
Utrecht University

A Department of Information and Computing
Sciences Master’s Thesis

Sensitivity Analysis Based

Feature-Guided Evolution for

Symbolic Regression

Author:
S. de Vries

Supervisors:
Dr. Ir. D. Thierens
Dr. A.J. Feelders

June 7, 2018

Abstract

The problem of Symbolic Regression (SR) is to find a mathematical expression
which best models a given dataset. Research into SR primarily takes place in
Genetic Programming (GP), with the evolutionary algorithm called Standard
GP (SGP) at its basis. In this work, we set out to improve upon SGP, using the
Sensitivity-based Genetic Programming (SensGP) algorithm.

A thorough examination of SR literature in the field of GP led to the
conclusion that algorithms which are improvements of SGP frequently enhance
the search process. This is accomplished by guiding the evolution by using
additional information about parts of solutions, called features. By conducting
comparison experiments between algorithms from the literature, we confirmed
this conclusion. As a result, the feature-guided evolutionary process was chosen
to be the basis for SensGP.

At the core of the SensGP algorithm lies the use of sensitivity analysis to
measure feature importance. The Mean Squared Error (MSE) of a feature is
measured on the original data and on the data for which selected variables have
had their values shuffled. The difference in these MSE values is used to calculate
a feature importance score, which is later used to reintroduce these features into
the population.

In addition to the basic SensGP algorithm, we experimented with two vari-
ants of SensGP: a Model Dependent approach, in which only the models with
the lowest MSE are used for feature importance calculation, and a Variable
Importance approach, in which feature importance is measured by the sensitivity
of the model they appear in to the variables contained in the feature.

These algorithms are compared to SGP in a number of configurations. Al-
though these experiments did not result in a statistically significant difference in
model quality between SGP and SensGP, we present a number of ways in which
SensGP might be further refined. Further research will have to establish if these
adjustments can make SensGP a useful addition to the variety of SR algorithms
in the field of GP.

i

Abbreviations

BP - Behavioural Programming

CART - Classification and Regression Trees

CCD - Cyclical Coordinate Descent

EA - Evolutionary Algorithm

EFS - Evolutionary Feature Synthesis

ERC - Ephemeral Random Constant

FFNN - Feed Forward Neural Network

FFX - Fast Function Extraction

GOMEA - Gene-pool Optimal Mixing Evolutionary Algorithm

GP - Genetic Programming

LASSO - Least Absolute Shrinkage and Selection Operator

IMS - Interleaved Multistart Scheme

ML - Machine Learning

ModelDep - Model Dependent Sensitivity-based Genetic Programming

MRGP - Multiple Regression Genetic Programming

MSE - Mean Squared Error

OLS - Ordinary Least Squares

Recalc - RecalculateScore

SensGP - Sensitivity-based Genetic Programming

SL - Statistical Learning

SR - Symbolic Regression

UDV - Uniform Depth Variation

VarImp - Variable Importance Sensitivity-based Genetic Programming

VM - Virtual Machine

ii

Acknowledgements

I would like to express my gratitude to Dirk Thierens, by whom I was introduced
to Evolutionary Algorithms in the first place. His guidance this past year has
played an important role in the development of this work.

I wish to additionally offer my special thanks to Marco Virgolin, who has
been willing to offer assistance throughout the research. Being able to make
use of his code as a basis to expand upon, as well as being able to count on his
constructive criticism and advice have been of great value.

iii

Contents

1 Introduction 1
1.1 Relevance of the Research . 1
1.2 Symbolic Regression . 1
1.3 Objectives . 2
1.4 Outline . 2

2 Background Theory 3
2.1 Statistical Learning . 3
2.2 Regression . 3
2.3 Symbolic Regression . 4
2.4 Genetic Programming . 5
2.5 Variable Selection . 7

2.5.1 Filters . 8
2.5.2 Wrappers . 9
2.5.3 Embedded Methods . 9

2.6 Machine Learning Techniques . 9
2.6.1 Ridge Regression . 9
2.6.2 LASSO . 10
2.6.3 Elastic Net . 11
2.6.4 Cyclical Coordinate Descent 12
2.6.5 Fast Function Extraction 12

3 Extensions of Traditional GP 14
3.1 Non Feature-Based . 14

3.1.1 GP with Fast Function Extraction 14
3.1.2 GP with Gene-Pool Optimal Mixing Evolutionary Algorithm 14

3.2 Feature-Based . 16
3.2.1 Multiple Regression . 16
3.2.2 Behavioural Programming 17
3.2.3 Evolutionary Feature Synthesis 18
3.2.4 Embedded Feature Construction 21

3.3 Feature Importance . 23
3.3.1 Sensitivity-Like Analysis for Feature Selection in GP . . . 23

3.4 Recap of Techniques Discussed 25

4 Problem Description 26
4.1 Research Questions . 26

5 Implementation 28
5.1 Software . 28
5.2 Hardware . 28
5.3 Description of Datasets . 29
5.4 Statistical Test . 32
5.5 Inclusion of Constants . 32

iv

Contents

6 Comparative Study 33
6.1 Experimental Details . 33
6.2 Results . 34
6.3 Analysis of Evaluations . 39
6.4 Discussion . 40

7 Sensitivity-Based Approach 42
7.1 Basic Concept . 43
7.2 Sensitivity-Based Genetic Programming 44

7.2.1 Algorithmic Details . 44
7.2.2 Parameters . 47
7.2.3 Additional Options . 54
7.2.4 Experiments . 59

7.3 Model Dependent . 60
7.3.1 Algorithmic Details . 60
7.3.2 Experiments . 60

7.4 Variable Importance . 63
7.4.1 Algorithmic Details . 63
7.4.2 Experiments . 64

7.5 Overall Comparison . 66
7.6 Discussion . 71

8 Conclusion 73

9 Future Work 74
9.1 Commutative Filtering . 74
9.2 Constants . 74
9.3 Importance Analysis . 75
9.4 Weighting Importance by MSE 75
9.5 Deterministic Mutation Location Selection 76

Bibliography 77

A Tables Containing the Overall Comparison Results 81

v

1 Introduction

1.1 Relevance of the Research

Due to the decreasing costs of computer technology, its use has grown exponen-
tially over the past decades. Almost everyone has a mobile phone nowadays
and even ordinary household appliances are being connected to the internet, to
allow for remote control by their users. This enormous increase of computational
power also gives rise to a growth in the amount of data being collected. Our
location is available through our phones, whenever we use public transport we
have to check-in and even when shopping for groceries, the items which we buy
are often registered, so that a store may use this data to improve its marketing
strategy. Similarly, to be competitive in industry, processes must be tuned to
optimality using all available sensory information. The above-mentioned give
rise to a growing interest in predictive data analysis: more data is being collected
and to remain competitive this data needs to be used to improve productivity.

1.2 Symbolic Regression

The field of Statistical Learning (SL) provides a number of tools for analysis of
large datasets, with which predictive functions can be constructed. Of these,
especially regression analysis, the estimation of the relationship among variables,
is of interest to us. The focus of this thesis in particular is Symbolic Regression
(SR), a type of regression analysis in which a mathematical model is sought which
best describes a dataset. Whereas in the standard regression problem, good
values of the coefficients within a given model structure have to be determined to
find a good fit, in SR this model structure is not given or unknown beforehand.

Symbolic Regression as an object of study resides mainly within the field of
Genetic Programming (GP). In this subfield of Evolutionary Algorithms (EA),
a population of programs (solutions) is evolved within the solution space of
a particular problem, in search of a solution as close to optimal as possible.
An optimal program here is defined as a program which achieves the best
score possible on a predefined fitness function. In GP, after a population of
programs has been evaluated against this fitness criterion, a selection process
takes place. From the selected programs of the population of the previous
iteration of the algorithm, new solutions are instantiated through mutation, the
random alteration of a solution, and crossover, the exchange of subprograms
between solutions.

In recent years, the most promising techniques in SR have strayed from the
traditional approach in which selection, crossover and mutation by themselves
are deemed sufficient to guide the evolutionary algorithm to good solutions.
In these new methods, more emphasis is put on the closer examination of the
individual solutions, looking at which parts of a program, called features, cause
it to perform well. The information about these features is then used in a variety
of ways to enhance the traditional evolutionary process.

1

Introduction

1.3 Objectives

The main objective of this work is to design and test a new method for SR. The
ambition is for this method to improve upon SGP.

In order to accomplish this goal, we conduct research into different methods
from the literature, comparing them experimentally and studying which principles
behind these techniques might be used effectively to develop novel SR methods.

Using the knowledge obtained from this study, we design three methods,
Senstivity-based GP (SensGP), Model Dependent SensGP and Variable Im-
portance SensGP, and compare these on a number of datasets to SGP. This
comparison will enable us to test if our objective has been accomplished.

1.4 Outline

In the following sections, we first present an overview of the relevant literature
in Section 2, starting with SL and regression, followed by going specifically into
SR. Genetic Programming and its connection to SR are discussed, as well as the
importance of variable and feature selection. Relevant techniques from the wider
domain of Machine Learning will be discussed thereafter. Next, we shed some
light on the more recent developments in the field of SGP in Section 3, placing
emphasis on techniques in which the features play a central role. Additional
attention is directed towards how these features might be ranked and used to
guide the evolution.

Thereafter, we will go into more detail about our own research, posing
the research questions we set out to answer in Section 4. Details about the
implementation are discussed in Section 5. This includes descriptions of the soft-
and hardware used as well as descriptions of the datasets used in our experiments.
The statistical test we use and how constants are handled are discussed here as
well.

The next part of the thesis is focused on experimentation. First, a com-
parison is made between techniques from the literature in Section 6. Then,
experimentation with a new algorithm, named Sensitivity-based GP (SensGP),
is presented in Section 7. An overview of the complete results can be found in
Section 8 and finally, suggestions for future research are presented in Section 9.

2

2 Background Theory

In this section, we review the theory relevant to the research described in this
thesis. Statistical Learning, the domain in which this research takes place, is
described in Section 2.1. Regression is explained briefly in Section 2.2, after
which we move on to Symbolic Regression in Section 2.3. Genetic Programming,
the method which is primarily used for Symbolic Regression, is discussed in
Section 2.4. In Section 2.5 variable selection is expanded upon, as it is of
great importance to feature selection. In Section 2.6, three Machine Learning
techniques are discussed, which are used by some of the algorithms we examine
in Section 3.

2.1 Statistical Learning

Statistical Learning (SL) stems from the field of statistics and consists of a
set of tools which can be used to model data. These models serve to further
our understanding of the dataset or to enable us to make predictions. With
recent advances in computer science, the field has become of great interest. The
term SL is often used interchangeably with the term Machine Learning (ML).
Although distinctions between the fields can be made based on their underlying
assumptions and fields of origin [35], these are not clearly agreed upon by the
science community.

In SL, a two different types of learning can be distinguished: Supervised- and
Unsupervised Learning. In essence, supervised SL can be seen as the estimation
of a true underlying model or function F (X) of the data such that:

Y = F (X) + ε, (1)

with Y the response or dependent variable, X = {x1, x2, ..xn} the input or
independent variable(s) and ε the error or noise term, which consists of factors
not included in F (X) [21].

In Unsupervised Learning, there is no predefined response variable Y , and
the goal is not to learn an input-output relationship, but rather to learn an
underlying data structure or relationships among variables. In this work, we are
only interested in Supervised Learning.

2.2 Regression

As previously stated, a Supervised Learning problem has a response variable
Y for which it searches a model based on the problem inputs. When Y is a
quantitative variable, i.e. its domain is (ordered) numerical, the problem is
referred to as regression problem. If its domain consists of a number of different
classes, it is called a classification problem.

Regression first made its appearance in the early 1800s, where the method
of (Ordinary) Least Squares (OLS) was discussed in a paper by Legendre and
Gauss. This was the first occurrence of what is presently known as linear
regression. Over the years, the approach has been extended to techniques such
as logistic regression and later on generalized linear models. From there, non-
linear approaches started to appear, like regression trees, and with advances in
computational power came techniques the field of ML.

3

Background Theory

In ordinary regression, a predefined model structure is imposed on the function
F (X) by assumption. This model consists of terms depending on the input
variables, multiplied by parameters βi. The coefficients in vector β will have
to be estimated, which is called training or fitting the model. There exist a
number of methods for fitting the model, with the most common one being the
aforementioned OLS approach.

In OLS, the Mean Squared Error (MSE) of the model estimate f̂(Xj) is
minimized with respect to the coefficients βi. The MSE is calculated as:

MSE =
1

k
Σkj=1(Yj − f̂(Xj))

2, (2)

where k is the number of data records in the data set, Yj is the value of Y
for the jth data record and Xj are the values for all variables xi in X for the
jth data record. The MSE is used throughout this thesis as a measure of model
quality.

2.3 Symbolic Regression

A major drawback of ordinary regression is having to choose the functional form
of the model. The model structure is often not known exactly beforehand and
thus has to be estimated, which can result in poor model performance if the
chosen structure differs significantly from the true problem structure.

This is where SR attempts to make a difference: not only the coefficients are
tuned to make a function fit the data, the functional form is also discovered in
SR. According to Koza [26] the first application of the technique was around 1960
by multiple researchers, among whom Westervelt [44]. Symbolic Regression has
been studied ever since and is presently being used in industry, with applications
like Eureqa [11] becoming increasingly popular.

One of the challenges in SR comes from the fact that with unlimited freedom
in the construction of a model, any dataset can be perfectly fit. Such a fit can
be made by using a polynomial of degree equal to the number of data points
minus one and applying the OLS method. While this might seem like a good
characteristic, such models will likely suffer from overfitting, meaning a model is
tuned to represent the training data to such an extent that it starts losing its
predictive value of the true model F (X) in order to fit the training data better.
In doing so, the ability of a model to generalize to unseen (test) data diminishes.

In regression, while accuracy is the leading measure in selecting a good model,
when two models are comparable in quality, the simpler model is preferred,
due to the Occam’s Razor principle. This principle states that when there are
multiple solutions to a problem, the least complex should be favoured, as it
makes the fewest assumptions and can thus be more easily tested.

As mentioned before, by increasing the complexity of a model, its accuracy
can be improved upon up to an arbitrarily small distance from a perfect fit on
any given dataset. To measure the magnitude of this overfitting, a dataset is
usually split into two distinct parts, the training set and the test set. The model
is learned on the training set and then tested on the test set. The difference in
size of the model error is an indication of the amount of overfitting that occurred.

One way to deal with this complexity versus accuracy dilemma is to employ
a technique called Pareto-GP. This technique keeps an archive in addition to the
population, in which for each different complexity level defined, the individual

4

Background Theory

with the best fitness score is stored. The archive is used in combination with
the current population to generate a new population, and the archive is updated
if any of the newly generated individuals outperforms an archive member of
the same complexity level. The output of the program is the entire archive
instead of a single solution, allowing the opportunity for an expert to determine
which solution provides the optimal complexity-accuracy balance. This method
is called Pareto-GP, as the archive can be seen as a Pareto optimal front in the
complexity-accuracy space. A more detailed overview of this method can be
found in (Vladislavleva) [41].

Symbolic regression is the main focus of this work. We will study the
technique from the field of GP (see section 2.4), as most of the SR related
research takes place within the field. Emphasis will be on feature extraction (see
Section 2.5) and how these features might be used to guide the evolutionary
process.

2.4 Genetic Programming

As mentioned, GP can be seen as the home field of SR, with papers on SR
outside of the field being scarce (but not absent, see [31]). The reason for this is
that the problem was first explored in this context and the tree structure used
in GP is very suitable for SR [26]. In this thesis as well, evolutionary techniques
are used to study SR, and in the following we first explain the basics of an
Evolutionary Algorithm (EA) and then look at GP in relation to SR.

At the start of an EA, a population of solutions to a predefined problem is
initialized. This problem is characterized by its fitness function, a function
which converts a solution to a fitness score, used to quantify how well a solution
performs on the problem. This population of solutions is then evolved together
by evolutionary operators, in hopes of improving the population each generation
(iteration) of the algorithm.

This generational loop consists of roughly the same steps for every EA [43]:

1. Fitness evaluation of individuals in the population. The solutions are
tested according to a predefined fitness function (in SR this is commonly
MSE).

2. Selection of individuals for genetic manipulation. This can be done in
multiple ways, e.g. tournament selection, ranked-based selection or fitness
proportional selection.

3. Genetic operations to produce a new generation: the reproduction operator
takes an individual from the parent generation and places it into the new
generation unaltered, allowing good individuals to survive in the population.
The mutation operator takes a single individual as input and modifies it
according to the mutation strategy used. the crossover operator takes two
individuals and combines or mixes them in a predefined manner, resulting
in one or more new solutions.

These steps are repeated until a termination criterion such as a time limit or a
predetermined fitness value threshold is met.

5

Background Theory

In GP, the solutions in a population are more specifically called programs,
and the first successful evolution of programs was presented by Forsyth [13]
in 1981, whose work was extended to its current representation by Cramer et
al. [8] through the introduction of a tree-like structure to GP. Interestingly, the
application discussed here was the evolution of multiplication functions with two
inputs and a single output variable, showing a remarkable relation to SR.

In the years to follow, the technique has been further expanded upon. As
mentioned by Koza [26], many different kinds of seemingly unrelated problems
can be cast into a problem of program discovery, as a program can implement
any computable function. In its most basic form, however, all GP algorithms
share a couple of properties [4], which we will describe in the following.

A GP program is assembled from two types of primitives:

• Terminals, which are the problem inputs as well as any constants and
zero-argument functions with side-effects.

• Functions, including statements and operators with one or more arguments.

The choice of exactly which functions and terminals are allowed in the evolution
is crucial and should be made according to the problem at hand, as a solution
can only be found within the space spanned by these primitives.

To form an executable program, these primitives have to be assembled into
a structure. As stated before, the traditional structure used in GP is a tree
structure, due to easy swapping of subtrees, but this is not necessarily true
in all applications of GP. The tree nodes can be evaluated as soon as all of
their inputs are available, possibly storing the result to prevent unnecessary
computation in the future. How the tree is traversed differs per implementation,
with common methods being prefix (left-to-right, starting from the root) or
postfix (left-to-right, starting at the leaves) order.

Two methods are frequently used to initialize trees in GP:

• Grow: the tree is grown iteratively by addition of a randomly selected
nodes, from both the terminal and function primitives. Selection of a
terminal node means the end of a tree branch. Function nodes get the
number of child nodes equal to the function arity attached to them. Trees
are given a fixed maximum depth d and if a branch reaches this depth, a
node is randomly chosen from only the terminal set. This method produces
trees with branches of different depths, up to a maximum of d.

• Full: the tree is constructed by randomly selecting a node from the function
set if the current depth is less than the maximum depth d or from the
terminal set if the current depth is equal to d. This method produces
branches of predetermined depth d.

Commonly, a combination of the two is used, called Ramped-half-and-half: to
promote diversity in the structure of different trees, if the maximum depth is set
at d, the population is divided into d− 1 different parts with depth of 2 up to d,
and half of the group is generated using the Grow method, while the other half
is generated using the Full method.

6

Background Theory

The application of GP, as it is described in this section, to the SR problem is what
we refer to in the remainder as Standard Genetic Programming (SGP). Standard
Genetic Programming is used as a basis of comparison to other algorithms in
Sections 6 and 7.

2.5 Variable Selection

An important part of model building in general is the selection of important
variables from the space of inputs. When datasets are large, there might be a
lot of irrelevant and redundant variables. An irrelevant variable is defined as
a variable that has no significant influence on the output variable of interest
and a redundant variable is a variable which provides no meaningful additional
information in the presence of another specific variable (e.g. a measure of the
temperature in both degrees Celsius and Fahrenheit).

Potential benefits of variable selection include obtaining a greater compre-
hension of the process from which the data originated, increasing predictive
properties of the found model, as it uses only the most relevant variables in
model construction and reduction in training time of the search algorithm, as
the size of the dataset to train on is effectively be reduced. Especially beneficial
can be the construction of subsets of variables, which are useful more useful
together than by themselves in building good predictors [16].

There are a number of reasons why individual variable performance on the
problem can be deceiving, and it can thus be beneficial to select variables together.

Four of these reasons, confirmed by experiments by Guyon et all. [16], are:

• Noise reduction and better separation of classes can be obtained by con-
sidering presumably redundant variables.

• Perfectly correlated variables are truly redundant, while highly correlated
variables can add information when considered together.

• A variable which provides no additional information about the dependent
variable by itself can provide a significant improvement when taken with
others.

• Two variables that are do not provide any useful information about the
output variable by themselves can be useful together.

