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Abstract

Using the Artin-Mazur dynamical zeta function, we study the periodic behavior of discrete dynamical
systems arising from algebraic groups over algebraically closed fields k of characteristic p > 0.

Of particular interest are maps arising as finite quotients of affine morphisms on algebraic groups;
so-called dynamically affine maps. For a dynamically affine map f on an algebraic variety V over k, we
present a set of hypotheses that imply that the corresponding dynamical zeta function ζf is either a root
of a rational function, or has a natural boundary. By verifying the hypotheses in the special case where
V is the projective line, this generalizes recent work by Bridy. Under slightly weaker assumptions, we
show that the tame dynamical zeta function ζ∗f , formed by ignoring orbits whose order is divisible by p,
is always a root of a rational function.

We work towards a conjectural description of the orbit structure for a discrete dynamical system
(G, σ), where σ is an endomorphism of a connected algebraic group G over k. This extends recent work
by Byszewski and Cornelissen for the case that G is an abelian variety.
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1 INTRODUCTION

1 Introduction

A discrete dynamical system is, in its most general form, a set S together with a map f : S → S. Usually,
the set S has some structure (e.g. S could be a topological space, an abstract group or a smooth manifold),
and f is a morphism preserving that structure (e.g. a continuous function, a group homomorphism or a
smooth map). When studying discrete dynamics, one is often interested in periodic points, i.e. fixed points
of some iterate of f . A natural way to begin a quantitative analysis of the structure of a discrete dynamical
system is therefore to consider the fixed point sequence (fn)n≥1, defined by

fn := # Fix(f◦n) = #{x ∈ S | f ◦ · · · ◦ f︸ ︷︷ ︸
n times

(x) = x}.

Let us say that the map f is confined when fn is finite for all n ∈ Z>0. If this is the case, we can encapsulate
the fixed point sequence in the form of a formal power series, called the dynamical zeta function ζf [41,
p. 764], given by

ζf (z) := exp

∑
n≥1

fn
n
zn

 . (1)

The dynamical zeta function is sometimes also refered to as the Artin-Mazur zeta function, named after
Michael Artin and Barry Mazur [4], as they employed it to study the asymptotic behaviour of isolated
periodic points of diffeomorphisms on manifolds. In this thesis, however, we will be mainly interested in
the case (sometimes referred to as algebraic dynamics [46]) where the set S is the set of (closed) points of
an algebraic variety X over an algebraically closed field k (and f is a morphism of algebraic varieties).1

Before diving into dynamics on algebraic varieties, let us consider an example of a finite discrete dynamical
system.
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Figure 1: The graph associated to a finite discrete dynamical system.

1Although it should be noted that the main situation in the work of Artin and Mazur is, perhaps unexpectedly, quite
similar to ours: an important tool they use is the theory of real algebraic approximations by Nash [34], allowing them to
reduce the study of diffeomorphisms on manifolds to that of morphisms of Nash manifolds, thus landing in a (semi-)algebraic
setting.
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1 INTRODUCTION

Example 1.1 Let S := F11, the finite field of 11 elements, and let f : F11 → F11 be the polynomial map
given by f(x) := x2−x+ 1. Then we can picture (see Figure 1) the dynamical system (S, f) by a directed
graph. Here the vertices of the graph are the elements of F11, and for every point x there is a directed
edge pointing from x to f(x). We can read off from the picture that the fixed point sequence is given by

fn =

{
4 if 3 | n;

1 if 3 - n.

From this information we can compute the dynamical zeta function, which turns out to be rational:

ζf (z) =
1

1− z
· 1

1− z3
.

9

Example 1.2 Suppose that X is a quasi-projective algebraic variety defined over a finite field Fq, and
that f : X → X is the q-Frobenius. Then fn (counted over the algebraic closure) is simply the number of
points of X over Fqn , so ζf becomes the Weil zeta function of X/Fq. It is known that ζf is in this case

rational by Dwork [18] and Grothendieck [21, Cor. 5.2]. 9

Example 1.3 Suppose that X = P1/C; the projective line over the field of complex numbers, and that
f : X → X is any rational map of degree at least two. Hinkkanen [24, Thm. 1] showed that ζf is then
rational. This result can be extended to any algebraically closed field k of characteristic zero using, e.g.
the Lefschetz principle [26, p. 224]; [19] (indeed, by simultaneously embedding the coefficients of f into C,

we can determine fn by solving the same problem for a rational function with complex coefficients). 9

The general question that arises, in our case for a confined endomorphism f of an algebraic variety X
over an algebraically closed field k, is:

Q: What is the nature of the dynamical zeta function ζf?

For example, is it (generically) rational? [41, Question 4.5]; [28], or perhaps just algebraic over C(z)? [4,
Question 2] Does it have (many) singularities as a complex function? [5]; [10]. It turns out that these
questions are, in general, difficult to answer. This might be as expected, since the very special case of
Example 1.2 already turned out to be quite hard (indeed, starting from the Weil conjectures [48], it took
about ten years to solve, but the case for curves had already been conjectured 25 years before that by
Artin [3], and the origin of the problem can even be traced back to Gauss [29]). The general philosophy
is that rationality of the zeta function tells us that the periodic behavior of the map f is, in a sense,
regular. In particular, it implies that the fixed point sequence (fn) is linear recurrent (Proposition 2.2).
Given the examples seen so far, one might expect dynamical zeta functions of morphisms of varieties to
always be rational, but this is far from the case. In fact, one can determine, as we will see in Section 3,
that for a certain special class of maps (called dynamically affine maps) on the projective line in positive
characteristic, rationality is the exception rather than the rule.2 The following example involves such a
special map.

2Perhaps we should stress here that we are counting the sequence (fn) of fixed points without multiplicity. If we were to
include multiplicities, the story would be quite different; then, for any map f : P1 → P1 of degree at least two, we “obtain”
fn = deg(f)n + 1, thus yielding a rational zeta function ζf (z) = (1 − z)−1(1 − deg(f)z)−1. In fact, the “exceptional” maps
within the special class referred to above that have a rational zeta function, turn out to be precisely the ones for which the
fixed points of all iterates of f occur with multiplicity one. Over Fp, these are precisely the maps (within the special class)
for which f is inseparable, which is indeed a non-generic condition.
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1 INTRODUCTION

Example 1.4 Let X = P1/Fp for some prime number p, and let f : P1 → P1, x 7→ xm for some integer
m ∈ Z with |m| ≥ 2. If p - m, then ζf is transcendental over Q(z), while if p | m, then ζf is rational [8,

Thm. 1]. 9

The nature of the zeta function for general maps, even on P1/Fp, remains a mystery. Let us illustrate,
in the form of a non-rigorous discussion, the behavior of some “generic” maps on the projective line.
First, consider f : P1/Fp → P1/Fp, f(x) = x2 + 1, for which, if p ≥ 5, we do not know whether the
corresponding dynamical zeta function ζf is rational or not. Since the projective line is an infinite set,
we unfortunately cannot draw a directed graph for f similar to the one we saw in Figure 1. However,
P1/Fp =

⋃
n≥1 Fpn ∪ {∞}, so the behaviour of the dynamical system (P1, f) is in a sense approximated

by the behaviour of the map f over finite fields.3

Figure 2: The map x2 + 1 on F73 .

In Figure 2 we have plotted the graph (in the same spirit as for Figure 1, but without labels on the vertices
and without arrows on the edges) associated to the map f on F73 . What one might immediately notice
is that the graph appears to be quite “random”. This is especially striking when we compare it to graphs
of actually random4 maps F73 → F73 , found in Figure 3.

3In fact, since the equation f◦n(x) = x is polynomial of degree deg(f)n, we can calculate fn by only considering points
lying in the finite fields Fpm up to m = deg(f)n.

4Random in the sense that for every element x ∈ F73 , we select a (computer-generated) random element f(x) ∈ F73 .
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1 INTRODUCTION

(a) (b) (c)

Figure 3: Three random maps on F73 .

Due to the irregular (seemingly random) nature of the map x2+1 on P1/Fp, we would definitely expect the
corresponding dynamical zeta function to be irrational. However, precisely due to its erratic behaviour,
we are, at the moment of writing, unable to control the fixed point sequence (fn) in any meaningful way
(cf. [8, Question 2]). This very much changes when considering the, at first appearance similar, map
g(x) = x2 − 2. In Figure 4 we see that the graphs associated to g look quite different compared to the
ones for f . This is reflected in our knowledge of the zeta function ζg, which, as we will see in Section 3,
we can determine to be rational in characteristic 2 and 3, and irrational in characteristic ≥ 5.

(a) The map x2 + 1 on F73 . (b) The map x2 + 1 on F113 . (c) The map x2 + 1 on F172 .

(d) The map x2 − 2 on F73 . (e) The map x2 − 2 on F113 . (f) The map x2 − 2 on F172 .

Figure 4: Comparison of the maps x2 + 1 and x2 − 2 over various finite fields.

4



1 INTRODUCTION

Before we can understand what makes g different from f , we will require some definitions. It turns out
that the underlying structure that makes g behave in a controlled manner, is that of a hidden algebraic
group.

Let k denote an algebraically closed field.

Definition 1.5 An algebraic group over k is an algebraic variety G/k, together with an identity element
e ∈ G, and morphisms G×G→ G, (x, y) 7→ x ·y; G→ G, x 7→ x−1, with respect to which G is a group. M

Example 1.6 As we will see in Section 3.3.1, there are precisely three types of connected algebraic groups
of dimension one:

(i) the multiplicative group Gm(k) ∼= k× ∼= P1 \ {0,∞};

(ii) the additive group Ga(k) ∼= (k,+) ∼= P1 \ {∞};

(iii) the elliptic curves E. 9

A morphism of algebraic groups is a morphism of varieties that is also a group homomorphism. If G is
commutative, the set End(G) of endomorphisms of G admits a ring structure, where the multiplication is
given by composition and the addition is induced (pointwise) by the group operation.

Definition 1.7 Let (G/k,+) be a commutative algebraic group. An affine morphism of G is a map
ψ : G → G that can be written as ψ(g) = σ(g) + h for a confined endomorphism with finite kernel
σ ∈ End(G) and some h ∈ G. M

This definition differs slightly from the one established by Silverman [40, §6.8]. We will briefly discuss this
choice in Section 3.1.

Definition 1.8 Let V/k be a variety, and let f : V → V be a morphism. We say that f is dynamically
affine if there exists

(i) a connected commutative algebraic group G;

(ii) an affine morphism ψ : G→ G;

(iii) a finite subgroup Γ ⊆ Aut(G); and

(iv) an inclusion ι : G/Γ→ V that identifies G/Γ with a Zariski-dense open subset of V ,

such that the following diagram commutes:

G
ψ //

π
��

G

π
��

G/Γ //
� _

ι

��

G/Γ� _
ι

��
V

f // V

M

5



1 INTRODUCTION

Example 1.9 Let us consider some dynamically affine maps V = P1. It follows from the definition that
V needs to have the same dimension as the algebraic group G, so we may assume that G is one of the
algebraic groups listed in Example 1.6, e.g. let us consider G = Gm. Then End(G) = {xm | m ∈ Z} ∼= Z,
and Aut(G) = {x, x−1}, thus leaving two choices for Γ; either Γ ∼= {1} or Γ ∼= {±1}. If Γ ∼= {1} then
G/Γ ∼= P1 \{0,∞} (which canonically embeds into P1). The dynamically affine maps f that arise are the
“affine power maps” f(x) = axm for some a ∈ k×. If Γ ∼= {±1}, then G/Γ ∼= A1, giving rise instead to
“Chebyshev polynomials” [39, §6.2]. The map g(x) = x2−2 we considered before is the unique Chebyshev

polynomial of degree two. 9

The underlying structure of the algebraic group will be very important in allowing us to control the fixed
point sequence (fn), and hence the dynamical zeta function ζf , associated to a dynamically affine map f .
Our main result will be stated after the following definition:

Definition 1.10 Let F ∈ C[[z]] be a power series over the complex numbers. We will say that F has a
natural boundary when it has a positive radius of convergence ρ ∈ R>0, and a dense set of singularities
along the boundary ∂D of the disk of convergence D = {z ∈ C | |z| < ρ}. M

Theorem A (= Theorem 3.11) Let f : P1 → P1 be a dynamically affine map on the projective line over
an algebraically closed field of positive characteristic. Then the following dichotomy holds:

(i) If σn − 1 is separable for all n ∈ Z>0, then ζf is rational.

(ii) Otherwise, ζf has a natural boundary.

This generalizes (as we will see in Section 2.1) a recent result by Andrew Bridy [9]. He proves a similar
dichotomy, but with “has a natural boundary” replaced by “is transcendental over C(z)”. His proof,
which we briefly reflect on in Section 5, relies heavily on automata theory. Although we use tools similar
to Bridy’s in order to control the fixed point sequence (fn), our eventual argument is different: instead
of using automata, our proof is fundamentally complex analytic in nature; much more reminiscent of e.g.
[5].

Example 1.11 Let us consider the power maps f(x) = xm for m ∈ Z≥2, defined on the projective line
in characteristic char(k) = p ≥ 3, that were first introduced in Example 1.4 (they are dynamically affine
by Example 1.9). Then fn is the number of distinct solutions in P1 to the equation xm

n − x = 0; that is,

x = 0, x =∞ or xm
n−1 = 1.

The rightmost equation counts the number of (mn − 1)-th roots of unity in k, which is (mn − 1)|mn − 1|p
(here | · |p denotes the p-adic norm). In case p | m, we thus see that fn = 2 + (mn − 1) = mn + 1, from
which it follows that ζf (z) = (1 − z)−1(1 − mz)−1 (indeed rational, as claimed in Example 1.4). Now
suppose that p - m. Denote by s the multiplicative order of m modulo p, i.e. let s ∈ Z>0 minimal such
that |ms − 1|p < 1. Then |mn − 1|p = 1 when s - n, while

msn − 1 = (1 + (ms − 1))n − 1 =
n∑
k=1

(
n

k

)
(ms − 1)k = n(ms − 1) +

n∑
k=2

(
n

k

)
(ms − 1)k.

6



1 INTRODUCTION

One can show (cf. Proposition 2.16(iii)) by induction on vp(n) that∣∣∣∣∣
n∑
k=2

(
n

k

)
(ms − 1)k

∣∣∣∣∣
p

< |n(ms − 1)|p,

thus |msn − 1|p = |n(ms − 1)|p, from which we find

fn =

{
mn − 1 if s - n;

(mn − 1)|ms − 1|p|n|p if s | n.
(2)

Therefore the “logarithmic derivative” Zf (z) := zζ ′f (z)/ζf (z) of the dynamical zeta function satisfies:

Zf (z) =
∑
n≥1

fnz
n =

∑
n≥1

(mn − 1)zn −
∑
n≥1

(msn − 1)zsn + |ms − 1|p
∑
n≥1

(mn − 1)|n|pzn

=
z

1−mz
− z

1− z
− z

1−mszs
+

z

1− zs
+ |ms − 1|p

∑
n≥1

|n|p(mz)n −
∑
n≥1

|n|pzn
 .

