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Abstract

In this thesis we study the deformations of curves with a �nite group action over an
algebraically closed �eld of positive characteristic. While the deformation theory of
curves is well-known, there is no complete picture when a group action comes into play.
When the genus of the curve is greater than 1, it is known that the deformation functor
of the curve with a group action is pro-representable. For a genus 0 curve, we prove in
this thesis that the deformation functor is non-pro-representable exactly when the �eld
characteristic is 2, and the group is Z/2, (Z/2)2 or the dihedral group Dn with n odd.
Proving pro-representability in the other cases relies on reduction to local deformations.
The non-pro-representability is proved by direct calculations. For genus 1 curves, the
problem is still open. We propose an approach that might deal with elliptic curves with
a small automorphism group.
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Introduction

What is deformation theory? In essence deformation theory studies the in�nitesimal
changes one can make to a geometric object. If X is such a geometric object (think of a
curve for example), you could try to construct for some small ε > 0 a continuous family
of spaces Xt for t ∈ (−ε, ε), such that X0

∼= X. Another way of describing this, is as
a continuous map X → (−ε, ε). Then the �bre above 0 is X, and the other �bres give
the deformations. However, in this way I can consider the map X → (−ε, ε) sending
everything to 0. The the other �bres are empty, and we do not get a sensible deformation.
If X is a manifold, we could solve this by requiring that the map X → (−ε, ε) is surjective
on tangent spaces (a submersion), so that X must extend in the direction of the interval
(−ε, ε).

This might be a sensible approach to deformation theory in di�erential geometry, but
this thesis is about deformation theory in algebraic geometry. Therefore we must �nd
substitutes for these small intervals (−ε, ε), and for the submersions. The intervals are
replaced by Artinian, local rings and are introduced in Section 1.1. Submersions will
be replaced by �at maps, and they will be used Section 1.2 to de�ne the deformations
of schemes. Last, we will put these together in a deformation functor and study the
properties such functor has in Section 1.4.

The �rst form of deformation theory appeared in the work of Bernhard Riemann
in 1857 [Rie57]. While the theory had not been fully developed, he essentially proved
that a Riemann surface of genus g, greater than 1, has a (3g − 3)-dimensional space
of deformations. Deformation theory in algebraic geometry was only developed much
later. One of the earliest large results is by Michael Schlessinger in 1964. In his PhD
thesis he gave a small set of properties a deformation functor should have in order to be
pro-representable [Sch68].

You might wonder, why study deformation theory? This is because it is closely
related to the moduli problem. An example of a moduli problem is to classify all curves
of a �xed genus. An answer to this question would be a �parameter space� M of which
the points correspond to all such curves. In other words, you want a map X → M
of which the �bres are all such curves. You can see the similarities with the setting of
deformations, except thatM is now not only a very small interval. Determining thisM
can be di�cult, but there are some ways to study it. In particular, we can �nd some of
the local structure by doing deformation theory. For more information on such moduli
problems in relation to deformation theory, see [Har10]. In my thesis I will only focus on
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INTRODUCTION 2

deformation theory.
The �rst chapter of this thesis treats some basic results of deformation theory, which

is often found in literature. The second chapter focuses on a speci�c deformation prob-
lem: that of curves with a group action, over an algebraically closed �eld of positive
characteristic. When the genus of the curve is greater than 1, this deformation functor
is pro-representable. The methods to prove this are already known in the literature, and
are almost the same as when there is no group action.

On curves of genus 0, this thesis contains some new results. The main tools include:
the classi�cation of group actions on the projective line [VM80], translation to local defor-
mations [BM00], and the classi�cation of pro-representability of these local deformation
functors [BC09]. Together they allow to prove pro-representability in a lot of cases. Only
a few cases remain, namely the action of Z/2, (Z/2)2, or the dihedral group Dn for n
odd, on the projective line over a �eld of characteristic 2. Direct calculations on these
cases show that they turn out to be non-pro-representable.

The curves of genus 1 resist these attacks. While their automorphisms are also
classi�ed, it is not always possible to translate the problem to local deformations. And
[BC09] only deals with weakly rami�ed local deformations, so the local deformations may
not be classi�ed yet.



Chapter 1

Deformation theory

In this �rst chapter I give an introduction to the deformation theory of schemes. I do
not cover all the basic theory and do not provide some of the more complicated proofs.
However, I try to include many small arguments that other sources omit. For a more
complete source on deformation theory, see e.g. [Sch68] or [Har10].

Sections 1.1 and 1.3 follow more or less [Bys09a]. Sections 1.2 and 1.4 follow [Sch68].

1.1 Artinian local rings

As said in the introduction, we have to �nd an algebraic analogue to small intervals
(−ε, ε) around 0. This is done in the following de�nition. For any local ring R, I will
denote its maximal ideal as mR.

De�nition 1.1. Let k be a �eld, and let Λ be a complete, Noetherian, local ring with
residue �eld k. We de�ne the category CΛ as follows:

• The objects are Artinian, local Λ-algebras A with residue �eld k, such that the
structure morphism Λ→ A induces an isomorphism Λ/mΛ → A/mA.

• The morphisms ϕ : A′ → A are Λ-algebra homomorphisms such that ϕ(mA′) ⊂ mA

(we also say that ϕ is local).

Example 1.2. The simplest example of such a category comes from taking Λ = k. All
rings in the category Ck are �nite-dimensional k-vector spaces. The ring k[ε]/ε2 is 2-
dimensional and dividing out the unique maximal ideal (ε) yields k, so this is indeed
an object of Ck. The ring k[x1, x2]/(x3

1, x
2
1x2, x

2
2) has a basis 1, x1, x

2
1, x2, x1x2, so it is

5-dimensional. Dividing out the unique maximal ideal (x1, x2) again yields k, so this is
also an object of Ck. A morphism k[x1, x2]/(x3

1, x
2
1x2, x

2
2)→ k[ε]/ε2 must be k-linear and

must send the maximal ideal (x1, x2) into the maximal ideal (ε).
Another typical example comes from k = Fp a �nite �eld, and Λ = Zp the p-adic

integers. Now the category CΛ contains not only k-vector spaces, but also rings of higher
characteristic Z/p2,Z/p3, . . ..

3



CHAPTER 1. DEFORMATION THEORY 4

Why would these categories be the correct translations of a small interval (−ε, ε)
to algebraic geometry? For this we have to look at the spectrum of a ring A ∈ CΛ.
Because A is Artinian and local, it has exactly one prime ideal and therefore Spec(A)
consists of exactly one point. We also have the residue map A→ k, which yields a map
Spec(k) ↪→ Spec(A). In this map Spec(k) also consists of exactly one point, and this
should correspond to 0 inside a small interval. Even though Spec(A) also consists of only
one point, it adds some structure. Most prominently, the space Spec(k) has only a trivial
tangent space, but for larger rings A, the tangent space of Spec(A) is non-trivial, as we
see in the next example.

Example 1.3. The tangent space of a local ring R is the dual of the vector space
mR/m

2
R. We compute the tangent spaces of the previous example. For k[ε]/ε2, we �nd

that (ε)/(ε)2 = kε is 1-dimensional, so the tangent space is also 1-dimensional (and indeed
non-trivial!). For k[x1, x2]/(x3

1, x
2
1x2, x

2
2) the maximal ideal as k-vector space has a basis

x1, x
2
1, x2, x1x2. Its square has basis x2

1, x1x2, so the tangent space is 2-dimensional.

Now we have seen why we should treat these Artinian local rings as the correct
parameter spaces for doing deformations. However, we haven't seen yet why these rings
should be Artinian. Based on what we have seen so far, we could also expect a non-
Artinian local ring like k[x](x) to act as a parameter space. The reason to focus on
Artinian rings, is that they are relatively small and allow for direct computations. The
main tool to do this are the following small extensions.

De�nition 1.4. Let ϕ : A → A′ be a morphism in the category CΛ. We call ϕ a small
extension if and only if:

• ϕ is surjective;

• the kernel ker(ϕ) is a principal ideal (t); and

• mAt = 0.

The last property shows that (t) is an A/mA-module, and thus a k-vector space.

Remark 1.5. Because mA is the unique maximal ideal of A, we see that (t) ⊂ mA. It
follows immediately that t2 ∈ mAt = 0.

Lemma 1.6. Let ϕ : A → A′ be a surjection in CΛ. Then there exist rings A =
B0, B1, . . . , Bn = A′ ∈ CΛ together with small extensions ϕi : Bi−1 → Bi such that
ϕ = ϕn ◦ · · · ◦ ϕ2 ◦ ϕ1. In other words, every surjection can be decomposed into small
extensions.

Proof. The idea is to do this inductively, but we �rst have to �nd some property of a
ring that decreases in a small extension. This will be the length as Λ-module. We show
that any object of CΛ has �nite length, and that the length decreases by one in a small
extension. Then we can start the induction.

We will make repeated use of the fact that the length of a module M is the sum of
the lengths of a submodule N and the length of the quotient M/N .
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For a ring A ∈ CΛ the powers of the maximal ideal mn
A will eventually be 0. So we

�nd that

length(A) =
∞∑
i=0

length(mi
A/m

i+1
A )

is a �nite sum. Further, the maximal ideal mA is �nitely generated and therefore each
quotient mi

A/m
i+1
A is a �nite-dimensional A/mA-vector space. This dimension is also the

length, so the length of A is �nite.
Let A→ A′ be a small extension with kernel (t) a 1-dimensional k-vector space. Then

length(A) = length(A/(t)) + length((t)) = length(A′) + 1.

Now we prove that statement of the lemma by induction on length(A)− length(A′).
If this di�erence is 0, we are trivially done. If not, let I be the kernel of A → A′ and
consider the ideals I ∩ mn

A. For n = 0, this ideal is non-trivial and we know that for n
large enough mn

A = 0. So there is a maximal n for which I ∩mn
A 6= 0. Let t be an element

of this ideal. Then mAt ⊂ mAI ∩ mn+1
A ⊂ I ∩ mn+1

A = 0, so we �nd the decomposition
A→ A/(t)→ A′ where A→ A/(t) is small. Because

length(A/(t))− length(A′) = length(A)− length(A′)− 1,

we can decompose A/(t)→ A′ in small extensions by induction hypothesis.

Example 1.7. We can �nd this decomposition for the surjection k[ε, δ]/(ε2, δ2) → k.
Following the induction step, we have to �nd an element that is annihilated by the
maximal ideal. Up to a constant factor, the only choice is εδ, so the decomposition starts
as

k[ε, δ]/(ε2, δ2)→ k[ε, δ]/(ε2, εδ, δ2)→ . . .

One way to complete the decomposition is k[ε, δ]/(ε2, εδ, δ2)→ k[ε]/ε2 → k.

1.2 Deformations of schemes

In this section we will start considering deformations. To do this, we �rst have to
introduce the notion of �atness.

Consider a ring R and an R-module M , then the functor −⊗RM is right-exact. For
example, given an ideal I of R, there is an exact sequence 0 → I → R → R/I → 0.
Tensoring this with M yields an exact sequence

I ⊗RM →M →M ⊗R R/I → 0.

The image of I ⊗RM →M is IM , so we can calculate

M ⊗R R/I ∼= M/IM (1.1)

However, the map I ⊗RM → IM need not be injective. For example, take R = Z, I =
nZ,M = Z/n, then IM = nZ(Z/n) = 0. However, nZ is isomorphic to Z as Z-module,
so I ⊗RM ∼= Z⊗Z Z/n ∼= Z/n.
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De�nition 1.8. Let R be a ring. We call an R-module M a �at module if − ⊗R M is
exact. This means that for any short exact sequence A→ B → C → of R-modules, the
induced sequence A⊗RM → B ⊗RM → C ⊗RM is also exact.

De�nition 1.9. A map of rings R→ S is �at, if S is a �at R-module.
A morphism of schemes f : X → Y is �at, if for every point x ∈ X the map

f# : OY,f(x) → OX,x is �at.

It is undoable to check that a morphism of schemes is �at straight from these de�-
nition. We need to check the �atness of the map on the stalks for all points of X, and
to do this, there is a condition on all exact sequences. The following proposition greatly
reduces the number of checks.