These reasons indicate the selection of features can be beneficial over the selection
of individual variables. The definition of a feature that is used in this work is:
any combination of variables, constants and function operators which results in
an evaluable function, including the input variables by themselves (e.g. x2

2− 3.4 ·√
x1 · x3 is a feature, but so is x3). The term feature is used interchangeably

with subprogram, subexpression and building block.
Variable and feature selection methods can be grouped into three cate-

gories [16]: filters, wrappers and embedded methods.

7

Background Theory

2.5.1 Filters

A filter is a preprocessing step, which has no dependence on the particular model
building method used, in contrast to the wrapper and embedded methods. It
can be applied to individual variables, where each one is scored according to a
chosen scoring function S(i), or to select groups of variables (features) together.

When selection of variables occurs based on their individual merit, the
selection method is called a variable ranking method. For each input variable,
the score is computed and a high score is assumed to indicate a valuable variable.
A cut-off rank or percentage is chosen to determine which variables are considered
by the modelling algorithm. Ranking variables in this manner does suffer from
the aforementioned issues, however. Alternatively, variables are combined into
subsets with their frequency of occurrence in these subsets based on their score,
after which further analysis takes place.

Compared to wrappers and embedded methods, filters are relatively cheap
computation wise, as computation of just n scores (for n independent variables)
is required.

An often used ranking method is the Pearson Correlation Coefficient:

ρxi,Y =
cov(xi, Y)

σxi
σY

, (3)

where cov(xi, Y) is the covariance between xi and Y , σxi the standard
deviation of xi and σY the standard deviation of Y. The square of ρxi,Y is called
the coefficient of determination, which is a measure of the linear relationship
between xi and Y .

Another ranking criteria commonly found in the literature is the mutual
information between two variables. The mutual information is defined as:

I(i) =

∫
xi

∫
y

p(xi, y) · Log p(xi, y)

p(xi)p(y)
dxdy. (4)

This function depends on the probability densities of xi and y, which are often
not available and difficult to approximate. In case of discrete variables we use
instead:

I(i) = ΣxiΣyP (X = xi, Y = y) · Log P (X = xi, Y = y)

P (X = xi)p(Y = y)
dxdy. (5)

This measures the dependency between the probability densities of both variables.
The advantage of the mutual information is that it includes non-linear effects,
although it is more computationally expensive to calculate than the correlation
coefficient.

When selecting groups of variables together, these methods become more
computationally expensive, as each group will have to be scored individually.
Therefore, if there are n input variables and groups up to size k are to be
evaluated, this requires nk−1 times as much computational power compared to
scoring the individual variables. The computational cost can be reduced by
combining only variables which show individual merit into sets, or alternatively
a wrapper or embedded method might be used for testing features containing
multiple variables.

8

Background Theory

2.5.2 Wrappers

The wrapper method views the learning algorithm used to solve the problem at
hand as a black-box optimization machine. It feeds the learner data corresponding
to subsets of variables, for which the learner returns a solution to the problem.
The quality of this solution is then used to score the subset. The approach can
be seen as a brute-force method, requiring large amounts of computation, as the
learning process is generally very costly.

Smart strategies to determine which subsets to explore can be deployed,
such as branch-and-bound, simulated annealing or even genetic algorithms [24].
Greedy strategies can be used, where subsets are built by either forward selection
or backward elimination, to prevent the evaluation of too many subsets.

2.5.3 Embedded Methods

Embedded methods incorporate the feature selection into the learning algorithm.
This eliminates the need to separate the training set into a training and validation
set, as is needed for a wrapper method, and the learner does not need to be
retrained for every feature under investigation. Examples of these are decision
tree algorithms [29] [5] and regularization methods (see Section 2.6).

2.6 Machine Learning Techniques

As stated in Section 2.1, ML is closely related to SL and the distinction is not
always clear. In this section, techniques from ML are discussed which have found
a number of applications in SR algorithms as of late. The regularization methods
Ridge Regression, LASSO and the Elastic Net are discussed in the following.

2.6.1 Ridge Regression

The first regression method discussed based on regularization is Ridge Regression
[18]. As discussed before, often the OLS approach is used to determine model
coefficients, whereby the MSE of the model is minimized. This corresponds to
determining:

β̂ = Argmin
β

{|Y −Xβ|2}, (6)

where Y are the responses, X is the model matrix consisting of vectors
corresponding to observations containing values for each distinct variable and β
are the coefficients.

While this gives the most accuracy on the training set, the model will likely
not generalize well. To solve this problem, a so called L2-norm is added to the
function:

β̂ = Argmin
β

{|Y −Xβ|2 + λ2|β|2}, (7)

where |β|2 is defined as Σn
j=1β

2
j , n is the number of variables and λ2 is a

tuning parameter. The effect of adding such a penalty to the optimization
function, is that fitted parameters are encouraged to be relatively small, which
reduces overfitting. For λ2 = 0, we get the OLS estimate where bias is usually
low but variance large, and if we set λ2 = ∞ we obtain β̂ = 0. For values of

9

Background Theory

λ2 in between, a shrinking of the model coefficients takes place and a trade-off
between bias and variance is in effect, where larger λ2 corresponds to more bias
but smaller variance.

A disadvantage of Ridge Regression when use in the context of feature
selection is that it does not set any values to zero, thus no selection is performed
natively by the algorithm and the result is not very easy to interpret. In the
case of identical predictors, each would get a the exact same coefficient, of size
equal to the coefficient any of these predictor would have gotten individually,
divided by the number of identical predictors.

2.6.2 LASSO

An alternative to Ridge Regression is LASSO: the Least Absolute Shrinkage and
Selection Operator [36]. The LASSO method has a lot in common with Ridge
Regression, but instead of an L2-norm, an L1-norm is added as penalty to the
objective function. This results in the following formula:

β̂ = Argmin
β

{|Y −Xβ|2 + λ1|β|1}, (8)

where |β|1 is defined as Σn
j=1|βj |, n is the number of variables and λ1 is a

tuning parameter. The result of using this different norm is that, in contrast to
Ridge Regression, coefficients are set to 0 and thus selection is performed, while
other coefficients are shrunk in a fashion similar to Ridge Regression.

The reason as to why coefficients are set to exactly 0 is shown in Figure 1:
When in a two dimensional space, |Y −Xβ|2 is shown as the elliptical contours,
centred on the OLS estimates. In Figure 1(a), the constraint area equal to
Σn
j=1|βj | is shown, taking the form of a rotated square. In Figure 1(b), the

constraint area equal to Σnj=1β
2
j can be seen to be circular. The solution provided

by LASSO and Ridge Regression is where the contours and the constrained area
first touch. In case of the LASSO contour, this may occur at the corner of the
area, which is positioned at one of the axes, resulting in a coefficient which is set
to 0. In case of the circular shape, this rarely occurs.

Disadvantages of the LASSO, however, are that if n > k, with k the number of
data records, at most k variables can be selected by the algorithm. Furthermore,
if variables have very high pairwise correlations, LASSO likely selects only one,
whereas in some applications it is desirable to obtain the entire group. Finally, if
k > n and the input variables are highly correlated, Ridge Regression generally
has better prediction capabilities [46].

10

Background Theory

Figure 1: Illustration of the intersection between constraint and OLS centred
contour planes, demonstrating the difference in the setting of coefficients between
LASSO and Ridge Regression. By Tibshirani [36].

2.6.3 Elastic Net

In 2004, Zou et al. [46] proposed a combination of the former two methods,
suspecting it might profit from the advantages of either technique. A naive
implementation consists of joining the penalties used before, resulting in the
following formula:

β̂ = Argmin
β

{|Y −Xβ|2 + λ2|β|2 + λ1|β|1}. (9)

Alternatively, if we define α = λ2/(λ1 + λ2), this equation can be written as:

β̂ = Argmin
β

{|Y −Xβ|2 + α|β|2 + (1− α)|β|1}. (10)

Empirical evidence has shown the method to work well only when close to either
Ridge Regression or LASSO. This is due to an effect called double shrinkage
occurring, which does not reduce variance and introduces additional bias. To
solve this issue, the estimators are multiplied by a factor of (1 +λ2). This simple
scaling improves performance significantly.

11

Background Theory

2.6.4 Cyclical Coordinate Descent

The regularization techniques discussed in the previous pages are very promising
by themselves, but their usefulness really took off after the introduction of
the Cyclical Coordinate Descent (CCD) method [14]. The technique is an
approach for making these regularization methods more efficient. First, the
partial derivative with respect to the coefficient of one of the input variables
βj is calculated, keeping the other coefficients fixed. Then the estimate of βj is
updated by computing the least-squares coefficient on the partial residual due to
j, and applying a threshold and scaling to manage the double shrinkage problem
mentioned before.

Computing the gradient naively takes O(k) operations, with k the number of
data records, by calculating the residuals for every observation. Cycling through
all n variables thus takes O(k · n) operations. Improvement on this can be
made by storing a matrix of inner products between the variables, and saving
computation costs by exploiting this matrix, calculating O(n) new inner products
when a coefficient changes. With m non-zero coefficient, a cycle can then be
performed in O(n ·m) operations. The algorithm then computes solutions for
decreasing values of α, starting at the smallest version for which all coefficients
are 0. The algorithm converges if a complete cycle does not change the features
with non-zero coefficients.

2.6.5 Fast Function Extraction

While most SR research takes place in the GP field, in 2011 the Fast Function
Extraction (FFX) method was developed by McConaghy [31]. In contrast to
GP, FFX is a deterministic technique, making use of the Elastic Net for its
model building. It was found to perform well on a number of different real world
datasets.

The algorithmic steps performed by the FFX algorithm are:

1. Enumeration of basis functions.

2. Use of the elastic net to find coefficient values.

3. Application of non-dominated-filter.

These steps are explained in the remainder of this section.

Enumeration of basis functions

To generate a large amount of basis functions to be used as features in the
regularization step, a number of nested loops is employed. First, each input
variable is raised to each of the preselected exponents (e.g. 0.5, 1.0, 2.0) and
afterwards, a number of preselected operators of arity one (e.g. Log10,

√
·) is

applied to form new expressions. These expressions are evaluated intermediately
to make sure they return a valid result.

In the following step, these new univariate basis functions are combined into
more complex interacting-variable bases, through multiplication. In this step,
any operator() · operator() multiplications are disregarded to reduce overall
complexity. Again, results are tested intermediately for validity.

12

Background Theory

Use of the elastic net to find coefficient values

Next, these bases are fed to the regularization algorithm. A log-spaced set of
values for α is calculated beforehand, for which to execute the pathwise learning
via the Elastic Net. The efficient implementation of Elastic Net with the CCD
from Section 2.6.4 is used. In contrast to the usual execution of the Elastic
Net, the algorithm halts when a pre-specified number of coefficients have been
assigned a non-zero value, as the addition of more variables at this point is
deemed to make the model no longer interpretable. This causes a significant
reduction in computing time.

Application of non-dominated-filter

In the final step of the algorithm, for each candidate model returned by the
algorithm the number of bases in the model and its accuracy are calculated. Only
if the accuracy of a model is higher than every other model of the same number
of bases, it is added to the output set, in similar fashion to the Pareto-GP
method discussed in Section 2.3.

To enhance FFX for improved scalability, first univariate coefficients are
learned and only the k ≤ O(

√
n) best variables are used to generate higher order

features. Due to the manner in which multi-variable bases are generated, this
results in a reduction of the computational complexity of the algorithm from
O(k · n4) to O(k · n2), making it suitable for application to datasets of high
dimensionality. Using this technique, problems with up to 1468 input variables
are solved in experiments conducted by the author.

13

3 Extensions of Traditional GP

In recent years, SGP has been improved upon in numerous ways. In this section,
some of the most promising improvements, relevant to our research, are discussed.
This section is split up into two parts discussing different types of methods:
Those which are based on the more traditional approach of GP, where a solution
is looked at as a whole (i.e. non feature-based) and the methods in which the
feature plays a more central role.

3.1 Non Feature-Based

In this subsection, two improvements upon SGP are discussed: GP with Fast
Function Extraction and GP with Gene-Pool Optimal Mixing Evolutionary
Algorithm. Both of these only use the overall solution quality in finding new
models, disregarding the parts of which they consist:

3.1.1 GP with Fast Function Extraction

Fast Function Extraction has been shown to be an effective technique for SR.
As it is a deterministic method, however, it offers little model flexibility. In the
construction of bases, only interactions between variables up to the second order
are allowed, to prevent a dramatic increase in the number of bases which have
to be considered.

Icke et al. [19] combined FFX with GP into a single method in the hope of
combating these issues, with their stated goal being to “ease the burden of GP-SR
in feature extraction and help it excel in model building”. Their experiments
showed the technique to be an improvement upon both of the methods separately.

The implementation of GP-FFX consists of the following steps:

1. Feature construction by using a variant of FFX, in which function bases
are generated.

2. Model construction with the fast Elastic Net implementation using CCD.

3. Extraction of the unique bases from the non-dominated models generated
in the previous step.

4. Model building by application of SGP, easing the initial burden of SGP by
providing a good initial direction in which the search may be expanded.

The technique showed significantly better results than ordinary SGP on datasets
of high dimensionality and was able to handle discovery of the functional form of
more functions than FFX, since the latter algorithm is restricted when it comes
to higher order interactions.

3.1.2 GP with Gene-Pool Optimal Mixing Evolutionary Algorithm

A second approach very recently explored by Virgolin et al. [40] is GP with the
Gene-Pool Optimal Mixing Evolutionary Algorithm (GP-GOMEA). What makes
GP-GOMEA interesting is that it produces smaller, and thus more interpretable
solutions than most SR algorithms do. Additionally, it is a model-based EA,

14

Extensions of Traditional GP

meaning it builds a model which attempts to capture the structure of good
individuals.

In GP-GOMEA, this model is used to guide the creation of new individuals.
The model used is a linkage model, more specifically the family-of-subsets model
(FOS). The model consists of a set of sets of locations (loci) within the program
genotype. The variables within such a set are to be varied together, since the
model has learned they are related. A number of different implementations of
this linkage tree can be imagined, and in this paper the authors chose to use the
Univariate method, where only a single position of the genotype can be varied,
the Linkage Tree method, where single loci are merged into sets in a bottom-up
fashion based on mutual information, and the Random Tree method, where these
subsets are constructed using randomly generated mutual information.

The linkage model is used in combination with the GOM operator, which
performs crossover between a parent individual and a randomly selected donor
individual of the population. The genes (nodes) corresponding to the loci
contained in the linkage model are copied from the donor to the parent and the
fitness of the newly created individual is measured, accepting a new individual
only if its fitness improves upon the fitness of the parent individual. If no
new best fitness has been found in a predetermined number of rounds through
application of this greedy method, the best individual so far is used to mix with.

A recent work to appear at GECCO’18 [39], suggests GP-GOMEA can be
effectively used to learn small yet accurate expressions for SR, however, the linear
scaling method proposed by Keijzer [22] is needed to make small expressions
achieve good performance.

An additional technique presented in the original GP-GOMEA paper is the
Interleaved Multistart Scheme (IMS). In IMS, multiple GP runs with different
population- and genotype sizes are interwoven, in order to automate the process
of searching for good values for these parameters. A generational step size g is
specified, and after having run g generations with one set of parameters, another
run with double the population size performs a generation. Every two runs, the
maximum allowed tree depth is increased by one.

An IMS run R can be can be terminated before the specified termination
criteria (e.g. elapsed time or number of evaluations) is met. This occurs when:

• A new overall best solution is found which has a larger tee depth than the
individuals of run R have.

• The individuals in the population of run R have converged to a single
genotype.

• Another run with a larger population size than run R has obtained a better
average fitness than run R, or than a second run R∗, given that R∗ has a
larger population size than R.

When all runs have terminated, the algorithm halts and returns the best solution
found.

15

Extensions of Traditional GP

3.2 Feature-Based

Most of the promising techniques appearing in the SR field as of late seem to
have a more feature-centred approach to evolution. Instead of the individual, its
parts are the central units of interest. Whereas standard GP aims to identify
good building blocks by assuming that their presence is reflected in the fitness
of the individual they appear in, causing them to become more prevalent in the
population as more generations pass, these new techniques guide the evolutionary
process by looking at the components that make up these individuals more
explicitly. Four such feature-guided methods are discussed in this subsection.

3.2.1 Multiple Regression

We start by discussing one of the most commonly known algorithms in SR, which
is considered to be state-of-the-art. Multiple Regression Genetic Programming
(MRGP) [1] takes a population of models, breaks them down into building
blocks and performs a form of regression called Least Angular Regression [12]
to re-instantiate a model using the value these building blocks have when
applied to the data. This causes the selection pressure to be put explicitly on
the subexpressions (features), in contrast with regular GP, where features are
preserved indirectly through the fitness of the model they are part of. In this
approach, however, no explicit selection is performed on the building blocks. A
model has its subexpressions decoupled and through regression linearly combined,
with optimal coefficients attached to the expressions.

Two variants of the algorithm are proposed in the paper. The first is a
post-run approach, in which MRGP is applied to the best solution found at
the end of a run. The authors experiment with different definitions of what is
seen as a subexpression or feature in this algorithm. Five definitions for what a
subexpression is, are adopted and tested:

• Root node

• Root node and leaves

• All tree nodes

• Root node and input variables

• All tree nodes and input variables

The authors found that when using any of the above strategies with post-run
MRGP, this generally resulted in models of higher accuracy than a competent
GP or ordinary multiple regression algorithm would. The latter two strategies
performed especially well.

The second variant of MRGP carries the name inline MRGP. This approach
uses multiple regression within the evolutionary cycle, explicitly guiding the
evolutionary process. By measuring the usefulness of a program not by its overall
MSE, but by the MSE of a the combination of its subexpressions after regression,
there is more room for optimization of these subexpressions. Selecting solely
on the basis of post-regression fitness is unlikely to be a good idea, however, as
larger models have more subexpressions which can be tuned and will therefore

16

Extensions of Traditional GP

likely result in a better regressed model than a model which is smaller in size
and is therefore less tunable, while the smaller model might contain more useful
building blocks. In order to prevent this from happening, a multi-objective
usefulness function is applied, with as a second objective the model complexity.

To this end, four different complexity measures are employed:

• Tree complexity, which is equal to the number of nodes in the program.

• Sum of t-statistics, which sums the t-statistic corresponding to each coef-
ficient of the expressions within in a model, which is a reflection of how
significant the expression is within the model. The sum of these is defined
as the complexity measure, penalizing models which use a larger number
of significant predictors.

• Minimum Description Length (MDL), measured on the model its parame-
ters. This measure implicitly includes the t-statistic and therefore measures
the same effect, which is even enlarged by this measure.

• Saturated Minimum Description Length (SMDL), in which the t-statistic
values are bounded, ensuring very useful predictors with a high t-value are
penalized less severely.

Experiments show the Sum of t-statistics and Tree complexity measures to be
the most valuable, while the MDL and especially SMDL approaches can be
lacking. Overall, the inline variant of the algorithm outperforms the post-run
variant, showing the promise of feature-guided evolution.

3.2.2 Behavioural Programming

A second approach which adopts the philosophy that the fitness measure of an
individual alone provides insufficient information for efficient traversal of the
search space is Behavioural Programming [27]. The authors propose to measure
intermediate program behaviour, i.e. performance of partial solutions, and use
the result to increase the search efficiency.

In GP in particular, the authors argue, solutions can be readily inspected
and subprograms evaluated due to the tree structure used. Additionally, there
is no reason to rely solely on a task-oriented fitness function other than that
Evolutionary Algorithms are inspired by Darwinism and thus this practise has
slowly become commonplace in the field. Using additional information as a
search driver could potentially be more informative and consequently result in a
more efficient evolution.

In comparison to SGP, three changes are implemented:

• Behavioural evaluation: When a given program is applied to an input,
all intermediate evaluations, corresponding to nodes in the GP tree being
applied to the data, are stored in a list, forming a trace. This trace will be
of equal length on every data record for a given program. Such a trace is
calculated for all data records in the training set, forming a trace table.
Subsequently, a machine learning algorithm is applied to the table, treating
every evaluation value as a feature. This results in a model p of the data,

17

Extensions of Traditional GP

i.e. a behavioural description of the intermediate program evaluation. in
the construction of this model, an error measure e(p) and a complexity
measure c(p) are calculated.

