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I
Introduction

F inancial derivatives have been around ever since people exchanged goods and services.
The first derivatives were instruments to protect against harvest failure or facilitate

the trade of commodities. These contracts were defined as agreements based on an under-
lying asset. Instead of the immediate trade of this underlying asset, the derivative contract
defines agreements to exchange other assets, e.g. cash, for the underlying asset during a
specific time horizon. The fact that these types of contracts have been around for a long
time can be illustrated by the following example, as given by Don Chance in [Cha08]: In
the book of Genesis, around 1700 B.C., an option contract is struck between Jacob and
Laban. This option stated that for the price of seven years of labour, the payoff would be
that Jacob got to marry Laban’s daughter Rachel. Since Laban did not fulfil his end of
the bargain, he made Jacob marry Leah, his older daughter, this is also one of the first
ever recorded default on a derivative.

Derivatives have come a long way since the contract between Jacob and Laban and the
first derivatives exchange was created in Chicago in 1848, the Chicago Board of Trade,
and is still operating. From 1865 on it created standardised futures contracts and later
introduced a clearinghouse to reduce the counterparty risk, as well as the introduction of
a margining system. [KP12]. Widespread use of derivatives started to gain momentum
from the 1970’s. With the introduction of the computer more sophisticated models could
be used and quickly and efficiently computed. Then in 1973 Black and Scholes published
their paper, [BS73], on option pricing and hedging which revolutionised the options market.
Before the Black and Scholes model the option markets were quite small, only 911 options
on opening day in 1973. Since then the option markets have expanded to over 20,000 in
mid 1973 and to 100,000 in 1997. By now the option market is one of the largest and most
active security market. The Black and Scholes model provided a valuation benchmark and
a method for replicating or hedging the option positions. After this the next big step in
derivatives trading was introduced in 1992 when the Chicago Mercantile Exchange intro-
duced electronic trading [Mat10]. For the next decade markets were soaring, but then in
2007 the financial crisis hit.

The beginning of this financial crisis in 2007 marked the start of significant changes in
the pricing of derivatives. In the years leading up to the crisis risks related to the interbank
market were ignored. During the crisis the collapse of major banks which were previously
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2 1. Introduction

considered "too big to fail", such as Lehman Brothers or Bear Stearns, introduced a major
shift in the perception of the interbank funding and the risk involved. Pre-crisis banks
considered their peers to be risk-free which, as shown by the Bear Stearns collapse, they
were not. This caused that banks could no longer borrow and lend at a rate which risk
term structure was considered non-material. Furthermore it was evident that there was a
need for improved regulation and tighter risk controls if a new financial crisis were to be
prevented.

This increase of new regulatory requirements were mainly aimed at the over-the-counter
(OTC) derivatives market, due to the fact that this market contributed significantly to the
financial crisis. As opposed to exchange-traded derivatives, which were already more reg-
ulated via clearing houses and exchanges. The Basel Comittee identified key shortcomings
of the financial sector which are stated as apparent causes of the financial crisis. The main
crisis trigger is identified as an excess of global liquidity and leverage while maintaining
deficient capital of insufficient quality and meagre liquidity buffer. Furthermore the crisis
was worsened by a deleveraging process and interconnectedness among the too-big-to-fail
financial institutions. Other factors as insufficient risk management and lack of market
transparency are also stated.

Before the Basel III regulations, exposure of derivatives to counter party credit risk
was already accounted for in terms of a credit valuation adjustment, CVA, since this was
already included in the accounting regulations, e.g. IFRS states that this is part of the
fair value. However, the changes in the credit spreads of the banks, caused by the change
in interbank funding, caused huge changes in the CVA part of this fair value. These
changes in the CVA drastically impacted banks financially, without many actual counter-
party defaults. Therefore Basel III introduced a requirement for banks to hold regulatory
capital for these influxes in CVA. This required capital is known as the CVA capital charge.

For instance counterparty credit risk and liquidity risk played a major role in this con-
tribution. Since then the new regulations by Basel III state that financial institutions
should charge Credit Value Adjustment (CVA) to their counterparties for OTC trades.
The CVA was only the first of many value adjustments and gave rise to a whole pantheon
such as, DVA (debit value adjustment), FVA (funding value adjustment) and many more.
These value adjustment terms are generally referred to as an X-Value Adjustment (XVA).

The focus of this thesis lies on the value adjustment related to the regulatory capi-
tal that needs to be held during the lifetime of the derivative. This value adjusmtent is
known as the capital valuation adjustment, KVA, as this adjustment contains interesting
computational challenges. As opposed to the calculation of for instance CVA or FVA the
calculation of KVA contains the need to forecast the future prices at each time step. In a
standard approach this would result in a heavily nested Monte Carlo simulation situation,
which is very computationally heavy.

In an effort to solve these computational challenges for the KVA pricing of a basic
EUR/USD FX forward portfolio the Stochastic Grid Bundling Method, SGBM, is ap-
plied by Jain, Karlsson and Kandhai in [JKK17]. The SGBM was originally developed
by Jain and Oosterlee in [JO15] to price Bermudan options and their Greeks efficiently.
This method approximates the pricing problem through a regression type approach to the
valuation of derivatives. This approach makes it possible to calculate expectations under
different measures without resulting in a nested simulations situation. This thesis continues
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the efforts of Jain, Karlsson and Kandhai, and aims to price the KVA term related to the
counterparty credit risk for Bermudan options under Multidimensional-Black-and-Scholes
and Heston dynamics.

Thesis organisation

The thesis continues with the second chapter by constructing a mathematical framework
for the pricing of derivatives. This is done through a literature analysis of the publication
by Green and Kenyon, [GKD14][GK15], which in itself rests on the work of Burgard and
Kjaer, [BK11].

The third chapter discusses the origin and specifics of the regulations and construction
of the regulatory capital that needs to be held during the lifetime of a derivative. Since
the focus of this thesis lies on the value adjustment related to the counterparty credit risk
term of the regulatory capital, only this aspect will be discussed. A short note on the
market risk- and CVA-part of the regulatory capital is given in the outlook section of the
last chapter.

Chapter four presents the SGBM as numerical method for the pricing of Bermudan
options and elaborates on the Least Squares Method, LSM, which will be used as a Bench-
mark for the SGBM. Multiple aspects of the SGBM algorithm are covered such as specific
bundling techniques and the characteristic function of the conditional expectation. The
two algorithms are tested for convergence against different types of dynamics, both with
and without stochastic volatility.

With all the tools in the toolbox for calculating all the aspects of the KVA term the
fifth chapter presents the main results of this thesis related to the pricing of the KVA.
A fully nested Monte Carlo algorithm could be used to verify these results, but due to
exorbitant computational costs this could not be included in this thesis.

The thesis ends with the sixth chapter with a wrap up of the previous chapters. There,
a short synopsis is given of the work done in this research project and the main results.
Then lastly an outlook for further research is presented.





II
Derivative pricing theory

In this chapter the mathematical foundations are laid out for the pricing of options and
their value adjustments. Through the basic concepts of stochastic calculus a mathematical
framework comparable to the Black and Scholes framework is constructed by means of a
partial differential approach and a replicating portfolio. This is then extended to include
counterparty credit risk and a number of other real-world concepts such as funding, collat-
eral and capital. This chapter provides mathematical expressions for the calculation of the
value adjustments related to various types of XVA such as regulatory capital (KVA) and
initial margin (MVA) while maintaining generality on the explicit calculation techniques
used for the implementation.

2.1 Introduction

B efore discussing simulation based methods for the pricing of derivatives, it is essen-
tial to construct the mathematical framework which makes this possible. This chapter

provides a step by step approach to the derivation of the derivative pricing theory. The
derivation of this theory follows that of [Pen08], whereas the proofs for the theorems and
lemmata can be found in [Øks03] and are omitted here. The chapter starts with the math-
ematical foundations based in stochastic calculus. From there the basic Black and Scholes
partial differential equation is derived and the risk-free derivative pricing formula by means
of a replicating portfolio. Then the framework is extended to the one described by [GK15]
to include real-world events such as defaults, funding, collateral, capital and such.

To start with the definition of a mathematical theory for derivatives pricing first a
definition of a derivative is needed. A derivative is defined as a financial contract which has
its cash flows derived from an underlying variable, be it interest rate, asset price or other
types of observable variables. This chapter focuses on derivatives related to underlying
asset prices, such as options, futures or forwards. For now the derivative remains an
abstract object to keep the pricing theory general. Further on explicit types of derivatives
will be discussed. For the derivative pricing theory the derivative is assumed to have at
least a maturity time, T , and a payoff function h depending on the underlying.

5



6 2. Derivative pricing theory

2.2 A mathematical pricing framework

The definition of a mathematical pricing framework is performed through several steps.
First a setup of the pricing environment is given through key concepts of stochastic calculus
such as Brownian motions and Itô’s lemma. Then a basic framework is constructed based
on some simple assumptions and then the concept of risk-free pricing is derived.

2.2.1 The environment

For the construction of a derivative pricing framework one first needs to define the envi-
ronment in which the derivative pricing takes place. To define this environment one starts
with a probability space.
Definition 2.2.1 – Probability space. The triple (Ω,F ,P), comprising of a state space
Ω, a σ-algebra F of subsets of Ω, and a probability measure P on (Ω,F) is called a proba-
bility space.

Let (Ω,F ,P) be the probability space in which we model the real-world behaviour of
the underlying assets of the derivative. The behaviour of the underlying asset is modelled
by a stochastic process, which will be discussed in more detail in the coming subsections.
Definition 2.2.2 – Stochastic Process. A stochastic process is a family of random
variables {St} defined on a given probability space, indexed by t, with t in index set T .

2.2.2 The information

To model the market information that is known up to time t a filtration, {Ft}0≤t≤T , is
constructed by using the σ-algebra F of the probability space.
Definition 2.2.3 – σ-algebra. Let Ω be a set and let 2Ω be its power set. Then a subset
F ⊆ 2Ω is a σ-algebra if the following statements are satisfied.

• F contains the empty-set, ∅ ∈ F .

• F is closed under complements, ∀A ∈ F : (Ω\A) ∈ F .

• F is closed under countable unions, ∀A1, A2, ... ∈ F :
∪∞

i=1 Ai ∈ F .

Definition 2.2.4 – Filtration. Let (Ω,F ,P) be a probability space. Then a non-decreasing
family, {Ft}0≤t≤T , consisting of sub σ-algebras of F that satisfies

Fu ⊂ Ft ⊂ FT , 0 ≤ u < t ≤ T,

is called a filtration. Here Ft represents the information that is available at time t.

In the framework Ft represents the market information that is known at time t and
{Ft}0≤t≤T the information flow throughout time. Furthermore if all random variables St

are measurable under Ft, this stochastic process is considered to be adapted.
Definition 2.2.5 – Adapted process. Given probability space (Ω,F ,P) and index set
[0, T ]. Let {Ft}0≤t≤T , be a filtration on the σ-algebra F and {St} a stochastic process.
Then if all random variables St are measurable under Ft the process {St} is adapted.

The smallest filtration for which a stochastic process is a adapted is called a natural
filtration. This natural filtration can be generated by the stochastic process {St}0≤t≤T

through a family of σ-algebras. This natural filtration is a representation of the accumu-
lated information generated by the stochastic process up until time t.
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Definition 2.2.6 – Natural filtration. Let (Ω,F ,P) be a probability space. Then

Ft = σ({S−1
u (B) : u ≤ t, B ∈ B}),

with B the Borel σ-algebra, is called the natural filtration associated with the process {St :
t ≥ 0}.

2.2.3 The underlying assets

With the probability space and information flow defined let us elaborate on a specific
stochastic process that governs the dynamics of the underlying assets in the underlying
probability space, the process of a Brownian motion.
Definition 2.2.7 – Brownian motion. A continuous time stochastic process (Wt t ≥ 0)
that satisfies W0 = 0 and has independent Gaussian increments

∀t ≥ 0,Wt+δ −Wt, δ ≥ 0 is independent of Ws, s ≤ t, and Wt+δ −Wt ∼ N (0, δ).

is called a Brownian motion.

An important aspect of a Brownian motion {Wt} is that it is a martingale when {Wt}
is adapted to the filtration {Ft}t≤t≤T , this property is used later in the definition of the
risk-free pricing formula.
Definition 2.2.8 – Martingale. A stochastic process {St}, on probability space (Ω,F ,P)
and associated with filtration {Ft}0≤t≤T , is considered a martingale if the following state-
ments are satisfied.

• {St} is adapted to the filtration Ft.

• The expectation of the absolute value of the process is finite, E[|St|] < ∞, ∀t.

• E[Su|Ft] = St, ∀u ≥ t ≥ 0.

From the definition, a martingale is thus a process that, given the information up to
time t, has an expectation for time u equal to the state in time t. An extension of the
Brownian motion can be made and is called a geometric Brownian motion. The geometric
Brownian motion has a drift parameter, µ and a volatility parameter σ, which are both
set to a constant in the Black and Scholes framework. Since this process remains positive
if St starts at a positive value it is often used to model the price of stocks, equities or
commodities.

Definition 2.2.9 – Geometric Brownian Motion. The continuous time stochastic pro-
cess St that satisfies the stochastic differential equation

dSt = µStdt+ σStdWt, (2.1)

is called a geometric Brownian motion.