Now,
∑

n≥1 |n|pzn has singularities at all pk-th roots of unity: this follows from the fact that it satisfies a
Mahler-style functional equation (cf. [6]; the details will be provided in Lemma 3.10). From this observation
we obtain that Zf has a dense set of singularities at the circle of radius 1/m around the origin. This

circle coincides with the boundary of its disk of convergence (since lim supn→∞ |n|
1/n
p = 1), thus Zf has a

natural boundary, and we conclude (Lemma 2.1) that the same holds for ζf . 9

An interesting observation is that the natural boundary for the zeta function in Example 1.11 is “caused”
solely by the occurrence of terms, in the formula (2) for fn, depending on |n|p. Indeed, if we were to
replace all of the |n|p’s by 1, then Zf (z) becomes just an ordinary rational function of z. This turns out
to be a general phenomenon: in some sense, the “irregularities” in the sequence (fn) that cause the zeta
function in the second case of Theorem A to have a natural boundary are “contained” in the terms of
index divisible by p. This advocates the use of a tame dynamical zeta function, as first considered in [10]
(for f a confined endomorphism of an algebraic variety over an algebraically closed field of characteristic
p > 0), defined by

ζ∗f (z) := exp

∑
p-n

fn
n
zn

 . (3)

For the tame dynamical zeta function, have the following result:

Theorem B (= Theorem 3.12) Let f : P1 → P1 be dynamically affine map on the projective line over
an algebraically closed field of characteristic p > 0. Then the tame dynamical zeta function ζ∗f is algebraic.

In fact, there exists a positive integer t ∈ Z>0 such that
(
ζ∗f (z)

)t
∈ Q(z).

7



1 INTRODUCTION

Example 1.12 For the special case of the power map considered in Example 1.11, the tame zeta function
takes the form

ζ∗f (z) =
1− z

1−mz
· (1− (mz)p)1/p

(1− zp)1/p
·

(
1− zs

1− (mz)s
· (1− (mz)ps)1/p

(1− zps)1/p

)β
,

where β = (|ms − 1|p − 1)/s. 9

The outline of the thesis will be roughly as follows:

Section 2 will consist of a complete overview of preliminary results. We will discuss some generalities for
sequences and power series, focussing in particular on elementary properties of (dynamical) zeta functions.
In Section 2.3, we derive some general results regarding discrete valuations, which we will need to control
the fixed point sequence (fn) for dynamically affine maps. We also include, in Section 2.4, a summary of
basic results on algebraic groups that we will use later on.

Section 3 will be concerned with the study of dynamically affine maps, including the proof of Theorem
A and B. In order to achieve maximal generality, this will be organized based on certain hypotheses
(introduced in Section 3.2) that can be associated to a dynamically affine map f . We will show that the
proofs of the theorems apply, as long as these hypotheses are satisfied, to a general dynamically affine
map on an arbitrary variety V . We then obtain the results discussed above as a corollary by verifying (in
Section 3.3) that the hypotheses always hold in the special case where V is the projective line.

In Section 4, we turn to a slightly purer point of view: instead of studying the dynamical zeta function
of maps derived from algebraic groups (as for dynamically affine maps), we will consider the dynamics
associated to maps on algebraic groups. We work towards the following main conjecture:

Conjecture C (= Conjecture 4.1) Let σ be a confined endomorphism of a connected (not necessarily
commutative) algebraic group G over an algebraically closed field of characteristic p > 0. Then the fixed
point sequence (σn) takes the following form:

σn = dnmnan,

where, for some ω ∈ Z>0 not divisible by p,

(i) there exists an integer t ∈ Z>0 such that exp(
∑

n dnz
n/n)t ∈ Q(z);

(ii) we can write mn = rn|n|snp , for sequences rn ∈ Q× and sn ∈ Z satisfying rn = rgcd(ω,n) and
sn = sgcd(ω,n);

(iii) we can write an = p|n|
−1
p tn for a sequence tn ∈ Z satisfying tn = tgcd(ω,n).

In Section 5, we will explore ways to simplify and generalize Bridy’s proof [9] of his weaker version of The-
orem A, and show that it can be applied to find an alternative proof (cf. [10]) of a rational/transcendental
dichotomy for the dynamical zeta function of a confined endomorphism of an abelian variety.

Finally, in Section 6, we will explore some questions for further research.

The results of Section 3 and Section 4 of this thesis will be published, in collaboration with Byszewski and Cornelissen,

in two separate joint research papers.

8



2 PRELIMINARIES

2 Preliminaries

2.1 Sequences and Power Series

A power series F (z) ∈ C[[z]] is called holonomic (sometimes also called D-finite) if it satisfies a linear
differential equation with coefficients in C[z]. That is, there exists a d ∈ Z≥0 and p0(z), · · · , pd(z) ∈ C[z],
pd 6= 0, such that

p0(z)F (z) + p1(z)F ′(z) + · · ·+ pd(z)F
(d)(z) = 0.

A complex function defined by a holonomic power series with non-zero radius of convergence can only
have singularities at the roots of p0, hence in particular has finitely many singularities [20, Thm. 1]. We
will say that a power series over the complex numbers with positive radius of convergence ρ > 0 has
a natural boundary if it has a dense set of singularities along the boundary of the disk of convergence
{z ∈ C | |z| = ρ}. It is called a natural boundary because the complex function defined by such a power
series cannot be extended meromorphically beyond its disk of convergence. Note that, by the previous
remark, holonomic power series (with positive radius of convergence) cannot have a natural boundary,
since a having natural boundary in particular implies having infinitely many singularities. Now, since
algebraic power series are holonomic [44, Thm. 6.4.6], we have the following “hierarchy” for power series
with positive radius of convergence:

rational ⊆ root-rational ⊆ algebraic ⊆ holonomic ⊆ finite set of singularities ⊆ no nat. boundary (4)

Here, a power-series F is called root-rational if there exists a t ∈ Z>0 such that F t is rational. If we want
to refer explicitly to the exponent t, then we will say that F is t-root-rational.

For a sequence (an)n≥1 of complex numbers, we define the zeta function ζ(an)(z) ∈ C[[z]] to be the power
series given by

ζ(an)(z) := exp

∑
n≥1

an
n
zn

 . (5)

We define the naive zeta function Z(an)(z) ∈ C[[z]] corresponding to the sequence (an) to be

Z(an)(z) :=
∑
n≥1

anz
n = z

ζ ′(an)(z)

ζ(an)(z)
. (6)

Some “properties” seen in the hierarchy (4) pass from the zeta function to the naive zeta function. For
example, it follows immediately from (6) that rationality (in the variable z) of ζ(an) implies rationality of
Z(an), and similar for algebraicity over C(z). However, this implication fails for holonomicity, since the
multiplicative inverse of a holonomic function is not necessarily holonomic. For example, F (z) := ez−1 is
holonomic, but 1/F (z) is not (since it has infinitely many singularities). In fact, if ζ(an)(z) and 1/ζ(an)(z)
are both holonomic, then Z(an)(z) is necessarily algebraic [23]. On the other hand, having a natural
boundary passes from the naive zeta function to the zeta function:

Lemma 2.1 Let (an) be a sequence of complex numbers, and suppose Z(an) has a natural boundary. Then
so does ζ(an).

Proof. [5, Lem. 1].

9



2.1 Sequences and Power Series 2 PRELIMINARIES

Proposition 2.2 Let (an)n≥1 be a sequence of complex numbers.

(i) The following are equivalent:

(a) (an)n≥1 is linear recurrent.

(b) Z(an)(z) ∈ C(z).

(c) There exist complex numbers λi and polynomials qi ∈ C[z] such that an =
∑s

i=1 qi(n)λni for all
n sufficiently large.

(ii) The following are equivalent:

(a) ζ(an)(z) ∈ C(z).

(b) There exist complex numbers λi and integers mi ∈ Z such that an =
∑s

i=1miλ
n
i for all n ∈ Z>0.

Furthermore, in case (an)n≥1 is a sequence of rational numbers, then all statements hold with “C” replaced
by “Q”. Also, we then have λi ∈ Q.

Proof. (i) This follows from [43, Thm. 4.1.1 & Prop. 4.2.2].

(ii) This is [43, Ex. 4.8].

The final statement follows from the fact that C(z) ∩Q[[z]] ⊆ Q(z) [32, Lem. 27.9].

Definition 2.3 The λi in Proposition 2.2(i) are called the roots of the linear recurrence (an)n≥1. The
polynomial qi(z) is called the multiplicity of the root λi. A root λd of maximal absolute value (as a
complex number) among the λi is called a dominant root. If there is exactly one dominant root (possibly
with multiplicity), we say the linear recurrence (an)n≥1 satisfies the dominant root assumption. M

Definition 2.4 For two sequences (an)n≥1, (bn)n≥1 of elements of a ring R, we define the Hadamard
product [22] to be the sequence (an)� (bn) := (anbn). M

Proposition 2.2 allows for some interesting remarks regarding root-rationality of the zeta function:

Remark 2.5 (i) A sequence (an) of complex numbers has t-root-rational zeta function if and only if we
can write an =

∑s
i=1 qiλ

n
i for rational numbers qi ∈ Q with every denominator dividing t.

(ii) The sum (an+ bn) of two sequences (an), (bn) with t- and u-root-rational zeta functions respectively
has lcm(t, u)-root-rational zeta function.

(iii) The Hadamard product of two sequences (an) and (bn) with t- and u-root-rational zeta functions
respectively has (tu)-root-rational zeta function. ♦

Lemma 2.6 Let (an)n≥1 be a sequence with t-root-rational zeta function and let m ∈ Z>0. Then

ζ1(z) = exp

∑
m|n

an
n
zn

 , and ζ2(z) = exp

∑
m-n

an
n
zn


are (tm)-root-rational.

10
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Proof. Note that

exp

∑
m|n

an
n
zn

 = exp

∑
n≥1

amn
mn

zmn

 = exp

∑
n≥1

amn
n
zmn

1/m

.

Using the criterion of Proposition 2.2(ii), it is clear that the sequence (amn)n≥1 has t-root-rational zeta
function, hence ζ1 is indeed (tm)-root-rational. The result for ζ2 follows by noting that ζ2 = ζ1/ζ(an).

Lemma 2.6 implies in particular that, for any d ∈ Z>0, the zeta function corresponding to the divisor
indicator sequence

1d|n :=

{
1 if d | n;

0 else.

is d-root-rational. We can also see this directly from Proposition 2.2(ii), by noting that (see e.g. Lemma
2.17)

1d|n =
1

d

∑
ζd=1

ζn,

where the sum is over all d-th roots of unity ζ in C. We will call a periodic sequence (rn) of period ω
a gcd sequence if rn = rgcd(n,ω) for all n ∈ Z>0. Note that a sequence (over a certain ring R) is a gcd
sequence if and only if it can be written as an R-linear sum of divisor indicator sequences. Using this
“decomposition” we find that a gcd sequence of period ω with values in the integers has an ω-root-rational
zeta function. In fact, it turns out that the converse is also true:

Proposition 2.7 Let (an)n≥1 be a periodic sequence of rational numbers. Then the zeta function corre-
sponding to (an) is root-rational if and only if (an) is a gcd sequence.

Proof. “ ⇐= ” is shown above, so it suffices to prove “ =⇒ ”. Let ω be the period of (an), and suppose
that ζ(an) is root-rational. Denote by ≤∗ any total order on the set of positive integers Z>0 satisfying
m | n =⇒ m ≤∗ n.5 Assume to the contrary that (an) is not a gcd sequence. Then, among the divisors of
ω, there exists a maximal one (with respect to ≤∗), say m, such that (bn) := (amn) is not a gcd sequence.
The sequence (bn) has root-rational zeta function (since (an) does), has period s := ω/m, and for every
divisor d > 1 of s, the subsequence (bdn) is a gcd sequence, hence also has root-rational zeta function. We
thus find that the sequence (cn) defined by

cn :=

{
bn if gcd(n, s) = 1;

0 else,

5E.g. by unique prime factorisation there is a bijection between Z>0 and the set

S :=
⋃

p prime

{(e2, e3, e5, · · · , ep, 0, · · · ) ∈ Z∞≥0}

of eventually zero sequences of nonnegative integers, and the lexicographical order on S induces an order on Z>0 satisfying
the desired condition.

11
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has a root-rational zeta function. Writing

cn =
∑
ζ∈C
ζs=1

 ∑
1≤i≤s

gcd(i,s)=1

biζ
i

 ζ−n,

we find using Proposition 2.2(ii) that ∑
1≤i≤s

gcd(i,s)=1

biζ
i ∈ Q,

for all s-th roots of unity ζ. Applying this to a primitive s-th root of unity, and using the fact that the
primitive s-th roots of unity are linearly independent over Q, we find that the bi (for i coprime to s) are
all equal, contradicting the assertion that (bn) is not a gcd sequence.

2.2 Dynamics

Definition 2.8 A discrete dynamical system is a pair (S, f), where S is a set and f : S → S is map. M

Definition 2.9 Let (S, f) be a discrete dynamical system. If the cardinality of the set

Fix(f◦n) := {x ∈ S | f ◦ · · · ◦ f︸ ︷︷ ︸
n times

(x) = x}

is finite for all n, we say that the map f is confined. For a confined map f , we define the fixed point sequence
(fn)n≥1, by setting fn := # Fix(f◦n). The dynamical zeta function ζf associated to the dynamical system
(S, f) is defined to be the zeta function (5) associated to the sequence (fn). That is,

ζf (z) := exp

∑
n≥1

fn
n
zn

 . (7)

M

Just like the Riemann zeta function, the dynamical zeta function also has a product expansion over
“primes”. In this case the relevant notion of a prime is a prime orbit.

Definition 2.10 Let (S, f) be a discrete dynamical system. An orbit X of S under f is a collection of
(not necessarily distinct) elements x1, · · · , xm ∈ S such that f(x1) = x2, f(x2) = x3, · · · , f(xm) = x1. If
the xi are all distinct, we say that X (which can then be regarded as a subset of S) is a prime orbit. M

Note that, if we denote by P(d) the set of prime orbits of length d, we have

# Fix(f◦n) =
∑
d|n

d ·#P(d).

12
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Hence (as equalities of formal power series)

ζf (z) = exp

∑
d,n≥1
d|n

#P(d)
d

n
zn

 = exp

∑
d≥1

∑
n≥1

#P(d)
d

dn
zdn



=
∏
d≥1

exp

#P(d)
∑
n≥1

zdn

n

 =
∏
d≥1

(
1

1− zd

)#P(d)

. (8)

Rewriting (8), we obtain an expression similar to the Euler product formula for the Riemann zeta function:

ζf (z) =
∏
P∈P

1

1− z#P
, (9)

where P =
⋃
d≥1 P(d) is the set of all prime orbits.

Lemma 2.11 Let S be any finite set and f : S → S any map. Then ζf (z) is rational.

Proof. Since #P(d) is zero for d > #S, this follows immediately from (8).