• Archiving of useful subprograms: In order to make optimal use of
the information extracted in the form of a behavioural model, the subpro-
grams corresponding to the good features chosen by the machine learning
algorithm have to be easily retrievable from the representation. These
features are then stored in a global archive, implemented as a priority
queue of fixed length. The priority of a feature p′ from model p is set to be
inversely proportionate with the model error and complexity of p, which
are combined into a measure called utility:

u(p′) =
1

1 + e(p) · c(p)
. (11)

When the maximum capacity of the queue is reached, the queue is reset
and repopulated based on the utility of the subprograms.

• Use of an archive-based mutation operator: To be able to exploit
these presumably useful subprograms, the authors designed a mutation
operator. First, a parent program is selected to be modified. One of its
nodes is randomly selected to be replaced together with its associated
subtree, by a feature from the archive. Subprogram selection takes place
in proportion to the utility of a program. This operator is applied in
conjunction with conventional mutation as otherwise no new subprograms
could be introduced into the population.

To ensure the probability of a mutation or crossover action happening at a
certain depth is not larger at greater depths due to the number of nodes growing
with depth, a technique the authors dub uniform node selector is used. This
technique calculates tree depth d and then selects a depth d̂ from which to select
nodes uniformly from the range [0,d]. Subsequently, a random node is selected

from the chosen depth d̂.
The approach was tested experimentally, on a test set in which no con-

stants were present. In this environment, results show the approach generally
outperforms SGP on the studied benchmarks, as well as producing somewhat
better models in terms of model complexity and generalization properties. From
their results the authors conclude again that the objective function we want to
optimize does not necessarily correlate with the amount of computation power
required to solve the problem, and using other objectives to assist the search
could increase efficiency.

3.2.3 Evolutionary Feature Synthesis

The next method we highlight is Evolutionary Feature Synthesis (EFS) [2].
The authors observed the success of the MRGP, BP and a technique named
Kaizen Programming [9] and were inspired to create a method using some of the
principles from these papers. As the name suggests, the feature is once more the
centrepiece of the evolutionary process.

18

Extensions of Traditional GP

In contrast to previous methods, the feature is the unit of selection. As in
BP, overall model quality is not the main guiding principle of the evolutionary
search. A populationin EFS consists of features instead of models and by use of
the LASSO, a model can be generated from the population. The efficient CCD
implementation of the LASSO from Section 2.6.3 is used.

The approach involves three steps which are performed in a cycle:

1. Model Generation: Using the LASSO, a model is build from the features
currently in the population. If overall model fitness, calculated by the R2

measure, is better than the best fitness found so far, the model is archived.

2. Feature Composition: New features are generated by using the pool of
existing features and applying an operator from a predetermined set of
operators to them. Depending on the arity of the operator, one or two
features are selected to form a new feature. The selection of these featured
is done by tournament selection based on their previously computed feature
score. The pool of features will always be set to include the p original
parameters of the problem, as well as q additional features formed in
previous iterations. From these, µ new features will be constructed and
added to the population, resulting in a population of size p+ q + µ = M .
The process is illustrated in Figure 2.

To limit the overall complexity of the features and the model which is
generated from them, feature size is constrained. The size of a feature is
defined to be the number of original problem parameters occurring in the
feature, added to the number of operators present in the feature. In this
work, the maximum feature size is set to 5.

A significant improvement in computation time is achieved by this method
compared to the SGP, as a feature can be individually evaluated against the
dataset, whereas in traditional GP, whenever a subtree changes, the values
of all nodes in the entire tree need to be recalculated (or part of them, if
values of all nodes are stored). Additionally, these feature computations
are easy to execute in parallel.

3. Feature Subset Selection: The LASSO is applied once more, generating
useful information which can be used for feature selection.

19

Extensions of Traditional GP

Figure 2: The feature composition process for EFS, with p the original variables
of the problem, p + q the current features in the population and µ the newly
constructed features. By Arnaldo [2].

Three different approaches for model selection are tested by the authors, each
aiming to remedy flaws found in the previous approach during experimentation.

The first approach used by the authors allows for a flexible model size. Using
the LASSO, a set of weight vectors βα is obtained, for a number of different
α. It is important to node here that α equals λ1, the tuning parameter in the
LASSO algorithm (see Section 2.6.2). As an additional benefit of the LASSO,
the coefficient of multiple correlation R2, which is used to assess model quality
for ranking features in this work, can be calculated without incurring additional
computation cost. The weights corresponding to the value of α that maximizes
the R2 are chosen. Then selection is performed as follows: The p original pa-
rameters are kept, as well as any feature which has obtained a non-zero weight.
A disadvantage of this method is that there is a possibility that all coefficients
will be non-zero and thus no selection is made at all, causing the evolution to
halt prematurely.

To combat this flaw, a second method is devised in which the model size is fixed,
such that in every cycle exactly p+ q features are selected instead of a varying
amount. This corresponds to the situation shown in Figure 2. To enable this
exact selection, a complete ranking of all features is made, using the following
feature importance measure:

Importance(j) = Σ
αi∈Γ

Score(j, βαi). (12)

Score(j, βαi) =

{
R2
αi
if βαi

j 6= 0

0 otherwise
. (13)

Here Γ is the set of preselected α values traversed by the LASSO. During selec-
tion, the p original variables as well as the q variables of highest rank are moved

20

Extensions of Traditional GP

to the next generation.

Experiments using this new strategy highlighted yet another issue. Model error
is not systematically reduced in each step. The authors explain this behaviour
as being the result of highly correlated features sharing importance. This may
cause two very similar, but individually important features to both be discarded
in the selection process because their shared importance is smaller than the q
features of highest rank, while if only one of the features had occurred in the
model it would have obtained a sufficiently high score. This can result in a
good feature disappearing from the population and the MSE of the fitted model
increasing.

To remedy this flaw, the authors introduce correlation filtering, using the Pearson
Correlation Coefficient from Equation 3. Performing a complete analysis of all
M features in the population would require M2 passes over the data, which
the authors deem too expensive. Therefore, they propose to only calculate the
correlation coefficient of a feature with its parent (as these are the most likely
to be highly correlated), disregarding a newly created feature if the coefficient
is higher than a predefined threshold (taken to be 0.95 here). This method
decreases the overall variance of the method and therefore increases robustness.

EFS is compared experimentally to MRGP, LASSO, a Feed Forward Neural
Network (FFNN), Multiple Regression and a method called Vowpal Wabbit.
It is found that EFS and the FFNN produce models with the lowest error on
average. In terms of speed, EFS and MRGP were the worst methods, however,
with the FFNN much faster. In terms of complexity, EFS performed better than
the FFNN, the latter producing models which are hardly interpretable.

3.2.4 Embedded Feature Construction

The final feature-based approach discussed is GP with Embedded Feature Con-
struction (GPEFC) [6]. An overview of the method can be seen in Figure 3.

Figure 3: An overview of the GPEFC method. By Chen [6].

Standard GP and GPEFC differ mainly in two ways. GPEFC has a unique way
of identifying potentially valuable subprograms and of introducing these into
the population:

21

Extensions of Traditional GP

• Identification and construction: The authors base their method on
the idea that an individual which has a large fitness increase with respect
to its parent(s) is likely to contain new, useful subprograms. Therefore, an
individual j with parents p1 and p2 is scored by its FitnessGain as:

FitnessGain(j) = minimum(Fitness(p1), F itness(p2))− Fitness(j),
(14)

where a lower fitness is defined here to be a better fit (in contrast to the
usual definition). A predefined percentage of individuals with the highest
fitness gain is selected and these are dubbed source individuals. From these
source individuals, good features are to be selected, taking into account two
measures: The depth or equivalently number of levels the feature consists
of, and the activeness, which is defined as the number of times a feature
appears in the pool of source individuals. To keep the complexity of the
features within acceptable bounds, while retaining their usefulness, the
maximum depth is set to two or three. Whenever a building block has an
activeness of more than half the number of source individuals, it is deemed
important.

From each of the important building blocks, exactly one new feature is
constructed in an unspecified manner. These newly constructed featured
are added to the terminal set.

• Introduction into the population: As mentioned, the new features are
used to extend the terminal set. The extended set is then used in two ways.
Firstly, new individuals are constructed from scratch using only the new
terminal set, increasing the probability of newly discovered individuals
making it into the population. Secondly, through mutation entire subtrees
of existing individuals in the population are replaced by new subprograms
from the extended terminal set.

To calculate the fitness, the Normalised Root Mean Squared Error is used. It is
defined as:

NRMSE =
√
k/(k − 1) ·MSE/δt, (15)

where k is the number of exemplars in the dataset and δt the standard
deviation of the target outputs.

It is found the method produces programs of smaller size than SGP on most of the
training sets used. It produces more distinguished features, although the increase
is almost negligible. In term of goodness-of-fit, GPEFC has smaller errors on
all problems studied than SGP. This extends to the test sets as well, indicating
models generalize better. In terms efficiency, differences can be observed based
on the dataset used, where if a set can be explained by more compact features,
GPEFC might be more efficient, while losing to standard GP if more complicated
features are required. A statistical significance test shows GPEFC performs
statistically equal or better to standard GP in all cases.

22

Extensions of Traditional GP

3.3 Feature Importance

From the experiments described in the previous two subsections, we observe that
the novel methods, which focus on a more feature-guided approach to GP have
great potential. The overall fitness function is found to often provide too little
information to accurately guide the search in the direction of good solutions if
the fitness landscape is not straightforward.

One more technique which has not seen much application within GP, but is
commonly used in other fields and has potential to be used in a feature-centric
approach is sensitivity analysis. In the paper Sensitivity-Like Analysis for Feature
Selection in GP [10], this approach is applied in the field of SR, but limited to
the input features.

3.3.1 Sensitivity-Like Analysis for Feature Selection in GP

The author suggests frequency based approaches for feature selection might be
lacking and sets out to put this to the test. He proposes to use a sensitivity-like
importance measure for the selection of good features. Through a comparison,
he tests his hypothesis and integrates the sensitivity-like importance measure
into the evolutionary process.

To research if frequency does indeed provide a meaningful criterion for feature
selection in GP, two methods are used to measure the presence of the input
variables in the final models of a GP run. The first is based purely on the
frequency, counting how many of the models in the final population of a GP
run contain a certain variable. A second measure is the proportional feature
use, which counts the number of total terminals used in a model and uses it to
scale the the feature presence with. These two frequency based measures are
compared to the variable importance measure of two well known algorithms:
Random Forests [5] and Classification and Regression Trees (CART) [29].

Additionally, a new variable importance measure which can be applied to
GP is introduced. This sensitivity-like measure is calculated as follows:

1. At then end of a run, the model producing the best fit on the test data is
returned.

2. The model is applied to a hold-out partition of the data, and its MSE is
calculated.

3. For each variable occurring in the model, the test data is shuffled in turn
and the MSE of the model on the shuffled data is computed, resulting in a
measure of how sensitive the model is to the given variable.

4. The changes in MSE are normalized against the largest occurring value,
resulting in an importance value in the range [-1,1] for all variables.

After the execution of 100 runs of the GP, Random Forest and CART algo-
rithms, the different variable importance measures were applied to the resulting
populations of the GP runs and compared to each other as well as to a variable
importance analysis of the true underlying distributions of these problems. From
the results it is clear that the frequency measure does not provide very valuable
information about which variables are important. In almost all cases, all of the
features had a significant presence in the final model. The proportional measure

23

Extensions of Traditional GP

turned out to be not much better than a scaled version of the presence measure
and did not provide more insight into the worth of the variables. The novel
variable importance measure introduced, as well as the CART and Random Tree
methods performed much better, showing similar results for variable importance
to each other and the true distributions. From these results the conclusion is
drawn that a presence measure is not a good indication of variable importance
and the presence of a variable can possibly be attributed factors like bloat or
the use of variables to generate constants by self-division.

After reaching this conclusion the author sought to include the variable impor-
tance measure into GP, to which end he proposes two extensions to regular
GP:

• Implementing bloat control by using the solution size as a secondary
selection factor.

• Adapting the probabilities of terminal selection throughout the run. At first
all terminal probabilities are equal. After every run the variable importance
is recalculated on the best performing individual in the population, using
the variable importance analysis explained above. Variables are ranked
on their importance, and given a probability of being used in the next
generation proportional to their rank.

It was found that especially the latter method of integrating the variable im-
portance measure into the algorithms worked well, as did a combination of
both methods. Measuring the frequency of building blocks after the run with
the sensitivity-like approach resulted in variable presence which did not differ
significantly from before, however, indicating once more that frequency might
not be suitable for identification of good features.

24

Extensions of Traditional GP

3.4 Recap of Techniques Discussed

As quite a few techniques are discussed, we give a succinct summary of the core
principles behind each technique:

• GP & Fast Function Extraction [19]: Initial population construction
by enumeration of basis functions, after which an elastic net fit is made as
in FFX. Non-dominated models are selected and fed to SGP.

• GP Gene-Pool Optimal Mixing Algorithm [40]: Population of mod-
els, model structure is learned by a number of different methods to construct
a family-of-subsets model. Corresponding to the subsets in this model,
locations of the genotype are varied together, accepting improvements
greedily.

• Multiple Regression GP [1]: Population of models, taken apart into
subprograms according to a number of different strategies. Regression
is applied to these subprograms to evolve new models, which are scored
for selection by a combination of model error and one of four complexity
measures.

• Behavioural Programming [27]: Population of models, evaluated on
the dataset and the partial results for each subexpression are stored in
a trace table. This trace table is fed to an ML algorithm. The features
picked by the ML algorithm are archived and later introduced into the
population by an archive-based mutation operator.

• Evolutionary Feature Synthesis [2]: Population of features, used to
form a model together via LASSO. The contribution of a feature is measured
as the sum of all R2 values of the models generated by LASSO in which the
feature has been given a non-zero coefficient. The features in the population
are ranked and a select number advance into the new generation, after
which they undergo mutation to form new features.

• GP Embedded Feature Construction [6]: Population of models, good
features are identified by measuring the fitness gain of an individual
compared to its parent(s). A percentage of the fittest models is used to
obtain features from, by analysing in how many of these fittest models
these features occur. The more frequent of these features are mutated
and added to the terminal set, which is used both for mutation and to
construct entirely new solutions from.

• Sensitivity-Like Analysis [10]: Population of models, after each gener-
ation a sensitivity-like analysis is performed on each input variable of the
best model in the population by shuffling the training data correspond-
ing to that variable and calculating how sensitive the model MSE is to
this change. The variables with the highest sensitivity obtain a larger
probability of being selected for mutation in the next generation.

These techniques form the bases of the theoretical comparison described in
Section 6 and experimentation with a new algorithm in Section 7.

25

4 Problem Description

In this work, we set out to find an improvement of SGP for solving SR problems.
To achieve this goal, we first compare a number of techniques from the literature,
with the purpose of learning what aspects of these algorithms might be effectively
used in the design of a novel SR method.

To this extent, we compare the feature-based algorithms EFS, BP and
MRGP with SGP and GP-GOMEA. Multiple configurations were used for SGP,
as well as for GP-GOMEA. Since these algorithms are implemented in different
programming languages, additional effort is made to estimate the impact of this
difference, based on the number of subexpression evaluations on the dataset.
This study and its results are presented in Section 6.

After having conducted this comparison, we designed an algorithm ourselves,
with hopes of improving upon SGP. Based on the review of the relevant litera-
ture and the results of the comparative study, it appeared a feature-centered
guided evolution was likely to be a promising direction for improvement. More
specifically, we chose to experiment with the application of sensitivity analysis to
calculate a feature imortance score, which is then used to guide the evolutionary
process. This is a novel approach as far as we are aware, based on the input
variable ranking method presented by Grant Dick [10]. For the particulars of
this experiment, see Section 7.

4.1 Research Questions

The project has two clear goals in mind: the exploration of the feature-based
GP-SR paradigm and its possible improvement through sensitivity-based feature
guided evolution. To this end, we first seek to answer the following research
questions:

• How do EFS, BP, MRGP and GP-GOMEA perform in comparison to SGP
and each other?

And:

• What insights can be obtained from the comparison of these methods
which might prove useful for application in further research into improving
SGP?

The former question will be answered through a comparison of the named
algorithms. To be able to answer the question, we must define what kind of
performance we are interested in. This leads to the sub-questions of which
technique will find the best fitting models on the training data and whether
these models generalize well to the test data (i.e. do not overfit on the training
data).

The latter question is a somewhat subjective one, but very important nev-
ertheless. Many answers are possible, and we will only attempt to discover
general principles which to use in accomplishing our main goal of improving
upon SGP with a novel method. An answer will be sought by examining the
results obtained in answering the first question as well as using the information
from the literature study.

26

Problem Description

After having answered these first two questions, we arrive at the arguably more
interesting part of the research, where we look for improvement upon SGP. Any
insights gained through the experimental comparison of the existing techniques
will be used to guide us in the design of a Sensitivity-based GP algorithm.

The remainder of the thesis is then spent finding an answer to the final and
central question of this work:

• Can SGP be improved upon by introducing a sensitivity analysis based
feature-guided evolution technique, called Sensitivity-based Genetic Pro-
gramming (SensGP)?

To answer this question, we experiment with different algorithms incorporating
a sensitivity-based importance measure, introduced in Section 7.1. In addition
to the basic SensGP algorithm, which is explored in Section 7.2, two variants to
SensGP are researched as well:

1. Model Dependent SensGP (ModelDep): only a pre-specified percentage
of the fittest individuals in the population is used to determine feature
importance. This approach is examined in Section 7.3.

2. Variable Importance SensGP (VarImp): features are scored based on how
sensitive the model they appear in is to the variables contained in that
feature. Results can be found in Section 7.4.

In Section 7.5 these methods are compared to each other and to SGP, which
allows us to formulate an answer to the final research question.

27

5 Implementation

In this section, we describe the details of the experimental setup used in answering
the research questions. First, we describe the computer programs used for both
the comparison of the algorithms and the experimentation with SensGP, in
section 5.1. Next, we provide a description of the hardware that was used to
perform computational experiments in Section 5.2. Thereafter, the datasets
used in this work are examined in Section 5.3. In Section 5.4 we describe the
statistical test we used to examine the results. Finally, in Section 5.5 we discuss
how constants are included into the algorithms.

5.1 Software

For our experiments, we used 4 different programs. The first three are the
implementations of EFS, BP and MRGP. These algorithms are all part of the
FlexGP project by the Anyscale Learning For All (ALFA) group at the Computer
Science and Artificial Intelligence Laboratory (CSAIL) at MIT. The project has
“scalable machine learning using genetic programming” as its goal.

The code for these algorithms has been made publically available on the
FlexGP website [3]. All three of these programs are written in the Java pro-
gramming language. To interact with it, NetBeans IDE version 8.2 was used.

The fourth program, which we used for SGP and GP-GOMEA and which was
used to implement SensGP, was written by Marco Virgolin for his GP-GOMEA
research [40]. The choice for this implementation of SGP was made as it is
written in C++, a language we are comfortable with, as well as that we were able
to count on the support of the author. To interact with the code, Microsoft
Visual Studio 2015 Community Edition was used.

From the original code, we created a minimal version in which only basic
GP-GOMEA and SGP were present, and from there started all further exper-
imentation with SensGP. Using this minimal framework saved a considerable
amount of time compared to having to implement a SGP experimentation setup
from the ground up. Furthermore, the fact that the code of SensGP is written in
the SGP and GP-GOMEA framework allows for the fairest comparison possible,
as any part of the execution of the algorithms which is shared, is implemented
by the exact same code.

5.2 Hardware

Two computer setups were used to perform the experiments needed for evaluation
of the algorithms of interest in this work. An Asus laptop was used to perform
all of the comparisons amongst different techniques from the literature. For
experiments with the Sensitivity-based technique, a combination of this laptop
and 4 Virtual Machines (VMs) operating on the Microsoft Azure Platform [33]
was used. The experiments executed on different setups are never compared
to each other, to ensure no algorithms is given an unfair advantage due to the
different processing speeds of these machines. The details of these machines are
presented in the remainder of this subsection.

28

Implementation

Asus Laptop

For most of the experiments, an Asus laptop was used. The specifications of this
laptop are shown in Table 1:

Table 1: Specifications of Asus Laptop.

Specification Value

Type Asus N56V
CPU Intel Core i7

3630QM 2.4GHz
Cores 4
Memory 6 GB

Microsoft Azure

Microsoft Azure is a cloud computing platform created by Microsoft. With
this service, multiple virtual machines can be used for computation (up to a
maximum of 4 virtual cores with a student subscription). The specifications of
the virtual machines are shown in Table 2:

Table 2: Specifications of Microsoft Azure Virtual Machines.

Specification Value

Type Virtual CPU
Standard DS1 version 2

CPU Max IOP’s 3200
Cores 1
Memory 3.5 GB

No further specifications on these virtual machines are supplied by Microsoft, but
from experimental results we conclude that a virtual CPU from the Microsoft
Azure platform was slightly outperformed by the Asus laptop.

