P× T)∪ (T × P) is a set of directed arcs (flow relation).

The marking of a petri net PN gets changed according to a firing rule:

1. A transition t is enabled if each input place p of t contains at least one token.

2. Firing an enabled transition t consumes one token in each input place p of t
and adds one token to each output place p′ of t.

Definition 6 (Workflow net). A petri net representing a workflow is called a workflow
net (WF-net), which is a petri net having just one start place and one end place (like
a workflow should have). When a workflow net consists of blocks which also have
the property of starting and ending in one place, this workflow net is called block-
structured.

Definition 7 (Sound workflow net (Van der Aalst, 1998)). Let N = (P, T, F) be a WF-
net with input place i and output place o. N is sound iff:
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1. Every state M from reachable state i, the final state o can get reached by a firing
sequence:

∀M(i *−→ M)⇒ (M *−→ o) (4.1)

2. State o is the only state reachable from state i with at least one token in place o:

∀M(i *−→ M ∧M ≥ o)⇒ (M = o) (4.2)

3. There are no dead transitions in (N, i):

∀t∈T∃M,M′ i
*−→ M t−→ M′ (4.3)

Definition 8 (Graphs and trees). A graph G consists of a set of vertices V and edges E,
connecting vertices with each other (i.e. G = (V, E)). A graph can be labeled, meaning
that every vertex v ∈ V has a label, like an id or name. A graph can contain cycles,
which are paths where the start-vertex and end-vertex of the path are the same.
When no cycles are possible, we also speak of trees.

A rooted tree is a tree where one vertex vr is seen as the root or starting point.
From this root, a path to every other vertex is possible (vr, v1 . . . vx). In other words,
every node (another word for vertex) is said to be connected with the root. Nodes va
that lie on the path of a node vx to the root node are said to be ancestors of vx and vx
is called a descendant of the ancestor nodes va. A node vp is a parent node of vx if vx
is a directly descendant of vp. In the same situation, vx is said to be a child node of
vp. Nodes in a tree are often referred to as either leaf nodes or internal nodes. Leaf
nodes do not have any child nodes, whereas internal nodes do have children. Nodes
having the same parent node are called siblings. A tree consists of so-called subtrees.
We focus on two types of subtrees: induced subtrees and embedded subtrees.

Definition 9 (Induced subtrees). Assuming that trees P and T are connected, tree
P = (V ′, E′) is an induced subtree of tree T = (V, E) if and only if the following
constraints are met:

1. V ′ ⊆ V,

2. E′ ⊆ E,

3. sets of siblings in T should remain in the same order as in P,

4. parent-child relations in P should hold in T. Considering nodes x, y ∈ P and
their matching nodes x′, y′ ∈ T, then x′ is the parent of y′ if and only if x is the
parent of y.

Definition 10 (Embedded subtrees). Assuming that trees P and T are connected,
tree P = (V ′, E′) is an embedded subtree of tree T = (V, E) if and only if the following
constraints are met:

1. V ′ ⊆ V,

2. E′ ⊆ E,

3. ancestor-descendant relations in P should hold in T. Considering nodes x, y ∈
P and their matching nodes x′, y′ ∈ T, then x′ is an ancestor of y′ if and only if
x is a ancestor of y.
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This having said, we can state that induced subtrees are a proper subset of embedded
subtrees. Having defined both types of subtrees, every induced subtree of P in T is
also an embedded subtree. However, not every embedded subtree is also an induced
subtree.
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Chapter 5

Literature Study

This chapter discusses previous works, presenting theories and techniques around
workflows, workflow patterns and the problem of mining such structures from work-
flow models.

5.1 Workflow Paradigm

Business process re-engineering was first proposed by (Hammer, 1990) as an ap-
proach to tackle the problem of improving the quality of business processes while
reducing their cost. One of the earlier works presenting workflow management sys-
tems are (Ellis and Bernal, 1982; Engel et al., 1979). The term information control net
model is introduced by (Ellis and Bernal, 1982), which can be seen as one of the earlier
variants of workflow models.

There are no real standards when it comes to the workflow paradigm (van der
Aalst, 1997). This causes management systems to use different modeling languages,
but a more important problem is that the ability to verify and analyze workflows
is often not available in such tools (van der Aalst, 1997). Because of this reason,
(van der Aalst, 1997) shows that a class of petri nets can be used as a way to represent
workflows, which they call WF-nets (workflow nets). Also, the correctness of WF-
nets can be analyzed using the petri net theory.

5.2 Workflow Patterns

The most common way to verify whether a workflow language is a good represen-
tation is by checking which workflow patterns are covered by this language. A work-
flow pattern is described by (Riehle and Züllighoven, 1996) as “the abstraction from a
concrete from which keeps recurring in specific nonarbitrary contexts". In other words, a
pattern represents a certain functionality in a workflow while being dependent on
the modeling language. Many (Dijkstra et al., 2003; Russell et al., 2004, 2006, 2005;
Van der Aalst et al., 2003a) describe workflow patterns providing functional require-
ments for workflow model languages. This set of requirements is defined as (1) a set
of conditions which must be satisfied to be applicable, (2) examples of business sit-
uations where this pattern should be applied, (3) a problem description stating why
applying this pattern is not trivial and (4) implementation solutions. However, (Di-
jkstra et al., 2003; Russell et al., 2004, 2006, 2005; Van der Aalst et al., 2003a) focus
solely on the syntax of workflow patterns, whereas we are also interested in their
semantics.
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5.3 Workflow Mining

When in fact the notion of process mining emerged within the last two decades
(Van der Aalst et al., 2003b), the concept of workflow mining is first introduced by
(Agrawal et al., 1998), presenting an algorithm which has a set of unstructured ex-
ecutions of a business process as input and outputs a minimal dependency graph
representing the control flow of this business process. Besides, (Agrawal et al., 1998)
discusses ways to cope with cycles in the graph and noise in event logs (missing
executions of tasks or wrongly inserted tasks in a log). Other heuristic approaches
for noise and incomplete logs are presented in (Măruşter et al., 2002; Weijters, 2001;
Weijters and van der Aalst, 2001). The heuristic approach (Weijters, 2001; Weijters
and van der Aalst, 2001) is a combination of the following steps: (1) constructing a
dependency/frequency table, (2) mining basic dependency relations out of this table
and (3) creating a workflow based on the relations found. Besides using these steps,
(Măruşter et al., 2002) presents a logistic regression model to learn when two events
are direct dependencies of one another.

(Van Der Aalst et al., 2002) states that it is impossible to mine every possible WF-
net. They name this challenge the rediscovery problem: “Find a mining algorithm able to
rediscover a large class of sound WF-nets on the basis of complete workflow logs."(Van Der
Aalst et al., 2002). An algorithm which can successfully mine a large class of WF-nets
is the α-algorithm (van der Aalst and van Dongen, 2002; Van Der Aalst et al., 2002),
which assumes that a given workflow log is complete (this means that every possible
execution path of the business process at hand must be present in the log). Although
this completeness requirement is easy to satisfy for a simple workflow, larger work-
flows will have more trouble. For instance, a workflow having 10 tasks which can
be executed in parallel results in 10! = 3628800 possible execution sequences. As you
can tell, there is a rather small chance that every possible sequence is covered in a
corresponding workflow log. Besides, the α-algorithm did have issues with loops
and self-loops. Multiple extensions on the α-algorithm have been developed. Ex-
amples are the α+ variant (De Medeiros et al., 2004) which can deal with such short
loops, and (van der Aalst and van Dongen, 2002) which applies the algorithm on
timed logs. Other approaches are the Heuristics miner, which can deal with noise
(Weijters et al., 2006), and the Inductive Miner (Leemans et al., 2013) that finds a
sound and fitting process model in polynomial time. Others made an extension on
the Inductive Miner, called Inductive Miner - infrequent (IMi), which filters out infre-
quent behavior (Leemans et al., 2014b). IMi creates so-called 80% models, which is
based on the Pareto principle. This principle states that “80% of the observed behav-
ior can be explained by a model that is only 20% of the model required to describe
all behavior"(Leemans et al., 2014b). This variant is also implemented in ProM.

5.4 Frequent Pattern Mining

Another interesting research topic is obtaining workflow patterns through frequent
pattern mining. In this case, the problem of finding frequent patterns in process trees
can be defined as follows.

Definition 11 (Frequent Tree Discovery Problem). Given a set of labels L, a set of
trees T using L and a frequency threshold 0 ≤ k ≤ 1, find all k-frequent trees t ∈ T.
Such trees have a frequency of k, meaning that they are present in k% of all trees in
T.
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Work related to this problem is (Tax et al., 2016), where local process models are
mined from a process tree and a corresponding event log. This work formulates
multiple pruning techniques for expanding process trees since the structure of pro-
cess trees are different from others. Since (Tax et al., 2016) only focuses on finding
frequent local process models from one process model, this method can be used in
order to determine when a pattern is a substantial part of a process model, i.e. when
a pattern appears frequently in a model. However, (Chapela-Campa et al., 2017)
states that (Tax et al., 2016) fails to measure the frequency of patterns correctly in
some cases and proposes the algorithm WoMine, a generic algorithm that is capable
to determine the frequency of all types of patterns.

5.5 Meaning of Words

Determining the similarity between workflow models, where we include semantics
like labels of task- and actions descriptions is another problem. See for example the
workflow nets that are shown in Figure 5.1. Although we may see that these models
have similar meaning, explaining to a computer why these models are similar is
quite a challenge since a computer detects that the labels consist of different words.

FIGURE 5.1: Workflow nets which seem very similar, but have differ-
ent labels.

When we search for research done on determining the semantic meanings of
words, we see that this field has attracted a lot of attention in the last few years.
Especially the Word2Vec model (Mikolov et al., 2013a,b) is a popular technique.
This technique results in a vector space representation of words which carries se-
mantic meanings and is very useful in natural language processing tasks. Many
variants on Word2Vec have been proposed, like Sent2Vec (Pagliardini et al., 2017).
Sent2Vec is particularly useful for our problem since descriptions can contain more
than one word. The general idea behind Sent2Vec is computing the average vector
of a sentence by looking the vectors up for each word through Word2Vec. More
specifically, comparing process models and determining activity similarity has also
gained a lot of attention lately (David et al., 2017; Klinkmüller et al., 2013). Where
(Klinkmüller et al., 2013) determines activity similarity by applying bag-of-words
techniques, (David et al., 2017) uses a Word2Vec approach to cluster such activi-
ties. They introduce Event Variability Reduction (EVR), which stands for the projected
event log where every event is mapped to its image event (clustered event). Through
Word2Vec, events get grouped together, leading to less variability. Since our prob-
lem looks very similar to theirs, we include Word2Vec in our approach. Applying
techniques like Word2Vec are important for our study since we want to discover
pattern occurrences based on the context of their events.
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5.6 Workflow Mining Tools

A widely used tool for process mining is ProM (Verbeek et al., 2010). This open-
source, extensible framework has over 600 different plug-ins, including process min-
ing algorithms like the α-algorithm, that add their own functionality to the complete
software package. ProM gives the user lots of possibilities when it comes down to
mining event logs and the user interface helps with getting a good understanding
of the structure of process models. Another plug-in, called the “Inductive Miner"
(Leemans et al., 2013), is an implementation of the inductive mining algorithm on
event logs. Besides using the user interface of ProM, we mainly use its command-
line interface to be able to execute plug-ins automatically1.

1https://dirksmetric.wordpress.com/2015/03/11/tutorial-automating-process-mining-with-
proms-command-line-interface/

https://dirksmetric.wordpress.com/2015/03/11/tutorial-automating-process-mining-with-proms-command-line-interface/
https://dirksmetric.wordpress.com/2015/03/11/tutorial-automating-process-mining-with-proms-command-line-interface/
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Chapter 6

Theoretical Background

This chapter introduces the reader to the techniques used in this thesis. The Word2Vec
model, Inductive Miner algorithm and the quality of process models are subjects
which get described below.

6.1 The Word2Vec model

Word2Vec (Mikolov et al., 2013a,b) is a technique for creating word embeddings
developed by Google. This technique has two variations, the continuous-bag-of-
words model (CBOW) (Mikolov et al., 2013a) and the skip-gram model (Mikolov
et al., 2013b). In short, the CBOW model uses multiple context words as input and
tries to predict a single so-called ‘target’ word, whereas the skip-gram model uses a
single word as input and predicts context words. The basic idea of these models is
shown in Figure 6.1, w(t− 1) stands for the word which stands before the so-called
target word w(t) etc. Notice that the skip-gram model is the inverse of CBOW when
it comes down to the format of input and output. The models use a neural network
with one hidden layer. However, this learning process focuses on the weights of the
hidden layer. The weights of this hidden layer eventually represent word vectors,
which are exactly what we want to know.