Definition 2.12 Let V be an algebraic variety of an algebraically closed field k with char(k) = p > 0,
and let f : V → V be a confined endomorphism. We define the tame dynamical zeta function ζ∗f (z) ∈ C[[z]]
(cf. [10, p. 4]) by

ζ∗f (z) := exp

∑
p-n

fn
n
zn

 . (10)

M

Proposition 2.13 For (V, f) a discrete dynamical system as in Definition 2.12, the tame and “full”
dynamical zeta function are related by the following equalities (of formal power series):

ζ∗f (z) =
ζf (z)

(ζf◦p(zp))
1/p

, ζf (z) =
∏
i≥0

(
ζ∗
f◦pi

(zp
i
)
)1/pi

. (11)

Proof. For the first equality, note that

log
(
ζ∗f (z)

)
=
∑
n≥1

fn
n
zn − 1

p

∑
m≥1

fpm
m

zpm = log
(
ζf (z)ζf◦p(z

p)−1/p
)
.

The second equality follows by applying the first one repeatedly. Alternatively, we can compute:

log(ζf (z)) =
∑
i≥0

∑
p-m

fpim
pim

zp
im =

∑
i≥0

1

pi

∑
p-m

f◦p
i

m

m

(
zp

i
)m

= log

∏
i≥0

(
ζ∗
f◦pi

(zp
i
)
)1/pi

 .
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2.3 Discrete Valuations

Definition 2.14 Let R be a (not necessarily commutative) ring. A map v : R→ Z≥0 ∪ {∞} is called a
(discrete) valuation on R if, for all x, y ∈ R, the following hold:

(i) v(x) =∞ ⇐⇒ x = 0;

(ii) v(xy) = v(x) + v(y);

(iii) v(x+ y) ≥ min(v(x), v(y)). M

For a ring R with discrete valuation v, it follows from property (ii) that v(1) = 0. Indeed, we have
v(1) = v(12) = 2v(1). Now let 0 6= m = 1 + · · · + 1 ∈ R be minimal such that v(m) > 0, and define
ρ(R, v) := v(m). We set ρ(R, v) = 0 if m does not exist or char(R) 6= 0 (note that this makes sense
because of Proposition 2.16(ii) combined with part (ii) of the definition; indeed, in prime characteristic,
any non-zero integer m has finite multiplicative order, hence v(m) = 0).

Definition 2.15 Let R be a ring with discrete valuation v. The set {x ∈ R | v(x) > 0} is a prime ideal
called the valuation ideal of R. M

Now it follows that, if m as above exists, then it must be prime. Indeed (for char(R) = 0), the restriction
of v to Z ⊆ R is a valuation on Z, with valuation ideal mZ.

Proposition 2.16 Let R be a ring with discrete valuation v : R → Z≥0 ∪ {∞}. Then the following
statements hold for all x, y ∈ R and n ∈ Z≥0:

(i) R has no zero divisors.

(ii) If the characteristic of R is positive, then it is prime.

(iii) v(xy − yx) ≥ v(x− y).

(iv) v(xn − yn) ≥ v(x− y).

Now suppose additionally that x and y commute, that v(x) = v(y) = 0, and that v(x−y) ≥ ρ(R,v)+1
p−1 . Then

(v) v(xn − yn) =

{
v(x− y) + v(n) if char(R) = 0;

v(x− y)pvp(n) if char(R) = p > 0.

Finally, if there exists a positive integer s ∈ R such that v(s) > 0 (i.e. the composition Z \ {0} → R
v−→

Z≥0 ∪ {∞} is not identically zero), then

(vi) Let z ∈ R, and assume that v(z − 1) > 0. Then v(zr − 1) is unbounded when r ranges over Z>0.

Proof. (i) If x, y ∈ R are such that xy = 0, then v(x) + v(y) = v(xy) = v(0) = ∞, hence v(x) = ∞ or
v(y) =∞, so x = 0 or y = 0.

(ii) If char(R) > 0 is not prime, then it is the product of two non-zero integers in R, so R would have
zero divisors, contradicting (i).

(iii) We have v(xy − yx) = v((x− y)x− x(x− y)) ≥ min(v((x− y)x), v(x(x− y))) ≥ v(x− y).

14



2.3 Discrete Valuations 2 PRELIMINARIES

(iv) We have xn−yn = (y+(x−y))n−yn = yn−yn+z, where z is in the two-sided ideal of R generated
by (x− y), so v(xn − yn) = v(z) ≥ v(x− y).

(v) Since xy = yx, we have

xn− yn = (y+ (x− y))n− yn =
n∑
k=1

(
n

k

)
(x− y)kyn−k = n(x− y)yn−1 +

n∑
k=2

(
n

k

)
(x− y)kyn−k. (12)

If v(n) = 0, then we see that v
((
n
k

)
(x− y)kyn−k

)
> v(n(x− y)yn−1) for all 2 ≤ k ≤ n, so it follows

from (12) that v(xn − yn) = v(n(x− y)yn−1) = v(x− y).

Now suppose that char(R) = 0 and that p ∈ Z>0 is minimal such that v(p) > 0 (so v(p) = ρ(R, v)).
If p does not exist, then the desired statement is already true by the remark above, so suppose that
p exists. Then by the same remark yet again, the statement holds if p - n. Suppose that n = p. We
would like to show that v

((
p
k

))
+kv(x−y) = v

((
n
k

)
(x− y)kyn−k

)
> v(n(x−y)yn−1) = v(p)+v(x−y)

for all 2 ≤ k ≤ n, since then v(xp − yp) = v(x− y) + v(p), which is the desired result. If 2 ≤ k < p,
then

v

((
p

k

))
+ (k − 1)v(x− y) ≥ v(p) + (k − 1)v(x− y) > v(p).

While if k = p, then

v

((
p

k

))
+ (k − 1)v(x− y) = (p− 1)v(x− y) ≥ v(p) + 1 > v(p),

so the desired result follows. Now the result follows for general n by induction on vp(n).

If char(R) = p > 0 and p - n, then clearly we have v
((
n
k

))
≥ 0 = v(n), so we see immediately from

(12) that v(xn − yn) = v(x − y). On the other hand, if n = p` is a power of p, then v(xn − yn) =

v
(

(x− y)p
`
)

= v(x−y)p` = v(x−y)pvp(n). The desired result now follows for general n by factorizing

n = p`n′ where p - n′.

(vi) Using the same expansion as in (12), we find

zs − 1 = (1 + (z − 1))s − 1 = s(z − 1) +
s∑

k=2

(
s

k

)
(z − 1)k.

Since all the terms appearing on the right hand side have valuation > v(z − 1), we find that
v(zs − 1) > v(z − 1), thus raising to successive powers of s yields the desired result.

Part (v) of Proposition 2.16 will turn out to be very important in being able to control the growth of the
inseparability degree of endomorphisms on algebraic groups. Bridy [9, §6] refers to this result as “lifting
the exponent”, and proves it in three special cases. It should be noted, however, that the statement of
Lemma 6.2 in his paper is false. Here he considers a certain valuation on a maximal order O in the
quaternion algebra B over Q that is ramified precisely at p (for some prime p) and ∞. More precisely, if
π denotes a uniformizer for the localization Op of O at p, he lets v be the valuation on O associated to the
ideal I := πOp∩O. It is claimed that lifting the exponent holds for x, y ∈ O as in Proposition 2.16(v) even

when x and y do not commute. However, if p is any prime, and we set s ≥ max
(
ρ(O,v)+1
p−1 , 2vp(2) + 1

)
,

x = psj + i, and y = i, then v(x2 − y2) = v(y(x − y) + (x − y)y + (x − y)2) = v(ipsj + psji + p2sj2) =
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2sv(p) 6= sv(p) + 2vp(2) = v(x− y) + 2vp(2). In Bridy’s paper this mistake does not form an issue, since
only the case where x and y do commute is considered in later proofs (in fact he only considers the case
y = 1).

Finally, for future reference, we record the following Lemma:

Lemma 2.17 Let R be a (not necessarily commutative) ring without zero divisors, and let Γ ⊆ Aut(R)
be a finite subgroup. Then ∑

γ∈Γ

γ =

{
1 if Γ = {1}
0 else.

Proof. For any γ0 ∈ Γ, we have

(1− γ0)
∑
γ∈Γ

γ =
∑
γ∈Γ

γ −
∑
γ∈Γ

γ0γ =
∑
γ∈Γ

γ −
∑
γ∈Γ

γ = 0.

Thus, if there exists a γ0 ∈ Γ \ {1}, it follows that
∑

γ∈Γ γ = 0.

2.4 Algebraic Groups

Let k be an algebraically closed field.

Definition 2.18 An algebraic group G over k is an algebraic variety G/k, together with an (identity)
element e ∈ G, and morphisms of varieties µ : G×G → G, (x, y) 7→ x · y and i : G → G, x 7→ x−1, with
respect to which G is a group. A morphism of algebraic groups is a map between algebraic groups that is
both a morphism of varieties and a group homomorphism. M

We will denote by End(G) and Aut(G) the set of endomorphisms and automorphisms of G respectively.
When G is commutative, the set of endomorphisms (which we will then refer to as the endomorphism ring)
admits a ring structure, given by (στ)(g) = (σ ◦ τ)(g) and (σ + τ)(g) := σ(g) + τ(g) for σ, τ ∈ End(G).

Definition 2.19 An algebraic group that is affine as a variety is called a linear algebraic group. An
algebraic group that is projective as a variety is called an abelian variety. M

An important example of a linear algebraic group is the general linear group GLn /k of invertible n × n
matrices over k. Any closed algebraic subgroup of GLn is a linear algebraic group, and conversely, any
linear algebraic group is isomorphic to a closed algebraic subgroup of GLn for some n [42, Thm. 2.3.7],
hence explaining the name linear algebraic group. It also turns out that the group structure of abelian
varieties is (as the name suggests) indeed always commutative [30, Cor. 1.4]. An elliptic curve is an abelian
variety of dimension one.

Remark 2.20 For our purposes, we will view the underlying variety of an algebraic group as a (reduced)
classical algebraic variety. From this point of view, all algebraic groups (over an algebraically closed
field) are smooth (all classical algebraic varieties have a smooth point, and algebraic groups look locally
everywhere the same, because translating by an element of the group is an automorphism of the underlying
variety). When one wants, for example, to take proper scheme-theoretic kernels of morphisms, then it is
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more natural to consider algebraic groups to be group schemes of finite type over a field (and these need
not be smooth). ♦

Definition 2.21 Let G be a linear algebraic group. An element u ∈ G is called unipotent if for every
isomorphism φ from G to some closed subgroup of GLn, the element φ(u) is unipotent; i.e. φ(u) − 1 is
nilpotent. We will call G unipotent if every element of G is unipotent. M

The subgroup Un ⊆ GLn of upper-triangular matrices with all diagonal entries equal to one is an example
of a unipotent algebraic group. It turns out that any unipotent algebraic group is isomorphic to a closed
subgroup of Un for some n [42, Prop. 2.4.12].

Definition 2.22 Let G be an algebraic group. A Borel subgroup B of G is a maximal closed connected
solvable algebraic subgroup of G. M

The following result, known as Chevalley’s structure theorem for algebraic groups, will very be important
later on.

Theorem 2.23 (Chevalley) Let G be a connected algebraic group. Then there exists a unique normal
connected linear algebraic closed subgroup N of G for which G/N is an abelian variety.

Proof. By Chevalley [11]. A modern proof can be found under [15, Thm. 1.1].

Lemma 2.24 Let φ : G→ G′ be a morphism of connected algebraic groups, and let N ⊆ G and N ′ ⊆ G′
as in Theorem 2.23, so that A := G/N and A′ := G′/N ′ are abelian varieties. Then φ(N) ⊆ φ(N ′). In
particular, φ induces a morphism φ̃ : A→ A′.

Proof. Theorem 2.23 gives us short exact sequences 1→ N → G→ A→ 1 and 1→ N ′ → G′ → A′ → 1.

Since the map N → G
φ−→ G′ → A′ is constant by [15, Lemma. 2.3], the desired result follows.

Lemma 2.24 tells us that a morphism φ : G → G′ of connected algebraic groups induces a morphism of
short exact sequences

1 // N //

φ|N
��

G //

φ
��

A //

φ̃
��

1

1 // N ′ // G′ // A′ // 1

(13)

where N,N ′ are connected linear algebraic groups and A,A′ are abelian varieties. Note that the Snake
Lemma [33, Ex. 5.7] implies that, if φ|N is surjective, we have a short exact sequence 1 → ker(φ|N ) →
ker(φ) → ker(φ̃) → 1 of (group-theoretic) kernels. This shows in particular that, if ker(φ) is finite, then
so are ker(φ|N ) and ker(φ̃).

Lemma 2.25 Let G be a connected algebraic group. Then G is irreducible (as an algebraic variety).

Proof. This follows from [42, Prop. 2.2.1].

Lemma 2.26 Let G be a linear algebraic group and let H be a closed normal algebraic subgroup. Then
the quotient G/H is a linear algebraic group.

17
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Proof. [7, Thm. 6.8].

Lemma 2.27 Let φ : G→ G′ be a morphism of algebraic groups. Then

(i) The (group-theoretic) kernel of φ is a closed normal algebraic subgroup of G.

(ii) The image φ(G) is a closed algebraic subgroup of G′.

In particular, if either G or G′ is a linear algebraic group, then so is φ(G).

Proof. [42, Prop. 2.2.5]. The last statement follows from Lemma 2.26.

Definition 2.28 A morphism φ : G → G′ of algebraic groups is called an isogeny if φ has finite kernel
and is surjective. M

Lemma 2.29 Let φ : G → G′ be a morphism of connected algebraic groups. Then the following are
equivalent:

(a) φ is an isogeny.

(b) dim(G) = dim(G′) and φ has finite kernel.

(c) dim(G) = dim(G′) and φ is surjective.

Proof. By [31, Thm. 10.9], we have, for all y ∈ φ(G′), dim(φ−1(y)) ≥ dim(φ(G))− dim(G), with equality
holding on a non-empty open subset U of φ(G′). Since the fibers (over points in the image) of a morphism
of algebraic groups are isomorphic (for x ∈ φ−1(y), the map φ−1(1) → φ−1(y), z 7→ zx is an explicit
isomorphism), it follows that we in fact have

dim(φ−1(y)) = dim(φ(G))− dim(G) (14)

for all y ∈ φ(G). Now it it clear that (a) implies that dim(G′) = dim(φ(G)) = dim(G), hence (a) implies
(b) and (c). It is clear that (b) and (c) together imply (a), thus it remains to show that (b) and (c) are
equivalent; suppose for the remainder of the proof that we are in the case dim(G) = dim(G′).

“(b) =⇒ (c)” If φ is surjective, then it follows immediately from (14) that dim(φ−1(y)) = 0 for all
y ∈ φ(G) = G′, and hence in particular that ker(φ) is finite.