Proposition 1.10. (a) An R-module M is �at, if and only if for every ideal I ⊂ R
the map I ⊗RM → R⊗RM ∼= M is injective.

(b) A morphism of schemes f : X → Y is �at, if and only if there is an a�ne open
covering {Vj}j∈J of Y , and a�ne open coverings {Ui}i∈Ij of f−1(Vj), such that
OY (Vj)→ OX(Ui) is �at for every j ∈ J, i ∈ Ij.

Proof. See [Sta18, Tags 00H9 & 01U2].

With this proposition, it is immediately clear that a �at ring map R → S induces a
�at morphism Spec(S)→ Spec(R), which is not at all clear from the de�nition.

Example 1.11. • Let R be a ring, S a multiplicative system, and K → M → N
an exact sequence of R-modules. Localizing in S yields again an exact sequence
S−1K → S−1M → S−1N . This can also be described as tensoring with the
localization S−1R, so S−1R is �at over R.

• Any free module over R is �at over R. Because the polynomial ring R[x] =⊕
i≥0Rx

i is a free module, it is also �at.

• Quotients are typically non-�at. For example, consider the quotient Z → Z/n.
There is an exact sequence of Z-modules 0 → Z n→ Z, where the map is multipli-

cation by n. Tensoring this with Z/n yields 0 → Z/n 0→ Z/n with the zero map,
which is not exact.

• Let M be a k[ε]/ε2-module. Because k[ε]/ε2 has only one non-trivial ideal (ε),
checking �atness amounts to checking the injectivity of (ε) ⊗k[ε]/ε2 M → M . The
image of this map is exactly εM , so it is equivalent to check that (ε)⊗k[ε]/ε2 M ∼=
εM . The map k[ε]/ε2 → (ε) which sends x to xε is surjective, and it has kernel (ε).
So we can see (ε) as the quotient of k[ε]/ε2 by ε. Then (ε)⊗k[ε]/ε2 M ∼= M/εM by
Eq. (1.1). Putting this together, we see that M is �at over k[ε]/ε2, if and only if
M/εM ∼= εM .

It is di�cult to give geometric meaning to the concept of a �at morphism, but in
some cases it is possible. For example, let X,Y be regular, irreducible schemes of �nite
type over k, and f : X → Y be a proper morphism. Then f is �at if and only if all
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�bres of f have the same dimension (see [Mat86, Corollary 23.1] and [Har77, Proposition
III.9.5]).

With this notion of a �at morphism, we can de�ne a deformation. By a slight abuse
of notation I will write the �bre product Y ×Spec(R) Spec(S) as Y ⊗R S.

De�nition 1.12. Given are a scheme X over a �eld k, and an Artinian local ring A ∈ CΛ.
A deformation of X over A is a scheme XA over A together with a map ι : X → XA,
such that the diagram

X XA

Spec(k) Spec(A)

ι

π

is a �bre product square and π is a �at morphism. The condition of being a �bre product
square can be restated as ι : X → XA ⊗ k being an isomorphism.

If A′ → A is a morphism in CΛ, and ι : X → XA, ι′ : X → XA′ are deformations over
A and A′, a morphism of deformations ϕ : XA → XA′ over A′ → A is a morphism of
schemes that �ts into the commutative diagram.

X

XA XA′

Spec(A) Spec(A′)

ι
ι′

ϕ

π π

Example 1.13. • Consider the a�ne scheme X = Spec(k[x, y]/y), corresponding
the the line y = 0 in the a�ne plane. A deformation over k[ε]/ε2 is given by

Xk[ε]/ε2 = Spec(k[x, y, ε]/(ε2, y − εx2)),

corresponding to an in�nitesimally shallow parabola y = εx2. By the above com-
putation, we see that

k[x, y, ε]/(ε2, y − εx2)⊗k[ε]/ε2 k ∼= k[x, y, ε]/(ε2, y − εx2, ε) ∼= k[x, y]/y

which is what we wanted.

We also have to check that Xk[ε]/ε2 is �at over Spec(k[ε]/ε2), or that

M = k[x, y, ε]/(ε2, y − εx2)

is a �at k[ε]/ε2-module. Note that M ∼= k[x, ε]/ε2 = k[x]⊕ εk[x]. By the previous
example we have to check thatM/εM ∼= εM . However, it is clear that εM = εk[x],
and this is also the kernel of M → εM .
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• If we consider instead the curve Y = 0 in the projective plane, the curve Y Z = εX2

in P2
k[ε]/ε2 is not a deformation. Indeed, dividing out ε yields the curve Y Z = 0

which is not the original curve Y = 0.

Remark 1.14. We have now seen the notion of a deformation of schemes. However, in a
similar vein you can deform many other objects. For example, the deformation theory
of Galois group representations has played a prominent role in Weil's proof of Fermat's
last theorem [Rib95, Section 11].

As explained in the previous section, the map Spec(k) ↪→ Spec(A) adds tangent
directions to the point Spec(k). In the same way, a deformation X ↪→ XA can be seen
as adding tangent directions to the scheme X, in which the scheme can be deformed. In
our intuitive picture of a deformation being a family X → (−ε, ε) we could really take
di�erent �bres to �nd a space closely resembling X. In this algebro-geometric setting
this is not possible. In fact, the deformation doesn't change the topological space of the
scheme X! This is the content of the following lemma.

Lemma 1.15. Let ι : X ↪→ XA be a deformation of X over A. Then ι induces a
homeomorphism on the underlying toplogical spaces.

Proof. Take an a�ne open covering {Ui}i∈I of XA. Then {Ui ⊗A k}i∈I is an a�ne open
covering of X. It is therefore enough to prove that Ui and Ui⊗Ak are homeomorphic. Let
Ui = Spec(R), then Ui⊗Ak = Spec(R⊗Ak). By Eq. (1.1) we see that R⊗Ak ∼= R/mAR.
Because A is Artinian, there is an n such that mn

A = 0. Now (mAR)n = mn
AR = 0, so we

see that mAR is a nilpotent ideal of R. It is therefore contained in every prime ideal of
R. This means that R → R/mAR induces a homeomorphism on the spectrum of prime
ideals, which is exactly what we needed to show.

The following two lemma's are rather technical, but they are very useful when proving
results about deformations.

Lemma 1.16. Let A ∈ CΛ be an Artinian, local ring.

(a) Let M,N be A-modules and ϕ : M → N a morphism, and let I be a nilpotent ideal
of A. If N is �at and the induced map ϕ : M/IM → N/IN is an isomorphism,
then ϕ is an isomorphism.

(b) Let XA and X ′A be two deformations of X over A. If there is a morphism of
deformations XA → X ′A, then this is an isomorphism of deformations.

(c) A �at A-module is free.

Proof. (a) Let Q be the cokernel of ϕ, so M → N → Q → 0 is exact. Now tensoring
with A/I is right exact. By Eq. (1.1) we get the exact sequence

M/IM → N/IN → Q/IQ→ 0.

The �rst map is an isomorphism, so Q/IQ = 0 or Q = IQ. This implies that Q =
IQ = I2Q = . . .. Because I is nilpotent, at some point we �nd Q = 0. Therefore ϕ is
surjective.
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For injectivity, let K be the kernel of ϕ and consider the short exact sequence 0 →
mA → A → k → 0. Because N is �at over A, this yields a short exact sequence
0 → I ⊗A N → N → N/IN → 0. Similar exact sequences arise for M and K, except
that the �rst map need not be injective. Now we can form the following commutative
diagram, in which all rows and columns are exact:

0

I ⊗A K I ⊗AM I ⊗A N 0

0 K M N 0

K/IK M/IM N/IN 0

0 0 0

Now a partial form of the snake lemma yields an exact sequence 0→ K/IK →M/IM →
N/IN . The last map is an isomorphism by assumption, soK/IK = 0. Again this implies
K = 0, so ϕ is injective and therefore an isomorphism.

(b) We prove this locally, so let U be an open of the topological space X, and let B
and B′ be the regular sections of XA and X ′A over U . Then they are both �at over A, and
there is a map ϕ : B′ → B of A-modules which is an isomorphism when tensored with
k. This means that B′/mAB′ ∼= B/mAB. Now part (a) implies that ϕ is an isomorphism.
This holds for every open U , so XA ∼= X ′A.

(c) Let N be a �at A-module, and let Sk be a basis of the k-vector space N/mAA.
Now choose a set SA ⊂ N that maps bijectively to Sk and let M be the free A-module
generated by SA. Then there is a canonical mapM → N , and we know thatM/mAM →
N/mAN is an isomorphism. Hence M → N is also an isomorphism and N is free.

Lemma 1.17. Every deformation of an a�ne scheme is a�ne.

Proof. We will show that this reduces to [GD60, Proposition 5.1.9]. This reads: given
are a scheme Y with a nilpotent, quasi-coherent sheaf of OY -ideals I. If the closed
subscheme (Y,OY /I) is a�ne, then Y is a�ne.

Let X be an a�ne scheme, and XA a deformation over A. Because X is quasi-
compact, we can choose an a�ne covering of XA with �nitely many a�ne opens. For
such a�ne open U = Spec(R), we know that U ⊗A k = Spec(R/mAR) (from the proof
of Lemma 1.15) with mAR nilpotent. Hence m̃AR (the sheaf associated to mAR on
Spec(R)) is a nilpotent, quasi-coherent sheaf of OSpec(R)-ideals, and quotienting it out
gives U ⊗A k. Glueing these together yields a quasi-coherent sheaf of OXA

-ideals I, such
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that X is obtained from quotienting out I. Because we glue a �nite number of nilpotent
sheaves, the result I is still nilpotent. Because X is a�ne, we can apply the above
proposition to conclude that XA is a�ne.

1.3 Functors on CΛ

The deformations of a scheme can be studied by putting them together in a deformation
functor CΛ → Set. Before we really delve into this deformation functor, we will �rst look
at more general functors F : CΛ → Set. We list a number of properties these functors
might have, and then we look at the results we can deduce from these hypotheses. The
�rst is:

H1 The set F (k) is a singleton.

In the category CΛ we can form �bre products. Given two maps a : A → C and
b : B → C, the �bre product is

A×C B = {(x, y) ∈ A×B | a(x) = b(y)}.

This is indeed again an object of CΛ. Now applying the functor F to this �bre product,
we obtain the following commutative diagram:

F (A×C B) F (B)

F (A) F (C).

The universal property of the �bre product in Set now gives a map

ϕa,b : F (A×C B)→ F (A)×F (C) F (B).

The next hypotheses are based on this ϕ.

H2 The map ϕa,b is an isomorphism if b is the residue map k[ε]/ε2 → k.

H3 The map ϕa,b is a surjection if b is a small extension.

H4 The map ϕa,b is an isomorphism if a = b is a small extension.

Note that hypothesis H3 implies a seemingly stronger one: ϕa,b is surjective if b is
surjective. This follows by decomposing b in small extensions. For example, if B → B′ →
C are small extensions, then

F (A×C B) ∼= F ((A×C B′)×B′ B)

→ F (A×C B′)×F (B′) F (B)

→ (F (A)×F (C) F (B′))×F (B′) F (B)

∼= F (A)×F (C) F (B)
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is a composition of surjective maps, hence surjective.
We can now obtain the following results from these hypotheses. First de�ne the

tangent space of F as TF = F (k[ε]/ε2).

Proposition 1.18. Let F : CΛ → Set be a functor satisfying H1 and H2.

(a) The tangent space TF is a k-vector space.

(b) For any small extension A → A′, the tangent space TF acts on each non-empty
�bre of F (A)→ F (A′).

(c) If F satis�es H3, this action is transitive.

(d) If F satis�es H4, this action is free and transitive.

Proof. (a) By assumptions H1 and H2, we see that

F (k[ε]/ε2 ×k k[ε]/ε2) ∼= F (k[ε]/ε2)×F (k) F (k[ε]/ε2) ∼= TF × TF .

This allows to de�ne an addition on TF . Consider the function

g : k[ε]/ε2 ×k k[ε]/ε2 −→ k[ε]/ε2,

(u+ vε, u+ wε) 7−→ u+ (v + w)ε.

Applying F to this function and using the previous isomorphism, we obtain a map
F (g) : TF × TF → TF . This will be the addition on TF .