FIGURE 6.1: CBOW and skip-gram model. Models adopted from
(Mikolov et al., 2013a,b).
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6.1.1 Training a model

Before these word vectors can be used to determine the similarity between words,
the neural network needs to be trained. This is done by defining a set of training doc-
uments. A document, for example a newspaper article, can be seen as a set of sen-
tences. The neural network is trained by feeding word pairs from these sentences,
where a word pair consists of a target word and a context word. To determine the
number of context words, a window size is set. In this case, the example models use
a window size of 2. That size defines the number of words before and after the target
word are seen as context. Figure 6.2 shows what training samples are generated for
the skip-gram model from the sentence "The quick brown fox jumps over the lazy
dog". By feeding the network these samples, it learns how likely words are used in
the same context. For example, assuming that the word "New" always comes before
the word "York" in a given set of training documents, the neural network learns that,
given the word "York", as context word "New" is very likely (100%).

FIGURE 6.2: Example to show how the window size influences the
training samples created for training a skip-gram model. The win-
dow size is set to 2, where the blue word is the target word and the
white words are context words. Figure adopted from (McCormick,

2016).

The way a word gets input in the neural network is by translating it into a so-
called one-hot vector (a vector consisting of one ‘1’ and ‘0’ on the remaining posi-
tions). The dimension of this vector is the number of distinct words used in the set
of training documents. Assuming that the training documents contain 10.000 differ-
ent words, then the input vector has 10.000 positions. While training the model, the
input vector is a one-hot vector and the output is also a one-hot vector. This output
vector represents the vector of the output word.

6.1.2 Evaluating a trained model

While evaluating the model, the output layer is actually a probability distribution,
where every output value stands for the probability that a certain word is a context
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word, given the target word. To make this idea clear, see Figure 6.3. The example tar-
get word here is “ants" and the output layer represents the likelihood that words as
“abandon" and “ability” appear in the same context as “ants”. The output layer gets
ultimately normalized through something named softmax. This means that the out-
put layer should sum up to 1. Simply put, the relation between context words and
target words can be described as a formula. Given a target word t, the probability of
a context word c is defined as:

P(c|t) =
exp(vT

t uc)

∑|V|w=1 exp(vT
t uw)

, (6.1)

where vt stands for the target vector, uc stands for the context vector, V is the
vocabulary size. This function basically applies the dot product to determine the
similarity between these vectors. Note that vt · uc becomes higher whenever vt are
more similar. For normalization, the dot product gets divided by the total sum over
all possible words in the vocabulary V.

Another way to represent the model is in terms of neural networks. Word2vec
trains on a given set of training documents by splitting documents up in word pairs.
Training the model changes the weights in the neural network. Eventually, the hid-
den layer represents word vectors for every word present in the dictionary. Finally,
evaluating the model using a target word as input results in a probability distribu-
tion over the dictionary, where words occurring more often in the context of that
target word during training will have a higher probability than non-relating words.

FIGURE 6.3: Description of Word2Vec as a neural network. Figure
adopted from (McCormick, 2016).
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6.1.3 Negative Sampling

A serious issue is the fact that all neuron weights get tweaked during each training
sample. When considering millions of training samples, updating all weights be-
comes computationally very expensive. To address this problem, negative sampling
has been introduced in (Mikolov et al., 2013b). With negative sampling, only a small
group of the weights gets updated. Take for example the word pair (“fox”, “quick”),
where “fox” is the input word and “quick” is the positive context word. Ideally,
the network would output a one-hot vector. The output neuron of “quick” would
lead to the 1 and all the other output neurons would be set to 0. However, negative
sampling considers only a few (5-20) output neurons of “negative” words. When
considering Figure 6.3, the number of weights are 300× 10000 = 3 million. Given
that we only update the weights of the positive output neuron (“quick”) and 5 neg-
ative output neurons, only 6 × 300 = 1800 weights get updated. This shows that
negative sampling solves the issue of updating the model.

6.2 The Inductive Miner

As stated in Chapter 5, there are many techniques for mining the process model
based on a given workflow log. One of them is the Inductive Miner (Leemans et al.,
2013), IM for short, which always finds a sound workflow net (see Definition 7) in
a finite time. Therefore, we use this algorithm in the phase of obtaining workflow
models. IM is implemented as a plug-in of the ProM framework (Leemans et al.,
2014a). Let me briefly explain how this algorithm works.

The Inductive Miner uses a workflow log as input. Then, it determines the most
likely split between the different events in the log in a divide-and-conquer approach.
As an example, look at Table 6.1. The first split is applied between a and the rest since
it observes that every case starts with event a. The same can be said for g, which is
the final event for every case. Then, the inner part of every case either ends with e
or f , which implies that there is an exclusive choice between e and f . Lastly, the part
that remains is a parallel relation between b, c and d since these events always occur,
but their order is not fixed.

Based on these splits the algorithm sets up a so-called process tree (Buijs et al.,
2012b), which is a compact abstract representation of a workflow net (recall that a
workflow net is a petri net having one start place and one end place, Definition 6).
A process tree is a rooted tree where nodes represent operators and leaves represent
events. Leaves with the same parent share a certain relation, which is defined in
their parent. See Figure 6.4 for a concrete example.

Case Events
1. < a, b, c, d, e, g >
2. < a, b, c, d, f , g >
3. < a, c, d, b, f , g >
4. < a, b, d, c, e, g >
5. < a, d, c, b, f , g >

Split string representation
1. → (a)
2. → (a, g)
3. → (a,×(e, f ), g)
4. → (a, +(b, c, d),×(e, f ), g)

TABLE 6.1: Example log, shown in the left table. On the right, you see
the string representation of the resulting process tree after a certain

split.

IM uses a set
⊕

which consists of the following operators:
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• →means a sequential relation between its events. Given→ (a, b), then event b
is executed after the completion of event a.

• × represents an exclusive choice between its events. Given×(a, b), either event
a or event b is executed. Only one of them are executed, but not both.

• + means a parallel execution between its events. Given +(a, b), event a and b
are executed in no particular order.

• 	 is the loop-operator. Given 	 (a, b), then a correct trace would start with a
and end with a. In other words, a is the do-part and b is the redo-part. Whenever
b occurs, then a should occur after.

These operators are used in the string representation of the process tree. On the
right subtable of Table 6.1, these representations are shown after each split discussed.
Eventually, we end with the process tree→ (a, +(b, c, d),×(e, f ), g). Note that Figure
6.4 describes the same relations. You should read this tree like: (1) first event a is
executed, (2) then b, c and d are executed in parallel, (3) then e or f is executed but
not both, and finally (4) g is executed.

→

a +

b c d

×

e f

g

FIGURE 6.4: A possible process tree
from splitting the log shown in Table

6.1.

	

×

a b c d e f g

FIGURE 6.5: A typical flower model, based on the
log shown in Table 6.1. Such a model allows all

possible variations from its children.

You might wonder why process trees are so important, whereas so much research
(Van der Aalst et al., 2003b) is done on other modeling languages (petri nets, BPMN,
YAWL etc.). However, these standard business process model languages allow the
occurrence of anomalies such as deadlocks, live-locks, and improper termination
(Buijs et al., 2012b). Since such properties can only be checked afterward, it is quite
hard to ensure the soundness property when such a model gets constructed. Pro-
cess trees do not have this drawback, because of their block-structure (Kopp et al.,
2009). This means that every possible process tree is a sound model. The soundness
property is not guaranteed by petri nets or other types of models.

6.2.1 Algorithmic Idea

The general idea of the Inductive Miner framework is to compute a log split directly
based on the ordering of activities in the given workflow log L. Such splits can be
described in terms of directly-follows graphs. Such graphs describe which event is
directly followed by another event. In Figure 6.6 some directly-follows graphs are
shown for an example log L = {〈a, b, c〉, 〈a, c, b〉, 〈a, d, e〉 〈a, d, e, f , d, e〉}. Nodes in
a graph represent activities. An edge (x, y) exists if and only if L contains a trace
where x is directly followed by y, i.e. 〈. . . , x, y, . . .〉. The mapping from L to its
directly-follows graph is presented in Figure 6.6a, written as G(L). Furthermore, we
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denote Start(G) as the set of start nodes and End(G) as the set of end nodes of a given
G(L). When looking at Figure 6.6a, Start(G) = 〈a〉 and End(G) = 〈b, c, e〉.

FIGURE 6.6: Example of directly-follows graphs. Arrows represent a
directly-follow relation between events. Splits are denoted by dashed

lines. This Figure is extracted from (Leemans et al., 2013).

IM tries to find G(L) structures that indicate the most dominant operator describ-
ing the behavior of a given event log L. An event log L consists of traces t ∈ L and
traces consist of events e ∈ t.

Each of the four operators (→,×, +,	) can be described as a specific pattern in
G(L) that can be discovered by partitioning the nodes in G(L) into n disjoint sets
∑1, . . . , ∑n in a certain way. The formal definitions of these partitioning are de-
scribed below. An n-ary split of G is said to be maximal if a split of size > n does
not exist for G. A split c of size n is said to be nontrivial if n > 1.

Given a log L, an exclusive split divides the nodes in G(L) into sets ∑1, . . . , ∑n
where nodes ai ∈ ∑i and aj ∈ ∑j, i 6= j do not directly follow each other. In other
words, G(L) cannot contain an edge (ai, aj) when ai is never directly followed by aj
in any trace in L.

Definition 12 (Exclusive Choice Split, (Leemans et al., 2013)). An exclusive choice
split is a partitioning ∑1, . . . , ∑n of a directly-follows graph G, where

1. ∀i 6= j ∧ ai ∈ ∑i ∧aj ∈ ∑j : (ai, aj) /∈ G

A sequence split results in an ordered partitioning ∑1, . . . , ∑n such that for any
two nodes ai ∈ ∑i, aj ∈ ∑j, i < j, there exists a path from ai to aj in G(L), but not vice
versa. A path from ai to aj is denoted by ai  aj.

Definition 13 (Sequential Split, (Leemans et al., 2013)). A sequential split partitions
the nodes in a directly-follows graph G into ∑1, . . . , ∑n in such an ordered way that

1. ∀1 ≤ i < j ≤ n ∧ ai ∈ ∑i ∧aj ∈ ∑j : ai  aj ∈ G

2. ∀1 ≤ i < j ≤ n ∧ ai ∈ ∑i ∧aj ∈ ∑j : aj  ai /∈ G

A parallel split leads to a partitioning ∑1, . . . , ∑n where each set can be executed
in parallel. This means that any two nodes ai ∈ ∑i, aj ∈ ∑j , i 6= j are directly
followed by each other. This relation (ai, aj), (aj, ai) ∈ G.

Definition 14 (Parallel Split, (Leemans et al., 2013)). A parallel split of a directly-
follows graph G leads to ∑1, . . . , ∑n, such that



6.2. The Inductive Miner 23

1. ∀i : ∑i
⋂

Start(G) 6= ∅∧∑i
⋂

End(G) 6= ∅

2. ∀i 6= j ∧ ai ∈ ∑i ∧aj ∈ ∑j : (ai, aj) ∈ G ∧ (aj, ai) ∈ G

A loop split on a directly-follows graph G results in a partially ordered partition-
ing ∑1, . . . , ∑n, where ∑1 consists of the start and end nodes of G, where no edge
(ai, aj) exists between any two nodes ai ∈ ∑i>1, aj ∈ ∑j>1, i 6= j. Note that there can
be edges from a node in ∑1 to any other ∑i>1 and vice versa. Such edges either leave
an end node of G or enter a start node of G.

Definition 15 (Loop Split, (Leemans et al., 2013)). A loop split of a directly-follows
graph G results in a partially ordered split ∑1, . . . , ∑n, such that

1. Start(G)∪ End(G) ⊂ ∑1

2. ∀i 6= 1∧ ai ∈ ∑i ∧a1 ∈ ∑1 : (a1, ai) ∈ G ⇒ a1 ∈ End(G)

3. ∀i 6= 1∧ ai ∈ ∑i ∧a1 ∈ ∑1 : (ai, a1) ∈ G ⇒ a1 ∈ Start(G)

4. ∀i 6= j 6= 1∧ ai ∈ ∑i ∧aj ∈ ∑j : (ai, aj) /∈ G

5. ∀i 6= 1∧ ai ∈ ∑i ∧a1 ∈ Start(G) : (∃a
′
1 ∈ ∑1 : (ai, a

′
1) ∈ G)⇔ (ai, a1) ∈ G

6. ∀i 6= 1∧ ai ∈ ∑i ∧a1 ∈ End(G) : (∃a
′
1 ∈ ∑1 : (a

′
1, ai) ∈ G)⇔ (a1, aj) ∈ G

Now that the pattern for each operator is defined in terms of a directly-follows
graph G, we can work out an example by looking at the corresponding pseudo-code
(Leemans et al., 2013) of the Inductive Miner.