“(c) =⇒ (b)” If ker(φ) is finite, then by (14) we have dim(φ(G)) = dim(G). In the case that G is an
abelian variety or a linear algebraic group, this immediately implies that φ is surjective (since φ(G) and G′

are irreducible by Lemma 2.25, and φ(G) ⊆ G′ is a closed subvariety by Lemma 2.27). Thus, in diagram
(13), both φ|N and φ̃ are surjective (using the remark after the diagram). The Four Lemma [27, Lem. 3.2]
now implies that φ is also surjective.

Definition 2.30 Let φ : G → G′ be a surjective morphism of connected algebraic groups. The degree
deg(φ) and inseparability degree degi(φ) of φ are defined to be the degree and inseparability degree of the
extension of function fields k(G)/φ∗k(G′) respectively. We call φ separable when degi(φ) = 1. M

Definition 2.31 An endomorphism σ of a connected commutative algebraic group is called coseparable
when σn − 1 is a separable isogeny for all n ∈ Z>0. M

18
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3 Dynamically Affine Maps

Let k denote an algebraically closed field. All algebraic varieties are assumed to be over k.

3.1 Definitions

An affine morphism of a commutative algebraic group G/k is, roughly speaking, a composition of an
endomorphism σ of G with a translation. Before giving the precise definition, we should provide a
disclaimer: in his definition of a dynamically affine map, Silverman [39, §6.8] assumes that σ is finite and
of degree at least 2. For connected one-dimensional G, this assumption implies that σ is confined (in fact,
it is almost equivalent to σ being confined; see Lemma 3.19), which is precisely the condition that is, for
our purposes, convenient. However, for higher dimensional G, assuming deg(σ) ≥ 2 does not always imply
that σ is confined (see Example 3.1). Precisely this issue causes a mistake in (the last line of) the proof
of [9, Lemma 2.4]. In fact, the statement of this particular lemma (which is Lemma 3.6 below) is false
when using Silverman’s notion of an affine morphism. In order to avoid some unnatural case distinctions,
we will therefore use a slightly alternative notion of an affine morphism, and hence of a dynamically affine
map (Definition 3.3).

Example 3.1 Let E be an elliptic curve, and G := E × E. Let σ := [−1] × [2] ∈ End(G), where [m]

denotes the multiplication-by-m map. Then deg(σ) = 4, but σ2 − 1 = [0]× [4], so σ is not confined. 9

Definition 3.2 Let G/k be a commutative algebraic group. An affine morphism of G is a map ψ : G→ G
that can be written as ψ(g) = σ(g) + h for some confined isogeny σ ∈ End(G) and some h ∈ G. M

Now, a dynamically affine map can roughly be viewed as a “finite quotient” of an affine morphism on a
connected commutative algebraic group. Let V/k denote an algebraic variety.

Definition 3.3 We call a morphism f : V → V dynamically affine if there exists

(i) a connected commutative algebraic group G;

(ii) an affine morphism ψ : G→ G;

(iii) a finite subgroup Γ ⊆ Aut(G); and

(iv) an inclusion ι : G/Γ→ V that identifies G/Γ with a Zariski-dense open subset of V ,

such that the following diagram commutes:

G
ψ //

π
��

G

π
��

G/Γ //
� _

ι

��

G/Γ� _
ι

��
V

f // V

(15)

M
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When talking about dynamically affine maps f : V → V , we will often use the notation provided by the
definition to refer to the underlying constituents {G,ψ, σ, h,Γ, ι}.

Definition 3.4 A dynamically affine map f is called coseparable when σ is coseparable (see Definition
2.31). M

Lemma 3.5 Let f : V → V be a dynamically affine map.

(i) There exists a group automorphism α : Γ→ Γ such that for any γ ∈ Γ, ψ ◦ γ = α(γ) ◦ ψ;

(ii) (ψn − γ)−1(0) is finite for all n ∈ Z>0 and γ ∈ Γ.

Proof. (i) By [39, Prop. 6.77(a)], for every γ ∈ Γ there exists a (unique) γ′ ∈ Γ such that ψ ◦ γ = γ′ ◦ψ.
This induces a map α : G→ G, γ 7→ γ′. Now note that α(γ1 ◦γ2)◦ψ = ψ ◦ (γ1 ◦γ2) = (ψ ◦γ1)◦γ2 =
α(γ1) ◦α(γ2) ◦ψ, hence, by surjectivity of ψ, α is a group endomorphism. To see why α is bijective,
or, equivalently, injective, let γ ∈ ker(α). Then ψ ◦ (γ − 1) = 0, hence im(γ − 1) ⊆ ker(ψ). Since
ker(ψ) is finite by Lemma 2.29 and im(γ − 1) is connected (because G is connected), we conclude
that im(γ − 1) = {0}, hence γ = 1.

(ii) Let γ ∈ Γ, and suppose that x ∈ G is such that ψn(x) = γ(x). Then

ψdn(x) =
(
α(d−1)n(γ) · · ·αn(γ)γ

)
(x) =

(
βd−1(γ) · · ·β(γ)γ

)
(x),

where β := αn. Since β is injective,

βr+s(γ) · · ·βr(γ) = 1 ⇐⇒ βr(βs(γ) · · ·β(γ)γ) = 1 ⇐⇒ βs(γ) · · ·β(γ)γ = 1.

Thus, since Γ is finite, there exists a d ∈ Z>0 such that βd−1(γ) · · ·β(g)γ = 1. Therefore (ψn −
γ)−1(0) ⊆ (ψdn− 1)−1(0). Since σ, hence ψ, is confined by assumption, we have that (ψdn− 1)−1(0)
is finite, and the desired result follows.

The following lemma is crucial, as it allows to count the fixed point sequence (fn) of a dynamically affine
map f in terms of kernels of endomorphisms on the algebraic group G:

Lemma 3.6 (Bridy, [9, Lemma 2.4]) Let f : V → V be a dynamically affine map. Then

# Fix(f◦n) = #(Fix(f◦n) \ ι(G/Γ)) +
1

|Γ|
∑
γ∈Γ

# ker(σn − γ).

Proof. Let S :=
⋃
γ∈Γ(ψn − γ)−1(0). Then

# Fix(f◦n) = #(Fix(f◦n) \ ι(G/Γ)) + #(Fix(f◦n) ∩ ι(G/Γ)) = #(Fix(f◦n) \ ι(G/Γ)) + π(S).

If g ∈ S, then ψn(g) = γg(g) for some γg ∈ Γ. Let α as in Lemma 3.5. Then for any γ ∈ Γ, we have
ψn(γ(g)) = α(γ)ψn(g) = α(γ)γg(g) = (α(γ)γgγ

−1)(γ(g)), so γ(g) ∈ S. We thus see that γ 7→ (g 7→ γ(g))
defines an action of Γ on S, and that #(Fix(f◦n) ∩ ι(G/Γ)) = #S/Γ. Now, for γ ∈ Γ, denote by Sγ the
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3.2 Introduction to Hypotheses 3 DYNAMICALLY AFFINE MAPS

set of g ∈ S fixed by γ, and for g ∈ G, denote by Γg the set of γ ∈ Γ that fix g. By the Counting Theorem
[2, Thm. 18.1],

#S/Γ =
1

|Γ|
∑
γ∈Γ

|Sγ | = 1

|Γ|
∑
g∈G
|Γg| =

1

|Γ|
∑
g∈G

#{γ ∈ Γ | γ(g) = g}

=
1

|Γ|
∑
g∈G

#{γ ∈ Γ | g = γ−1γg(g)} =
1

|Γ|
∑
g∈G

#{γ ∈ Γ | g ∈ (ψn − γ)−1(0)}

=
1

|Γ|
∑
γ∈Γ

#{g ∈ G | g ∈ (ψn − γ)−1(0)} =
1

|Γ|
∑
γ∈Γ

#(ψn − γ)−1(0).

Now, since ψn(g) = σn(g) +
∑n−1

i=0 σ(h) and σn− γ is surjective (by Lemma 3.5(ii) combined with Lemma
2.29), we find that #(ψn − γ)−1(0) = # ker(σn − γ).

3.2 Introduction to Hypotheses

For the remainder of this section, we will assume that char(k) = p > 0.

Let f : V → V be a dynamically affine map. In order to determine the dynamical zeta function ζf , we
need to control the fixed point sequence (fn). For any isogeny τ : G→ G, we can write

# ker(τ) = deg(τ)/ degi(τ). (16)

Thus, using Lemma 3.6, controlling the fixed point sequence (fn) can be achieved by controlling, for every
γ ∈ Γ,

(a) the sequence cn := #(Fix(f◦n) \ ι(G/Γ));

(b) the “inseparability degree sequence” degi(σ
n − γ);

(c) the “degree sequence” deg(σn − γ).

In order to be able to do this, we will need to make some extra assumptions associated to the dynamically
affine map f , in the form of four hypotheses:

(H1) The sequence (cn) has a rational zeta function.

(H2) All non-zero elements of End(G) are isogenies, and there exists a discrete valuation v : End(G) →
Z≥0 ∪ {∞} such that degi(τ) = pv(τ) for all isogenies τ .

Before introducing the last two hypotheses, we will set up some notation.

Notation. Let v be as in (H2). For m ∈ Z≥0, we let Γm := {γ ∈ Γ | v(γ − 1) ≥ m}.
This defines a descending filtration of normal subgroups Γ = Γ0 ⊇ Γ1 ⊇ · · · ⊇ ΓN = 1, where
N := max{v(γ−γ′) | γ, γ′ ∈ Γ, γ 6= γ′}+ 1. Moreover, we let sm ∈ Z>0 be minimal (if it exists)
such that v(σsm − γm) ≥ m for some γm ∈ Γ. Denote s := sN and γ̃ := γN .

(H3) Let m ∈ Z≥0. If sm exists, then

exp

∑
n≥1
γ∈Γm

deg(σsmn − γγnm)

n
zn

 ∈ C(z).
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3.2 Introduction to Hypotheses 3 DYNAMICALLY AFFINE MAPS

(H4) If s exists, then (deg(σsn − γ̃n))m≥1 satisfies the dominant root assumption (see Definition 2.3).6

Here, (H1), (H2) and (H3) serve to control the sequences listed above under (a), (b) and (c) respectively,
while (H4) is a technical hypothesis that we will use in order to avoid cancellation of certain singularities.
The main results are (note that (H3) with m = 0 shows in particular that ζf has a positive radius of
convergence):

Theorem 3.7 Let V be an algebraic variety over an algebraically closed field of characteristic p > 0, and
let f : V → V be a dynamically affine map satisfying (H1)-(H4). Then the following dichotomy holds:

(i) If f is coseparable, then ζf is root-rational.

(ii) Otherwise, ζf has a natural boundary.

Theorem 3.8 Let V be an algebraic variety over an algebraically closed field of characteristic p > 0, and
let f : V → V be a dynamically affine map satisfying (H1)-(H3). Then ζ∗f is root-rational.

In order to prove these results, we use two important lemmas. The first one tells us in particular that σs

and γ̃ (as in (H4)) commute.

Lemma 3.9 Let f be a dynamically affine map satisfying (H2). Suppose that n ∈ Z>0 and γ ∈ Γ are
such that v(σn − γ) ≥ N . Then σn and γ commute.

Proof. Let α ∈ Aut(Γ) as in Lemma 3.5, so that σγ = α(γ)σ. Then

N ≤ v(σn − γ) ≤ v(σnγ − γσn) = v((α(γ)− γ)σn) = v(α(γ)− γ).

We conclude that α(γ) = γ by definition of N .

The second lemma is a natural boundary result for two basic maps:

Lemma 3.10 Let h ∈ R>0 and 0 < β < 1. Define the following formal power series (over C):

Gh(z) :=
∑
n≥1

|n|hpzn, Hβ(z) :=
∑
n≥1

β|n|
−1
p zn.

Then Gh and Hβ have the unit circle as a natural boundary.

Proof. First of all, we note that Gh and Hβ both have radius of convergence equal to one by, for example,
the (Cauchy) root test. Now, note that Gh and Hβ satisfy the following functional equations:

1

ph
Gh(zp) =

1

ph

∑
n≥1

|n|hpzpn −
∑
n≥1

|pn|hpzpn = Gh(z)−
(

z

1− z
− zp

1− zp

)
. (17)

Hβp(z
p) =

∑
n≥1

β|pn|
−1
p zpn = Hβ(z)−

∑
p-n

β|n|
−1
p zn = Hβ(z)− β

(
z

1− z
− zp

1− zp

)
. (18)

6Note that, by applying (H3) with m = N , the sequence is indeed linear recurrent.
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We will first show that Gh and Hβ both have poles at all p-th roots of unity. It is clear that they have a
pole at 1, so let ωp be a primitive p-th root of unity. Since

∑p
n=1 ω

n
p = 0 (for example by Lemma 2.17),

we find
∑p

n=1 |n|hpωnp = p−h − 1. Generalizing to multiples of p, we find

pm∑
n=1

|n|hpωnp ≤ m(p−h − 1)

for all m ∈ Z>0. Now, as m(p−h − 1)
m→∞−−−−→ −∞, and the terms between consecutive multiples of p are

bounded, we conclude that Gh has a pole at ωp. A similar argument works for Hβ, using the analogous
estimate

pm∑
n=1

β|n|
−1
p ωnp ≤ m(βp − 1).

Now, by the functional equations (17) and (18), it follows by induction on k that Gh and Hβ have poles
at all pk-th roots of unity, so we can conclude that they have a natural boundary (at the unit circle).

We will now present the idea of the proof of Theorem 3.7 and 3.8: the actual proof can be found in Section
3.4. Using Lemma 3.6, we first write

fn = cn +
1

|Γ|
∑
γ∈Γ

deg(σn − γ)/degi(σ
n − γ).

By (H1), the sequence (cn) has a rational zeta function, so it produces a rational factor in ζf . By Lemma
2.6, the contribution of cn to ζ∗f is also root-rational. Since we are only interested in statements for the
(tame) zeta function up to root-rationality, we may thus “disregard” the cn completely. The same holds
for the factor 1/|Γ|, as we can eliminate it taking the |Γ|-th power. The interesting part of fn that remains
can be rewritten using (H2) as ∑

γ∈Γ

deg(σn − γ)p−v(σn−γ). (19)

Now, if σ is coseparable, then v(σn − γ) = 0 for all γ and n. Applying (H3) with m = 0, we conclude
that both ζf and ζ∗f are root-rational.

On the other hand, if σ is not coseparable, then v(σn − γ) gets arbitrarily large (i.e. all of the sm and γm
exist) by application of Proposition 2.16(vi). By Lemma 3.9, σs commutes with γ̃, which means that we
can use Proposition 2.16(v) to control the following “subsequence” of (19):7

deg(σsn − γ̃n)p−v(σsn−γ̃n) = deg(σsn − γ̃n) · “something depending on |n|p”. (20)

To justify being able to consider just this subsequence without discarding any non-root-rational parts,
(H3) is used. The “part depending on |n|p” will resemble one of the power series of Lemma 3.10, and
therefore produces a lot of singularities. We then employ (H4) to make sure that the singularities found
at the boundary of the disk of convergence (i.e. the circle of radius 1/|Λ|, where Λ denotes the unique
dominant root), cannot in any way cancel out. This allows us to conclude that the zeta function has a
natural boundary. On the other hand, when only considering n not divisible by p, the dependence on |n|p
is removed, which means that we can use (H3) (with m sufficiently large) to conclude that the tame zeta
function corresponding to the sequence in (20), and hence ζ∗f itself, is root-rational.

