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Abstract
The functional programming paradigm advocates a style of programming based on
higher-order functions over inductively defined datatypes. A fold, which captures
their common pattern of recursion, is the prototypical example of such a function.
However, its use comes at a price.

The definition of a fold is not tail-recursive which means that the size of the
stack during execution grows proportionally to the size of the input. McBride [2008]
has proposed a method called dissection, to transform a fold into its tail-recursive
counterpart. Nevertheless, it is not clear why the resulting function terminates, nor
it is clear that the transformation preserves the fold’s semantics.

In this thesis, we formalize the construction of such tail-recursive function and
prove that it is both terminating and equivalent to the fold. In addition, using
McBride’s dissection, we generalize the tail-recursive function to work on any algebra
over any regular datatype.
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1 Introduction

Folds, or catamorphisms, are a pervasive programming pattern. Folds generalize
many simple traversals over algebraic data types [Meijer et al. 1991]. Functions
implemented by means of a fold are both compositional and structurally recursive.
The fold associated with a datatype, however, is not a tail-recursive function.

We start this chapter with a detailed description of the problem that motivates
the research conducted within this master thesis (Section 1.1), and subsequently,
we formulate the concrete research questions (Section 1.2). Lastly, in section 1.3
we outline the organization of the rest of this document.

1.1 Description of the problem
The foldr function is one of the first higher-order functions that any functional
programmer learns [Hutton 2016]. Many simple functions over lists such as map,
reverse, take, sum, and more can be expressed in terms of foldr. However, if not used
carefully, foldr may cause a well-typed program go wrong by dynamically failing with
a stack overflow. In order to understand the problem, let us review the definition
of foldr:1

foldr : (α → β → β) → β → List α → β
foldr f e [] = e
foldr f e (x :: xs) = f x (foldr f e xs)

In the second clause of the definition, the parameter function f cannot reduce further
before the result of the recursive call on the argument xs is available. This is a
problem of both strict languages and non-strict languages with strict functions.

If we think about it in terms of the execution of a stack machine, before the
control flow is passed to the recursive call, a new frame has to be allocated on the
top of the stack to resume with the reduction of f. Only a finite number of frames
may be ever pushed on the stack before it reaches its limit. Performing a few steps
of the evaluation of adding a very big list of numbers illustrates the issue:

foldr _+_ 0 [ 1 ..1000000 ]
 1 + (foldr _+_ 0 [ 2 ..1000000 ])
 1 + (2 + (foldr _+_ 0 [ 3 ..1000000 ]))

1Code snippets within this thesis are written in the dependently typed programming language
Agda [Norell 2007]
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8 CHAPTER 1. INTRODUCTION

 1 + (2 + (3 + (foldr _+_ 0 [ 4 ..1000000 ])))
 1 + (2 + (3 + (4 + (foldr _+_ 0 [ 5 ..1000000 ]))))
 ...

At each step of the reduction, denoted by  , the size of the expression being
evaluated reflects the size of the underlying machine’s stack. Before any addition
can actually reduce, the function foldr has to reach the end of the list; during the
evaluation, foldr needs to allocate every intermediate application of _+_ on the
stack. The linear dependency between the size of the input and the size of the
stack, can potentially lead to a stack overflow on large inputs.

To solve this problem, we can rewrite the function to be tail-recursive. The
definition of a tail-recursive function does not allow for another function to post
process the result of the recursive calls. In each clause, either a value is returned or
a recursive call is the final action to be performed. Modern compilers typically map
tail-recursive functions to machine code that runs in constant stack space [Steele
1977].

In the case of the function foldr, a possible implementation of an equivalent
tail-recursive function would be a left fold, foldl. Its definition is as follows:

foldl : (α → β → β) → β → List α → β
foldl f e [] = e
foldl f e (x :: xs) = foldl f (f x e) xs

Using foldl, the addition of the previous list of numbers runs in constant stack space:

foldl _+_ 0 [ 1 ..1000000 ]
 foldl _+_ (1 + 0 ) [ 2 ..1000000 ]
 foldl _+_ 1 [ 2 ..1000000 ]
 foldl _+_ (2 + 1 ) [ 3 ..1000000 ]
 foldl _+_ 3 [ 3 ..1000000 ]
 foldl _+_ (3 + 3 ) [ 4 ..1000000 ]
 foldl _+_ 6 [ 4 ..1000000 ]
 ...

However, for inductive datatypes with constructors that have more than one
recursive subtree, recovering a tail-recursive fold from the regular fold is not as
straightforward.

Folds for binary trees As an example of a datatype with more than one recursive
subtree, we consider the type of binary trees with natural numbers in the leaves:

data Expr : Set where
Val : N → Expr
Add : Expr → Expr → Expr

We can write a simple evaluator, mapping expressions to natural numbers as
follows:

eval : Expr → N
eval (Val n) = n
eval (Add e1 e2) = eval e1 + eval e2
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In the case for Add e1 e2, the eval function makes two recursive calls and sums their
results. Such a function can be implemented using a fold, passing the addition and
identity functions as the argument algebra. The algebra is the pair of functions that
assigns semantics to the constructors of Expr:

foldexpr : (N → α) → (α → α → α) → Expr → α
foldexpr φ1 φ2 (Val n) = φ1 n
foldexpr φ1 φ2 (Add e1 e2) = φ2 (foldexpr φ1 φ2 e1) (foldexpr φ1 φ2 e2)
eval : Expr → N
eval = foldexpr id _+_

Unfortunately, the definition of eval suffers from the same shortcomings as the
List function foldr. The operator _+_ needs both of its parameters to be fully
evaluated before it can reduce further, thus the stack used during execution grows
again linearly with the size of the input.

To address the problem, we can manually rewrite the evaluator to be tail-
recursive. To write such a tail-recursive function, we need to introduce an explicit
stack storing both intermediate results and the subtrees that have not yet been
evaluated:

data Stack : Set where
Top : Stack
Left : Expr → Stack → Stack
Right : N → Stack → Stack

We can define a tail-recursive evaluation function by means of a pair of mutually
recursive functions, load and unload. The load function traverses the expressions,
pushing subtrees on the stack; the unload function unloads the stack, while accu-
mulating a (partial) result:

mutual
load : Expr → Stack → N

load (Val n) stk = unload n stk
load (Add e1 e2) stk = load e1 (Left e2 stk)

unload : N → Stack → N
unload v Top = v
unload v (Right v’ stk) = unload (v’ + v) stk
unload v (Left e stk) = load e (Right v stk)

We can now define a tail-recursive version of eval by calling load with an initially
empty stack:

tail-rec-eval : Expr → N
tail-rec-eval e = load e Top

Implementing this tail-recursive evaluator comes at a price: Agda’s termina-
tion checker flags the load and unload functions as potentially non-terminating by
highlighting them orange . Indeed, in the very last clause of the unload function a
recursive call is made to arguments that are not syntactically smaller. Furthermore,
it is not clear at all whether the tail-recursive evaluator, tail-rec-eval, produces the
same result as our original eval function.
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1.2 Research questions
As previously shown, it is not obvious how to write a provably terminating and
correct tail-recursive evaluator for the type of binary trees. A necessary prerequisite
to show correctness, is to convince Agda’s termination checker that the tail-recursive
evaluator terminates. Thus, we are ready to spell the research questions that this
master thesis is set out to answer:

1. Termination Agda’s termination checker cannot verify that the functions load
and unload, as previously defined, terminate for every possible input. How
can we demonstrate that the functions terminate, so that as a corollary the
tail-recursive evaluator terminates?

2. Correctness In the case the tail-recursive evaluator terminates, it is correct?
By correct it is understood that both the evaluation function, eval, and its
tail-recursive counterpart, tail-rec-eval, are equivalent: for any input both
functions compute the same result.

3. Generalization to the regular universe McBride proposes a method, dis-
section [2008], for calculating the type of the stack from the definition of any
type that can be generically expressed in the regular universe. Can we gen-
eralize the results of termination and correctness from Expr to the generic
case through dissection?

We answer questions one and two in chapter 3, where we show how to manually
write a tail-recursive evaluator for the type of Expr. We subsequently prove the
evaluator to be both terminating and correct with respect to the fold.

In chapter 4, we answer the third research question. Particularly, we generalize
the result from chapter 3 and develop a terminating tail-recursive evaluator that
works for any algebra over any regular datatype. Additionally, we prove the evaluator
to be correct with regard to the fold associated with the datatype.

1.3 Organization
This master thesis is divided in four chapters.

We start in chapter 2 giving the reader a broader perspective on folds in pro-
gramming languages to justify the importance of our our work. Furthermore, we
revisit the available literature on techniques to assist the termination checker to
accept functions that are not defined by strictly structural recursion. We end the
chapter with an introduction to generic programming in Agda using the regular
universe, which forms the basis of our generic tail-recursive evaluator.

Chapters 3 and 4 contain the main contributions of this master thesis: a provably
terminating and correct tail-recursive function equivalent to the fold over Expr, and
its generalization to the regular universe.

We conclude this document, in chapter 5, with a few remarks about the work
presented here and discuss possible future directions to pursue.

Style Before dwelling into the content, we have to remark a few conventions that
this document follows. The purpose of the code snippets present in this thesis is
to guide the reader through the ideas of our construction, thus in many cases only
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the type signature of the relevant functions/theorems/datatypes is given, and the
body is omitted altogether. All code snippets use Agda syntax, although not all of
them typecheck directly. In the type signatures, any mentioned variable of type Set
is taken as implicitly universally quantified. To differentiate between functions and
theorems (in dependent type theory they are the same) we choose to prepend the
type signatures of the latter with a explicit ∀ quantifier. The full Agda formalization
is freely available online in:

https://github.com/carlostome/Dissection-thesis

https://github.com/carlostome/Dissection-thesis
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2 Background

In this chapter, we introduce some of the concepts that are prerequisites for under-
standing the main parts of this master thesis. The chapter is organized into three
different sections, whose content is seemingly unrelated. We begin in section 2.1
with a broad overview of semantics in programming languages and its relation to
the content of this master thesis. In section 2.2, we revisit the literature about
techniques for assisting the termination checker of Agda. Lastly, in section 2.3 we
quickly overview generic programming in the context of this thesis.

2.1 A broader perspective
There are three main approaches for formalizing the semantics of a programming
language: small-step operational semantics, where for each construct of the lan-
guage it is specified how the abstract machine, which is evaluating the program,
evolves; denotational semantics, where each construct is mapped by a mathemati-
cal function to the value it evaluates in the denotational domain of the language;
and big-step operational semantics, where the overall results of the computation
are characterized by a relation over the terms of the language.

The connection between the first two styles of formalizing the semantics has
been extensively exploited, for example see Ager et al. [2003], to derive well-known
abstract machines, such as the Krivine [2007] machine, from a denotational seman-
tics specification and vice versa. However, as they state in the article:

Most of our implementations of the abstract machines raise compiler
warnings about non-exhaustive matches. These are inherent to pro-
gramming abstract machines in an ML-like language.

A dependently typed programming language such as Agda is a perfect vehicle
for the study and implementation of programming languages. Dependent types can
be fruitfully leveraged for defining both the language, and correspondingly formalize
and verify its semantics either in a small-step or a denotational style. For example,
Swierstra [2012b] shows how to derive the Krivine machine in Agda starting from
a small-step evaluation semantics for lambda terms.

However, implementing both a small-step and a denotation function and proving
that they are related is a tedious work that requires some particular expertise.

From a high level perspective, the denotational semantics of a language is a
function that is both compositional and structurally recursive. For each term, it

13
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specifies how the values that the subterms denote are combined together into a value
for the term on focus. In disguise, the denotation function is just a fold! The fold
is inherent to the inductive structure of the datatype that represents the language,
thus everything is needed is the algebra that for each constructor determines how
to combine the values.

On the other hand, the small-step semantics of a language require some extra
work. As a start, the programming language engineer has to define the configura-
tions, or internal states, of the machine. Then, she has to specify the transition rules
that govern the machine and finally show, if the language is strongly normalizing,
that iterating the small-step evaluation function terminates.

The work on this master thesis can be regarded as a step towards exploiting, in
a formal environment such as Agda, the connection between high-level denotational
functions—in the form of folds—and low-level abstract machines. Given a language
in terms of its generic representation and an algebra, we construct a generic tail-
recursive function, i.e. the low-level abstract machine, that we later formally proof
equal to the fold induced by its structure.

2.2 Termination in type theory
Agda is a language for describing total functions. General recursive functions are
not allowed as they would render the logic inconsistent. It is not possible to decide
in general if a recursive function terminates. To ensure that any defined function
terminates, Agda uses a termination checker based on foetus [Abel 1998], that
syntactically checks whether the recursive calls of a function are performed over
structurally smaller arguments. The termination checker, however, is not complete:
there are programs that terminate but the termination checker classifies as possibly
non terminating.

Many interesting and terminating functions that we would like to define do not
conform to the pattern of being defined by structural recursion. For instance, the
naive tail-recursive evaluator presented in the introduction (Section 1.1).

In this section, we explore several available techniques which allow us to reason
within Agda about termination conditions. Particularly, we revisit sized types (Sec-
tion 2.2.1), Bove-Capretta predicates (Section 2.2.2) and well-founded recursion
(Section 2.2.3).

As a running example, we consider the sorting function quicksort implemented
in a functional style:

quickSort : (α → α → Bool) → List α → List α
quickSort p [] = []
quickSort p (x :: xs) = quickSort p (filter (p x) xs)

++ [ x ] ++
quickSort p (filter (not ◦ (p x)) xs)

Agda’s termination checker marks the function as possibly non terminating. In the
second clause of the definition, the arguments to both recursive calls, filter (p x) xs
and filter (not ◦ (p x)) are not structurally smaller than the input list x :: xs. The
termination checker has no reason whatsoever to believe that the application of the
function filter to the list does not increase its size. As a contrived example, we
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could have made a mistake in the definition of filter, replicating elements, so that
quickSort as defined above may diverge:

filterbad : (α → Bool) → List α → List α
filterbad p [] = []
filterbad p (x :: xs) = if p x then x :: x :: filterbad p xs

else filterbad p xs

On its own, filterbad is a perfectly valid function that the termination checker clas-
sifies as terminating for any possible input. However, if any other function uses its
result as a recursive argument, such function could diverge.

The termination checker only uses local information of the definition of a func-
tion to classify it as terminating or possibly non terminating. Concretely, it con-
structs a graph between the parameters of the function and the arguments passed
to recursive calls and tries to find a well-founded order amongst them. In any case,
calls to other functions are treated as a blackbox. For instance, let us consider a
function that traverses a list of numbers but does nothing:

traverse : List N → List N
traverse [] = []
traverse (x :: xs) = x :: traverse (f xs)

The following two equations are valid and provably terminating definitions of f:

f : List N → List N
f xs = xs
f : List N → List N
f xs = 0 :: xs

The function traverse terminates if we choose f, the identity function on List N, to
be the first definition. If we choose the second definition for f, however, the function
traverse diverges even though f itself terminates. The termination of traverse does
not only depend on the termination of f but also on the list it returns. The ter-
mination checker conservatively classifies the function traverse as non-terminating
because, as the example demonstrate, syntactic based checks of termination condi-
tions do not compose.

The rest of this section is devoted to show how using the aforementioned tech-
niques, we can convince Agda that quicksort terminates on any input.

2.2.1 Sized types
Sized types [Abel 2010] is a type system extension that allows to track structural
information on the type level. Terms can be annotated with a type index that
represents an upper bound of the actual size of the term being annotated. The
size of a term is the number of constructors used to build it.

Functions can quantify over size variables to relate the size of its parameters
to the size of its result. A term is only well-typed if the type system can ensure
during type checking that the size type annotation of a term conforms to its actual
size. Size annotations are gathered during typechecking and passed to a linear
inequality solver to check their validity. The type Size used to annotate sizes can
be understood as the type of ordinal numbers without a base element. Its definition
is built-in in the Agda compiler, and corresponds to the following:
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postulate
Size : Set
ω : Size
↑_ : Size → Size

Usually, sized types are used to relate the size of the input of a function to the size
of its result. Therefore, sizes in functions are universally quantified variables that
index both the type of the domain and the codomain. For instance, the identity
function over a sized type would be written as:

idS : {A : Size → Set} → {i : Size} → A i → A i
idS x = x

In the next example we explain in more detail how to program with sized types
in order to show that the quicksort function always terminates.

Example 2.2.1.1

We start the example by defining the type of sized lists. The difference with
the regular definition of list, List, is that its signature has a new type index of
type Size. The return type of every constructor explicitly instantiates the Size
index in such a way that the size of the recursive occurrences is related to the
size of the value being constructed. The definition of sized lists is as follows:

data SList (α : Set) : Size → Set where
SNil : {i : Size} → SList α i
SCons : {i : Size} → α → SList α i → SList α (↑ i)

In the constructor SNil there are no recursive occurrences, thus the Size type-
index is universally quantified. On the other hand, in the constructor SCons
the returned Size is the size of the recursive parameter, i, increased by one,
↑ i. Indeed, the constructor is adding a new ‘layer’ on top of its parameter.