For the multiplication, we consider for each λ ∈ k the map gλ : k[ε]/ε2 → k[ε]/ε2

given by u + vε 7→ u + λvε. Applying F gives F (gλ) : TF → TF which will be scalar
multiplication by λ.

Now it remains to show that this structure satis�es the axioms of a vector space,
for example that λv + µv = (λ + µ)v for λ, µ ∈ k, v ∈ TF . This follows by noting
that g ◦ (gλ, gµ) = gλ+µ, and applying F . The other axioms can be checked in a similar
fashion.

(b) We will �rst prove the isomorphism

Θ : A×k k[ε]/ε2 ∼= A×A′ A.

Write (t) for the kernel of A → A′, which is a k-vector space. Hence every element of
A ×A′ A can be written as (a, a + λt) with a ∈ A, λ ∈ k. Write ā for the image of a
under the residue map A → k, then we see that every element of A ×k k[ε]/ε2 can be
given by (a, ā + λε). Now it is clear that (a, ā + λε)

∼←→ (a, a + λt) gives a bijection
A×k k[ε]/ε2 ↔ A×A′ A. Because it is multiplicative, the isomorphism follows.

Applying F to this isomorphism, and again using H1 and H2, we obtain

F (A)× TF ∼= F (A×k k[ε]/ε2) ∼= F (A×A′ A)→ F (A)×F (A′) F (A).

All these map are compatible with the projection map to the �rst factor F (A), so we
obtain a map (x, η) 7→ (x, y). Now the action of η on x is de�ned to be y, and we denote
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it by x+ η. To check that this is an action, note that the following two maps are equal:

A×k k[ε]/ε2 ×k k[ε]/ε2 −→ A×A′ A,
(π1, π3) ◦ (id,Θ) ◦ (Θ, id) : (a, ā+ λε, ā+ µε) 7−→ (a, a+ λt, ā+ µε)

7−→ (a, a+ λt, a+ λt+ µt)

7−→ (a, a+ λt+ µt),

Θ ◦ (id, g) : (a, ā+ λε, ā+ µε) 7−→ (a, ā+ (λ+ µ)ε)

7−→ (a, a+ (λ+ µ)t).

Applying F yields that (x+ η) + ξ = x+ (η + ξ) for x ∈ F (A), η, ξ ∈ TF .
(c) It follows that F (A)× TF ∼= F (A×A′ A)→ F (A)×F (A′) F (A) is surjective. Now

take x, y ∈ F (A) that lie in the same �bre, then we have (x, y) ∈ F (A)×F (A′) F (A), so
it is reached by a pair (x, η). Then y = x + η. We conclude that the action of TF on
every non-empty �bre is transitive.

(d) In this case we even have F (A)× TF ∼= F (A×A′ A) ∼= F (A)×F (A′) F (A), so the
η of part (c) is unique, and we �nd that the action on the non-empty �bres is free and
transitive.

Actually, more can be deduced from the stated assumptions, but for this we �rst
introduce some terminology.

De�nition 1.19. Let F : CΛ → Set be a functor. We say F is pro-representable by R,
if there is a complete, Noetherian, local Λ-algebra R, such that

F ∼= HomΛ,loc(R,−).

We understand Hom-functors very well, so we also understand pro-representable
functors very well. However, not all deformation functors we will encounter are pro-
representable. Instead they might satisfy a slightly weaker notion, that we will de�ne
now.

De�nition 1.20. Let F,G : CΛ → Set be two functors, and let η : F → G be a natural
transformation. We say that η is smooth, if for every surjection A→ A′ in CΛ, the map

F (A)→ F (A′)×G(A′) G(A)

is surjective. We say η is étale if η is smooth and η : TF → TG is an isomorphism.

Lemma 1.21. Let F,G be two functors satisfying H1, and let η : F → G be a smooth
natural transformation. Then η : F (A)→ G(A) is surjective for all A ∈ CΛ.

Proof. Because we have a surjection A→ k, it follows from the de�nition that F (A)→
F (k)×G(k)G(A) is surjective. But F (k) andG(k) are singletons, hence F (k)×G(k)G(A) ∼=
G(A).
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De�nition 1.22. For a complete, Noetherian, local Λ-algebra R we de�ne

hR = HomΛ,loc(R,−).

An étale natural transformation hR → F is called a versal hull of F .

A versal hull can often give a good enough description of F . In particular, because
hR(A)→ F (A) is always surjective, all deformations over A can be found from this versal
hull. The following theorem by Schlessinger shows how the notions of pro-representability
and a versal hull, correspond with the hypotheses introduced before. See [Sch68] for the
proof.

Theorem 1.23 (Schlessinger's criterion). Let F be a functor CΛ → Set satisfying H1.

(a) The functor F has a versal hull, if and only if it satis�es H2, H3 and if TF is
�nite-dimensional.

(b) The functor F is pro-representable, if and only if it satis�es H2, H3, H4 and if
TF is �nite-dimensional.

Remark 1.24. The assumption that TF is �nite-dimensional ensures that the ring R is
Noetherian. Without this assumption, F will also have a versal hull/be pro-representable,
but the ring R need not be Noetherian.

Why would we expect such a result to follow from only those four assumptions? First
of all, the universal property of a �bre product shows that

Hom(R,A×C B) ∼= Hom(R,A)×Hom(R,C) Hom(R,B).

So if F is pro-representable, it is clear that ϕa,b is always an isomorphism. Schlessinger's
criterion shows that the converse is true, without even needing all these isomorphisms.

1.4 Deformation functors and pro-representability

Now that we have seen the deformations of a scheme, we can gather all information of
these deformations into a functor. See the following de�nition.

De�nition 1.25. Let X be a scheme over k. De�ne the deformation functor DX : CΛ →
Set of X as follows:

• DX(A) are all isomorphisms classes of deformations of X over A.

• DX(A → A′) sends a deformation XA of X over A, to the deformation XA ⊗A A′
over A′.

It is not right away clear that the image of a morphism DX(A→ A′) is well-de�ned,
because we have to check that XA⊗AA′ is indeed a deformation over A′. The �bre product
condition is ful�lled, because (XA ⊗A A′) ⊗A′ k ∼= XA ⊗A (A′ ⊗A′ k) = XA ⊗A k ∼= X.
Second, we need that XA ⊗A A′ → Spec(A′) is �at. We can check this on a�ne opens of
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XA. Let Spec(R) be an a�ne open of XA, then R is a �at A-module. This determines
an open Spec(R⊗AA′) of XA⊗AA′. Now we have the isomorphisms −⊗A′ (R⊗AA′) ∼=
(−⊗A′ A′)⊗AR = −⊗AR, and we know this functor is left-exact. Therefore R⊗AA′ is
�at over A′, and we see that XA ⊗A A′ is �at over A′. Hence it is indeed a deformation.

With the results of the previous section in mind, we might hope that DX is pro-
representable. This is not always the case, but we will prove that DX has a hull if X
is smooth and proper. We will also show that DP1

k
and DSpec(kJtK) are actually pro-

representable.
Checking property H1 is simple. If Xk is a deformation of X over k, then X ∼=

Xk ⊗k k = Xk, so X is the only deformation over k.

Proposition 1.26. The deformation functor DX has the properties H3 and H2.

Proof. (H3)We let A→ C,B → C be maps in CΛ, such that B → C is a small extension.
Let E = A ×C B be the �bre product. Consider deformations XA, XB over resp. A, B
that restrict to the same deformation XC over C, as shown in the following diagram:

XA XB

XA ⊗A C XC XB ⊗B C∼ ∼

.

Note that by Lemma 1.15, all the deformations XA, XB, XC have homeomorphic topo-
logical spaces. Therefore, we can consider them as one topological space |X|, with
the three structure sheaves OA, OB, OC . Now I claim that there is a sheaf OE =
OA ×OC

OB on |X|, with sections OA(U) ×OC(U) OB(U) over U . And furthermore,
XE = (|X|,OA ×OC

OB) is a deformation of X over E, which restricts to XA and XB
over A and B respectively.

First we show that U 7→ OA(U) ×OC(U) OB(U) is indeed a sheaf on |X|. We can
easily see that it is a presheaf, and it is even a �bre product in the category of presheaves
on |X|. Further, the inclusion of the category of sheaves on |X| in the category of
presheaves on |X| preserves limits, and therefore also �bre products. This follows because
the shea��cation functor is left adjoint to the inclusion. A more down-to-earth proof is
possible by checking directly from the de�nition that U 7→ OA(U) ×OC(U) OB(U) is a
sheaf. The category-theoretic approach has the bene�ts that it is shorter, and it shows
immediately that this sheaf is actually a �bre product of sheaves on |X|.

Next we want that XE is actually a scheme. To do this, choose an a�ne open
(U, OC |U ) ∼= Spec(RC) of XC . By Lemma 1.17 its deformations (U, OA|U ), (U, OB|U )
are a�ne, say they are isomorphic to Spec(RA), Spec(RB). Then (U, OE |U ) is isomorphic
to Spec(RA ×RC

RB), so it is also a�ne. Doing this for all U in an a�ne open cover of
XC , yields an a�ne open cover of XE , hence it is a scheme.

To show that XE is actually a deformation, it needs to be �at over E. In the notation
of the previous paragraph, it is enough to show that RE = RA ×RC

RB is �at over
E = A ×C B. Because RA is �at over A, it follows from Lemma 1.16 that RA is a
free A-module. Let SA be an A-basis, and de�ne SC to be its image in RC . Because
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RC ∼= RA⊗A C, the module RC is also free with basis SC . Because B → C is surjective,
the map RB → RC is also surjective. Therefore we can choose a subset SB of RB that
maps bijectively to RC . Now there is a canonical map

⊕
s∈SB

sB → RB, and tensoring
with C gives

⊕
s∈SC

sC → RC which is an isomorphism. Because C ∼= B/I with I
nilpotent and RB is �at, we use Lemma 1.16 to conclude that

⊕
s∈SB

sB → RB is also
an isomorphism. Now it easily follows that RE is also a free E-module with E-basis
SA ×SC

SB. Hence it is indeed a �at E-module. We also see that tensoring with A and
B yields RA and RB respectively, and therefore tensoring with k yields OX(U). So XE
is indeed a deformation of X over E, and it restricts to XA and XB.

(H2) From the previous part it follows that the map

DX(A×k k[ε]/ε2)→ DX(A)×DX(k) DX(k[ε]/ε2)

is surjective, because we constructed a `�bre sum of deformations'. We will now show
injectivity. Let XA, Xk[ε]/ε2 be deformations of X over respectively A, k[ε]/ε2. Then
there is the �bred sum deformation XA′ over A′ = A ×k k[ε]/ε2 restricting to XA and
Xk[ε]/ε2 :

XA XA′ Xk[ε]/ε2 .

Let Z be another deformation of X over A′ such that the restrictions to A and k[ε]/ε2

are isomorphic to XA and Xk[ε]/ε2. This gives a diagram

XA Z ⊗A′ A Z Z ⊗A′ k[ε]/ε2 Xk[ε]/ε2
∼ ∼ .

Now the universal property of the �bred sum deformation yields a morphism of de-
formations XA′ → Z and by Lemma 1.16 this is an isomorphism. We conclude that
DX(A×k k[ε]/ε2)→ DX(A)×DX(k) DX(k[ε]/ε2) is indeed an isomorphism.

We can almost apply Schlessinger's criterion in order to prove that DX has a versal
hull, we only need to know that the tangent space TDX

is �nite-dimensional. For this,
we need the following result from [Har10, Theorem 5.3], which we will not prove.

Theorem 1.27. For a smooth scheme X over k, the tangent space of DX is given by
H1(X, TX). Here TX is the tangent sheaf of X.

If the scheme X is not only smooth, but proper as well, the cohomology group
H1(X, TX) is a �nite-dimensional k-vector space, and this is exactly what we need to
apply Schlessinger's criterion. For the sake of completeness, we record this result.

Corollary 1.28. When X is a smooth, proper scheme over k, the deformation functor
DX has a versal hull.