7Technically, we will possibly have to consider yet another subsequence of this to make sure the requirement for Proposition
2.16(vi) is met. Luckily, “something depending on |n|p” is sufficiently vague, so (20) is in a sense still true. The details are
(of course) provided in the actual proof.
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3.3 The Projective Line 3 DYNAMICALLY AFFINE MAPS

3.3 The Projective Line

Before giving the complete proof of the main results, let us discuss what happens for the special case
where V is the projective line, for which we will verify that the hypotheses (H1)-(H4) always hold. Here,
Theorem 3.7 and 3.8 take the following form:

Theorem 3.11 (= Theorem A) Let f : P1 → P1 be a dynamically affine map. Then the following
dichotomy holds:

(i) If f is coseparable, then ζf is rational.

(ii) Otherwise, ζf has a natural boundary.

Theorem 3.12 (= Theorem B) Let f : P1 → P1 be a dynamically affine map. Then ζ∗f is root-rational.

These results follow directly from Theorems 3.7 and 3.8 after showing that:

Proposition 3.13 Let f : P1 → P1 be a dynamically affine map. Then

(i) f satisfies (H1)-(H4).

(ii) If f is coseparable, then ζf is rational.

For the remainder of this subsection, we will focus on proving the first part of the proposition, eventually
also proving the second part with the tools and calculations developed. Note that (H1) is the only hy-
pothesis explicitly associated to the map f ; the others (although (H3) and (H4) are implicitly associated
to f) are statements purely about the group G and its endomorphisms. It follows from the definition of a
dynamically affine map (a finite quotient of G lies Zariski-dense in V ) that the connected group G must
have same dimension as the variety V . Thus, to verify hypotheses (H2)-(H4) for dynamically affine maps
on the projective line, we need to study the endomorphism structure of connected commutative algebraic
groups of dimension one. However, let us start by verifying (H1):

Lemma 3.14 Let f : P1 → P1 be a dynamically affine map. Then the sequence (cn)n≥1 given by
cn := #(Fix(f◦n) \ ι(G/Γ)) has rational zeta function.

Proof. Since, ι(G/Γ) lies Zariski-open in P1 (which has the cofinite topology), we know that S := P1 \
ι(G/Γ) is finite. In particular, S contains finitely many of the periodic points of f , and the desired result
follows from Lemma 2.11 (applied to the (finite) union of all orbits of f intersecting with S).

3.3.1 Structure of Connected Algebraic Groups of Dimension One

By Theorem 2.23, any connected algebraic group G of dimension one fits into a short exact sequence

1→ N → G→ A→ 1,

where N is a connected linear algebraic group and A is an abelian variety. Since dim(G) = 1, we have
dim(N), dim(A) ∈ {0, 1}.
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If dim(N) = 1, then it follows from Lemma 2.29 that N = G, so G is a connected linear algebraic group
of dimension one. By [42, Thm. 3.4.9], it follows that either

(i) G ∼= Ga, the additive group of k (which, as a variety, is isomorphic to P1 \ {∞}); or

(ii) G ∼= Gm, the multiplicative group of k (which as a variety is isomorphic to P1 \ {0,∞}).

If dim(A) = 1, then by Lemma 2.29, N is finite, hence trivial (because it is connected), so

(iii) G ∼= E, an elliptic curve.

Note that these connected algebraic groups of dimension one are all commutative, so the above list
completely classifies the groups G from which a dynamically affine map on the projective line could arise.
We will summarize some results that Bridy [9] uses about the structure of their endomorphism rings,
which will be important for the proof of Proposition 3.13. In particular, in order to verify (H2), we will
need to understand the inseparability degree of endomorphisms of G, while for (H3) and (H4), we need
to control their degree. Nothing we will claim here is new; all statements can already be found (somewhat
scattered) in [9].

The endomorphism ring

(i) The endomorphisms of Ga are the “additive maps”, which are precisely the polynomials in the
Frobenius φ : x 7→ xp. So End(Ga) ∼= k〈φ〉, the non-commutative polynomial ring over k in the
“variable” φ, with multiplication rule φa = apφ for a ∈ k. The automorphism group Aut(Ga) (i.e.
the unit group of End(Ga)) is k×, consisting of the non-zero linear maps x 7→ ax.

(ii) The endomorphisms of Gm are the “multiplicative maps”, i.e. the power maps x 7→ xm for m ∈ Z.
Hence, the endomorphism ring is End(Gm) ∼= Z, with automorphism group Aut(Gm) = {x, x−1} ∼=
{±1}.

(iii) For elliptic curves E, the endomorphism ring is an order in End(E) ⊗Q; the latter depending on
the type of elliptic curve. Note that End(E) always contains the multiplication-by-m maps [m] for
m ∈ Z. If the j-invariant of E is transcendental over Fp, then these are the only endomorphisms, so
we have End(E) ∼= Z. If j(E) ∈ Fp, then we distinguish two options: either E is ordinary, or E is
supersingular. If E is ordinary, then End(E)⊗Q is isomorphic to an imaginary quadratic number
field L. If E is supersingular, then End(E)⊗Q is isomorphic to a quaternion algebra B over Q [40,
Thm. V.3.1]. The automorphism group Aut(E) is a finite group of order dividing 24 (depending on
the j-invariant and on char(k)) [40, Thm. 10.1].

The degree

(i) For (non-zero) σ = f(φ) ∈ k〈φ〉 = End(Ga), we have deg(σ) = pdegφ(f).

(ii) For (non-zero) σ = m ∈ Z = End(Gm), we have deg(σ) = |m|.

(iii) For an elliptic curve E, let N : End(E) ⊗Q → Q be the norm map x 7→ xx, where x denotes the
conjugate of x (so if End(E)⊗Q ∼= Q, N is given by x 7→ x2, if End(E)⊗Q ∼= L for an imaginary
quadratic number field L, N = NL/Q is the usual norm for field extensions, and if End(E)⊗Q ∼= B
for a quaternion algebra B over Q, N is the usual (reduced) norm for quaternion algebras). Then,
for σ ∈ End(E) \ {0}, we have deg(σ) = N(σ).
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The inseparability degree

We can directly verify (H2). That is,

Lemma 3.15 Let G be a connected algebraic group of dimension one. There exists a discrete valuation
v : End(G) → Z≥0 ∪ {∞} on the endomorphism ring such that, for all σ ∈ End(G) \ {0}, we have
degi(σ) = pv(σ).

Proof. (i) For Ga, the set of inseparable endomorphisms (including zero) is the ideal (φ) ⊆ k〈φ〉 gener-
ated by the Frobenius, and we have degi(σ) = pvφ(σ).

(ii) For Gm, the set of inseparable endomorphisms is the maximal ideal pZ ⊆ Z = End(Gm), and we
have degi(σ) = pvp(σ).

(iii) For an elliptic curve E, it once again depends on the type of elliptic curve. If the j-invariant is
transcendental, then we have degi(σ) = pvp(σ). Else, if E is ordinary, then degi(σ) = pvp(σ), where
p is the extension of the ideal of inseparable endomorphisms in End(E) to the ring of integers OL
of the imaginary quadratic number field L = End(E) ⊗ Q. Finally, if E is supersingular, then
degi(σ) = pvp(N(σ)) where N : B → Q (as above) is the reduced norm map associated to the
quaternion algebra B = End(E)⊗Q [9, Prop. 5.2, 5.3 & 5.5].

We summarize the results in the diagram below:

G End(G) Aut(G) deg(σ) logp(degi(σ))

Ga k〈φ〉 k× pdegφ(σ) vφ(σ)

Gm Z {±1} |σ| vp(σ)

E O ⊆ End(E)⊗Q Finite of order dividing 24 N(σ) vp(σ) or vp(N(σ))

Table 1: Endomorphism structure of connected algebraic groups of dimension 1.

3.3.2 Verifying (H3) and (H4)

Let G be a connected commutative algebraic group of dimension one.

Lemma 3.16 Let σ ∈ End(G) be a confined isogeny, and let γ, γ0 ∈ Aut(G), both of finite order. Then
the following statements hold:

(i) For any non-trivial finite subgroup {1} 6= Γ ⊆ Aut(G), the zeta function corresponding to the
sequence (δn)n≥1 given by δn :=

∑
γ∈Γ deg(σn − γγn0 ) is rational.

(ii) If γ0 commutes with σ, then the zeta function corresponding to the sequence (dn)n≥1 given by dn :=
deg(σn−γn0 ) is rational, and (dn) satisfies the dominant root assumption, with dominant root deg(σ).

Proof. (i) We want to show that (δn) satisfies the criterion given by Proposition 2.2(ii). Suppose first
that G = Ga. Then we can identify σ with an element of k〈φ〉. If deg(σ) = 1, then confinedness of
σ implies that σ = a ∈ k〈φ〉, where a ∈ k× is transcendental over Fp (i.e. is not a root of unity).
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It follows that deg(σn − γγn0 ) = 1 = deg(σ)n for all n ∈ Z>0. If deg(σ) ≥ 2, then we also find (by
viewing σ as an element of k〈φ〉 of positive degree in φ)

deg(σn − γγn0 ) = deg(σ)n. (21)

Thus, in any case, δn = |Γ|deg(σ)n.

Now suppose that G = Gm. Then we can identify σ with an element of Z (so that γ, γ0 ∈ {±1}).
We obtain

deg(σn − γγn0 ) = |σn − γγn0 | = |σ|n − γγn0 sgn(σ)n = deg(σ)n − γγn0 sgn(σ)n. (22)

Hence δn = |Γ|deg(σ)n.

Finally, for the case G = E, we compute∑
γ∈Γ

deg(σn − γγn0 ) =
∑
γ∈Γ

(σn − γγn0 )(σn − γ0
nγ)

=
∑
γ∈Γ

((σσ)n − γγn0 σn − σnγ0
nγ + 1)

= |Γ|(deg(σ)n + 1)−

∑
γ∈Γ

γ

 γn0 σ
n − σnγ0

n

∑
γ∈Γ

γ−1


= |Γ|(deg(σ)n + 1),

where the last equality follows from Lemma 2.17.

(ii) For the cases G = Ga and G = Gm the desired result is immediate by substituting γ = 1 in (21)
and (22) above. For G = E, we note that, if σ and γ0 commute,

deg(σn − γn0 ) = deg(σ)n + 1− (γ0σ)n − (σγ0)n. (23)

Confinedness of σ implies that deg(σ) ≥ 2, hence the desired result follows by noting that (absolute
values taken as complex algebraic numbers) |γ0σ| = |σγ0| =

√
σσ =

√
deg(σ).

Proof of Proposition 3.13. (i) (H1) and (H2) are precisely the statements of Lemma 3.14 and 3.15
respectively. (H3) for the case that Γm is non-trivial follows from Lemma 3.16(i), while (H3) for
Γm trivial and (H4) both follow from combining Lemma 3.16(ii) with Lemma 3.9.

(ii) If f is coseparable, then using Lemma 3.6 we obtain

fn = cn +
1

|Γ|
∑
γ∈Γ

deg(σn − γ).

Now apply the calculations of Lemma 3.16 with γ0 = 1, and notice that in each case (by the
appearance of a factor |Γ|), the sequence

∑
γ∈Γ deg(σn − γ)/|Γ|, and hence fn by (H1), has the

desired form for application of Proposition 2.2(ii).
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Remark 3.17 A precise consideration of the value of cn shows that

cn =


0 if [G = Gm, Γ = {1} and sgn(σ)n = −1] or [G = E];

1 if [G = Ga] or [G = Gm and Γ = {±1}];
2 if [G = Gm, Γ = {1} and sgn(σ)n = 1].

Combined with the calculations we saw in Lemma 3.16, this shows that for any coseparable dynamically
affine map f on the projective line, we have fn = deg(σ)n+1 (note that the “case” of equation (23), where
G = E and Γ = {1}, does not give rise to a dynamically affine map on P1, because elliptic curves cannot
be embedded into the projective line). Since deg(σ) = deg(f) (follows from the commutative diagram
(15)), and maps g on the projective line (that are not the identity) have exactly deg(g) + 1 fixed points
with multiplicity, this shows that the coseparable dynamically affine maps f on the projective line are
precisely the ones for which fn is maximal (i.e. each fixed point has multiplicity one). ♦

Remark 3.18 Bridy [9] proves his results from a slightly more explicit point of view. He classifies dy-
namically affine maps f on the projective line by categorizing the polynomials fc to which they are (by a
fractional linear transformation) conjugate, according to the diagram below: (here, µd ⊆ k× denotes the
subgroup of d-th roots of unity)

G Γ G/|Γ| fc

Ga

{1}
P1 \ {∞}

Additive polynomial

µd Subadditive polynomial

Gm

{1} P1 \ {0,∞} Power map

{±1} P1 \ {∞} Chebyshev polynomial

E 6= {1} P1 Lattès map

Table 2: Classification of dynamically affine maps on P1.

Using this terminology, f is coseparable precisely when fc is either inseparable, or a separable (sub)additive
polynomial for which f ′c(0) is transcendental over k (cf. [9, Thm. 1.2 & 1.3]). ♦

As a final remark, we describe the relation between our definition and Silverman’s definition [40, §6.8] for
dynamically affine maps in dimension one; it turns out that the only difference is that we “allow” (while
Silverman does not) σ : Ga → Ga to be equal to the map x 7→ a0x, for a0 ∈ k× transcendental over Fp.

Lemma 3.19 Let G be a connected (commutative) algebraic group of dimension one, and let σ ∈ End(G)
be an isogeny.

(i) If deg(σ) ≥ 2, then σ is confined.

(ii) If σ is confined and not coseparable, then deg(σ) ≥ 2 (in other words, “confined automorphisms are
coseparable”).

Proof. Since G is connected of dimension one, 0 is the only endomorphism with infinite kernel, so σ is
confined if and only if σn 6= 1 for all n ∈ Z>0. This makes (i) clear. For (ii), suppose that σ has degree
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one, i.e. σ ∈ Aut(G). If σ has finite order, then σ is not confined. This proves the cases G = Gm and
G = E by finiteness of Aut(G). Now suppose that σ ∈ Aut(Ga) has infinite order. Then σ = a0 for
some a0 ∈ k transcendental over Fp, and we see that σn − 1 has degree one for all n ∈ Z>0, hence σ is
coseparable.

3.4 Proof of Main Results

In this section, we will prove Theorems 3.7 and 3.8. Let f : V → V be a dynamically affine map satisfying
(H1)-(H4).

Using Lemma 3.6, we can write

ζf (z) = exp

∑
n≥1

cn
n
zn

 exp

∑
n≥1
γ∈Γ

# ker(σn − γ)

n
zn


1/|Γ|

.