Using the sized type SList we define a filter function that is guaranteed to
preserve the size of its input list: the result list does not gain new elements. We
do so by explicitly declaring in its type signature that the size of the result does
not exceed—recall that the size is an upper bound—the size of the parameter:

filterS : {i : Size} → (α → Bool) → List α i → List α i
filterS { . i} p (SNil {i}) = SNil
filterS { . (↑ i)} p (SCons {i} x xs) = if p x then SCons x (filterS {i} p xs)

else filterS {i} p xs

The second clause of the definition is interesting. In the else branch the type
of the recursive call is List α i but the expected type, from the signature of
the function, is List α (↑ i). Sized types come with a subtyping relation which
states that List α i 6S List α (↑ i), thus the recursive call is well-typed.

With the definition of filterS in hand, we are ready to define the function
quicksort over the type of sized lists such that it is catalogued as terminating
by the termination checker:
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quickSortS : {i : Size} → (α → α → Bool) → List α i → List α ω
quickSortS { . i} p (SNil {i}) = SNil
quickSortS { . (↑ i)} p (SCons {i} x xs)

= quickSortS {i} p (filterS {i} (p x) xs)
++ [ x ] ++

quickSortS {i} p (filterS {i} (not ◦ p x) xs)

The first thing to note is the use of ω as the size annotation in the type of the
resulting list. The concatenation function, _++_, has type {i j : Size} →
List α i → List α j → List α ω, where ω indicates that we know
nothing about the size of the resulting list. In fact this is a limitation, both
theoretically and at the implementation level, of sized types. The system is
not sufficiently expressive to give the function _++_ a more precise type such
as {i j : Size} → List α i → List α j → List α (i + j). Nevertheless,
it is enough to demonstrate to Agda that the implementation of quicksort
terminates. Specifically, in the second clause of the definition, the information
about the size of the input, ↑ i, is propagated to the function filterS that it
is known to preserve the size of its input. The recursive call is now provably
terminating.

If we try to reimplement the bogus version of filter, filterbad, using sized
types, its definition is not well-typed and the typechecker raises a compile-time
error.

A termination check based on sized types represents an improvement over a
termination check that works purely in the syntactic level. Sized types allow the
programmer to introduce semantic annotations about sizes both in types and func-
tions so they can be exploited for a more accurate assessment of termination. As
we showed in the previous example, termination based on sized types is modular
because it works across the boundaries of function definitions. However, the expres-
sivity of the system is somewhat limited and in general sized types are not first class
entities in the language, but rather built-in objects with special treatment subject
to some restrictions.

2.2.2 Bove-Capretta predicate
Another commonly used technique in type theory to encode general recursive func-
tions is the Bove-Capretta [Bove and Capretta 2001] transformation. The call
graph of any function, even if is not defined by structural recursion, has an induc-
tive structure that can be exploited to show termination. Instead of directly defining
the function, the call graph of the original function is added as a new parameter so
the function can be defined by structural recursion over it.

The call graph of a function of type f : α → β, can be made explicit as a
predicate over the input type α, P : α → Set. Thus, the possibly non terminating
function f is transformed into another function f’ : (x : α) → P x → β that
uses the argument P x as the recursive structure. The domain predicate P outlines
the conditions for which the function f is known to terminate.

However, not everything in the garden is rosy. Every time we want to call
function f’ we have first to prove that the predicate holds on the argument we
supply. Showing that the function terminates for every possible input, amounts to
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construct a proof that the predicate is true for every element of type α, that is
∀ (x : α) → P x.

Example 2.2.2.1

We now turn our attention to encode the function quicksort using the Bove-
Capretta technique. The first step is to define the call graph of the function
as a predicate:

data qsPred (p : α → α → Bool) : List α → Set where
qsNil : qsPred p []
qsCons : {x : α} → {xs : List α}

→ qsPred p (filter (p x) xs)
→ qsPred p (filter (not ◦ p x) xs)
→ qsPred p (x :: xs)

As explained before, the predicate qsPred encodes the conditions on which
the function quickSort terminates. The constructor qsNil represents the base
case: quicksort always terminates if the input list is empty. In the inductive
case, constructor qsCons, the termination of quicksort on the input list x :: xs
depends solely on the termination of quicksort on the inputs filter (p x) xs and
filter (not ◦ p x) xs.

Thus we can define now a version of the function quickSort that is accepted
by the termination checker. We introduce a new parameter, the predicate
qsPred applied to the input list, and recurse over it:

quickSortBC : (p : α → α → Bool) → (xs : List α)
→ qsPred p xs → List α

quickSortBC p . [] qsNil = []
quickSortBC p . (x :: xs) (qsCons lesser greater)

= quickSortBC p ((filter (p x) xs)) lesser
++ [ x ] ++

quickSortBC p (filter (not ◦ (p x)) xs) greater

Every time quickSortBC is called with a list xs, also a proof that the predicate
holds, qsPred p xs has to be supplied. We know that quickSort terminates for
every possible input, thus it should be possible to define a theorem that states
that the qsPred predicate is true for any list of any type:

qsPred-true : ∀ (p : α → α → Bool) → (xs : List α) → qsPred p α
qsPred-true = ...

Proving the previous theorem, however, is not possible just by structural re-
cursion. Basically, we would fall in the same problem as before but this time
manipulating lists at the type level. In order to complete the proof, we need a
more advanced technique, such as well-founded recursion (Section 2.2.3).

The Bove-Capretta transformation allows the programmer to decouple the task
of defining a function with proving its termination. First, it is enough to outline
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the definition of the wanted function and identify its call graph. The construction
of the domain predicate is a fully automatic matter. Nevertheless, the programmer
is required to show every time the function is called that the input satisfies the
predicate. Even if the function obviously terminates for every input, showing that
the domain predicate holds in general cannot be done by pattern matching and
structural recursion.

2.2.3 Well-founded recursion
The last technique we will discuss is well-founded recursion. Amidst the three, it is
the most relevant for this work because the results of this master thesis heavily rely
on its use.

The main idea is simple: define a relation over the type of the parameter that
gets ‘smaller’ in each invocation of a function, and show that the relation has the
property of not decreasing indefinitely.

Formally, for a given binary relation over elements of type α, _<_ : α →
α → Set, an element x : α is accessible if there are no infinite descending chains
starting from it by repeated decrements, x0 < x1 < ... < xn−1 < xn < x. A more
constructive characterization of the accessibility predicate in type theory, due to
Nordström [1988], is the following type:

data Acc (_<_ : α → α → α) (x : α) : Set where
acc : (∀ (y : α) → y < x → Acc _<_ y) → Acc _<_ x

An element x : α is accessible, if every smaller element by the relation is also
accessible. The type Acc is inductively defined in such a way that we can only
construct a particular proof of Acc _<_ x if transitively we can show that any
smaller element is also accessible. A given element, for which no smaller elements
exists, i.e. y < x → ⊥, constitutes the base case and trivially satisfies the
predicate.

The recursive structure of the accessibility predicate can be used to turn a non
structurally recursive function into one that is accepted by the termination checker.
A possibly non terminating function f : α → α, is transformed into another
function f’ : (x : α) → Acc _<_ x → α, that takes as extra parameter a
proof that the input satisfies the accessibility predicate. The recursive structure of
the Acc datatype can be exploited only, if for each invocation of f, we can prove
the result to be smaller than the input.

When another function calls f’, it has to explicitly supply a proof that the
concrete input is accessible. If for every element in the relation there are no infinite
descending chains, the relation is well-founded. Thus, for every possible input of a
function, defined by structural recursion over the accessibility predicate, the initial
proof needed to kick off the computation can be algorithmically constructed. We
express that a relation is well-founded as follows:

Well-founded : (α → α → Set) → Set
Well-founded _<_ = ∀ x → Acc _<_ x

Example 2.2.3.1
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We proceed to show how to encode the quickSort function using well-founded
recursion. The first step is to define a relation over the input type List:

data _<L_ : List α → List α → Set where
Base : (x : α) (xs : List α) → [] <L (x :: xs)
Step : (x y : α) (xs ys : List α) → xs <L ys → (x :: xs) <L (y :: ys)

The relation has two constructors:

• The constructor Base represents the base case: the empty list is always
smaller than any list built up with _::_.

• The inductive case is provided by Step. A list x :: xs is smaller than a
list y :: ys if inductively the tail of the former is smaller than the tail of
the latter.

In the next step, we define quickSort as a function that takes the accessibility
predicate over the relation as an extra argument and recurse over it:

quickSortWF : (α → α → Bool) → (xs : List α)
→ Acc _<L_ xs → List α

quickSortWF p [] (acc rs) = []
quickSortWF p (x :: xs) (acc rs) =

quickSortWF p (filter (p x) xs) (rs (filter (p x) xs)
e

1 )
++ [ x ] ++

quickSortWF p (filter (not ◦ p x) xs) (rs (filter (not ◦ p x) xs)
e

2 )

The holes that are left,
e

1 : filter (p x) xs <L (x :: xs) and
e

2 :
filter (not ◦ p x) xs <L (x :: xs), necessitate of an ancillary lemma expressing
that the function filter always returns a smaller list by the relation:

filter-<L : ∀ (p : α → Bool) (x : α) (xs : List α) → filter p xs <L (x :: xs)
filter-<L p x [] = Base x []
filter-<L p x (y :: xs) with p y
... | false = lemma-<-:: x (filter p xs) (y :: xs) (filter-<L p y xs)
... | true = Step y x (filter p xs) (y :: xs) (filter-<L p y xs)

The definition of lemma-<-:: shows that for any lists ys and ys, if ys is smaller
than xs, ys <L xs, then regardless of how many elements are prepended to xs,
ys remains smaller:

lemma-<-:: : ∀ (x : α) (ys xs : List α) → ys <L xs → ys <L (x :: xs)

The lemma is easily completed by induction over the argument ys.
Every time the programmer wants to call quickSortWF , she has to produce

a proof that the input is accessible by _<L_. It is burdensome to impose such
requirement, specially when is clear that quickSort terminates for every possible
input. To solve this undesirable situation, we can show once and for all that
every element is accessible. The constructive nature of the well-foundedness
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proof (it is an algorithm) serves as the procedure to build the accessibility
predicate proofs for every input in the domain. The proof of the theorem is as
follows:

<L-Well-founded : Well-founded _<L_
<L-Well-founded x = acc (aux x)
where aux-Step : ∀ (x : α) (xs : List α) → Acc _<L_ xs

→ ∀ (y : List α) → y <L (x :: xs) → Acc _<L_ y
aux-Step x xs (acc rs) . [] (Base .x .xs)

= acc λ { ()}
aux-Step x xs (acc rs) . (y :: ys) (Step y .x ys .xs p)

= acc (aux-Step y ys (rs ys p))
aux : ∀ (x : List α) → (y : List α) → y <L x → Acc _<L_ y
aux . (x :: xs) . [] (Base x xs) = acc λ { ()}
aux . (y :: ys) . (x :: xs) (Step x y xs ys p)

= acc (aux-Step x xs (aux ys xs p))

The proof follows the usual structure of well-foundedness proofs that can be
found in the Agda standard library. An auxiliary function aux is used, whose
definition is by induction over the proof. In the base case, there are no smaller
lists than [], thus the proof is discharged by appealing to the impossible pattern.
In the inductive case, where two lists built up with _::_ are compared, we need
another ancillary lemma, aux-Step. This lemma says that if the tail of a list
xs is accessible, then any list that results from prepending elements to it is
accessible too. It is noteworthy to mention that the proof relies on showing
the termination checker that something structurally decreases. In the case of
aux-Step, the proof decreases, while in the function aux both the proof and the
input get smaller. Nevertheless, when the proof and the input are not related,
i.e their type does not depend on a common argument, this is not the case.

Finally, the quicksort function is defined as a wrapper over quickSortWF :

quickSort : (α → α → Bool) → List α → List α
quickSort p xs = quickSortWF p xs (<L-Well-founded xs)

The previous example is well engineered to be straightforward. We declare a
relation over lists and the proof of well-foundedness follows almost immediately
from the definition of the relation. Well-founded proofs are not always that simple,
in the next example we examine how the proof is very dependent on the inductive
structure of the relation.

Example 2.2.3.2

Let us consider the natural numbers and two equivalent definitions of the <
(strict less than) relation:

data N : Set where
zero : N
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suc : N → N

data _<1_ (m : N) : N → Set where
Base1 : m <1 suc m
Step1 : (n : N) → m <1 n → m <1 suc n

data _<2_ : N → N → Set where
Base2 : (n : N) → zero <2 suc n
Step2 : (n m : N) → n <2 m → suc n <2 suc m

In the first relation, constructors are peeled off from the first argument until
there is a difference of one which constitutes the base case. On the other hand,
in the second relation, the constructors are removed from both arguments until
the left reaches zero.

It should be clear that both definitions are equivalent. However, the first is
more suitable to prove well-foundedness due to the explicit structural relation
between both arguments.

<1-Well-founded : Well-founded _<1_
<1-Well-founded x = acc (aux x)
where
aux : ∀ (x : N) → ∀ (y : N) → y <1 x → Acc _<1_ y
aux . (suc y) y Base1 = <1-Well-founded y
aux . (suc n) y (Step1 n p) = aux n y p

Pattern matching on the relation allows us to refine both arguments. The
recursive call to the well-foundednees proof in the Base case is allowed because
y is structurally smaller than suc y. In the step case we can recurse using aux
because the proof p is structurally smaller than Step p.

However, things are not that easy with the second definition. As an attempt
we might try the following:

<2-Well-founded : Well-founded _<2_
<2-Well-founded x = acc (aux x)
where
aux : (x : N) → ∀ (y : N) → y <2 x → Acc _<2_ y
aux zero y ()
aux (suc x) .zero Base2 = acc λ { ()}
aux (suc x) . (suc y) (Step2 y p) = aux x (suc y)

e

The Base2 case is effortless: there are no natural numbers smaller than zero,
thus it is eliminated using the impossible pattern. In the inductive case, Step2,
the refined patterns are not adequate to use in a recursive call, the arguments
are not structurally related.

To tackle the problem, we have to introduce an auxiliary lemma that links
the inductive structure of both inputs. Such the lemma states the following:

lemma2 : ∀ (n : N) (m : N) → n <2 suc m → n ≡ m ] n <2 m

Finally, we can complete <2-Well-founded proof by appealing to lemma2 and
dispatching a recursive call in the inductive case:
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<2-Well-founded : Well-founded _<2_
<2-Well-founded x = acc (aux x)

where
aux : (x : N) → ∀ (y : N) → y <2 x → Acc _<2_ y
aux zero y ()
aux (suc x) y p with lemma2 p
aux (suc x) .x p | inj1 refl = <2-Well-founded x
aux (suc x) y p | inj2 i = aux x y i

This example illustrates how the proof of well-foundedness is totally de-
pendent on the choice of the relation. In the first relation, _<1_, the proof
follows directly by induction from the definition, but the second relation, _<2_,
necessitates some extra work and a bit of insight to complete the proof.

Using well-founded recursion the programmer can write a non structurally re-
cursive function directly in Agda. Before writing such a function, a suitable relation
over the type of elements has to be defined. Moreover, it is necessary to prove that
the argument decreases, by the relation, with each application of the function.

Then, there are two options: each time the function is called a proof that the
input is accessible by the relation is explicitly supplied, or, the relation is proven to
be well-founded and the proof is used to produce the required evidence.

2.3 Generic programming
There are many opinions on what the term "generic programming" means, de-
pending on whom you ask. For a thoroughly account of its different flavours, we
recommend the reader to the material by Gibbons [2007]. Nevertheless, a central
idea prevails: find a common ground in the implementation details that can be
abstracted away such that when instantiated can be applied over and over.

The second part of this master thesis presents a generalization of the tail-
recursive evaluator from part one (Chapter 3), on the type Expr, to the "generic"
case. What is meant by generic in this context? it means datatype generic, which
Gibbons refers to as shape genericity : abstract over the shape of a datatype, or its
inductive structure.

In the rest of this section, we give a fast-track introduction to generic program-
ming with dependent types. We put special interest on the regular universe, for
which we later, chapter 4, construct the generic tail-recursive evaluator.

2.3.1 The regular universe
In a dependently typed programming language such as Agda, we can represent a
collection of types closed under certain operations as a universe [Altenkirch and
McBride 2003, Martin-Löf 1984], that is, a data type U : Set describing the
inhabitants of our universe together with its semantics, and a function, el : U →
Set, mapping each element of U to its corresponding type. We have chosen the
following universe of regular types [Morris et al. 2006, Noort et al. 2008]:

data Reg : Set1 where
0 : Reg
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1 : Reg
I : Reg
K : (A : Set) → Reg
_

⊕
_ : (R Q : Reg) → Reg

_
⊗

_ : (R Q : Reg) → Reg

Types in this universe are formed from the empty type (0), unit type (1), and
constant types (K A); the I constructor is used to refer to recursive subtrees. Finally,
the universe is closed under both coproducts (_

⊕
_) and products (_

⊗
_). Note

that as the constant functor K takes an arbitrary type A as its argument, the entire
datatype lives in Set1. This could easily be remedied by stratifying this universe
explicitly and parametrising our development by a base universe.