If the geometric Brownian motion is adapted to a filtration, then the stochastic process
is classified as an Itô process.
Definition 2.2.10 – Itô process. An adapted stochastic process {St} on probability space
(Ω,F ,P) and associated with filtration {Ft} which can be written in the form

dSt = µtdt+ σtdWt,

is called an Itô process. Where S0 is deterministic and for which µt and σt are adapted
processes.
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To obtain the differential of an Itô process a powerful stochastic tool is used, namely
Itô’s lemma. This lemma will be used repeatedly therefore the formal definition is given
below.
Theorem 2.2.1 – Itô’s Lemma. Let {St} be an Itô process which follows the stochastic
differential equation dSt = µ(St, t)dt + σ(St, t)dWt and let F (St, t) be an at least twice
differentiable function. Then the differential of F (St, t) is given by

dF =
∂F

∂dSt
dSt +

∂F

∂t
dt+

1

2

∂2F

∂S2
t

(dSt)
2,

where the product (dSt)
2 = σ(St, t)

2dt. Which results in

dF =

[
∂F

∂St
µ(St, t) +

∂F

∂t
+

1

2

∂2F

∂S2
t

σ2(St, t)

]
dt+

∂F

∂St
σ(St, t)dWt.

2.2.4 The risk-neutral rate

Another ingredient needed for the pricing of derivatives is the notion of the time value
of money. Another asset is introduced into the pricing framework, namely a risk-neutral
asset. This asset can be seen as money that is deposited into a savings account. In the
pricing framework this asset is assumed to exist. The process Bt denotes the value of the
asset at time t ∈ [0, T ], and a continuously compounding convention is used to model this
asset, as described by

dBt = rBtdt, (2.2)

Where r is the interest rate, and is assumed to be constant. Solving Equation 2.2 results
in the expression

Bt = ertB0.

This deterministic formula describes the time value of money, or the rate at which money
grows without any risk. Therefore this rate is called the risk-neutral rate.

2.2.5 The assumptions

To continue defining the mathematical framework, a couple of assumptions are made in
the model. This section provides a description and definition of these assumptions. All
future frameworks of this thesis rely on these assumptions unless stated otherwise. The
assumptions stated below originate from the original Black and Scholes model, [BS73].

1. The risk-neutral interest rate, r, is known and is constant through time.

2. Let (Ω,F ,P) be a probability space. The asset price is an Itô process and more
precisely a geometric Brownian motion.

dSt = µStdt+ σStdWt. (2.3)

And the risk-free bank accounts dynamics are given by

dBt = rBtdt,

B0 = 1.

With the solution Bt = ertB0.
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3. There are no dividends or other distributions.

4. The markets are frictionless, i.e. costs and restrains associated with transactions are
considered to be non-existent.

5. It is possible to borrow any fraction of the price of a security to buy it or to hold it,
at the short-term interest rate.

6. There is no penalty on short selling. One can sell a security which one does not own
by accepting the price of the security from the buyer and agree to settle with the
buyer on a future date through paying the price of the security on that future date.

7. The market is arbitrage free, with the definition of arbitrage as a portfolio process
Πt, with Π0 = 0, for which holds that

P(Πt ≥ 0) = 1 and P(Πt ̸= 0) > 0.

2.2.6 Hedging

Consider a portfolio that consists of one shorted derivative, a position βt in the underlying
asset and a risk-free asset. This portfolio defines the position of a derivatives trader that
has sold one derivative and hedges the derivatives risk by investing or borrowing capital
at the risk-free rate and buying or selling some of the underlying assets. The portfolio is
restricted to have a zero net investment and required to be self-financing.
Definition 2.2.11 – Self-financing. A portfolio is considered self-financing if there is
no exogenous infusion or withdrawal of money; the purchase of a new asset must be financed
by the sale of an old one. The change in the value of the portfolio thus depends on the
evolution of the price of the underlying asset and the risk-free bank account.

Define ∆t as the fraction of underlying assets in the portfolio. Due to the zero net
investment restriction the fraction of the risk-free asset is βt = Vt−∆tSt, with Vt the value
of the derivative at time t, which is assumed to be twice differentiable. This assumption is
later shown to be justified by the no arbitrage assumption. This expression for βt implies
that the return of this portfolio with value Πt can be denoted by

dΠt = −dVt +∆tdSt + [Vt −∆tSt]rdt. (2.4)

Since the derivative price is a function apply Itô’s lemma and obtain

dVt =

[
∂Vt

∂St
µ+

∂Vt

∂t
+

1

2

∂2Vt

∂S2
t

σ2

]
dt+

∂Vt

∂St
σdWt (2.5)

Plugging the asset dynamics 2.3 and 2.5 into 2.4 results in

dΠt =−
[
∂Vt

∂St
µ+

∂Vt

∂t
+

1

2

∂2Vt

∂S2
t

σ2

]
dt+

∂Vt

∂St
σdWt

+∆t(µStdt+ σStdWt) + [V t−∆tSt]rdt. (2.6)

Now a suitable choice for ∆t has to be made in order to eliminate the risk this portfolio
is exposed to. Let this hedge ratio be the local sensitivity of the derivatives value to the
price of the underlying asset,

∆t =
∂Vt

∂St
.
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Note that since the value of the derivative has a nonlinear relation with the underlying
this derivative is time dependent and can continuously vary. Plugging this hedge ratio into
equation 2.6 gives

dΠt =

[
− ∂Vt

∂t
− 1

2
σ2S2

t
∂2Vt

∂S2
t

+ rVt − rSt
∂Vt

∂St

]
dt. (2.7)

In this equation the term dWt has dropped out which gives that it is entirely deterministic.
The hedge ratio has thus successfully eliminated the risk from this portfolio. Therefore,
to avoid arbitrage, the rate of return of this portfolio must equal the rate of return of the
risk-free asset, r, and remain zero due to the zero net investment requirement. The rate of
return thus satisfies

dΠ0 = rΠ0dt = r0dt = 0 =⇒ Πt = 0∀t.

With the insight obtained from the no arbitrage condition a partial differential equation is
constructed by combining the previous equation and 2.7 into

∂Vt

∂t
+

1

2
σ2S2

t
∂2Vt

∂S2
t

+ rSt
∂Vt

∂St
− rVt = 0. (2.8)

Which is the classic Black and Scholes partial differential equation.

2.2.7 The market price of risk

To construct a more general pricing theory the assumptions made by Black and Scholes
are slightly relaxed. Let {St} be the stochastic process that describes a risky asset with
the dynamics governed by

dS = µStdt+ σStdWt, (2.9)

but now µ = µ(St, t) and σ = σ(St, t) are functions that can depend on the asset and time.
Again let Vt denote the value of a derivative. Then it follows from Itô’s lemma that the
dynamics of Vt satisfy

dVt = µV Vtdt+ σV VtdWt. (2.10)

with µV Vt = Vt+µStVt+
1
2
σS2

t
∂2Vt

∂S2
t

and σV Vt = σSt
∂Vt
∂St

. Analogous to the previous section
a portfolio is constructed which consists of one shorted derivative and fraction ∆t = ∂Vt

∂St

of risk-free assets, therefore the dynamics are represented by

dΠt = −dVt +∆tdSt, (2.11)
= −µV Vtdt− σV VtdWt +∆tµStdt+ σSt∆tdWt, (2.12)
= (∆tµSt − µV Vt)dt. (2.13)

As previously seen this portfolio has risk-free dynamics thus the following equality must
hold

dΠ = (∆tµSt − µV Vt)dt = rΠtdt = r(∆tµSt − µV Vt)dt. (2.14)

Which implies that
VtµSt − µV Vt = r(−Vt +

∂Vt

St
St). (2.15)

Substitution into this equation the equality ∆t =
σV Vt
σSt

, see 2.9 gives that

µ− r

σ
=

µV − r

σV
:= θ. (2.16)
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This is the so called market price of risk, which is unique under the no arbitrage assumption.
From this, the dynamics of the derivative price are represented by

dVt = (rVt + θσV Vt)dt+ σV VtdWt. (2.17)

This shows that the drift term of the dynamics of the derivative price are dependent on
the market price of risk θ. This poses a problem since this factor is not directly observable
or estimated with ease. This problem is circumvented by changing the risk-measure from
the real-world measure to the risk-neutral measure.

2.2.8 Risk neutral valuation

To change the probability measure, Girsanov’s theorem is used. In general, this theorem
states that the drift of a stochastic process can be changed if this process is interpreted
under new probability measure.
Theorem 2.2.2 – Girsanov’s theorem. Consider a probability space (Ω,F ,P) and a
Brownian motion {Wt} with respect to P and associated filtration {Ft}t≥0. Let {θt} be a
real valued stochastic process, adapted to {Ft}t≥0. Assume that∫ T

0

θ2t dt < ∞.

Then the risk-neutral measure is defined as

dQ
dP

= e−θWT− 1
2
θ2T .

Set
W̃t := Wt −

∫ t

0

θudu, t ∈ [0, T ].

Then, for any T > 0 the process W̃t is an Ft-Brownian motion on the probability space
(Ω,F ,Q).

To apply this theorem define a new process W̃t = Wt +
∫ t

0
θdu, or in differential form

dW̃ = dWt + θdt, and substitute this into equation 2.17 obtaining

dVt = (rVt + θσV Vt)dt+ σV Vt(dW̃t − θdt),

= rVtdt+ σV VtdW̃t. (2.18)

Now using that upon differentiation it holds that

d

(
Vt

Bt

)
=

dVt

Bt
+ Vtd(B

−1
t ), and d

(
1

Bt

)
= −r

1

Bt
dt,

then it follows that the dynamics of the discounted portfolio are described by

d

(
Vt

Bt

)
=

dVt

Bt
+ Vtd

(
1

Bt

)
,

= rB−1
t dVtdt− rB−1

t Vtdt,

= rB−1
t Vtdt+∆tσV

St

Bt
dW̃t − rB−1

t Vtdt,

= ∆tσV
Vt

Bt
dW̃t.
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This means that the discounted price process of the derivative is a drift-less process under
the measure generated by dW̃ , i.e. its expected change is zero. Therefore it is possible to
express the expectation under the risk-neutral measure as

Vt

Bt
= EQ[

VT

BT
|Ft]. (2.19)

2.2.9 The replicating portfolio

Another way to obtain the risk-neutral price of a portfolio is by means of a replicating and
self-financing portfolio, instead of the previously seen zero net investment portfolio. This
portfolio continuously replicates the payoff of the derivative during the trade. Let Πt be
a portfolio that consists of fraction ∆t, as in the previous section, units of the underlying
asset, such that Πt = Vt holds, and Πt−∆tSt invested into the risk-free asset. The portfolio
dynamics are then governed by

dΠt = ∆tdSt + r(Πt −∆tdVt)dt, (2.20)
= ∆t[µStdt+ σStdWt] + r(Πt −∆tdSt)dt, (2.21)

= rΠtdt+∆tσSt

[
θdt+ dWt

]
, (2.22)

= rΠtdt+∆tσStdW̃t, (2.23)

Now it is evident from the previous section that through Itô’s lemma the return of the
discounted portfolio is given by

d

(
Πt

Bt

)
= ∆tσ

St

Bt
dW̃t.

Therefore under the risk-free measure Q and 2.19 it holds that

Πt = EQ[
ΠT

BT
|Ft] = EQ[

VT

BT
|Ft] = Vt. (2.24)

Thus the payoff of the derivative at time t can be replicated by the self-financing portfolio.

2.3 Extension of the framework

A multitude of books, articles and publications have been written about the extension
of the previously seen Black and Scholes framework to include counterparty credit risk,
Piterbarg[Pit10], Lesniewski and Richter,[LR16], Burgard and Kjaer [BK13]. For this the-
sis the extension of the Black and Scholes PDE under the presence of bilateral counterparty
credit risk, funding, collateral, capital and initial margin costs by Kenyon and Green is
used [GK15].

This section is dedicated to the derivation of the XVA expressions following the Kenyon
and Green semi-replication approach, a more detailed derivation is given in [Gre11].

Let (Ω,G,P) be a probability space where {Ft}t≥0 is the market filtration generated
by a Brownian motion {Wt}. Another filtration, {Jt}t≥0 models the default information.
The enlarged filtration of {Gt}t≥0 is defined by Gt = Ft ∪ Jt, as in [LR16].



2.3. Extension of the framework 13

Consider two parties, a bank B and a counterparty C, which enter into a derivative
trade, which has an economic value that is represented by V̂ . The total economic value
contains the XVA-adjustments for counterparty credit risk and the funding costs, contrary
to the value V in which these risks and costs are omitted. Therefore U is defined to be the
total of XVA adjustment with

V̂ = V + U. (2.25)

A semi-replication strategy is used to perfectly hedge out market factors and counterparty
default. The difference with full-replication is that the semi-replication framework may
not provide a perfect hedge on the default of B.

To apply the semi-replication strategy a portfolio is constructed consisting of a coun-
terparty zero-coupon bond PC with zero recovery, then two of the banks own bonds P1 and
P2 which have different recoveries R1 and R2 respectively, and a market instrument, the
underlying asset, S that is used to hedge out the market factor. The two parties default
dynamics are governed by two independent point processes, JB and JC , which jump from
0 to 1 if a party defaults. The dynamics of these instruments are governed by the following
stochastic differential equations

dS = µSdS + σSdW, (2.26)
dPC = rCPCdt− PCdJC , (2.27)
dPi = riPidt− (1−Ri)PidJB , i = 1, 2. (2.28)

Note that subscripts for time dependency are omitted, this is done for ease of notation.
Furthermore it is assumed that there is zero basis, e.g. no price difference, between the
banks own bonds and thus that the relation

ri − r = (1−Ri)λB

holds, where r is the risk-free rate and λB represents the spread of a zero-recovery zero-
coupon bond of the bank.