5.3 Description of Datasets

In the field of Genetic Programming, benchmarks have historically been quite
poor [32]. They have remained in the field through tradition, not because of their
usefulness in providing challenging, realistic testing grounds for GP algorithms.
After the aforementioned paper on benchmark performance was published, steps
were taken by consulting the GP community, resulting in a work which proposed
a number of standard problems as alternatives to some of the worst datasets [45].
These are deemed good alternatives and “first appeared in papers with large
numbers of citations, suggesting that they are well-known” [45]. All problems
looked at in this work are taken from the proposed SR benchmarks, with the
exception of the of the Keijzer-1 dataset, as we had already begun testing on it
before we discovered the existence of this list.

29

Implementation

In our experiments, we use two smaller datasets, Keijzer-1 [22] [23] and Nguyen-
7 [38], as well as six larger datasets of which Vladislavleva-4 [42], Pagie-1 [34]
and Korns-12 [25] are artificial datasets constructed from a formula, Energy
Heating [37] [28] is a dataset obtained from computer simulation results and
Dow Chemical [45] and Red Wine [7] [28] are real world datasets. All of these
datasets are described in some detail in the remainder of this section:

Keijzer-1

The Keijzer-1 dataset is a small dataset, consisting of only 20 data records, with
1 independent variable x. The values of the independent variable are from the
range [-1,1], with corresponding values for the dependent variable in the range
[-0.25,0.1]. The dataset was popularized in Keijzer [22], where a list of datasets is
presented, commonly known as the Keijzer set. Originally, the function appeared
in a paper he co-wrote with Babovic [23].

The data is generated from the following formula:

f(x) = 0.3 · x · sin(2πx). (16)

Nguyen-7

Nguyen-7 is the second small dataset we use for our experiments. It features only
20 data records in both train and test sets and a single independent variable.
The value of the independent variable is drawn from the uniform distribution in
the range [0,2], resulting in values of the dependent variable in the range [0,3].

The data is generated from the following formula:

f(x) = Ln(x+ 1) + Ln(x2 + 1). (17)

Vladislavleva-4

The first of the larger datasets we use is Vladislavleva-4. The dataset consists of
1024 data records in the training set, and 5000 records in the test set. There are
5 independent variables present in this dataset, but the formula from which the
data is generated can be straightforwardly expanded to include any number of
variables. The values of the independent variables are drawn from the uniform
distribution with the range [0.05,6.05] in the training set and [-0.25,6.35] in the
test set, with corresponding values for the dependent variables rarely outside the
range [0, 1]. As described in [45],“the problems require extrapolation, not just
interpolation” and the algorithm used by Vladislavleva “appears to have most
difficulties in discovering the simple and harmonious input–output relationship”
on this problem.

The data is generated from the following formula:

f(x1, ..., x5) =
10

5 + Σ5
i=1(xi − 3)2

. (18)

30

Implementation

Pagie-1

The Pagie-1 dataset is used in comparing SensGP and its variants to SGP. The
set consists of 625 data records in both training and test sets. Two indepen-
dent variables are present in the dataset. In the training set, the values of
these independent variables are evenly spaced points on a grid with range [-5,5],
positioned at intervals of 0.4. In the test set the values are selected from the
uniform distribution from [-5,5] for both variables. The corresponding values for
the dependent variable are generally found in the range [1,2], with a couple of
exceptions falling in the range [0,1]. While Pagie-1 is a smooth problem, it is
known to present considerable difficulty [17] [34].

The data is generated from the following formula:

f(x1, x2) =
1

1 + x−4
1

+
1

1 + x−4
2

. (19)

Korns-12:

The final artificially constructed dataset we look at is Korns-12. It is an order of
magnitude larger than the other large datasets we use, with 10.000 data records
in both the train and test sets. The dataset consists of 5 independent variables, of
which only 2 have an effect on the dependent variable. The underlying reason for
including the three additional independent variables is to “test the ability of the
system to discard unimportant variables and avoid using them to over-fit” [45].
The values for all of these variables are drawn from the uniform distribution
with the range [-50,50], resulting in typical values for the dependent variable in
the range [0,4.5].

The data is generated from the following formula:

f(x1, ..., x5) = 2− 2.1 · cos(9.8 · x1) · sin(1.3 · x4). (20)

Energy Heating:

The Energy Heating dataset [37] describes the heating efficiency of buildings
with distinct shapes. These different shapes and coressponding heating efficiency
scores have been simulated in Ecotect, an environmental analysis tool. The
dataset is comprised of 8 independent variables and 768 data records. The
dependent variable is the heating load, and its values are contained in the range
[0,50]. It is available on the UCI Machine Learning Repository website [28].

Dow Chemical:

Dow Chemical is a real world dataset, consisting of 747 training data records
and 319 test records. The dataset features 57 distinct variables, many more than
each of the other sets we tested. Data ranges vary widely for each variable, as
can be expected for real world data. Typical values for the dependent variable
are found within the range [2,4.5]. The data, originating from a chemical process
plant, was the subject of the 2010 EvoStar SR competition [45].

31

Implementation

Red Wine:

The Red Wine dataset contains information about red wines from Portugal.
In this dataset, the dependent variable is a grade for the quality of the wine,
based on expert ratings. This grade is given in in the range [0,10]. The data
was used in Cortez et al. [7] and consists of 11 independent variables conveying
physiochemical information about the wines. The set consists of 1599 data
records. It is available on the UCI Machine Learning Repository website [28].

5.4 Statistical Test

To be able to quantitatively compare results when a qualitative analysis is
insufficient, the Mann-Whitney U test is used in this work [30].

The reason for choosing this test, and not the students t-test, is that it is
nonparametric, i.e. it makes fewer assumptions on the underlying distribution of
the compared datasets. In GP, the quality of the best model found in different
runs varies substantially depending on the initial population. This is also the
reason as to why it is common in GP to report the model quality found in
the median run of an experiment, instead of reporting the mean model quality.
Assuming the results to be normally distributed, which is a requirement for
many tests, would be unjustified.

In the Mann-Whitney U test, a probability value (p-value) is calculated,
which tests the null hypothesis that the difference between true medians of the
two datasets equals 0, versus the alternative hypothesis that this difference is
unequal to 0. A small p-value indicates the null hypothesis is unlikely to be true,
while a large value indicates the two true medians are equal. In calculating this
p-value, the values of the datasets are grouped together and ranked based on
their solution quality. Then, they are returned to their original dataset and the
sum of all ranks is calculated for each dataset. Based on the difference in the
sum of rank between the datasets, a probability value is calculated. We reject
the null hypothesis if we find p < α, where we take the significance level α to be
0.05.

5.5 Inclusion of Constants

For the inclusion of constants in GP, a technique called Ephemeral Random
Constant sampling is often used. This technique, explained by Koza in chapter
10.2 of his book [26], is used to generate nodes called ERC nodes, which are
added to the terminal set. Whenever such a node is included into a solution, a
number is sampled randomly from a predifined range and assigned to the node
as its value for the remainder of the run. Often, this range is set to be [-1,1],
an arbitrary choice which does not take the data into account. In this work,
we sample from the range [datamin,datamax] instead, as in [39], as we suspect
this to be a more effective approach. Here, datamin is the smallest value found
among the independent variables in the dataset, while datamax is the largest.

32

6 Comparative Study

In this section, we discuss the experiments conducted to answer the first two
of our research questions: to see how the different algorithms compare and to
discover useful principles which can be used in the design of SensGP. We discuss
the experimental setup in Section 6.1. Next, the results of the experiments
are presented in Section 6.2. We discuss the differences due to implementation
language in Section 6.3. In Section 6.4 we formulate an answer to the first two
research questions.

6.1 Experimental Details

Since the algorithms we want to compare are written in different languages, dif-
ferences in performance might occur that can not be attributed to the algorithms
themselves. These interlanguage differences will skew the results, although the
performance between C++ and Java is ordinarily quite similar. In a study by
Gherardi et al. [15] Java was shown to be slower on a number of 3D modelling
benchmarks by a factor of up to 1.51. The exact difference varies on an ap-
plication to application basis, however, which is why we will try to quantify
the impact of the difference in implementation language on our experiments in
Section 6.3.

To compare these algorithms written in different languages on the basis of a
different quantity than time, we count the number of node evaluations performed
during each evaluation of a model on a data record. It is impossible, however,
to compensate for any differences in inherent performance between C++ and
Java by using this measure as the criterion for when the algorithms should
terminate, since the number of evaluations performed per generation and per
unit of time varies immensely between these algorithms. While e.g. EFS spends
a large amount of time performing LASSO fits, SGP uses the majority of its
computational resources evaluating solutions on the data.

Therefore, the termination criterion that was decided upon for the algorithms
written in Java, was the time needed by SGP to complete 50 million evaluations.
This was approximately 6 minutes on the Vladislavleva-4 dataset and 1 minute
on the Keijzer-1 dataset. Nevertheless, we analysed differences in the number of
node evaluations to obtain more insight into how these algorithms operate, the
results of which can be seen in Section 6.3.

Multiple configurations for the C++ algorithms were tested. The names SGP
10 and SGP 17 indicate that trees were allowed a maximum tree depth of 10
and 17 respectively. We tested these seperately to see if reducing the size of
the models would reduce the amount of overfitting. We tested GP-GOMEA
with both the Linkage Tree (LT) and Random Tree (RT) configurations, to
see if learning a structure via the LT would yield better results than using a
randomized structure. Differently from [39], no linear scaling is used, despite
it being recommended. Since this option was not available for the algorithms
written in Java, using this options would make for an unfair comparison. All of
the SGP and GP-GOMEA settings were tested using the Interleaved Multistart
Scheme (IMS) introduced in Section 3.1.2 as well, on the Keijzer-1 dataset.

All of the computations necessary for the comparative experiments were
executed on the Asus laptop, of which the details can be found in Section 5.2.

A specification of all parameters used can be found in Table 3. The time

33

Comparative Study

limit termination criterion which was used for EFS, BP and MRGP, was set to 1
minute for the Keijzer-1 dataset and 6 minutes for the Vladislavleva-4 dataset.
The other algorithms used the node evaluation limit as a stop criterion. For the
inclusion of constants, we used ERC, which is described in Section 5.5.

Table 3: Parameter Settings.

Parameter Value

Time limit 1, 6 minutes
Evaluation limit 50 million
Population size 512
Terminal set independent variables + ERC
Function set (+,−,×,÷, .2,

√
·)

Tree initialization method Ramped-half-n-half
Minimum initial tree height 2
Maximum initial tree height 4
Maximum tree height 17
Maximum tree height GP-GOMEA 5
Tournament size 7
SGP crossover/mutation rate 0.9/0.1
Elitism 1
IMS base population size 256
IMS generational step size 8
MRGP method inline
MRGP complexity tree complexity
BP archive size 10
BP archive mutation rate 0.9
EFS q 3 · p
EFS µ 1 · p

6.2 Results

The results from the experiments performed to see how the various algorithms
discussed earlier compare to each other can be viewed in Tables 4, 5, 6, and 7.
In these tables, the time in seconds is shown, the number of node evaluations,
as well as the MSE of the best model in the population on both the training
and the test data. All of these algorithms were run ten times and as there is
no single median run from an even number of runs, the better one of the two
median runs (so the fifth best run) is depicted in these tables.

In Tables 4 and 6, the median run is selected based on the test MSE, while
in Tables 5 and 7 it has been selected based on training MSE. While test
MSE is the more important measure, as it shows how well a given algorithm
generalizes and gives a better indication of whether the algorithm would perform
well as a predictive device in a real world scenario, training MSE also provides
valuable information about the inherent capability of an algorithm to search for
improvement. Therefore, we chose to examine both.

In Table 4, the results of running the algorithms on the Keijzer-1 dataset are
shown, with the median run selected based on test MSE.

34

Comparative Study

Table 4: Comparison on the Keijzer-1 dataset, test MSE centred.

Algorithm Time (s) Evals (·103) Train MSE (·10−3) Test MSE (·10−3)

EFS 50 119 1.687 1.344
BP 60 1273 1.695 0.702
MRGP 65 122 4.813 18.301
SGP 10 36 50030 0.095 5.0736
SGP 10 IMS 42 50369 0.007 0.157
SGP 17 36 50109 0.021 3.228
SGP 17 IMS 43 50119 0.077 0.421
GOM LT 44 50025 6.696 7.000
GOM LT IMS 76 81093 0.217 0.292
GOM RT 35 50006 6.692 6.959
GOM RT IMS 27 54185 1.425 1.130

We observe that overall, SGP performs very well. The best and third best test
MSE are obtained by SGP 10 IMS and SGP 17 IMS respectively. The differences
between the algorithms are quite large and it is difficult to come to solid conclu-
sions about the performance of the techniques based on the test data, as for many
algorithms there is a large difference between train and test MSE. This is to be ex-
pected, as the dataset is very small, increasing the chance of overfitting occurring.

In Table 5, results of the same experiment are shown, but with the median run
being selected based on training MSE.

Table 5: Comparison on the Keijzer-1 dataset, train MSE centred.

Algorithm Time (s) Evals (·103) Train MSE (·10−3) Test MSE (·10−3)

EFS 50 73 1.857 1.158
BP 60 1491 0.119 0.789
MRGP 68 122 4.785 24.112
SGP 10 38 50100 0.032 52.626
SGP 10 IMS 41 50038 0.075 0.176
SGP 17 37 50109 0.022 3.228
SGP 17 IMS 43 50026 0.107 0.106
GOM LT 41 50004 6.703 6.866
GOM LT IMS 78 80424 0.423 0.322
GOM RT 36 50003 6.693 6.959
GOM RT IMS 28 54758 1.206 1.511

From these results as well, it is apparent that SGP is good at finding solutions
for this low dimensional problem. We hypothesize this is due to the size of the
problem being so small that SGP, which does not have an explicitly guided
evolution, explores more of the search space. Its solutions are likely to be more
diverse and thus more of the relatively small problem space is explored, while
the other algorithms might be hindered by their guided approach.

35

Comparative Study

Figure 4: Legend.

The guided algorithms might converge the search direction
too fast and end up getting stuck in a local optimum, spend-
ing much of their time on ML techniques rather than purely
exploring the space.

To investigate this hypothesis, we visualised the course
of these median runs over time. All configurations with IMS
and SGP 10 are not considered, to reduce the comparison to
one configuration per algorithm. Both the training and test
medians are shown in Figure 5, with a legend defining which
algorithm corresponds to which color in Figure 4.

(a) Training set. (b) Test set.

Figure 5: Mean Squared Error (MSE) versus Time (seconds) on the Keijzer-1
dataset for different algorithms. The associated legend is shown in Figure 4.

The graphs of GP-GOMEA with LT and RT are indistinguishable from each
other as they find models with almost identical MSE, on both the train and
test sets. We observe that EFS and both GP-GOMEA methods have already
converged to their final solution at the first time of measurement. This suggests
these algorithms are indeed converging their search process too fast. BP, MRGP
and SGP, however, are continuously improving their best solution over time
on the training data, although the best model found in the median run by
MRGP is far behind the other two algorithms. From the depiction of the model
performance on the test set, we observe that both the MRGP and SGP runs
suffer from overfitting on the training set, with their model quality lower at the
end of the run than it had been earlier.

Next, we inspect the results of the experiments on the larger Vladislavleva-4
dataset. While it was interesting to see how the algorithms performed on the
small Keijzer-1 dataset, datasets are normally much larger and more complicated
and thus these results are not really reflective of the real capabilities of these
algorithms. A larger challenge will be presented to the algorithms by experimen-
tation on the Vladislavleva-4 dataset, and we will primarily use results from this
experiment to search for answers to our first two research questions.

Table 6 shows the results of applying the algorithms to the larger dataset, with
the median run being selected based on test MSE. The IMS configurations

36

Comparative Study

were excluded from this experiment, since all algorithms for which IMS has not
been implemented are being tested for only 1 parameter configuration, which
would give the IMS configurations an unfair advantage. Additionally, because
of the implementation we use, the runs with IMS were found to exceed the
set evaluation limit. The algorithm would have multiple runs active at a time,
which would all be allowed to complete their calculations, resulting in up to 40%
additional evaluations performed before the algorithm halted. For SGP, the run
with tree depth 10 was excluded as its performance was not as good as that of
tree depth 17.

Table 6: Comparison on the Vladislavleva-4 dataset, test MSE centred.

Algorithm Time (s) Evals (·103) Train MSE Test MSE

EFS 360 594 0.0059 0.0066
BP 361 154 0.0378 0.0317
MRGP 380 353 0.0026 0.0186
SGP 332 50163 0.0121 0.0762
GOM LT 460 50007 0.0375 0.0370
GOM RT 356 50106 0.0365 0.0351

The results differ enormously from the results on the Keijzer-1 dataset. Whereas
EFS, BP and MRGP were all behind SGP in the previous experiment, they
now prove to be the three best algorithms, with EFS taking the lead by a large
margin. Overall scores for the Test MSE are more closely tied to the training
MSE, implying that overfitting has a smaller impact here than it did earlier, as
is expected due to the size of the dataset.

In Table 7, the same experiment is shown, with the median run being selected
based on training MSE.

Table 7: Comparison on the Vladislavleva-4 dataset, train MSE centred.

Algorithm Time (s) Evals (·103) Train MSE Test MSE

EFS 350 577 0.0056 101.499
BP 363 99 0.0380 0.0315
MRGP 380 354 0.0026 0.0186
SGP 369 50017 0.0132 16.3259
GOM LT 348 50152 0.0378 0.0346
GOM RT 335 50106 0.0365 0.0350

Here we observe MRGP and EFS taking a clear lead, with SGP the third best and
GP-GOMEA and BP performing the worst. From these results, it seems that in
case of the more realistic dataset, the guided evolution can provide a meaningful
improvement over SGP. GP-GOMEA does not seem to be an improvement. In
case of the LT, this behaviour might be explained by of the nature of the SR
problem. GP-GOMEA intends to learn the problem structure from the solutions
in the population, but in SR the solutions are formulas which have no fixed form.
Any term can be located at any point in a formula and two completely different

37

Comparative Study

looking solutions might be semantically identical. In the RT model, however,
the structure is constructed randomly, yet the results are very similar to the LT
variant. Therefore, a more feasible explanation for the mediocre performance is
that because of the bounded solution size of GP-GOMEA there is less room to
fine-tune the models. As mentioned in Section 3.1.2, it is recommended to use
linear scaling to increase the performance of these small models, but this would
have made for an unfair comparison to the algorithms written in Java, as they
did not have this method available to them.

To further investigate how these algorithms operate, we visualised the course
of the median runs through time, both train and test median centred. The
results are shown in Figure 6, with the same legend applying as before, shown
in Figure 4.

(a) Training set. (b) Test set.

Figure 6: Mean Squared Error (MSE) versus Time (seconds) on the Vladislavleva-
4 dataset for different algorithms. The associated legend is shown in Figure 4.

Here we observe from the training data, as in the experiments on the Keijer-1
dataset, that EFS and both GP-GOMEA versions converge extremely quickly.
The best solution is found before the first time of measurement and (almost) no
improvement follows. BP, MRGP and SGP on the other hand keep improving
over time. While EFS clearly performs the best on the test set, the continuous
improvement of these aforementioned three algorithms suggests that if they are
allowed more time to search for improvement, especially MRGP has the potential
to find even better models than EFS.

What is also quite clear from this visualisation, is the unstable nature of
the SGP solution on the testing set. Although the the fit on the training data
improves steadily over time, how well the corresponding model describes unseen
data is completely unpredictable. Definite conclusions as to the generalisability
can not be drawn, however, as the run depicted here could be an exception.

38

Comparative Study

6.3 Analysis of Evaluations

To study the differences in performance between algorithms due to the different
languages they were written in, we measured the number of node evaluations
on the dataset. To ensure that this comparison was not biased towards any
algorithm, we did not just multiply the number of individuals in a population with
the number of data records in the dataset. Instead, we defined an evaluation to
be the calculation of the value of a single node, on a single data record. Therefore,
if a solution consists of k nodes, in a single pass of a dataset consisting of n
records, k · n evaluations are counted.

This definition of an evaluation proved not to be an honest measure for
comparison, however, as in EFS, BP and MRGP a lot of computation time is
spent performing regression rather than evaluation of solutions. From Table 7
we observe that the difference in number of evaluations performed in a similar
time frame can be upwards of two orders of magnitude. The motivation for
looking at the node evaluations in addition to the time spent was to see if any
performance differences caused by the use of C++ or Java, could be negated.
Clearly this measure is not suitable, as the difference is of a completely different
order of magnitude than could be explained by the difference in languages (see
Section 6.1).