We can interpret the inhabitants of Reg as a functor of type Set → Set:

J_K : Reg → Set → Set
J 0 K X = ⊥
J 1 K X = >
J I K X = X
J (K A) K X = A
J (R

⊕
Q) K X = J R K X ] J Q K X

J (R
⊗

Q) K X = J R K X × J Q K X

To show that this interpretation is indeed functorial, we define the following law
abiding fmap operation:1

fmap : (R : Reg) → (X → Y) → J R K X → J R K Y
fmap 0 f ()
fmap 1 f tt = tt
fmap I f x = f x
fmap (K A) f x = x
fmap (R

⊕
Q) f (inj1 x) = inj1 (fmap R f x)

fmap (R
⊕

Q) f (inj2 y) = inj2 (fmap Q f y)
fmap (R

⊗
Q) f (x , y) = fmap R f x , fmap Q f y

Example 2.3.1.1

We can encode the type of booleans, Bool, in the regular universe. Such type
is represented by a code built out of the combination of two unit functors, 1,
using the coproduct _

⊕
_. The lack of the constructor I in the code allow us

to interpret it over any type we like:

BoolReg : Reg
BoolReg = 1

⊕
1

BoolG : Set
BoolG = J BoolReg K >

1The proof is left as an exercise.
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The universe as-is forbids the representation of inductive types. Simple recursive
datatypes can be expressed as their underlying pattern functor and a fixed point that
ties the recursion explicitly. In Agda, the least fixed point of a functor associated
with an element of our universe is defined as follows:

data µ (R : Reg) : Set where
In : J R K (µ R) → µ R

A functor layer given by the code R is interpreted by substituting the recursive
positions, marked by the constructor I, with generic trees of type µ R. The definition
of the fixed point is constrained to functors built within the universe. In general,
the fixed point of a non-positive2 type can be used to build non-normalizing terms,
leading to inconsistency.

Example 2.3.1.2

As a first example of a recursive datatype, we show how to encode the usual
type of cons-lists in the regular universe. The construction is simple: first,
we express the pattern functor underlying the constructors, _::_ and [], as a
generic code of type Reg, then the fixed point delivers the representation of
List:

ListReg : Set → Reg
ListReg α = 1 ] (K α

⊕
I)

ListG : Set → Set
ListG α = µ (ListReg α)

The type ListG is the generic representation of the List type, and we can witness
their equivalence by writing a pair of embedding-projection functions:

from : {α : Set} → List α → ListG α
from [] = In (inj1 tt)
from (x :: xs) = In (inj2 (x , from xs))
to : {α : Set} → ListG α → List α
to (In (inj1 tt)) = []
to (In (inj2 (x , xs)) = x :: to xs

That satisfy the following roundtrip properties:

from-to : ∀ {α : Set} → (xs : List α ) → to (from xs) ≡ xs
to-from : ∀ {α : Set} → (xs : ListG α) → from (to xs) ≡ xs

Next, we can define a generic fold, or catamorphism, to work on the inhabitants
of the regular universe. For each code R : Reg, the cata R function takes an
algebra of type J R K X → X as argument. This algebra assigns semantics to the

2The type being defined appears in negative positions, that is as a function argument, in its
own constructors.
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constructors of J R K X. Folding over a tree of type µ R corresponds to recursively
folding over each subtree and assembling the results using the argument algebra:

cata : (R : Reg) → (J R K X → X) → µ R → X
cata R ψ (In r) = ψ (fmap R (cata R ψ) r)

Unfortunately, Agda’s termination checker does not accept this definition. The
problem, is that the recursive calls to cata are not made to structurally smaller
trees, but rather cata is passed as an argument to the higher-order function fmap.

To address this, we fuse the fmap and cata functions into a single map-fold
function Norell [2008]:

map-fold : (R Q : Reg) → (J Q K X → X) → J R K (µ Q) → J R K X
map-fold 0 Q ψ ()
map-fold 1 Q ψ tt = tt
map-fold I Q ψ (In x) = ψ (map-fold Q Q ψ x)
map-fold (K A) Q ψ x = x
map-fold (R

⊕
Q) P ψ (inj1 x) = inj2 (map-fold R P ψ x)

map-fold (R
⊕

Q) P ψ (inj2 y) = inj2 (map-fold Q P ψ y)
map-fold (R

⊗
Q) P ψ (x , y) = map-fold R P ψ x , map-fold Q P ψ y

We can now define cata in terms of map-fold as follows:

cata : (R : Reg) (J R K X → X) → µ R → X
cata R ψ (In r) = map-fold R R ψ r

Both functions are defined by structural recursion over their arguments, thus, the
definition of cata is accepted as terminating by Agda’s termination checker.

Example 2.3.1.3

We can take the type of expressions from the introduction, section 1.1, and
encode it in the regular universe in two steps: first, we define the code of the
pattern functor underlying the constructors; second, the generic representation
of Expr arises from tying the knot over the pattern functor:

ExprR : Reg
ExprR = K N

⊕
(I

⊗
I)

ExprG : Set
ExprG = µ ExprR

The type ExprG is equivalent to Expr, so we can define a embedding-projection
pair:

to : ExprG → Expr
to (In (inj1 n)) = Val n
to (In (inj2 (e1 , e2))) = Add (to e1) (to e2)
from : Expr → ExprG
from (Val n) = In (inj1 n)
from (Add e1 e2) = In (inj2 (from e1 , from e2))
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The example evaluator, eval, is equivalent to a function defined using the
generic catamorphism, cata, that instantiates the code argument with ExprR
and the algebra with _+_ and id:

eval : ExprG → N
eval = cata ExprR ψ
where ψ : J ExprR K N → N

ψ (inj1 n) = n
ψ (inj2 (n , n’)) = n + n’

Generic programming within the regular universe was first explored by Noort
et al. [2008] in the context of a generic rewriting system written in Haskell [Hudak
et al. 1992]. The implementation in Haskell differs from the one we have presented
here because the language has no support for first class dependent types (yet). Each
code in the universe we defined, Reg, is encoded as a different datatype. Generic
functions are written as methods of a typeclass [Wadler and Blott 1989] that is then
instantiated to every datatype in the ‘universe’. In addition, the library provides a
typeclass Regular that uses associated type synonyms [Chakravarty et al. 2005] to
witness the isomorphism, i.e. embedding-projection pair, between a datatype and
its generic representation.

The regular library has, however, a rather limited expressivity. As the authors
acknowledge:

One of the most important limitations of the library described in this pa-
per is that it only works for datatypes that can be represented by means
of a fixed-point. Such datatypes are also known as regular datatypes.
This is a severe limitation, which implies that we cannot apply the
rewriting library to nested datatypes or systems of (mutually recursive)
datatypes.

Indeed, the regular universe can only represent simple algebraic datatypes. Datatypes
that contain functions—exponentials—[Meijer and Hutton 1995]; that are nested [Bird
and Meertens 1998]; or that are type indexed [Dybjer 1994] cannot be encoded in
the universe.
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3 A verified tail-recursive
evaluator

In this chapter, we present the termination and correctness proof of a tail-recursive
fold equivalent to the evaluation function eval, introduced in section 1.1. As a
starting point, section 3.1, we take the definitions of the functions load and unload
and reformulate them: the problem of termination is reduced into finding a suitable
well-founded relation. In the next section, section 3.2, we show how to step-by-
step construct such relation and prove its well-foundedness. Section 3.3, presents
the terminating tail-recursive evaluator, and finally, in section 3.4, we prove its
correctness with regard to the eval function. We conclude in section 3.5 with a
discussion about the pros and cons of our evaluator and point out other possible
solutions in the design space.

3.1 Setting the stage
In the first place, we recapitulate the definitions of load and unload from the intro-
duction (Section 1.1):

mutual
load : Expr → Stack → N

load (Val n) stk = unload n stk
load (Add e1 e2) stk = load e1 (Left e2 stk)

unload : N → Stack → N
unload v Top = v
unload v (Right v’ stk) = unload (v’ + v) stk
unload v (Left r stk) = load r (Right v stk)

The problematic call for Agda’s termination checker is the last clause of the unload
function, that calls load on the expression stored on the top of the stack. From
the definition of load, it is clear that we only ever push subtrees of the input on
the stack. However, the termination checker has no reason to believe that the
expression at the top of the stack is structurally smaller in any way. Indeed, if we
were to redefine load as follows:

29
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load (Add e1 e2) stk = load e1 (Left (f e2) stk)

we might use some function f : Expr → Expr to push arbitrary expressions on the
stack, potentially leading to non termination.

The functions load and unload use the stack to store subtrees and partial results
while folding the input expression. Thus, every node in the original tree is visited
twice during the execution: first when the function load traverses the tree, until it
finds the leftmost leaf; second when unload inspects the stack in searching of an
unevaluated subtree. This process is depicted in fig. 3.1.

Add

Add

Val 3 Add

Val 7 Val 1

Add

Val 2 Val 0

Figure 3.1: Traversing a tree with load and unload

As there are finitely many nodes on a tree, the depicted traversal using load and
unload must terminate—but how can we convince Agda’s termination checker of
this?

As a first approximation, we revise the definitions of load and unload. Rather
than consuming the entire input in one go with a pair of mutually recursive functions,
we rewrite them to perform one ‘step’ of the tail-recursive fold.

The function unload is defined by recursion over the stack as before, but with
one crucial difference. Instead of always returning the final result, it may also1
return a new configuration of our abstract machine, that is, a pair N × Stack:

unload : N → Stack → (N × Stack) ] N
unload v Top = inj2 v
unload v (Right v’ stk) = unload (v’ + v) stk
unload v (Left r stk) = load r (Right v stk)

The other key difference arises in the definition of load:

load : Expr → Stack → (N × Stack) ] N
load (Val n) stk = inj1 (n , stk)
load (Add e1 e2) stk = load e1 (Left e2 stk)

Rather than calling unload upon reaching a value, it returns the current stack and
the value of the leftmost leaf. Even though the function never returns an inj2, its
type is aligned with the type of unload so the definition of the functions resembles
an abstract machine more closely.

Both these functions are now accepted by Agda’s termination checker as they
are clearly structurally recursive. We can use the functions to define the following
evaluator:

1] is Agda’s type of disjoint union.
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tail-rec-eval : Expr → N
tail-rec-eval e with load e Top
... | inj1 (n , stk) = rec (n , stk)
where

rec : (N × Stack) → N
rec (n , stk) with unload n stk
... | inj1 (n’ , stk’) = rec (n’ , stk’)
... | inj2 r = r

Here we use load to compute the initial configuration of our machine—that is, it
finds the leftmost leaf in our initial expression and its associated stack. We proceed
by repeatedly calling unload until it returns a value. This version of our evaluator,
however, does not pass the termination checker. The new state (n’ , stk’) is not
structurally smaller than the initial state (n , stk). If we work under the assumption
that we have a relation between the states N × Stack that decreases after every call
to unload and a proof that the relation is well-founded—we know this function will
terminate eventually, we define the following version of the tail-recursive evaluator:

tail-rec-eval : Expr → N
tail-rec-eval e with load e Top
... | inj1 (n , stk) = rec (n , stk)

e
1

where
rec : (c : N × Stack) → Acc _<_ c → N
rec (n , stk) (acc rs) with unload n stk
... | inj1 (n’ , stk’) = rec (n’ , stk’) (rs

e
2 )

... | inj2 r = r

To complete this definition, we still need to define a suitable relation _<_ between
configurations of type N × Stack, prove the relation to be well-founded (

e
1 :

Acc _<_ (n , stk)) and show that the calls to unload produce ‘smaller’ states
(

e
2 : (n’ , stk’) < (n , stk)). In the next sections, we define such a relation and

prove it is well-founded.

3.2 Well-founded tree traversals

The type of configurations of our abstract machine can be seen as a variation of
Huet’s zippers [1997]. The zipper associated with an expression e : Expr is pair
of a (sub)expression of e and its context. As demonstrated by McBride [2008], the
zippers can be generalized further to dissections, where the values to the left and
right of the current subtree may have different types. It is precisely this observation
that we will exploit when considering the generic tail-recursive traversals in the later
sections; for now, however, we will only rely on the intuition that the configurations
of our abstract machine, given by the type N × Stack, are an instance of dissections,
corresponding to a partially evaluated expression:

Config : Set
Config = N × Stack
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These configurations, are more restrictive than dissections in general. In particular,
the configurations presented in the previous section only ever denote a leaf in the
input expression.

The tail-recursive evaluator, tail-rec-eval processes the leaves of the input ex-
pression in a left-to-right fashion. The leftmost leaf—i.e. the first leaf found after
the initial call to load—is the greatest element; the rightmost leaf is the smallest.
In our example expression, fig. 3.1, we would number the leaves as follows:

Add

Add

Val 3

5

Add

Val 7

4

Val 1
3

Add

Val 2

2

Val 0
1

Figure 3.2: Numbered leaves of the tree

This section aims to formalize the relation that orders elements of the Config
type (that is, the configurations of the abstract machine) and prove it is well-
founded. However, before doing so there are two central problems with our choice
of Config datatype:

1. The Config datatype is too liberal. As we evaluate our input expression the
configuration of our abstract machine changes constantly, but satisfies one
important invariant: each configuration is a decomposition of the original
input. Unless we make explicit this invariant, we will be hard-pressed to prove
the well-foundedness of any relation defined on configurations.

2. The choice of the Stack datatype, as a path from the leaf to the root is
convenient to define the tail-recursive machine, but impractical when defin-
ing the desired order relation. The top of a stack stores information about
neighbouring nodes, but to compare two leaves we need global information
about their positions relative to the root.

We will now address these limitations one by one. Firstly, by refining the type of
Config, we will show how to capture the desired invariant (Section 3.2.1). Secondly,
we explore a different representation of stacks, as paths from the root, that facilitates
the definition of the desired order relation (Section 3.2.2). Subsequently, we will
define the relation over configurations, section 3.2.3, and sketch the proof that it is
well-founded.

3.2.1 Invariant preserving configurations
A value of type Config denotes a leaf in our input expression. In the previous
example, the following Config corresponds to the third leaf:
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Add

Add

Val 3

5

Add

Val 7

4

Val 1
3

Add

Val 2

2

Val 0
1

Right 7, Right 3, Left1 ,
Add

Val 2 Val 0

Figure 3.3: Configuration of leaf number 3

As we observed previously, we would like to refine the type Config to capture the
invariant that execution preserves: every Config denotes a unique leaf in our input
expression, or equivalently, a state of the abstract machine computing the fold.
There is one problem still: the Stack datatype stores the values of the subtrees that
have been evaluated, but does not store the subtrees themselves. In the example in
fig. 3.3, when the traversal has reached the third leaf, all the subexpressions to its
left have been evaluated.

In order to record the necessary information, we redefine the Stack type as
follows:

data Stack+ : Set where
Left : Expr → Stack+ → Stack+

Right : (n : N) → (e : Expr) → eval e ≡ n → Stack+ → Stack+

Top : Stack+

The Right constructor now not only stores the value n, but also records the subex-
pression e and the proof that e evaluates to n. Although we are modifying the
definition of the Stack data type, we claim that the expression e and equality are
not necessary at runtime, but only required for the proof of well-foundedness—a
point we will return to in our discussion (Section 3.5). From now onwards, the type
Config uses Stack+ as its right component:

Config = N × Stack+

The function unload+ was previously defined by induction over the stack (Sec-
tion 3.1), thus, it needs to be modified to work over the new type of stacks, Stack+:

unload+ : (n : N) → (e : Expr) → eval e ≡ n → Stack+

→ Config ] N
unload+ n e eq Top = inj2 n
unload+ n e eq (Left e’ stk) = load e’ (Right n e eq stk)
unload+ n e eq (Right n’ e’ eq′ stk)

= unload+ (n’ + n) (Add e’ e) (cong2 _+_ eq′ eq) stk

A value of type Config contains enough information to recover the input expres-
sion. This is analogous to the plug operation on zippers:
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plug⇑ : Expr → Stack+ → Expr
plug⇑ e Top = e
plug⇑ e (Left t stk) = plug⇑ (Add e t) stk
plug⇑ e (Right t stk) = plug⇑ (Add t e) stk
plugC⇑ : Config → Expr
plugC⇑ (n , stk) = plug⇑ (Val n) stk

Any two terms of type Config may still represent states of a fold over two
entirely different expressions. As we aim to define an order relation comparing
configurations during the fold of the input expression, we need to ensure that we
only ever compare configurations within the same expression. We can statically
enforce such requirement by defining a new wrapper data type over Config that
records the original input expression:

data Config⇑ (e : Expr) : Set where
_,_ : (c : Config) → plugC⇑ c ≡ e → Config⇑ e

For a given expression e : Expr, any two terms of type Config⇑ e are configura-
tions of the same abstract machine during the tail-recursive fold over the expression
e.

3.2.2 Up and down configurations
Next, we would like to formalize the left-to-right order on the configurations of our
abstract machine. The Stack in the Config represents a path upwards, from the leaf
to the root of the input expression. This is useful when navigating to neighbouring
nodes, but makes it harder to compare the relative positions of two configurations.
We now consider the value of Config corresponding to leaves with numbers 3 and
4 in our running example:

Right 7, Right 3, Left1 ,
Add

Val 2 Val 0

Left Right 3, Left7 ,
Add

Val 2 Val 0
Val 1,

Figure 3.4: Comparison of configurations for leaves 3 and 4

The natural way to define the desired order relation is by induction over the
Stack. However, there is a problem. The first element of both stacks does not
provide us with sufficient information to decide which position is ‘smaller.’ The top
of the stack only stores information about the location of the leaf with respect to
its parent node. This kind of local information cannot be used to decide which
one of the leaves is located in a position further to the right in the original input
expression.