Let the total economic value of the derivative, to the bank, at time t be represented by
V̂ (t, S, JB , JC), then the boundary conditions at default of the bank or counterparty are

V̂ (t, S, 1, 0) = gb(MB , X) B defaults first, (2.29)

V̂ (t, S, 0, 1) = gb(MC , X) C defaults first. (2.30)

where MB/C are the general close-out amounts and X represents the collateral, which
does not depend on t. For now the usual assumption about the close-out is made that that
satisfies MB = MC = V , and thus

gB = (V −X)+ +RB(V −X)− +X, (2.31)

gC = RC(V −X)+ + (V −X)− +X. (2.32)

There are quite a few other possibilities to consider regarding the close-out amounts. For
instance Burgard and Kjaer consider other possible values for MB = MC in [BK11], while
Brigo and Morini consider the cases in which MB ̸= MC [BM11].

Besides the introduction of the collateral, X, let the parameter ϕK represent the poten-
tial use, ϕ, of the capital, K, to offset funding requirements. Furthermore let I denote the
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initial margin posted to the counterparty. The term related to the initial margin posted
to the bank is not considered, as the initial margin cannot be rehypothecated. With these
parameters the following funding condition is assumed to hold

V̂ −X + I + α1P1 + α2P2 − ϕK = 0, (2.33)

due to the fact that the bank bonds need to be used to fund or invest any excess cash and
not the collateral.

Using Itô’s lemma to obtain the change in value of the derivative results in the following
formula

dV̂ =
∂V̂

∂t
dt+

1

2
σ2S2 ∂

2V̂

∂S2
dt+

∂V̂

∂S
dS + δV̂BdJB + δV̂CdJC . (2.34)

For the semi-replicating strategy, assuming it is self-financing, the portfolio consists of ∆
units of S, α1,2 and αC units of bonds, belonging to the bank and the counterparty, cash
positions, βS , βC , βX , βK and βI , and a collateral account X. Again Itô’s lemma is applied
to find the change in value

dΠ = ∆dS + dβS + α1dP1 + α2dP2 + αCdPC + dβC + dβX + dβK + dβI , (2.35)

where the dynamics of the cash accounts is governed by

dβS = δ(γS − qS)Sdt, dβC = −αCqCPCdt,

dβX = −rXXdt, dβK = −γK(t)Kdt,

dβI = rIIdt.

The rates payed on these cash accounts are given by (qS − γS) and qC , which represent
the repo-rate and the dividend yield of the stock. By the Black and Scholes assumptions
these are considered trivial, i.e. qS/C = 1 and γS = 0. However for complete modelling
purposes these rates are incorporated into the framework. The rates rX and rI are the
respective rates for the collateral and initial margin. Now combining the derivative and
the replicating portfolio results in

dV̂ + dΠ =

[
∂V̂

∂t
dt+

1

2
σ2S2 ∂

2V̂

∂S2
+∆(γS − qS)S

+ α1r1P1 + α2r2P2 + αCrCPC − rXX − γKK + rII

]
dt

+ ϵhdJB +

[
∆+

∂V̂

∂S

]
dS + [gc − V̂ − αCPC ]dJc,

with the hedging error on the default of the bank is given by

ϵh = gb −X + α1R1P1 + α2R2P2 − ϕK. (2.36)

Using the semi-replication strategy, the value of the hedging portfolio and the derivative
should satisfy the equality

dV̂ + dΠ = 0, (2.37)
during the derivative trade, except on the event of the default of the bank. The portfolio
is exposed to the risk related to the underlying asset movements as well as the risk of the
counterparty defaulting. By choosing the hedging parameters as

∆ = −∂V̂

∂S
,

αCPC = gC − V̂ ,
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these risks are eliminated. By using the funding equation 2.33 in combination with the
hedging error ϵh and the equality ri = r + (1−Ri)λB the following equality is obtained

α1r1P1 + α2rcP2 = rX − rI − (r + λB)V̂ − λB(ϵh − gB) + rϕK. (2.38)

Plugging the parameter choices and equation 2.38 into equation 2.37 the partial differential
equation

0 =
∂V̂

∂t
+

1

2
σ2S2 ∂

2V̂

∂S2
− (γS − qS)S

∂V̂

∂S
− (r − λB − λC)V̂

+ gCλC + gBλB − ϵλB − sXX − γKK + rϕK + sII. (2.39)

is obtained with boundary condition V̂ (T, S) = h(S). Note that sX/I represents the col-
lateral and initial margin spread.

Note that the value of the default risky derivative portfolio, V̂ , can be written as a
combination of the risk-free derivative value, V , and the risk value adjustments, U . This
result in the equation V̂ = V + U , which can be plugged into equation 2.39 to obtain

0 =
∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
− (γS − qS)S

∂V

∂S
− (r − λB − λC)V

∂U

∂t
+

1

2
σ2S2 ∂

2U

∂S2
− (γS − qS)S

∂U

∂S
− (r − λB − λC)U

+ gCλC + gBλB − ϵλB − sXX − γKK + rϕK + sII. (2.40)

Now use that the risk-free derivative price satisfies the Black and Scholes Equation 2.8.
Subsequently almost all terms related to V drop out and the following equation is obtained

0 =
∂U

∂t
+

1

2
σ2S2 ∂

2U

∂S2
− (γS − qS)S

∂U

∂S
− (r − λB − λC)U

+ (gC − V )λC + (gB − V )λB − ϵλB − sXX − γKK + rϕK + sII. (2.41)

With the boundary condition given by U(T, S) = 0. Applying the Feynman-Kac theorem
to this partial differential equation results in the expression

U = CV A+DV A+ FCA+ COLV A+KV A+MVA (2.42)

Theorem 2.3.1 – Feynman-Kac theorem. Let Xt = (X1
t , ..., X

d
t ) be an Itô process as

defined by
dXt = µ(t,Xt)dt+ σ(t,Xt)dW

Q
t ,

with µ ∈ Rd, σ ∈ Rd×m and WQ
t an m-dimensional Q-Brownian motion. Define operator

At by

At :=
1

2

d∑
i=1

d∑
j=1

(σσT )ij
∂

∂Xi
tX

j
t

+

d∑
i=1

µi(t,Xt)
∂

∂Xi
t

.

Then the partial differential equation
∂u

∂t
+Atu(t,Xt)− r(t,Xt)u(t,Xt) = 0,

with boundary condition u(T,XT ) has solution

u(t,Xt) = EQ
[
e−

∫ T
t r(s,Xs)dsu(T,XT )

∣∣∣∣Ft

]
.
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For this thesis the case of regular close-out with the semi-replication strategy as in
[BK13] are considered. Therefore the following expressions for the valuation adjustments
are obtained.

CV A = −(1−RC)

∫ T

t

λC(u)e
−

∫ u
t (r(s)+λB(s)+λC(s))dsEt[(V (u))+]du, (2.43)

DV A = −(1−RB)

∫ T

t

λB(u)e
−

∫ u
t (r(s)+λB(s)+λC(s))dsEt[(V (u))−]du, (2.44)

FCA = −(1−RB)

∫ T

t

λB(u)e
−

∫ u
t (r(s)+λB(s)+λC(s))dsEt[(V (u))+]du, (2.45)

COLV A = −
∫

−tT e−
∫ u
t (r(s)+λB(s)+λC(s))dsEt[X(u)]du, (2.46)

KV A = −
∫ T

t

(γK(u)− rB(u)ϕ)e
−

∫ u
t (r(s)+λB(s)+λC(s))dsEt[K(u)]du, (2.47)

MVA = −
∫ T

t

((1−RB)λB(u)− sI(u))e
−

∫ u
t (r(s)+λB(s)+λC(s))dsEt[I(u)]du. (2.48)

These terms express the KVA term in the form of an integral over the expected capital
and initial margin profile respectively.

2.4 Conclusion

In the previous sections a mathematical model was defined for the pricing of derivatives
under counterparty credit risk and their value adjustments. In the framework the functions
for the capital and initial margin terms are not yet defined and it remains general with
respect to the derivative.

To define the function for the capital term in the KVA expression choices have to be
made. Because most financial institutions have regulatory requirements to hold capital
related to market risk, counterparty credit risk, CVA capital, and leverage ratio capital for
their over-the-counter derivatives. There are therefore several different approaches to the
calculation of the required regulatory capital. In this thesis the focus lies on the counter-
party credit risk part of the regulatory capital, as computed by the internal model method.

Since the nested Monte Carlo technique is very computationally heavy and is not fea-
sible for the scope of this thesis, the next chapter is dedicated to the description of the
SGBM techniques and the validation of this method will be done with the much faster
Least Squares Monte Carlo method as a benchmark.



III
Capital value adjustment

In this chapter the origin of the regulatory capital requirements is described by a short
synopsis of the Basel III regulatory framework related to these requirements. To quantify
the regulatory capital needed for the duration of the derivative trade a set of definitions is
given. Terms as loss given default, exposure at default and probability of default are defined
here. Furthermore the calculations related to the regulatory capital are detailed for several
approaches.

3.1 Introduction

T he collapse of the financial market in 2007 instigated the idea to design regulatory
reforms to address the shortcomings of the past crisis, and furthermore to make the

financial sector prepared for possible future crises. During the aftermath of the financial
crisis the Basel Committee introduced Basel III, [BCB11], in which significant changes with
respect to capital, liquidity buffers and leverage ratios were proposed. The shortcomings,
of the financial sector, which were the apparent cause of the financial crisis are stated by
the Basel Committee to be the following, [Wel11]:

• The main trigger was an excess of global liquidity and leverage while maintaining
deficient capital of insufficient quality and meagre liquidity buffers.

• The crises was worsened by a delevaraging process, reducing the debt levels in a
multitude of sectors, and interconnectedness among financial institutions that were
considered too-big-to-fail, i.e. institutions that are so big and interconnected that
failure would be disastrous to the economy.

• A number of factors such as, shortcomings in risk management, market transparency,
compensation practices and the quality of supervision.

To address these shortcomings and achieve the goal of ”strengthening the global capital
and liquidity rules with the goal of promoting a more resilient banking sector” by ”address-
ing the lessons of the financial crisis” the Basel III framework was designed. These goals,
as stated in the original Basel III document, manifested into regulations a substantial im-
provement of the quality and quantity of capital, with a greater focus on common equity.
Secondly, to create a more comprehensive coverage of risks and a higher standard of su-
pervision, risk management and disclosure standards. In this thesis the focus lies on the

17
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Basel III capital and risk measures that were altered, for instance with a raise in the mini-
mum capital requirement for common equity and an additional capital conservation buffer,
and failing to fulfil there requirements would result in restrictions on dividend payments
imposed by the bank.

This new regulatory framework has an impact on the pricing of derivatives since there
are costs which should be incorporated into the value of a derivative. This chapter elab-
orates on the costs related to the holding of this capital. The expected cost of holding
the regulatory capital during the life time of a trade is expressed by the capital value
adjustment or as XVA term, KVA. This chapter is dedicated to the origin, structure and
computation of this XVA.

The framework to include these capital costs has been discussed in Chapter 2 and is
used by for instance, [JKK17], as reference framework. Furthermore Jain states the impor-
tance of recognising the impact that the rising capital requirements have on the derivative
business. Since there is not yet a unifying theory on the exact computation, charging and
managing of the KVA term, this thesis follows the approach as outlined by Green, Kenyon
and Dennis [GKD14].

This approach divides the construction of the KVA term into three distinct categories
related to different types of risk,

K = KMR +KCCR +KCV A, (3.1)

where KMR, KCCR and KCV A represent the market risk part, the Counterparty Credit
Risk, CCR, part and the Credit Value Adjustment, CVA, part respectively. The calcula-
tions needed for these risk terms are based on the future exposure profile of the derivative
trade. Usually these profiles are computed by Monte Carlo simulations. However for the
KVA calculations under the IMM approach would result in nested Monte Carlo simulations.
For the market risk and CVA terms this nested Monte Carlo situation can be avoided by
assuming a fixed VaR window. However, a more complicated situation arises in the case
of the CCR term. To calculate the corresponding CCR KVA term, an outer Monte Carlo
simulation of the future capital is needed, which would ideally involve an inner Monte
Carlo simulation. Then the scenarios for the computation of the CCR capital should be
based on the real world measure, P, while the risk-neutral measure, Q, should be used
for the scenarios simulated to compute the expected future capital costs that need to be
managed.

This thesis focuses on this problem of nested Monte Carlo simulations and how this
can be avoided by the application of the LSM or the SGBM. Therefore only approaches
for calculating value adjustments including this situation of nested simulations will be con-
sidered. Other approaches are not discussed as these would not benefit explicitly from the
LSM and the SGBM.

3.2 Counter Party Credit Risk

For the computation of the value adjustments in this chapter, it is essential that the credit
exposure of a financial derivative can be computed. This exposure can be defined as the
potential loss caused by the derivative if the counter-party defaults. For most derivatives
this loss is quantified by the replacements costs of the derivative. Therefore the exposure
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of a derivative is defined as the maximum of the derivative value Vt and zero.

Definition 3.2.1 – Exposure. Counter party credit exposure is defined as the non-
negative value of the derivatives value at time t

Et(u) :=

(
EQ
[
Vu

∣∣∣∣St

])+

.

Since the value of the exposure is directly linked to the value of the derivative the ex-
posure contains a factor of uncertainty. Therefore through Monte Carlo simulations in the
risk-neutral measure the distribution of the exposure can be estimated. This distribution
can then be used to measure the CCR. To obtain this measure expressions are needed for
the expected exposure of the underlying derivative, EE, the counterparties probability of
default, PD, and the loss given default, LGD.