The Inductive Miner basically consists of a framework - called B in (Leemans
et al., 2013) - and a select function. B is described in Function 1 and select is de-
scribed in Function 2. The framework works as a divide-and-conquer approach.
It starts with a log L and searches for possible splits into smaller parts L1, . . . , Ln.
Combining L1, . . . , Ln with a split operator from

⊕
should produce L again. As no-

tation, ∑ is a finite alphabet of activities, τ represents a silent activity, Mi is a process
tree describing Li and ε represents an empty activity. Together with an operator

⊕
,
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⊕
(M1, . . . , Mn) represents the process tree of log L.

Function 1: function Bselect, (Leemans et al., 2013).
1 framework B (L, φ);

Input : A log L and counter parameter φ.
Output: A process tree string.

2 if L = {ε} then
3 base← {τ}
4 else if ∃a ∈ ∑ : L = {〈a〉} then
5 base← {a}
6 else
7 base← ∅
8 end
9 P← select(L)

10 if |P|= 0 then
11 if base = ∅ then
12 return {	 (τ, a1, . . . , am) where {a1, . . . , am} = ∑(L)}
13 else
14 return base
15 end
16 return
{⊕(M1, . . . , Mn)|(⊕, ((L1, φ1), . . . , (Ln, φn))) ∈ P ∧ ∀i : Mi ∈ B(Li, φi)} ∪ base

The framework deals with recursion, whereas the actual log split is done within
the select function.

Function 2: The Inductive Miner select function, (Leemans et al., 2013).
1 function select (L)

Input : A log L.
Output: A single log division.

2 if ε ∈ L ∨ ∃a ∈ ∑(L) : L = {〈a〉} then
3 return ∅
4 else if c← a nontrivial maximal exclusive choice cut c of G(L) then
5 ∑1, . . . , ∑n ← c;
6 L1, . . . , Ln ← ExclusiveChoiceSplit(L, (∑1, . . . , ∑n));
7 return {(×, ((L1, 0), . . . , (Ln, 0)))};
8 else if c← a nontrivial maximal sequence split c of G(L) then
9 ∑1, . . . , ∑n ← c;

10 L1, . . . , Ln ← SequenceSplit(L, (∑1, . . . , ∑n));
11 return {(→, ((L1, 0), . . . , (Ln, 0)))};
12 else if c← a nontrivial maximal parallel split c of G(L) then
13 ∑1, . . . , ∑n ← c;
14 L1, . . . , Ln ← ParallelSplit(L, (∑1, . . . , ∑n));
15 return {(+, ((L1, 0), . . . , (Ln, 0)))};
16 else if c← a nontrivial loop split c of G(L) then
17 ∑1, . . . , ∑n ← c;
18 L1, . . . , Ln ← LoopSplit(L, (∑1, . . . , ∑n));
19 return {(	, ((L1, 0), . . . , (Ln, 0)))};
20 else
21 return ∅;
22 end

Let us work out an example that leads to the splits in Figure 6.6. Each Function
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that represents a split is based on (Leemans et al., 2013).

Given the event log L = {〈a, b, c〉, 〈a, c, b〉, 〈a, d, e〉 〈a, d, e, f , d, e〉}, G(L) is shown in
Figure 6.6a where the sequence split {a}, {b, c, d, e, f } is applied. The log L gets split
up by projecting every trace t in L on the split. In other terms,
SequenceSplit(L, ({a}, {b, c, d, e, f })) results into {〈a〉}, {〈b, c〉, 〈c, b〉, 〈d, e〉, 〈d, e, f , d, e〉}.
We define the second log as L2 and G(L2) is shown in Figure 6.6b.

1 function SequenceSplit (L, (∑1, . . . , ∑n))
2 ∀j : Lj ← {tj|t1 · t2 · · · tn ∈ L ∧ ∀i ≤ n ∧ e ∈ ti : e ∈ ∑i}
3 return L1, . . . , Ln

The next split, as shown in Figure 6.6b, is an exclusive choice split {b, c}, {d, e, f }.
This split divides every trace t from L2 into two logs; one log where each trace con-
tains {b,c} and one log where each trace contains {d,e,f}.
ExclusiveChoiceSplit(L2, ({b, c}, {d, e, f })) results in
{〈b, c〉, 〈c, b〉}, {〈d, e〉, 〈d, e, f , d, e〉}. We define the first log as L3 (Figure 6.6c) and the
second log as L4 (Figure 6.6d).

1 function ExclusiveChoiceSplit (L, (∑1, . . . , ∑n))
2 ∀i : Li ← {t|t ∈ L ∧ e ∈ t : e ∈ ∑i}
3 return L1, . . . , Ln

Continuing with L3, a parallel split between b and c is possible as you can see in
Figure 6.6c. ParallelSplit(L3, ({b}, {c})) leads to L5 = {〈b〉}, L6 = {〈c〉}. tEj stands for
the projection of trace t onto the activity set of Ej, such that all remaining activities
in tEj are included in Ej.

1 function ParallelSplit (L, (∑1, . . . , ∑n))
2 ∀i : Li ← {t∑j |t ∈ L}
3 return L1, . . . , Ln

The last split is done on L4 and shown in Figure 6.6d. This is the loop split {d, e},
{ f }. A loop split divides each trace t ∈ L into subtraces of the loop body and the
loop return condition. In our case, LoopSplit(L4, ({d, e}, { f })) results in L7 = {〈d, e〉},
L8 = {〈 f 〉}.

1 function LoopSplit (L, (∑1, . . . , ∑n))
2

∀i : Li ← {t2|t1 · t2 · t3 ∈ L∧
∑({t2}) ⊆ ∑i ∧
(t1 = ε ∨ (t1 = 〈· · · , a1〉 ∧ a1 /∈ ∑i)))∧
(t3 = ε ∨ (t3 = 〈· · · , a3〉 ∧ a3 /∈ ∑i)))}

3 return L1, . . . , Ln

Combining framework B and the select function as shown in Function 2 returns
a proper process model. At first, we start of with L, for which no nontrivial exclu-
sive split exists. As we showed earlier, L can be properly split by SequenceSplit,
which returns {→, (L1, L2)} and B converts this result in the partial model M =→
(B(L1), B(L2)).
When processing log L1, B(L1) defines base as {a} and the select function returns ∅.
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This leads to the partial model M =→ (a, B(L2)).
When processing log L2, the log gets split exclusively into L3 = {〈b, c〉, 〈c, b〉, 〈c, b〉}
and L4 = {〈d, e〉, 〈d, e, f , d, e〉}. M becomes → (a,×(B(L3), B(L4)). For L3, we use a
parallel split which results in L5 = {〈b〉} and L6 = {〈c〉}. This eventually leads to
M =→ (a,×(+(b, c), B(L4)), since B(L5) and B(L6) are simple base cases and similar
to the processing of L1.
At last, a loop split is applied on L4, resulting into L7 = {〈d, e〉} and L8 = {〈 f 〉}.
Using SequenceSplit, L7 leads to→ (d, e). B(L8) is also a base case, leading to f .
The final model discovered by the framework B, using the select function as stated
above, is M =→ (a,×(+(b, c),	 (→ (d, e), f )).

For further information and proofs on the correctness of the Inductive Miner, we
refer you to read (Leemans et al., 2013).

6.2.2 Inductive Miner infrequent

Besides the Inductive Miner, we also make use of the Inductive Miner infrequent
(IMi) (Leemans et al., 2014b). This variant makes use of a noise threshold ε, which
is used to filter out infrequent events on each local step in the Inductive Miner al-
gorithm; during the selection of an operator and cut, while splitting a log or during
the base cases of the recursion. For instance, given ε, IMi considers events to be
ε-infrequent when they occur less then ε times the frequency of the most frequent
event y occurs at some point in a trace.

IMi is advantageous over IM in terms of runtime and still results in a sound
model. However, models discovered with IMi often have a lower fitness than mod-
els obtained by IM (Leemans et al., 2014a) since IMi filters away infrequent events.
Because of this filtering, we cannot guarantee that every trace in a workflow log can
be replayed in its corresponding workflow model when it is obtained by IMi.

6.3 Measuring Quality of Process Models

A lot of research (Van der Aalst et al., 2003b) has been done on other modeling lan-
guages (petri nets, BPMN, YAWL etc.). However, these standard business process
model languages allow the occurrence of anomalies such as deadlocks, live-locks,
and improper termination (Buijs et al., 2012b). Since such properties can only be
checked afterward, it is quite hard to ensure the soundness property when a model
gets constructed. Process trees do not have this drawback, because of their block-
structure (Kopp et al., 2009). This means that every possible process tree is a sound
model, which is a property that petri nets or other types of models cannot guarantee.

Furthermore, there are four quality dimensions that play a role when it comes
down to the quality of a process tree (Buijs et al., 2012b). The values of these dimen-
sions lie within a 0 to 1 range, where 1 is the optimal value. Although we do not
these quality operators during our study, we present them to the reader to be aware
that a workflow model can be checked on quality.

1. The (replay) fitness quality dimension stands for the ability to allow all observed
behavior in the given log. The way this dimension actually works is that the
traces from the event log gets aligned with the process tree. If an event cannot
be aligned, events are skipped or inserted in the trace such that this trace is
still replayable. Skipping or inserting events for this purpose result in a certain
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penalty. The replay fitness is defined as:

Qr f = 1− Total cost for aligning model and event log
Minimal cost to align arbitrary event log on model and vice versa

(6.2)

where the denominator is meant to normalize the final outcome.

2. The simplicity dimension prefers simpler models that can explain the observed
behavior. This property is based on Occam’s Razor. The process tree in Fig-
ure 6.5 might be considered as better than the tree in Figure 6.4 in this case.
Simplicity gets computed as follows:

Qs = 1− #duplicate activities + #missing activities
#nodes in process tree + #event classes in event log

(6.3)

3. The precision quality dimension stands for the inability to allow behavior which
is different from the observed behavior. A very generic process tree might
allow all possible variations of events, leading to a model which can be seen
as imprecise. For this purpose, the precision quality dimension is a good way
to check whether your model is under-fitted or not. This dimension can be
represented in terms of state space. Recall that a marking is a certain state in a
Petri Net. Markings consist of a set of places where each place has a number
of incoming and outgoing edges. This dimension uses these numbers in its
calculation:

Qp = 1−
∑visited markings #visits× #outgoing edges−#used edges

#outgoing edges
#total visited markings overall

(6.4)

In short, a model has optimal precision if and only if all states in the model are
actually visited according to the event log. Whenever the model has unused
markings, its precision decreases.

4. The generalization quality dimension aims to avoid over-fitting. Where the pre-
cision dimension aims for models which do not allow other behavior than
those seen in the log, the generalization quality increases when a model allows
more than just the observed behavior.

Qg = 1− ∑nodes(
√

#executions)−1

#nodes
(6.5)

Important to know is that reaching a generalization of 1 is impossible since
you would need to have infinitely many executions of nodes. The more nodes
are visited, the smaller the numerator will get.

A desired trade-off between these quality dimensions depends on the structure
of the events log and the purpose of the models. For instance, when your workflow
log consists of a lot of variability, the resulting process tree might become rather
complicated when you mainly focus on the precision dimension. An overall quality
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is computed by normalizing the four quality dimensions. Defining weights for a
given dimension X as wx, the overall quality is defined as:

Q =
wr f ·Qr f + ws ·Qs + wp ·Qp + wg ·Qg

wr f + ws + wp + wg
(6.6)

Important to note is that the Inductive Miner always results in a perfect replay
fitness. However, there is no guarantee over the other three quality measures.

Although a user cannot influence these quality weights when applying the In-
ductive Miner, there is an alternative which makes this possible. With the Evolu-
tionary Tree Miner (Buijs et al., 2012a) - ETM for short - a user is able to configure
the quality weights. This way the user can let the algorithm prefer certain quality
measures over others. Like IM, ETM is also implemented as a plug-in in ProM.