Instead, we would like to compare the bottom elements of both stacks. The
common suffix of the stacks shows that both positions are in the left subtree of the
root. Once these paths—read from right to left—diverge, we have found the exact
node Add where one of the positions is in the left subtree and the other in the right.
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When comparing two Stacks, we therefore want to consider them as paths from
the root to the leaf. In fig. 3.4, this corresponds with reading the stacks from
right to left—as opposed to their current order from left to right. Fortunately, this
observation does not require us to change our definition of the Stack type; instead,
we can define a variant of the plug⇑ function that interprets our contexts top-down
rather than bottom-up:

plug⇓ : Expr → Stack+ → Expr
plug⇓ e Top = e
plug⇓ e (Left t stk) = Add (plug⇓ e stk) t
plug⇓ e (Right t stk) = Add t (plug⇓ e stk)
plugC⇓ : Config → Expr
plugC⇓ (n , stk) = plug⇓ (Val n) stk

We can convert freely between these two interpretations by reversing the stack.
Furthermore, this conversion satisfies the plug⇓-to-plug⇑ property, relating the two
variants of plug:

convert : Config → Config
convert (n , s) = (n , reverse s)
plug⇓-to-plug⇑ : ∀ (c : Config)

→ plugC⇓ c ≡ plugC⇑ (convert c)

As before, we can create a wrapper around Config that enforces the Config type to
denote a leaf in the input expression e:

data Config⇓ (e : Expr) : Set where
_,_ : (c : Config) → plugC⇓ c ≡ e → Config⇓ e

As a corollary of the plug⇓-to-plug⇑ property, we can define a pair of functions to
switch between Config⇑ and Config⇓:

Config⇓-to-Config⇑ : (e : Expr) → Config⇓ e → Config⇑ e
Config⇑-to-Config⇓ : (e : Expr) → Config⇑ e → Config⇓ e

3.2.3 Ordering configurations
Finally, we can define the ordering relation over values of type Config⇓. Even if the
Config⇑ is still used during execution of our tail-recursive evaluator, the Config⇓
type will be used to prove its termination.

The x_y_<_ type defined below relates two configurations of type Config⇓ e,
that is, two states of the abstract machine evaluating the input expression e:

data x_y_<_ : (e : Expr) → Config⇓ e → Config⇓ e → Set where
<-StepR : x r y ((t1 , s1) , ...) < ((t2 , s2) , ...)
→ x Add l r y ((t1 , Right l n eq s1) , eq1) < ((t2 , Right l n eq s2) , eq2)

<-StepL : x l y ((t1 , s1) , ...) < ((t2 , s2) , ...)
→ x Add l r y ((t1 , Left r s1) , eq1) < ((t2 , Left r s2) , eq2)

<-Base : (eq1 : Add e1 e2 ≡ Add e1 (plugC⇓ t1 s1))
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→ (eq2 : Add e1 e2 ≡ Add (plugC⇓ t2 s2) e2)
→ x Add e1 e2 y ((t1 , Right n e1 eq s1) , eq1) < ((t2 , Left e2 s2) , eq2)

Despite the apparent complexity, the relation is straightforward. The constructors
<-StepR and <-StepL cover the inductive cases, consuming the shared path from
the root. When the paths diverge, the <-Base constructor states that the positions
in the right subtree are ‘smaller than’ those in the left subtree. To ensure that both
configurations represent positions in the same expression, the <-Base constructor
takes as a parameter a pair of equalities such that: the leaf pointed by the tail of
the stack, (t1 , s1), coincides, e2 ≡ plugC⇓ t1 s1, with the subtree stored in the top
of the stack of the other configuration (t2 , Left e2 s2).

3.2.4 Well-founded relation
Now we turn out attention into showing that the relation is well-founded. We sketch
the proof below:

<-WF : ∀ (e : Expr) → Well-founded (x e y_<_)
<-WF e x = acc (aux e x)

where
aux : ∀ (e : Expr) (x y : Config⇓ e)
→ x e y y < x → Acc (x e y_<_) y

aux = ...

The proof follows the standard schema of most proofs of well-foundedness. It uses an
auxiliary function, aux, that proves every configuration smaller than x is accessible.

The proof proceeds initially by induction over the relation. The inductive cases,
corresponding to the <-StepR and <-StepL constructors, recurse on the relation.
In the base case, <-Base, we cannot recurse further on the relation. We then
proceed by recursing over the original expression e; without the type index, the
subexpressions to the left e1 and right e2 are not syntactically related thus a recursive
call is not possible. This step in the proof relies on only comparing configurations
arising from traversing the same initial expression e.

Following the same layout of example 2.2.3.1, the proof uses two lemmas that
propagate the property of well-foundedness from structurally smaller configurations,
i.e. with less elements in the stack:

accR : ∀ (l : Expr) (r : Expr) (x : N) (s : Stack+) (n : N) (eq : eval l ≡ n)
→ Acc (x r y_<_) (x , s)
→ ∀ (y : Config⇓ (Add l r)) → x Add l r y y < (x , Right l n eq s)

→ Acc (x Add l r y_<_) y
accL : ∀ (l : Expr) (r : Expr) (x : N) (s : Stack+)

→ Well-founded (x r y_<_)
→ Acc (x l y_<_) (x , s)
→ ∀ (y : Config⇓ (Add l r)) → x Add l r y_<_ y < (x , Left r s)

→ Acc (x Add l r y_<_) y

The first lemma, accR, follows directly from induction over the accessibility predi-
cate. In the second lemma, accL, the proof is done by induction over the argument
y. There are two cases to consider: the inductive case, <-StepL, proceeds by recur-
sion over the accessibility predicate on the left subexpression Acc (x l y_<_) (x , s).
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However, the non-inductive case, constructor <-Base, poses a technical challenge:
for the relation to be well-founded on the expression Add l r depends on itself being
well-founded on the right subtree r. The former lemma, accR, handles this case if we
can supply a proof that the right subtree is accessible Acc (x r y_<_) (x , s), which
indeed, accL can produce using its argument of type Well-founded (x r y_<_).
This is only only possible because in the auxiliary function, aux, the initial call to
accL, can recursively use the well-foundedness proof <-WF. Pattern matching re-
veals that the input expression e is a node Add l r, thus the recursive call is done
on a structurally smaller input. Acceptance by the termination checker certifies it.

The type x_y_<_, more than being a single relation over configurations, is a
family of relations, one for every possible value of type Expr. Although indexing the
relation, and the configurations, is necessary to prove that it is well-founded, it is
not amenable to prove properties of functions regarding the relation. For instance,
a proof that the function unload+ returns a smaller configuration would require a
lot of bookkeeping for the type index.

Instead of working directly with x_y_<_, we define another auxiliary relation
over non type-indexed configurations, and prove that there is an injection between
both under suitable assumptions:

data _<_ : Config → Config → Set where
<-StepR : (t1 , s1) < (t2 , s2)

→ (t1 , Right l n eq s1) < (t2 , Right l n eq s2)
<-StepL : (t1 , s1) < (t2 , s2)

→ (t1 , Left r s1) < (t2 , Left r s2)
<-Base : (e1 ≡ plugC⇓ t2 s2) → (e2 ≡ plugC⇓ t1 s1)

→ (t1 , Right n e1 eq s1) < (t2 , Left e2 s2)
to : (e : Expr) (c1 c2 : Config)
→ (eq1 : plugC⇓ c1 ≡ e) (eq2 : plugC⇓ c2 ≡ e)
→ c1 < c2 → x e y (c1 , eq1) < (c2 , eq2)

The definition of _<_ is an exact blueprint of its type-indexed counterpart. The
only difference is that all the refined type indices stripped off the constructors.

3.3 A terminating tail-recursive evaluator
We now have almost all the definitions in place to revise our tail-recursive evaluator,
tail-rec-eval. However, we are missing one essential ingredient: we still need to show
that the configuration decreases after a call to the unload+ function.

Unfortunately, the function unload+ and the relation that we have defined
work on ‘different’ versions of the Stack+: the relation compares stacks top-down;
the unload+ function manipulates stacks bottom-up. Furthermore, the function
unload+ as defined previously manipulates elements of the Config type directly,
with no further type-level constraints relating these to the original input expression.

In the remainder of this section, we will reconcile these differences and complete
the definition of our tail-recursive evaluator.

Decreasing recursive calls To define our tail-recursive evaluator, we will begin by
defining an auxiliary step function that performs a single step of the computation.



38 CHAPTER 3. A VERIFIED TAIL-RECURSIVE EVALUATOR

We will define the desired evaluator by iterating the step function, proving that it
decreases in each iteration.

The step function calls unload+ to produce a new configuration, if it exists. If
the unload+ function returns a natural number, inj2 v, the entire input tree has
been processed and the function terminates:

step : (e : Expr) → Config⇑ e → Config⇑ e ] N
step e ((n , stk) , eq)
with unload+ n (Val n) refl stk
... | inj1 (n’ , stk’) = inj1 ((n’ , stk’) , ...)
... | inj2 v = inj2 v

We have omitted the second component of the result returned in the first branch,
corresponding to a proof that plugC⇑ (n’ , stk’) ≡ e. The crucial lemma, which we
need to complete this proof, states that the unload+ function respects our invariant:

unload+-plug⇑ :
∀ (n : N) (e : Expr) (eq : eval e ≡ x) (s : Stack+) (c : Config)
→ unload+ n e eq s ≡ inj1 c
→ ∀ (e’ : Expr) → plug⇑ e s ≡ e’ → plugC⇑ c ≡ e’

The proof proceeds by induction over the stack part of the configuration. In the
case the stack is empty, there is nothing to show, unload+ returns a natural number
wrapped in inj2. In case the stack is not empty, depending on the element in the
top, either Right or Left, it calls itself recursively or uses a lemma showing that the
function load honors the invariant too:

load-plug⇑ : ∀ (e : Expr) (s : Stack+) (c : Config)
→ load e s ≡ inj1 c
→ ∀ (t : Expr) → plug⇑ e s ≡ t → plugC⇑ c ≡ t

The lemma is proven by induction on the expression e.
Lastly, we can define the theorem stating that the step function always returns

a smaller configuration:

step-< : ∀ (e : Expr) → (c c’ : Config⇑ e) → step e c ≡ inj1 c’
→ x e y Config⇑-to-Config⇓ c’ < Config⇑-to-Config⇓ c

Proving this statement directly is tedious, as there are many cases to cover
and the expression e occurring in the types makes it difficult to identify and prove
lemmas covering the individual cases. We can simplify things by appealing to the
non type-indexed relation _<_ and the lemma unload+-plug⇑. Thus to complete
the theorem, it is sufficient to show that the function unload+ delivers a smaller
Config with the stacks reversed:

unload+-< : ∀ (n : N) (s : Stack+) (e : Expr) (s’ : Stack+)
→ unload+ n (Val n) refl s ≡ inj1 (t′ , s’)
→ (t′ , reverse s’) < (n , reverse s)

The proof is done by induction over the stack supported; the complete proof re-
quires some bookkeeping, covering around 200 lines of code, but is conceptually
not complicated.
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The function tail-rec-eval is now completed as follows:2

rec : (e : Expr) → (c : Config⇑ e)
→ Acc (x e y_<_) (Config⇑-to-Config⇓ c) → Config⇑ e ] N

rec e c (acc rs) = with step e c | inspect (step e) c
... | inj2 n | = inj2 n
... | inj1 c’ | [ Is ] = rec e c’ (rs (Config⇑-to-Config⇓ c’) (step-< e c c’ Is))

The auxiliary recursor rec is defined by structural recursion over the accessibil-
ity predicate, thus, it provably terminates. Using the ancillary lemma step-<, we
demonstrate that repeated invocations of the function step are done on strictly
smaller configurations. Therefore, Agda’s termination checker accepts the function
as terminating.

The tail-recursive evaluator, tail-rec-eval, is then defined as a wrapper over rec:
it uses the fact that the relation is well-founded to feed the initial input and a proof
that is accessible:

tail-rec-eval : Expr → N
tail-rec-eval e with load e Top
... | inj1 c = rec e (c , ...) (<-WF e c)

3.4 Correctness
Indexing the datatype of configurations is useful when proving correctness of the
tail-recursive evaluator. The type of the function step guarantees by construction
that the input expression never changes during the fold: the invariant consistently
holds. Because the input expression remains constant across invocations, the result
of eval does so also.

Proving the function tail-rec-eval correct amounts to showing that the auxiliary
function, rec, iterated until a value is produced, behaves as eval. The auxiliary
function rec is defined by recursion over the accessibility predicate, thus the proof
is done by induction over the same argument:

rec-correct : ∀ (e : Expr) → (c : Config⇑ e)
→ (ac : Acc (x e y_<_) (Config⇑-to-Config⇓ c))
→ eval e ≡ rec e c ac

rec-correct e c (acc rs)
with step e c | inspect (step e) c

... | inj1 c’ | [ Is ]
= rec-correct e c’ (rs (Config⇑-to-Config⇓ c’) (step-< e c c’ Is))

... | inj2 n | [ Is ] = step-correct e c n Is

While the proof by induction covers the recursion, we still have to prove the base
case: when there are no more subexpressions left to fold, the resulting natural num-
ber is equal to evaluating the input expression using eval. The lemma step-correct
precisely states that:

step-correct : ∀ (e : Expr) → (c : Config⇑ e)
→ ∀ (n : N) → step e c ≡ inj2 n → eval e ≡ n

2inspect is an Agda idiom needed to remember that c’ is the result of the call step e c.
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As step is a wrapper around the function unload+, it suffices to prove the following
property of unload+:

unload+-correct : ∀ (n : N) (e : Expr) (eq : eval e ≡ n) (s : Stack+)
→ ∀ (m : N) → unload+ n e eq s ≡ inj2 m → eval (plug⇑ e s) ≡ m

unload+-correct e n eq Top .n refl = sym eq
unload+-correct e n eq (Left x s) r p = ⊥-elim ...
unload+-correct e n eq (Right r’ e’ eq′ s) r p

= unload+-correct (r’ + r) (Add e’ e) (cong2 _+_ eq′ eq) s r p

The proof follows immediately by induction over s : Stack+ using the fact that
equality is congruent.

The main correctness theorem now shows that eval and tail-rec-eval are equal
for all inputs:

correctness : ∀ (e : Expr) → eval e ≡ tail-rec-eval e
correctness e with load e Top
... | inj1 c = rec-correct e (c , ...) (<-WF e c)
... | inj2 = ⊥-elim ...

The definition and verification of a tail-recursive evaluator is completed.

3.5 Discussion
In this chapter, we have seen how to define and verify a tail-recursive evaluator for
the type of expressions Expr. Before wrapping up the evaluator, we address some
open questions and issues:

• Our construction relies on two key points: type-indexed configurations and
a well-founded relation. The former is essential for the latter, without the
type-index in the configuration type, Config⇓, is not possible to prove well-
foundedness. However, enlarging the type of the stacks to prove the required
properties comes at a cost: the runtime impact of the function tail-rec-eval
is larger than the pair of mutually recursive functions load and unload, sec-
tion 1.1, that we took as starting point.

• Our tail-recursive evaluator is tied to a concrete algebra composed of the
functions _+_ and id, however, a tail-recursive machine capable of computing
the fold for any algebra over any Expr would be preferable.

• Alternatively, we can formulate a provably terminating tail-recursive fold using
continuations. The idea consists in storing a partially applied recursive call—
the continuation—at the point where the argument is known to be structurally
smaller than the input. In such approach, however, the execution stack is no
longer a first-order object, thus, the tail-recursive function cannot be longer
understood as the formalization of an abstract machine.

• The tail-recursive evaluator we developed exchanges space in the execution
stack for space in the heap. The runtime environment where the function
is executed has to explicitly allocate space in the heap to hold the Stack
argument of tail-rec-eval. On the practical level, it is not clear what we gain
from the transformation.
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• Previous work by Danvy [2009] has focused on constructing abstract machines
from a one step reduction function. Our tail-recursive evaluator is an example
of an abstract machine that uses a reduction function, the algebra. Both
machines are definitely related.

• The step function, which our evaluator iterates, performs several reductions
each time it is applied. However, the interpretation of a tail-recursive function
as an abstract machine fits more naturally when the function it iterates reduces
at most one redex at a time.

In the next paragraphs we discuss each of these points.

Irrelevant arguments Agda allows the programmer to identify the arguments of
a function or the parameters of a constructor as computationally irrelevant. Code
marked as irrelevant is erased, or interpreted as the unit type, when extracted into a
Haskell executable. The typechecker has ensured that evaluation does not depend
on irrelevant code.

If we compare the type of stacks, Stack and Stack+, the constructor Right in the
latter additionally stores the already evaluated subexpressions and the associated
proofs:

data Stack : Set where
Right : (n : N) → Stack → Stack
...

data Stack+ : Set where
Right : (n : N) → (e : Expr) → (eval e ≡ n) → Stack+ → Stack+

...

The purpose of the expression and the proof is only to aid proving termination and
correctness, and they should not produce any runtime overhead if we compare it
with the naive tail-recursive function. We can address the issue and remove the
extra cost, by marking both parameters as irrelevant in the type of of Stack+:

data Stack+
ι : Set where -- does not typecheck!

Right : (n : N) → . (e : Expr) → . (eval e ≡ n) → Stack+
ι → Stack+

ι

...