As conclusion to this chapter, we will give two schemes with a pro-representable
deformation functor: the projective line P1

k over k, and the spectrum of the power series
ring Spec(kJtK). This can be done by �rst computing the versal hull that comes out of
Schlessinger's criterion and then showing that this hull is an isomorphism. I will give
a proof without Schlessinger's criterion, but relying on some more basic results of this
chapter.
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Theorem 1.29. The deformation functors of the projective line P1
k and the spectrum

of the power series ring Spec(kJtK) are isomorphic to the constant functor CΛ → Set,
sending every object to a singleton. In particular this means that DP1 is pro-represented
by Λ.

Proof. Let A ∈ CΛ, then we �rst show that P1
k and Spec(kJtK) both have at least one

deformation over A. The map Spec(k) ↪→ Spec(A) yields a map

P1
k = P1

Z × Spec(k)→ P1
Z × Spec(A) = P1

A.

It is clear that this induces an isomorphism P1
k
∼= P1

A ×Spec(A) Spec(k). Further, P1
A

is covered by the a�ne patches Spec(A[t]) and Spec(A[t−1]) which are �at over A (see
Example 1.11). We see that P1 is indeed a deformation of P1 over A.

A deformation of Spec(kJtK) is given by Spec(kJtK)→ Spec(AJtK) which comes from
the quotient map A→ k. Again it is clear that AJtK⊗A k ∼= kJtK, and because AJtK is a
free A-module it is also �at. Hence AJtK is a deformation of kJtK over A.

Next we show that the deformation functors of P1
k and Spec(kJtK) both have trivial

tangent space. Both are smooth schemes over k, so we can use Theorem 1.27 to compute
their tangent space. First, Spec(kJtK) is an a�ne scheme, so the �rst cohomology of the
quasi-coherent sheaf TSpec(kJtK) vanishes. Hence the tangent space of DSpec(kJtK) is indeed
trivial. Second, the tangent sheaf TP1

k
has degree 2, so it is isomorphic to OP1

k
(2). We

know that H1(P1
k,OP1

k
(2)) is trivial, so the tangent space of DP1

k
is also trivial.

Now both deformation functors DP1
k
and DSpec(kJtK) has the following properties: they

satisfy H1, H2, H3, the tangent space is trivial and the image of each A ∈ CΛ is non-
empty. We will show that any functor F having these properties is isomorphic to the
constant functor mapping each A ∈ CΛ to a singleton.

We will prove by induction on the length of A ∈ CΛ that F (A) is a singleton. The
base case is A = k, and then it is true because F satis�es H1.

For the induction step, decompose the residue map A → k as A → A′ → k, where
A → A′ is a small extension. By Lemma 1.6, the length of A′ is smaller than that of
A, so by the induction hypothesis we know that F (A′) is a singleton. Then the map
F (A) → F (A′) has exactly one �bre, which is non-empty because F (A) is non-empty.
Because the functor F satis�esH1,H2 andH3, Proposition 1.18 implies that the tangent
space TF acts transitively on this one �bre. Because the tangent space is trivial, this
means that the �bre contains exactly one point, which proves that DP1(A) also consists
of only one point.



Chapter 2

Group actions on curves

In this chapter we will focus on curves. A curve is de�ned as a projective, regular, integral
schemes of dimension 1 over an algebraically closed �eld k. The deformation of curves
over C was already studied by Riemann, and it is well known that these deformations are
all pro-representable. The same holds in positive characteristic (see e.g. [Ser06, Corollary
2.6.6]). The main result in this chapter is on curves in positive characteristic with a �nite
group of automorphisms. If the genus of the curve is at least 2, the deformation of a
curve with this automorphism group is pro-representable, which can be proved in almost
the same way as for curves without a group action. Curves of genus 0 on the other hand,
have lots of automorphisms. In this chapter I present a complete classi�cation of the
pro-representable deformations of genus 0 curves with a group action.

The case of genus 1 remains, and it is yet unknown whether these curves with group
action have a pro-representable deformation functor. The most complicated cases arise
when an elliptic curve in characteristic 2 or 3 has a large automorphism group.

Section 2.2 are all minor adaptations of [Ser06]. Sections 2.3 to 2.5 take as starting
point an un�nished draft [Bys09b] of Jakub Byszewski.

2.1 Deformation problem

We start by introducing the deformation problem for this case.

De�nition 2.1. Given is a curve X and a �nite group G that acts faithfully on X. A
deformation of this pair (X,G) over A ∈ CΛ, consists of a deformation XA of X over A
and a group action of G on XA, such that the map ι : X → XA is G-equivariant.

A morphism of deformations, is a morphisms as de�ned in De�nition 1.12 that is also
G-equivariant.

I will not always include the group G in the notation of deformations, but the action
of G will always be present. Now it is simple to give the de�nition of the deformation
functor of this pair (X,G). We will call it the global deformation functor, because later
we will encounter a local deformation functor.

17
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De�nition 2.2. The global deformation functor of the pair (X,G), notation DX,G :
CΛ → Set, is de�ned as follows:

• DX,G(A) are all isomorphism classes of deformations of (X,G) over A.

• DX,G(A → A′) sends a deformation XA of (X,G) over A, to the deformation
XA ⊗A A′ over A′.

Note that the G-action on XA indeed induces a G-action on XA ⊗A A′. An element
g ∈ G with an action g : XA → XA yields a map XA ⊗A A′ → XA

g→ XA. There is also
the projection map XA ⊗A A′ → Spec(A′), so the universal property of X ⊗A A′ yields
g : XA ⊗A A′ → X ⊗A A′.

To state the theorem, we have to introduce one last concept. The �eld k has positive
characteristic, but we might be interested in deformations to characteristic 0. Therefore
we need the ring of Witt vectors W (k). This is a complete discrete valuation ring, with
residue �eld k (see [Haz12, Section 17]). It then follows from [Nag75, Theorem 30.3] that
W (k) is a Henselian ring. This means that a polynomial over W (k) which factors into
coprime factors over k, also has a factorisation over W (k). The prime example for a ring
of Witt vectors, is that over the prime �eld Fp. Then W (Fp) is the ring of p-adic integers
Zp. This is indeed a ring of characteristic 0, and the unique maximal ideal generated by
p induces a complete valuation. And of course Hensel's lemma applies to Zp.

From now on we will always consider Λ = W (k), and we will write C instead of CW (k)

and W instead of W (k). With this de�nition, we can state the main result.

Theorem 2.3. Let a curve X over an algebraically closed �eld k of positive characteristic
be given, together with a faithful group action of the �nite group G on X. The pro-
representability of DX,G depends on the genus of X, the characteristic of k and the group
G. It is non-pro-representable in the case when g(X) = 0, and char(k) = 2 and G is
isomorphic to Z/2, (Z/2)2, or Dn for n odd. In all other cases where the genus of X is
not 1, the deformation functor is pro-representable.

As might be expected, the proof distinguishes several cases. If the genus of X is
greater than 1 (in Section 2.2), we can easily compute that H0(X, TX)G = 0 and this will
imply the pro-representability of DX,G. The case of genus 0 (in Section 2.3) requires a
completely di�erent approach. Because our base �eld k is algebraically closed, we know
that X ∼= P1 and there is a complete classi�cation in the literature [VM80] of the �nite
groups acting on the projective line in positive characteristic. Luckily, we do not have to
check all these cases by hand. For many we will see that the global deformation functor
is isomorphic to a local deformation functor that is pro-representable. The few groups
that remain turn out to be non-pro-representable.

When the genus is 1 (in Section 2.5), we can try to use the same strategies. If the
cohomology group H0(X, TX)G is trivial, we can take the approach of the g > 1 case.
We can also classify the group actions that do not fall in this case, but we cannot go to
the local deformation functor as in the g = 0 case. Instead we attempted to prove an
isomorphism to another deformation functor that is pro-representable. This might deal
with cases that G is a translation group of an elliptic curve. Even if this works, there are
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still some elliptic curves with large automorphism groups that seem impervious to either
attack.

2.2 Curves with genus greater than 1

In this case we will prove pro-representability of the global deformation functor by consid-
ering automorphisms of the deformations. For this we introduce the following notation.

De�nition 2.4. Let A → A′ be a morphism in C. Let XA be a deformation of a curve
X over A that induces the deformation XA′ over A′. Now we de�ne the automorphism
group AutA(XA/XA′) as the A-automorphisms of XA that restrict to the identity on XA′ .

For deformations of X with a group action of G, we denote this automorphism group
as AutA,G(XA/XA′).

The following lemma relates these automorphism groups to the cohomology group
H0(X, TX)G, which we will call the group of in�nitesimal automorphisms of (X,G). The
lemma after that gives a criterion to prove pro-representability based on this group of
in�nitesimal automorphisms.

Lemma 2.5. Given are a curve X and a �nite group G acting faithfully on X. Let
A′ → A be a small extension in C and let XA′ be a deformation over A′. If XA is the
�bre above Spec(A), then AutA′,G(XA′/XA) ∼= H0(X, TX)G.

Proof. We �rst prove that AutA′(XA′/XA) ∼= H0(X, TX). Then we show that this iso-
morphism is compatible with the action of G on both spaces, from which we conclude
that AutA′,G(XA′/XA) ∼= H0(X, TX)G.

By Lemma 1.15, we know that a deformation ofX has the same underlying topological
space. An automorphism of a deformation is therefore the identity on the underlying
topological space and it is only an automorphism of the structure sheaf. Now take an
a�ne open covering {Ui}i of X, such that these opens are a�ne in XA′ . Restricting this
a�ne open covering to A and k yields an a�ne open covering of XA and X. For each
of these opens U , we will prove that AutA′(OXA′ (U)/OXA

(U)) ∼= TX(U). Gluing these
isomorphisms together gives AutA′(XA′/XA) ∼= H0(X, TX).

To simplify notation, we denote B, BA, BA′ for the regular functions of X, XA, XA′
over U . Then we obtain the following diagram where all squares are pushouts:

B BA BA′

k A A′

.

Let (t) be the kernel of A′ → A, which is a 1-dimensional k-vector space. This can be
written as a short exact sequence of A′-modules

0→ k · t→ A′ → A→ 0.
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Because BA′ is a deformation of B, we know that BA′⊗A′− is an exact functor so applying
it to the above exact sequence yields

0→ B · t→ BA′ → BA → 0.

Let ϕ be an automorphism of AutA′(BA′/BA). The function x 7→ ϕ(x)− x becomes the
zero map on BA, so on BA′ the image lies in B · t. Hence there is a function d : BA′ → B
such that ϕ(x) = x + d(x) · t. This function is actually an A′-derivation: it is A′-linear
and we see that

d(b1b2) · t = ϕ(b1b2)− b1b2
= ϕ(b1)ϕ(b2)− b1b2
= (b1 + d(b1) · t)(b2 + d(b2) · t)− b1b2
= (b1d(b2) + d(b1)b2) · t.

On the other hand, given an A′-derivation d : BA′ → B, we can construct the morphism
x 7→ x + d(x) · t. It is indeed an automorphism, because x 7→ x − d(x) · t is its inverse.
Hence we obtain that AutA′(BA′/BA) ∼= DerA′(BA′ , B) ∼= Derk(B,B) ∼= TX(U). All
these isomorphisms are G-equivariant, hence AutA′,G(BA′/BA) ∼= H0(X, TX)G.

Lemma 2.6. Given are a curve X and a �nite group G acting faithfully on X. Assume
that the group of in�nitesimal automorphisms of the pair (X,G) is trivial. Then we have
the following results.

(a) For every deformation X of (X,G) over A, we have that AutA,G(XA/X) is trivial.

(b) The global deformation functor DX,G is pro-representable.

Proof. (a) We do this by induction on the length of A as W (k)-module. The length 0
case is trivial.

For A of positive length, we can factor the residue map A→ k as A→ A′ → k, where
A → A′ is small and length(A′) = length(A) − 1. Let XA′ be the induced deformation
over A′. By induction we know that AutA′,G(XA′/X) is trivial, and hence that an
automorphism of AutA,G(XA/X) restricts to the identity on XA′ . But AutA,G(XA/XA′)
is isomorphic to the group of in�nitesimal automorphisms, hence is trivial. We conclude
that AutA,G(XA/X) also consists of only the identity.

(b) To prove that DX,G has a hull, we can apply the same proof as in Proposition 1.26
to obtain H2 and H3. We only have to make sure that the �bre sum deformation has a
G-action. In the notation in that proof, there is a G-action on the sheaves OA,OB,OC .
This yields a G-action on the �bre product OA×OC

OB as well, which is the sheaf of the
�bre sum deformation.