Unfortunately for us, running ETM on a single workflow log takes a couple of
minutes on the machine that we use for this study. This means that processing all
4000+ workflow logs would take days, which makes ETM impractical. Furthermore,
ETM does not always result in higher quality models. It requires a user to experi-
ment with the configuration to obtain the best process models. Because of these
issues, we decided to keep IM as our algorithm for process model discovery. Nev-
ertheless, with ETM it is possible to obtain process models with a higher overall
quality (Buijs et al., 2012a).
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Chapter 7

Our Approach

This chapter presents a method for converting workflow logs into workflow models.
In Chapter 7.1, we study the raw logging data of AFAS. In Chapter 7.2 we describe
how to convert such workflow logs into workflow models. Chapter 7.3 discusses a
way to define workflow patterns in terms of a process tree and presents an algorithm
which finds occurrences of a given pattern in a given workflow model. In Chapter
7.5 we explain how the proposed method is realized in the form of a tool.

7.1 Studying Raw Data

For over 10 years, workflow events are being logged in the software package Profit.
These logs can be seen as a table where each record represents an action on a task in a
certain workflow instance. Although the logs contain more fields, the most relevant
fields are shown in an example log in Table 7.1. The first field is the Workflow ID
and is a unique reference to a workflow model (combination of task and action like
shown in Figure 1.1) from which this event sequence is an instance. Although we
did not include more workflows in the example, there are many workflow models
used, so this field is not superfluous. By grouping on this field, you collect all event
logs of that specific workflow log.

The Case ID denotes the event sequence or trace of a given workflow. Another
way to refer to an event sequence is by using a tuple <Workflow ID, Case ID>. The
Task ID is a key for the current task in the sequence. The Action ID refers to a unique
action, given a task. Note that this value is not unique when you consider the com-
plete workflow model. Every task within a workflow must have at least one action,
and ID’s of these actions all start at 1. Of course, it would be better if this ID field
was unique within the complete model, but that is not how these workflow logs are
set up at AFAS.

Then we also have two fields Task Description and Action Description which repre-
sent the actual meaning or reasoning behind a task or action in the workflow. These
descriptions are set by the creator of the workflow. Since we are interested in the
context of such tasks or actions, these fields will become crucial for determining this
context. Finally, the last two fields Start Time and End Time contain the time stamps
of this action. When you see a workflow as a finite state machine, the moment that
the current task is entered is the start time of this state, whereas the moment that the
action is triggered is the end time of this state. Using this information, we can derive
the order of events in a sequence.

Using this information, we can derive that the log contains two event sequences,
shown in Table 7.2.
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TABLE 7.1: An example workflow event log.

Workflow ID Case ID Task ID Task Description Action ID Action Description Start Time End Time
1 82 1 Approve Manager 1 Accept 2-1-2018 09:10 2-1-2018 11:15
1 82 2 Approve Admin 1 Accept 2-1-2018 11:15 2-1-2018 11:42
1 83 1 Approve Manager 2 Reject 2-3-2018 08:36 2-3-2018 08:49
1 83 3 Adjust application 1 Resend 2-3-2018 08:49 2-3-2018 09:11
1 83 1 Approve Manager 1 Accept 2-3-2018 09:11 2-3-2018 09:17
1 83 2 Approve Admin 2 Reject 2-3-2018 09:17 2-3-2018 09:33
1 83 3 Adjust Application 1 Resend 2-3-2018 09:33 2-3-2018 09:53
1 83 1 Approve Manager 1 Accept 2-3-2018 09:53 2-3-2018 10:04
1 83 2 Approve Admin 1 Accept 2-3-2018 10:04 2-3-2018 10:11

TABLE 7.2: Sequences of workflow with ID 1, based on the workflow
log in Table 7.1.

Case ID→
Step in workflow↓ 82 83

1. Approve Manager - Accept Approve Manager - Reject
2. Approve Administrator - Accept Adjust Application - Resend
3. Approve Manager - Accept
4. Approve Admin - Reject
5. Adjust Application - Resend
6. Approve Manager - Accept
7. Approve Admin - Accept

However, we do start searching workflow patterns directly from workflow logs
like described above. A translation needs to be made from workflow logs to work-
flow models. Now that we have seen what kind of data we will be working with,
let’s take a look at actions which translate this such logging data into workflow mod-
els.

7.2 From Workflow Logs to Models

First of all, the workflow logs need to be ordered. This ordering is done in the fol-
lowing way:

Workflow ID ↓ Case ID ↓ Start Time ↓ End Time ↓ (7.1)

Applying this ordering results in a table where the records are ordered based on
their workflow- and case ID. At last, events within a workflow instance are chrono-
logically ordered.

One of the problems with the set of workflow logs we use, as mentioned in Chap-
ter 2.1, is that different versions of a workflow can be used throughout time. This
means that different descriptions for tasks/actions can be used, or tasks/actions that
previously existed in the model may have been removed in later versions. Un-
fortunately, an event log does not refer to a specific version of a workflow model.
This causes to be problematic when mining for relations between tasks and actions.
To give an example, recall the example workflow in Figure 1.1 and suppose that,
at some point in time, the description of the first task “Approve" gets changed to
“Check". The result of this change is that all upcoming instances of the workflow
log a task called “Check", whereas we before logged “Approve”. How do we deter-
mine that instances using “Approve” and instances using “Check” use a different
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workflow model? We do this by iterating over all instances of a workflow, keep-
ing track of a dictionary where we store the description of every task as a tuple
< Task ID, Task Description >. By starting with the most recent instance, we collect
the latest workflow model. When an instance uses a different description for a task,
given the Task ID, then we conclude that its workflow version is different. The same
goes for changed actions in a model. This way, we recognize which instances belong
to the same workflow version. This recognition is very important since we want to
derive the correct model and this can only be done when we know which traces are
based on this model. Using logs which use a different model will, of course, influ-
ence our mined workflow model in a negative way, which is something we try to
avoid by applying the steps explained above.

As explained in Chapter 2, we do not know the corresponding workflow model
of a log beforehand. Although the example log from Table 7.1 is based on the model
in Figure 1.1, we do not have access to the corresponding model. Because of this, we
need to convert a workflow log into a workflow model before being able to search
for useful patterns in this model. The model discovery is done by applying the In-
ductive Miner, or the Inductive Miner infrequent. Both algorithms are discussed in
Chapter 6.2.

Since 2011, the standard event log format is XES Buijs (2010), which stands for eX-
tensible Event Stream. This format is XML-based and many tools, like ProM 6+ Ver-
beek et al. (2011), and algorithms, like the Inductive Miner Leemans et al. (2013), are
based on XES files as their input. The logs like Table 7.2 can easily be converted to
this format.

7.3 Workflow Pattern Matching

Before going into the algorithm used for our research, we need to define when a
given pattern P is said to be matched by a given workflow T.

Definition 16 (Pattern matching rule). We say that a given workflow pattern P is
contained in a given workflow model T (both described as process trees) iff:

1. every event p ∈ P is similar to an event t ∈ T according to Equation 7.3, and

2. the structure of P found in T should still meet the requirements of an in-
duced/embedded subtree as stated in Definitions 9 and 10.

Given a process tree T and a workflow pattern P, the algorithm tries to find
occurrences of P in T.

7.3.1 Applying Word2Vec

During workflow pattern matching, we make use of Word2Vec (see Chapter 6.1 for
more details). To elaborate further on this technique, see Figure 7.1. For instance,
juice and apple are quite close to each other. This makes sense because they are both
fruits. However, the distance between apple and car is much bigger. From this, we
learn that these words are unrelated.

To put Word2Vec in our perspective, terms used in events of workflow models
we study should behave the same way. For instance, we expect that ‘approval’ and
‘agreement’ will lie pretty close to each other in the vector space. Also note that
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the words accept and reject are closely positioned in the Word2Vec model of Figure
7.1. You might want to set similarity between antonyms like these to 0 because their
meaning is the opposite of each other. However, since antonyms often occur in the
same context, Word2Vec ‘learns’ that these terms are quite similar. Our solution for
this problem is explained in Chapter 7.3.2.

FIGURE 7.1: An example vector space.

A variation of Word2Vec is called Sent2Vec (Pagliardini et al., 2017). Sent2Vec is
a way to train distributed representations of sentences. In short, Sent2Vec uses an
aggregate function to determine the vector of a sequence of words. For example,
you can define the final vector as the average vector when applying Word2Vec on
each word in the sentence. So when looking at our example sentence s =“Most of
the time, apples are green", you could for instance define the position of s as

v(s) =
1
7
∗ [v(most) + v(of) + v(the) + v(time) + v(apples) + v(are) + v(green)]. (7.2)

However, since task and event descriptions in our dataset mostly consist of a few
keywords instead of a sentence, we chose to apply Word2Vec instead of Sent2Vec.

7.3.2 Normalization of Terms And Their Similarity

For normalization purposes, we apply the following steps to pre-process each sen-
tence s:

1. Convert s to lower-case.

2. Strip s of punctuation characters and numerical characters.

3. Remove dutch stopwords in s, using Natural Language Toolkit (NLTK) (Loper
and Bird, 2002) in Python.

We could use a simple formula to determine whether a given workflow pattern
P is contained in a given process tree P. Given a sentence representing event p ∈ P
and given a sentence representing event t ∈ T:

AreSimilar(sp, st) = max[ ∑
wp∈sp

∑
wt∈st

W2V(wp, wt)] ≥ π (7.3)
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Where W2V(wp, wt) stands for the cosine similarity function of Word2Vec and π
is a given minimum similarity threshold, where 0 ≤ π ≤ 1. When this threshold
value is met, then we conclude that the given events are similar. Although Equa-
tion 7.3 is easy to understand, we want to extend this function somewhat further.

We have noticed that Word2Vec does not make a clear distinction between antonyms.
For example, using the sonar-320 corpus, the term afkeuren is placed within the top
10 most similar terms for goedkeuren. Since these terms are often placed in the same
context, Word2Vec sees the terms as quite similar.

To fix this problem, we use a Dutch website called mijnwoordenboek.nl. This
website can be used to extract synonyms and antonyms of a given word1. We used
Python packages urllib2 and Beautiful Soup 4 to be able to query and translate XML
pages from mijnwoordenboek.nl. We use this website for two reasons:

• We expand the set of similar terms of a given word wp with the synonyms
retrieved, denoted by Synonyms(wp). When matching wp to a synonym wt,
we set their similarity score to 1. This is because we assume that this set of
synonyms consists of similar words.

• We also collect a set of antonyms of wp, denoted Antonyms(wp). Since the list of
antonyms retrieved from mijnwoordenboek.nl often has a smaller size compared
to synonyms, we extend this list by obtaining all synonyms of the antonyms
found. This makes Antonyms(wp) ultimately the set of ai ∈ antonyms(wp) ∪
synonyms(ai). Whenever we discover that st contains an antonym of any wp ∈
sp, we assume that the two sentences sp and st cannot be similar.

When computing the similarity between two sentences wp and wt, we now use
sets of synonyms and antonyms, along with their purpose as explained above. The
extended version of the similarity function is given by Functions 3 and 4. We simply
use Function 3 to check whether the similarity between two sentences sp and st is
acceptable, but the actual similarity score gets determined in Function 4.

Function 3: Function which checks the similarity between two sentences.

1 function AreSimilar (sp, st)
Input : A pattern sentence sp, a tree sentence st.
Output: A boolean value.

2 score = Similarity(sp, st);
3 if score ≥ π then
4 return True;
5 end
6 return False;

In general, we compute the similarity between each combination of wp ∈ sp, wt ∈
st and keep track of the highest score (lines 3-18) and finally check whether this score
≥ π (lines 15-17). Note that the approach up to this point is similar to Equation 7.3.
In lines 5-17, we check the similarity between a given pattern word wp and wt. At
line 6, we check whether wt is an synonym of wp. In this case, we set the maximum
score to 1. Although this is the highest possible score, we continue searching. The
reason why is given by lines 9-10. Whenever we encounter an antonym of wp, we
immediately return 0 as the similarity score. The reason why is that we assume that
the two sentences sp and st cannot be similar whenever they contain one or more

1The website returns synonyms and puzzle variations of a given term. We only use the synonyms
and ignore the list of puzzle words.

mijnwoordenboek.nl
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antonyms of each other.

Function 4: Function which checks the similarity between two sentences.

1 function Similarity (sp, st)
Input : A tree sentence st, a pattern sentence sp.
Output: A boolean value.

2 maxScore = 0;
3 for wp ∈ sp do
4 for wt ∈ st do
5 score = 0;
6 if wt ∈ Synonyms(wp) then
7 score = 1;
8 end
9 if wt ∈ Antonyms(wp) then

10 return 0;
11 end
12 else
13 score = W2V(wp, wt);
14 end
15 if score > maxScore then
16 maxScore = score;
17 end
18 end
19 end
20 return maxScore;

7.3.3 Finding Pattern Matches: A Graphical Example

The general idea is to ‘walk’ over all nodes t ∈ T. This is done in post-order2 for
matching with the root node p1 ∈ P. However, for the purpose of explaining how
patterns are being matched, we ignore all matching steps executed before the root
note of P is matched, making the explanation shorter and easier to understand. The
order of matching the remaining nodes p>1 ∈ P is done in a depth-first approach.
Thus, when p1 ∈ P is matched, we search whether its child nodes are also matched
etc. When some descendant of p1 ∈ P cannot be matched, we move on with match-
ing p1.