In the above definition, the expression e : Expr and the proof eval e ≡ n are
irrelevant—marked with a preceding . (dot). Unfortunately, the datatype Stack+

ι

does not typecheck, the function eval expects a non irrelevant argument, which is
necessary since we defined it by pattern matching on its argument. We can tackle
this obstacle by reifiying the graph of the function eval as a datatype:

data Eval : .Expr → N → Set where
Eval-Val : (n : N) → Eval (Val n) n
Eval-Add : (e1 e2 : Expr) → (n n’ : N)

→ Eval e1 n → Eval e2 n’ → Eval (Add e1 e2) (n + n’)

Because we marked the first index of Eval, of type Expr, as irrelevant, we can define
the type of irrelevant stacks as follows:
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data Stack+
ι : Set where

Right : (n : N) → . (e : Expr) → . (Eval e n) → Stack+
ι → Stack+

ι

...

If we assume that we can adapt the rest of the facilities, such as auxiliary datatypes,
functions, etc, to use Stack+

ι then the tail-recursive evaluator would have the same
runtime impact as the pair of mutually recursive functions load and unload from
the introduction (Section 1.1).

Tail-recursive fold We constructed a tail-recursive evaluator equivalent to a fold
over expressions for a concrete algebra composed of _+_, for the constructor Add,
and id for Val. The presentation in this simple terms is meant to reduce the overall
clutter and let the reader focus on the ideas driving the construction. Nonetheless,
we can easily generalize tail-rec-eval to a tail-recursive fold equivalent to fold (Sec-
tion 1.1) that works for any algebra and for any Expr. First, we define an algebra
over Expr as the following triple:

record Exprφ : Set1 where
field
α : Set
φ1 : N → α
φ2 : α → α → α

The folding function fold takes the algebra as a parameter rather than a pair of
functions:

fold : (alg : Exprφ) → Expr → α alg
fold alg (Val n) = φ1 alg n
fold alg (Add e1 e2) = φ2 alg (fold alg e1) (fold alg e2)

The rest of the construction accounts for the algebra by augmenting every datatype
and function with a new parameter, the algebra. We can, instead, use a module
parametrized by the algebra:

module (alg : Exprφ) where
...

Using this approach, the definitions become more simple and clear; we do not have
to keep track of the algebra in every type signature. However, at the formal level
the formalizations are equivalent.

The reader can find the formalization of the tail-recursive fold that uses Exprφ
in the repository under the file src/Tree/Indexed.agda.

Continuations We can write a tail-recursive version of the evaluator from the
introduction (Section 1.1) using continuations. In order to do so, we define an
auxiliary function, go, by structural recursion over the expression passing the con-
tinuation as a parameter:

tail-rec-cont : Expr → N
tail-rec-cont = go id
where go : (N → N) → Expr → N



3.5. DISCUSSION 43

go k (Add e1 e2) = go (λ n → go (k ◦ (n +)) e2) e1
go k (Val n) = k n

In the first clause of the definition of go, the continuation passed as an argument to
the recursive call uses the result of left subexpression, e1, to recurse over the right
subexpression, e2. Agda’s termination checker classifies the function as terminating
because the recursive call is done at a point where the argument is structurally
smaller.

As an alternative design, we could redefine the type of stacks to explicitly store
the continuation. In the Left constructor instead of saving the right subexpression
for later processing, we cache the continuation corresponding to a call of unload
over such expression. The type of stacks with continuations would be as follows:

data Stackcps : Set where
Rightcps : N → Stackcps → Stackcps
Leftcps : (N → Stackcps → N) → Stackcps → Stackcps
Topcps : Stackcps

Accordingly, the pair of functions load and unload have to change to account
for the continuations. The new load function, loadcps, creates a continuation on the
right subexpression, and saves it on the stack, before it proceeds by recursion over
the left subexpression. The replacement of the unload function, unloadcps, applies
the continuation once it finds a Left constructor in the stack. The definition of both
functions is the following:

unloadcps : N → Stackcps → N
unloadcps n Topcps = n
unloadcps n (Rightcps n’ stk) = unloadcps (n + n’) stk
unloadcps n (Leftcps k stk) = k n stk
loadcps : Expr → Stackcps → N
loadcps (Add e1 e2) stk = loadcps e1 (Left (λ n → loadcps e2 ◦ (Right n)) stk)
loadcps (Val n) stk = unloadcps x stk
evalcps : Expr → N
evalcps e = loadcps e Topcps

There is a problem, though, with this last approach. The Stackcps datatype
is not strictly positive, indeed, Agda’s positivity checker highlights the non strictly
positive occurrences in pink : the type Stackcps appears as an argument to the
continuation in its own constructor Leftcps.

Using continuations explicitly, the evaluators are obviously terminating: they
are solely defined by structural recursion over their input. Nonetheless, we cannot
understand the tail-recursive functions tail-rec-cont and evalcps as first-order stack-
based abstract machines anymore. The function tail-rec-cont does not manipulate
explicitly a stack but rather uses functions in the host language, in this case Agda, to
implement tail-recursion. On the other hand, the function evalcps does use a stack,
but again relies on using functions from the host language to do tail-recursion. We
have traded a first-order formulation in exchange for tail-recursion and termination.

Space trade-off Our tail-recursive evaluator uses a Stack argument as the reifi-
cation of the underlying execution stack. The evaluator, indeed, is tail-recursive
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because it uses such argument to perform the tail calls. A explicit Stack, however,
is not for free; the runtime system still has to allocate and manage the stack.

For instance, in a functional language such as Haskell, GHC [Marlow et al.
2004]—the de facto Haskell implementation— uses the same memory region for
the allocation of the heap and the stack; the former grows upwards while the latter
grows downwards. Then, what do we gain by transforming a fold into its tail-
recursive counterpart?

We can mark the values saved in the stack with strictness [Wadler and Hughes
1987] annotations. At the point where the function unload+ stores a term n : N
in the stack, such term is a fully evaluated value. The runtime system can reclaim
the space that otherwise would occupy as a thunk.

In a language like Haskell, however, we have to take some extra care because of
its non-strict semantics. Our tail-recursive evaluator is not exactly equivalent to a
fold associated with a non inductive, possibly infinite, datatype. For instance, if we
pass to the fold function on Expr a function const x y = x and the right subtree
is an infinite value, then, our tail-recursive function does not terminate while the
original fold does.

Decompose, contract, recompose Danvy [2009] has previously shown how to
derive a reduction-free evaluation function beginning from a small step reduction
semantics. Given a term language, a specification of redexes in the language —
i.e. terms the can be immediately reduced in one step, and a one-step contraction
function, Danvy shows how to construct an abstract machine to evaluate terms,
that later turns into a reduction-free evaluation function.

The high level idea of his construction consists of applying a series of functions:
decompose a term into potential redex and its evaluation context, contract the
redex, and recompose the term by plugging back the result into the context. He
then obtains the abstract machine by finding a fixed point of the composition of the
three functions. He later observes [Danvy and Nielsen 2004] that the decomposition
step always happens right after a recomposition, thus, he further optimizes the ma-
chine by deforesting the intermediate terms. He dubs the fusion of both functions,
recompose and decompose, refocusing.

This concept of a machine is not very dissimilar to how our tail-recursive evalua-
tor, tail-rec-eval, operates. Danvy’s abstract machine iterates the one-step reduction
function—decompose, contract, recompose—until the term is fully evaluated, while,
our tail-recursive evaluator iterates the function step. A question is to wonder: how
are both machines related for the type of expressions, Expr?

The first problem that arises, when formalizing Danvy’s machine in a total
language such as Agda, is that the decomposition step essentially corresponds to
the pair of mutually recursive functions load and unload. As we previously saw in
section 1.1, the termination checker classifies them as possibly non terminating. As
we did for our tail-recursive machine, we could define a well-founded relation to
show that traversing an expression to find its leftmost redex terminates.

In Danvy’s machine, once decompose finds a redex, contract reduces it to a
value. Our machine, on the other hand, uses the algebra, passed as a parameter to
unload, to combine the results of previously evaluated subexpressions.

After Danvy’s machine contracts the redex, it recomposes expression by plugging
the value into the context. Our function unload, instead, recursively traverses the
stack looking for the next subexpression to load.
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We proved that our tail-recursive evaluator finds the fixed point of the one-
step function, step, because we carefully engineered such function to deliver a
smaller value by the well-founded relation over configurations. However, to iter-
ate decompose-contract-recompose we would need to define a well-founded relation
over elements of type Expr and prove it decreases with each invocation.

Up to this point, we need to have two different relations just to construct Danvy’s
machine in Agda: one to prove that decomposition terminates, one to prove that
iterating the one step function terminates. Surprisingly, the optimization that Danvy
applies to the machine, refocusing, which removes any intermediate expression by
fusing the decomposition and recomposition steps, makes its more amenable to
construct in Agda. Indeed, it is a variation of our tail-recursive evaluator with one
difference: our one step function contracts several redexes at once while Danvy’s
contracts only one at a time. In the next paragraph, we explore the ramifications
of modifying our one-step function to match Danvy’s abstract machine.

Fine-grained reduction Our tail-recursive evaluator, tail-rec-eval, iterates the
function unload until it completely consumes the input expression and returns the
result of the fold. We can argue that unload completes an excessive amount of
work: while traversing the stack in search for the next subexpression, it might
perform several reductions before dispatching a call to load or returning a value.
Figure 3.5 shows an example; the function unload, starting from the configuration
corresponding to the leaf Val 1 , traverses the spine at once while accumulating and
reducing all partial results.

Add

Add

· · · Add

· · · Add

· · · Val 1

· · ·

Figure 3.5: unload traverses the spine of an expression

We should be able to rewrite the tail-recursive evaluator, such that iterates a
function that performs at most one reduction at a time. The evaluator would match
more closely the concept of an abstract machine designed as single step transition
system, but, as we will see, it would also increase the complexity of the construction.

There is one fundamental idea in the definition of our tail-recursive evaluator:
the intermediate states, or configurations of the abstract machine, always represent
locations of leaves in the input expression. If unload is implemented not to consume
the spine at once, we will have to reconsider what constitute a valid configuration;
aside from leaves, a not yet contracted redex will also be a possible internal state:

data Config : Set where
Leaf : N → Stack+ → Config
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Redex : (n : N) → (e1 : Expr) → eval e1 ≡ n
→ (n’ : N) → (e2 : Expr) → eval e2 ≡ n’
→ Stack+ → Config

The leaves of the input expression remain the same as before: a natural number
and the stack pointing to its position. The new constructor, Redex, represents a
redex that is ready to be reduced. The definition of the function unload clarifies its
purpose:

unload : (n : N) → (e : Expr) → eval e ≡ n → Stack+ → Config ] N
unload n e1 eq (Left e2 stk) = load e2 (Right n e1 eq stk)
unload n e1 eq1 (Right n’ e2 eq2 stk) = inj1 (Redex n’ e2 eq2 n e1 eq1 stk)
unload n Top = inj2 n

In the second clause, instead of recursing over the stack and applying _+_ to n
and n’, the function unload returns the Redex immediately. The function step will
be, in this case, the responsible of triggering the reduction:

step : Config → Config ] N
step (Leaf n stk)

= unload n (Val n) refl stk
step (Redex n e1 eq1 n’ e2 eq2 stk)

= unload (n + n’) (Add e1 e2) (cong2 _+_ eq1 eq2) stk

The key ingredient to build our tail-recursive evaluator was a well-founded rela-
tion that decreases with every invocation of step. Accordingly, we will have to find
a suitable relation over elements of type Config (we omit the type-indexed relation
for the sake of the argument), prove it is well-founded, and show it decreases with
step. For most of it, the relation can be defined as _<_: comparing two leaves
or redexes in a common subexpression is done inductively; comparing them if one
is located on the left subexpression and the other on the right constitutes the base
case. However, two more situations will need to be considered:

• Between two redexes, how do we determine which one is smaller if both belong
to the same spine?

• Between a redex and a leaf, how do we encode that the leaf is bigger, if it is
located at the end of the spine where the redex stands?

The definition of the type Config, increases the diversity of possibilities that
have to be dealt with, thus the complexity of functions and proofs. In overall, we
are trading a simple formulation that takes advantage of the fact that the function
unload+ provably terminates—it is defined by structural recursion over the stack—
for a more complicated one that demands explicit evidence of the termination.

In this part of the thesis, the main objective is not just to develop a tail-recursive
evaluator for binary trees, but, to prepare the stage for the generic solution that
we further present in chapter 4. The simplicity of our approach pays off, as it later
will become clear that it has a straightforward generalization. However, it is not
clear how changing the function unload+ to one, that reduces at most one redex
at a time, fits in the construction as a whole, nor how it scales to the generic case.
Certainly, it should be possible but we have not explored such direction any further.



4 A verified generic
tail-recursive catamorphism

In the previous chapter, chapter 3, we showed how to manually construct a tail-
recursive evaluation function for the type of binary trees, and prove that is both
terminating and equal to the original fold.

In this chapter, we build upon this work and we define a terminating tail-recursive
function that we prove equivalent to any fold over any (simple) algebraic datatype
that can be generically expressed in the regular universe. We begin in section 4.1,
recapitulating the idea of dissection, due to McBride [2008], and show how it leads
(Sections 4.2 and 4.3) to the definition of generic configurations of the abstract
machine. Subsequently, in section 4.4, we introduce the generic version of the
functions load and unload, which compute one step of the fold. In section 4.5 we set
up the relation over generic configurations and present its well-foundedness proof.
Finally, in section 4.6, we define the terminating tail-recursive abstract machine
as the iteration of the one step function fueled by well-founded recursion. The
correctness proof, section 4.7, follows directly from the construction. In section 4.8,
we present some examples of the generic tail-recursive fold in action. We conclude
this chapter (Section 4.9) discussing some open issues about the construction.

4.1 Dissection
The configurations of the abstract machine, which computes the tail-recursive fold
for the type Expr, are instances of a more general concept: McBride’s dissec-
tions [2008]. We briefly recap this construction, showing how it allow us to calculate
the type of configurations of the abstract machine that computes the catamorphism
of any type expressible in the regular universe (Section 2.3.1).

The key definition of dissections is a new interpretation function over the regular
universe, ∇, that maps elements of the universe into bifunctors:

∇ : (R : Reg) → (Set → Set → Set)
∇ 0 X Y = ⊥
∇ 1 X Y = ⊥
∇ I X Y = >
∇ (K A) X Y = ⊥

47
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∇ (R
⊕

Q) X Y = ∇ R X Y ] ∇ Q X Y
∇ (R

⊗
Q) X Y = (∇ R X Y × J Q K Y) ] (J R K X × ∇ Q X Y)

Following the metaphor of a functor as a container of things, the reader may find
useful to think of its dissection as tearing apart the container in two subcontainers.
The elements contained in the left subcontainer do not need to be of the same type
as those stored in the right. The ∇ operation applied to a code R : Reg considers all
the possible ways in which exactly one of the recursive positions—code I, inhabited
by terms of type X—is in focus and serves as the breaking point. Because only one
variable is specially distinguished, the recursive positions appearing to its left can
be interpreted over a different type than those on its right: this is where ∇ differs
from a zipper.

The last clause of the definition of ∇ is of particular interest: to dissect a
product, we either dissect the left component pairing it with the second component
interpreted over the second variable Y; or we dissect the right component and pair
it with the first interpreted over X.

A dissection is then formally defined as the pair of the context, resulting from
dissecting a concrete code R, and the missing value that fits in it:

D : (R : Reg) → (X Y : Set) → Set
D R X Y = ∇ R X Y × Y

Given a dissection, we define a plug operation that assembles the context and
current value in focus to produce a value of type J R K Y:

plug : (R : Reg) → (X → Y) → D R X Y → J R K Y
plug 0 η (() , x)
plug 1 η (() , x)
plug I η (tt , x) = x
plug (K A) η (() , x)
plug (R

⊕
Q) η (inj1 r , x) = inj1 (plug R η (r , x))

plug (R
⊕

Q) η (inj2 q , x) = inj2 (plug Q η (q , x))
plug (R

⊗
Q) η (inj1 (dr , q) , x) = (plug R η (dr , x) , q)

plug (R
⊗

Q) η (inj2 (r , dq) , x) = (fmap R η r , plug Q η (dq , x))

In the last clause of the definition, the dissected value is the right component of the
pair, leaving r : J R K X to the left. In such case, it is only possible to construct a
term of type J R K Y if we have a function η to recover Ys from the Xs contained
in r.