If σ is coseparable, then # ker(σn − γ) = deg(σn − γ) for all γ ∈ Γ, so it follows immediately from (H1)
and (H3) (applied with m = 0) that ζf is root-rational. By Lemma 2.6, ζ∗f is also root-rational.

Suppose now that σ is not coseparable. Let sm, γm,Γm and N as in the statement of the hypotheses,
which, by Proposition 2.16(vi), then all exist.

Lemma 3.20 Let m ∈ Z≥0. Then

(i) Sm := {n ∈ Z>0 | v(σn − γ) ≥ m for some γ ∈ Γ} = smZ>0.

(ii) For every n ∈ Z>0, {γ ∈ Γ | v(σsmn − γ) ≥ m} = Γmγ
n
m.

Proof. (i) By Proposition 2.16(iv), we have v(σsmn − γnm) ≥ v(σs − γm) ≥ m, so Sm ⊇ smZ>0. Now
suppose to the contrary that there exists an n ∈ Sm \ smZ>0. Then there exists a γ ∈ Γ such that
v(σn − γ) ≥ m, and we can write n = dsm + r for 0 < r < sm. We obtain

m ≤ v(σn − γ) = v(σr(σdsm − γdm) + (σr − γγ−dm )γdm) = v(σr − γγ−dm ) < m,

a contradiction.

(ii) We know that v(σsmn − γnm) ≥ m, so for any γ ∈ Γ,

v(σsmn − γ) ≥ m ⇐⇒ v(γ − γnm) ≥ m ⇐⇒ v(γγ−nm − 1) ≥ m ⇐⇒ γγ−nm ∈ Γm ⇐⇒ γ ∈ Γmγ
n
m.

Proof of Theorem 3.7 and Theorem 3.8. Define

Zf,≥m :=
∑
n≥1

∑
γ∈Γ

v(σn−γ)≥m

deg(σn − γ)p−v(σn−γ)zn, Zf,m := p−m
∑
n≥1

∑
γ∈Γ

v(σn−γ)=m

deg(σn − γ)zn,
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and denote by ζf,≥m and ζf,m the corresponding “full zeta analogues”. By Lemma 3.20, we have

Zf,≥m =
∑
n≥1

∑
γ∈Γm

deg(σsmn − γγnm)p−v(σsmn−γγnm)zsmn,

and

Zf,m = Zf,≥m − Zf,≥(m+1)

= p−m

∑
n≥1

∑
γ∈Γm

deg(σsmn − γγnm)zsmn −
∑
n≥1

∑
γ∈Γm+1

deg(σsm+1n − γγnm+1)zsm+1n

 .

In particular, we see that ζf,m is (pmsm+1)-root-rational by (H3). We thus obtain an infinite product
expansion for the full zeta function ζf in terms of root-rational power series as follows:

ζf (z) = exp

∑
n≥1

cn
n
zn

∏
m≥0

ζf,m

1/|Γ|

. (24)

Now, the “tail” of this expansion can be written as (recall that we defined s := sN and γ̃ := γN )

∏
m≥N

ζf,m = ζf,≥N = exp

∑
n≥1

deg(σsn − γ̃n)

sn
p−v(σsn−γ̃n)zsn

 .

By Lemma 3.9, σs and γ̃ commute. Thus, when we define τ := σsγ̃−1, we can rewrite this in terms of the
naive zeta function as

Zf,≥N =
∑
n≥1

deg(τn − 1)p−v(τn−1)zsn.

Now let R := End(G), and M := max{N, (ρ(R, v) + 1)/(p− 1)} (cf. Proposition 2.16(v)). Define r := sM ,
and κ := τ r/s. Then

Zf,≥M =
∑
n≥1

deg(κn − 1)p−v(κn−1)zrn.

If we set C := v(κn − 1) ≥M , then Proposition 2.16(v) tells us that

v(κn − 1) =

{
C + v(n) if char(R) = 0;

Cpvp(n) if char(R) = p > 0.

By (H4), the linear recurrence deg(τn−1) satisfies the dominant root assumption, let us say with unique
dominant root λ ∈ C. This implies that the sequence deg(κn−1) has unique dominant root Λ := λr/s; let
us say with multiplicity µ ∈ Z (the multiplicity is integral by (H3) and Proposition 2.2(ii)). Expanding
deg(κn − 1) in terms of its roots, we find

Zf,≥M =
∑
n≥1

µΛnzn ·

{
p−C |n|p if char(R) = 0

p−C|n|
−1
p if char(R) = p

+R(z),
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where R(z) is some power series with radius of convergence > 1/|Λ|. Lemma 3.10 with h = 1 and β = p−C

now shows that Zf,≥M has a natural boundary at the circle of radius 1/|Λ|, hence the same holds for ζf,≥M
(Lemma 2.1). The expansion into root-rational functions (24) thus splits up as

ζf = exp

∑
n≥1

cn
n
zn

 ∏
0≤m<M

ζf,m

1/|Γ|

︸ ︷︷ ︸
root-rational

(
ζf,≥M (z)

)1/|Γ|

︸ ︷︷ ︸
natural boundary

,

which shows that ζf has a natural boundary, hence completing the proof of Theorem 3.7.

A similar expression for the tame zeta function

ζ∗f = exp

∑
p-n

cn
n
zn

 ∏
0≤m<M

ζ∗f,m

1/|Γ|

︸ ︷︷ ︸(
pM |Γ|r

)
-root-rational

(
ζ∗f,≥M (z)

)1/|Γ|

︸ ︷︷ ︸(
pC+1|Γ|r

)
-root-rational

,

proves Theorem 3.8.

Remark 3.21 The proof shows that ζ∗f is
(
pC+1|Γ|r

)
-root-rational. Note however that we could, at the cost

of a messier explicit “exponent”, weaken (H1) and (H3) slightly; replacing the rationality assumption
with just root-rationality, the argument still works. ♦

Remark 3.22 Despite the fact that ζf for non-coseparable f has a natural boundary (and thus, is far
from being root-rational (4)), it still has several (infinite) product expansions in terms of root-rational
functions: we have the (very general) prime orbit expansion (9); the expansion in terms of tame zeta
functions (11); and the explicit expansion (24) given in the proof. ♦

For completeness we record:

Proof of Theorem 3.11 and 3.12. This follows by combining Theorem 3.7 & 3.8 with Proposition 3.13.

31



4 DYNAMICS ON ALGEBRAIC GROUPS

4 Dynamics on Algebraic Groups

We now turn to the study of the Artin-Mazur zeta function for endomorphisms of algebraic groups. Let
G be a connected algebraic group over an algebraically closed field k of characteristic p > 0, and let
f : G → G be a confined endomorphism. We will again denote by fn the (finite) number of fixed points
of f◦n. The main conjecture is:

Conjecture 4.1 We can write
fn = dnmnan, (25)

where, for gcd sequences rn ∈ Q×, sn, tn ∈ Z; all with period not divisible by p,

(i) (dn) has root-rational zeta function;

(ii) mn = rn|n|snp ;

(iii) logp(an) = |n|−1
p tn.

As of now, the proof of this conjecture is almost, but not entirely, complete. In particular, we do not yet
know how to control the “degree sequence” deg(σn − 1), where σ is an endomorphism of Gr

a for r ∈ Z≥2.

4.1 Splitting up an Algebraic Group

The idea of attacking the conjecture is to repeatedly reduce the problem to “simpler” algebraic groups by
finding a normal algebraic subgroup preserved by the endomorphism. The starting point for this is the
following lemma.

Lemma 4.2 Suppose N C G is a connected normal algebraic subgroup such that f(N) ⊆ N . Let g :=
f |N : N → N and h := f̃ : G/N → G/N be the induced endomorphisms. Then g and h are confined and
fn = gnhn for all n ∈ Z>0.

Proof. Replacing fn by f , it suffices to prove the result for n = 1. Note that confinedness of g follows
immediately from confinedness of f . Now, by [45, Thm. 10.1], the map (not necessarily a morphism of
algebraic groups) N → N, n 7→ g(n)n−1 is surjective. Suppose a ∈ A is a fixed point of f̃ . Then a lifts to
an x ∈ G such that f(x) = nx for some n ∈ N . Now, if m := mx ∈ N is such that g(m)m−1 = n, then
m−1x is a lift of a that is a fixed point of f . For any fixed point b of g, we now have that bm−1x is a fixed
point of f .

Conversely, suppose that f(y) = y for some lift y ∈ G of a. Write y = nyx for some ny ∈ N and define
by := nym ∈ N . Then y = bym

−1x, and by = y(m−1x)−1 is a fixed point of g. We thus obtain a bijection
Fix(g)× Fix(h)→ Fix(f), (b, x̃) 7→ (bm−1

x x).

Now, the “reduction process” goes as follows:

(i) By Chevalley’s structure theorem for algebraic groups (Theorem 2.23), we can reduce the case of
a general connected algebraic group G to the case of a connected linear algebraic group N and an
abelian variety A by applying Lemma 4.2. Indeed, note that f(N) ⊆ N , because otherwise we would

obtain a non-trivial morphism N
f−→ N → G/N = A, which is impossible [15, Lem. 2.3].
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(ii) The case of an abelian variety is covered in [10]. Here we see that the fixed point sequence indeed
has the desired form (25) (with an ≡ 1), by combining [loc. cit., Prop. 2.3 & 2.7].

(iii) The case of a linear algebraic group N can be reduced by considering the radical RCN , defined to be
the unique maximal connected solvable normal subgroup of N . It is preserved under endomorphisms
[45, 7.1(c)]. The quotient S := N/R has trivial radical, i.e. is semisimple. Since R is the identity
component of the intersection of all Borel subgroups (see Definition 2.22) of G [42, Thm. 6.2.7(iii)],
it follows that R is closed in N . Therefore, by Lemma 2.26, both R and S are again linear algebraic
groups.

(iv) The number of fixed points of an endomorphism σ of a connected semisimple linear algebraic group
S are given by [45, Thm. 11.16]. Here it is shown that if σ permutes the simple components [33,
Thm. 21.51] of S in a single orbit, say of size `, then there exists a positive real algebraic number
q = q(σ), integers Dj ∈ Z≥0 and roots of unity εj = εj(σ) ∈ Q, such that

# Fix(σ) = qN
∏
j

(
qDj − εj

)
, (26)

where N =
∑

j(Dj−1). For n ∈ Z>0 coprime to `, we have q(σn) = q(σ)n and εj(σ
n) = εj(σ)n, while

the integers Dj are independent of n. For arbitrary σ : S → S, however, the simple components
of S might not be permuted in a single orbit, so in general # Fix(σ) is a product of factors of the
form (26). Every power σn of σ acts as a different permutation on the simple components, but this
permutation only depends on gcd(n,L), where L :=

∏
i `i denotes the product of the sizes `i of the

orbits under σ of the simple components of S. We thus obtain a formula of the following form: (here
1gcd(n,L)=d is one when gcd(n,L) = d, and zero otherwise)

# Fix(σn) =
∑
d|L

1gcd(n,L)=d

∏
i

qNd,i(n/d)
d,i

∏
j

(
q
Dd,i,j(n/d)
d,i − ε(n/d)

d,i,j

) .
Thus, by applying Proposition 2.2(ii) and 2.7 combined with Remark 2.5, it follows that that ζσ is
(L-)root-rational (hence the fixed point sequence of σ has the desired form (25) with mn ≡ an ≡ 1).

(v) The case of a connected solvable algebraic group R (the radical arising from (iii)) can be further
reduced: there exists [33, Thm. 16.33] a normal connected unipotent algebraic subgroup U of R
such that the quotient R/U is a torus T , i.e. isomorphic to Gs

m for some s ∈ Z≥0. There are no
non-trivial morphisms U → T [16, Cor. IV.2.2.4], so U is preserved by any endomorphism of R.

(vi) A unipotent algebraic group U is solvable [42, Cor. 2.4.13]. The commutator subgroup of a connected
algebraic group is closed and connected [42, Cor. 2.2.8], and is preserved by endomorphisms (since
group homomorphisms send commutators to commutators). As the quotient of a unipotent algebraic
group by a closed normal subgroup is unipotent [16, Prop. IV.2.2.3], we thus reduce to the case of
general U to the case of (several) connected commutative unipotent algebraic groups.

(vii) The structure of connected commutative unipotent algebraic groups U is well known. Indeed, [37,
Thm. VII.1] such U are always isogenous8 to a direct product W1×· · ·×Wt of additive groups of rings
Wi of truncated Witt vectors over k. For a complete (but irrelevant for our purposes) introduction
to Witt vectors, we refer to [35]. It turns out that the ring of Witt vectors W (k) over k is a discrete

8We call two algebraic groups G,H isogenous when there exist isogenies σ : G→ H and τ : H → G.

33



4.1 Splitting up an Algebraic Group 4 DYNAMICS ON ALGEBRAIC GROUPS

valuation ring of characteristic zero with uniformizer p and residue field k [49, Satz 6], while a
truncated ring of Witt vectors W (d) (of which the additive group has the structure of an algebraic
group with underlying variety Ad) is (defined to be) the quotient W (k)/(pd) for some d ∈ Z≥0. In
particular, pdW (d) = 0. Since U is isogenous to a product of such W (d), we obtain a decomposition
series of connected commutative unipotent (using [16, Prop. IV.2.2.3] again) algebraic groups

U ⊇ pU ⊇ p2U ⊇ · · · ⊇ 0,

in which each successive quotient is a connected commutative unipotent algebraic group of elements
of order (dividing) p, hence, by [37, Prop. VII.11], is isomorphic to Gr

a for some r ∈ Z≥0. Since pU
is clearly preserved by an endomorphism of U , we thus reduce the case of an arbitrary commutative
unipotent algebraic group U to that of a power Gr

a of the additive group.

The following diagram illustrates the reduction process described above:

algebraic group

linear algebraic group

solvable

unipotent

commutative unipotent

power of additive group

torus

semisimple

abelian variety

Figure 5: Splitting up an algebraic group.

We have already solved the case for abelian varieties (step (ii)) and semisimple algebraic groups (step
(iv)), so it remains to determine the fixed point sequence # Fix(σn) for confined endomorphisms σ of
Gs
m and of Gr

a. This will be the main concern of the next two subsections. Since we are now dealing
with commutative algebraic groups, the set of endomorphisms End(Gs

m) and End(Gr
a) admits a ring

structure. We can therefore (similar to Section 3) “count” the fixed point sequence in terms of kernels of
endomorphisms:

# Fix(σn) = # ker(σn − 1) = deg(σn − 1)/ degi(σ
n − 1),
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where it thus suffices to control the degree sequence deg(σn − 1) and the inseparability degree sequence
degi(σ

n − 1). To prepare for this we will first introduce some algebra. Let R be a (possibly non-
commutative) ring with unit and without zero divisors. We will say that R is a principal ideal domain
when every right ideal is a principal right ideal (i.e. of the form xR for some x ∈ R) and every left ideal
is a principal left ideal. For elements a, b ∈ R, we will say that a is a total divisor of b if there exists a
two-sided ideal I ⊆ R such that bR ⊆ I ⊆ aR (or, equivalently [25, p. 40], if there exists a two-sided ideal
I such that Rb ⊆ I ⊆ Ra). We will denote by Mn(R) the ring of n×n matrices with entries in R, and by
GLn(R) ⊆Mn(R) the unit group.