3.2.1 EE, PD and LGD

Given the pricing framework defined in Chapter 2, the expected exposure of a derivative at
time t conditional on time u is defined by a function from the state space Ω to the positive
real numbers including zero, and as stated in Basel II [BCB11], is formulated as

EE(t,u) = EP[Et(u)] = EP[EQ[Eu|St]] =

∫
Ω

Et(u, ω)dP(ω). (3.2)

Another essential ingredient for the quantification of CCR is the probability of default
for the counter-party. There are many ways of estimating the default probability. In the
scope of this thesis only a default probability that follows a constant intensity model is
considered. This intensity model is described by an intensity, h̄, and the relation

PDt = 1− e−h̄t. (3.3)

The final definition needed is the loss given default, which is defined as the percentage of
the exposure that the bank might loose given that a counter-party defaults. Upon default
of the counter-party it is possible that the bank is able to recover a percentage of the total
value of the derivative. This recovery rate is linked to the LGD through

LGD = 1− recovery rate.

The recovery rate will be considered to be a constant throughout this thesis.

3.3 Counter-party Credit Risk capital

Before one could price the CCR capital the essential question: "what is counter-party
credit risk", should be answered. Let CCR be defined as the risk that a counterparty is
going into default before their financial obligations are fulfilled. This section focuses on
the calculation of the capital value adjustment term related to the CCR capital, and es-
pecially on the merits of the SGBM in these calculations. The SGBM is applied in the
value adjustment pricing algorithm to circumvent the need for nested simulation. Since the
SGBM uses explicit expressions for the calculation of expectations it can efficiently handle
the change of measure instigated by the CCR capital. The KVA calculations follow the
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approach as outlined in [GKD14] and [JKK17]. As in the article by Jain the methods of
choice for calculating the CCR capital are the Advanced Internal Ratings-Based approach,
AIRB, for the weight calculation and the Internal Model Method (IMM) for the Exposure
at Default, EAD, calculation.

Consider a mathematical asset pricing framework as outlined in chapter 2. Then the
inception KVACCR

0 term is given by

KVACCR
0 = EQ

[ ∫ T

0

p0,tγtKCCR
t dt

∣∣∣∣F0

]
. (3.4)

Where p0,t is the discounting coefficient to discount the values back to time t = 0.
The regulatory capital that has to be held to comply with the Basel III regulations

for CCR capital is defined as a capital multiplier times the risk-weighted assets, RWAs,
defined as

KCCR
t = αRWAt, (3.5)

RWACCR
t = 12.5× w × EADt, (3.6)

where w is the weight and EADt is the counter-party’s exposure at default, on which the
following subsections elaborate.

3.3.1 Weight calculation

There are three different approaches listed in the Basel framework to calculate the weight
w, such as the Standardised Approach, Foundation Internal Rating-Based, FIRB, and Ad-
vanced Internal Rating-Based, AIRB. Since the Standardised Approach, SE, simply assigns
the weight based on an external rating of the counter-party and its sector it will be omit-
ted here. The difference between FIRB and AIRB lies in the way the risk parameters are
calculated. The FIRB approach and the AIRB approach are risk measurement techniques
proposed under Basel II rules. The FIRB approach uses the financial institutions own
empirical model for probability of default, PD, estimation, while relying on the regulators
prescribed estimates for other parameters. The AIRB technique was designed to let fi-
nancial institutions develop independent empirical models for the quantification required
capital related to credit risk, thus allowing for more risk components than the FIRB to
be estimated independently. For such internal computations, to comply the financial in-
stitution needs approval from their respective regulator. Under the AIRB approach it is
thus expected that the financial institution not only estimates the PD but also the loss
given default, LGD, based on quantitative models and other risk parameters. To omit this
difference the FIRB and AIRB approaches will therefore be bundled into one term, IRB.
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The formula for the calculation of the weight w by the IRB approach is stated by Basel
II as

w = LGD

(
N

(
N−1(PD)√

1− ρ2
+

√
ρ

1− ρ2
N−1(0.999)

)
PD

)
×
(
1 + (M − 2.5)b

1− 1.5b

)
,

b = (0.11852− 0.05478 log(PD))2,

ρ =

(
0.24

1− e−50

)
(1− 0.5(1− e−50)),

M = min
(
5.0,max

(
1.0,

∑
tk≤1 EEEk∆tk +

∑
tk>1 EEk∆tk∑

tk≤1 EEEk∆tk

))
,

EEEtk = max
t∈[0,tk]

(EEt),

where b is a maturity adjustment, ρ the correlation coefficient, M the effective maturity
and EEEtk is the effective expected exposure. These formulas are defined and enforced
by the Basel Committee, due to the complexity of their derivation and lengthiness of the
construction this will be omitted form this thesis, see [BCB11] for more information.

3.3.2 EAD calculation

Similar to the the weight calculation there are several different approaches to calculate the
EADt. Initially Basel I prescribed the Current Exposure Method, CEM, for EAD estima-
tion, however since this method is due to be replaced this method will not be discussed.
Then in Basel II two new methods were proposed, the Standardised Method, SM, and the
Internal Model Method, IMM. The SM was devised for financial institutions that are not
qualified for internal model computation of their derivatives exposure, but need a more
risk-sensitive method than the CEM. The IMM may be used after a financial institution
has successfully applied to the local regulators for their permission. The IMM method is
superior in the sense of risk-sensitivity and is the only method to incorporate exposure
levels of future time points, [Tur10].

3.3.3 Standardised Method

In the SM, the EAD is calculated by taking the maximum of the difference between mark-
to-market, MtM, value of the derivatives and the collateral compared to the difference
between absolute values of the net risk positions, NRP, times the credit conversion factors,
CCFs. This maximum is then multiplied by a factor β which is set to 1.4 by the regulators.
The mathematical formula for the EAD is then

EADt = β × max
(∑

i

V
(i)
ttransaction

−
∑
l

V
(l)
tcollateral

,

∑
j

∣∣∣∣∑
i

R
(ij)
ttransaction

−
∑
l

R
(lj)
tcollateral

∣∣∣∣× CCFj

)
.

Where the CCFs are set by the supervisor for different types of asset classes, e.g. 0.2% for
interest rate derivatives or 5% percent for gold.
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3.3.4 Internal Model Method

Given the regulators permission an internal model may be used for the computation of the
distribution of the future exposure. Therefore the IMM can calculate the EAD by

EADt = β × EEPEt, (3.7)

where EEPEt is the effective expected positive exposure and β is a factor that accounts for
the correlation between market and credit risk, credit portfolio assumptions, concentration
risk and model risk. This factor is set by the regulators to 1.4.

The weighted average over time of effective expected exposure over the first year is the
EEPET and is calculated by taking the 1 year weighted average, by taking the integral
from time t to time t plus 1 year, of the EEEtk , which is a maximum of the past expected
exposure profile. This results in the formulas

EEPEt =

∫ (t+1year

t

max
u∈[t,s]

EEt(u)ds, (3.8)

EEt(u) = EA[Eu|Ft]. (3.9)

Where Eu is the exposure at time u > t. Note that the expectation in Equation 3.9 is
taken under an arbitrary measure A. By this notation it is possible to take this expectation
either under the real-world, risk-neutral or a shocked measure.

3.4 Conclusion

Using the unified model presented by Green, Kenyon and Dennis [GKD14] the foundations
of the valuation adjustments related to the cost of capital have been outlined, and the
new ” XVA” term KVA has been introduced. The multitude of different approaches to the
calculation of the capital requirements, depending on regulatory permissions, illustrates
the complexity of these charges and how they can differ in computational costs.

As seen from the formula-based approaches the internal model method proves to be
the most complex, but also precise method of regulatory capital calculation, as it accounts
very specifically for each risk component as opposed to the very general guidelines of the
other methods. Therefore this thesis the main focus lies on the EAD calculations as there
a change of measure occurs which will be handled by the properties of the regress later
approach of the Stochastic Grid Bundling Method, as will be presented in the next chapter.



IV
Numerical methods

In this chapter two numerical methods for the pricing of early-exercise multidimensional
derivatives are considered. These methods are described and compared by means of a multi-
dimensional example problem, the pricing of a Bermuda option. The chapter starts by with
the mathematical definition of the Bermudan option pricing problem. Then the numerical
methods and their characteristics are elaborated on. In the final sections the methods are
compared by means of test cases of the pricing problem.

4.1 Introduction

T he numerical pricing of derivatives has long been a popular topic in mathematics and
a lot of literature has been written about it e.g. [Hul93] or [WDH93]. In the multi-

tude of books and articles a plethora of different approaches have been proposed such as
the binomial or trinomial tree, finite difference or Monte Carlo. Each of these approaches
have their own merits and limitations, be it ease of implementation, high accuracy or high
generality or stability constraints.

Since the objective of this thesis is to price early-exercise derivatives and their value
adjustments, it is of vital importance that only feasible methods are considered. Take
for instance finite difference methods such as the Crank-Nicolson method. These meth-
ods provide both the price at inception and the hedge factor at any time t, two neces-
sary elements for value adjustment pricing. However these finite difference methods suffer
immense computational costs when they are used for highly multidimensional problems,
[LS01]. Therefore finite difference methods are not considered.

To accurately price highly multidimensional derivatives the numerical methods that are
considered are the least squares Monte Carlo (LSM) approach, [LS01], and the Stochastic
Grid Bundling Method (SGBM), [JO15]. Both of these methods are regression-simulation
based techniques combining Monte Carlo path generation with regression to determine the
optimal early-exercise strategy as well as the option price.

Although both of these methods are regression based the key difference between these
two is located in the local regression based on the discounted moments. The SGBM is able
to approximate the continuation value more accurately than the LSM, however at some

23
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additional computational costs. Even further the SGBM uses bundles which makes the
regression function simpler and can reduce the number of basis functions.

The LSM uses a regress now approach opposed to the regress later approach the SGBM
employs. This means that while the LSM regression is based on discounted cash flows to
approximate the expected payoff, this should only be used to calculate the optimal early-
exercise time. When the approximated payoff is used for option valuation this could lead
to an upward bias for the time-zero option value which arises since the maximum operator
is convex, see [LS01] note 9. The SGBM does not suffer from this. Furthermore SGBM
computes a direct estimator and a path estimator which, upon convergence, should differ
only slightly. In the final sections of this chapter the methods are compared against each
other through test-cases from the original SGBM paper, [JO15].

4.2 Bermudan option pricing

The example problem for the comparison of the numerical methods is the risk-neutral
pricing of an option contract. An option contract is the agreement between two parties to
trade an underlying asset at a certain time in the future, [SS06]. It can be seen as a bet
on rising or falling values of the underlying asset. The two parties involved in this trade
are the writer of the option and the holder. The writer creates the contract for a certain
underlying asset and sells this to the holder. Then the holder has the rights granted in the
option contract until the maturity time T , specified in the contract. After the maturity
time the option expires and their contract becomes worthless.

These option contracts can be divided into two types, a call option and a put option.
A call option lets the holder buy the underlying asset, while a put option lets the holder
sell the underlying asset. This buying and selling is done at a predefined strike price K
which is specified in the option contract.

Besides the buy or sell classification options can differ in the exercise possibilities. An
option is exercised if the holder chooses to buy or sell the underlying for the strike. For a
European option this can only be done at time T . For American options it is possible to
exercise at each time t ≤ T . Bermudan options can be exercised at a multiple of predefined
times up until the expiration.

For this example problem two different dynamics for the underlying asset are consid-
ered, those defined by Black and Scholes and those of Heston.

4.2.1 The Black and Scholes model

The example problem on a d-dimensional underlying asset in a risk-neutral Black and
Scholes framework as described by the previous chapter is modelled as follows. The state
of the market is represented by a Ft-adapted Itô process St = {S1

t , ..., S
d
t }. We consider

t ∈ [t0 = 0, .., tM = T ] and M exercise points in time. The continuous process is thus
discretized and observed at these instances tm. Note that the number of observation times
is defined here to be equal to the number of exercise times M . The dynamics of these
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underlying assets are given by a system of stochastic differential equations

dS1
t = µ1(t,St)dt+ σ1(t,St)dW

1
t ,

dS2
t = µ2(t,St)dt+ σ2(t,St)dW

2
t ,

... (4.1)

dSd
t = µd(t,St)dt+ σd(t,St)dW

d
t ,

where W δ
t are correlated Brownian motions with the correlation coefficients between W i

t

and W j
t given by ρi,j and thus let the correlation matrix be defined as

C =


1 ρ1,2 . . . ρ1,d

ρ1,2 1 . . . ρ2,d
...

...
. . .

...
ρ1,d ρ2,d . . . ρd,d

 (4.2)

The adapted process ht = h(St) represents the intrinsic value of the option. This makes
the immediate payoff function of the option max(ht, 0) at time t, thus the amount received
if the holder chooses to exercise the option at time t. Now the discount factor can be
calculated from the previously defined risk-free savings account process by

Dtm :=
Btm−1

Btm

,

in which we consider the risk-free rate to be constant.

Now the problem can be represented as computing the maximum of the discounted
expected payoff of the option contract over the time horizon

Vt0(St0) = max
τ

EQ
[
h(Sτ )

Bτ

∣∣∣∣St0 = S
]
,

with τ the stopping time taking values at the predefined possible exercise times and S the
initial asset price. The value of the Bermudan option at times ti, i = 0...N is given by

Vti(Sti) =


max(h(StN , 0), for i = N,

max(h(Sti), Qti(Sti)), for 1 < i < N,

Qti(St0), i = 0.

Where the conditional continuation value Qti , the discounted expected payoff at time ti+1

is given by
Qti(Sti) = Dti+1E

Q[Vti+1(Sti+1)|Sti ].