Using a type-indexed type, we can bundle together a dissection with the value
of type J R K Y to which it plugs:

data Dx (R : Reg) (X Y : Set) (η : X → Y) (tx : J R K Y) : Set where
_,_ : (d : D R X Y) → plug R η d ≡ tx → Dx R X Y η tx

4.2 Generic stacks
While the dissection computes the bifunctor underlying the functorial layer of the
generic tree, we still need to take the fixed point of this bifunctor to obtain the type
of stacks of the generic abstract machine.
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A generic tree, µ R, is a recursive structure formed by layers of the functor
with code R interpreted over generic trees, J R K (µ R). A dissection calculates
how a concrete layer can be decomposed into a subtree in focus and its context,
but, on its own it does not account for the recursivity induced by the fixed point.
In order to focus on a subtree that may be deeply buried within the generic tree,
we need to take a list of dissections, where each element of the list is a particular
dissection of the corresponding functorial layer. As an analogy, in the Expr datatype
each constructor Add corresponds to a value of the functorial layer where there are
recursive occurrences—marked with code I. Each time we decompose a layer, we
select a subexpression, or subtree, such that the rest of the stack points to a leaf in it.
In the case of Expr each constructor of the Stack records the specific subexpression,
left or right, while in the generic case, the value of the dissection marks the selected
subtree. The Stack for Expr is a list of Left or Right constructors that account
for all the occurrences of the constructor Add in a value of type Expr. Thus, in
the generic case we use a list of dissections for all the intermediate nodes—that is,
functorial layers—that have recursive subtrees. The type of generics stacks is as
follows:

Stack : (R : Reg) → (X Y : Set) → Set
Stack R X Y = List (∇ R X Y)

Huet’s zipper corresponds with instantiating both X and Y to generic trees of type
µ R. Given such instantiation, we can define a pair of functions that reconstruct
the tree by traversing the stack:

plug-µC⇓ : (R : Reg) → µ R → Stack R (µ R) (µ R) → µ R
plug-µC⇓ R t [] = t
plug-µC⇓ R t (h :: hs) = In (plug R id (h , plug-µC⇓ R t hs))
plug-µC⇑ : (R : Reg) → µ R → Stack R (µ R) (µ R) → µ R
plug-µC⇑ R t [] = t
plug-µC⇑ R t (h :: hs) = plug-µC⇑ R (In (plug R id (h , t))) hs

We can interpret the zipper both as the path starting from the root and descending
to the subtree in focus, plug-µC⇓, or beginning from the position of the subtree and
navigating up to the root, plug-µC⇑. We pass the identity function to plug because
the left side of the dissection already stores generic trees.

An abstract machine, which computes the tail-recursive catamorphism, traverses
a generic tree from left to right. The stack of such machine is a list of dissections of
type ∇ X (µ R): for each of the subtrees that have been already processed we store
a value of type X, while we save those that still have to be visited untouched—type
µ R.

As we did in the concrete tail-recursive evaluator for the type Expr, section 3.2.1,
we have to keep extra information in the stack to assist Agda’s termination checker
and later prove correctness of the construction. For such matter, we define a record
type that stores values, subtrees, and the corresponding correctness proofs:

record Computed (R : Reg) (X : Set) (ψ : J R K X → X) : Set where
constructor _,_,_
field
Tree : µ R
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Value : X
Proof : Catamorphism R ψ Tree Value

Digression

Compared to the stack of the tail-recursive evaluator, tail-rec-eval, the type of
correctness proofs is not anymore propositional equality, but a custom relation
that reifies the function cata:

data Catamorphism (R : Reg) (ψ : J R K X → X) : µ R → X → Set where
Cata : { i : J R K (µ R)} {o : J R K X} → MapFold R ψ R i o

→ Catamorphism R ψ (In i) (ψ o)
data MapFold (Q : Reg) (ψ : J Q K X → X) : (R : Reg)

→ J R K (µ Q) → J R K X → Set where
MapFold-1 : MapFold Q ψ 1 tt tt
MapFold-I : { i : J Q K (µ Q)} {o : J Q K X}

→ MapFold Q ψ Q i o → MapFold Q ψ I (In i) (ψ o)
MapFold-K : {a : A} → MapFold Q ψ (K A) a a
MapFold-⊕1 : {R P : Reg} { i : J R K (µ Q)} {o : J R K X}

→ MapFold Q ψ R i o → MapFold Q ψ (R
⊕

P) (inj1 i) (inj1 o)
MapFold-⊕2 : {R P : Reg} { i : J P K (µ Q)} {o : J P K X}

→ MapFold Q ψ P i o → MapFold Q ψ (R
⊕

P) (inj1 i) (inj2 o)
MapFold-⊗ : {R P : Reg} { i1 : J R K (µ Q)} { i2 : J P K (µ Q)}

{o1 : J R K X} {o2 : J P K X}
→ MapFold Q ψ R i1 o1 → MapFold Q ψ P i2 o2
→ MapFold Q ψ (R

⊗
P) (i1 , i2) (o1 , o2)

The reason for choosing a relation over propositional equality is practical: most
of the functions and theorems are inductively defined over the generic code. A
datatype indexed by the same code facilitates building proofs for each specific
case. Nonetheless, from a value of the reified function we are able to recover
the propositional equality proof:

MapFold-mapFold : ∀ (Q : Reg) → (ψ : J Q K X → X) → (R : Reg)
→ (t : J R K (µ Q)) → (x : J R K X)
→ MapFold Q ψ R t x → map-fold R Q ψ t ≡ x

Cata-cata : ∀ (R : Reg) → (ψ : J R K X → X) → (t : µ R) → (x : X)
→ Catamorphism R ψ t x → cata R ψ t ≡ x

Cata-cata R ψ . (In i) . (ψ o) (Cata { i} {o} x)
= cong ψ (MapFold-mapFold R ψ R i o x)

In the rest of this chapter, we use propositional equality to indicate equality
whereas in the accompanying code, for every function that is involved in a
equality proof, we use a datatype that reifies the call graph of such function.

Finally, the type of stacks of the generic abstract machine is defined as a list of
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dissections: on the left we have the Computed results; on the right, we have the
subtrees of type µ R:

StackG : (R : Reg) → (X : Set) → (ψ : J R K X → X) → Set
StackG R X ψ = List (∇ R (Computed R X ψ) (µ R))

Note that the StackG datatype is parametrised by the algebra ψ as the Proof field
of the Computed record refers to it.

Given a stack, StackG, and the subtree in focus, µ R, we define two different
plugging operations: one top-down, another bottom-up:

plug-µ⇓ : (R : Reg) → {ψ : J R K X → X}
→ µ R → StackG R X ψ → µ R

plug-µ⇓ R t [] = t
plug-µ⇓ R t (h :: hs) = In (plug R Computed.Tree h (plug-µ⇓ R t hs))
plug-µ⇑ : (R : Reg) → {ψ : J R K X → X}

→ µ R → StackG R X ψ → µ R
plug-µ⇑ R t [] = t
plug-µ⇑ R t (h :: hs) = plug-µ⇑ R (In (plug R Computed.Tree h t)) hs

Both functions pass the projection Computed.Tree as an argument to plug to extract
the subtree from the Computed record.

4.3 Generic configurations
Recapitulating from the tail-recursive evaluator, tail-rec-eval, the type of configura-
tions of the abstract machine represent locations within the expression that is being
evaluated. However, we are not interested in any location within the generic tree,
but only on those paths that lead to a leaf. A question, then, is to be asked: what
constitutes a leaf in the generic setting?

First, let us recall the two different levels of recursion present in a generic tree:

1. At the functorial layer, because the universe allows functors to be combined:
the (co)product of two functors is also a functor.

2. At fixed point level, because positions marked with the constructor I are
interpreted over generic subtrees.

It would be troubled to enforce that a leaf is truly non-recursive value, thus, we
consider only to be leaves those values of the functor layer that do not contain
subtrees, but otherwise might be recursive because of (1).

To describe a generic leaf, we introduce the following predicate:

data NonRec : (R : Reg) → J R K X → Set where
NonRec-1 : NonRec 1 tt
NonRec-K : (B : Set) → (b : B) → NonRec (K B) b
NonRec-⊕1 : (R Q : Reg) → (r : J R K X)

→ NonRec R r → NonRec (R
⊕

Q) (inj1 r)
NonRec-⊕2 : (R Q : Reg) → (q : J Q K X)

→ NonRec Q q → NonRec (R
⊕

Q) (inj2 q)
NonRec-⊗ : (R Q : Reg) → (r : J R K X) → (q : J Q K X)

→ NonRec R r → NonRec Q q → NonRec (R
⊗

Q) (r , q)
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Given a value of type t : J R K X, the predicate is only true, i.e. we can build a
term of type NonRec R t, iff it has no occurrences of elements of type X.

As an example, in the pattern functor for the Expr type, K N
⊕

(I
⊗

I), terms
built using the left injection are non-recursive:

Val-NonRec : ∀ (n : N) → NonRec (K N
⊕

(I
⊗

I)) (inj1 n)
Val-NonRec : n = NonRec-⊕1 (K N) (I

⊗
I) n (NonRec-K N n)

This corresponds to the idea that the constructor Val is a leaf in a tree of type Expr.
On the other hand, we cannot prove that the predicate NonRec holds for terms

using the right injection. The occurrences of recursive positions disallow us from
constructing the proof (The type NonRec does not have a constructor such as
NonRec-I : (x : X) → NonRec I x).

Now, we define the notion of leaf generically; it is a value of the functor layer
that does not have recursive subtrees:1

Leaf : Reg → Set → Set
Leaf R X = Σ (J R K X) (NonRec R)

A leaf is independent of the type X, the predicate NonRec proves it, thus we
can coerce it to a different type:

coerce : (R : Reg) → (x : J R K X) → NonRec R x → J R K Y

The function is defined by induction over the proof NonRec R x. The case for the
code I is eliminated which means we do not have to produce a value of type Y out
of thin air.

Just as before, a generic configuration is given by the current leaf in focus and
the stack that stores partial results and unprocessed subtrees—or points to it:

ConfigG : (R : Reg) → (X : Set) → (ψ : J R K X → X) → Set
ConfigG R X ψ = Leaf R X × StackG R X ψ

From a configuration of the abstract machine, ConfigG, we should be able to
recover the input generic tree that is being folded. Crucially, we can embed the
value of the leaf into a larger tree by coercing the type X in the leaf to µ R. In a
similar fashion as in the previous chapter (Section 3.2), we define a pair of plugging
functions that recompute the input tree:

plugC-µ⇓ : (R : Reg) {ψ : J R K X → X} → ConfigG R X ψ → µ R → Set
plugC-µ⇓ R ((l , isl) , s) t = plug-µ⇓ R (In (coerce l isl)) s t
plugC-µ⇑ : (R : Reg) {ψ : J R K X → X} → ConfigG R X ψ → µ R → Set
plugC-µ⇑ R ((l , isl) , s) t = plug-µ⇑ R (In (coerce l isl)) s t

Moreover, to ensure that the configurations preserve the invariant—the input
tree does not change during the evaluation of the tail-recursive catamorphism—we
define a pair of datatypes indexed by the input tree:

data ConfigG⇓ (R : Reg) (X : Set) (ψ : J R K X → X) (t : µ R) : Set where
_,_ : (c : ConfigG R X ψ) → plugC-µ⇓ R c ≡ t → ConfigG⇑ R X ψ t

data ConfigG⇑ (R : Reg) (X : Set) (ψ : J R K X → X) (t : µ R) : Set where
_,_ : (c : ConfigG R X ψ) → plugC-µ⇑ R c ≡ t → ConfigG⇑ R X ψ t

1Σ is Agda’s type for dependent pair.
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4.4 One step of a catamorphism
In this section, we show how to define the generic operations that correspond to
the functions load and unload given in section 3.1. Moreover, we outline the proofs
of several properties we later require to show correctness and termination.

4.4.1 Load
The function loadG traverses the input term to find its leftmost leaf. Any other
subtrees the loadG function encounters are stored on the stack. Once the loadG
function encounters a constructor, without subtrees, it is has found the desired leaf.
Its definition is as follows:2

loadG : (R : Reg) {ψ : J R K X → X} → µ R
→ StackG R X ψ → ConfigG R X ψ ] X

loadG R (In t) s = first-cps R R t id (λ l → inj1 ◦ _,_ l) s

We write loadG by appealing to an auxiliary definition first-cps, that uses con-
tinuation passing style (CPS) to keep the definition tail-recursive and obviously
structurally recursive. If we were to try to define loadG by recursion directly, we
would need to find the leftmost subtree and recurse on it—but this subtree is not
syntactically smaller for the termination checker. The continuations are also neces-
sary for the function first-cps to be tail-recursive; we will come back to this point
in our discussion (Section 4.9).

The type of our first-cps function is daunting at first:

first-cps : (R Q : Reg) {ψ : J Q K X → X}
→ J R K (µ Q)
→ (∇ R (Computed Q X ψ) (µ Q) → (∇ Q (Computed Q X ψ) (µ Q)))
→ (Leaf R X → StackG Q X ψ → ConfigG Q X ψ ] X)
→ StackG Q X ψ
→ ConfigG Q X ψ ] X

The first two arguments are codes of type Reg. The code Q represents the datatype
for which we are defining a traversal; the code R is the code on which we pattern
match. In the initial call to first-cps these two codes are equal. As we define our
function, we pattern match on R, recursing over the codes in (nested) pairs or
sums—yet we still want to remember the original code for our data type, Q.

The next argument of type J R K (µ Q) is the data we aim to traverse. Note
that the ‘outermost’ layer is of type R, but the recursive subtrees are of type µ Q.
The next two arguments are two continuations: the first is used to gradually build
the dissection of R; the second continues on another branch once one of the leaves
have been reached. The last argument of type StackG Q X ψ is the current stack.

We shall fill the definition of first-cps by cases. The clauses for the base cases
are as expected. In 0 there is nothing to be done. The 1 and K A codes consist of
applying the second continuation to the tree and the stack.

first-cps 0 Q ()
first-cps 1 Q x k f s = f (tt , NonRec-1) s
first-cps (K A) Q x k f s = f (x , NonRec-K A x) s
2As in the introduction, we use a sum type ] to align its type with that of unloadG.
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The recursive case, constructor I, corresponds to the occurrence of a subtree. The
function first-cps is recursively called over that subtree with the stack incremented
by a new element that corresponds to the dissection of the functor layer up to that
point. The second continuation is replaced with the initial one:

first-cps I Q (In x) k f s = first-cps Q Q x id (λ c → inj1 ◦ _,_ c) (k tt :: s)

In the coproduct, both cases are similar, just having to account for the use of
different constructors in the continuations:

first-cps (R
⊕

Q) P (inj1 x) k f s = first-cps R P x (k ◦ inj1) cont s
where cont (l , isl) = f ((inj1 l) , NonRec-⊕1 R Q l isl)

first-cps (R
⊕

Q) P (inj2 y) k f s = first-cps Q P y (k ◦ inj2) cont s
where cont (l , isl) = f ((inj1 l) , NonRec-⊕2 R Q l isl)

The interesting clause is the one that deals with the product. First the function
first-cps is recursively called on the left component of the pair trying to find a
subtree to recurse over. It may be the case that there are no subtrees at all, thus,
it is passed as the first continuation a call to first-cps over the right component of
the product. In case the continuation fails to to find a subtree, it returns the leaf
as-is.

first-cps (R
⊗

Q) P (r , q) k f s = first-cps R P r (k ◦ inj1 ◦ (_, q)) cont s
where cont (l , isl) = first-cps Q P q (k ◦ inj2 ◦ _,_ (coerce l isl)) cont’
where cont’ (l’ , isl’) = f (l , l’) (NonRec-⊗ R Q l l’ isl isl’)

Using continuations in the definition of first-cps might seem overkill, however,
they are necessary to keep the function tail-recursive. We will discuss this issue
further at the end of the chapter (Section 4.9).

There is one important property that the function loadG satisfies: it preserves
the input tree. In the previous chapter (Section 3.3), we proved such property
directly by induction over the stack, however, in the generic case we need a more
involved construction due to the genericity and CPS nature of the auxiliary function,
first-cps. The signature of the property is spelled as follows:

load-plug⇑ : ∀ (R : Reg) {ψ : J R K X → X} → (r : µ R)
→ (s : StackG R X ψ) → (c : ConfigG R X ψ)
→ loadG R r s ≡ inj1 c
→ ∀ (t : µ R) → plug-µ⇑ R r s ≡ t → plugC-µ⇑ R c ≡ t

The function loadG directly calls first-cps, so proving the above lemma amounts
to show that it holds for first-cps. However, from its type it is not clear what
property we need. We start with the obvious skeleton:

first-cps-plug⇑ : (R Q : Reg) {ψ : J Q K X → X}
→ (r : J R K (µ Q))
→ (k : ∇ R (Computed Q X ψ) (µ Q) → ∇ Q (Computed Q X ψ) (µ Q))
→ (f : Leaf R X → List (∇ Q (Computed Q X ψ) (µ Q)) → ConfigG Q X ψ ] X)
→ (s : StackG Q X ψ) → (c : ConfigG Q X ψ)
→ first-cps R Q r k f s ≡ inj1 c
→ ∀ (t : µ Q) →

e
→ plugC-µ⇑ Q c ≡ t
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Naively, we could try to fill the hole with the type plug-µ⇑ R r s ≡ t, however, the
recursive subtrees in r are of type µ Q while the outermost layer is a functor of a
different code R; the equality does not typecheck. The type of the hole,

e
, has

to relate both continuations, f and k, to the value r that is subject to recursion and
the stack s.