Lemma 4.3 Let R be a (possibly non-commutative) principal ideal domain, and let x ∈ Mn(R). Then
there exist P,Q ∈ GLn(R) such that PxQ is in diagonal form {e1, · · · , es, 0, · · · }, with ei a total divisor
of ej whenever i < j.

Proof. [25, Thm. 3.16].

The diagonal matrix PxQ in Lemma 4.3 is called the “Smith normal form” of R.

4.2 Powers of the Multiplicative Group

Let T ∼= Gs
m for some s ∈ Z≥0 be a torus. Then End(T ) ∼= Ms(Z), the ring of s × s matrices with

coefficients in Z.

Proposition 4.4 Let σ ∈ End(T ) ∼= Ms(Z). Then

deg(σ) = | det(σ)|, degi(σ) = pvp(det(σ)). (27)

Proof. Using Lemma 4.3, let P,Q ∈ GLs(Z) such that PσQ is in Smith normal form. Since PσQ is
diagonal, we have deg(PσQ) = |det(PσQ)| and degi(PσQ) = pvp(det(PσQ)). We also know that deg(P ) =
deg(Q) = 1, because P and Q automorphisms of T . Therefore deg(σ) = deg(PσQ) = | det(PσQ)| =
|det(σ)|, and degi(σ) = degi(PσQ) = pvp(det(PσQ)) = pvp(det(σ)).

Using the proposition we can now control the fixed point sequence # Fix(σn) for σ ∈ End(T ) as follows:
let τ = PσP−1 ∈ Ms(Qp) conjugate to σ and upper triangular with diagonal {λ1, · · · , λs}. Then (here,
| · |p denotes the p-adic norm on Qp)

# ker(σn − 1) = det(σn − 1)|det(σn − 1)|p
= det(τn − 1)| det(τn − 1)|p

=
s∏
i=1

(λni − 1)|λni − 1|p.

The λi are algebraic integers, since they are the eigenvalues of the matrix σ, which has integer entries.
Let L be the finite extension of Qp obtained by adjoining all λi, denote by O ⊆ L the ring of integers,
and let m = {x ∈ O | |x|p < 1} denote the unique maximal ideal of O. The maximal ideal m gives rise to
a discrete valuation v : O → Z≥0 ∪ {∞} satisfying |x|p = p−v(x)/e, where e denotes the ramification index
of L/Qp. For a given i there are two options:
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(a) If λi 6∈ O×, then |λni − 1|p = 1 for all n ∈ Z>0.

(b) If λi ∈ O×, then, since O/m is a finite field, we find that λt − 1 ∈ m for some t ∈ Z>0. Using
Proposition 2.16(vi), we thus have that v(λr−1) gets arbitrarily large as r ranges over Z>0. Denote

by tj ∈ Z>0 the smallest positive integer such that v(λ
tj
i − 1) ≥ j. Then tj | tj+1 for all j. For any

m ∈ Z>0, the sequence (bn) defined by

bn :=

{
v(λni − 1) if tm - n;

v(λtmi − 1) else,

is a gcd sequence: indeed, bn = maxj{tj | n} = maxj{tj | gcd(n, tm)} = bgcd(n,tm). Now set
m := (e + 1)/(p − 1) and t := tm. Using Proposition 2.16(v), we obtain v(λni − 1) = bn + 1t|nv(n).
Hence

|λni − 1|p = p−bn/e|n|1t|np .

In both cases, (λni − 1)|λni − 1|p satisfies the desired form (25), hence the same holds for σn.

4.3 Powers of the Additive Group

The last piece needed for solving Conjecture 4.1, is understanding the fixed point sequence for endo-
morphisms of A := Gr

a, for some r ∈ Z≥0. We have End(A) ∼= Mr(R), where R := k〈φ〉 denotes the
non-commutative polynomial ring in the Frobenius φ, with multiplication rule φa = apφ for a ∈ k. As
we did for tori, we would like to determine a way to “measure” the degree and inseparability degree
of an endomorphism σ ∈ End(A). We could hope for something similar to (27), but, since R is non-
commutative, there is not a straightforward notion of “determinant” on Mr(R). Instead, we will use (cf.
[47]) the Dieudonné determinant [17], which can be defined for a matrix ring over any (not necessarily
commutative) local9 ring S with unit as follows: if we denote by (S×)ab := S×/[S×, S×] the abelianiza-
tion of the unit group, then the Dieudonné determinant is the function ddet : GLr(S)→ (S×)ab uniquely
determined [36, Thm. 2.2.5] by the following properties:

(a) ddet(1) = 1.

(b) ddet is invariant under elementary row operations.

(c) If M ∈ GLn(S), a ∈ S×, and M ′ is obtained from M by left-multiplying one of the rows of M by a,

then ddet(M ′) = a ddet(M), where a denotes the reduction of a to (S×)
ab

.

It turns out that [loc. cit.] ddet is multiplicative; i.e. ddet(AB) = ddet(A) ddet(B).

Now denote by Q the (left) skew field of fractions of R (see [14, Cor. 1.3.3 & Prop. 1.3.4]). Then Q is
(obviously) local, so we can apply the above to obtain a map ddet : GLr(Q) → (Q×)ab, which can be
extended to a semigroup homomorphism ddet : Mr(Q)→ Qab := (Q×)ab ∪ {0} by setting it zero outside
of GLr(Q).10 Now consider the map deg : R → Z≥0 ∪ {∞} measuring the degree in φ. We can extend

9Meaning that the subset of non-units forms a two-sided ideal.
10Note that R is also a local ring, so we can also construct a map ddet : GLr(R)→ (R×)ab (which is indeed the restriction

of ddet : GLr(Q) → (Q×)ab to GLr(R)). However, without introducting Q, there is no straightforward way of extending it
to Mr(R). We could, similar to the above, define ddet : Mr(R) → (R×)ab ∪ {0} by setting it zero outside of GLr(R), but
then we discard valuable information: for example, φ ∈ R ∼= M1(R) would get mapped to zero; we really have to consider
the “extended” version of ddet for it to retain information about the degree and inseparability degree of endomorphisms.
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this [47] to a well-defined map deg : Q → Z ∪ {∞} satisfying deg(ab) = deg(a) + deg(b), by setting
deg(r/s) := deg(r) − deg(s). Since deg is zero on commutators, it factors over Q → Qab, so we obtain a
semigroup homomorphism deg : Qab → Z ∪ {∞}. Similarly we can extend the semigroup homomorphism
vφ : k〈φ〉 → Z≥0 ∪ {∞} to a map vφ : Qab → Z ∪ {∞}.

Proposition 4.5 Let σ ∈ End(A) ∼= Mr(R). Then

deg(σ) = pdeg(ddetσ), degi(σ) = pvφ(ddetσ) (28)

Proof. This follows from the same argument we saw in Proposition 4.4: it is clear that deg and degi take
the desired form on diagonal elements, and both are (just like ddet) invariant under taking Smith normal
forms.

Note that an immediate corollary of the proposition is that for u ∈ GLr(R), we have deg(ddetu) = 0 =
vφ(ddetu). Now, as we did for tori following Proposition 4.4, we would like to use (28) to control the fixed
point sequence # Fix(σn) = deg(σn − 1)/ degi(σ

n − 1) for a confined endomorphism σ of A. At the time
of writing, we do not yet know how to control the degree sequence, so let us show what happens for the
inseparability degree sequence instead:

Lemma 4.6 Let σ ∈ End(A) ∼= Mr(R) be a confined endomorphism. There exists a gcd sequence tn ∈ Z

with period not divisible by p such that degi(σ
n − 1) = p|n|

−1
p tn.

Proof. Let τ ∈ End(A) be any endomorphism, and let u, v ∈ GLr(R) such that uτv is in Smith normal
form with diagonal entries e1, · · · , er ∈ R. Then

vφ(ddet(τ)) = vφ(ddet(u)) + vφ(ddet(τ)) + vφ(ddet(v)) = vφ(ddet(uτv)) =
∑
i

vφ(ei)

In particular, vφ ddet τ > 0 if and only if ei ≡ 0 (mod φ) for at least one i, which happens precisely when

the composition Mr(R)
(mod φ)−−−−−→ Mr(k)

det−−→ k is zero at uτv. Since u, v remain invertible modulo φ, we
thus find that vφ ddet τ > 0 ⇐⇒ det τ̄ = 0, where τ̄ ∈Mr(k) denotes the reduction of τ modulo φ.

Now let n ∈ Z>0, and write n = pmu, where u is coprime to p. Then

degi(σ
n − 1) = degi(σ

u − 1)p
m

= degi(σ
u − 1)|n|

−1
p .

Now, if we denote by Φd the d-th cyclotomic polynomial, then σu − 1 =
∏
d|u Φd(σ), so

logp degi(σ
u − 1) = vφ ddet(σu − 1) =

∑
d|u

vφ ddet(Φd(σ)).

Now, if vφ ddet(Φd(σ)) > 0, then

det(Φd(σ̄)) =
∏
ζ∈k

Φd(ζ)=0

det(σ̄ − ζ) = 0,

so a d-th primitive root of unity ζ is an eigenvalue of σ̄. This can only hold for a finite set of dj ∈ Z>0

(all coprime to p), so we obtain, for all n ∈ Z>0

logp degi(σ
n − 1) = |n|−1

p tn,

where tn :=
∑

j 1dj |nvφ(ddet(Φdj (σ))) is a gcd sequence with period
∏
j dj .
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5 A Note on Bridy’s Proof

In this section, k denotes an integer, while we reserve the letter K for an algebraically closed field.

Bridy’s proof [9] of a weaker version of Theorem A, i.e. with “has a natural boundary” replaced by “is
transcendental”, relies heavily on the theory of automatic sequences; which we will quickly introduce here.
Our main reference is [1]. Let k ∈ Z≥2. A k-automaton over a certain set S (called the output alphabet) is
a finite directed graph with edges labelled by elements of {0, · · · , k−1} and vertices labelled by elements of
S, together with a distinguished “start” vertex vstart. Associated to a k-automaton is a sequence (an)n≥0

of elements of S, produced in the following way:

1. For n ∈ Z≥0, write n = n0 + n1k + · · ·+ nrk
r in base k.

2. Starting at vstart, trace the graph associated to the k-automaton (moving from vertex to vertex) in
order along the edges labelled by n0, n1, · · · , nr, ending at a certain vertex vend (in the case that
n = 0, we have vend = vstart).

3. Define an ∈ S to be the label of vend.

We will call a sequence (an)n≥0 of elements of S k-automatic if there exists a k-automaton producing it
according to the recipe above. Essential for Bridy’s proof are the following two results from automata
theory:

Theorem 5.1 (Christol, [12]) A formal power series
∑

n≥0 ant
n ∈ Fp[[t]] is algebraic over Fp(t) if and

only if (an) is p-automatic.

Proof. [1, Thm. 12.2.5].

Theorem 5.2 (Cobham, [13]) Let p, q ∈ Z>0 be multiplicatively independent positive integers (that is,
log(p)/ log(q) 6∈ Q). If a sequence (an) is both p-automatic and q-automatic, then it is eventually periodic.

Proof. [1, Thm. 11.2.2].

The following lemma is also frequently used:

Lemma 5.3 Let S1, S2, S3 be sets, and let (an)n≥0 be a k-automatic sequence with values in S1.

(i) For any m ∈ Z>0 and b ∈ Z≥0, the subsequence (amn+b)n≥0 is k-automatic.

(ii) If (bn)n≥0 is a k-automatic sequence with values in S2, and f : S1 × S2 → S3 is any map, then the
sequence (f(an, bn))n≥0 is k-automatic.

Proof. The first result is [1, Thm. 6.8.1]. The second result is [1, Cor. 5.4.5].

The idea of Bridy’s argument is now as follows: suppose to the contrary that the dynamical zeta function ζf
associated to a dynamically affine map f : P1 → P1 on the projective line, arising from a non-coseparable
σ ∈ End(G), is algebraic over Q(t). Then the same holds for the naive zeta function

∑
n≥1 fnz

n =

zζ ′f (z)/ζf (z). Reducing modulo a prime `, the same again holds [1, Thm. 12.6.1] for
∑

n≥1 fnz
n ∈ F`[[z]],

hence by Christol’s Theorem, (fn) is `-automatic. For a suitable choice of ` 6= p, one then proceeds to show
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that (a suitable subsequence11 of) the sequence (fn) is also p-automatic, but not periodic, thus obtaining
a (desired) contradiction with Cobham’s Theorem.

The proof requires quite some computational effort, and even the construction of an explicit automaton
[8, Lemma 7]. We think the method may be improved by considering a more general approach, still using
the results of Christol and Cobham, but without automata. The starting point for this is a translation of
the requirement of being an automatic sequence to something more mathematically accessible:

Definition 5.4 Let (an)n≥0 be a sequence of elements of some set S, and let k ∈ Z>0. We define the
k-kernel of (an) to be the set of subsequences

kerk(an) :=
{(
aki·n+j

)
n≥0

∣∣∣ 0 ≤ i, 0 ≤ j < ki
}
.

M

Proposition 5.5 Let k ≥ 2. The sequence (an)n≥0 is k-automatic if and only if kerk(an) is finite.

Proof. [1, Thm. 6.6.2].

Interestingly enough, in the proof of Theorem 5.1 cited, both implications actually use Proposition 5.5 to
translate the notion of being k-automatic to that of having a finite k-kernel; perhaps suggesting that it is
more natural to consider the “k-kernel point of view” to begin with. Moreover, from the new perspective12,
[8, Lemma 7] can be proved rather quickly without any explicit construction of automata:

Lemma 5.6 (Bridy, [8, Lemma 7]) Let d be an integer. If βn is a function of the equivalence class modulo
d of vp(n), then the sequence (βn)n≥1 is p-automatic.

Proof. For any i ∈ Z≥0 and 0 ≤ j < ki, we have

vp(p
in+ j) (mod d) =

{
vp(j) (mod d) if j > 0

i+ vp(n) (mod d) if j = 0.

Since vp(j) and i can only take finitely many values modulo d, it follows that the sequence (vp(n) (mod d))n
has finite p-kernel, hence the same holds for (βn).

The remainder of this section will be dedicated to finding a generalization and simplification of Bridy’s
argument in the “language of k-kernels”. The result on dynamically affine maps on P1 will be the same
as Bridy’s (hence weaker than Theorem A), but the technique might also be applicable in a broader
setting. For example, a corollary will be a rational/transcendental dichotomy for endomorphisms of
abelian varieties (cf. [10, Thm. 4.3]).

Let us start with a lemma very similar to Lemma 5.6 (cf. [9, Prop. 7.6]).

Lemma 5.7 Let ` 6= p be a prime. Then (|n|p (mod `))n has finite p-kernel.