In addition to our previous measure, we explored another measure to research
the speed difference between the implementations. We scaled the number of
node evaluations by a scaling factor, which was calculated to be the average
time spent by an algorithm on model evaluation divided by the total time spent
during a generation.

The Scaled Evals are then computed by dividing the number of node evalua-
tions by this scaling factor. This measure might be a better indication of what
the speed reduction due to difference in implementation language might be, as
it gives an indication of how many evaluations could have been made by the
algorithm if all time had been spent on model evaluation. The results are shown
in Table 8.

Table 8: Scaling Factors.

Algorithm Scaling factor (Std. dev.) Evals (·103) Scaled Evals (·103)

EFS 0.048 (0.012) 594 12375
BP 0.217 (0.043) 154 710
MRGP 0.0492 (0.017) 353 7175
SGP 0.941(0.003) 50163 53308
GOM LT 0.927 (0.009) 50007 53945
GOM RT 0.949 (0.003) 50106 52799

The first thing to note is that BP presents a significant outlier in this set. The
time spent by BP on evaluating solutions is located between on the one hand
EFS and MRGP, which spent about 5% of their computation time evaluating
solutions, and the SGP and GP-GOMEA algorithms on the other hand, which
spent over 90% of their time evaluating. This is quite strange, as the number of
total evaluations made in the BP algorithm is the lowest of all the algorithms.
This suggest the evaluation procedure of BP is quite a bit slower than that of

39

Comparative Study

the other algorithms.
We notice that EFS has an approximate difference in scaled evaluation of

factor 4 compared to SGP. MRGP is worse of, by a factor of around 7. These
numbers, while they are rough estimates, are much closer to those found by
Gherardi et al [15], and could be partially due to differences in implementation
language. This suggest that a noticeable performance increase might be achieved
by implementing EFS and MRGP in C++ instead.

6.4 Discussion

The results of the comparisons presented in this section allow us to answer the
first two of our research questions.

The first question we posed is:

• How do EFS, BP, MRGP and GP-GOMEA perform in comparison to SGP
and each other?

Throughout Section 6.2 we commented in detail on the results of the experiments
and to answer this question, we discuss the overall trend shown by the different
algorithms.

GP-GOMEA does not perform particularly well on either the Keijzer-1 or
the Vladislavleva-4 dataset. On the smaller set, the results vary a lot depending
on the settings used, but even its best configuration is outperformed by SGP on
both train and test MSE. On the larger dataset, a better test MSE is found than
by SGP on average, while SGP still proves better at finding model improvement
as the training MSE shows. The overall performance of GP-GOMEA can be
explained by the very restricted maximum model size compared to the other
algorithms. To find competitive models, the use of linear scaling might be
necessary.

BP performs decently on the Keijzer-1 dataset, scoring better on train and test
MSE than MRGP and EFS, but lacking behind SGP. On the larger dataset, it is
clearly outperformed by EFS and MRGP, while obtaining slightly better results
than SGP on the test MSE. When looking at training MSE, it is outperformed
by SGP.

EFS and MRGP are both outperformed by the other algorithms on the
smaller dataset. As stated before, this is likely due to the guided searching
mechanism of these algorithms focusing the search process too quickly into a
small area of the problem space. On the larger Vladislavleva-4 dataset, however,
the guided evolution is much more effective. Both in test MSE and train MSE,
the algorithms significantly outperform all of the other algorithms.

SGP performs well on the smaller dataset, but can not compete with MRGP
and EFS on the Vladislavleva-4 dataset. From looking at the differences between
the test and train MSE, we suspect the models to be overfit on the training data
more often than the models generated by the other algorithms.

40

Comparative Study

The second question we posed is especially important, as it provides the basis
for the remainder of this work:

• What insights can be obtained from the comparison of these methods
which might prove useful for application in further research into improving
SGP?

For solving small instances of SR, applying SGP to the problem seems to be
a good choice, as its search mechanism is not explicitly guided into a specific
direction, allowing a more diverse population to exist. Therefore, given a small
dataset with few variables, a good solution can likely be found using SGP.

When a larger dataset with a greater number of variables needs to be modelled,
it can be very beneficial to guide the evolutionary process in a promising
search direction. MRGP and EFS demonstrate this approach works well on
the Vladislavleva-4 dataset, and from the literature study we also conclude
a guided evolution is a promising direction for research into improving SGP.
Both MRGP and EFS guide the evolution focusing on a feature-based approach,
applying ML techniques to measure which features are important and using these
important features to construct new models. Due to the good performance of
these algorithms, we elected to focus on this principal of a feature-based guided
evolution as well, in the design of a novel SR algorithm.

41

7 Sensitivity-Based Approach

Using what we learned from the comparison of several algorithms in the previous
section, as well as exploration of the literature, we designed an algorithm to
improve upon SGP: Sensitivity-based Genetic Programming (SensGP).

This approach relies on the calculation of a feature importance score through
sensitivity-like analysis, based on the paper Sensitivity-like Analysis for Feature
Selection in Genetic Programming by Grant Dick [10]. These feature importances
are saved in an archive, which we refer to as the dictionary, and are used to
determine the probability of a feature being inserted into the population at a
later time, through a SensitivityMutate operator.

Our reasons for suspecting this approach has merit are the following:

• The feature-centred/-guided evolution approach is at the heart of many of
the methods currently being explored in research, such as EFS and MRGP.
On problems with many variables, these approaches regularly prove to
outperform SGP, which lacks any guidance of the evolutionary process
other than through selection pressure.

• The sensitivity-like approach is shown by Grant Dick in his paper to be a
good importance measure for single variable importance. When embedded
into SGP to guide the evolution, it is shown to improve upon SGP. The
technique remains unexplored for multi-variable features, however.

In this section we systematically explore the capabilities of the SensGP algorithm,
via the following structure:

First, in Section 7.1 we present the general idea behind the approach. In
Section 7.2 the base SensGP algorithm is described in detail, the parameters are
explained and experiments are conducted to find good values for these parameters.
Two options, Uniform Depth Variation (UDV) and Complexity Importance, are
explored. Finally, we show how well the algorithm performs with the selected
parameter settings in comparison to SGP, on the Vladislavleva-4 dataset. Then,
in Section 7.3 we explore a variant of SensGP in which only a given percentage
of the best individuals of the population are used in calculation of feature
scores. We present the algorithmic adjustments made to SenGP, examine the
parameters of this elitism-inspired approach and show experimental results. In
Section 7.4 another variant is analysed, in which features are ranked based
on a measure of how much the variables contained in this feature impact the
overall model that contains this feature. This approach is most like the original
sensitivity-like approach of Grant Dick, but extended to features containing
multiple variables. Its algorithmic details are given, its parameters are examined
and finally, experimental results are presented. Next, in Section 7.5 we compare
SGP to all three variants of SensGP in a number of configurations. For this
comparison we use all of the datasets described in Section 5.3. Finally, in
Section 7.6 we formulate an answer to the final research question.

42

Sensitivity-Based Approach

7.1 Basic Concept

In his paper Sensitivity-like Analysis for Feature Selection in Genetic Program-
ming, Grant Dick suggests to use a novel method to calculate the importance of
the input variables. This is done as follows:

1. At the end of a run, the fittest individual is considered.

2. Its MSE is computed on a hold-out partition of the data.

3. For each variable, the values in this partition are temporarily shuffled and
model MSE is calculated again. The change in error compared to the MSE
before shuffling is computed.

4. The changes in MSE are normalised to the largest change in MSE.

At first, this method is applied only as a measure of variable importance and
the information obtained is not used in the evolutionary process itself. Later
on in his work, he suggests to integrate this method into SGP, to enhance its
search properties. The resulting method consists of the following steps:

1. All terminal selection probabilities are set to be equal initially.

2. After each generation, variable importance is calculated as described above.

3. The variables are ranked based on this importance measure.

4. The ranks are normalized by the sum of the ranks of all variables.

5. In the next generation, the probability of choosing a variable during
mutation is set to be proportional to its rank.

This approach, named Adaptive Terminal Selection, shows at least some im-
provement on all test cases explored.

In the basic version of SensGP, we use the idea of calculating such an
importance value for the input variables and extent it to include multi-variable
features. We do not limit the calculation of feature importance to the best model,
nor are all feature importance scores reset every generation. In this variant,
evaluation of features is done separately on the dataset, independently from the
model in which they appeared. All features are stored in a dictionary, alongside
their importance.

The feature importance is a measure of the predictive value of a feature on
the original dataset versus the predictive value on the dataset for which all data
entries corresponding to the variables of the feature have been shuffled. The
importance score of a feature t, which is represented as a tree in our program, is
calculated as follows:

Importance(t) =
MSE(t)

MSE(t)shuffled
, (21)

where MSE(t) is the MSE of t on the original dataset and MSE(t)shuffled is
the MSE of t on the dataset for which all variable values of the variables present
in t have been shuffled. A low importance score indicates that the feature has
strong predictive properties, as shuffling the data for its variables increases the
MSE. A more detailed description of the SensGP algorithm is presented in the
next section.

43

Sensitivity-Based Approach

7.2 Sensitivity-Based Genetic Programming

In this section, the SensGP algorithm is explained in-depth. In Section 7.2.1 the
algorithm is discussed. All of the parameters to be specified in the algorithm
are examined in Section 7.2.2. Some additional options which can be enabled
are discussed in Section 7.2.3. Finally, we compare the SensGP to SGP in
Section 7.2.4.

7.2.1 Algorithmic Details

Sensitivity-based GP is an extension of SGP and therefore makes use of the same
traditional algorithmic order of program execution, depicted in Algorithm 1:

Algorithm 1 Algorithmic structure of SGP

1: procedure SGP(Data)
2: InitializeRun()
3: while (!Terminated) do
4: SelectionForVariation()
5: PerformVariation()
6: EvaluatePopulation()
7: Terminated = TerminationCriteriaMet()
8: return BestModel

How each of these steps is altered in case of SensGP, is described below:

InitializeRun

In the initialize step, we need to ensure that the dictionary is filled with features,
as otherwise we will not be able to perform the sensitivity mutation in the
PerformVariation step in the first generation. In an FFX-like manner (see
Section 2.6.3) all one- and two-variable feature combinations are generated, using
the different operators available. Each of these combinations has its feature
importance calculated by calling the CalculateImportance() method shown in
Algorithm 2:

Algorithm 2 Calculating the importance of all features in a population

1: procedure CalculateImportance(treesToInspect,variablesInTree)
2: CalculateFitness(treesToInspect)
3: for i = 0, i < treesToInspect.size, i++ do
4: if variablesInTree[i].size 6= 0 then
5: t = treesToInspect[i]
6: if t /∈ featureDictionary then
7: unshuffledError = t.GetFitness()
8: shuffledError = ComputeShuffeledDataFitness(t,variablesInTree[i])
9: featureImportance = unshuffledError / shuffledError

10: if featureImportance 6= 1 then
11: featureImportance = CheckUniqueKey(featureImportance)
12: featureDictionary.Insert(featureImportance,t)

44

Sensitivity-Based Approach

The algorithm takes a population of features as well as a vector in which the
variables contained per feature are stored. Its purpose is to calculate the feature
importance of each of the features and insert them into the dictionary.

On line 2 of the algorithm, the fitnesses of all features in the population are
calculated and saved, to be retrieved later on line 7. On line 4 of the algorithm,
a check is performed to see if the feature is not a constant, since in that case
there are no variables to which we can measure sensitivity. On line 6, a check is
performed to see if the feature is not already contained in the dictionary. Since
feature scores in the basic variant of SensGP are calculated independently of the
model they appear in, calculating the score for any feature which is already in
the dictionary is obsolete.

On line 8, the shuffledError is calculated via the ComputeShuffledDataFit-
ness() procedure. This procedure takes a feature as well as the variables occurring
in it as its arguments and proceeds to randomly shuffle all data entries in the
dataset, corresponding to these variables. If a feature contains multiple variables,
these are shuffled together and will end up in the same new data record. All
values for the variables not contained in the feature remain in the same data
records as in the original dataset. After this operation is performed, the MSE of
the feature is measured and returned.

FeatureImportance is then calculated straightforwardly by dividing the un-
shuffled MSE by the shuffled MSE. A check is performed on line 10 of the
algorithm to see if the featureImportance is not equal to 1. The reason for this is
that any feature with MSE equal to one is effectively a constant feature. When
features have a featureImportance of 1, even though they contain variables, this
is caused by a self-division or self-subtraction of the variable being contained in
the feature (e.g. x2/x2). For such features, our importance measure is of no use
and these are therefore not stored in the dictionary.

Next, it is ensured the featureImportance value is unique (to allow for two-
way lookup in the dictionary) by the CheckUniqueKey() function. If the key
(featureImportance) is already contained in the dictionary, the key is incremented
by the smallest amount possible, restricted by the implementation of the double
type in C++, until a unique value is found. Finally, the importance-feature pair
is inserted into the dictionary.

After having inserted these pre-generated features into the dictionary through
the CalculateImportance() method, the initialization phase takes the same step
as in SGP: the population of models to be evolved in the generational loop
of the algorithm is initialized by the Ramped-half-and-half method described
in Section 2.4. Then, the function AfterPopulationGenerationImportance() is
called, with the purpose of extracting all distinct features from the models in
the freshly generated population and inserting these features together with their
importance intro the dictionary.

AfterPopulationGenerationImportance() takes as a parameter a percentage
corresponding to how many individuals of the population should be evaluated,
which is set to 100% at this point as we want to evaluate the entire population.
The procedure starts by evaluating and inserting all features corresponding
to the input variables of the dataset into the dictionary through the AddSin-
gleVarsToDict() method. This is not strictly necessary at this point, but is
needed in the Model Dependent variant of SensGP, discussed in Section 7.3.
All trees in the population are inspected, traversing every node for each tree

45

Sensitivity-Based Approach

and checking its arity. If a node has an arity > 0, its subtree is checked for the
presence of variable nodes. If the subtree contains variables, the subtree and its
variables are saved in separate vectors and after all trees in the population have
been inspected, these vectors are passed to the CalculateImportance() method
described in Algorithm 2.

After the entire initial population has been inspected and all unique features
are saved in the dictionary, the initialization is complete and the algorithm moves
to the generational loop.

SelectionForVariation

In this specific implementation of SGP, and therefore SensGP, selection of
individuals for mutation and crossover happens in the PerformVariation step
and will be described there.

PerformVariation

The variation procedure works as follows: first, an operator is selected from the
pool of operators in proportion to their given probabilities. These probabilities
can be set via the crossover and mutation parameters. Once a given operator
is selected, either one (in case of mutation) or two (for crossover) individuals
are selected from the population by tournament selection. So far, the procedure
mimics SGP precisely, but in SensGP, we adjusted the mutation operator. If the
mutation operator is picked, a third parameter, sensitivity, comes into play. A
random number is generated and if it is higher than the sensitivity parameter,
ordinary mutation occurs. If it is lower, SensitivityMutate() is called.

SensitivityMutate() functions mostly like ordinary mutation, but instead of
randomly generating a new tree via the Full or Grow methods, a feature is selected
from the dictionary. This is done in one of two ways, either by tournament
selection or a rank-proportionate selection based on feature importance. These
methods for selection will both be described in Section 7.2.2. After a feature
has been selected, it is inserted at the location of a random node of the tree
undergoing the mutation operation, as would happen with ordinary mutation.

In the basic variant of SensGP, the individual that has undergone mutation
is checked for new promising features at this point, by traversing up the tree
towards its root node, starting at the location where the new feature was just
inserted. For all nodes encountered, the subtree with this node as its root is
checked for size, and if the subtree is smaller than the MaxDictSize parameter,
it has its feature importance calculated by the CalculateImportance() method.
In this way, new features enter the dictionary after the initialization phase.

EvaluatePopulation

As with SGP, after the variation step the new population is evaluated on the
dataset and sorted by MSE.

TerminationCriteriaMet

At the end of the generational loop, in correspondence with SGP, the termination
criteria are checked. Specifically, this can be a time limit, a limit to the number
of node evaluations or a limit to the number of generations.

46

Sensitivity-Based Approach

7.2.2 Parameters

With the algorithmic details having been laid out in the previous section, in
this section we will discuss the influence of the parameters mentioned, as well as
motivating through experiments which parameter values are suitable for usage
in further experimentation.

Population Size

First, we assert the effect of the population size on SenGP. A commonly encoun-
tered value for the population size in the literature is 512, so we experiment with
values on either side.

In Figure 7 the medians of 10 runs of SensGP, lasting five minutes each, are
shown, for values of the population size parameter equal to 128, 256, 512, 1024
and 2048. This experiment was performed on the Microsoft Azure VMs.

Figure 7: Mean Squared Error (MSE) versus Time (seconds) on training data
for different population sizes.

From this figure, the model MSE values for the runs with different population
sizes do not seem to differ significantly. Therefore, the initial value of 512 will
be used throughout the remainder of this work.

Mutation, Crossover and Sensitivity Mutation

Picking the right values for the mutation, crossover and sensitivity mutation
parameters must be carried out together, as their balance determines their
impact on the algorithm. Tests with only the sensitivity mutation operator
and no ordinary mutation were performed, but due to the similarity of the
sensitivity mutation to the crossover operator the population would converge
too quickly. Consequently, this setting was not an improvement over SGP, and
thus this scenario will not be considered in the search for optimal parameter
values. Similarly, having no sensitivity mutation is not of interest, as then we
would obtain the results for SGP, which we already compare our end results
to. The third possibility of not using the crossover operator is interesting,
however, as sensitivity mutation shares some characteristics with crossover,

47

Sensitivity-Based Approach

by introducing only features into the population which originate from other
individuals. Therefore we did test settings for Pr(crossover) equal to 0.

Due to the way we implemented the SensitivityMutate() method, the sensitiv-
ity parameter value determines how often the method is picked in proportion to
standard mutation. To show the impact of all three parameters simultaneously,
we plot the value of mutation versus sensitivity, as the setting for crossover is
fixed by 1− Pr(mutation). Results are obtained by taking the median run of
5, with each run lasting 5 minutes. These computations were performed on the
Microsoft Azure VMs.

The results of an initial grid search, with values for mutation in the range [0.2, 1]
and values for sensitivity in the range [0.2, 0.8] with steps of 0.2, are shown in
Figure 8.

Figure 8: The Mean Squared Error of the median run of an initial exploration ex-
periment of different parameter values of the mutation and sensitivity parameters
on training data.

From this figure, we observed an area where settings seemed promising, the dark
blue curve-shaped valley, starting at Pr(mutation) = 0.8, P r(sensitivity) = 0.2
and ending at Pr(mutation) = 0.2, P r(sensitivity) = 0.8.

We tested more parameter configurations in this promising area, adding them to
the contour plot. The final result can be observed in Figure 9.

48

Sensitivity-Based Approach

Figure 9: The Mean Squared Error of the median run after further investigation
of different parameter values of the mutation and sensitivity parameters on
training data.

Two parameter settings clearly stand out, and seem stable when taking neigh-
bouring points into account. These were the settings:

Configuration 1: Pr(mutation) = 0.75, Pr(sensitivity) = 0.4.
Configuration 2: Pr(mutation) = 0.5, Pr(sensitivity) = 0.6.

We performed a thorough test between these remaining two value-pairs. For this
comparison, we ran each setting 15 times, with a time limit of 10 minutes on
the Asus laptop. The median runs are shown in Figure 10.

The average and standard deviation of these experiments have been calculated
as well and are presented in Table 9.

Table 9: Comparison of two different pairs of values for the mutation and
sensitivity parameters of SensGP.

Setting Configuration 1 Configuration 2

Pr(mutation) 0.75 0.5
Pr(sensitivity) 0.4 0.6
Mean MSE 0.0067 (0.0024) 0.0042 (0.0013)

From this final experiment, it is clear that Configuration 2 is the superior
configuration. The result is found to be significant by the Mann-Whitney U
test, resulting in a p-value of 0.0021. Therefore, in the remainder of this work

49

Sensitivity-Based Approach

the settings Pr(mutation) = 0.5, Pr(sensitivity) = 0.6 are used as the default
settings.

Figure 10: Mean Squared Error (MSE) versus Time (seconds) on training data
for Configuration 1 and Configuration 2.