Because a curve is proper and smooth, Theorem 1.27 applies and the tangent space
of DX is �nite-dimensional. For a single deformation Xk[ε]/ε2 of X over k[ε]/ε2, the space
of automorphisms is also �nite-dimensional over k by Lemma 2.5. For any two group
actions of G on Xk[ε]/ε2 , the two actions of an element g ∈ G must di�er by an element
of Autk[ε]/ε2(Xk[ε]/ε2/X). Therefore the space of possible group actions on Xk[ε]/ε2 is
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�nite-dimensional, and hence the tangent space of DX,G is also �nite-dimensional. We
conclude that DX,G has a hull.

In order to prove pro-representability, we only need to show that condition H4 is
satis�ed. Consider two small extensions A′, A′′ → A and create the �bre product Ā =
A′ ×A A′′. Consider deformations XA′ , XA′′ over resp. A′, A′′ such that they restrict to
the same deformation XA over A, as shown in the following diagram:

XA′ XA′′

XA′ ⊗A′ A XA XA′′ ⊗A′′ A∼ ∼

.

Again we have the �bre sum deformation XĀ that produces the pushout digram

XĀ

XA′ XA′′

XA

.

To prove that this is the unique deformation extending XA′ and XA′′ , let Z be another
deformation of X over Ā such that the restrictions to A′ and A′′ are isomorphic to XA′
and XA′′ . We can restrict these isomorphisms to A, and this produces the following
diagram:

Z

XA′ Z ⊗Ā A′ Z ⊗Ā A′′ XA′′

XA′ ⊗A′ A Z ⊗Ā A XA′′ ⊗A′′ A

XA XA

∼ ∼

∼ ∼

∼ ∼

.

In this diagram, the maps XA → XA′ ,XA′′ are the same as above. Furthermore, the
induced isomorphism between the XA's on the bottom is an isomorphism of deformations.
It therefore induced the identity on X, and now we make crucial use of the fact that
AutA(XA/X) is trivial. Because of this, the isomorphism between the XA's is actually
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the identity and we obtain the commuting diagram

Z

XA′ XA′′

XA

.

The universal property of XĀ induces a morphism of deformations XĀ → Z. By
Lemma 1.16 this morphism is an isomorphism, so we have found that there is indeed
exactly one deformation over Ā restricting to XA′ and XA′′ .

With these two lemmas, we can easily prove Theorem 2.3 in the case g > 1.

Proof of Theorem 2.3, case g > 1. The tangent bundle TX has degree 2− 2g, so in case
g > 1 this degree is negative. Therefore H0(X, TX) is trivial, and the group of au-
tomorphisms H0(X, TX)G is also trivial. Now Lemma 2.6 implies that DX,G is pro-
representable.

2.3 Pro-representable deformations of genus 0 curves

We have arrived at the case where X has genus 0. Because we work over an algebraically
closed �eld, we can assume that X has at least one k-point, and therefore X ∼= P1

k. We
have seen in Theorem 1.29 that all deformations of P1 are trivial. Hence studying the
deformations of (P1, G) is mainly about deforming the group action.

Our main tool in getting a grip on these deformations is a classi�cation of the group
actions on P1 in positive characteristic by [VM80]. While it would be possible to check
all these group actions for pro-representability, I present my proof which does not need
to determine all deformation functors one by one. We prove that the deformation func-
tor is often isomorphic to a local deformation functor, for which pro-representability is
determined in [BC09]. We now introduce these local deformation functors.

De�nition 2.7. We denote ΓA for the A-automorphisms of the ring of formal power
series AJtK. A local G-action is an injective homomorphism G → ΓA. A deformation of
a given local G-action ρ : G→ Γk to A ∈ C is a local G-action ρA : G→ ΓA, such that it
is equal to ρ after composing with the mod mA map ΓA → Γk. Two such deformations
are isomorphic if they are related by an isomorphism of ΓA that is the identity on Γk.

The deformation functor DG,loc : C → Set assigns to every A ∈ C the isomorphism
classes of deformations of ρ to A.

There is another description of this deformation functor. In Theorem 1.29 we have
seen that the deformations of Spec(kJtK) are trivial. A local G-action G→ Γk is equiva-
lent to a faithful action of G on Spec(kJtK), so we can consider the deformations of the
pair (Spec(kJtK), G). But a deformation of Spec(kJtK) over A is isomorphic to Spec(AJtK),
so we �nd exactly the lifted local G-actions G→ ΓA.
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De�nition 2.8. Given a curve X with a faithful action of the �nite group G. Consider
the set of points of X having non-trivial stabilizer group under this action. For every
G-orbit in this set, we choose one point, call these points p1, . . . , p`. For every point pi
its stabilizer group Gpi acts on the completion of OX,pi . Because the curve X is regular,
this completion is isomorphic to kJtK, so there is a local Gpi-action. We de�ne the local
deformation functor DX,G,loc of the pair (X,G) as the product

∏`
i=1DGpi ,loc.

In the next lemma we see why this local deformation functor is so useful.

Lemma 2.9. (a) There is formally smooth morphism DX,G → DX,G,loc.

(b) The morphism DP1,G → DP1,G,loc is formally étale.

Proof. (a) Let XA be a deformation of X over A. For a rami�cation point pi ∈ X the
rami�cation group Gi acts on the local ring of pi ∈ X. By Lemma 1.15 the topological
space of XA is homeomorphic to that of X, so we can also consider pi ∈ XA and look at
its local ring. Because G has a lifted action on XA, and Gi �xes pi, we obtain an action of
Gi on the local ring OXA,pi . We can easily lift this to an action of Gi on the completion
ÔXA,pi . Now it is easy to see that Spec(ÔXA,pi) is a deformation of Spec(ÔX,pi), so we
obtain a deformation of (Spec(ÔX,pi), Gi). As we have seen that DGi,loc

∼= DSpec(kJtK),Gi
,

we obtain the map to DX,G,loc by varying over all rami�cation points. Smoothness of
this morphism is proven in [BM00, Theorem 3.3.4].

(b) It remains to show that the tangent space of the global and local deformation
functors have the same dimension. The di�erence in dimension is given in [BM00, Corol-
lary 3.3.5] by dim H1(P1/G, πG∗ (TP1)) and we want to show that this is trivial. Here
π : P1 → P1/G is the quotient curve of the action of G on P1, and πG∗ is the G-
equivariant pushforward, which sends a sheaf F on P1 to the sheaf U 7→ F(π−1(U))G

(the G-invariant sections over π−1(U)). The sheaf πG∗ (TP1) is computed in [CK03] for
ordinary curves X. As the projective line is indeed ordinary, we can use their result.
They de�ne a rami�cation divisor ∆ on P1/G. For this, consider the branch points of π.
The rami�cation group of such point P is always of the form (Z/p)t o Z/n. We put all
points for which t = 0, or t = 1 and p = 2, in a set T . All other branch points form a set
W . Then the divisor ∆ is

∆ =
∑
P∈T

P +
∑
Q∈W

2Q.

Now the result is that πG∗ (TP1) ∼= TP1/G(−∆).
We can simplify this as follows. In a non-constant map of curves π : P1 → P1/G

the genus cannot increase (by the Riemann-Hurwitz theorem), so we see that P1/G also
has genus 0, hence P1/G ∼= P1. Under this isomorphism we have that TP1/G(−∆) ∼=
TP1(−∆) ∼= OP1(2 − ∆). We are interested in H1(P1,OP1(2 − ∆)), which is by Serre
duality isomorphic to the dual of H0(P1,ΩP1 ⊗ OP1(∆ − 2)) ∼= H0(P1,OP1(∆ − 4)). We
see that this is trivial when deg ∆ ≤ 3, so we are left to prove this.

For this we consider all possible faithful actions of �nite groups G on P1 in positive
characteristic. These are determined by [VM80] and are summarized in the following
table. In this table, p is the characteristic of the base �eld k. The column `char' indicates
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Table 2.1: Finite groups acting on P1 in positive characteristic p, with rami�cation
behaviour of the quotient P1 → P1/G.

G char GP1 ∆P1 GP2 ∆P2 GP3 ∆P3 deg ∆

Z/n (p, n) = 1 Z/n 1 Z/n 1 � � 2
(Z/p)t (Z/p)t 1, 2 � � � � 1, 2
Dn p = 2,

(p, n) = 1
Z/2 1 Z/n 1 � � 2

p 6= 2,
(p, n) = 1

Z/2 1 Z/2 1 Z/n 1 3

A4 p 6= 2, 3 Z/2 1 Z/3 1 Z/3 1 3
S4 p 6= 2, 3 Z/2 1 Z/3 1 Z/4 1 3
A5 p = 3 Z/6 2 Z/5 1 � � 3

p 6= 2, 3, 5 Z/2 1 Z/3 1 Z/5 1 3
(Z/p)t o
Z/n

n | pt − 1 (Z/p)t o
Z/n

1, 2 Z/n 1 � � 2, 3

PSL2(Fpt) p 6= 2 (Z/p)t o
Z/p

t−1
2

2 Z/p
t+1
2 1 � � 3

PGL2(Fpt) (Z/p)t o
Z/(pt−1)

1, 2 Z/(pt+1) 1 � � 2, 3

any restrictions on this characteristic in order to have the group action. Each column
GPi indicates the rami�cation group of a branch point of P1/G, and ∆Pi is the degree
of the divisor ∆ in this point Pi. For every group action there are at most three branch
points. The total degree of ∆ is in the last column, and in this way we have veri�ed that
deg ∆ is indeed always at most 3.

We conclude that the tangent spaces in DP1,G → DP1,G,loc have the same dimension.
Because the map is smooth, the map on tangent spaces is surjective and hence it is an
isomorphism. This combines to give a formally étale map.

Before we start the proof of the g = 0 case, we need one small fact from [Bys09a]:

Lemma 2.10. Let D,E : C → Set be two functors, and let η : D → E be a formally étale
morphism. If E is pro-representable, and D has a versal hull, then η is an isomorphism.
In particular is D also pro-representable.

Proof. Let θ : hR → D be a hull of D. Then composing this with D → E gives a hull
ηθ : hR → D → E of E. Because E is pro-representable, there is also a trivial hull
id : E → E. Because the hull of a pro-representable functor is unique up to a unique
isomorphism, we �nd that ηθ is an isomorphism, and in particular θ is injective. As θ is
a hull, it is also surjective, hence it is an isomorphism. This already implies that D is
pro-representable. Because we knew that ηθ is an isomorphism, it also follows that η is
an isomorphism.
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Now we have all we need to start the proof of the genus 0 case.

Proof of Theorem 2.3, case g = 0. We start by combining the results of Lemma 2.9 and
Lemma 2.10. The functor DP1,G has a versal hull, which follows from the proof of
Lemma 2.6. The morphism DP1,G → DP1,G,loc is étale, so if DP1,G,loc is pro-representable,
we know immediately that DP1,G is pro-representable!

Let's now describe what happens with the local deformation functorDX,G,loc, as given
in [BC09]. They considered the local deformation functor over a perfect �eld of positive
characteristic, hence it applies to our situation. They showed that a local deformation
functor DkJtK,G is pro-representable, except when char(k) = 2 and G ∼= Z/2, (Z/2)2 in
which case the deformation functor is non-pro-representable.

This means that the local deformation functor DX,G,loc is also pro-representable,
except when char(k) = 2 and one of the rami�cation groups is Z/2 or (Z/2)2. Looking
in Table 2.1, this means that the only groups for which the local deformation is non-pro-
representable are Z/2, (Z/2)2, Dn for n odd, and PGL2(F2). For all other groups, we
can immediately conclude that the deformation functor DX,G is pro-representable.

Note that PGL2(F2) ∼= D3, so the only groups left to consider are Z/2, Dn for n odd
and (Z/2)2, all with char(k) = 2. These are never pro-representable, as will be shown in
the next section.

2.4 Non-pro-representable deformations

In this section we only prove the following theorem, which requires a lot of computations.
The counter-examples, showing that a versal hull is not an isomorphism are the same as
in the local case in [BC09].