4.2.2 The Heston model

The example problem of pricing a Bermudan option under the Heston dynamics has the
same setup for the state space, exercise times and risk-free savings account process with the
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addition of a new state space variable: the volatility vt. The dynamics of the underlying
asset follow stochastic volatility asset dynamics defined as

dSt = rStdt+
√
vtSt

(√
1− ρ2dW 1

t + ρdW 2
t

)
,

dvt = κ(θ − vt)dt+ γ
√
vtdW

2
t ,

where W 1,2
t are independent Brownian motions under the risk-neutral measure, κ is the

mean reversion coefficient, e.g. the speed of convergence of the volatility to the long term
mean, θ is the long-term mean of the volatility and γ is the volatility of the volatility
parameter.

Another slight change occurs in the formula for the value of the Bermudan option since
the continuation value of this option will also depend on the current state of the volatility

Vti(Sti , vti) =


max(h(StN , 0), for i = N,

max(h(Sti), Qti(Sti , vti)), for 1 < i < N,

Qti(Sti , vti), i = 0.

Where the conditional continuation value Qti is given by the discounted expected payoff
at time ti+1:

Qti(Sti , vti) = Dti+1E
Q[Vti+1(Sti+1 , vti+1)|(Sti , vti)].

4.3 Monte Carlo Methods

For the pricing of derivatives this thesis utilises Monte Carlo methods. Monte Carlo meth-
ods cover a broad class of algorithms that are characterised by their reliance on random
sampling. This section is dedicated to the concepts of Monte Carlo methods and variance
reduction techniques applied in these methods.

4.3.1 Sample path simulation

Monte Carlo methods start by generating a large number of possible future sample paths.
To create these independent risk-neutral sample paths of the underlying process St different
types of schemes can be used, depending on the underlying dynamics. For instance, for
assets following a simple geometric Brownian motion, the Euler-Maryama scheme suffices,
see Figure 4.1, will be used. For more complicated dynamics such as the Heston dynamics
the more complex quadratic exponential (QE) scheme is applied, see [And08] for a detailed
description.

4.4 The Stochastic Grid Bundling Method

In 2013 S. Jain and C.W. Oosterlee developed an alternative to the LSM called the Stochas-
tic Grid Bundling Method(SGBM)[JO15]. This method is based on simulation, bundling
and regression and was originally developed for the pricing of early exercise options and
computing their Greeks. This was later further generalised by Feng [Fen17]. The SGBM
uses a ’regress later’ approach to calculate the conditional expectation instead of the
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Figure 4.1: Example of 10 Monte Carlo sample paths for an asset following a geometric Brownian motion

’regress now’ approach of the LSM. The section starts by illustrating the SGBM by an
example problem. We begin by giving a brief description of the steps involved in the
SGBM algorithm. Then the crucial parts of the SGBM algorithm are discussed individu-
ally.

• Step I: Grid point generation
The grid point generation is done by generating N independent risk-neutral sample
paths

{St0(n), ...,StM (n)}, for n = 1, ..., N

of the underlying process St. Where Stm represents the vector of grid points at time
tm. The starting price is given by St0(n) = s0(n). Depending on the underlying pro-
cess the appropriate discretization scheme is chosen for the generation of the sample
paths, e.g. Euler-Maryama for a geometric Brownian motion or Quadratic exponen-
tial for the Heston dynamics.

• Step II: Initialisation
Using the the realisations of the asset values at the terminal time the terminal value
of the option can be computed through

VtM (StM ) = max(h(StM ), 0).

• Step III: Backward induction
While iterating backwards in time from m = N − 1, ..., 1 the following steps are
performed at each time step tm:

– Bundling
The first step is to bundle the grid points Sm into ν non-overlapping sets or
partitions Bm(1), ...,Bm(ν). This is done to approach a sample with the distri-
bution of Stm+1 conditional on the state Stm without simulating the conditional
Monte Carlo paths.

– The parameterized option value
In each bundle β = 1, ..., ν at time tm the values of Vtm+1(S

β
tm+1

) and Sβ
tm+1

are
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now given. The option values at time tm+1 are then approximated by ordinary
least squares regression with

Vtm+1(S
β
tm+1

) ≈ Z(Sβ
tm+1

, αβ
tm+1

) =

K∑
k=1

αβ
tm+1

(k)φk(Sβ
tm+1

),

where φk(·) is the k-th regression basis-function and the coefficients αβ
tm−1

are
the regression coefficients, for these definitions see subsection 4.4.2,.

– The continuation value
With the parametrized option value Z(Sβ

tm+1
, αβ

tm+1
) computed for each bundle

β the continuation values of each grid point are approximated by

Qtm(Sβ
tm

(n)) = DtmE
[
Z(Sβ

tm+1
, αβ

tm+1
)

∣∣∣∣Sβ
tm

= Sβ
tm

(n)

]
.

Which can be written as

Qtm(Sβ
tm

(n)) = DtmEQ
[( K∑

k=1

αβ
tm+1

(k)φk(Sβ
tm+1

)

)∣∣∣∣Sβ
tm

= Sβ
tm

(n)

]
,

= Dtm

K∑
k=1

αβ
tm+1

(k)EQ
[
φk(Sβ

tm+1
)

∣∣∣∣Sβ
tm

= Sβ
tm

(n)

]
.

• Then given the continuation values and the early exercise policy two estimators can
be computed: the direct estimator and the path estimator. A detailed description of
the construction of these estimators can be found in subsection 4.4.2.

4.4.1 Bundling

For the bundling of the state space there are several techniques available and described
throughout literature. One of the initial techniques proposed by Jain and Oosterlee was
the k-means clustering technique. However this clustering algorithm runs into several prob-
lems for a high number of bundles and a highly multidimensional state space. Therefore
other bundling techniques were proposed by Feng, [Fen17], and Jain and Oosterlee, [JO15].

In this section two different types of state space bundling techniques are discussed,
the equal partitioning technique and the recursive bifurcation technique. Both of these
techniques use a reduced state space. A mapping from the whole N ×M × d state space
to a N ×M reduced state space is used . This makes the bundling technique very memory
efficient as opposed to storing the whole state space.

The most intuitive technique is partitioning the state space into equal partitions. The
main advantage of this technique is that it guarantees that each bundle contains enough
grid points to perform a regression. Which is not safeguarded for instance in the k−means
clustering technique.
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Recursive bifurcation of the reduced state space

First the general idea behind the recursive bifurcation technique is described. As this will
result in a rapid growth in bundles as the dimension increases, a reduction of the state
space is introduced. This reduction technique is motivated by the stratified state aggrega-
tion method as in [BM95]. Instead of partitioning the high dimensional state space, this
technique constructs a reduced state space through a mapping. To get an impression of
the bifurcation algorithm Figure 4.2 illustrates an example of recursive bifurcation of the
state space.
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Figure 4.2: Recursive bifurcation on a two dimensional state space related to .

The reason for bundling in the SGBM is to group together grid points based on their
proximity in order to obtain a simple local payoff function. A fast and practical scheme to
bundle the grid points {St(1), ...,St(N)} into bundles is by recursive bifurcation with the
following steps:

Step I: The procedure starts by computing the mean of the set of grid points along
each dimension

µδ =
1

N

N∑
n=1

Sδ
t (n), for δ = 1, .., d.

Step II: Then the grid points are divided along each dimension, δ = 1, ..., d, into two
disjoint subsets, one with points strictly larger than the mean, the other with points less
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than or equal to the dimensional mean

Aδ = {St(n) : S
δ
t (n) > µδ, n = 1, ..., N},

Āδ = {St(n) : S
δ
t (n) ≤ µδ, n = 1, ..., N},

Step III: From these sets the bundles will be constructed by the 2d possible combina-
tions of the intersections

B(i) = {A1 ∨ Ā1} ∩ ... ∩ {AN ∨ ĀN}.

Step IV: Then perform the same steps for each bundle to split the bundles further.

This technique of bundling produces 2d bundles in each iteration of the algorithm. Thus
the number of bundles after p iterations is given by (2d)p. This can be a very fast and
intuitive way of bundling the state space. However this technique becomes less attractive
when the dimension of the problem increases. Since the number of bundles is directly
dependent on the dimension of the state space, the number of bundles grows too rapid
after each iteration.

To overcome this rapid growth of the number of bundles a reduced state spaced can be
used rather than the actual state space. This reduced state space is obtained by mapping
the actual state space to a lower dimensional reduced state space. For this mapping
function the payoff function h is used since

h : Rd → R

where R becomes the reduced state space with only one dimension instead of d. By then
employing the recursive bifurcation bundling technique the reduced state space can be
bundled. This reduces the number of bundles after p iterations from (2d)p to 2p.

Equal partitioning

As can be seen in Figure 4.2 the recursive bifurcation technique does not guarantee that
there are enough points in each bundle to perform a feasible regression. To safeguard this
assumption the reduced state space can be divided into ν partitions which contain an equal
number of points.

This partitioning technique starts by reducing the multidimensional state space to a
one dimensional space. Then the one dimensional data is sorted and divided over ν non-
overlapping bundles. Finally the bundle indices are permuted back to the original data
permutation. See Figure 4.3.

Besides the assurance of a feasible number of data points in each bundle this technique
is also very usable for parallel processing. Since the dimension of the problem is decoupled
of the bundling and the process does not contain iterative processes.
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Figure 4.3: Equal partitioning technique. From left to right, start with initial one dimensional data array. The
next step is to sort this array. The sorted array is bundled and in the last step re-permuted to the initial order.

Convergence of probability

To effectively use bundling to estimate the conditional expectation it is necessary that
the conditional probability is conserved under bundling. Therefore the following equation
should hold:

lim
ν→∞

lim
N→∞

|PN,ν(Stm+1 ≤ y|Stm = X)− P(Stm+1 ≤ y|Stm = X)| = 0, (4.3)

where the bundled conditional probability PN,ν is defined as

PN,ν(Stm+1 ≤ y|Stm = X) :=

1
N

∑N
n=1 1Stm+1

(n)≤y(Stm+1(n))1Btm (β)(Stm(n))

1
N
|Btm(β)|

.

To satisfy this equation two assumptions are made with regard to the state space and the
bundling:
Assumption I – The set Stm , m ∈ {1, ...,M} is an everywhere dense set of vectors valued
in Rd, and the probability density function of this set is continuous.

Assumption II – The limit of the number of paths in each bundle goes to infinity if both
the paths and the number of bundles tend to infinity

lim
ν→∞

lim
N→∞

|Btm(β)| → ∞,m = 2, ...,M, β = 1, ..., ν.

The proof that the absolute difference of the bundled conditional probability to the
non-bundled conditional probability converges to zero under these assumptions can be
found in [JO15].

4.4.2 Parameterizing of the value function

As the dimension of the state space increases the valuation function becomes more complex
and could render the pricing problem intractable. Since the state space is generally large
it is required to approximate the valuation function. This approximation is performed
through the definition of a parameterized value function

Z : Rd × RK → R,
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which takes a state Stm and a vector α of free parameters. These free parameters are
estimated through an ordinary least squares regression on a set of basis functions. However,
there is first an important choice to make when constructing the parameterized value
function Z. Following Jain and C.W. Oosterlee [JO15] the parameterized value function
is approximated by

Vtm+1(Stm+1) ≈ Z(Stm+1 , αtm+1) =

K∑
k=1

αtm+1(k)φk(Stm+1).

Since the exact computation of the free parameter vector αβ
tm

, is not feasible an ap-
proximation is used. This approximation satisfies

arg min
α̂
β
tm+1

|Btm (β)|∑
n=1

(
Vtm+1(S

β
tm+1

(n))−
K∑

k=1

α̂β
tm+1

(k)φk(Sβ
tm+1

(n))

)2

,

and by the law of large numbers it can now be shown that under assumptions I and II the
following holds

lim
N→∞

∣∣∣∣∣∣∣∣Z(Stm+1 , α̂tm+1)− Z(Stm+1 , αtm+1)

∣∣∣∣∣∣∣∣
π

= 0,

with || · ||π a weighted quadratic norm.

Then the parametrized function is given by a least-squares regression. Since this type
of regression gives an unbiased estimator it holds that the error of the estimation, ηβ

tm+1
,

expressed by
Vtm+1(Stm+1) ≈ Z(Stm+1 , α̂tm+1) + ηβ

tm+1
,

can be neglected and thus that the following can be assumed
Assumption III – The regression error, ηβ

tm+1
, satisfies

E[ηβ
tm+1

|Stm(n)] = 0,Stm ∈ Btm(β).

if the number of paths in each bundle can be made sufficiently large. From this it gives
that the continuation value is expressed by

Q̂ti(Sti) = DtmEQ
[
Vtm+1(Stm+1)

∣∣∣∣Stm

]
,

= DtmEQ
[ K∑

k=1

α̂tm+1φk(Stm+1)

∣∣∣∣Stm

]
,

= Dtm

K∑
k=1

α̂tm+1E
Q
[
φk(Stm+1)

∣∣∣∣Stm

]
. (4.4)

From this expression of the continuation value Theorem 4.4.1 can be derived. Which
implies that the approximated continuation value converges to the analytic continuation
value. Furthermore the direct estimator can be defined with this expression, and from that
definition Theorem 4.4.2 holds under the current assumptions. Proofs of these theorems
can be found in [JO15].
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Theorem 4.4.1 – Convergence of the continuation approximation. Given that
assumptions I and II hold then,

lim
ν→∞

lim
N→∞

|Q̂tm(Stm)−Qtm(Stm)| = 0.

Definition 4.4.1 – Direct estimator. The direct estimator is the value of the derivative
at time tm given by

V̂tm(Stm(n) = max(h(Stm), Q̂tm(Stm)), n = 1, ...N.

Theorem 4.4.2 – Direct estimator bias. Given that E[φk(Stm+1)|Stm = X] is know
exactly, and assumption III holds , then the direct estimator is biased high i.e.