11Here Lemma 5.3(i) is used.
12Of course, this perspective is not actually new, as it is e.g. frequently used to prove many results about automatic

sequences in [1]. However, we discuss it because it is different from Bridy’s, and we think it might be more insightful in the
context of dynamically affine maps.
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Proof. This follows either from a direct computation similar to the one in the proof of Lemma 5.6, or by
noting that |n|p ≡ p−vp(n) (mod `) depends only on the equivalence class of vp(n) modulo the multiplicative
order d of p modulo `, and applying Lemma 5.6.

The following lemma serves to provide us with some extra control on the “degree sequence” (e.g. it applies
to the degree sequence dn = deg(σn− 1) for an endomorphism σ of an elliptic curve; see the computation
in the proof of Lemma 3.16).

Lemma 5.8 Suppose that (dn)n≥1 is a sequence with values in Z>0, given by

dn =

q∏
i=1

(ξni − 1)νi

for some ξi ∈ Q and νi ∈ Z>0. Denote by L the number field of degree N ∈ Z>0 obtained by adjoining
the ξi to Q and denote by OL its ring of integers. Let p be a prime number. Let k ∈ Z>0 such that there
is an element in (Z/pkZ)× of order larger than N ! (for instance any k > logp(N !) + 2 will work, because

(Z/pkZ)× always has an element of order pk−2). Now let ` > p be a prime number satisfying the following
conditions: (see Remark 5.9)

1. ` does not divide any of the denominators of the algebraic numbers ξi;

2. ` does not ramify in OL;

3. ` does not divide any of the d1, · · · , dpk−1;

4. pk - (`N ! − 1).

Define (bn)n≥1 over {0, 1} by

bn =

{
1 if dn 6≡ 0 (mod `)

0 if dn ≡ 0 (mod `)

Then bn is periodic. In fact, there exists a finite set of integers S such that bn = 0 precisely when n is
divisible by an element of S. Moreover, pt 6∈ S for all t ∈ Z≥0.

Proof. Note that dn ≡ 0 (mod `) is equivalent to

q∏
i=1

(ξni − 1)νi ∈ `OL (29)

which is, by the Chinese Remainder Theorem, equivalent to

q∏
i=1

(ξni − 1)νi ∈ p (30)

for all p ⊆ OL prime above `. Now, for a given p, (30) holds precisely when n hits a multiple of the order
O(p, ξi) of some ξi modulo p (using the convention that the order of zero is zero). That is, when n is
divisible by an element of Sp := {O(p, ξi) | 1 ≤ i ≤ q}. Now since OL/p ∼= F`f , where the residue class
degree f is bounded by N , we find that for every i we have O(p, ξi) | (`N ! − 1). In particular we obtain
pk - O(p, ξi) by condition 4 on `. Thus, pt 6∈ Sp for all t ≥ k.
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Now writing `OL = p1 · · · pm, we find that

S := {lcm(α1, · · · , αm) | α1 ∈ Sp1 , · · · , αm ∈ Spm}

satisfies the condition that bn = 0 precisely when n is divisible by an element of S. Note that for all t ≥ k,
pt 6∈ S, because of the similar statement for every Spj derived above. Also, for all t < k we have pt 6∈ S,
because of condition 3 on `.

Remark 5.9 The conditions 1-4 in Lemma 5.8 hold for infinitely many `: the first three can be met by
taking ` large, while the last one can be met by using Dirichlet’s result on primes in arithmetic progressions
[38, Lemme III.3]; simply pick ` prime in the arithmetic progression α+mpk where α represents an element
of order larger than N ! in (Z/pkZ)×. ♦

Proposition 5.10 Let p be a prime number, and let (rn)n≥1 and (sn)n≥1 be periodic sequences with
entries in Q× and Z≥0 respectively. Also assume that sn is not identically zero, and that the common
period ω of rn and sn is not divisible by p. Suppose that the sequence (fn)n≥1 is given by one of the
following two cases:

(a) fn = dnrn|n|snp , where (dn)n≥1 is as in Lemma 5.8;

(b) fn = dnp
−sn|n|−1

p , where dn = dn1 for some d1 ∈ Z>0.

Then there are infinitely many primes ` such that the reduction of
∑

n fnt
n modulo ` is transcendental

over F`(t).

Proof. Let ν ∈ Z≥1 such that sν 6= 0. Set r := rν and s := sν .

Suppose first that fn is as in (a). Let ` > ps be a prime satisfying the conditions of Lemma 5.8, that
additionally does not divide any of the numerators/denominators of r or s. Assume to the contrary
(Theorem 5.1) that the reduction (fn (mod `))n≥1 has finite `-kernel. The reduction (dn (mod `))n≥1 has
finite `-kernel (because (dn)n≥1 is a linear recurrence sequence), hence so does the sequence (d′n (mod `))n≥1

given by

d′n :=

{
d−1
n if dn 6≡ 0 (mod `) ;

0 if dn ≡ 0 (mod `) .

Now, by Lemma 5.3(ii), the Hadamard product (an)n≥1 := (fnd
′
n (mod `))n≥1 has finite `-kernel. Using

Lemma 5.3(i), the subsequence (a′n)n≥1 := (r−1aωn+ν)n≥1 of (r−1an)n≥1 along the arithmetic progression
ωn+ ν has finite `-kernel, and is given by

a′n =

{
|ωn+ ν|sp if dn 6≡ 0 (mod `) ;

0 if dn ≡ 0 (mod `) .

Now let (bn)n≥1 as in Lemma 5.8. Then (a′n)n≥1 is the Hadamard product of a subsequence (indexed
by an arithmetic progression) of (|n|sp)n≥1 with (bn)n≥1. Both of these sequences have finite p-kernel by
Lemmas 5.7 and 5.8 respectively,13 so (a′n)n≥1 has both finite p-kernel and finite `-kernel, and is therefore,
by Theorem 5.2, eventually (let us say for n > M) periodic of some period k ∈ Z>0. Now let m ∈ Z>0 such
that vp(ωm+ ν) > vp(ωpk). Such m exists because p - ω. Define t := max(vp(ωm+ ν),M) + 1. Note that

13For the result on (bn), we use that eventually periodic sequences have finite k-kernel for all k ∈ Z>0.
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by Lemma 5.8, there exists a c ∈ Z>0 such that bm+cpt = 1. Now 0 6= a′m+cpt = a′m+cpt+k = a′m+cpt+pk.
That is,

|k|sp ≡ |ωk|sp ≡ |ω(m+ cpt + k) + ν|sp ≡ |ω(m+ cpt + pk) + ν|sp ≡ |pk|sp (mod `) ,

a contradiction since ps 6≡ 1 (mod `). This completes the proof of part (a).

Now suppose fn is as in (b). Let ` be a prime such that ` > max(psp, d1), ` 6≡ 1 (mod p) (this last
requirement can again be met, for instance, by Dirichlet’s theorem on primes in arithmetic progressions),
and assume to the contrary that the reduction (fn (mod `))n has finite `-kernel. Then, since dn1 is invertible

modulo ` for every n, the same holds for
(
p−s|ωn+ν|−1

p (mod `)
)
n
. Let e be the order of ps modulo `. Note

that by the assumptions on `, we have e > p and p - e. Since p−sx ≡ p−sy (mod `) ⇐⇒ x ≡ y (mod e),

we obtain a well defined map (Z/`Z)× → Z/eZ sending p−s|ωn+ν|−1
p (mod `) to |ωn + ν|−1

p (mod e). By
Lemma 5.7 combined with Lemma 5.3, the sequence

(
|ωn+ ν|−1

p (mod e)
)
n≥1

has both a finite p-kernel

and a finite `-kernel, hence is ultimately periodic. Since e > p, we have p−1 6≡ 1 (mod e), hence by a
special case (s = 1 and dn 6≡ 0 (mod `) for all n) of the final part of the argument for case (a) above we
obtain a desired contradiction.

Corollary 5.11 Let f : P1 → P1 be a dynamically affine map (in the sense of Definition 3.3) on the
projective line over an algebraically closed field K of positive characteristic p > 0. If σ is not coseparable,
then ζf is transcendental over Q(z).

Proof. Assume to the contrary that ζf is algebraic. Then the same holds for Zf (z) =
∑

n≥1 fnz
n. Using

Lemma 3.6, we find that (v is as in Lemma 3.15)∑
n≥1

∑
γ∈Γ

# ker(σn − γ)zn =
∑
n≥1

∑
γ∈Γ

deg(σn − γ)p−v(σn−γ)zn (31)

is algebraic. Using Proposition 2.16(vi), let s ∈ Z>0 and γ0 ∈ Γ such that v(σs−γ0) is sufficiently large.14

Then σs and γ0 commute by Lemma 3.9. Denoting τ := σsγ−1
0 , we obtain∑

n≥1

∑
γ∈Γ

deg(σsn − γ)p−v(σsn−γ)zsn

=
∑
n≥1

∑
γ∈Γ

deg(σsn − γγn0 )p−v(σsn−γγn0 )zsn

=
∑
n≥1

∑
γ∈Γ

deg(τn − γ)p−v(τn−γ)zsn

=
∑
n≥1

deg(τn − 1)p−v(τn−1)zsn +
∑
n≥1

∑
γ 6=1

deg(τn − γ)p−v(γ−1)zsn.

Using Proposition 2.16 again, we find

v (τn − 1) =

{
v(τ − 1) + v(n) if char(End(G)) = 0;

v(τ − 1)pvp(n) if char(End(G)) = p.

Hence

gn := deg(τn − 1)p−v(τn−1) =

{
deg(τn − 1)p−v(τ−1)|n|p if char(End(G)) = 0;

deg(τn − 1)p−v(τ−1)|n|−1
p if char(End(G)) = p.

14That is, v(σs − γ0) ≥ max (max{v(γ − γ′) | γ, γ′ ∈ Γ, γ 6= γ′}+ 1, (ρ(End(G), v) + 1)/(p− 1)).
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The sequence
(∑

γ 6=1 deg(τn − γ)p−v(γ−1)
)
n≥1

is linear recurrent by (the calculations in) Lemma 3.16, so

since the power series (31) is algebraic, reducing modulo a to be determined prime ` > p, we find (using
Lemma 5.3(i) to “pass to” the subsequence) that the sequence (gn (mod `))n has finite `-kernel. From the
case-by-case computation of the degree sequence deg(τn− 1) that we saw in the proof of Lemma 3.16, we
find that the subsequence dn := deg(τ2n − 1) has the desired form15 for application of Proposition 5.10.
Indeed, we can write

g2n =

{
dnr|n|sp if char(End(G)) = 0;

dnp
−s|n|−1

p if char(End(G)) = p,

where s 6= 0. If we now choose ` prime anywhere in the infinite sequence given by Proposition 5.10, then∑
n≥1 g2nt

n (mod `) becomes transcendental over F`, a contradiction.

Corollary 5.12 Let σ : A→ A be a confined endomorphism of an abelian variety A over an algebraically
closed field K of characteristic p > 0, and suppose that σ is not coseparable. Then ζσ is transcendental.

Proof. In the proof of [10, Prop. 2.3(i)], it is shown that deg(σn − 1) has the form dn of Lemma 5.8.
Moreover, [loc. cit., Prop. 2.7] shows that degi(σ

n − 1) = rn|n|snp for sequences (rn) and (sn) as in
Proposition 5.10.

15We need to consider this particular subsequence in order to eliminate the factor sgn(τ) in the formula deg(τn − 1) =
|τ |n − sgn(τ)n for Gm.
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6 Future Questions

As mentioned in the introduction, little is known about the dynamical zeta function for general maps on
the projective line in positive characteristic. An unanswered question remains:

Question A Let k be an algebraically closed field of characteristic p ≥ 5. Let f : P1/k → P1/k given by
f(x) = x2 + 1. Is ζf rational? What about ζ∗f?

We suspect both to be far from rational, but we have no idea how to approach this problem. Perhaps an
easier question to answer would be:

Question B Is there any surjective confined non-dynamically affine map f on the projective line over
an algebraically closed field of positive characteristic for which we can determine whether ζf is rational or
not?

In Section 3.2 we discussed certain hypotheses (H1)-(H4) that we needed in the proof (Section 3.4) of
our main result. For a general dynamically affine map f : V → V , questions that arise are:

Question C (i) Are there precise conditions for (H1) to hold?

We already saw that (H1) always holds in the case that V = P1 (and the proof also works for
any one-dimensional V ). Similarly, if the algebraic group G is complete, then the inclusion ι has to
be surjective, making the statement trivial. For general V , however, it seems unlikely for (H1) to
always hold; especially since the complement of G/Γ in V is not “related” to an algebraic group.
At the same time this means that answering this question may be as difficult as determining the
dynamical zeta function for arbitrary morphisms of varieties.

(ii) Can we weaken (H2)?

It follows from the definition that the “direct product” of dynamically affine maps is dynamically
affine; in particular the self-product f × f : V × V → V × V is dynamically affine (with underlying
group G ×G), and since (f × f)n = f2

n, rationality of ζf implies rationality of ζf×f . Similarly, the
proof of the natural boundary result in Section 3.4 also works when we replace the sequence fn by
f2
n. However, (H2) does not hold for products of algebraic groups; the endomorphism ring of G×G

contains zero divisors (see Proposition 2.16). This suggests that we might need to consider a weaker
version of (H2); perhaps for a “discrete valuation” v : End(G)→ (Z≥0 ∪ {∞})r instead.

(iii) Does (H3) hold in general?

The third hypothesis can be seen as the analogue of rationality of the “degree zeta function” (cf.
[10, Prop. 2.3]) in the presence of a group action. The method of the proof of the proposition cited
can also be applied in the setting of dynamically affine maps arising from abelian varieties, but only
for the case that the endomorphism ring is commutative. In the case that the endomorphism ring
is non-commutative, we do not have a counterexample to (H3); in fact, we suspect that it might
always be true.

(iv) Do we really need (H4)?

The requirement of (H4) seems slightly unnatural: it is a technical assumption that is purely
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employed to avoid cancellation of singularities at the “candidate” natural boundary. However, in the
(probably unlikely) case where the singularities obtained do cancel out, then by the very definition
of a natural boundary we might somehow be able to analytically extend the dynamical zeta function
beyond the disk initially restricted by the dominant root. Then, if the “runner-up” dominant root
is unique, we might still be able to conclude the desired result of a natural boundary.

In Section 4, we discussed dynamics on algebraic groups. The main question that remained was:

Question D Let r ∈ Z≥0, and let σ : Gr
a → Gr

a be a confined endomorphism. Can we find an explicit
form for the fixed point sequence (σn)? More concretely, does it satisfy (25)?

Lemma 4.6 tells us that σn = dnan, where dn = deg(σn−1), and an has the desired form of Conjecture 4.1.
Given the examples seen so far, we expect the zeta function corresponding to dn to be rational; although
just root-rationality would be enough to complete the proof of Conjecture 4.1.
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[47] Lenny Taelman, Dieudonné determinants for skew polynomial rings, J. Algebra Appl. 5 (2006), no. 1,
89–93.
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