Theorem 2.11. When char(k) = 2 and G ∼= Z/2, G ∼= (Z/2)2, G ∼= Dn for n ≥ 3 odd,
the deformation functor DP1,G is never pro-representable.

We �rst state the following lemma, which will be needed in the calculations.

Lemma 2.12. Consider the matrix X =

(
0 1
C 1

)
for a variable C. Then there exist

polynomials pn ∈ Z[C] such that Xn =

(
Cpn−1 pn
Cpn pn+1

)
for all positive integers n. These

polynomials satisfy p0 = 0, p1 = 1, and pn+1 = pn + Cpn−1 for all positive integers n.
For positive n, the degree of the polynomial pn is given by bn−1

2 c.
A closed form over Z[ζn] (where ζn is a primitive n-th root of unity) is given by

pn(C) =

n−1
2∏

k=1

(1 + (ζkn + ζ−kn + 2)C).

Proof. Note that we can easily de�ne the polynomials by the recurrent relation p0 = 0,
p1 = 1 and pn+1 = pn + Cpn−1 for all n > 0. It is clear that all coe�cients are positive
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in these polynomials. The �rst two statements in the lemma can now both be proven by
induction on n.

We see that p2 = 1, so it is clear that X =

(
Cp0 p1

Cp1 p2

)
. For the induction step, we

assume that Xn =

(
Cpn−1 pn
Cpn pn+1

)
for some positive n. Then we see that

Xn+1 =

(
Cpn−1 pn
Cpn pn+1

)(
0 1
C 1

)
=

(
Cpn Cpn−1 + pn
Cpn+1 Cpn + pn+1

)
=

(
Cpn pn+1

Cpn+1 pn+2

)
,

which prove the induction step.
Next we look at the degrees. For n = 1, 2 both p1, p2 have degree 0. For the induction

step, we assume that pn−1 and pn have degree respectively bn−2
2 c and b

n−1
2 c. Because

both have positive coe�cients, we compute the degree of pn+1 = pn + Cpn−1 as the
maximum of bn−1

2 c and b
n−2

2 c + 1 = bn2 c. But this maximum is clearly bn2 c, as we
wanted.

It remains to show the closed form. First, note that the constant term of pn is always
1. It is therefore enough to show that the zeroes of pn are −1

ζkn+ζ−k
n +2

. We see that C is a

zero of pn, exactly if Xn is a multiple of the identity matrix. Note that the characteristic

polynomial of

(
0 1
C 1

)
is λ2 − λ−C. Assuming for the moment that C 6= −1/4, we see

that its eigenvalues λ1, λ2 are di�erent and it has an eigenbasis. The n-th power of this
matrix has the same eigenbasis, with eigenvectors λn1 , λ

n
2 . As this n-th power must be a

multiple of the identity matrix, we �nd that λn1 = λn2 . We see that λ1/λ2 is a power of
ζn. Then

λ2 − λ− C = (λ− λ2ζ
k
n)(λ− λ2) = λ2 − (1 + ζkn)λ2λ+ ζknλ

2
2.

Equating the coe�cients yields C = −ζknλ2
2 = −ζkn

(1+ζkn)2
= −1

ζkn+ζ−k
n +2

for k 6= n/2. If we

assume that k 6= 0, these zeroes are not equal to −1/4, so this produces bn−1
2 c di�erent

roots of pn. This matches the degree of pn and therefore we �nd that closed form.

Proof of Theorem 2.11. First two remarks that simplify the computations. We have seen
in Theorem 1.29 that the deformations of P1 are trivial. Hence a deformation of (P1

k, G)
over A is isomorphic to (P1

A, G) for some G-action on P1
A. Furthermore we know that all

automorphisms of P1
A are given by Möbius transformations [MFK94, Section 0.5]. Hence

we can write all automorphisms as 2 × 2-matrices in PGL2. In the calculations we will
use the letters a, b, c, d, x, y, z, w for elements in k.

Case G ∼= Z/2 = 〈s | s2 = e〉. The proof goes in four steps: we put the action of

Z/2 in a standard form, then we calculate the tangent space, next we determine a versal
hull, and last we check that this hull is not universal.

Step 1. Let ρ : G → PGL2(k) be the action of G and write ρ(s) =

(
a b
c d

)
.

Then we have that ρ(s)2 =

(
a2 + bc b(a+ d)
c(a+ d) bc+ d2

)
. This needs to be a multiple of the
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identity matrix, so we get a2 = d2. Because the �eld k has characteristic 2, this implies
d = −a. We see right away that the top-right and bottom-left entry are now 0, so
indeed ρ(s)2 = id. Note that the determinant of ρ(s) is a2 + bc, which is therefore non-
zero. Because we work over an algebraically closed �eld, we can also extract its square
root r =

√
a2 + bc. If b = c = 0, we see that ρ(s) = id while the action was faithful.

Hence either b or c is non-zero. This means that one of the matrices A1 =

(
a+ r b
a b

)
,

A2 =

(
c a+ r
c a

)
has non-zero determinant. Their inverses (if they exist) are respectively

given by A−1
1 =

(
b b
a a+ r

)
and A−1

2 =

(
a a+ r
c c

)
. Now we easily compute

A1ρ(s)A−1
1 =

(
br2 0
br2 br2

)
=

(
1 0
1 1

)
if b 6= 0,

A2ρ(s)A−1
2 =

(
cr2 0
cr2 cr2

)
=

(
1 0
1 1

)
if c 6= 0.

In either case, we see that ρ(s) is conjugated to

(
1 0
1 1

)
=

(
1 0
1 −1

)
. From now one we

will assume that ρ(s) =

(
1 0
1 −1

)
. (Note that we could leave out the minus sign, but we

keep it because this form lifts to characteristic 0.)
Step 2. Now we calculate the tangent space. Consider a lift ρ̃ : G→ PGL2(k[ε]/ε2),

so ρ̃(s) =

(
1 + aε bε
1 + cε −1 + dε

)
. This lift still must have order 2, so we compute

ρ̃(s2) =

(
1 + bε 0

(a+ d)ε 1 + bε

)
.

We conclude that a = −d. Equivalent lifts are conjugated by an element of the form(
1 + xε yε
zε 1 + wε

)
. Computing the conjugate of ρ̃(s) we �nd

(
1 + (a+ y)ε bε

1 + (c+ w − x)ε −1− (a+ y)ε

)
.

From this we see that two lifts of ρ(s) are conjugate if and only if the top-right entry is the

same. And we also see that all lifts of ρ to k[ε]/ε2 are given by

{
ρ̃ : s 7→

(
1 bε
1 −1

)
| b ∈ k

}
.

Step 3. Given this form of the tangent space, we guess the following versal hull:

η : hW JαK −→ DP1,Z/2,

(f : W JαK→ A) 7−→
(
ρ̃ : s 7→

(
1 f(α)
1 −1

))
.
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An easy calculation shows that this lift maps s2 to the identity, hence it is a deformation.
A W -morphism f : W JαK → A maps α into mA, and is completely determined by the
image of α. This already shows that this map is an isomorphism on tangent spaces. To
prove that it is a hull, we only need that it is formally smooth. For this, consider a small
extension A′ → A, and let t generate the kernel of this map. We have to show that the
map

hW JαK(A
′)→ hW JαK(A)×DP1,Z/2(A) DP1,Z/2(A′)

is surjective. This means that we have a map f : W JαK→ A, which gives a deformation

s 7→
(

1 f(α)
1 −1

)
. We also have a lift of this to A′, write this as

(
1 + at m+ bt
1 + ct −1 + dt

)
, with

m ∈ mA mapping to f(α) ∈ mA′ . This deformation must again square to the identity.

Using that t2 = mt = 0, we compute the square

(
1 +m+ bt 0

(a+ d)t 1 +m+ bt

)
and therefore

a+ d = 0. Now we conjugate by

(
1 ct
0 1 + at

)
, this gives

(
1 ct
0 1 + at

)(
1 + at m+ bt
1 + ct −1− at

)(
1 + at −ct

0 1

)
=

(
1 + ct m+ bt
1 + ct −1− ct

)
=

(
1 m+ bt− ct
1 −1

)
.

Hence we obtain this deformation from f : W JαK → A′, sending α 7→ m+ bt− ct. This
shows the surjectivity we wanted.

Step 4. This shows that η : hW JαK → DP1,Z/2 is indeed a versal hull. If the defor-
mation functor is pro-representable, η is an isomorphism by Lemma 2.10. We will show
that this is not the case, by showing that η(k[ε]/ε3) is not injective. There are two dif-

ferent maps f : W JαK → k[ε]/ε3 yielding the deformations

(
1 ε
1 −1

)
and

(
1 ε+ ε2

1 −1

)
.

However, a quick calculation shows that these are conjugated by

(
1 + ε ε

0 1

)
. Therefore

η is not an isomorphism and DP1,Z/2 is indeed non-pro-representable.

Case G ∼= Dn = 〈r, s | rn = e, s2 = e, (rs)2 = e〉. We follow the same steps as in the
previous case. We can also recycle some of the calculations performed for s.

Step 1. We again write ρ : G→ PGL2(k) for the action of G, and we again assume

that ρ(s) =

(
1 0
1 −1

)
. Next we look at ρ(r) =

(
a b
c d

)
, then ρ(rs) =

(
a+ b −b
c+ d −d

)
.

Because rs has order two, we �nd analogous to the previous case that d = a + b. Now

assume that b = 0, then ρ(r) =

(
a 0
c a

)
=

(
1 0
c/a 1

)
. In this form we easily compute

that ρ(rn) =

(
1 0

n · c/a 1

)
. This must be the identity, so because n is odd, this means

that c = 0. But then ρ(r) is the identity, while the action of G is faithful. This means
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that b 6= 0, and by rescaling we may assume that b = 1. Now consider the matrix

A =

(
1 0
a 1

)
, then we easily see that Aρ(s)A−1 = ρ(s). When we conjugate ρ(r) by A,

we see that

Aρ(r)A−1 =

(
0 1

c− a− a2 1

)
.

Hence we may take ρ(r) =

(
0 1
C 1

)
for some C ∈ k. According to Lemma 2.12, C must

satisfy pn(C) = 0.

Step 2. Let ρ̃ be a lift of ρ to k[ε]/ε2. Then ρ̃(s) =

(
1 + a1ε b1ε
1 + c1ε −1− a1ε

)
(because

it has order 2) and ρ̃(r) =

(
a2ε 1 + b2ε

C + c2ε 1 + d2ε

)
. Now we can compute

ρ̃(rs) =

(
1 + (c1 + a2 + b2)ε −1− (a1 + b2)ε

1 + C + (a1C + c1 + c2 + d2)ε −1 + (−a1 + b1C − d2)ε

)
.

This must have order 2, so as we have seen before this implies that the top-left and
bottom-right entry add up to 0, or c1 + a2 + b2 = a1 − b1C + d2.

We now �rst conjugate ρ̃(s) and ρ̃(r) by A =

(
1 + (b1C + c1)ε 0

a2ε 1 + a1ε

)
. This

yields

Aρ̃(s)A−1 =

(
1 b1ε

1− b1Cε −1

)
, Aρ̃(r)A−1 =

(
0 1

C + (a2 + b2C + c2)ε 1

)
.

The n-th power of this conjugate of ρ̃(r) must also be the identity. Writing t = a2 +
b2C + c2, Lemma 2.12 shows that C and C + tε are both zeroes of the polynomial pn, so
we have

0 = pn(C + tε) = pn(C) + p′n(C)tε = p′n(C)tε.

However, this polynomial has bn−1
2 c distinct zeroes, so p

′
n(C) 6= 0 and we conclude that

t = 0. Hence Aρ̃A−1 =

(
0 1
C 1

)
is just the same as ρ(r).

This shows that all lifts to k[ε]/ε2 are conjugated to s 7→
(

1 bε
1− bCε −1

)
, r 7→(

0 1
C 1

)
. Furthermore, these are all not conjugated amongst themselves, because the lifts

of s are not conjugated (as in the previous case). Hence again we have a 1-dimensional
tangent space.

Step 3. Based on this form of the tangent space, we again guess a versal hull:

η : hW JαK −→ DP1,Dn
,

(f : W JαK→ A) 7−→
(
ρ̃ : s 7→

(
1 f(α)

1− f(α)C −1

)
, r 7→

(
0 1
C 1

))
.
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Note that C must be lifted to A to still satisfy pn(C) = 0. This is possible because C
lifts to W by the Henselian property of W .