So we start with matching p1 ∈ P, which is the root node of P. When p1 is
matched, we continue with searching for p1’s child nodes in P etc. To visualize
this approach, Figure 7.2 shows a pattern considering a start- and finish event. Fur-
thermore, pattern matching is done differently when we allow induced subtrees or
allow embedded subtrees to be proper occurrences of P. Figures 7.3 and 7.4 present
process trees, where the former shows an induced match and the latter shows an
embedded match. For reference purposes, we refer to a node from T as t and a node
from P as p. We have added a number as the identifier to every node in the process
trees, and refer a node t with id i as ti.

2We go into more depth on this ordering in Chapter 7.3.4.
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1.→

2. start 3. finish

FIGURE 7.2: A sequence pattern.

1.→

3.×

5. agree 6. disagree

2. start 4. finish

FIGURE 7.3: A process tree T1 con-
taining the pattern from Figure 7.2 as

an induced subtree.

1.→

2. start 3.×

4. redo 5. finish

FIGURE 7.4: A process tree T2 containing
the pattern from Figure 7.2 as an embed-

ded subtree.

Step P node T1 node Match
1. p1 t1 3

2. p2 t2 3

3. p3 t3 7

4. p3 t4 3

TABLE 7.3: Steps of searching in tree T1
given in Figure 7.3 for an induced occur-

rence of Figure 7.2.

Step P node T2 node Match
1. p1 t1 3

2. p2 t2 3

3. p3 t3 7

4. p3 t4 7

5. p3 t5 3

TABLE 7.4: Steps of searching
in tree T2 given in Figure 7.4
for a embedded occurrence of

Figure 7.2.

The root node p1 of the example pattern P is→. We start by searching for a node
t ∈ T1 that matches p1, where T1 is given in Figure 7.3. Also, we start off with finding
induced matches. Recall that P is an induced subtree of T whenever the child-parent
relations of P are present in T. The matching function is easy to understand; when-
ever a node is an operator, it only matches with nodes that are the same operator.
When node p is not an operator - thus represents an event - we conclude whether
it matches with t or not using Word2Vec (see the similarity function in Function
3). However, for the examples explained below we only consider exact matches of
terms. The according steps for pattern matching are shown in Tables 7.3 and 7.4.

The first step is searching for a node that matches p1. As you can see, t1 also is
a→ operator. Thus, t1 matches p1 and we move on to the next node in P, which is
p2. Like p2 does t2 represent the event ‘start’. Now we continue with p3. Node t3 is
an operator so does not match p3. t4 finally does match p3. Since there are no more
nodes in P which we have not considered, we are done and found induced subtree
{t1, t2, t4} ∈ T1.

Considering T2 in Figure 7.4, we find no induced matches for P. The reason why
there are no induced matches in T2 is because the parent-child relation of p1 and p3
cannot be met in T2. Although t1 matches p1 and t5 would match p3, the parent of
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t5 is not t1, but t3. Recall that the parent-child relation is relaxed in the definition of
embedded subtrees. This means that {t1, t2, t5} ∈ T2 is an embedded match of P.

7.3.4 Finding Pattern Matches: A Basic Framework

To go into more detail, we have written this algorithm into pseudo code. The general
framework is shown in Figure 7.5. This Figure represents the relationships between
the different Functions. Function 5 is the main Function and makes direct use of
Functions 6 and 9 etc. Note that the tree splits into two subtrees. This is because the
algorithm distinguishes induced matching (Functions 6, 7, 8) and embedded match-
ing (Function 9). While reading the remainder of this Chapter, it is recommended to
use Figure 7.5 as a way to keep track of the location of a Function in the framework.

SearchMatch
(Function 5)

Search
InducedMatch

(Function 6)

Search
InducedMatch

Ordered
(Function 7)

Search
InducedMatch

Unordered
(Function 8)

Search
EmbeddedMatch

(Function 9)

FIGURE 7.5: Pattern Matching Framework tree.

The algorithm starts at Function 5. In this function, we try to find a node t in T
that is similar to the root node p of P (line 7). If that is the case, we need to consider
the subtrees of p and t and check whether they also match. Matching the subtrees
of t and p is done in Functions 6 and 9 (line 9, 12). Eventually, using post-order
traversal, each node in T gets visited as long as no match of P is found so far (see
line 3). Post order traversal starts at leaf nodes and works its way up to internal
nodes when all leaf nodes are explored etc. Using Figure 7.6, the post order of its
nodes is 〈t3, t4, t2, t1〉. The reason for using post order traversal is that we prefer to
find embedded matches that uses as few as possible nodes. Taking Figure 7.6 as
an example and re-using Figure 7.2 as our pattern, then we would like to discover
match M1 = < p1, t2 >,< p2, t3 >,< p3, t4 >. Note that using breadth first traversal
(or depth first traversal), match M2 = < p1, t1 >,< p2, t3 >,< p3, t4 > would be dis-
covered, which is less convenient in our opinion since we prefer a directly connected
match over an indirectly connected match. M1 is a directly connected match because
all t nodes in M1 are directly connected with each other. Note that this is not the case
for M2.
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1.→

2.→

3. start 4. finish

FIGURE 7.6: A process tree which shows why using post order traver-
sal in Function 5 is a good approach.

We make a distinction between the case whether we want to find induced sub-
trees or embedded subtrees (using boolean variable isInduced) in lines 8-13. Al-
though both cases have a somewhat similar code, there are some differences which
are important to note.

Function 5: Main function that returns an induced or embedded subtree from
a given process tree that matches with a given pattern.

1 function SearchMatch (T, P, isInduced)
Input : A process tree T, a process tree P, boolean value induced stating

whether we must only consider induced subtrees as matches or
consider embedded subtrees.

Output: A pattern match from P in T if possible. This match is an induced or
embedded subtree, depending on the value of isInduced.

2 p = P.root;
3 nodeList = T.GetNodesInPostOrder();
4 while |nodelist|> 0 do
5 t = nodelist.pop;
6 result = null;
7 if AreSimilar(t, p) then
8 if isInduced then
9 result = SearchInducedMatch(t, p);

10 end
11 else
12 result = SearchEmbeddedMatch(t, p, []);
13 end
14 if result 6= null then
15 return result;
16 end
17 end
18 end
19 return null;

Induced Matching

We like to say that induced matching is the stricter variant of the two matching pro-
cedures that we apply in our study since all induced matches are a proper subset
of embedded matches (see Definition 9 and 10). Function 6 determines whether or
not the given pattern node p has a specific ordering in its children. Recall that the
ordering in child nodes is only relevant whenever p is a sequence operator (→) or a
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loop operator (	). Eventually, a call to Function 7 or 8 is made.

Function 6: Function that checks whether the pattern is ordered or unordered.
This property depends on the type of the current root node.

1 function SearchInducedMatch (t, p)
Input : A process tree node t, a pattern node p.
Output: An induced pattern match of p in t if there exists any.

2 if p ∈ [→,	] then
3 return SearchInducedMatchOrdered(t, p);
4 end
5 else
6 return SearchInducedMatchUnordered(t, p);
7 end

Function 7 processes patterns where the given p has ordered children and Func-
tion 8 processes patterns where the given p has unordered children. Function 7
follows these steps:

1. Return when p has no child nodes (line 2-4).

2. For every child node pc of p, search a matching child node tc of t (lines 7-19).
Keep in mind that the order of the child nodes needs to be maintained during
this matching process. Variable startIndex keeps track of child nodes which
are still open for further matching (see line 8). Suppose that t has 8 child nodes
{t1, . . . , t8}, p has 3 child nodes {p1, p2, p3} and p1 matches t3, then only t4 up
to t8 may be used for matching p2.

3. Besides matching child nodes tc and pc, we also match their corresponding
descendants. This results in a recursive call at line 11. When the recursive call
returns nothing, we know that the corresponding descendants of tc and pc do
not match (lines 11-16).

4. When we have found a match of p and its descendants, we return all matching
nodes (line 20-22).

5. return null when no match of p in t has been found (line 23).
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Function 7: Function that tries to find a given induced pattern where the order
of p’s children matters.

1 function SearchInducedMatchOrdered (t, p)
Input : A process tree node t, a pattern node p.
Output: An induced match of p in t if there exists any.

2 if |p.children|== 0 then
3 return [〈t, p〉];
4 end
5 matches[];
6 startIndex = 0;
7 for pc ∈ p.children do
8 for index ∈ range(startingIndex, |t.children|) do
9 tc = t.children[index];

10 if AreSimilar(tc, pc) then
11 subtreeMatch = SearchInducedMatch(tc, pc);
12 if subtreeMatch 6= null then
13 matches.add(subtreeMatch);
14 startIndex = index + 1;
15 break;
16 end
17 end
18 end
19 end
20 if p.descendants ∈ matches then
21 return [〈t, p〉, matches];
22 end
23 return null;
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Function 8 shows how we can find induced matches where the given p node has
unordered children. In general, this Function looks quite similar to Function 7. The
only difference is that p’s children are unordered, which makes the matching process
of child nodes easier. By simply iterating over the children of p and trying to match
a child from t, we search for a pattern match (lines 6-16). Note that we need to check
whether tc does not already match a previous child node of p (condition in line 8), to
prevent that we match on some tc multiple times. Whenever a match is successful,
we stop searching for the current pc and continue with the next (line 10-13).

Function 8: Function that tries to find a given induced pattern where the order
of p’s children matters.

1 function SearchInducedMatchUnordered (t, p)
Input : A process tree node t, a pattern node p.
Output: An induced match of p in t if there exists any.

2 if |pChildren|== 0 then
3 return [〈t, p〉];
4 end
5 matches = [];
6 for pc ∈ p.children do
7 for tc ∈ t.children do
8 if tc /∈ matches ∧ AreSimilar(tc, pc) then
9 subtreeMatch = SearchInducedMatch(tc, pc);

10 if subtreeMatch 6= null then
11 matches.add(subtreeMatch);
12 break;
13 end
14 end
15 end
16 end
17 if p.descendants ∈ matches then
18 return [〈t, p〉, matches];
19 end
20 return null;
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Embedded Matching

The second matching procedure is called embedded matching. This type of match-
ing is less strict than induced matching and uses a wider range of possible matches.
As Figure 7.5 shows, embedded matching is described in just one Function 9. Recall
that we do not take the ordering of sibling nodes into account for embedded match-
ing, unlike induced matching (see Definitions 9 and 10). Embedded matching can
be seen as a relaxed variant of induced matching.

The main difference between induced matching and embedded matching is the set of
nodes which is eligible for matching a certain pattern node p of a given pattern tree
P. For induced matching, matches of child nodes of p must be direct child nodes of t.
For embedded matching, matches of child nodes of p must only have to be descen-
dants of t. Since the parent-child relation constraint for induced matching is relaxed
into an ancestor-descendant relation constraint for embedded matching, this extends
the search for possible matches of a given pattern node p. This extension leads to
lines 22-31 in Function 9. This part of the Function enables the algorithm to continue
searching for a match for t whenever p and t itself do not match. This possibly re-
sults in indirect matches, meaning that nodes t ∈ T which are part of an embedded
match of a given P are not always directly linked to each other. Recall that the em-
bedded match of Figure 7.2 in Figure 7.4 gives an example of such an indirect match.

The problem of finding embedded matches comes with the following two subprob-
lems:

1. Keeping track of all matched nodes t is more complicated than for induced
matching. Since we do not want different p1, p2 ∈ P to be matched to the same
node t ∈ T, we need to keep track of all nodes t ∈ T which have already been
matched to some p ∈ P. Like we have seen with induced matching, the list
matches does this administration. However, the matches variable does not keep
track of any previous matches that are discovered earlier during the matching
procedure. With induced matching, this is no problem since a match is an in-
duced match if and only if it results in a direct match. Though for embedded
matches this is not the case and thus, we need to know any previously discov-
ered matched nodes t ∈ T to avoid using a node t ∈ T multiple times. For
this reason, we added a third parameter to Function 9, called previousMatches,
which is a list of nodes t ∈ T that are already used for the embedded match.
Along with the variable newMatches we know exactly which set of t ∈ T is
currently used for the embedded match.