E[V̂t0(St0 ] ≥ Vt0(St0).

Corollary 4.4.1 – Direct estimator convergence. Given that assumptions I, II and
III hold then it holds that

lim
ν→∞

lim
N→∞

|V̂t0(St0)−Qt0(St0)| = 0.

From these theorems the important Corollary 4.4.1 follows which enables the pricing
of derivatives through use of the SGBM algorithm. To obtain the direct estimation it is
necessary to compute the conditional expectation, for which the characteristic function
must be known in closed form.

4.4.3 Path estimator

For the calculation of the path estimator a new set of of NL independent risk-neutral sample
paths are generated, utilising the same discretisation scheme as used for the generation of
the direct estimator sample paths. Then for each sample path the optimal early-exercise
policy is approximated by

τ̂∗(S(n)) = min{Stm(n)) ≥ Q̂tm(Stm(n)),m = 1, ...,M},

for which Q̂tm is calculated by Equation 4.4. Now the path estimator can be defined by

v(n) = h(Sτ̂∗(S(n))).

With the definition of the path estimator, Theorem 4.4.3 can be formulated. For which
the proof of the bias and the convergence of the path estimator, given that Equation 4.3
holds, can be found in [BG+04] as the proofs of Theorems 3 and 4, page 9.
Theorem 4.4.3 – Path estimator bias. A low-biased estimate,V t0

(St0), to the true
derivative value, Vt0(St0), can be computed as:

V t0
(St0) = lim

NL

1

NL

NL∑
n=1

v(n),

≤ Vt0(St0).
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4.4.4 Characteristic function

As seen in the previous sections, it is essential for the regress later type algorithm to be
able to compute the conditional expectation expressed in basis functions as

K∑
k=1

αtm+1(k)E
Q
[
φk(Stm+1)

∣∣∣∣Stm = Stm

]
.

In this expression the conditional expectation can be calculated by computing the mo-
ments of the basis functions. These moments are obtained by partially differentiating the
characteristic function of the basis functions.
Definition 4.4.2 – Characteristic function and moments. The characteristic func-
tion of a random variable Stm+1 given Stm is defined as

ϕStm
(u1, ., ud|Stm) = E

[
e
∑d

j=1 iujSj
tm+1

∣∣∣∣Stm

]
.

Where the relation to the moments is given by

E[(S1
tm+1

)p1 ...(Sd
tm+1

)pd |Stm ] = (−i)p1+...+pd

[
∂p1+...+pdϕStm+1

(u)
∂up1

1 ...∂u
pd
d

]
u=0

. (4.5)

Depending on the choice of basis functions, the moments can be either computed in
closed form or by numerical differentiation. Since the choice of basis functions depends
on the type of derivative and underlying model the characteristic function to obtain the
moments is provided for each individual case. Equation 4.5 is also suitable for discretized
characteristic functions. However, since those characteristic functions are approximations,
the moment formula will be less accurate than an analytic expression. To overcome this
drawback the number of bundles and time steps should be drastically increased which would
require a GPU implementation of the SGBM algorithm. In Appendix A explicit derivations
can be found for the characteristic functions used in the numerical computations performed
later in this thesis.

4.5 The Least Squares Method

First published in 2001 by Longstaff and Schwartz, [LS01], the least squares Monte Carlo
(LSM) approach presented a simple and powerful tool for the approximation of the prices
of highly multidimensional derivatives through Monte Carlo simulation. The LSM is espe-
cially useful in the context of Bermudan and American-style exercise derivatives since this
method was developed as an alternative to the existing finite difference and binomial ap-
proaches, which, as previously mentioned, perform poorly in the highly multidimensional
cases of early excerise derivatives.

Although there is quite some overlap between the LSM and SGBM, the key difference
between these two methods is that the LSM uses a regress now approach to calculate the
continuation value of the derivative. This approach makes the algorithm more intuitive
and computationally less complex that the SGBM. However this approach also makes the
approximation of the continuation value less accurate. Furthermore the LSM does not
bundle the grid points into disjoint bundles but selects the regression grid points by in-
the-moneyness, which means that the payoff of the derivative should be greater than zero
at that time point.
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In this section an overview of the LSM algorithm is given and key aspects of the method
are described in detail. Since there is much overlap with the SGBM, the LSM algorithm
is only shortly discussed.

• Step I: Grid point generation
Generate the grid points through various types of discretization schemes as for the
SGBM.

• Step II: Initialisation
Using the realisations of the asset values at the terminal time, the terminal value can
be computed through

VtM (StM ) = max(h(StM ), 0).

• Step III: Backward induction
While iterating backwards in time from m = N − 1, ..., 1 the following steps are
performed at each time step tm:

– In-the-money path selection
Select all in-the-money paths B = {n ∈ [1, N ]|h(Stm(n)) > 0}, thus are in-the-
money.

– Construct the basis functions
Depending on the choice of φk(Stm) the basis functions are constructed from
the in-the-money paths. Then the regression is performed by

arg min
α̂tm

|B|∑
n=1

(
Vtm+1(Stm+1(n))−

K∑
k=1

α̂tm(k)φk(Stm(n))

)2

– The continuation value
Since the method uses the regress now approach the continuation value of the
derivative can now be easily computed by

Qtm(Stm(n)) = Dtm

K∑
k=1

αtm(k)EQ
[
φk(Stm)

∣∣∣∣Stm = Stm(n)

]

= Dtm

K∑
k=1

αtm(k)φk(Stm)

– Exercise policy
Once the continuation value is approximated the exercise policy can be deter-
mined and the cash flows are calculated for each time step. And the value of
the derivative at time tm is given by

V̂ (Stm) = max(h(Stm , Q(Stm)).

• Step IV: Path estimator
To obtain a biased low estimator for the derivative value the path estimator is cal-
culated by

Vt0(St0) ≥ V̂t0(St0) =
1

N

N∑
n=1

Q(St1(n)). (4.6)

The proof of this is statement can be found in the appendix of [LS01].
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4.6 Numerical results for Bermudan option pricing

This section discusses the performance of the implementations of the SGBM and the LSM
by means of numerical examples. Starting with an analysis of the different types of bundling
schemes for the SGBM. Then the parameter values for the number of basis functions and
Monte Carlo paths of both the SGBM and LSM are determined such that the algorithms
converges sufficiently. With these parameter values a comparison between the two algo-
rithms can be made.

The example problems on which the algorithms are tested are of increasing complexity.
The first test case is a simple Bermudan put on a single asset, governed by a geometric
Brownian motion, see chapter 2. This is then extended to multidimensional options, gov-
erned by correlated geometric Brownian motions, for different types of payoff functions.
For the SGBM the characteristic functions and moment derivations are described in more
detail in Appendix A. The four different types of options that are tested are described
below.

For these tests different sets of parameters for the Bermudan option pricing dynamics
are described below. To distinguish between the number of exercise times and time steps
the different parameters M and Q are used respectively. Each set uses different strikes to
generate in-, at- and out of the money scenario’s.

Set I:
St0 = 40, K = {35, 40, 45}, r = 0.06, σ = 0.2, T = 1, M = 50, Q = 50.

Set II:
St0 = 100, K = 100, r = 0.04, T = 1, κ = 1.15, γ = 0.39, θ = 0.0348, v0 = 0.0348,
ρ = −0.64, M = 20.

Set III:
Sδ
t0 = 40, K = {35, 40, 45}, r = 0.06, σ = 0.2, ρij = 0.25, T = 1, M = 10, Q = 10.
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- I: Bermudan put option on a Black and Scholes asset
The first numerical example problem is a Bermudan put option on a single underlying
asset. The dynamics of the asset price are governed by a geometric Brownian motion
and the parameter set I is used. The basis functions are defined as

φk(Stm) = Sk−1
tm , k = 1, ..., 5.

Therefore the continuation value for the SGBM algorithm is computed by

E[φk(Stm)|Stm−1 ] = E[(Stm)k−1|Stm−1 ],

from which the moments can be calculated by

E[(Stm)k|Stm−1(n)] =

(
Stm−1(n)e

(r+
(k−1)σ2

2
)(tm−tm−1)

)k

.

As a benchmark result for the SGBM and LSM algorithms an already available COS
algorithm, a method based on the Fourier cosine series expansion, reference value is
used, as described in [Fen17].

- II: Bermudan put option on a Heston asset
The second numerical example problem is a Bermudan put option on a single under-
lying asset. In contrast to the first example the dynamics of this asset are governed
by the Heston dynamics and the parameter set II is used.

For this example the basis functions that are used are similar to that of the previous
example, only the asset prices are transformed to log-asset prices, xtm = log(Stm).

φk(xtm) = xk−1
tm , k = 1, ..., 5.

Note that for option pricing under Heston dynamics it is also possible to incorpo-
rate the volatility state as a regression basis function, see [Fen17]. Since the SGBM
showed to price with sufficient accuracy by using only state space basis functions this
is omitted from this thesis.

Then the continuation value is computed by evaluating

E[φk(Xtm)|Xtm−1 ] = E[(Xtm)k−1|Xtm−1 ],

where Xtm = {xtm , vtm}. The derivation of the explicit formula for these moments
from the characteristic function is given in Appendix A.

- III: Bermudan geometric basket put option on multiple assets
The third numerical example problem is a Bermudan put option on the geometric
average of multiple assets. The dynamics of the underlying asset prices are governed
by correlated geometric Brownian motions and the parameter set III is used.

The payoff function of this basket option is the strike price minus the geometric
average of the d assets,

h(Stm) = K − (

d∏
δ=1

Sδ
tm)

1
d .
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From this payoff function follows the choice of basis functions as

φk(Stm) =

(
(

d∏
δ=1

Sδ
tm)

1
d

)k−1

.

The continuation value can now be computed by

E[φk(Stm)|Stm−1 ] = E[(
d∏

δ=1

Sδ
tm)

k−1
d |Stm−1 ],

from which the moments can be calculated by

E[φk(Stm)|Stm−1S(n)] =

(
Ptm−1e

(µ̄+
(k−1)σ̄2

2
)∆t

)k−1

.

Where,

Ptm−1(n) =

( d∏
δ=1

Sδ
tm−1

) k−1
d

, µ̄ =
1

d

d∑
δ=1

(r − σ2
δ

2
), σ̄2 =

1

d2

d∑
i=1

d∑
j=1

ρi,jσiσj

- III: Bermudan arithmetic basket put option on multiple assets
The fourth numerical example problem is a Bermudan put option on the arithmetic
average of multiple assets. The dynamics of the underlying asset prices are governed
by correlated geometric Brownian motions and the parameter set III is used.

The payoff function of this basket option is the strike price minus the arithmetic
average of the d assets,

h(Stm) = K − 1

d

( d∑
δ=1

Sδ
tm

)
.

From this payoff function follows the choice of basis functions as

φk(Stm) =

(
1

d
(

d∑
δ=1

Sδ
tm)

)k−1

, k = 1, ..., 3.

The continuation value can now be computed by

E[φ(Stm)|Stm−1 ] = E[( 1
d

d∑
δ=1

Sδ
tm)|Stm−1 ].

This expectation can be computed by rewriting it as a linear combination of moments
of the geometric average of assets. This is then expressed as( d∑

δ=1

Sδ
tm

)k

=
∑

k1+k2+...+kd=k

(
k

k1, k2, ..., kd

) ∏
1≤δ≤d

(Sδ
tm)kδ .



4.6. Numerical results for Bermudan option pricing 39

4.6.1 Experiments with the bundling of the SGBM algorithm

To use the SGBM algorithm as numerical method for the pricing of derivatives, it is es-
sential that parameters are used that can guarantee a certain degree of convergence. Since
the bundling of the state space is one of the essential steps in the algorithm, this section
analysis which bundling technique should be used. In the previous section two different
types of state space bundling techniques are discussed, recursive bifurcation and equal
partitioning. The performance of these two techniques are compared. As can be seen from
Table 4.1 and Figure 4.4, the two proposed methods of bundling do not differ significantly
in accuracy. For ν = 16 bundles all the algorithms valuations are within one standard
deviation of the true prices.
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Figure 4.4: The results for both types of bundling in the SGBM algorithm. The algorithm is applied to a Bermudan
put option for three different types of strikes.

Strike Bundling Estimator ν = 2 ν = 4 ν = 8 ν = 16

35 RB direct 0.7933 (0.0007) 0.7207 (0.0013) 0.6997 (0.0003) 0.6949 (0.0002)
path 0.6874 (0.0026) 0.6919 (0.0029) 0.6933 (0.0024) 0.6941 (0.0020)

EP direct 0.7756 (0.0006) 0.7216 (0.0010) 0.7015 (0.0004) 0.6960 (0.0002)
path 0.6881 (0.0018) 0.6924 (0.0032) 0.6937 (0.0025) 0.6943 (0.0028)

40 RB direct 2.4167 (0.0020) 2.3289 (0.0004) 2.3155 (0.0001) 2.3142 (0.0001)
path 2.3013 (0.0040) 2.3130 (0.0030) 2.3140 (0.0021) 2.3134 (0.0020)

EP direct 2.4126 (0.0020) 2.3297 (0.0005) 2.3165 (0.0001) 2.3141 (0.0001)
path 2.3010 (0.0042) 2.3120 (0.0037) 2.3127 (0.0034) 2.3134 (0.0035)

45 RB direct 5.4625 (0.0009) 5.4016 (0.0003) 5.3956 (0.0001) 5.3953 (0.0001)
path 5.3793 (0.0042) 5.3937 (0.0037) 5.3960 (0.0035) 5.3961 (0.0042)

EP direct 5.4628 (0.0018) 5.4016 (0.0005) 5.3956 (0.0001) 5.3953 (0.0001)
path 5.3800 (0.0034) 5.3939 (0.0045) 5.3955 (0.0040) 5.3952 (0.0035)

Table 4.1: Convergence of the SGBM algorithm for increased number of bundles. The reference values for this
Bermudan put options are V0 = 0.6940, V0 = 2.3140 and V0 = 5.3952.
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Another way to make a comparison between the two bundling techniques is to analyse
the impact of the different bundling on the computation time. In Figure 4.5 the computa-
tion time for the bundling techniques is illustrated. The two techniques are each performed
30 times on the same set of random numbers for an increasing number of bundles. The
equal partitioning bundling technique clearly outperforms the recursive bifurcation tech-
nique, being up to 30 times faster for ν = 1024.
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1024 0.6286 0.0247

Figure 4.5: A comparative plot of the computation times for the RB and EQ bundling techniques on an array of
2 × 105 random asset values into ν bundles.