A quick check again shows that s2, (sr)2, rn are mapped to the identity matrix, so
these are indeed deformations. It is also an isomorphism on tangent spaces, hence the
only thing left is to show formal smoothness. Again let A′ → A be a small extension
with kernel generated by t, let f : W JαK→ A be a morphism, and let

s 7→
(

1 + at m+ bt
1−mC + ct −1− at

)
, r 7→

(
xt 1 + yt

C + zt 1 + wt

)
be a lift of the induced deformation (so A′ 3 m 7→ f(α) ∈ A). Now sr maps to(

1− Cm+ ct+ xt+ yt −1− at− yt
a+ C − Cm+ ct+ aCt+ wt+ zt −1 + Cm− at+ bCt− wt

)
,

which must have order 2, hence c + x + y = a − bC + w. Now after conjugating by(
1 + (c+ bC)t 0

xt 1 + at

)
, we see that

s 7→
(

1 m+ bt− 2qt
1− C(m+ bt− 2qt) −1

)
, r 7→

(
0 1

C + (. . .)t 1

)
.

Because r must have order n, we see again that the the extra term in the bottom-left must

vanish, hence r 7→
(

0 1
C 1

)
. Hence this deformation arises from the map W JαK → A′

sending α to m+ bt− 2qt.
Step 4. It remains to show that η is not injective, so we consider the deformations

over k[ε]/ε3 sending s to

(
1 ε

1− Cε −1

)
and

(
1 ε+ ε2

1− C(ε+ ε2) −1

)
, and in both cases

r to

(
0 1
C 1

)
. These are conjugated by

(
1 + ε ε
Cε 1

)
, and this show indeed that η is not

an isomorphism. Hence DP1,Dn
is non-pro-representable.

Case G ∼= (Z/2)2 = 〈a, b | a2 = e, b2 = e, (ab)2 = e〉. Again, we follow the same 4
steps.

Step 1. Again write ρ : G → PGL2(k) for the action of G, and again assume

that ρ(a) =

(
1 0
1 −1

)
. Because b also has order 2, we know that ρ(b) =

(
x y
z −x

)
.

Now computing ρ(ab) yields

(
x y

x− z x+ y

)
which must have order 2. This means that

y = −2x, and we �nd that ρ(b) =

(
x −2x
z −x

)
. If x = 0, this matrix is not invertible, so

we can scale such that x = 1, and then we have ρ(b) =

(
1 −2
z −1

)
. This always gives a

faithful representation of G, as long as z is not 0 or 1.
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Step 2. We compute the tangent space, so let ρ̃ be a lift to k[ε]/ε2. Then

ρ̃(a) =

(
1 + pε qε
1 + rε −1− pε

)
, ρ̃(b) =

(
1 + sε −2 + tε
z + uε −1− sε

)
.

Now ρ̃(ab) must also have order 2, which boils down to p+ s+ qz = 2r− p− s− t. Now

we conjugate by

(
1 + (r − p)ε u+(p−r−s)z

z(z−1) ε

0 1 + u+(p−r−s)z
z(z−1) ε

)
, note that this is well-de�ned, as z is

not 0 or 1. This results in

a 7→
(

1 cε
1 −1

)
, b 7→

(
1 −2− zcε
z −1

)
.

Again, all these deformations are not conjugated, because the a's are not conjugated.
Hence there is a 1-dimensional tangent space.

Step 3. The versal deformation is now given by

η : hW JαK −→ DP1,(Z/2)2 ,

(f : W JαK→ A) 7−→
(
ρ̃ : a 7→

(
1 f(α)
1 −1

)
, b 7→

(
1 −2− zf(α)
z −1

))
.

In this versal deformation z is arbitrarily lifted to W to give a value in A.
It's again an easy check to see that a2, b2, (ab)2 are sent to the identity and hence

that it is indeed a deformation. And it is also clearly an isomorphism on tangent spaces.
So last we have to check smoothness. For this, we let A′ → A be a small extension with
kernel generated by t, let f : W JαK→ A be a morphism, and let

a 7→
(

1 + ct m+ dt
1 + et −1− ct

)
, b 7→

(
1 + ft −2− zf(α) + gt
z + ht −1− ft

)
be a lift of the induced deformation (with A′ 3 m 7→ f(α) ∈ A). We see that ab maps to(

1 +mz + (c+ f + dz)t −2−m−mz + (−2c− d+ g)t
1− z + (e+ f − h− cz)t −1−mz + (c− 2e+ f + g)t

)
,

which must have order 2. Therefore we �nd that c + f + dz = 2e − c − f − g. Now we

conjugate by

(
1 + (e− c)t h+(c−e−f)z

z(z−1) t

0 1 + h+(c−e−f)z
z(z−1) t

)
. Under this conjugation we �nd that

a 7→
(

1 m+ ut
1 −1

)
, b 7→

(
1 −2− zut
z −1

)
,

for some u ∈ k. We see this comes from the morphism f ′ : W JαK → A′, sending
α 7→ m+ ut. We conclude that η is étale.

Step 4. It again remains to exhibit two equivalent deformations that come from
di�erent maps in HomW (W JαK,−). For this we take the ring A = W/16 of characteristic
16, and we consider the deformations coming from the mapsW JαK→ A sending α 7→ −2

and α 7→ 6. These deformation are conjugated by

(
5− 4z(1− z) −4− 4z(1− z)

2z(1− z) 1

)
.
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2.5 Genus 1 curves

In this case, the approaches of the previous sections don't work. It might be that the
curve with the group action has in�nitesimal automorphisms, in which case we cannot
apply Lemma 2.6.

The idea is that curves of genus 1 have the structure of an elliptic curve (once we have
chosen a point as identity) and therefore admit a group structure. This group structure
allows one to construct in�nitesimal automorphisms by �adding an in�nitesimal point�.
These automorphisms will disappear if we consider deformations of triples (X,G, p) where
p is a �xed k-point of X. Therefore, if we can prove that (X,G) and (X,G, p) have the
same deformations, we might still obtain pro-representability. Let us now �rst look at
the deformation functor of such triple.

De�nition 2.13. Given a curve X, a group action of G on X, and a k-point p of X. A
deformation of the triple (X,G, p) over A ∈ C is a deformation XA of X over A together
with a group action of G such that ι : X → XA is G-equivariant, and an A-point pA that
lies over the point p of X.

An isomorphism of deformations is an A-automorphism that is compatible with the
the inclusion of X, the group action, and the chosen points pA. This de�nes the defor-
mation functor DX,G,p.

For these deformation we can de�ne automorphism groups AutA,G,pA(XA/XA′) just as
in De�nition 2.4 such that they also �x the point pA. In this case, we have the following
characterisation for these automorphism groups over small extensions.

Lemma 2.14. Let X be a curve with a group action of G, and let p be a k-point. Let
A′ → A be a small extension in C and XA′, XA be deformations of the triple (X,G, p).
Then we have AutA′,G,pA′ (XA′/XA) ∼= H0(X, TX(−p))G. Again, we call this the group of
in�nitesimal automorphisms for the triple (X,G, p).

Proof. Just as in the proof for Lemma 2.5, we prove the isomorphism by considering
a�ne opens of XA′ . For the opens that do not contain the point pA, the same proof
holds. For an open U that contains the point pA, we will prove that the automorphisms
of this open correspond to sections of TX(−p) over this open.

We recycle the notation of the proof for Lemma 2.5, using B, BA′ and BA for the
regular functions of X, XA′ and XA over U . We have already seen that AutA′(BA′/BA) ∼=
TX(U) holds. Now we look what happens when we want to preserve the point pA′ . This
point corresponds to a map pA′ : BA′ → A′ that commutes with the map p : B → k.

Let θ be an automorphism of AutA′,pA′ (BA′/BA), then it can be written as θ(x) =
x+t·d(x) where d : BA′ → B is an A′-derivation. This automorphism must be compatible
with the point pA′ , so we must have that pA′(x) = pA′(θ(x)). Writing out gives pA′(x) =
pA′(x)+pA′(t·d(x)) = pA′(x)+t·p(d(x)), which means that p(d(x)) = 0 for every x ∈ BA′ .
In other words, the derivation must vanish at the point p, which corresponds with a
section of TX(−p). Hence we �nd that AutA′,pA′ (BA′/BA) ∼= TX(−p)(U), and gluing
these isomorphisms yields AutA′,pA′ (XA′/XA) ∼= H0(X, TX(−p)). This isomorphism is
G-equivariant, hence we obtain that AutA′,G,pA′ (XA′/XA) ∼= H0(X, TX(−p))G.
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Proposition 2.15. Let X be a curve of genus 1, G a group which acts faithfully on X,
and p a point on X. Then the deformation functor DX,G,p is pro-representable.

Proof. Because X has genus 1, the sheaf TX(−p) has degree −1 and therefore the coho-
mology H0(X, TX(−p))G is trivial. This implies by Lemma 2.14 that AutA′,G,pA′ (XA′/XA)
is trivial.

We are now almost in the situation to apply Lemma 2.6, but our deformations also
include a point on the curve X. However, the proof can easily be adapted by �nding a
point on the �bre sum deformation, and checking that the proof of unicity goes the same
when all deformations are pointed. With these adaptations we conclude that DX,G,p is
pro-representable.

Now follows an attempt at proving DX,G is pro-representable.

Attempted proof at pro-representability of DX,G. In the case at hand, the tangent sheaf
TX is isomorphic to the structure sheaf, so H0(X, TX) has dimension 1. Now we consider
the following two cases: G acts trivially on H0(X, TX), or not. In the second case, we
see that H0(X, TX)G is a strict subspace of the 1-dimensional H0(X, TX), so it is trivial.
Hence Lemma 2.6 applies and DX,G is pro-representable.

Now we may assume that G acts trivially on H0(X, TX). Because we work over
an algebraically closed �eld k, we know that X has a k-point p. Then we will prove
that DX,G,p and DX,G are isomorphic. There is an obvious natural transformation η :
DX,G,p → DX,G, which maps a deformation of (X,G, p) to a deformation of (X,G) by
forgetting the lift of p. We prove that it is surjective and attempt to prove that it is
injective, from which the isomorphism would follow.

First we prove surjectivity, so take a deformation XA of the pair (X,G). First of all,
the morphism XA → Spec(A) is �at and the only geometric �bre above Spec(k) is X,
which is regular. Therefore the morphism is smooth [Har77, Theorem III.10.2], and also
formally smooth. Now the point p gives a morphism Spec(k)

p→ X ↪→ XA that �ts in the
following diagram of solid arrows:

Spec(k) XA

Spec(A) Spec(A)

.

The map Spec(k) ↪→ Spec(A) factors into small extension where each kernel has square
zero. Then the formal smoothness of XA → Spec(A) implies that there is a lift pA :
Spec(A)→ XA (dotted arrow in the diagram). Now XA, pA is a deformation of the triple
(X,G, p) and η(XA, pA) = XA. Hence η is indeed surjective.

For injectivity, suppose we have a deformation XA of X over A, with two A-points
pA, p′A lifting p. Because the map XA → Spec(A) is smooth, and the geometric �bre X
has genus 1, the scheme XA also has a group structure over A with pA as the identity
[KM85]. With this group structure, there is an A-automorphism of the scheme XA that
translates p′A to pA. Call this translation τ , then we have that τp′A = pA. To check that
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τ is also an automorphism of the deformation XA, we have to check that it is the identity
on X, and that it is compatible with the group action of G on XA.

For the �rst, consider the induced automorphism τ̃ of X. If we denote the inclusions
ιk : Spec(k) ↪→ Spec(A), ιX : X ↪→ XA, then we see that

ιXp = pAιk = τp′Aιk = τιXp = ιX τ̃ p.

Because ιX is mono, we see that p = τ̃ p. Now we see that τ̃ is a translation of X that
sends p to itself, hence it must be an isomorphism.

To complete the proof of injectivity, one still needs to check that τ commutes with
the group action of G on the deformation XA.