TimesAsLikely and TournamentRanking

In the SensitivityMutate() method, the first step is to select a feature from the
dictionary to later insert into an individual. This can be done in two ways in
the current version of SensGP:

• Rank-based selection. In rank-based selection, a TimesAsLikely parameter
must be specified. This parameter determines how many times more likely
it is that the feature with the smallest feature importance score in the
dictionary is selected than the feature with the highest score. This sounds
counter intuitive, but for feature importance a lower score indicates a
better feature. The probabilities for all features with scores in-between are
obtained based on their rank x, where the highest rank is assigned to the
feature with the lowest feature importance. The probability of a feature
with rank x to be selected is then calculated as:

Pr(x) = x ∗ (TimesAsLikely − 1)/(NumberOfFeatures− 1) (22)

• Tournament selection. Features are randomly selected from the dictionary
and a tournament is held to see which feature has the lowest feature
importance. This feature is selected for use in mutation. The Tourna-
mentRanking parameter determines between how many randomly picked
features the tournament is held.

We tested different values for both of these parameters on the Microsoft Azure
VMs, running 10 iterations of each setting. The results for TimesAsLikely are
shown in Figure 11.

50

Sensitivity-Based Approach

Figure 11: Mean Squared Error (MSE) versus Time (seconds) on training data
for different values of TimesAsLikely.

There is no clear pattern to be observed, the two worst runs are those with
TimesAsLikely values 5 and 40, while the values in-between all perform better.
The region between these values appears to be a solid choice and any value
picked in this region is presumed not to have a large negative impact on the
performance of SensGP.

The results of experiments with different values of the TournamentRanking
parameter are shown in Figure 12.

Figure 12: Mean Squared Error (MSE) versus Time (seconds) on training data
for different Tournament Sizes.

The results for the TournamentRanking parameter are very similar to those for
the TimesAsLikely parameter. There appears to be an outlier for the value 40,
while all surrounding values perform comparably.

We expected tournament ranking might be a significant speed-up over the
rank-based selection, as in the latter method, the dictionary has to be traversed
many times by an algorithm known as roulette wheel selection. Therefore, we

51

Sensitivity-Based Approach

measured how much of the total time spent during a run was spent on the
feature selection methods. The Visual Studio Analysis tool was used for these
measurements.

By switching from tournament ranking using a very small tournament size of
3, to rank-based selection with a TimesAsLikely value of 5, we found that the
time spent on the SensitivityMutate() method as a whole increased from 7.96%
to 9.67% of the total computation time. In the Model Dependent and Variable
Importance variants of SensGP, we found these increases to be from 1.63% to
1.67% and from 0.89% to 1.63% respectively. While tournament selection does
prove to be faster, when looking at overall computation time the difference
is negligible. If parameter values for TournamentRanking and TimesAsLikely
increase, this difference will be further reduced, as a larger tournament size
means more feature importance scores have to be compared. As the probabilities
of feature selection are easy to calculate explicitly using Equation 22, resulting
in an increased understanding of with what probability features are selected, we
opted to stick with the rank-based method, with a TimesAsLikely value of 25.

Recalculation

As a run progresses in time, the size of the dictionary grows, as new features are
inserted into it, while no features are ever removed. Especially with constants
enabled, there are many different features which might be inserted into the
dictionary. This can have a negative effect on the speed of the algorithm, as
having more features to choose between means more time is spent selecting
a feature through rank-based selection. Additionally, the overall quality of
the features being selected could be reduced, as having more features in the
dictionary decreases the chances selecting good features.

Therefore, we decided to add an optional mechanism, which empties the
dictionary every certain number of generations. These generations are specified
as those that result in a value of 0 when the modulus with respect to the
RecalculateScore parameter is taken. Then, in case of SensGP, the dictionary
is re-instantiated using the features from the models of the best percentage of
the population specified by the RecalculationFactor parameter, by calling the
AfterPopulationGenerationImportance() method discussed in Section 7.2. The
Recalculation option is of particular importance in the Model Dependent and
Variable Importance variants of SensGP and will be discussed in relation to
these in Sections 7.3 and 7.4.

We performed experiments for 5 values of RecalculateScore, with Recalcula-
tionFactor set to 0.05. For each experiment, the median of 10 runs was taken.
The experiments were performed on the Asus Laptop. The results of these
experiments are depicted in Figure 13.

52

Sensitivity-Based Approach

Figure 13: Mean Squared Error (MSE) versus Time (seconds) on training data
for different values of RecalculateScore with RecalculationFactor set to 0.05.

The results are quite similar, but the values 20 and 35 seem to stand out as the
best and worst value. As it would be very strange for the runs with the lowest
two and the highest parameter values to produce models of nearly equal quality,
while the two values in-between represent the best and worst settings, we suspect
these results are a consequence of the variance. Overall, using the Recalculation
option does not seem to improve upon ordinary SensGP.

Maximum Feature Size

In the SensitivityMutate() method of SensGP, only trees which are smaller than
a certain number of nodes are used for importance calculation. This is done as
we expect features with more nodes might be too complex to be suitable for
insertion into another individual. To test this hypothesis, we made size into a
parameter named MaxDictSize and performed a comparison experiment. We
tested the values 7, 10, 12 and 15, performing 10 runs with each setting using the
Asus Laptop, observing the median runs. The results are shown in Figure 14.

Figure 14: Mean Squared Error (MSE) versus Time (seconds) on training data
for different values of MaxDictSize.

53

Sensitivity-Based Approach

From this figure, is appears that setting the maximum feature size to 10 achieves
the best results.

Final Parameter Values Selected

A complete list specifying the parameter values used in the experiments in the
remainder of this section is shown in Table 10. For the ModelDep, VarImp and
Recalculation parameters different values are used every experiment, which are
then further specified. For the experiments on the Nguyen-7 dataset we added
the Log() function to the function set, and for the experiments on the Korns-12
dataset we added the Sine() and Cosine() functions.

Table 10: Parameter Settings.

Parameter Value

Time limit 10 minutes
Population size 512
Terminal set independent variables + ERC
Function set (+,−,×,÷, .2,

√
·)

Tree initialization method Ramped-half-n-half
Minimum initial Tree height 2
Maximum initial Tree height 4
Maximum tree height 17
Tournament size 7
SGP crossover/mutation rate 0.9/0.1
SensGP crossover/mutation rate 0.5/0.5
Elitism 1
SensitivityMutate 0.6
TimesAsLikely 25
Maximum feature size 10

7.2.3 Additional Options

In addition to the tunable parameters discussed in the previous section, we im-
plemented three more switchable options into SensGP: Uniform Depth Variation,
Complexity Importance and the inclusion or exclusion of constants.

Uniform Depth Variation

Uniform Depth Variation (UDV) [20] is an adjustment to the standard crossover,
mutation and sensitivity mutation operators, which is also used in BP (See
Section 3.2.2). Normally, the variation operation is applied to a randomly
selected node. Since the solutions in a GP population are stored in a tree
structure, each subsequent level of depth is likely to contain a larger number of
nodes than the previous level. In case of a full tree of binary function nodes, the
relation between the depth level k in the tree and the number of nodes at this
level equals 2k.

In practice, a tree will not be completely filled, as terminals and operators
of arity one can be contained at all levels of the tree. Still, on average the
number of nodes per depth level of the tree increases with depth. This causes

54

Sensitivity-Based Approach

the probability of a variation operation occurring somewhere in the larger depth
levels of a tree to be larger than at the levels near the root. This can be unwanted
behaviour, since nodes located near the root are more likely to have a larger
impact upon total tree fitness.

To combat this possible issue, we added to option of using UDV into SensGP.
In UDV, instead of selecting a node randomly from the set of all nodes in the
tree, first a depth level is picked from the set of all depths occurring in the tree,
with equal probability. Then from the set of all nodes contained in this depth
level of the tree, a random node to apply the variation operator to is selected.
Selecting nodes in such a manner increases the probability of nodes near the
root node of the tree being used for variation.

The usefulness of the UDV option is researched, with the results shown in
Figures 15 and 16, as well as in Table 11, together with those from Complexity
Importance and SensGP for comparison. For these experiments, the Virtual
Machines from the Microsoft Azure service were used and the median run out of
10 is shown.

The figures suggest there is no added benefit of enabling the UDV option in
comparison to using SensGP, as on both the train and test data the median run
has the worst performance of the three configurations which are compared. The
p-value to SensGP is not below the threshold of 0.05 in either case, however, so
the difference is not statistically significant.

Complexity Importance

Keeping the size of solutions in the population relatively small is beneficial for
two main reasons. First of all, it reduces the chance of overfitting on the training
data, as there is less room for fine tuning in smaller solutions. Secondly, the
models produced are more legible, which makes people more inclined to use
them, as a model which is understandable gives some assurance as to what it
does.

To this end, we tested complementing our feature importance measure with
a Complexity Importance measure. Before the feature importance x of a feature
is inserted into the dictionary, it is first scaled as:

ComplexityImportance(x) = x · (numberOfNodes
10

+ 1). (23)

This formula was chosen, as it scales the ordinary feature score, but the impact
of the solution size is reduced to prevent it from becoming the dominating
factor. If a straightforward multiplication of the importance by the number of
nodes was made, the impact of the size might have been too large. The num-
ber 10 is picked as it proved to be a good maximum feature size, as shown in 7.2.2.

The results of this experiment, together with those from SensGP and UDV are
shown in Figures 15 and 16. For these experiments, 10 runs were performed on
the Microsoft Azure VMs.

55

Sensitivity-Based Approach

Figure 15: Mean Squared Error (MSE) versus Time (seconds) on training data
for different options of SensGP.

Figure 16: Mean Squared Error (MSE) versus Time (seconds) on test data for
different options of SensGP.

Here we observe that while uniform depth mutation grants results similar to
SensGP, the Complexity Importance measure seems to improve upon SensGP.
From a Mann-Whitney U test, a p-value of 0.52 was obtained, however, on both
the training and test sets, indicating this result is not significant.

Table 11: Comparison of SensGP to SensGP with Uniform Depth Variation and
Complexity Score.

Training Median MSE Mean MSE Std. dev. p-value to SensGP

SensGP 0.0051 0.0055 0.002 0.97
Complexity 0.0045 0.0051 0.0018 0.52
Uniform Depth 0.0052 0.0077 0.0052 0.47

Testing Median MSE Mean MSE Std. dev. p-value to SensGP

SensGP 0.0091 0.0099 0.0041 0.97
Complexity 0.0071 0.0087 0.0038 0.52
Uniform Depth 0.0098 0.021 0.027 0.16

56

Sensitivity-Based Approach

Constants

A significant issue in SensGP is presented by having to store constants. Currently,
constants are included into the dictionary by value. While this works, it is not
very elegant and can result in a lot of additional, unnecessary features being
included. The reason for this is that if a feature, say 0.35 ·x1, is included into the
dictionary, any feature (0.35 + ε) · x1 might be generated through mutation or
crossover anywhere else in the population and then included into the dictionary
as well. As this can happen for any value of ε ' 0, as allowed by the C++ double
type, there are many semantically almost identical features which could be
inserted into the dictionary.

Saving the constant as a constant without value, on the other hand, would
give a wrong indication of the usefulness of the feature. If, for example, the
previously mentioned feature 0.35 · x1 would be saved as C · x1, this would mean
only one entry for this combination would be allowed in the dictionary. It would
represent both 0.35 · x1 and e.g. 1234.45 · x1, which would likely be of widely
varying usefulness to the problem, yet would obtain identical importance scores.

Although constants are essential in real datasets and we thus chose to perform
all experiments with constants being included into SensGP, to see if there is
indeed a greater impact of constants on SensGP than on SGP, we decided to
conduct an experiment where both of these algorithms were not allowed to
generate constants.

The results of this experiment, performed on the Asus laptop, can be seen in
Figures 17 and 18, as well as Table 12.

Figure 17: Mean Squared Error (MSE) versus Time (seconds) on training data
for SGP and SensGP with constants disabled.

57

Sensitivity-Based Approach

Figure 18: Mean Squared Error (MSE) versus Time (seconds) on test data for
SGP and SensGP with constants disabled.

When compared to results of both algorithms with constants enabled in Sec-
tion 7.2.4, we observe that without the ability to evolve constants directly, the
performance of both algorithms decreases dramatically. The median run is
almost three times worse than when constants are allowed, for both algorithms.

Table 12: Comparison of SensGP to SGP with constants disabled.

Training Median MSE Mean MSE Std. dev. p-value to SGP

SGP 0.0125 0.0138 0.0050 0.9830
SensGP 0.0109 0.0119 0.0043 0.3840

Testing Median MSE Mean MSE Std. dev. p-value to SGP

SGP 0.0206 0.0199 0.0062 0.9830
SensGP 0.0181 0.0180 0.0040 0.4550

It is not necessarily clear from this comparison that SensGP had more
difficulties in incorporating constants into its models due to use of the dictionary,
as in both the constant and no constant case it outperforms SGP by around the
same factor as on the Vladislavleva-4 dataset.

58

Sensitivity-Based Approach

7.2.4 Experiments

In this section, the performance of SensGP is compared to that of SGP on the
Vladislavleva-4 dataset. In Figure 19, as well as in Table 13 of Appendix A, the
results of executing 15 runs of both of these algorithms on the training set can
be seen. All of these experiments were performed on the Asus laptop described
in Section 5.2.

Figure 19: Mean Squared Error (MSE) versus Time (seconds) on training data
for SGP and SensGP.

In Figure 20 and Table 13, as before, the same experiment is shown but on the
test set.

Figure 20: Mean Squared Error (MSE) versus Time (seconds) on test data for
SGP and SensGP.

These figures show that the median run of the SensGP algorithm outperforms
the median run of SGP. On the training data, the MSE scores achieved in the
median runs by SensGP and SGP are 0.00373 and 0.00463 respectively. On the
test data the MSE scores were 0.00741 and 0.00777. From the results of the
The Mann-Whitney U test performed we observe that these differences are not
statistically significant, however, with p-values of 0.106 on the training data and
0.229 on the test data.

59

Sensitivity-Based Approach

7.3 Model Dependent

In addition to the SensGP algorithm, we experimented with two major adap-
tations of it. In this section the Model Dependent (ModelDep) approach is
discussed. The underlying idea behind ModelDep is that SensGP might be
improved upon by evaluating the importance only of the features from the best
models in the population. We hypothesize that, since these models perform
better as a whole on the given problem set, its parts should on average also be
better than those of the average model.

In examining this approach, we have put additional effort into testing how
well it works in combination with the Recalculation parameter. We expect that
as the population evolves, new models will become the best models, and getting
rid of the features that appeared in previously good models might keep the
search going in a fresh direction.

7.3.1 Algorithmic Details

A couple of changes have been introduced into SensGP to make this approach
function. First of all, in the initialization step, no importance calculations are
made. At the end of the initialization step, the newly generated population is
evaluated and its models are sorted by MSE. This is essential, as the first step
of each generation of ModelDep is to call the AfterPopulationGenerationImpor-
tance() function, discussed in Section 7.2, with the ModelDep parameter. This
parameter is multiplied by the population size to determine how many individuals
should be inspected. Since we want the best models from the population to be
used for feature importance calculation, instead of using random models, the
population must be sorted on fitness at this point. If the value for ModelDep is
zero, only the single best model is used for feature importance calculation.

To ensure the dictionary is never empty, the features corresponding to
the input variables are always evaluated and added to the dictionary by the
AddSingleVarsToDict() method. In absence of this measure, the dictionary being
empty at the moment of variation has been observed to happen, especially in
the case for a single model being analysed each generation, specifically when the
current best model or models are effectively a constant (the MSE = 1 case).

In Sensitivity Mutation, the evaluation of subtrees of models which have just
been modified is omitted. The only importance calculation is performed at the
start of the generation. If the current generation is divisible by the parameter
setting for RecalculateScore, the dictionary is cleared at the end of the generation,
but unlike in SensGP, it is not immediately reinstated, as this will happen at
the beginning of the next generation.

7.3.2 Experiments

In order to compare the ModelDep configurations to SGP and SensGP, we
had to determine good values for the ModelDep and RecalculateScore (Recalc)
parameters. We chose to test the values of 0, 2 and 5 for ModelDep, as evaluating
more than 5% of the population for feature importance would allow mediocre
models into the selection (in case of 512 population size, already 25 models
are inspected). For the RecalculateScore parameter, we tested the values of
1,2,5,10 and 20, although the values 1 and 2 only for the ModelDep 0 setting,
for which we did not evaluate the RecalculateScore equal to 20 setting. We also

60

Sensitivity-Based Approach

evaluated the algorithms without recalculation. The median results of running
10 iterations of each of these tests, on the Microsoft Azure VMs, are shown in
Figures 21(a-f), for both train and test MSE, on the next page.

We observe that the ModelDep 5 setting produces models with worse av-
erage performance than the other settings did. Therefore, we disregard this
configuration in choosing good parameters for further testing.

For Modeldep 0, Recalc 1 and 10 clearly perform worse than the other settings.
The other three configurations are all quite good, but since ModelDep 0 Recalc
2 performs the best on both the training and the test set, we chose to use it in
future experiments.

In the case of ModelDep 2, we observe that the only value which is noticeably
performing worse in this test is that of Recalc 5. As the other settings are
close together and as we are more interested in measuring the effect of a larger
Recalc value than in measuring the effect for another low value (which we picked
for ModelDep 0), we chose to continue with Recalc 20 in further experiments.
Additionally, we wanted to test a variant of ModelDep without recalculation, for
which we used ModelDep 2.

A comparison of the Model Dependent variant to the other techniques will
be shown in Section 7.5.

61

(a) ModelDep 0; Training Set. (b) ModelDep 0; Test Set.

(c) ModelDep 2; Training Set. (d) ModelDep 2; Test Set.

(e) ModelDep 5; Training Set. (f) ModelDep 5; Test Set.

Figure 21: Mean Squared Error (MSE) versus Time (seconds) for different
configurations of Model Dependent SensGP.

62

Sensitivity-Based Approach

7.4 Variable Importance

The second variant of SensGP, named Variable Importance (VarImp), is most like
the original idea presented by Grant Dick in his paper Sensitivity-like Analysis
for Feature Selection in Genetic Programming [10]. The method presents one
way of bringing the analysis from its original version of looking at individual
variables to incorporating features of 2nd and higher order as well. In this
variant, all nodes in a tree will be traversed and each subtree is scored depending
on the variables which occur in it. The importance score of the feature will be
equal to that of the entire model, but with the variables to shuffle equal to the
variables present in the feature.

For example, we take the model to be:

(x1 + 0.3) · x1

x2 − x3
. (24)

If the importance of the feature (x1 +0.3) is to be calculated, first the MSE of the
entire solution is calculated. Then the value of the entire solution is evaluated
on the dataset with all values for x1 shuffled. These two MSE values are then
divided by each other as usual to obtain the importance score. Consequently,
the feature ((x1 + 0.3) ∗ x1) and x1, which also occur in the model, will obtain
the same importance value as (x1 + 0.3). If these features are later found in
other models, the feature score of these features will be set to the best score
encountered so far. This implementation favours smaller features, as they appear
in more models.

As in the Model Dependent approach, additional effort is put into examining
the RecalculateScore (Recalc) parameter, since we expect new models to overtake
the old models as the population evolves, and getting rid of the features that
appeared in previously good models might keep the search going in a fresh
direction.

7.4.1 Algorithmic Details

A couple of adjustments to SensGP have to be made to make this approach
work. In large part, the Model Dependent variant is followed. The initialization
is identical, and in the generational step, the algorithm is identical except for
one method.

Instead of calling AfterPopulationGenerationImportance(), an alternative
function is used, named EqualVariableImportance(). Again, the percentage of the
population to be reviewed is required as a parameter, calculated by multiplication
of the VarImp parameter by the population size. The EqualVariableImportance()
operation is identical to AfterPopulationGenerationImportance(), in that it
analyses for each tree to be inspected which subtrees contain variable nodes,
which are then inspected for feature importance. The VarImp approach differs
from ModelDep in that after evaluation of every individual in the original
population, the CalculateVariableImportance() method is called, instead of at
the end when all trees in the population have been processed. The reason for
this is that the model from which a feature originated needs to be known to be
able to apply this variant of importance calculation.

63

Sensitivity-Based Approach

The CalculateVariableImportance() method functions globally like Algo-
rithm 2, with a couple of minor differences. On line 7 of the algorithm, the
unshuffled MSE is set equal to the MSE of the original model, from which all of
the features to be inspected originate. On line 8, the shuffled MSE is calculated
from the original model as well, but with the variables to shuffle equal to those of
the feature. Also, while in the original version of the algorithm every feature is
evaluated, in this variant a feature is checked for whether its variable combination
has already been evaluated in the current model, saving computation of features
containing the same variables.