From the results of the convergence and computation time tests, it seems that two
bundling techniques perform almost similar in accuracy. Computationally however, the
equal partitioning technique has significantly lower costs. Furthermore, an important as-
pect of the equal partitioning bundling technique is that it safeguards the condition that
there is a sufficient number of grid points present in each bundle. Therefore the equal
partitioning technique is favoured in this thesis to avoid under filled bundles, and will thus
be used for further test with the SGBM algorithm.

For the example problem of the Bermudan put option on a Heston asset the state space
can be bundled in two dimensions, both for the log-asset value and the volatility. To verify
if the equal partitioning bundling technique also suffices for this type of bundling a con-
vergence test is performed. The parameters used in this set are those of Set II. The set of
parameters is chosen in such a way that the Feller condition, 2κθ > γ, is not satisfied and
thus that vt can become negative. This means that the volatility process can become zero
and numerical methods may suffer from this.

The results in Figure 4.6 illustrate the convergence of the SGBM for an increasing num-
ber of basis functions. It is shown that an increase in basis functions increases the accuracy
of the SGBM. However if the number of bundles is increased sufficiently the SGBM can
employ a lower order of basis functions for the same accuracy. A side note should be made
that the logarithm in the characteristic function is in many software packages restricted
to its principle branch. However in this thesis, using the same argument as Ruijter and
Oosterlee, [RO12], since the results converge to the correct price for the tested parameter
set this will not be discussed in more detail.
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Figure 4.6: (A) - Bermudan option prices. (B) - Error against reference value V0 = 3.1950.

To verify the SGBM convergence in higher dimensional problems, the multidimensional
example cases of the geometric- and arithmetic average Bermudan put options are anal-
ysed for parameter set II. The parameters are tested for a variety of different dimensions
namely, d = 5, 10 and 15, with N = 5 · 104, NL = 4 · N and the EP bundling technique.
The results of the convergence test are illustrated in Figure 4.7 and it is evident that for
the chosen parameter settings the convergence of the multidimensional algorithm is similar
to the single dimensional convergence.
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Figure 4.7: (A) - Geometric average basket option. (B) - Arithmetic average basket option. (C) Comparison table.

4.6.2 Experiments with the basis functions of the LSM algorithm

Since the conditional expectation in the formula for the continuation value is deterministic,
the LSM can choose from a wide variety of basis functions. The original paper, [LS01],
discussing the LSM algorithm states that choices for the basis functions include Laguerre,
Hermite, Legendre, and Chebyshev polynomials. These types of basis functions are illus-
trated in Figure 4.8.
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Figure 4.8: The four different types of basis functions of the LSM algorithm, each Figure displays the functions
up to 6 terms.

To determine the number of basis functions needed to obtain accurate approximations
the theoretical convergence result from Equation 4.6 is used. This equation states that by
increasing the number of basis functions k the value of the LSM algorithm will increase
towards the true value of the derivative. In Figure 4.9a the values of the LSM algorithm
for increasing values of k, are shown for a single Bermudan put option. It is evident from
this Figure that the LSM algorithm converges after k = 3. In Figure 4.9b it is seen that
the computation time of the LSM increases steadily for higher numbers of basis functions.
This implies that the LSM algorithm will not gain in accuracy for an increased computa-
tion time after k = 3. Therefore it is evident that this should be the preferred number of
basis functions for the LSM algorithm.

The second test for convergence is done by selecting the sufficient number of basis
functions and increasing the number of Monte Carlo paths such that the value of the LSM
algorithm is within an arbitrary ϵ range of the true value, which implies that the LSM
algorithm converges to the desired degree of accuracy, see Proposition 2 in [LS01] for the
proof of this convergence. Figure 4.9c shows that the LSM algorithm indeed converges
as expected for an increasing number of Monte Carlo paths. From now on N = 106 is
assumed for the LSM algorithm as sufficient convergence is achieved and computational
costs increase quite steeply for larger values of N .

As is displayed by the results of the two tests on the LSM algorithm the influence of
the type of basis function is negligible. Therefore the type basis functions used in the LSM
algorithm is chosen to be the Legendre polynomials, which are also used in the original
paper [LS01].
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Figure 4.9: (A) - Convergence for an increasing number of basis functions. (B) - Computation time for different
types of basis functions. (C) - Convergence for an increasing number of Monte Carlo paths. (D) - Computation time
for an increasing number of Monte Carlo paths.
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4.7 SGBM compared to LSM

To test the SGBMs and LSMs performance the two methods are applied to the same ex-
ample problems and then compared. The parameters for each method are the parameters
found in the previous section that will provide a sufficiently converged result, which is
needed to make a useful comparison.

The first test problem is the Bermudan put option on a single underlying asset. The
same problem is used for the Black and Scholes and Heston dynamics. The algorithms
are run for an increasing number of Monte Carlo sample paths to see the evolution of the
computational time and the standard deviation. Each test is run for 30 times to obtain
the average values and deviations. For the Black and Scholes test case ν = 16 is used and
ν = 64 for the Heston case for convergenced results.

Black and Scholes Heston
SGBM LSM SGBM LSM

N Dir. Est. P. Est. Time P. Est. Time Dir. Est. P. Est. Time P. Est Time

104 2.3839 (0.0011) 2.3037 (0.0078) 1.1338 2.3057 (0.0121) 0.1049 1.1013 (0.0017) 1.1047 (0.0065) 2.5816 1.1106 (0.0190) 0.9653
5 · 104 2.3838 (0.0005) 2.3046 (0.0036) 4.8947 2.3071 (0.0066) 0.5283 1.1012 (0.0007) 1.1024 (0.0036) 11.6317 1.0995 (0.0056) 6.5067

105 2.3838 (0.0004) 2.3064 (0.0030) 9.0859 2.3045 (0.0052) 0.9868 1.1012 (0.0005) 1.1024 (0.0020) 23.8740 1.0959 (0.0037) 13.5206
5 · 105 2.3838 (0.0002) 2.3055 (0.0011) 50.1851 2.3047 (0.0020) 5.4735 1.1011 (0.0002) 1.1020 (0.0011) 116.1618 1.0946 (0.0018) 72.5676

Table 4.2: A comparison of the SGBM and LSM for the Black and Scholes and Heston models on a single underlying
asset. Set I is used with M = Q = 20 for the BS test, and set II is used for Heston but with v0 = θ = 0.055 and
γ = 0.9.

It is clear from Table 4.2 that the SGBM algorithm has a lower standard deviation in
the direct estimator for roughly the same computation time, and has an increased accu-
racy for the same number of sample paths for the Black and Scholes model. Regarding the
Heston model the the the SGBM is quite a bit slower, due to the higher number of bundles
needed to obtain accurate results. However, the SGBM method is much more accurate,
even given a smaller number of Monte Carlo paths.

As has been done for the SGBM algorithm the LSM algorithm is also applied to the
multidimensional cases, the geometric and arithmetic average basket options. For these
options the parameter settings of Set II are used. The algorithms are tested for three
different multidimensional cases, d = 5, 10, and 15. The results of these calculations are
displayed in Figure 4.7. In Figures 4.7 (A) and 4.7 (B) it is evident that the SGBM algo-
rithm also converges for the multidimensional cases. In Table 4.3 the numerical values of
the SGBM algorithm and the LSM algorithm are given and the computation times. From
those numbers it can be concluded that the LSM algorithm converges for the estimated
parameter values. Furthermore Table 4.3 is in line with the claim that the SGBM algo-
rithm provides the option value with a higher precision in comparable computation time.

Geometric Arithmetic
SGBM LSM SGBM LSM

d Dir. Est. P. Est. Time P. Est. Time Dir. Est. P. Est. Time P. Est Time

5 1.3421 (0.0002) 1.3414 (0.0026) 5.91 1.3417 (0.0016) 7.8245 1.2364 (0.0004) 1.2364 (0.0022) 4.5765 1.2362 (0.0018) 8.3690
10 1.1779 (0.0001) 1.1780 (0.0018) 6.49 1.1779 (0.0012) 9.1105 1.0626 (0.0003) 1.0626 (0.0020) 6.8796 1.0622 (0.0008) 9.3967
15 1.1190 (0.0002) 1.1184 (0.0026) 6.81 1.1187 (0.0008) 10.5784 1.0010 (0.0003) 1.0013 (0.0018) 10.0624 1.0622 (0.0012) 9.3967

Table 4.3: A comparison of the SGBM and LSM algorithm for geometric and arithmetic basket options.
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4.8 Conclusion

This chapter has introduced both the Stochastic Grid Bundling Method and the Least
Squares Monte Carlo method. Through numerical examples both methods have proved to
be suitable algorithms for the computation of Bermudan option prices, under the dynamics
described in Chapter 2.

Arguments for the choice of state space bundling technique and basis functions related
to the local regression were presented, and the convergence of the algorithms for these
choices was analysed. It was shown that for the SGBM both the direct estimator and the
path estimator converged, and that the LSM converged both in number of basis functions
and Monte Carlo paths. The single and multidimensional numerical example cases were
shown to be solvable by the algorithms with any desired degree of accuracy.

Now that the algorithms for pricing the Bermudan options are defined and proven to
be working the final step of this thesis can be made, the calculation of the KVA. The next
chapter is dedicated to the necessary steps for this calculation.



V
Numerical KVA

This chapter presents the cumulative of the previous chapters. The mathematical framework
in which the options are priced, together with the construction of the capital regulations and
the numerical methods for their computation. Furthermore a new case study is presented
for the pricing of KVA for Bermudan options, which has been the primary objective of this
thesis. The chapter ends with a discussion of these new results.

5.1 Introduction

I n Chapter 3 general expressions for the computation of KVA have been defined. This
chapter is dedicated to the numerical aspects of these KVA formulas. With the SGBM

algorithm as defined in the previous chapter in place for the computation of Bermudan
option prices, the first hurdle on the road to the KVA pricing is the calculation of the
expected exposure. The validation of these computations is done through reference values
obtained from the calculations made with the Monte Carlo COS method by Shen, [She14].

The second part is incorporating the formulas to calculate the exposure at default val-
ues, with which the need for the SGBM algorithm rises, as these calculations may involve a
change of measure. With a standard Monte Carlo approach this would lead to the situation
of nested Monte Carlo simulations, e.g. for each Monte Carlo path, at each time step an-
other Monte Carlo simulation would be needed to price the outer Monte Carlo time step.
This unfavourable situation, due to its computationally heavy property is subsequently
circumvented by the SGBM, using the SGBM KVA algorithm presented by Jain, Karlsson
and Khandai in [JKK17].

The SGBM KVA algorithm is applied to a case study of Bermudan options. For this
there are several details of the algorithm which need to be altered in order to correctly
price a Bermudan derivative, as opposed to the non Bermudan test cases presented in
the original publication. Then, with the algorithm that is compatible with the Bermudan
options, the chapter presents new case studies for each of the example problems as seen in
the previous chapter, and ends with a discussion of these results.

45
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5.2 Expected exposure

The exposure of a derivative has previously been defined as the potential loss in case of a
counterparty default. However for Bermudan options the exposure is zero once the option
is exercised, and otherwise equals to the continuation value:

Etm =

{
0, if exercised,
Qtm(Stm), if not exercised.

This means that going backwards through time, the exposure of each grid point is set to
their corresponding continuation value. Then the continuation values are checked against
the immediate exercise values. Since a Bermudan option has the possibility to be exercised
earlier than the maturity, it is important that once the immediate exercise value is greater
or equal to the continuation value the option is exercised. If this event occurs, the option
value becomes zero for the remainder of the time horizon. Thus the exposure values of the
future times of that exercised Monte Carlo path are set to zero.

Since it is necessary to have the possibility of setting the future exposure values to
zero, the exposure values are calculated for all observation times and Monte Carlo paths
are stored. Then if a path is exercised the future exposure values are set to zero. Thus
the average expected exposure under Q at time tm can be computed after all observation
times have been iterated through by taking the average of these calculated exposures.

EEtm(tm+1) =
1

N

N∑
i=1

Etm+1

The process of the EEtm(tn) calculation is illustrated in Figure 5.1a for tm ∈ [0, T ], tn =
T , as seen from time t0. In this Figure the exposure values of three sample paths in the
Monte Carlo simulation of the price of the underlying asset are plotted by a dot for each
grid point. To illustrate the distribution of the exposure values the 97.5 quantile and 2.5
quantile values for each time step are plotted by the dashed green line, the potential future
exposure, PFE. The blue line represents the value of the expected exposure, the average
of the exposure values at each time step.

To validate the values of the calculated expected exposure the results from a numeri-
cal test performed in [Fen17] are used as a benchmark to test the implementations of the
SGBM and LSM algorithms. The numerical example problem is the pricing of a Bermudan
put option for parameters: St0 = 100, K = 100, r = 0.05, σ = 0.2, M = 50 and T = 1. For
the reference values Feng used the MC COS method to calculate the expected exposure.
In Figure 5.1 B a comparison of the SGBM and MC COS values are displayed.