The last step, showing that this translation τ commutes with the lifted group action
of G seems impossible to prove. If G consists of only translations, and the lifted group
actions are also translation, they will commute. So we are reduced to the following
question:

Question 2.16. Let τ : X → X be a translation of an elliptic curve X, and let τA :
XA → XA be an automorphism of the deformation XA that restricts to τ . Must τA be a
translation of the elliptic curve XA?

If this is true, the above approach deals with all cases where G contains only trans-
lations. But if G has some other automorphisms, its lifts will not be translations and
there should be no reason that the lifted group action commutes with the translation τ .

This means that the approach will fail if the curve X has an automorphism that is not
a translation, but which acts trivially on H0(X, TX). We will now determine the curves
having such an automorphism. Because we can always choose a point O on the curve
X, we may assume that (X,O) is an elliptic curve. Now if ϕ is such an automorphism
of X, we can consider the morphism P 7→ ϕ(P )− P from X to X. Because it is a map
between smooth projective curves, it is either constant or surjective. If it is constant, ϕ
is a translation. If it is surjective, there will be a point Q such that ϕ(Q)−Q = O, i.e.
ϕ(Q) = Q. Hence choosing Q is the identity makes ϕ an automorphism of the elliptic
curve (X,Q). We are interested in these automorphisms.

Lemma 2.17. Let (X,O) be an elliptic curve over an algebraically closed �eld k. If
(X,O) has a non-trivial automorphism acting trivially on H0(X, TX), we are in one of
the following cases:

• char(k) = 3, X is isomorphic to the curve y2 = x3 − x, and the automorphism is
given by (x, y) 7→ (x+1, y) or (x, y) 7→ (x+2, y). The corresponding automorphism
group is Z/3.
• char(k) = 2, X is isomorphic to the curve y2 + xy = x3 + c for some c ∈ k×, and
the automorphism is given by (x, y) 7→ (x, y+x). The corresponding automorphism
group is Z/2.
• char(k) = 2, X is isomorphic to the curve y2 + y = x3, and the automorphism is
given by (x, y) 7→ (x+ s2, y + sx+ t) for s, t ∈ k satisfying s4 = s and t2 + t = s3.
The corresponding automorphism group is the quaternion group Q8.
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NB: we only give the equation on an a�ne part. The actual elliptic curve is its closure
in P2, with the unique point (0 : 1 : 0) on the line at in�nity being the identity.

Proof. We write the elliptic curve (X,O) in Weierstrass form. When char(k) 6= 2, 3 we
can even take the form y2 = x3 + Ax + B. By the isomorphism TX ∼= ΩX , the global
section of the tangent sheaf corresponds to the global 1-form dx/y (called the invariant
di�erential in [Sil09]). So we are looking for automorphisms that preserve this 1-form.
Any automorphism is of the form (x, y) 7→ (u2x, u3y) (see [Sil09, Proposition III.3.1]).
However, this maps dx/y 7→ u−1dx/y and this action is trivial if and only if u = 1. So
in this cases, only the identity acts trivially on H0(X, TX).

For the char(k) = 2, 3 cases, we use the normalized forms of [Sil09, Proposition
A.1.1] and we consider the cases one by one. (Note there is a small error: in the case
charK = 2 and j = 0, the discriminant must be a4

3.) Proposition A.1.2 even gives all
automorphisms. For char(k) = 3 with j-invariant j(X,O) 6= 0, we have the Weierstrass
form y2 = x3 + a2x

2 + a6. Every automorphism is of the form (x, y) 7→ (u2x, u3y) and
this does not preserve the 1-form dx/y unless u = 1. For char(k) = 3, j(X,O) = 0 we
see that (X,O) is isomorphic to y2 = x3 − x because they are elliptic curves over an
algebraically closed �eld with the same j-invariant. The automorphisms of this curve
are given by (x, y) 7→ (u2x + r, u3y). Such an automorphism acts in the global 1-form
as dx/y 7→ u−1dx/y, so we must have u = 1. Further the r must satisfy r3 = r, so
r = 0, 1, 2. This gives the �rst curve with automorphism group Z/3.

For char(k) = 2, j(X,O) 6= 0, we have the Weierstrass form y2 +xy = x3 + a2x
2 +a6

with j-invariant 1/a6. Because the j-invariant determines the isomorphism class of an
elliptic curve over an algebraically closed �eld, we may assume that a2 = 0. The only
non-trivial automorphism is (x, y) 7→ (x, y + x), and this preserves the global 1-form
dx/x. These yield the curves of the second case with automorphism group Z/2.

For char(k) = 2, j(X,O) = 0, we see that (X,O) is isomorphic to y2 + y = x3

because both have j-invariant 0. Every automorphism is of the form (x, y) 7→ (u2x +
s2, u3y+u2sx+ t). The global 1-form is in this case given by dx, and the automorphism
acts trivial if and only if u = 1. Further the automorphism must satisfy s4 = s and
t2 + t = s6 = s3. This gives the curve of the third case and an automorphism group of
order 8. All automorphisms with s 6= 0 have order 4, so the automorphism group is the
quaternion group Q8.

Even if the answer to Question 2.16 is yes, we cannot deal with this curves by the
`�xing a point-trick'. Going to a local deformation as in Section 2.3 also seems unfruitful,
because the method assumed a weakly rami�ed local group action. For the �rst and third
case this might not be the case, as these curves are not ordinary [CK03]. For the second
case, going to the local group action is useless as we know that it is non-pro-representable.
It seems therefore that a new approach is needed to determine the pro-representability
of these deformation functors.



Bibliography

[BM00] José Bertin and Ariane Mézard. �Déformations formelles des revêtements
sauvagement rami�és de courbes algébriques�. In: Inventiones mathematicae
141.1 (2000), pp. 195�238. doi: 10.1007/s002220000071.

[Bys09a] Jakub Byszewski. �Cohomological aspects of equivariant deformation theory�.
PhD thesis. Utrecht University, 2009. isbn: 978-90-393-5069-0.

[Bys09b] Jakub Byszewski. �Pro-representability of equivariant deformation functors�.
Un�nished draft. 2009.

[BC09] Jakub Byszewski and Gunther Cornelissen. �Which weakly rami�ed group ac-
tions admit a universal formal deformation?� In: Annales de l'institut Fourier
59.3 (2009), pp. 877�902. doi: 10.5802/aif.2450.

[CK03] Gunther Cornelissen and Fumiharu Kato. �Equivariant deformation of Mum-
ford curves and of ordinary curves in positive characteristic�. In: Duke Math.
J. 116.3 (2003), pp. 431�470. doi: 10.1215/S0012-7094-03-11632-4.

[GD60] Alexandre Grothendieck and Jean Dieudonné. Éléments de géométrie algé-
brique: I. Le langage des schémas. Vol. 4. Publications Mathématiques de
l'IHÉS, 1960, pp. 5�228. url: http://www.numdam.org/item?id=PMIHES_
1960__4__5_0.

[Har77] Robin Hartshorne. Algebraic geometry. Vol. 52. Graduate Texts in Mathemat-
ics. Springer-Verlag, New York-Heidelberg, 1977. isbn: 0-387-90244-9. doi:
10.1007/978-1-4757-3849-0.

[Har10] Robin Hartshorne. Deformation theory. Vol. 257. Graduate Texts in Mathe-
matics. Springer, New York, 2010. isbn: 978-1-4419-1595-5. doi: 10.1007/
978-1-4419-1596-2.

[Haz12] Michiel Hazewinkel. Formal groups and applications. Corrected reprint of the
1978 original. AMS Chelsea Publishing, Providence, RI, 2012. isbn: 978-0-
8218-5349-8. doi: 10.1090/chel/375.

[KM85] Nicholas M. Katz and Barry Mazur. Arithmetic moduli of elliptic curves.
Vol. 108. Annals of Mathematics Studies. Princeton University Press, Prince-
ton, NJ, 1985. isbn: 0-691-08349-5. doi: 10.1515/9781400881710.

36

https://doi.org/10.1007/s002220000071
https://doi.org/10.5802/aif.2450
https://doi.org/10.1215/S0012-7094-03-11632-4
http://www.numdam.org/item?id=PMIHES_1960__4__5_0
http://www.numdam.org/item?id=PMIHES_1960__4__5_0
https://doi.org/10.1007/978-1-4757-3849-0
https://doi.org/10.1007/978-1-4419-1596-2
https://doi.org/10.1007/978-1-4419-1596-2
https://doi.org/10.1090/chel/375
https://doi.org/10.1515/9781400881710


BIBLIOGRAPHY 37

[Mat86] Hideyuki Matsumura. Commutative ring theory. Vol. 8. Cambridge Studies
in Advanced Mathematics. Translated from the Japanese by M. Reid. Cam-
bridge University Press, Cambridge, 1986. isbn: 0-521-25916-9. doi: 10.1017/
cbo9781139171762.

[MFK94] D. Mumford, J. Fogarty, and F. Kirwan. Geometric invariant theory. 3rd ed.
Vol. 34. Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in
Mathematics and Related Areas (2)]. Springer-Verlag, Berlin, 1994. isbn: 3-
540-56963-4. doi: 10.1007/978-3-642-57916-5.

[Nag75] Masayoshi Nagata. Local rings. Interscience tracts in pure and applied math-
ematics. Robert E. Krieger Publishing Co., Huntington, N.Y., 1975. isbn:
9780882752280. url: https://books.google.nl/books?id=QmQPAQAAMAAJ.

[Rib95] Kenneth A. Ribet. �Galois representations and modular forms�. In: Bulletin of
the American Mathematical Society 32.4 (1995), pp. 375�403. doi: 10.1090/
s0273-0979-1995-00616-6.

[Rie57] B. Riemann. �Theorie der Abel'schen Functionen�. In: J. Reine Angew. Math.
54 (1857), pp. 115�155. issn: 0075-4102. doi: 10.1515/crll.1857.54.115.

[Sch68] Michael Schlessinger. �Functors of Artin rings�. In: Transactions of the Amer-
ican Mathematical Society 130.2 (1968), pp. 208�222. doi: 10.2307/1994967.

[Ser06] Edoardo Sernesi. Deformations of algebraic schemes. Vol. 334. Grundlehren
der Mathematischen Wissenschaften [Fundamental Principles of Mathemat-
ical Sciences]. Springer-Verlag, Berlin, 2006. isbn: 978-3-540-30608-5; 3-540-
30608-0. doi: 10.1007/978-3-540-30615-3.

[Sil09] Joseph H. Silverman. The arithmetic of elliptic curves. Second. Vol. 106. Grad-
uate Texts in Mathematics. Springer, Dordrecht, 2009. isbn: 978-0-387-09493-
9. doi: 10.1007/978-0-387-09494-6. Errata: https://www.math.brown.
edu/~jhs/AEC/AECErrata.pdf.

[Sta18] The Stacks project authors. The Stacks project. https://stacks.math.
columbia.edu. 2018.

[VM80] Robert C. Valentini and Manohar L. Madan. �A Hauptsatz of L. E. Dick-
son and Artin-Schreier extensions.� In: Journal für die reine und angewandte
Mathematik 318 (1980), pp. 156�177. url: http://eudml.org/doc/152272.

https://doi.org/10.1017/cbo9781139171762
https://doi.org/10.1017/cbo9781139171762
https://doi.org/10.1007/978-3-642-57916-5
https://books.google.nl/books?id=QmQPAQAAMAAJ
https://doi.org/10.1090/s0273-0979-1995-00616-6
https://doi.org/10.1090/s0273-0979-1995-00616-6
https://doi.org/10.1515/crll.1857.54.115
https://doi.org/10.2307/1994967
https://doi.org/10.1007/978-3-540-30615-3
https://doi.org/10.1007/978-0-387-09494-6
https://www.math.brown.edu/~jhs/AEC/AECErrata.pdf
https://www.math.brown.edu/~jhs/AEC/AECErrata.pdf
https://stacks.math.columbia.edu
https://stacks.math.columbia.edu
http://eudml.org/doc/152272

	Abstract
	Acknowledgements
	Introduction
	Deformation theory
	Artinian local rings
	Deformations of schemes
	Functors on C
	Deformation functors and pro-representability

	Group actions on curves
	Deformation problem
	Curves with genus greater than 1
	Pro-representable deformations of genus 0 curves
	Non-pro-representable deformations
	Genus 1 curves