2. Siblings p1, p2 ∈ P can be matched to nodes t1, t2 ∈ T where t1 and t2 are de-
scendants of each other becomes hard. This matching behavior is not correct,
according to Definition 16. To avoid this problem, we check whether a given
t ∈ T is an ancestor of another node t′ ∈ T that is already used for matching
(line 2). When this is the case, we may not use this node t for matching.



42 Chapter 7. Our Approach

Function 9: Function that tries to find a embedded pattern of p and its descen-
dants.
1 function SearchEmbeddedMatch (t, p, previousMatches)

Input : A process tree node t, a pattern node p, a list of other matching nodes
of P and T.

Output: A embedded pattern match of p in t if there exists any.
2 if AreSimilar(t, p)∧ ¬IsAncestor(t, previousMatches) then
3 if |p.children|== 0 then
4 return [〈t, p〉];
5 end
6 newMatches = [];
7 for pc ∈ p.children do
8 for tc ∈ t.children do
9 if tc /∈ (newMatches ∪ previousMatches)∧ AreSimilar(tc, pc) then

10 subtreeMatch =
SearchEmbeddedMatch(tc, pc, newMatches ∪ previousMatches);

11 if subtreeMatch 6= null then
12 newMatches.add(subtreeMatch);
13 break;
14 end
15 end
16 end
17 end
18 if p.descendants ∈ newMatches then
19 return [〈t, p〉, newMatches];
20 end
21 end
22 for tc ∈ t.children do
23 if tc /∈ previousMatches then
24 match = SearchEmbeddedMatch(tc, p, previousMatches);
25 if match 6= null then
26 return match;
27 end
28 end
29 end
30 return null;

7.4 Extending The Basic Matching Algorithm

The previous section describes a basic algorithm to determine whether a given pro-
cess tree P is contained by another process tree T. This algorithm only searches one
match of P in T if it exists. However, the algorithm can be extended to find mul-
tiple matches. Furthermore, taking the similarity scores of other possible matches
into account can increase the overall similarity of a match found. Let us study these
extensions in more detail.
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7.4.1 Finding Multiple Matches

Besides obtaining a valid pattern match, we are interested in all occurrences of the
pattern in a workflow model. For this problem, we need to define when two matches
are distinct. Recall that leaf nodes in a process tree are nodes that represent workflow
events, whereas internal nodes are operators that define the order in which events
can be executed. We do not want to use the same event in multiple matches, thus
matches M1 and M2 are said to be distinct if and only if they have distinct sets of leaf
nodes. A more formal definition given below:

Definition 17 (Distinct Matches). Given a pattern P and a tree T, a match M1 is
distinct to match M2 if and only if leaf nodes A ∈ M1 and leaf nodes B ∈ M2 are
distinct sets, i.e. A ∩ B = ∅.

Based on Definition 17, you can find all distinct matches of P in T in the following
way:

1. Find a match M using the algorithm described above.

2. Remove all leaf nodes t ∈ T that are used in M, from T. This removal step on
T leads to T′.

3. Repeat steps 1 and 2 with T′ and P until you find no more matches.

Note that an event node in a process tree cannot have any child nodes. Fur-
thermore, an operator node can have many child nodes, from which many may be
matched to a given P. To avoid missing such matches, we only remove leaf nodes
(events) from T in step 2.

7.4.2 Finding the Highest Scoring Pattern

Another extension is the retrieval of the match with the highest overall score. We
define the overall score of a match M of a given pattern P in tree T:

Score(M) =
∑mi∈M Similarity(mi)

|M| , (7.4)

where a pattern match M consists of node matches mi =< pi, ti >, pi ∈ P, ti ∈ T,
|M| stands for the total number of node matches m ∈ M and Similarity is defined
in Function 4. In other words, we compute the average score of each node match
m ∈ M.

Having defined the overall similarity score of a match, we can define the optimal
match as follows:

Definition 18 (Optimal match). Given a set of pattern matches M of pattern P in
tree T, then match M is the optimal match in M if and only if M has the highest
overall score of all Mi ∈ M.

Note that you would need to consider all possible pattern matches to be able
to find the optimal match. However, the algorithm as described in Chapter 7.3.4
does not work this way. Thus, it cannot guarantee to find an optimal pattern match.
Although it does not determine all possible matches, here is a heuristic approach
that we have added to the algorithm described to find a match that is closer to the
optimal match.
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Whereas the algorithm as discussed in Chapter 7.3.4 stops searching for a match
of a given pattern node p once it has found any acceptable match, it should continue
searching for a match with a higher score. Let us explain an approach through an
example. We define pattern tree P as Figure 7.8, data tree T as Figure 7.7 and set π
to 0.7. The search for an induced match of P in T is given step-by-step in Table 7.5.

1.→

4.×

6. agree 7. finish

3. start 5. complete,
send feedback

2. begin

FIGURE 7.7: Another example of a process tree.

1.→

2. start 3. finish

FIGURE 7.8: A simple pat-
tern.

Step P node T node Score Match
1. p1 t1 1 3

2. p2 t2 0.8 3

3. p2 t3 1 3

4. p3 t4 0 7

5. p3 t5 0.7 3

TABLE 7.5: Steps made when searching for an induced match of P in
Figure 7.8.

• Recall that a match of the root node p1 ∈ P is searched through post order
traversal (see Function 5, line 3) in T. This actually leads to a similarity check
of p1 with t2, t3, t6, t7, t4, t5 (which do not lead to a match) and finally t1. Since
these steps are somewhat irrelevant for making our point in this case, we have
only included matching step < p1, t1 > in Tables 7.5 and 7.6.

• Now it is time to search for a match ti ∈ T with p2. Note that we find an
acceptable match < p2, t2 > (step 2), since its score of 0.8 is higher than 0.7.
However, we want to know whether there is a match for p2 that has an even
higher score than 0.8. This is the case for the match < p2, t3 > with a score of 1.
Because 1 is the highest score possible, we are now finished with p2 and move
on to p3.

• The search for a match with p3 starts with t4 instead of t2, because P is an
ordered tree and t3 is already matched to p2. This means that t2 (and t3 of
course) cannot longer be used for this matching (as is described in Function 7).
Since the score of < p3, t4 > is lower than π, we move on to < p3, t5 >. This
latter match is acceptable, which leaves us with an induced match Mind = {<
p1, t1 >,< p2, t3 >,< p3, t5 >}. The overall score is 1+1+0.7

3 = 0.9.
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Step P node T node Score Match
1. p1 t1 1 3

2. p2 t2 0.8 3

3. p2 t3 1 3

4. p3 t2 0 7

5. p3 t4 0.2 7

6. p3 t6 0.3 7

7. p3 t7 1 3

TABLE 7.6: Steps made when searching for an embedded match of P
in Figure 7.8.

Table 7.6 shows the matching steps when applying embedded matching. Note
that embedded matching leads to more matching steps than induced matching. This
is because of two reasons:

1. Whereas induced matching only considers direct child nodes as possible matches
for a given pattern node p ∈ P, embedded matching considers all descendants
of t ∈ T (see Definition 16). In this example, t = t1. The child nodes of t1 are
t2, t3, t4, t5. These are the only set of nodes which is used for induced matching,
considering p2 and p3. However, embedded matching also considers nodes t6
and t7 (shown in steps 6 and 7).

2. Unlike induced matching, embedded matching does not take the order (if an
order exists) of nodes in a process tree into account. This is shown in the fact
that the embedded matching case contains the matching < p3, t2 > (see step 4)
but induced matching does not.

The embedded match found is Memb = {< p1, t1 >,< p2, t3 >,< p3, t7 >} with
an overall score of 1+1+1

3 = 1. Note that Memb is different from Mind and also has a
higher score.

We can implement the idea of keeping track of the best match in four Functions,
namely Functions 5, 7, 8, 9. For the extended pseudo code, I would like to refer you
to Appendix A.

7.5 The Ingredients of Our Tool

Since we want to apply these techniques on a large scale, we developed a program
that is able to apply the techniques mentioned - given a collection of workflow logs
and workflow pattern - and deliver a set of workflow models containing this pattern.
The repository, including an installation- and user guide of the workflow tool can be
found on GitHub3 and mainly consists of three projects. A high-level overview is
shown in Figure 7.9. Since this thesis is built on a case study for AFAS, this tool is
also part of the result of this thesis.

• A Windows Presentation Foundation Application (C#), called WorkflowPattern-
Finder. This project is mainly created for UI purposes.

• A Windows Console Application (C#), called WorkflowEventLogProcessor. This
project is mostly used for converting raw workflow logs as explained in Chap-
ter 7.1. For the conversion of CSV files to XES files, we use a Java tool4. This

3https://github.com/DStekel3/WorkflowPatternFinder
4https://github.com/DStekel3/CSV-to-XES

https://github.com/DStekel3/WorkflowPatternFinder
https://github.com/DStekel3/CSV-to-XES
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project also takes care of the interaction with other applications, like ProM and
Python scripts. ProM is used through its command line approach, which is
explained in a blog post5. As is needed for this approach, we write a couple of
ProM scripts

• A Python project, called Gensim. As it is named after the Python Word2Vec
package6, this project mainly consists of scripts where Word2Vec functions
need to be applied; finding patterns in process trees or obtaining the most
similar terms of a given word.

Workflow
PatternFinder GUI (C#)

Workflow
EventLogProcessor CLI (C#)

CSV to XES (Java)

Gensim CLI (Python)

ProM CLI (Java)

FIGURE 7.9: Overview of different components of the workflow tool3.
Connected parts are directly interacting with each other. We slightly
adjusted the rounded projects from an existing project, whereas we

created the squared projects from scratch.

5https://dirksmetric.wordpress.com/2015/03/11/tutorial-automating-process-mining-with-
proms-command-line-interface/

6https://radimrehurek.com/gensim/

https://dirksmetric.wordpress.com/2015/03/11/tutorial-automating-process-mining-with-proms-command-line-interface/
https://dirksmetric.wordpress.com/2015/03/11/tutorial-automating-process-mining-with-proms-command-line-interface/
https://radimrehurek.com/gensim/
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Chapter 8

Results

In this chapter, we study variations of the approval pattern. According to AFAS, this
pattern plays an important role in workflow models used by customers. For the ex-
periments, we used a dataset from AFAS as described in Chapter 2. For Word2Vec,
we used a model which is trained on a Dutch corpus named SoNaR (Tulkens et al.,
2016), (Oostdijk et al., 2013). This corpus consists of a large set of disparate resources,
like newspapers, letters, and articles. Such a wide variety is preferred because it re-
sults in a very generic model which captures common Dutch words the best. We
study different variations of the approval pattern and describe some notable obser-
vations. On the corpus two models are trained, SoNaR-160 and SoNaR-320 based on
the number of dimensions used. For our experiments, we used SoNaR-320, since a
model with more dimensions generally outperforms a model with a fewer dimen-
sions (Tulkens et al., 2016). Since the dataset we use consists of workflow logs that
use Dutch descriptions, we use some Dutch terms where appropriate and give En-
glish translations accordingly. The remainder of this chapter studies occurrences of
the approval pattern, as well as some variations on this pattern.

8.1 The Approval Pattern

Let us study the approval pattern (recall that we shortly introduced you to this pattern
in Chapter 1). The basic structure of this pattern is shown in Figure 8.1. The general
idea of this pattern is that some process needs to be approved.

×

goedkeuren afkeuren

FIGURE 8.1: The approval pattern. Goedkeuren is Dutch for approve
and afkeuren is Dutch for refuse.

Before actually searching for its occurrences, we need to set a similarity threshold
π which will be used for classifying whether terms are similar or not (see Function
3).

In general, there are two strategies for setting the value of π:

1. π = 1. In this case, you only want to consider synonyms of terms used in your
pattern and do not want to use any alternatives Word2Vec will give you.

2. 0 ≤ π < 1. Besides the use of synonyms, you want to include some room for
the algorithm to match the terms used in your pattern with some terms that
are suggested by a Word2Vec model (in our case, the SoNaR-320 model).
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Before choosing a value for π, we should study what terms will be used for
matching a given word in your pattern. In our case, we can use synonyms given by
mijnwoordenboek.nl and suggestions made by Word2Vec. Since the set of synonyms
or antonyms obtained for a given word can be quite large, we do not present these
and only mention somewhere needed. Although Word2Vec can also return a large
set of suggestions, we show the most interesting below. These suggestions have a
large impact on the choice for π, making it important to study them before setting
π. In the resulting list of suggestions, Dutch stop words and antonyms get removed
(these steps are described in Chapter 7.3.2).

Using SoNaR-320, we retrieve the following terms shown in Table 8.1 when query-
ing the most similar terms to the word goedkeuren (Dutch for approve). We have clas-
sified suggestions that have an italic type as incorrect matches.