Given a term of type J R K (µ Q), for any R and Q, there are two possibilities:
either the term is a leaf and recursive subtrees do not occur; or the term can be
dissected into a context and the subtree that fits in it. We express this in Agda as
a view[Wadler 1987, McBride and McKinna 2004]:

view : (R Q : Reg) → {ψ : J Q K X → X} → (r : J R K (µ Q))
→ (Σ (∇ R (Computed Q X ψ) (µ Q))

λ dr → Σ (µ Q)
λ q → plug R Computed.Tree (dr , q) ≡ r)

] (Σ (J R K X)
λ leaf → (NonRec R leaf × [ R ]-[ µ Q ] r ≈[ X ] leaf))

The value r : J R K (µ Q) either decomposes into a dissection, dr, and the subtree
q, such that plugged together recompose to r; or there is a leaf, leaf, equal to r.
The variables r and leaf are not of the same type, thus, we cannot assert they are
equal using propositional equality. Instead, we need a different notion of equality:
heterogeneous equality. Its definition is as follows:

data [_]-[_]_≈[_]_ : (R : Reg) → (X : Set) → J R K X
→ (Y : Set) → J R K Y → Set1 where

≈-1 : {X : Set} {Y : Set} → [ 1 ]-[ X ] tt ≈[ Y ] tt
≈-K : {A : Set} {a : A} {X : Set} {Y : Set} → [ K A ]-[ X ] a ≈[ Y ] a
≈-I : {X : Set} {x : X} → [ I ]-[ X ] x ≈[ X ] x
≈-⊕1 : {R Q : Reg} {X Y : Set} {x : J R K X} {y : J R K Y}

→ [ R ]-[ X ] x ≈[ Y ] y → [ R
⊕

Q ]-[ X ] (inj1 x) ≈[ Y ] (inj1 y)
≈-⊕2 : {R Q : Reg} {X Y : Set} {x : J Q K X} {y : J Q K Y}

→ [ Q ]-[ X ] x ≈[ Y ] y → [ R
⊕

Q ]-[ X ] (inj2 x) ≈[ Y ] (inj2 y)
≈-⊗ : {R Q : Reg} {X Y : Set} {x1 : J R K X} {x2 : J R K Y}

{y1 : J Q K X} {y2 : J Q K Y}
→ [ R ]-[ X ] x1 ≈[ Y ] x2 → [ Q ]-[ X ] y1 ≈[ Y ] y2
→ [ R

⊗
Q ]-[ X ] (x1 , y1) ≈[ Y ] (x2 , y2)

Two functors with the same code can be interpreted over different types, X and Y,
as long as the code is not I. In that case, constructor ≈-I, both types must coincide.
Heterogeneous equality is an equivalence relation as expected:

≈-refl : ∀ {X : Set} {R : Reg} {x} → [ R ]-[ X ] x ≈[ X ] x
≈-sym : ∀ {X Y : Set} {R : Reg} {x y}

→ [ R ]-[ X ] x ≈[ Y ] y → [ R ]-[ Y ] y ≈[ X ] x
≈-trans : ∀ {X Y Z : Set} {R : Reg} {x y c}

→ [ R ]-[ X ] x ≈[ Y ] y → [ R ]-[ Y ] y ≈[ Z ] c → [ R ]-[ X ] x ≈[ Z ] c

In the particular case of both types agreeing it turns into plain propositional equality:

≈-to-≡ : ∀ {X : Set} {R : Reg} {x y} → [ R ]-[ X ] x ≈[ X ] y → x ≡ y
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Continuing with the lemma first-cps-plug⇑, we apply the view on the input r
and for each case define a sensible property:

Prop : ∀ (R Q : Reg) {ψ : J Q K X → X}
→ J R K (µ Q)
→ (∇ R (Computed Q X ψ) (µ Q) → ∇ Q (Computed Q X ψ) (µ Q))
→ (Leaf R X → StackG Q X ψ → ConfigG Q X ψ ] X)
→ StackG Q X ψ → µ Q → Set

Prop {X} R Q r k f s t with view {X} R Q r
... | inj1 (dr , q , )

= Σ (J Q K (µ Q))
λ e → plug Q Computed.Tree (k dr , q) ≡ e × plug-µ⇑ Q (In e) s ≡ t

... | inj2 (l , isl , ) with f (l , isl) s
... | inj1 c = plugC-µ⇑ Q c ≡ t
... | inj2 = ⊥

When the value can be decomposed into a dissection, dr, and a subtree q, there
exists a tree e : µ q, such that applying the continuation k to the dissection and
plugging back q results in e. Moreover, recursively plugging e to the stack yields t.
On the other hand, when r is a leaf, l, we apply the second continuation f, and in
case it returns another configuration, c, it should plug to the tree t.

Using Prop, we can complete the type signature of the lemma first-cps-plug⇑.
The proof is done by decomposing the input with view, induction on the code, and
using properties of heterogeneous equality.

Other properties about how the function loadG behaves follow the same pattern.
First, state the property for loadG and, subsequently, for first-cps using the view to
differentiate the possible cases.

4.4.2 Unload
Armed with loadG we turn our attention to unloadG. First of all, it is necessary to
define an auxiliary function, right, that given a dissection and a value, of the type
of the left variables, either finds a dissection D R X Y or it shows that there are no
occurrences of the variable left. In the latter case, it returns the functor interpreted
over X, J R K X.

right : (R : Reg) → ∇ R X Y → X → J R K X ] D R X Y

Its definition is simply by induction over the code R, with the special case of
the product, R

⊗
Q, that needs another ancillary definition to look for the leftmost

occurrence of the variable position within the left component of type J R K X.
We define the function unloadG by induction over the stack. If the stack is

empty the job is done and a final value is returned. In case the stack has at least
one dissection in its head, the function right is called to check whether there are
any more holes left. If there are none, a recursive call to unloadG is dispatched,
otherwise, if there is still a subtree to be processed the function loadG is called.

unloadG : (R : Reg) → (ψ : J R K X → X)
→ (t : µ R) → (x : X) → cata R ψ t ≡ x → StackG R X ψ
→ ConfigG R X ψ ] X

unloadG R ψ t x eq [] = inj2 x
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unloadG R ψ t x eq (h :: hs) with right R h (t , x , eq)
... | inj1 r with compute R R r
... | (rx , rr) , eq’ = unloadG R ψ (In rp) (ψ rx) (cong ψ eq’) hs

... | inj2 (dr , q) = loadG R q (dr :: hs)

When the function right returns a inj1 it means that there are not subtrees
left in the dissection. If we take a closer look, the type of the r in inj1 r is
J R K (Computed R X ψ). The functor J R K is storing at the variable positions both
values, subtrees and proofs.

What is needed for the recursive call, however, is: first, the functor interpreted
over values, J R K X, to apply the algebra; second, the functor interpreted over
subtrees, J R K (µ R), to use the unevaluated subtree for termination; third, the
proof that the value equals to applying a cata over the subtree. The function
compute massages r to adapt the arguments for the recursive call to unloadG:

compute : (R Q : Reg) {ψ : J Q K X → X}
→ J R K (Computed Q X ψ)
→ Σ (J R K X × J R K (µ Q)) λ {(r , t) → map-fold Q ψ R t ≡ r}

To conclude, we can prove the expected property that unloadG satisfies: it
preserves the input tree:

unload-plugG⇑ : ∀ (R : Reg) {ψ : J R K X → X}
→ (t : µ R) (x : X) (eq : cata R ψ t ≡ x) (s : StackG R X ψ)
→ (c : ConfigG R X ψ)
→ unloadG R ψ t x eq s ≡ inj1 c
→ ∀ (e : µ R) → plug-µ⇑ R t s ≡ e → plugC-µ⇑ R c ≡ e

The proof follows directly by induction over the stack.

4.5 Relation over generic configurations
We can engineer a well-founded relation over elements of type ConfigG⇓ t, for some
concrete tree t : µ R, by explicitly separating the functorial layer from the recursive
layer induced by the fixed point. At the functor level, we impose the order over
dissections of R, while at the fixed point level we define the order by induction over
the stacks.

To reduce clutter in the definition, we give a non type-indexed relation over
terms of type ConfigG. We can later use the same technique as in section 3.2 to
recover a fully type-indexed relation over elements of type ConfigG⇓ t by requiring
that the configurations respect the invariant, plugC-µ⇓ c ≡ t. We define inductively
the relation over the StackG part of the configurations as follows:

data _<C_ : ConfigG R X ψ → ConfigG R X ψ → Set where
Step : (t1 , s1) <C (t2 , s2) → (t1 , h :: s1) <C (t2 , h :: s2)
Base : plugC-µ⇓ R (t1 , s1) ≡ e1 → plugC-µ⇓ R (t2 , s2) ≡ e2

→ (h1 , e1) <∇ (h2 , e2) → (t1 , h1 :: s1) <C (t2 , h2 :: s2)

This relation has two constructors:
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• The Step constructor covers the inductive case. When the head of both stacks
is the same, i.e., both ConfigGs share the same prefix, it recurses directly on
tail of both stacks.

• The constructor Base accounts for the case when the head of the stacks
is different. This means that the paths given by the configurations denote
different subtrees of the same node. In such case, the relation we are defining
relies on an auxiliary relation, x_y_<∇_, that orders dissections of type
D R (Computed R X ψ) (µ R).

We can define this relation on dissections directly; we do not need to consider
the recursivity due to the fixed point. The definition of the relation over dissections,
interpreted on any sets X and Y, is the following:

data x_y_<∇_ : (R : Reg) → D R X Y → D R X Y → Set where
step-⊕1 : x R y (r , t1) <∇ (r’ , t2)

→ x R
⊕

Q y (inj1 r , t1) <∇ (inj1 r’ , t2)
step-⊕2 : x Q (q , t2) <∇ (q’ , t2)

→ x R
⊕

Q y (inj2 q , t1) <∇ (inj2 q’ , t2)
step-⊗1 : x R y (dr , t1) <∇ (dr’ , t2)

→ x R
⊗

Q y (inj1 (dr , q) , t1) <∇ (inj1 (dr’ , q) , t2)
step-⊗2 : x Q y (dq , t1) <∇ (dq’ , t2)

→ x R
⊗

Q y (inj2 (r , dq) , t1) <∇ (inj2 (r , dq’) , t2)
base-⊗ : x R

⊗
Q y (inj2 (r , dq) , t1) <∇ (inj1 (dr , q) , t2)

The idea is that we order the elements of a dissection in a left-to-right fashion.
All the constructors except for base-⊗ simply follow the inductive structure of the
dissection. To define the base case, base-⊗, recall that the dissection of the product
of two functors, R

⊗
Q, has two possible values: it is either a term of type

∇ R X Y × J Q K Y, such as inj1 (dr , q); or a term of type J R K X × ∇ Q X Y like
inj2 (r , dq). The former denotes a configuration pointing to the left subtree of the
pair while the latter denotes a position in the right subtree. The base-⊗ constructor
states that positions to the right are smaller than those to the left.

This completes the order relation on configurations; we still need to prove our
relation is well-founded. To prove this, we write a type-indexed version of each
relation. The first relation, _<C_, has to be type-indexed by the tree of type
µ R to which both configurations recursively plug through plugC-µ⇓. Likewise, the
auxiliary relation on dissections, x_y_<∇_, needs to be type-indexed by the functor
of type J R K X to which both dissections plug:

data x_yx_y_<∇_ {X Y : Set} {η : X → Y} : (R : Reg) → (tx : J R K Y)
→ Dx R X Y η tx → Dx R X Y η tx → Set where

data x_yx_y_<C⇓
_ {X : Set} (R : Reg) {ψ : J R K X → X} : (t : µ R)
→ ConfigG⇓ R X ψ t → ConfigG⇓ R X ψ t → Set where

The proof that the first relation is well-founded follows from induction over the
code. Like the proof in the relation for expressions, section 3.2.4, it necessitates
several lemmas covering each of the constructors. Writing an indexed relation is,
again, crucial to prove the lemma. Otherwise, the proof cannot recursively call itself
because the inputs are not structurally related.
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The proof of well-foundedness of x_yx_y_<C⇓
_, on the other hand, is not

as straightforward. The recursive subtrees occurring in the functor layer are not
directly accessible, thus, recursive calls are rejected by the termination checker.
We tackle this issue in three steps: first, we define a predicate over functors that
states whether a property holds for all the values in variable positions; second, we
use recursion to build the proof that all such values are well-founded; third, if the
property holds, then it also holds for any subtree resulting from a dissection over
the value. The three definitions are as follows:

data All {A : Set} (P : A → Set) : (R : Reg) → J R K A → Set1 where
...

all-is-WF : ∀ (R Q : Reg) (ψ : J R K X → X) → (t : J Q K (µ R))
→ All (µ R) (λ r → Well-founded (x R yx r y_<C⇓

_)) Q t

all-to-plug : ∀ {X : Set} {R Q : Reg} {η : X → µ Q} {P : µ Q → Set}
→ (t : J R K (µ Q)) → All (µ Q) P R t
→ ∀ (r : µ Q) (dr : ∇ R X (µ Q)) → plug R η (dr , r) ≡ t → P r

The predicate, All, is defined by induction over the code. In the particular case
of the constructor I, we require a proof that the predicate holds for the concrete
value of the type variable. Both lemmas, all-is-WF and all-to-plug, follow directly
by induction over the code.

The full proof that the relation is well-founded can be found in the accompanying
code. Here we only spell its signature:

<C-WF : (R : Reg) → (t : µ R) → Well-founded (x R yx t y_<C⇓
_)

4.6 A generic tail-recursive machine
Finally, we are ready to define a generic tail-recursive machine. To do so we assemble
the generic machinery we have developed so far, following the same outline as in
section 3.3.

The first point is to write a wrapper around the function unloadG that performs
one step of the catamorphism:

stepG : (R : Reg) → (ψ : J R K X → X)
→ ConfigG R X ψ → ConfigG R X ψ ] X

stepG R ψ ((x , nr-x) , s) = unloadG R ψ (In (coerce x nr-x)) (ψ x) (...) s

The function stepG performs a call to unloadG, coercing the leaf of type J R K X in
the ConfigG⇓ argument to a generic tree of type J R K (µ R). Moreover, it supplies
a proof, here omitted with elipsis, stating that applying the catamorphism over a
coerced leaf is the same as directly evaluating the algebra on the leaf, ψ x. Next,
we define a type-indexed step function that statically enforces the configurations,
both in its argument and in its result, to be states of the catamorphism over the
same generic tree:
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stepG⇑ : (R : Reg) → (ψ : J R K X → X) → (t : µ R)
→ ConfigG⇑ R X ψ t → ConfigG⇑ R X ψ t ] X

stepG⇑ R ψ t (c , s) with stepG R ψ (c , s) | inspect (stepG R ψ) (c , s)
... | inj1 c | [ Is ] = inj1 (c , unload-plugG⇑ ... c t Is ...)
... | inj2 x | = inj2 x

The key ingredient of our construction consists of proving that the function
stepG⇑ delivers a smaller configuration, by x_yx_y_<C⇓

_, each time the function is
called. The required lemma has the following signature:

stepG⇑-< : ∀ (R : Reg) (ψ : J R K X → X) → (t : µ R)
→ (c1 : ConfigG⇑ R X ψ t)
→ ∀ (c2 : ConfigG⇑ R X ψ t)
→ stepG⇑ R ψ t c1 ≡ inj1 c2

→ x R yx t y (ConfigG⇑-to-ConfigG⇓ c2) <C (ConfigG⇑-to-ConfigG⇓ c1)

As the function stepG is a wrapper over unloadG (Section 4.4), it suffices to prove
a similar property for such function. The function unloadG does two things: first,
it calls the function right to check whether the dissection has any more recursive
subtrees to the right, which still have to be processed; second, it dispatches to
either loadG, if there is a subtree left, or recurses over the stack otherwise. In the
former circumstance, a new dissection is returned by right. Proving that the new
configuration is smaller, amounts to showing that the returned dissection is smaller
by x_y_<∇_. The lemma states:

right-< : ∀ (R : Reg) (t : µ R) (x : X) (eq : cata R ψ t ≡ x)
(dr : ∇ (Computed R X ψ) (µ R))
→ (t’ : µ R) (dr’ : ∇ (Computed R X ψ) (µ R))
→ right R dr (t , x , eq) ≡ inj2 (dr’ , t’) → x R y (dr’ , t’) <∇ (dr , t)

The proof of this lemma follows by induction over the code.
Extending this result to show that the function unloadG delivers a smaller value

is straightforward. By induction over the input stack we check if the traversal is
done or not. If it is not yet done, there is at least one dissection in the top of the
stack. The function right applied to that element returns either a smaller dissection
or a tree with all values on the leaves. If we obtain a new dissection, we use the
right-< lemma; in the latter case, we continue by induction over the stack.