When all features have been inspected, the variables are inserted into the
dictionary. Features of the same variables will get an importance score which
is incremented by the smallest possible amount, as in SensGP. If the feature
is already present in the dictionary due to evaluation with respect to another
model, it is checked if the current importance is an improvement and if so, the
feature score is updated in the dictionary.

7.4.2 Experiments

Similar to the Model Dependent approach, we had to determine good values
for the VarImp and RecalculateScore parameters. We chose to test the same
values of 0, 2 and 5 for VarImp, as evaluating importance for more than 5% of
the population would likely lead to the inclusion of models which are not much
better than average. For the RecalculateScore parameter, we tested the values
of 1,2,5,10 and 20, although the values 1 and 2 only for the VarImp 0 setting,
for which we did not evaluate the RecalculateScore equal to 20 setting. We also
evaluated the algorithms without recalculation. The median results of running
10 iterations of each of these tests on the Microsoft Azure VMs are shown in
Figures 22(a-f), for both train and test MSE, on the next page.

We observe that the VarImp 5 setting performs overall worse than the other
settings, although for Recalc 5 and 20 the performance is still quite competitive.
Since the other two VarImp settings prove more useful, however, we disregard
the VarImp 5 setting in our further experiments.

When looking at VarImp 0 and 2, we observe that for both the training
and testing focussed median runs, Varimp 0 Recalc 2 and VarImp 2 Recalc 20
outperform the rest. These settings also performed well in the ModelDep case
and as this symmetry makes for an interesting comparison of the techniques,
we decided to select these configurations as those which will be used for future
experimentation. Using VarImp without recalculation did not seem to result in
good models, so we do not use it in further testing.

The performance of the Variable Importance variant in comparison to the
other techniques will be discussed in Section 7.5.

64

(a) VarImp 0; Training set. (b) VarImp 0; Test set.

(c) VarImp 2; Training set. (d) VarImp 2; Test set.

(e) VarImp 5; Training set. (f) VarImp 5; Test set.

Figure 22: Mean Squared Error (MSE) versus Time (seconds) for different
configurations of Variable Importance SensGP.

65

Sensitivity-Based Approach

7.5 Overall Comparison

Figure 23: Legend.

In this section, we present the experimental results
of the comparison between all of the algorithms dis-
cussed in this section to SGP. The following config-
urations are compared, as discussed in the preceding
parts of this section: SGP, SenGP, ModelDep 2, Mod-
elDep 0 Recalc 2, ModelDep 2 Recalc 20, VarImp 0
Recalc 2 and VarImp 2 Recalc 20. In the remain-
der of this Section, each method is identified by their
unique color in the figures, which is depicted in Fig-
ure 23

We tested these algorithms on the datasets discussed in Section 5.3: Vladislavleva-
4, Pagie-1, Korns-12, Dow Chemical, Red Wine, Energy Heating, Keijzer-1 and
Nguyen-7. Each configuration was run 15 times on the Asus laptop, with the
exception of Pagie-1 and Korns-12, for which the Microsoft Azure VMs were
used. The median results of all of these tests are shown in the figures in the
remainder of this section. We start by examining the larger datasets, as we
believe them to be more challenging and thus more suitable for testing if an
algorithm has merit.

For each of these algorithms, the end of run median MSE, mean MSE with
standard deviation and p-value with respect to SGP are shown in Tables 13
to 20 in Appendix A. These values are shown for both training and test data
and we will refer to them throughout this section.

The first three datasets discussed are those generated artificially based on a
mathematical formula.

In Figure 24 as well as Table 13 the results of running all of the algorithms on
the Vladislavleva-4 dataset are shown. SensGP has obtained the best median
training and test MSE on this dataset. ModelDep 2 and ModelDep 220 also
perform better than SGP on the training data, but not on the test data. None of
these runs are found to be significantly different to SGP. SensGP has the lowest
p-value to SGP, at 0.106 on the training data and 0.229 on the test data.

66

Sensitivity-Based Approach

(a) Training set. (b) Test set.

Figure 24: Mean Squared Error (MSE) versus Time (seconds) on the
Vladislavleva-4 dataset for different algorithms. The associated legend is shown
in Figure 23.

In Figure 25 and Table 14 the results of running all the algorithms on the Pagie-1
dataset are shown. The results of four of the algorithms are very close to each
other on the training data, with ModelDep 2 and ModelDep 002 performing
better than these and VarImp 220 performing much worse. On the test set,
however, VarImp 220 reaches the best MSE, suggesting the other algorithms
are overfitting on the training data. None of the associated p-values compared
to SGP are smaller than 0.05, however, and thus they can not be said to be
significantly better.

(a) Training set. (b) Test set.

Figure 25: Mean Squared Error (MSE) versus Time (seconds) on the Pagie-1
dataset for different algorithms. The associated legend is shown in Figure 23.

In Figure 26 and Table 15 the results of running all of the algorithms on the
Korns-12 dataset are shown. Korns-12 turns out to be a vary hard problem, as
none of the algorithms seems to do a decent job at finding a good description of
the data. Apparently, the underlying formula of the data with its sine and cosine
term is too difficult of a problem for these algorithms. We conclude this as a
MSE of just over 1 is achieved by all of the algorithms, while typical values for

67

Sensitivity-Based Approach

the dependent value range from 0 to 4. This means the model does not perform
much better than taking a constant as the predictive formula would. We describe
the results from this test below, but are careful in drawing conclusion about the
performance of the algorithms based on this dataset.

We observe that on the training data ModelDep 2, ModelDep 220 and VarImp
220 perform the best, while SGP has the worst performance of all the algorithms.
Inspection of the Mann-Whitney U test scores shows us that both ModelDep 2
and VarImp 220 are found to be statistically better than SGP, with a p-value of
0.023 and 0.028 respectively. On the test data however, these these algorithms as
well as ModelDep 220 have the worst performance, which indicates the algorithms
were overfitting on the training set.

(a) Training set. (b) Test set.

Figure 26: Mean Squared Error (MSE) versus Time (seconds) on the Korns-12
dataset for different algorithms. The associated legend is shown in Figure 23.

Next, we move to the datasets containing real world data (from a simulation, in
the case of Energy Heating).

In Figure 27 and Table 16 the results of running all of the algorithms on the Dow
Chemical dataset are shown. We observe SGP has the best median performance
on the train set here, with SensGP and VarImp 002 very close. On the test
data, all algorithms perform comparatively, except for ModelDep 002 which
performs worse than the others. On the train set, ModelDep 220 and VarImp
220 are found to perform statistically worse than SGP, with p-values of 0.034
and 0.023 respectively. On the test data, the difference between the algorithms
is not statistically significant.

68

Sensitivity-Based Approach

(a) Training set. (b) Test set.

Figure 27: Mean Squared Error (MSE) versus Time (seconds) on the Dow
Chemical dataset for different algorithms. The associated legend is shown in
Figure 23.

In Figure 28 and Table 17 the results of running all of the algorithms on the Red
Wine dataset are shown. The ModelDep 2 Algorithm had the best median run, on
both the train and test data. The median MSE was 0.372 and 0.424 respectively.
Corresponding p-values are 0.361 and 0.171, however, so these results are not
statistically significant. None of the other algorithms differ statistically from
SGP either.

(a) Training set. (b) Test set.

Figure 28: Mean Squared Error (MSE) versus Time (seconds) on the Red Wine
dataset for different algorithms. The associated legend is shown in Figure 23.

In Figure 29 and Table 18 the results of running all of the algorithms on the
Energy Heating dataset are shown. Here we observe a clear separation of
algorithms. The algorithms that perform relatively well are SGP, SensGP and
ModelDep 002, while ModelDep 2, Modeldep 220, VarImp 002 and VarImp 220
perform much worse. The Mann-Whitney U test confirms these findings, with
the p-values of the latter 4 configurations compared to SGP below 0.01. These
findings hold for both the train and test data.

69

Sensitivity-Based Approach

(a) Training set. (b) Test set.

Figure 29: Mean Squared Error (MSE) versus Time (seconds) on the Energy
Heating dataset for different algorithms. The associated legend is shown in
Figure 23.

Having discussed all of the experiments on the larger datasets, we discuss the
smaller datasets in the remainder of this subsection.

In Figure 30 and Table 19 the results of running all of the algorithms on the
Keijzer-1 dataset are shown. As we had seen before in the Section 6, SGP is
good at solving this problem, and it is no surprise the algorithm achieves the
best test score. Both of the VarImp configurations, as well as ModelDep 220
show better results on the train set, however. Although ModelDep 2 seems
to be clearly outperformed on the train data, the p-value when compared to
SGP is only 0.089 and the difference is thus not significant. When we look at
the mean MSE of ModelDep 2, we observe it to be comparable to the other
algorithms. The difference between SGP and ModelDep 2 can thus be explained
by the algorithm having a couple of quite good runs, as well as a larger number
of mediocre runs, of which the median is one.

(a) Training set. (b) Test set.

Figure 30: Mean Squared Error (MSE) versus Time (seconds) on the Keijzer-1
dataset for different algorithms. The associated legend is shown in Figure 23.

70

Sensitivity-Based Approach

In Figure 31 and Table 20 the results of running all of the algorithms on the
Nguyen-7 dataset are shown. SGP clearly outperforms the other algorithms
here, on both the train and test data. From the significance test we observe
the difference to SGP to be statistically significant for all other algorithms. On
the test data, however, none of the results are statistically significant any more,
suggesting SGP is overfitting on the train data.

(a) Training set. (b) Test set.

Figure 31: Mean Squared Error (MSE) versus Time (seconds) on the Nguyen-7
dataset for different algorithms. The associated legend is shown in Figure 23.

7.6 Discussion

After having reviewed the strength of the algorithms on a number of different
datasets, we can formulate an answer to the final research question at the heart
of this work:

• Can SGP be improved upon by introducing a sensitivity analysis based
feature-guided evolution technique, called Sensitivity-based Genetic Pro-
gramming (SensGP)?

To answer this question, we first briefly describe the results of the experiments
with the different configurations. We start with the larger, arguably more im-
portant datasets.

On the Vladislavleva-4, Pagie-1 and Red Wine datasets, no algorithm is found
to be statistically better than another one, with a different algorithm obtaining
the best median MSE on each set: SensGP for Vladislavleva 4 on both train and
test data, ModelDep 2 for Red Wine on both train and test data and ModelDep
002 and VarImp 220 on the train and test data of Pagie-1 respectively.

On the Korns-12 dataset, ModelDep 2 and VarImp 220 perform statistically
better than SGP on the training set. On the test set SensGP finds the best
median MSE, but none of the algorithms are found to be statistically different
from SGP. As mentioned in Section 7.5, all of the tested algorithms perform
poorly on this dataset, indicating it might be too difficult of a problem to test
these algorithms and therefore we do not base our conclusion on this experiment.

On the Dow Chemical dataset, ModelDep 220 and VarImp 220 are found to
be statistically worse than SGP on the training data. This is not true when it

71

Sensitivity-Based Approach

comes to the test data, however. The algorithm with the lowest median MSE on
the training data is SGP and on the test data it is ModelDep 2.

On the Energy Heating dataset, a large difference in performance is observed.
ModelDep 2, ModelDep 220, VarImp 002 and VarImp 220 are found to perform
significantly worse than SGP on both train and test data. SGP has the best
median MSE on both the train and test data, but SensGP and ModelDep 002
perform almost as well as SGP does and no statistical difference was observed
between these three configurations.

In none of these tests, SGP and SensGP were found to be statistically better
than one another, while some of the configurations of ModelDep and VarImp
were found to be worse than SGP on two of the datasets.

On the smaller Keijzer-1 dataset, no significant differences are found. On the
training data VarImp 220 achieved the best median MSE, on the test data this
was done by SGP.

The Nguyen-7 dataset is the dataset where we observe the largest difference.
All algorithms perform significantly worse than SGP on the training data. On the
test data this difference is no longer significant for any of the algorithms, however.
This leads us to conclude SGP overfits the data on this particularly small dataset.

A definite statement of whether one of the techniques is better overall can not
be made from these experiments. SensGP and ModelDep 002 are only found
to perform significantly worse than SGP on the training data of Nguyen-7, a
difference which disappears on the test data. Four variants of SensGP are found
to be worse than SGP on the Energy Heating Set. ModelDep 220 and VarImp
220 are found to perform worse than SGP on the training part of Dow Chemical
as well while ModelDep 2 and VarImp 220 perform better on the training set
of Korns-12. These findings are not decisive enough to definitively assert under
which circumstances these different algorithms perform the best and suggest
further research into approaches based on sensitivity analysis is needed in order
to so.

72

8 Conclusion

The main objective of this work was to attempt to design a novel algorithm
which would improve upon Standard Genetic Programming (SGP). From the
beginning, we felt the most promising direction to focus our research on had to
be a feature-guided evolution approach.

With this focus in mind, we conducted a literature study, where we started
examining the problem of Symbolic Regression (SR) and the field of Genetic
Programming (GP) from the bottom up. We researched variable selection meth-
ods, machine learning techniques and studied a number of specific algorithms in
detail: SGP, to be used as our baseline algorithm and frame of reference, Evolu-
tionary Feature Synthesis (EFS), Multiple Regression GP (MRGP), Behavioural
Programming, and the GP-Gene-Pool Optimal Mixing Evolutionary Algorithm.

To increase our understanding of these algorithms and eventually use what
knowledge we obtained about them to achieve the goal of this thesis, we decided
to make a comparison between these promising techniques from the literature.
From this comparison, we learned that the guided evolution algorithms EFS
and MRGP clearly outperform SGP on a sizeable, widely accepted dataset,
Vladislavleva-4, proving the feature-guided principle to be promising direction
for improving upon SGP.

During our study of the relevant literature, we encountered an interesting
paper, which focused on applying sensitivity analysis to individual variables in
SR solutions. Subsequently, an algorithm was presented in which the information
gained by this analysis was successfully used to explicitly guide the search in
an evolutionary algorithm. Due to the absence of the exploration of sensitivity-
based techniques in SR literature and their proven potential as an input variable
importance measure, we decided upon designing an algorithm which implements a
sensitivity-based feature importance score and using this to guide the evolutionary
process.

We created the Sensitivity-based Genetic Programming algorithm (SensGP),
as well as two variants of SensGP, named Model Dependent SensGP (ModelDep)
and Variable Importance SensGP (VarImp). These algorithms were compared
to each other as well as SGP, on a number of different datasets to measure how
well the approaches were able to describe the data.

The algorithms had comparable performance on the datasets used in our
experiments. The six configurations which were tested resulted in models which
were often comparable to SGP in model quality. For none of the large datasets,
SensGP and one of the configurations of ModelDep were found to result in models
of significantly different quality than SGP did. The four other configurations
of ModelDep and VarImp were all found to perform worse on one of the large
datasets, Energy Heating, with two of them performing worse on another large
dataset as well, but only on the training data. On four of the five relevant
large datasets, improvements upon SGP were found by one or more of these
configurations on the test data. None of these improvements were found to be
statistically significant, however.

We conclude that using a sensitivity-based feature importance measure can
be used to obtain models comparable in strength to those generated by SGP.
The potential of SensGP has not been fully explored, however, and in Section 9
we suggest a number of possible improvements, which might further increase the
performance of SensGP.

73

9 Future Work

During the design and testing of the Sensitivity-based approach, a number of
topics suitable for further research have come to mind. The most interesting
are listed below, along with a description of varying detail, including possible
approaches and/or difficulties.

9.1 Commutative Filtering

The first research topic is a possible optimization to the dictionary. It has
occurred to us that some features, although syntactically different, are seman-
tically identical. A simple example of this, for instance, would be: x1 · x2 and
x2 ·x1. Currently, both of these features will be stored in the dictionary, with an
importance which will be approximately equal (given a sufficiently large dataset).
This effectively doubles the chance of this semantically identical feature being
introduced into the population.

This (possible) issue is present for every feature which contains one or
more commutative operations such as addition and multiplication. Since these
operators occur in almost any tree of larger size, a lot of semantically identical
features could be stored in the dictionary at any time. Any feature can be present
up to 2k times in different syntactic forms, where k is the number of commutative
operator nodes in the tree. This could significantly raise the probability of a
semantically identical feature being picked.

Therefore, it is worth researching what the frequency of semantically identical
features occurring in the dictionary is. If it is found that too many semantically
identical trees are present, it could be beneficial to implement a technique to
combat this.

If the dataset that is used is large enough, one heuristic method is to search
in the dictionary for features having similar importance and checking them
explicitly. This allows for a tunable accuracy of finding semantically identical
features versus the computational cost of doing so, depending on how many
neighbours of a feature in the dictionary are checked.

Another method would be to explicitly check for a given tree if any of the trees
which are obtained by changing the order of the child nodes of any commutative
operator node, are already contained in the dictionary. The cost of this method
depends on the number of commutative operator nodes k contained in the tree
and grows rapidly, as 2k, as discussed before. A mixture of these techniques is
possible as well, where trees with few (commutative) nodes are checked explicitly
and the others are checked heuristically.

9.2 Constants

The proper inclusion of constants into SensGP is an area where there is a lot
of potential for improvement, as is explained in Section 7.2.3 under Constants.
Finding a suitable way to include these constants into the dictionary and using
them later on might prove to be a significant improvement of the method as a
whole.

A possible route to achieving this would be to save the features as C · x1,
setting their importance equal to the best importance score encountered so far by
the different values of C which have been tested. Then, when inserted into a tree,

74

Future Work

their value should be optimized for that specific tree by OLS. If an improvement
is found, its importance should be updated in the dictionary.

9.3 Importance Analysis

One of the interesting subjects for further study would be to focus on the exact
value of the importance score. We identify two situations which are particularly
interesting.

Importance Equals One

Experiments showed that the importance scores of features are frequently exactly
equal to 1. Further investigation led to the conclusion that this happened when
either the feature contains no variables at all and thus a shuffling of the dataset
has no impact, or when the feature contains only variables of which the effect is
nullified. This happens when a self-subtraction (resulting in 0) or self-division
(resulting in 1) is present in a tree. An individual which does contain variables
is then still not affected by the shuffling of the data corresponding to these
variables and is effectively a constant as well.

Currently, features with importance equal to 1 are simply not inserted into
the dictionary. An alternative option might be to replace these features in the
trees they occur in as well. Either a newly constructed feature could be put in
their place, or the subtree could be be replaced by a new randomly instantiated
constant node.

Exceptionally Large Importance

While any particularly large importance value most likely means somewhere in
the shuffled data a combination of variables has occurred which leads to e.g. a
division by some number close to 0, in some cases these values might provide
valuable information.

SensGP relies on measuring feature importance by calculating how much
better a feature predicts on the original data than if it would have been given
random data for its variables. A valuable feature is expected to perform much
worse on the shuffled data. The reverse might be true, however, for the inverse
of this valuable feature. The inverse of a feature might actually perform a lot
better on the shuffled data then on the unshuffled set. Therefore, it could be
interesting to see if by inverting a feature with a large importance value, a good
feature can sometimes be obtained.

9.4 Weighting Importance by MSE

Like in the complexity based approach described in Section 7.2.3, feature impor-
tance might be weighted in another fashion before the features are inserted into
the dictionary. In basic SensGP, all feature importance is calculated without
taking into account the model quality. Experimentation with other importance
measures could be performed, where feature importance is weighted by the MSE
of the model it occurs in.

75

Future Work

9.5 Deterministic Mutation Location Selection

A radically different approach is to use the results from the sensitivity analysis
of the individuals in the population to determine which parts of an individual
should be replaced during mutation. We experimented briefly with this approach.

For each individual that was picked for mutation, the feature score of all
relevant (i.e. containing a variable) subsets were calculated as in Variable
Importance SensGP and the feature with the highest importance score was
replaced by a randomly generated new feature. We tried accepting this mutation
greedily or after a set number of iterations.

While we believe this approach has a lot of potential, there are a number
of issues which have to be resolved. Firstly, naively analysing every relevant
feature in a model takes too much time in practise, as these calculations need
to be performed in a model-dependent manner, and are therefore not saved in
the dictionary. This results in the method spending much more time evaluating
importance than in SensGP, where feature importance of already encountered
features can be looked up in the dictionary. Furthermore, randomly generating
new trees to insert at the selected location, until an improvement in model MSE
had been found, proved to take more time than we had hoped. The algorithm
could get stuck for a long time at the random generation of new features, while
no increase in model performance was found.

76

References

[1] Ignacio Arnaldo, Krzysztof Krawiec, and Una-May O’Reilly. Multiple regres-
sion genetic programming. In Proceedings of the 2014 Annual Conference
on Genetic and Evolutionary Computation, pages 879–886. ACM, 2014.