Dutch Term English Translation Similarity Score
goedkeurt approves 0.6849
goedgekeurd approved 0.6589
instemmen to agree 0.6340
bekrachtigen to empower 0.6335
goedkeurde approved 0.6153
goedkeuring approval 0.6110
bekrachtigd enforced 0.5858
budgetrecht budgetary laws 0.5777
merstudie - 0.5626
. . . . . . . . .

TABLE 8.1: List of similar terms to goedkeuren, obtained through
Word2Vec.

Table 8.1 shows words that are clearly similar to goedkeuren. For afkeuren, the
resulting terms in Table 8.2 are less obvious. For instance, the word tolereren has a
different meaning than afkeuren. Also the word goedkeurt should be filtered out as
an antonym, because it is an abbreviation of goedkeuren. Since we do not recognize
abbreviations of a word, we are not able to recognize that goedkeurt is an antonym of
afkeuren.

Dutch Term English Translation Similarity Score
afwijzen to decline 0.5791
tolereren to tolerate 0.5612
excuserende to apologize 0.5549
gedrag behavior 0.5530
durft dares (to dare) 0.5460
goedkeurt approves 0.5444
. . . . . . . . .

TABLE 8.2: List of similar terms to afkeuren, obtained through
Word2Vec.

Still, these tables give us some understanding of what value you want to set
as the threshold value π. Since this threshold value is used for every term used
in the pattern, you need to be sure to use a threshold value that is high enough
for each term. In our case, we see that the similarity scores of the highest scoring
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terms of goedkeuren (0.61-0.68) starts at a higher range than the scores in the case of
highest scoring terms of afkeuren (0.54-0.58). In this situation, you should set π ≥
0.57 to avoid accepting incorrect terms as matches for a f keuren, as shown in Figure
8.2. Note that such a value for π also allows the algorithm to choose terms with a
similarity score ≥ 0.57 compared with goedkeuren.

After applying IM, the total number of matches with the approval pattern in the
dataset used is given in Table 8.3.

Type Of Matching Models Matches Distinct Matches Avg Score
Induced (1)

65
65 47 0.989

Induced (+) 79 57 0.986
Embedded (1)

278
278 159 0.993

Embedded (+) 389 220 0.991

TABLE 8.3: Table showing info about found pattern matches for the
approval pattern, using π = 0.57.

You can immediately see that the number of matches found is much higher for
embedded matching and induced matching. Considering embedded matches, the
pattern occurs in 278 out of 4731 workflow models. However, only 65 models con-
tain an induced match of the approval pattern. This shows that embedded matching
leads to more discovered cases of a given pattern.

Two workflow models that contain the approval pattern are given below. The
workflow model in Figure 8.2 has an induced match of the approval pattern, whereas
the workflow model in Figure 8.3 has an embedded match. To reduce the amount of
space needed for each model, we changed the node style to squared. The underlined
words are the terms which lead to this match.

×

→

Beoordelen
afkeuren

goedgekeurd door leidinggevende
verwerk in verlofoverzicht

Aanpassen
Verwijderen

× Beoordelen
goedkeuren

τ
Beoordelen
Terughalen

FIGURE 8.2: An induced match of the approval pattern (overall score
of 0.87).
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×

Beoordelen
afkeuren declaratie

→

Beoordelen
goedkeuren declaratie

×

τ
Declaratie afgekeurd

Opnieuw insturen declaratie

Declaratie afgekeurd
Verwijderen

FIGURE 8.3: An embedded match of the approval pattern (overall
score of 1).

In fact, almost 90% of the matches found are solely based on the exact words be-
ing used (goedkeuren, afkeuren) or one of their synonyms which we obtained from
mijnwoordenboek.nl. Figure 8.4 shows the number of matches found for each type of
matching, based on their overall score. This is something we could expect, consider-
ing the number of synonyms used for goedkeuren (21) and afkeuren (5). According
to Word2Vec, SoNaR-320 only has 8 terms which have a similarity score ≥ 0.57 with
goedkeuren. Only one word (afwijzen) is acceptable for afkeuren with a score of
0.5791. Furthermore, afwijzen is also retrieved as a synonym, which elevates the
similarity score of afwijzen and afkeuren 1. This does not mean that the terms which
Word2Vec suggests do not encounter often, but the similarity function as described
in Chapter 7.3.2 prefers synonyms over suggestions by Word2Vec.
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FIGURE 8.4: Bar plot showing the number of distinct matches found,
based on their overall score. We distinguish perfect matches (score=1)

from imperfect matches (score <1).

To study the behavior of the noise threshold ε parameter of IMi, we obtained the
following results shown in Table 8.4. This Table includes the same info as Table 8.3,
but we experimented with the value of ε. The different noise thresholds used are
0.0, 0.2, 0.5 and 0.8. From Table 8.3, we can see that there is only a slight decrease in
the number of (distinct) matches when we increase ε. This means that the approval
pattern occurs often in the dataset because the pattern wouldn’t get recognized if it
would consist of infrequent events. Table 8.4 also shows that embedded matching
can lead to some higher scoring matches, compared to induced matching. However,
since all scores are quite similar, this point is quite negligible.

We need to note that the noise threshold would be more effective in filtering in-
frequent behavior when the number of workflow instances is quite high. However,
our dataset also consists of many small workflow logs that only consists of a few in-
stances. We expect that such workflow logs can play a big role in the small decrease
in matches instead of a higher decrease.
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Type Of Matching ε Models Matches Distinct Matches Avg Score
Induced (1)

0.0
65

65 47 0.989
Induced (+) 79 57 0.986
Embedded (1)

278
278 159 0.993

Embedded (+) 389 220 0.991
Induced (1)

0.2
40

40 31 0.991
Induced (+) 46 35 0.992
Embedded (1)

274
274 157 0.994

Embedded (+) 384 216 0.992
Induced (1)

0.5
43

43 30 0.994
Induced (+) 49 34 0.995
Embedded (1)

272
272 156 0.993

Embedded (+) 378 213 0.992
Induced (1)

0.8
36

36 28 0.993
Induced (+) 41 31 0.994
Embedded (1)

269
269 153 0.994

Embedded (+) 375 211 0.993

TABLE 8.4: Table showing info about found pattern matches for the
approval pattern, using π = 0.57. Also, ε stands for the noise thresh-

old parameter of the Inductive Miner infrequent variant.

For the rest of the results described in this chapter, we will set the noise threshold
ε to 0.

When we only consider all distinct embedded(+) matches, we notice that goed-
keuren is matched to the following terms. They are ordered on the total number of
occurrences in a pattern match. It is clear that goedkeuren is mostly used. Still, some
variants which are suggested by Word2Vec are used as well as some synonyms.

Matching Word Translation Type of Match Score #Matches
goedkeuren to approve Same word 1 175
goedkeuring approval Word2Vec 0.6110 20
bevestigen to confirm Synonym 1 10
laten to let Synonym 1 8
goedgekeurd approved Word2Vec 0.6589 6
toelaten to permit Synonym 1 1

However, we may argue that laten does not have the same meaning as goedkeuren
in the context of approving something in a business process. This shows that our
assumption that all synonyms are correct matches is not always correct. In this case,
it is possible that the algorithm converts a valid pattern match (using goedkeuring or
goedgekeurd) into an invalid pattern match (using laten or toelaten) because the score
of synonyms is higher than the score of suggested terms by Word2Vec.

Terms used for matching with afkeuren are shown in the table below. Only three
words are actually used, where no matches use a suggestion from Word2Vec. This
should be no surprise since we set π to 0.57 we filtered out many Word2Vec sugges-
tions for afkeuren.
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Matching Word Translation Type of Match Score #Matches
afkeuren to refuse Same word 1 194
afwijzen to decline Synonym 1 20
afbreken to interrupt Synonym 1 6

Still, these terms are in general only a part of an event description. Recall that we
match events based on their description, which mainly consists of multiple words.
The similarity Function (Function 4) matches these descriptions by matching loose
words with each other, as discussed in Chapter 7.3.2, but does not consider groups
of words as a unit. For instance, a match uses event “bevestigen eerste gesprek door
sollicitant niet akkoord” (confirm first interview by applicant do not approve) as a
match for goedkeuren. This match is based on the fact that bevestigen is a synonym of
goedkeuren. The actual meaning of this event is that some conversation which needs
to be approved does not get approved. With this meaning, we may argue that this
event has a different purpose than the event goedkeuren in the approval pattern and
would be more suitable as a match for afkeuren.

In the next sections, we study some extended variants of the approval pattern.

8.2 Extending the Approval Pattern (afkeuren)

One way to extend the approval pattern defined above is given in Figure 8.5. We can
add an event after afkeuren. The event opnieuw insturen (which means to resubmit) is a
logical step which should occur after someone has refused something. We also chose
the event opnieuw insturen because now we can study the behavior of the proposed
method while using multiple words for one event.

×

goedkeuren →

afkeuren
opnieuw
insturen

FIGURE 8.5: An extended variant of the basic approval-pattern,
shown in Figure 8.1. This variant forces that the event opnieuw ins-

turen occurs after event afkeuren.

Note that the pattern shown in Figure 8.5 does not include a possible loop. If
we would want the approval process to be give the opportunity to repeat events,
then we want to define the approval pattern as shown in Figure 8.6. This enables the
process to be repeated, meaning that its underlying events can be executed multiple
times.
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×

goedkeuren →

afkeuren
opnieuw
insturen

FIGURE 8.6: Loop variant of the extended approval pattern shown in
Figure 8.7.

Again, let’s find out which terms are suggested by Word2Vec for the words op-
nieuw and insturen. Recall that the Similarity Function (Function 4) tries to match
single words with each other, so we need to check suggestions by Word2Vec for the
two words separately. Table 8.5 shows the highest scoring Word2Vec suggestions
for opnieuw and Table 8.6 shows the suggestions for insturen. As you can see, using
Word2Vec for opnieuw does not result in many valid suggestions. For insturen how-
ever, the resulting set of suggestions seems to be more of use. Even some suggestions
with a score < 0.57 are valid. However, to avoid that we find pattern matches with
many invalid matches for the other terms, we stick to π = 0.57. This also means that
we lose some options when trying to find a match for insturen.

Table 8.6 also shows that there is a possibility of obtaining incorrect Dutch words.
The word eenbe is not a valid Dutch word. The same goes for merstudie in Table 8.1.

Dutch Term English Translation Similarity Score
weer again 0.7342
meteen right away 0.6780
eerst first 0.6300
daarna afterwards 0.5726
snel quick 0.5669
eindelijk finally 0.5659
terug return 0.5631
. . . . . . . . .

TABLE 8.5: List of similar terms to opnieuw, obtained through
Word2Vec.
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Dutch Term English Translation Similarity Score
binnensturen to submit 0.6242
ingestuurd submitted 0.6145
opsturen to send 0.5815
instuurt submits 0.5293
eenbe - 0.5091
doorsturen to forward 0.5079
instuurde submitted 0.5055
binnengestuurd submitted 0.5053
uitkiezen to select 0.5041
. . . . . . . . .

TABLE 8.6: List of similar terms to insturen, obtained through
Word2Vec.

Keeping the value of π at 0.57, we get the following results when searching for
matches of the extended variants of the approval pattern. For the variant without
a loop (Figure 8.5), see Table 8.7 and the matches of the variant with a loop (FIgure
8.6) are summarized in Table 8.8. Clearly, the variant without a loop gets recog-
nized more often than the variant which includes repeats. Note that Figure 8.6 is an
extension of Figure 8.5.

Type Of Matching Models Matches Distinct Matches Avg Score
Induced (1)

4
4 2 0.981

Induced (+) 4 2 0.981
Embedded (1)

46
46 32 0.992

Embedded (+) 50 34 0.992

TABLE 8.7: Using Figure 8.5 as pattern, π = 0.57 and ε = 0.

Type Of Matching Models Matches Distinct Matches Avg Score
Induced (1)

0
0 0 -

Induced (+) 0 0 -
Embedded (1)

9
9 5 0.983

Embedded (+) 9 5 0.983

TABLE 8.8: Using Figure 8.6 as pattern, π = 0.57 and ε = 0.

From these results, we can make up that the approval pattern is mostly applied
once in a workflow instance. In other words, whenever there is an approval step in a
workflow, this step is mostly done only once (even though we have added an event
used for resubmission).

8.3 Extending the Approval Pattern (goedkeuren)

We can also extend the approval pattern where something has been approved. We
can add an extra event, afhandelen (to finish) after goedkeuren. This extension captures
the process of ending the (sub)workflow whenever some process is approved.
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×

afkeuren →

goedkeuren afhandelen

FIGURE 8.7: An extended variant of the basic approval-pattern,
shown in Figure 8.1. This variant forces that the event afhandelen oc-

curs after event goedkeuren.