Finally, we can write the tail-recursive machine, tail-rec-cata, as the combination
of an auxiliary recursor over the accessibility predicate and a top-level function that
initiates the computation with suitable arguments:

rec : (R : Reg) (ψ : J R K X → X) (t : µ R)
→ (c : ConfigG⇑ R X ψ t)
→ Acc (x R yx t y_<C⇓

_) (ConfigG⇑-to-ConfigG⇓ c) → X
rec R ψ t c (acc rs) with stepG R ψ t c | inspect (stepG R ψ t) c
... | inj1 c’ | [ Is ] = rec R ψ t c’ (rs (ConfigG⇑-to-ConfigG⇓ c’)

(stepG⇑-< R ψ t c c’ Is))
... | inj2 x | [ ] = x

tail-rec-cata : (R : Reg) → (ψ : J R K X → X) → µ R → X
tail-rec-cata R ψ x with loadG R ψ x []
... | inj1 c = rec R ψ (c , ...) (<C-WF R c)
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4.7 Correctness
The proof that our tail-recursive function produces the same output as the catamor-
phism is uncomplicated. The function stepG is type-indexed by the input generic
tree which remains constant across invocations, thus, the result of the catamor-
phism does so as well. As we did in the tail-rec-eval evaluator, section 3.4, we use
an ancillary definition indicating that when the result of stepG⇑ is an inj2, the final
value, then it equates to applying the catamorphism to the input:

stepG⇑-correct : ∀ (R : Reg) (ψ : J R K X → X) (t : µ R)
→ (c : ConfigG⇑ R X ψ t)
→ ∀ (x : X) → stepG⇑ R ψ t c ≡ inj2 x → cata R ψ t ≡ x

Recall that stepG⇑ is a wrapper around unloadG, hence it suffices to prove the fol-
lowing lemma:

unloadG-correct : ∀ (R : Reg) (ψ : J R K X → X)
(t : µ R) (x : X) (eq : cata R ψ t ≡ x)
(s : StackG R X ψ) (y : X)

→ unloadG R ψ t x eq s ≡ inj2 y
→ ∀ (e : µ R) → plug-µ⇑ R t s ≡ e → cata R ψ e ≡ y

The correctness of our generic tail-recursive function is an immediate conse-
quence of the above lemmas:

correctnessG : ∀ (R : Reg) (ψ : J R K X → X) (t : µ R)
→ cata R ψ t ≡ tail-rec-cata R ψ t

4.8 Examples
To conclude the construction of the generic tail-recursive evaluator, we show how
to use the generic machinery to implement two tail-recursive evaluators: one for
the type of Expr from the previous chapter (Chapter 3); and another for a prob-
lem dubbed "the balancer of Calder mobiles" by Danvy [2004]. By doing so, we
demonstrate how we get a correct-by-construction tail-recursive machine almost for
free.

Expressions First, we remind the pattern functor underlying the type Expr:

exprF : Reg
exprF = K N

⊕
(I

⊗
I)

The type Expr type is isomorphic to tying the knot over exprF:

ExprG : Set
ExprG = µ exprF

The function eval is equivalent to instantiating the catamorphism with an appropri-
ate algebra:
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φN : exprF N → N
φN (inj1 n) = n
φN (inj2 (e1 , e2)) = e1 + e2

eval : ExprG → N
eval = cata exprF φN

Finally, we can define a tail-recursive machine equivalent to the one we derived in
section 3.3, tail-rec-eval:

tail-rec-evalG : ExprG → N
tail-rec-evalG = tail-rec-cata exprF φN

Calder mobiles We define a Calder mobile inductively as an object of a certain
weight or a bar of a certain weight and two sub-mobiles:

data Mobile : Set where
OBJ : N → Mobile
BAR : N → Mobile → Mobile → Mobile

For instance, mob1 and mob2 are two Mobiles:

mob1 : Mobile
mob1 = BAR 1 (BAR 1 (OBJ 2 )

(OBJ 2 ))
(OBJ 5 )

mob2 : Mobile
mob2 = BAR 1 (OBJ 6 )

(BAR 1 (OBJ 2 )
(OBJ 9 ))

The weight of a Mobile is the sum of the weight of its objects and its bars. The
following function computes recursively the weight of a Mobile:

weight : Mobile → N
weight (OBJ n) = n
weight (BAR n m1 m2) = n + weight m1 + weight m2

For example, the weight of mob1 is 11 and the weight of mob2 is 19:

prop1 : weight mob1 ≡ 11
prop1 = refl
prop2 : weight mob2 ≡ 19
prop2 = refl

A Mobile is in equilibrium if it is an OBJ, or if it is a BAR and its sub-mobiles
are of the same weight and also in equilibrium. The following function determines
whether a Mobile is in equilibrium:

equil : Mobile → Bool
equil (OBJ ) = true
equil (BAR m1 m2) = weight m1 =N weight m2 ∧ equil m1 ∧ equil m2



4.8. EXAMPLES 63

This solution is highly inefficient because it repeatedly traverses the Mobiles to
compute the weight and the equilibrium. In order to reduce the number of traversals
we can fuse together the weight and the equilibrium. We use an auxiliary function
that returns a Maybe N indicating whether the Mobile is in equilibrium, and in the
positive case, its weight:

equil : Mobile→ Bool
equil m = is-just (go m)
where go : Mobile → Maybe N

go (OBJ n) = just n
go (BAR n m1 m2) =
case (go m1) of λ
{nothing → nothing
; (just n1) → case (go m2) of λ

{nothing → nothing
; (just n2) → if n1 =N n2 then just (n + (n1 + n2))

else nothing
}

}

The definition of equil is rather involved. In the definition of go, we mix together
the recursive calls with the logic of combining their results. Moreover, the function
go is not tail-recursive and its transformation into one requires a lot of—manual
and error-prone—work. Instead we can use generic programming to derive a direct
solution that by using our construction is tail-recursive for free.

First, let us express the representation of the type Mobile in the regular universe:

MobileF : Reg
MobileF = K N

⊕
(K N

⊗
I
⊗

I)
MobileG : Set
MobileG = µ MobileF

And the embedding from Mobile into its generic representation:

from : Mobile→ MobileG
from (OBJ n) = In (inj1 n)
from (BAR n m1 m2) = In (inj2 (n , from m1 , from m2))

Now, we can define a much more efficient solution in terms of performance and
code size using the generic tail-recursive evaluator. First and foremost, we define
an algebra of the functor MobileF interpreted over Maybe N. A just n denotes that
the Mobile is in equilibrium and has weight n, while nothing means the Mobile is
not in equilibrium. Its definition is as follows:

φM : J MobileF K (Maybe N) → Maybe N
φM (inj1 n) = just n
φM (inj2 (n , just m1 , just m2)) = if m1 =N m2 then just (n + m1 + m2)

else nothing
φM (inj2 ( , , )) = nothing

We define the tail-recursive function that traverses each Mobile only once using
the generic tail-recursive evaluator, tail-rec-cata:
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equilG : Mobile→ Bool
equilG = is-just ◦ tail-rec-cata MobileF φM ◦ from

Using the generic equilibrium function, we show that mob1 is in equilibrium, but
mob2 is not:

prop3 : equilG mob1 ≡ true
prop3 = refl
prop4 : equilG mob2 ≡ false
prop4 = refl

There is still an inefficiency in the code. In case the left sub-mobile is not in
equilibrium, it is not necessary to check whether the right is in equilibrium or not.
Danvy [2004] proposes to either use exceptions (in ML) or transform the evaluator
to continuation passing style to overcome this inefficiency.

Unfortunately, the tail-rec-cata function has to traverse the full Mobile term to
obtain an answer: we cannot short-circuit the catamorphism at any point using the
algebra.

4.9 Discussion
In this chapter, we have explained how to derive a generic machine that computes
the catamorphism of any algebra over any regular datatype. Adhering to the steps
we followed in the construction of the tail-recursive evaluator for the Expr datatype,
chapter 3, we derived an abstract machine that we proved to be both terminating
and correct. Before concluding the chapter there are some open questions that are
worth discussing:

Choice of universe The generic tail-recursive machine that we implemented in
this chapter works over a rather limited universe. The motivation behind this choice
was practical: the universe is expressive enough to implement many simple algebraic
datatypes, but, is sufficiently simple to to transport ‘directly’ the ideas from the
concrete example, Expr type, to the generic setting.

Nevertheless, our work is generalizable to other universes. The landmark of
every approach to generic programming is to show that is possible to define Huet’s
notion of zipper generically. Because dissections are a generalization of zippers, the
steps we follow to construct our generic tail-recursive machine can be taken as a
guide to implement terminating and correct-by-construction tail-recursive machines
for those universes.

The function loadG written in continuation passing style The function loadG,
as we defined it in section 4.4, uses the ancillary function first-cps to look for the
leftmost leaf in the input tree. Such function is defined in continuation passing
style, which makes its definition looks overly complicated. However, it is necessary
to keep the machine tail-recursive.

The function is defined by induction over the code. When the code is a
product of codes, R

⊗
Q, the input tree has the shape of (x , y) for some

x : J R K (µ (R
⊗

Q)) and y : J Q K (µ (R
⊗

Q)). There are three possi-
ble situations: the value x is not a leaf, x is a leaf but y is not, or x and y are
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leaves and the product is a leaf itself. In the first case, it is necessary to perform
recursion over x, while storing y on the stack; in the second case, the recursion is
on the right component, y, saving x on the stack; and in the last case, there is no
recursion involved and the leaf (x , y) is immediately returned. The problem is that
checking whether x or y are leaves requires already to perform recursion over them.
If the function first-cps was to wait until the result of the recursive call is available
to decide which case is met, the function would not be tail-recursive anymore.

For specific datatypes, we learn by pattern matching whether the constructor
has recursive subtrees or not. In the former case, we call the load function over the
leftmost subtree and save the rest of the node on the stack. For regular datatypes,
however, pattern matching on the code does not reveal enough information about
the term to decide if it has recursive occurrences or not; it is necessary to traverse
the full term to gain such information.

Irrelevance The generic tail-recursive machine should not have extra runtime im-
pact due to termination and correctness proofs. The inclusion of subtrees and proofs
along with Computed values in the stack indeed incur memory overhead during ex-
ecution. We could use again computational irrelevance to identify the parts of the
stack not needed during runtime so they are automatically removed. However, it is
not clear how to do so in Agda due the narrowness of irrelevance as we previously
discussed in section 3.5.
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5 Conclusions and future
work

In this master thesis, we presented the derivation of a generic tail-recursive machine
capable of computing the catamorphism of any algebra for any regular datatype.
Moreover, we proved our tail-recursive machine to be both terminating and correct
with respect to the catamorphism. We formalized the work discussed in this thesis
in the dependently typed programing language Agda, only using the sound and
complete parts of the language: our construction does not require the utilization of
any exotic termination flags or extraneous postulates.

We have developed two abstract machines, one for the type of binary trees
with natural numbers in the leafs and another for any datatype representable in the
regular universe. We have shown how the construction of the latter machine follows
the same steps to those of the former. By doing so we tried to motivate the design
choices made in the generic setting; it is always hard to reason alone about generic
constructions because of their abstract nature. The most complicated part of our
development was to find the appropriate predicates and lemmas that allowed us to
show termination; once the properties were correctly spelled out, most of the proofs
were completed by straightforward induction. The correctness of the tail-recursive
machine was immediately obvious from the usage of type-indexed configurations
and a type-indexed step function.

The termination proof we have given defines a well-founded relation and shows
that this decreases during execution. There are other techniques for writing func-
tions that are not obviously structurally recursive, such as the Bove-Capretta method
[Bove and Capretta 2005], partiality monad [Danielsson 2012], or coinductive traces
[Nakata and Uustalu 2009]. In contrast to the well-founded recursion used in this
thesis, however, these methods do not yield an evaluator that is directly executable,
but instead defer the termination proof. Given that we can—and indeed have—
shown termination of our tail-recursive abstract machines, the abstract machines
are executable directly in Agda.

The use of Agda as the formalization language keeps us honest. Skipping parts
of a proof is a standard procedure in hand-written mathematics. However, in a
theorem prover such as Agda we have to be completely honest: to prove every
theorem and lemma we have to reason up to the most concrete detail. In return,
we can be certain—as certain as we trust Agda’s implementation to be correct—
that when a program (or proof) typechecks then it is mathematically true. We know

67
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once and for all that the abstract machine terminates and is correct; no amounts
of testing can ever provide a more definite and convincing argument. In addition,
the type theory underlying Agda is constructive. A theorem can be interpreted as
function that transforms inputs into outputs. Within our work, we can appreciate
this in the fact that the proof of a relation being well-founded implies that we can
construct the accessibility predicate mechanically for any term in the domain of the
relation.

However, using Agda has also its drawbacks. The experience working with it as
an interactive proof assistant is far from ideal: typechecking big modules is rather
slow; most of the theorems and functions are tightly coupled with the inductive
structure of the input and a simple change in the definition of the datatype results
in massive changes to the codebase; irrelevance in Agda is very primitive, for example
we cannot have functions that purely work on the irrelevant side, thus, its application
is limited.

There are several directions in which this thesis could be further developed.
First, the choice of universe. As we mentioned in section 2.3.1 and chapter 4, we
chose to build our generic tail-recursive machine in the regular universe because of
practical reasons. However, the development presented in this thesis can be taken
as a recipe to build tail-recursive machines for other universes. The key points
of our construction are: we restrict the zippers, or configurations of the abstract
machine, to leaves of the generic tree; we interpret the stack both top-down or
bottom-up depending whether it is used for computation or for termination proofs;
we define a function that performs one step of the fold and it obviously terminates;
we define a relation over configurations that decreases in each invocation of the step
function, and we prove it to be well-founded. Indexing the relation by the input tree
is essential to complete the proof of well-foundedness. In addition, correctness of
the machine follows almost directly from having the type of configurations indexed
by the input tree.

The universe of regular types used in this thesis is somewhat restricted: we can-
not represent mutually recursive types [Yakushev et al. 2009], nested data types [Bird
and Meertens 1998], indexed families [Dybjer 1994], or inductive-recursive types [Dy-
bjer and Setzer 1999]. Fortunately, there is a long tradition of generic programming
with universes in Agda, arguably dating back to Martin-Löf [1984]. It would be
worthwhile exploring how to extend our construction to more general universes,
such as the context-free types [Altenkirch et al. 2007], containers [Abbott et al.
2005, Altenkirch et al. 2015], or the ‘sigma-of-sigma’ universe [Oury and Swierstra
2008, Chapman et al. 2010]. Doing so would allow us to exploit dependent types
further in the definition of our evaluators. A long term goal of our work would be
to export our development to a generic universe capable of representing well-typed
lambda calculus terms, and their evaluation as a simple fold over the syntax. In
such environment, we could derive a tail-recursive evaluator automatically, rather
than verifying the construction by hand [Swierstra 2012a].

Moreover, it would be worthwhile to explore how to use a well-founded ar-
gument to show that other variety of recursion schemes, such as hylomorphisms,
histomorphisms, paramorphisms, etc [Meijer et al. 1991], can be turned into prov-
ably terminating and correct tail-recursive functions. Another possible path would
be to derive a tail-recursive machine equivalent to an effectful fold where the algebra
determines the order of the effects involved. A common method to encode effects
in pure functional languages is to use monads [Wadler 1998], thus, a monadic fold
would be the self-evident choice. However, Fokkinga [1994] showed that not all
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monads are suitable for a monadic catamorphism that fulfils some expected laws. If
we need a more systematic approach to construct the monadic catamorphism, we
would also require some extra work to develop an equivalent monadic tail-recursive
machine.

Marking some parts of the code as computationally irrelevant, such as the re-
lation or the proofs, is important to keep the resulting abstract machine both tail-
recursive and overhead free. The tail-recursive function that we derived is ‘morally’
tail-recursive but not practically: to show termination the step function is executed
by the recursor, but its result is then used to show termination before actually
recursing on the accessibility predicate. Ideally, the derived machine should have
the same runtime impact as if it was implemented in a general purpose functional
programming language, such as Haskell. At the end of both chapters 3 and 4 we
discussed about the shortcomings of using irrelevance directly in Agda. However, it
should be possible to export our construction to a more mature proof system such as
Coq where the distinction between the parts of the code used for proving and those
used for computing can be clearly separated. We could use the impredicative uni-
verse Prop for the former while using the predicative universe, Type, for the latter.
Nevertheless, it is well-known that Coq as a theorem prover excels for its capability
of using the dependently typed part of the language to prove properties about pro-
grams expressed in the simply typed fragment. The generic machinery relies upon
dependent types, but programming with them in Coq is inherently complex [Chli-
pala 2011, chap 8]. Thus, it is not clear how suitable Coq is for implementing the
generic tail-recursive catamorphism.

In recent years, there has being an ongoing effort in bringing dependent types
from the researchers ivory tower into real world programming languages. The ben-
efits are clear: we can use the same language to write a specification, an imple-
mentation, and prove that the implemented program satisfies its specification. For
instance, we can understand the fold over a datatype as the specification of a prob-
lem; the function eval states that evaluating an Add expression is equal to the
addition of the results of evaluating its subexpressions. Computing directly using
the specification, however, is not ideal; eval is not a tail-recursive function. Speci-
fications must be simple enough to be obviously correct, consequently, when used
as programs they are not as efficient as they could be. In our example, we wrote
a tail-recursive function—the implementation—that we later proved to be equiv-
alent to eval; that is, the program satisfied its specification. Termination of all
programs written in Agda is mandatory, otherwise, the proofs of correctness could
not be trusted. This is a high toll for the widespread adoption of dependent types
in software development. There are many programs that terminate but are not,
or cannot, be defined by structural recursion. Our tail-recursive evaluators are a
representative example of such functions, yet, we exhibited how through a carefully
crafted well-founded relation we can prove the functions terminate. Building upon
the tail-recursive evaluator for the type of expressions, we showed how to construct
a provably correct tail-recursive catamorphism that works for any datatype in the
regular universe. This proves the generality of our results; we developed a recipe
for constructing a terminating and correct abstract machine and later we applied
it to the regular universe. The resulting tail-recursive abstract machine is an exe-
cutable program that computes the catamorphism for any algebra over any regular
datatype. We believe that we can easily export this recipe to a widespread range of
generic universes to derive correct-by-construction tail-recursive abstract machines
equivalent to their associated folds.
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