[2] Ignacio Arnaldo, Una-May O’Reilly, and Kalyan Veeramachaneni. Building
predictive models via feature synthesis. In Proceedings of the 2015 Annual
Conference on Genetic and Evolutionary Computation, pages 983–990. ACM,
2015.

[3] ALFA at CSAIL MIT. The flexgp project. [Accessed May 12th 2018]. URL:
http://flexgp.csail.mit.edu/index.php.

[4] Wolfgang Banzhaf, Peter Nordin, Robert E Keller, and Frank D Francone.
Genetic programming: an introduction, volume 1.

[5] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[6] Qi Chen, Mengjie Zhang, and Bing Xue. Genetic programming with
embedded feature construction for high-dimensional symbolic regression. In
Proceedings of Intelligent and Evolutionary Systems: The 20th Asia Pacific
Symposium, pages 87–102. Springer, 2017.

[7] Paulo Cortez, António Cerdeira, Fernando Almeida, Telmo Matos, and
José Reis. Modeling wine preferences by data mining from physicochemical
properties. Decision Support Systems, 47(4):547–553, 2009.

[8] Nichael Lynn Cramer. A representation for the adaptive generation of simple
sequential programs. In Proceedings of the first international conference on
genetic algorithms and their applications, pages 183–187. Carnegie-Mellon
University, 1985.

[9] Vińıcius Veloso De Melo. Kaizen programming. In Proceedings of the
2014 Annual Conference on Genetic and Evolutionary Computation, pages
895–902. ACM, 2014.

[10] Grant Dick. Sensitivity-like analysis for feature selection in genetic pro-
gramming. In Proceedings of the Genetic and Evolutionary Computation
Conference, pages 401–408. ACM, 2017.

[11] Renáta Dubčáková. Eureqa: software review. Genetic programming and
evolvable machines, 12(2):173–178, 2011.

[12] Bradley Efron, Trevor Hastie, Iain Johnstone, Robert Tibshirani, et al.
Least angle regression. The Annals of statistics, 32(2):407–499, 2004.

[13] Richard Forsyth. BEAGLE - a Darwinian approach to pattern recognition.
Kybernetes, 10(3):159–166, 1981.

[14] Jerome Friedman, Trevor Hastie, and Rob Tibshirani. Regularization paths
for generalized linear models via coordinate descent. Journal of statistical
software, 33(1):1, 2010.

77

http://flexgp.csail.mit.edu/index.php

References

[15] Luca Gherardi, Davide Brugali, and Daniele Comotti. A java vs. c++
performance evaluation: a 3d modeling benchmark. In Proceedings of the
International Conference on Simulation, Modeling, and Programming for
Autonomous Robots, pages 161–172. Springer, 2012.

[16] Isabelle Guyon and André Elisseeff. An introduction to variable and feature
selection. Journal of machine learning research, 3(Mar):1157–1182, 2003.

[17] Robin Harper. Spatial co-evolution: quicker, fitter and less bloated. In
Proceedings of the 14th annual conference on Genetic and evolutionary
computation, pages 759–766. ACM, 2012.

[18] Arthur E Hoerl and Robert W Kennard. Ridge regression: Biased estimation
for nonorthogonal problems. Technometrics, 12(1):55–67, 1970.

[19] Ilknur Icke and Joshua C Bongard. Improving genetic programming based
symbolic regression using deterministic machine learning. In Proceedings of
the IEEE Congress on Evolutionary Computation, pages 1763–1770. IEEE,
2013.

[20] Christian Igel and Kumar Chellapilla. Investigating the influence of depth
and degree of genotypic change on fitness in genetic programming. In
Proceedings of the 1st Annual Conference on Genetic and Evolutionary
Computation-Volume 2, pages 1061–1068. Morgan Kaufmann Publishers
Inc., 1999.

[21] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An
introduction to statistical learning, volume 112. Springer, 2013.

[22] Maarten Keijzer. Improving symbolic regression with interval arithmetic
and linear scaling. In Proceedings of the European Conference on Genetic
Programming, pages 70–82. Springer, 2003.

[23] Maarten Keijzer and Vladan Babovic. Genetic programming, ensemble
methods and the bias/variance tradeoff–introductory investigations. In
Proceedings of the European Conference on Genetic Programming, pages
76–90. Springer, 2000.

[24] Ron Kohavi and George H John. Wrappers for feature subset selection.
Artificial intelligence, 97(1-2):273–324, 1997.

[25] Michael F Korns. Accuracy in symbolic regression. In Genetic Programming
Theory and Practice IX, pages 129–151. Springer, 2011.

[26] John R Koza. Genetic programming: on the programming of computers by
means of natural selection, volume 1. MIT press, 1992.

[27] Krzysztof Krawiec and Una-May O’Reilly. Behavioral programming: a
broader and more detailed take on semantic GP. In Proceedings of the
2014 Annual Conference on Genetic and Evolutionary Computation, pages
935–942. ACM, 2014.

[28] M. Lichman. Uci mach. learning repository. [Accessed May 25th 2018], 2015.
URL: http://archive.ics.uci.edu/ml.

78

http://archive.ics.uci. edu/ml

References

[29] Wei-Yin Loh. Classification and regression trees. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery, 1(1):14–23, 2011.

[30] Henry B Mann and Donald R Whitney. On a test of whether one of two
random variables is stochastically larger than the other. The annals of
mathematical statistics, pages 50–60, 1947.

[31] Trent McConaghy. FFX: Fast, scalable, deterministic symbolic regression
technology. In Genetic Programming Theory and Practice IX, pages 235–260.
Springer, 2011.

[32] James McDermott, David R White, Sean Luke, Luca Manzoni, Mauro
Castelli, Leonardo Vanneschi, Wojciech Jaskowski, Krzysztof Krawiec,
Robin Harper, Kenneth De Jong, et al. Genetic programming needs better
benchmarks. In Proceedings of the 14th annual conference on Genetic and
Evolutionary Computation, pages 791–798. ACM, 2012.

[33] Microsoft. Microsoft azure. [Accessed May 12th 2018]. URL: http://azure.
microsoft.com.

[34] Ludo Pagie and Paulien Hogeweg. Evolutionary consequences of coevolving
targets. Evolutionary computation, 5(4):401–418, 1997.

[35] Tavish Srivastava. Differences between machine learning and
statistical modeling. [Accessed May 11th 2018]. URL: https:

//www.analyticsvidhya.com/blog/2015/07/difference-machine-

learning-statistical-modeling.

[36] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal
of the Royal Statistical Society. Series B (Methodological), pages 267–288,
1996.

[37] Athanasios Tsanas and Angeliki Xifara. Accurate quantitative estimation
of energy performance of residential buildings using statistical machine
learning tools. Energy and Buildings, 49:560–567, 2012.

[38] Nguyen Quang Uy, Nguyen Xuan Hoai, Michael O’Neill, Robert I McKay,
and Edgar Galván-López. Semantically-based crossover in genetic program-
ming: application to real-valued symbolic regression. Genetic Programming
and Evolvable Machines, 12(2):91–119, 2011.

[39] Marco Virgolin, Tanja Alderliesten, Arjan Bel, Cees Witteveen, and Pe-
ter AN Bosman. Symbolic regression and feature construction with GP-
GOMEA applied to radiotherapy dose reconstruction of childhood cancer
survivors. In Proceedings of GECCO ’18: Genetic and Evolutionary Com-
putation Conference. ACM, 2018.

[40] Marco Virgolin, Tanja Alderliesten, Cees Witteveen, and Peter AN Bosman.
Scalable genetic programming by gene-pool optimal mixing and input-space
entropy-based building-block learning. In Proceedings of the Genetic and
Evolutionary Computation Conference, pages 1041–1048. ACM, 2017.

[41] Ekaterina Vladislavleva et al. Model-based problem solving through symbolic
regression via Pareto genetic programming. CentER, Tilburg University,
2008.

79

http://azure.microsoft.com
http://azure.microsoft.com
https://www.analyticsvidhya.com/blog/2015/07/difference-machine-
https://www.analyticsvidhya.com/blog/2015/07/difference-machine-
learning-statistical-modeling

References

[42] Ekaterina Vladislavleva, Guido Smits, and Dick Den Hertog. Order of
nonlinearity as a complexity measure for models generated by symbolic
regression via Pareto genetic programming. IEEE Transactions on Evolu-
tionary Computation, 13(2):333–349, 2009.

[43] Matthew Walker. Introduction to genetic programming. Technical paper:
University of Montana, 2001.

[44] Franklin Herbert Westervelt. A study of automatic system simulation
programming and the analysis of the behavior of physical systems using an
internally stored program computer. PhD thesis, University of Michigan,
1960.

[45] David R White, James Mcdermott, Mauro Castelli, Luca Manzoni, Brian W
Goldman, Gabriel Kronberger, Wojciech Jaśkowski, Una-May O’Reilly, and
Sean Luke. Better GP benchmarks: community survey results and proposals.
Genetic Programming and Evolvable Machines, 14(1):3–29, 2013.

[46] Hui Zou and Trevor Hastie. Regularization and variable selection via the
elastic net. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 67(2):301–320, 2005.

80

A Tables Containing the Overall Comparison Re-
sults

Table 13: Comparison of SR algorithms on the Vladislavleva-4 dataset.

Training Median MSE Mean MSE Std. dev. p-value to SGP

SGP 0.00462 0.00846 0.0086 0.983
SensGP 0.00373 0.00423 0.0013 0.106
ModelDep 2 0.00441 0.00549 0.00311 0.34
ModelDep 002 0.00509 0.00578 0.00345 0.868
ModelDep 220 0.00423 0.00497 0.00201 0.481
VarImp 002 0.00487 0.00546 0.00276 0.678
VarImp 220 0.00491 0.00579 0.00317 0.74

Testing Median MSE Mean MSE Std. dev. p-value to SGP

SGP 0.00777 0.0118 0.00922 0.983
SensGP 0.00741 0.00767 0.00325 0.229
ModelDep 2 0.00826 0.00932 0.00435 0.868
ModelDep 002 0.00893 0.00955 0.00405 0.709
ModelDep 220 0.00847 0.00901 0.00485 0.619
VarImp 002 0.0106 0.0419 0.114 0.507
VarImp 220 0.0087 0.0109 0.00704 0.534

Table 14: Comparison of SR algorithms on the Pagie-1 dataset.

Training Median MSE Mean MSE Std. dev. p-value to SGP

SGP 0.00324 0.00364 0.00188 0.983
SensGP 0.00308 0.00401 0.00273 0.934
ModelDep 2 0.0026 0.00343 0.00261 0.431
ModelDep 002 0.00174 0.00289 0.00249 0.184
ModelDep 220 0.00306 0.00483 0.00474 0.967
VarImp 002 0.00324 0.00429 0.00295 0.934
VarImp 220 0.00462 0.00435 0.0021 0.561

Testing Median MSE Mean MSE Std. dev. p-value to SGP

SGP 0.0144 0.0155 0.00633 0.983
SensGP 0.0144 0.0143 0.00383 0.74
ModelDep 2 0.0129 0.0564 0.141 0.772
ModelDep 002 0.0142 0.0202 0.023 1.00
ModelDep 220 0.0136 0.0172 0.0147 0.59
VarImp 002 0.0128 0.0496 0.128 0.803
VarImp 220 0.0127 0.159 0.477 0.868

81

Tables Containing the Overall Comparison Results

Table 15: Comparison of SR algorithms on the Korns-12 dataset.

Training Median MSE Mean MSE Std. dev. p-value to SGP

SGP 1.092 1.082 0.027 0.983
SensGP 1.080 1.079 0.026 0.740
ModelDep 2 1.063 1.062 0.022 0.023
ModelDep 002 1.084 1.074 0.034 0.561
ModelDep 220 1.063 1.071 0.032 0.407
VarImp 002 .068 1.062 0.040 0.281
VarImp 220 1.062 1.059 0.028 0.028

Testing Median MSE Mean MSE Std. dev. p-value to SGP

SGP 1.154 1.167 0.047 0.983
SensGP 1.148 1.151 0.017 0.590
ModelDep 2 1.157 1.168 0.034 0.507
ModelDep 002 1.152 16.280 56.470 0.648
ModelDep 220 1.161 1.165 0.024 0.740
VarImp 002 1.156 1.172 0.036 0.507
VarImp 220 1.182 1.197 0.070 0.074

Table 16: Comparison of SR algorithms on the Dow Chemical dataset.

Training Median MSE Mean MSE Std. dev. p-value to SGP

SGP 0.047 0.052 0.0079 0.98
SensGP 0.049 0.051 0.011 0.71
ModelDep 2 0.053 0.057 0.013 0.26
ModelDep 002 0.056 0.055 0.013 0.26
ModelDep 220 0.057 0.058 0.0097 0.034
VarImp 002 0.049 0.049 0.0084 0.48
VarImp 220 0.061 0.06 0.0085 0.023

Testing Median MSE Mean MSE Std. dev. p-value to SGP

SGP 0.07 3.80 14.0 0.98
SensGP 0.071 0.082 0.037 0.74
ModelDep 2 0.066 0.072 0.015 0.71
ModelDep 002 0.084 0.37 1.00 0.16
ModelDep 220 0.074 0.078 0.019 0.53
VarImp 002 0.071 0.089 0.075 0.74
VarImp 220 0.074 0.092 0.046 0.48

82

Tables Containing the Overall Comparison Results

Table 17: Comparison of SR algorithms on the Red Wine dataset.

Training Median MSE Mean MSE Std. dev. p-value to SGP

SGP 0.375 0.379 0.014 0.983
SensGP 0.373 0.375 0.011 0.320
ModelDep 2 0.372 0.374 0.011 0.361
ModelDep 002 0.378 0.378 0.009 0.934
ModelDep 220 0.374 0.375 0.011 0.431
VarImp 002 0.375 0.375 0.010 0.590
VarImp 220 0.385 0.387 0.008 0.106

Testing Median MSE Mean MSE Std. dev. p-value to SGP

SGP 0.438 0.442 0.035 0.983
SensGP 0.426 0.457 0.108 0.361
ModelDep 2 0.424 0.476 0.188 0.171
ModelDep 002 0.447 0.492 0.140 0.648
ModelDep 220 0.437 1.090 2.430 0.868
VarImp 002 0.433 0.436 0.016 0.836
VarImp 220 0.437 0.441 0.021 0.934

Table 18: Comparison of SR algorithms on the Energy Heating dataset.

Training Median MSE Mean MSE Std. dev. p-value to SGP

SGP 0.610 0.713 0.413 0.983
SensGP 0.624 0.792 0.404 0.431
ModelDep 2 1.405 1.401 0.741 0.005
ModelDep 002 0.749 1.002 0.617 0.300
ModelDep 220 1.514 2.096 1.825 0.004
VarImp 002 1.232 1.512 0.933 0.002
VarImp 220 1.605 1.846 1.056 0.000

Testing Median MSE Mean MSE Std. dev. p-value to SGP

SGP 0.841 1.069 0.567 0.983
SensGP 1.000 1.032 0.460 0.772
ModelDep 2 1.941 2.219 1.379 0.008
ModelDep 002 1.188 1.547 1.057 0.340
ModelDep 220 2.152 2.894 2.156 0.003
VarImp 002 1.860 2.144 1.252 0.009
VarImp 220 2.203 2.782 1.804 0.000

83

Tables Containing the Overall Comparison Results

Table 19: Comparison of SR algorithms on the Keijzer-1 dataset.

Training Median MSE Mean MSE Std. dev. p-value to SGP

SGP 4.83 · 10−5 4.03 · 10−4 6.42 · 10−4 9.83 · 10−1

SensGP 9.41 · 10−5 6.43 · 10−4 7.52 · 10−4 2.13 · 10−1

ModelDep 2 4.69 · 10−4 5.43 · 10−4 5.6 · 10−4 8.9 · 10−2

ModelDep 002 1.22 · 10−4 3.29 · 10−4 5.05 · 10−4 6.78 · 10−1

ModelDep 220 4.59 · 10−5 2.59 · 10−4 4.14 · 10−4 5.61 · 10−1

VarImp 002 3.81 · 10−5 4.69 · 10−4 6.62 · 10−4 4.31 · 10−1

VarImp 220 3.00 · 10−5 3.71 · 10−4 5.92 · 10−4 5.34 · 10−1

Testing Median MSE Mean MSE Std. dev. p-value to SGP

SGP 2.41 · 10−3 4.19 · 10−2 1.02 · 10−1 9.83 · 10−1

SensGP 4.96 · 10−3 1.93 · 1024 7.22 · 1024 4.81 · 10−1

ModelDep 2 7.42 · 10−3 2.13 7.16 2.45 · 10−1

ModelDep 002 5.84 · 10−3 5.69 · 101 2.13 · 102 7.72 · 10−1

ModelDep 220 1.35 · 10−2 4.42 · 101 1.29 · 102 3.4 · 10−1

VarImp 002 3.42 · 10−3 3.34 · 101 1.24 · 102 9.01 · 10−1

VarImp 220 7.43 · 10−3 7.25 · 10−2 1.45 · 10−1 3.4 · 10−1

Table 20: Comparison of SR algorithms on the Nguyen-7 dataset.

Training Median MSE Mean MSE Std. dev. p-value to SGP

SGP 5.55 · 10−7 8.93 · 10−7 1.26 · 10−6 9.83 · 10−1

SensGP 2.39 · 10−6 7.42 · 10−6 1.45 · 10−5 6.19 · 10−3

ModelDep 2 5.86 · 10−6 5.58 · 10−6 4.48 · 10−6 2.23 · 10−4

ModelDep 002 4.03 · 10−6 1.75 · 10−5 3.98 · 10−5 6.71 · 10−4

ModelDep 220 5.13 · 10−6 5.43 · 10−6 5.03 · 10−6 1.4 · 10−3

VarImp 002 7.53 · 10−6 7.56 · 10−5 1.65 · 10−4 9.66 · 10−5

VarImp 220 3.46 · 10−6 7.42 · 10−5 1.77 · 10−4 1.4 · 10−3

Testing Median MSE Mean MSE Std. dev. p-value to SGP

SGP 1.42 · 10−5 2.61 · 10−4 7.67 · 10−4 9.83 · 10−1

SensGP 8.06 · 10−5 2.28 · 10−4 2.98 · 10−4 5.64 · 10−2

ModelDep 2 2.89 · 10−5 9.66 · 10−5 1.22 · 10−4 1.99 · 10−1

ModelDep 002 3.51 · 10−5 2.84 · 10−4 6.57 · 10−4 3.84 · 10−1

ModelDep 220 5.99 · 10−5 1.49 · 10−4 1.71 · 10−4 8.15 · 10−2

VarImp 002 1.04 · 10−4 2.4 · 10−4 2.46 · 10−4 5.64 · 10−2

VarImp 220 8.47 · 10−5 3.68 · 10−3 1.33 · 10−2 1.06 · 10−1

84

	Introduction
	Relevance of the Research
	Symbolic Regression
	Objectives
	Outline

	Background Theory
	Statistical Learning
	Regression
	Symbolic Regression
	Genetic Programming
	Variable Selection
	Filters
	Wrappers
	Embedded Methods

	Machine Learning Techniques
	Ridge Regression
	LASSO
	Elastic Net
	Cyclical Coordinate Descent
	Fast Function Extraction

	Extensions of Traditional GP
	Non Feature-Based
	GP with Fast Function Extraction
	GP with Gene-Pool Optimal Mixing Evolutionary Algorithm

	Feature-Based
	Multiple Regression
	Behavioural Programming
	Evolutionary Feature Synthesis
	Embedded Feature Construction

	Feature Importance
	Sensitivity-Like Analysis for Feature Selection in GP

	Recap of Techniques Discussed

	Problem Description
	Research Questions

	Implementation
	Software
	Hardware
	Description of Datasets
	Statistical Test
	Inclusion of Constants

	Comparative Study
	Experimental Details
	Results
	Analysis of Evaluations
	Discussion

	Sensitivity-Based Approach
	Basic Concept
	Sensitivity-Based Genetic Programming
	Algorithmic Details
	Parameters
	Additional Options
	Experiments

	Model Dependent
	Algorithmic Details
	Experiments

	Variable Importance
	Algorithmic Details
	Experiments

	Overall Comparison
	Discussion

	Conclusion
	Future Work
	Commutative Filtering
	Constants
	Importance Analysis
	Weighting Importance by MSE
	Deterministic Mutation Location Selection

	Bibliography
	Tables Containing the Overall Comparison Results