Considering Word2Vec suggestions of afhandelen, we obtain Table 8.9. The re-
trieved suggestions seem to be quite good. They also mostly fall in the range of
(0.57-1), which we have been using so far. We can still use π = 0.57 when searching
for any matches.

Dutch Term English Translation Similarity Score
afgehandeld concluded 0.6569
afhandeling settlement 0.6162
afhandelt concludes 0.5993
afwikkelen to wind off 0.5960
regelen to arrange 0.5790
afronden to round off 0.5763
oplossen to solve 0.5731
uitklaren to clear up 0.5702
nasturen to forward 0.5539
doornemen to go through 0.5483
. . . . . . . . .

TABLE 8.9: List of similar terms to afhandelen, obtained through
Word2Vec.

The matching results of this extended variant are shown in Table 8.10, which
shows that the afhandelen variant occurs very rarely in induced form. However, the
number of matches is quite high when we apply embedded matching.

Type Of Matching Models Matches Distinct Matches Avg Score
Induced (1)

8
8 3 1

Induced (+) 8 3 1
Embedded (1)

75
75 45 0.994

Embedded (+) 112 61 0.994

TABLE 8.10: Using Figure 8.7 as pattern, π = 0.57 and ε = 0.

The terms used in the distinct embedded matches for afhandelen after given in
the Table below. Note that, besides the afhandelen itself, the other two matches are
suggestions from Word2Vec.
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Matching Word Translation Type of Match Score #Matches
afhandelen to finish Same word 1 52
afgehandeld finished Word2Vec 0.6569 6
afhandeling finish Word2Vec 6162 3

8.4 Evaluation

Ultimately, we conclude that the approval pattern occurs in different multiple vari-
ations in our set of workflow models. By extending the pattern definition, the num-
ber of matches found decreases quickly. However, this does not mean that a pattern
should not be extended. Studying extended variants of the pattern shows us that
repeats rarely occur when it comes down to approving some process.

Although we make use of synonyms and Word2Vec to find matches which use
words other than those which are included in the pattern itself, the majority of the
matches found making use of the exact term. This shows the importance of choosing
which terms you want to include in your pattern definition. Still, we have shown
that the use of synonyms and Word2Vec suggestions is definitely useful during the
matching process.

As we would expect, the number of embedded matches found for each pattern is
much higher than the number of induced matches. From this, we can state that most
workflow models do contain the pattern, but the nodes used for the pattern match
are often not directly linked. This makes us believe that the workflow logs in the
dataset used mostly contain events similar to those that are part of the approval pat-
tern. However, the corresponding workflows show behavior which makes it harder
for IM to recognize a clear split between goedkeuren and afkeuren. This can also be
caused by noise in our workflow logs.

It may also help to increase the noise threshold ε of the Inductive Miner infre-
quent. This results in smaller and simpler models since it removes infrequent be-
havior from a workflow model, but also increases the possibility of missing some
matches because they are (partly) removed by IMi. Still, you should only consider
increasing ε if you are mainly interested in frequent events instead of all events.
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Chapter 9

Discussion

This chapter concludes this thesis, discusses observations of the accomplished work
and proposed directions for future work.

9.1 Conclusion

This thesis has shown that we can define a semantical workflow pattern in the form
of a compact abstract representation called process trees (Buijs et al., 2012b). This way,
we only include the control-flow of events, but also give semantical meaning to each
event and the pattern itself. In our case, we added semantical meaning to an event
by describing which action this event represents. We also managed to convert our set
of workflow logs into process trees automatically through the use of the Inductive
Miner (infrequent) (Leemans et al., 2013), (Leemans et al., 2014b).

Furthermore, we have defined a pattern matching rule (Definition 16), which
states when a workflow model contains a workflow pattern. We proposed an algo-
rithm (Chapter 7.3.4) that is able to discover occurrences of a given workflow pattern
in a set of workflow models. During this discovery process, we also make use of lists
of synonyms, antonyms and Word2Vec to extend the number of matches found and
lower the possibility of obtaining an invalid match (Chapter 7.3.2).

Ultimately, we studied different variations of the approval pattern in Chapter 8.
From these results, we observe that this pattern is actively used in the data of AFAS
and shows which variations of the pattern and its events are mostly used. According
to these results, we can conclude that the proposed method shows potential and
offers insights into the usage of business processes. Nevertheless, we believe that
there are many ways to improve the effectiveness of this method.

9.2 Future Works

Concluding, we have come up with some suggestions that can help to improve this
research.

• Reduce the amount of noise in your dataset as much as possible. Although we
have applied some methods to reduce noise in our dataset, it is highly likely
that it still contains some unwanted traces or invalid fields, as we explained in
Chapter 2. Noise can have a large effect on the process trees after applying the
Inductive Miner. Others (Tax et al., 2017) propose techniques to filter random
activities which should be removed to obtain a cleaner set of traces.

• Use the Evolutionary Tree Miner instead of the Inductive Miner. In Chapter 6.3
we mentioned that the user can steer different qualitative properties of process
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trees with the Evolutionary Tree Miner, which is not possible with the Induc-
tive Miner. As (Buijs et al., 2012a) states, we are confident that the application
of ETM can result in a big improvement of the quality of mined process trees.

• Training a Word2Vec model on your own data might help, as long as you have
enough data. For instance, the SoNaR corpus (Oostdijk et al., 2013) is trained
on over 28 million sentences. Important to note is that the choice of which
word embeddings dataset you use, depends on your type of application. If
you want to use Word2Vec like a common dictionary of Word2Vec, than I ad-
vice to use a very general corpus like the sonar corpus. When applying the
matching algorithm on a very specific dataset which exists barely of regular
Dutch sentences, then applying Word2Vec on your own corpus should be pre-
ferred over a generic corpus.

• Stemming/lemmatization of words could be very useful when computing which
words are similar. These techniques would make it possible to recognize ab-
breviations of a term and normalize them to their base form. Where stemming
does not always lead to significant improvements (Hollink et al., 2004), we are
confident that a dutch lemmatizer would be very helpful in our situation. The
only Dutch lemmatizer we could find is called Frog1, which consists of many
NLP modules for Dutch.

• Improve the similarity formula between two sentences. Recall that our simi-
larity function, as described in Chapter 7.3.2, only compares loose words. We
expect that computing sentence similarity based on sets of words would im-
prove pattern matching. According to Kenter and de Rijke (2015), using an
aggregate function is a rather poor way to capture the distribution of word em-
beddings. They propose a similarity function which also considers the weight
of a word in a given dataset. This way, words which are commonly used have
less influence on the similarity measure than words which are rarely used.

• The pattern matching algorithm as we proposed can potentially be improved.
Although the algorithm proposed in Chapter 7.3 is able to give valid pattern
matches, it does not guarantee to return an optimal match. Besides, in Chapter
8 we have seen that setting the similarity threshold π can be quite difficult.
Especially since each word used in a workflow pattern often has a different
similarity range when it comes down to Word2Vec suggestions. This often
forces the user to generalize over all terms used in the pattern, which can re-
sult in missing Word2Vec suggestions or none at all. We believe that a noise
threshold per event would be a good alternative.

• Instead of searching for occurrences of a given workflow pattern, it would be
also interesting to search for interesting workflow patterns. This could be done
through frequent pattern mining (Chapter 5.4).

1http://languagemachines.github.io/frog/
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Appendix A

The Extended Pattern Matching
Algorithm

As explained in Chapter 7.4, we have added some extensions to the algorithm which
are described in Chapter 7.3.4. These extensions lead to a change in Functions 5, 7,
8 and 9. The updated versions of these Functions are described given below. In
Function 10 we now keep track of the overall score of matches found. Ultimately,
the highest scoring match gets returned. A similar extension is added in Functions
11, 12 and 13. Note that these Functions keep track of the best match of a given node.

Function 10: Main function that returns an induced or embedded match of a
given pattern P in a process tree T. This is an extended version of Function 5.

1 function SearchMatch (T, P, isInduced)
Input : A process tree T, a process tree P, boolean value induced stating

whether we must only consider induced subtrees as matches or
consider embedded subtrees.

Output: A pattern match from P in T if possible. This match is an induced or
embedded subtree, depending on the value of isInduced.

2 p = P.root;
3 nodeList = T.GetNodesInPostOrder();
4 bestMatch = (∅, 0);
5 while |nodelist|> 0 do
6 t = nodelist.pop;
7 result = null;
8 if AreSimilar(t, p) then
9 if isInduced then

10 result = SearchInducedMatch(t, p);
11 end
12 else
13 result = SearchEmbeddedMatch(t, p, []);
14 end
15 score = result.score;
16 if result 6= null ∧ score > bestMatch.score then
17 bestMatch = (result, score);
18 if score == 1 then
19 break;
20 end
21 end
22 end
23 end
24 return bestMatch;
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Function 11: Function that tries to find an induced match for p and its descen-
dants. This is an extended version of Function 7.
1 function SearchInducedMatchOrdered (t, p)

Input : A process tree node t, a pattern node p.
Output: An induced match of p in t if there exists any.

2 if |p.children|== 0 then
3 return [〈t, p〉];
4 end
5 matches[];
6 startIndex = 0;
7 for pc ∈ p.children do
8 bestMatch = (∅, 0);
9 for index ∈ range(startingIndex, |t.children|) do

10 tc = t.children[index];
11 if AreSimilar(tc, pc) then
12 subtreeMatch = SearchInducedMatch(tc, pc);
13 score = subtreeMatch.score;
14 if subtreeMatch 6= null ∧ score > bestMatch.score then
15 bestMatch = (subtreeMatch, score);
16 if score == 1 then
17 break;
18 end
19 end
20 end
21 end
22 if bestMatch 6= (∅, 0) then
23 matches.add(subtreeMatch);
24 startIndex = t.children.index(subtreeMatch.t) + 1;
25 end
26 end
27 if p.descendants ∈ matches then
28 return [〈t, p〉, matches];
29 end
30 return null;
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Function 12: Function that tries to find an induced match for p and its descen-
dants. This is an extended version of Function 8.
1 function SearchInducedMatchUnordered (t, p)

Input : A process tree node t, a pattern node p.
Output: An induced match of p in t if there exists any.

2 if |pChildren|== 0 then
3 return [〈t, p〉];
4 end
5 matches = [];
6 for pc ∈ p.children do
7 bestMatch = (∅, 0);
8 for tc ∈ t.children do
9 if tc /∈ matches ∧ AreSimilar(tc, pc) then

10 subtreeMatch = SearchInducedMatch(tc, pc);
11 score = subtreeMatch.score;
12 if subtreeMatch 6= null ∧ score > bestMatch.score then
13 bestMatch = (subtreeMatch, score);
14 if score == 1 then
15 break;
16 end
17 end
18 end
19 end
20 if bestMatch 6= (∅, 0) then
21 matches.add(subtreeMatch);
22 end
23 end
24 if p.descendants ∈ matches then
25 return [〈t, p〉, matches];
26 end
27 return null;
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Function 13: Function that tries to find a embedded match for p and its descen-
dants. This is an extended version of Function 9.
1 function SearchEmbeddedMatch (t, p, previousMatches)

Input : A process tree node t, a pattern node p, a list of other matching nodes
of P and T.

Output: A embedded pattern match of p in t if there exists any.
2 if AreSimilar(t, p)∧ ¬IsAncestor(t, previousMatches) then
3 if |p.children|== 0 then
4 return [〈t, p〉];
5 end
6 newMatches = [];
7 for pc ∈ p.children do
8 bestMatch = (∅, 0);
9 for tc ∈ t.children do

10 if tc /∈ (newMatches ∪ previousMatches)∧ AreSimilar(tc, pc) then
11 subtreeMatch =

SearchEmbeddedMatch(tc, pc, newMatches ∪ previousMatches);
12 score = subtreeMatch.score;
13 if subtreeMatch 6= null ∧ score > bestMatch.score then
14 bestMatch = (subtreeMatch, score);
15 if score == 1 then
16 break;
17 end
18 end
19 end
20 end
21 if bestMatch 6= (∅, 0) then
22 newMatches.add(bestMatch);
23 end
24 end
25 if p.descendants ∈ newMatches then
26 return [〈t, p〉, newMatches];
27 end
28 end
29 for tc ∈ t.children do
30 if tc /∈ previousMatches then
31 match = SearchEmbeddedMatch(tc, p, previousMatches);
32 if match 6= null then
33 return match;
34 end
35 end
36 end
37 return null;
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