For the Heston dynamics the calculations of the expected exposure are similar to those
of the Black and Scholes. The impact of the stochastic volatility can however be displayed
by particular choices of the parameters. Since for a γ value small enough, the option price
under Heston dynamics, given that the initial volatility v0 and long term mean volatility θ
are equal, should approach the Black and Scholes price. From the in Figure 5.2 displayed
example tests it is clear that for smaller values of γ the Heston model converges to the
Black and Scholes model. The calculations are done for parameter set II of the previous
chapter, with the alterations T = 0.25 and M = Q = 50.
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Figure 5.1: (A) - Exposure values of a Bermudan option for different sample paths. (B) - A comparison in Expected
exposure values of a Bermudan option for different numerical methods.
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Figure 5.2: (A) - A Black and Scholes option and a Heston option with γ = 0.39. (B) - A Black and Scholes option
and a Heston option with γ = 0.0001.

5.3 The SGBM approach for KVA

To introduce the difference between the calculation of the KVA value for Bermudan and
non Bermudan options let’s first consider the non Bermudan example as used in [JKK17].
The method is started by calculating the values, Vtm , of the portfolio for each time t0, ..., tM
for each of the N generated sample paths. Then for each time step the paths are bundled
into ν bundles B = β1, ..., βν . Then the conditional expectation of the future exposure
value of the portfolio is calculated, using the SGBM style regression approach:

EEtm(tu, n) = E
[
Etu

∣∣∣∣Ftm

]
,

= E
[
E
[
Etu

∣∣∣∣φ(Stu),Stm(n)

]∣∣∣∣Stm(n)

]
.

Where φ(S) are the basis functions, which will be simple polynomial of the underlying in
this example. This inner expectation is then approximated by

E
[
Etu

∣∣∣∣φ(Stu),Stm ∈ βb

]
=

K∑
k=1

α
βb,k
tm,tu

φk(Stu).
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Where α
βb
tm,tu

satisfies

arg min
α
β
tm,tu

|Btm (β)|∑
n=1

(
Vtu(Sβ

tu
(n))−

K∑
k=1

αβ,k
tm,tu

(k)φk(Sβ
tu
(n))

)2

. (5.1)

Thus resulting in the following equation for the conditional expectation of the future ex-
posure

EEtm(tu, n) = α
βb,k
tm,tu

EP
[
φk(Stu(n))

∣∣∣∣Stm(n) ∈ Btm(β)

]
. (5.2)

As these moment functions are known, see Chapter 4, the expected exposure under mea-
sure P can be computed without the need of nested simulations, since as the number of
bundles increases and when N is sufficiently large a nested Monte Carlo effect is obtained
without extra simulations. It should be noted that the assumption is made that the same
underlying process drives the risk factors under both Q and P.

The summerised steps of the algorithm for the SGBM KVA calculation are given in
Algorithm 1 in pseudo-code.

Algorithm 1: KVA-SGBM
1 Generate the grid points St0 , ...,StM .
2 Calculate the values Vtm(Stm).
3 for m = 0, ...,M do
4 Bundle the grid points into ν bundles.
5 for b = 1, ..., ν do
6 for n = m+ 1, ...,M do
7 Compute all regression coefficients αb,k

tm,tn
, Equation 5.1.

8 Compute EEtm(tn,Stm), Equation 5.2.

9 for m = M, ..., 0 do
10 Compute the EEPEtm using Equation 3.8 and the KCCR

tn using Equation 3.5.
11 Calculate the KVAt0 using Equation 3.4.

5.3.1 Algorithm verification

To verify if the KVA computation algorithm implementation is working correctly and is
creating accurate results, the algorithm’s output as presented in [JKK17] is replicated in
Figure 5.4. These results represent the computation of the KVA on a portfolio consisting
of five FX forward contracts on a FX rate following a geometric Brownian motion with
r = 0.001991, σQ = {0.100875, 0.200875} and σP = 0.100875, with γt = 0.2 and PD = 0.02.
As can be seen in Figure 5.3 the current implementation of the algorithm is able to repli-
cate the results as presented by Jain, Karlsson and Kandhai in Figure 2 of [JKK17] and
can thus be subjected to the new test case.
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Figure 5.3: (A) - Unconditional expected exposure values (B) - Effective expected positive exposure. (C) - Regula-
tory capital with PFE 95% and PFE 5%.

5.3.2 The Bermudan Algorithm

To use the SGBM approach for the fast change of measure calculation in the problem of
Bermudan option pricing a few changes have to be made. Since there are some differences
in assumptions that can be made the a few key points of the algorithm should be revisited.
One of these changes regards the assumption about the value of the exposure at time tm
given Ftm . In the non Bermudan FX forward contract example case used in [JKK17] the
formula used for the expected exposure of the derivative at time tm given time Ftm is

EEtm(tm) =
1

N

N∑
i=1

EP
tm(Stm(i)),

=
1

N

N∑
i=1

h(Stm(i)),= V P
tm = Vtm .

Where the last equality can be made since the value of the FX forward contract does not
depend on the future values of the derivative, e.g. the continuation value. However, this is
evidently not the case for Bermudan derivatives. This means that that last equality does
not hold, therefore the following equation should be used, that uses the continuation value.

EEtm(tm) =
1

N

N∑
n=1

EP
tm(tm),

=
1

N

N∑
i=1

{
0 if exercised,
QP(Stm(n)) if not exercised,

,

=
1

N

N∑
n=1

{
0 if exercised,∑K

k=1 α
β,k
tm

EP[φk(Stm+1(n))|Stm(n)] if not exercised,

With αβ,k
tm

the regression coefficients satisfying

arg min
α
β
tm

|Btm (β)|∑
n=1

(
Vtm+1(S

β
tm+1

(n))−
K∑

k=1

αβ,k
tm

(k)φk(Sβ
tm+1

(n))

)2

,

From this new equation it is evident that for each time step one more regression is needed,
to compute the exposure under the P measure. Since this exposure value also depends
on the early exercise policy these values should be computed backwards in time. As all



50 5. Numerical KVA

the ingredients for this computation are in place during the SGBM valuation algorithm it
can efficiently be computed during the initial valuation run, for a very small increase in
computational costs.

Furthermore the regression target values used in the EEtm(tu) computation should be
reconsidered. The regression coefficient should now be calculated through a regression on
the EP

tu values and not the Vtu = EQ
tu

. So now the regression coefficients should satisfy

arg min
α
β
tm,tu

|Btm (β)|∑
n=1

(
EP

tu(S
β
tu
(n))−

K∑
k=1

αβ,k
tm,tu

(k)φk(Sβ
tu
(n))

)2

.

These coefficients are then plugged in into EE Equation 5.2.

5.4 Benefit of the hybrid measure

From the replicated results it can be observed that the use of the hybrid measure for the
KVA term can result in a lower price than the Q measure. Due to the fact that the KVA
term is based on the EEPE formula, which takes the integral of the maximum over in-
creasing time intervals, this term can be lowered if the maximum of these intervals can be
lowered. For this to happen the time tm conditional EE profile under P should have lower
maxima than the conditional EE profile under Q.

Since the historically observed volatilities are usually lower than those implied by the
market this will be assumed to be the case for the rest of this thesis, coinciding with mar-
ket convention. Thus he fact that σP < σQ gives that the option value under the historic
volatility is lower. This is due to the fact that when the volatility is higher, the chance that
the option ends up in-the-money is higher, and more likely with a greater payoff. Since
this does not hold for the other end of the spectrum as these payoffs are all zero, it is
evident that a lower volatility implies a lower price. This then results in a lower exposure
each time step.

As a reference value for the KVA-SGBM output value a lower bound can be constructed
by taking the maximum operator out of the expectation through use of Jensen’s inequality

KVACCR
0 =

∫ T

0

ct

∫ t+1Y

t

EQ
[

max
u∈[t,s]

EP[p0,tEu|Ft]

∣∣∣∣F0

]
dudt,

≥
∫ T

0

ct

∫ t+1Y

t

max
u∈[t,s]

EQ
[
EP[p0,tEu|Ft]

∣∣∣∣F0

]
dudt.

Then by considering there is only one measure the lower bound is approximated by

K̂VA
A
0 ≈

∫ T

0

ct

∫ t+1Y

t

max
u∈[t,s]

EA
[
EA[p0,tEu|Ft]

∣∣∣∣F0

]
dudt,

=

∫ T

0

ct

∫ t+1Y

t

max
u∈[t,s]

EA[p0,tEu

∣∣∣∣F0

]
dudt.

This approximation freezes the EEt0 -profile and using it subsequently for all the further
time steps, successfully eliminating the hybrid measure problem. Note that this is only a
lower bound for A ≡ Q ∼ P.
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5.5 Cases

For the case study the impact of the maturity time, moneyness and volatility on the KVA
charge will be analysed for the three different Bermudan options described in the previous
chapter. The tests are all setup with the following settings:

- The algorithm is run 30 times. The results are averaged and the standard deviation
of these values is estimated.

- The market is assumed to be stressed, thus the implied volatility is greater than the
historical volatility, and the PD intensity is modelled with h̄ = 0.1.

- The algorithm is run for N = 5·105 Monte Carlo sample paths, with monthly exercise
and observation times, ∆t = 1

12
.

- The algorithm is run with ν = 16 for the Black and Scholes Bermudan put, both single
and multidimensional as convergence for this amount of bundles has been established
in Chapter 4. For the Heston case the number of bundles is significantly increased to
ν = 128 by the same argument.

5.5.1 The Black and Scholes model test case

The first test case considers a monthly Bermudan put option on a stock which has an
implied volatility σQ = 0.4, a historical volatility of σP = 0.3, and uses the USD 12-month
LIBOR of r = 0.00277. The initial price is set to be S0 = 100. The effects of the moneyness
on the KVA of the the Bermudan put option are tested for three levels of moneyness: in-
the-money, at-the-money and out-of-the-money, with strikes of 80%, 100% and 120% of
the initial price respectively.

T = 0.5 T = 1 T = 1.5

Moneyness KVAQP
0 KVAQ

0 K̂VA
Q
0 KVAQP

0 KVAQ
0 K̂VA

Q
0 KVAQP

0 KVAQ
0 K̂VA

Q
0

ITM 0.0718 (0.0001) 0.0805 (0.0001) 0.0800 (0.0001) 0.3412 (0.0005) 0.3651 (0.0005) 0.3590 (0.0005) 0.7767 (0.0010) 0.8213 (0.0012) 0.8004 (0.0012)
ATM 0.0395 (0.0000) 0.0437 (0.0000) 0.0437 (0.0000) 0.2132 (0.0002) 0.2265 (0.0002) 0.2242 (0.0002) 0.5258 (0.0004) 0.5525 (0.0005) 0.5444 (0.0005)
OTM 0.0113 (0.0000) 0.0129 (0.0000) 0.0129 (0.0000) 0.0916 (0.0001) 0.0980 (0.0001) 0.0973 (0.0001) 0.2687 (0.0002) 0.2825 (0.0002) 0.2799 (0.0002)

Table 5.1: The hybrid measure KVA values compared with the Q-measure and the frozen EE KVA.
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Figure 5.4: The difference between the KQ
CCR

and KP
CCR values for each moneyness and maturity.

From Figure 5.4 A where the relative difference between the regulatory capital values
calculated under the P and Q, it is evident that the hybrid measure case is certainly not
trivial, as there is an apparent difference present in the KCCR values, for the Bermudan
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put option test case. That this use of a hybrid measure has a positive impact on the KVA
price can be seen from Table 5.1. There it is shown that the hybrid measure reduces the
KVA for every level of moneyness and maturity length.
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Figure 5.5: The KQ
CCR

and KP
CCR values for the three different levels of moneyness.

In Figure 5.5 the combined impact of the EEPE’s time horizon and the PD intensity
process are displayed, in the third panel. For the first two panel the time horizon spans the
complete duration of the option. However, for a maturity of T = 1.5 this changes. From
the t = 0.5 marker the increase in the KCCR becomes less or even starts to decay, which
results in a slower growth of the KVA for higher maturities. This change can be ascribed
to the EEPEś time horizon since the Unconditional EE profiles are very similar and do not
exhibit this decay, see Figure 5.6.
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Figure 5.6: The unconditional EEQ and EEP values for the three different levels of moneyness.
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5.6 The Heston model test case

The second test case to verify the KVA computation algorithm considers again a monthly
Bermudan put option, but this time the underlying dynamics are governed by Heston
model dynamics. The instantaneous implied volatility is vQ0 = 0.1 while the instantaneous
historical volatility is vP0 = 0.05. The other Heston model parameters are the mean-
reversion κ = 2, the volatility of the volatility γ = 0.3, the correlation ρ = −0.6 and the
spot price S0 = 10. Furthermore the USD 12-month LIBOR is used with r = 0.00277.
The model is run for three levels of moneyness of 80%, 100% and 120% of the spot price.

T = 0.5 T = 1 T = 1.5

Moneyness KVAQP
0 KVAQ

0 K̂VA
Q
0 KVAQP

0 KVAQ
0 K̂VA

Q
0 KVAQP

0 KVAQ
0 K̂VA

Q
0

ITM 0.0521 (0.0001) 0.0423 (0.0001) 0.0515 (0.0001) 0.2308 (0.0003) 0.2023 (0.0003) 0.2234 (0.0003) 0.4332 (0.0007) 0.4843 (0.0007) 0.4582 (0.0006)
ATM 0.0312 (0.0000) 0.0277 (0.0000) 0.0314 (0.0000) 0.1551 (0.0002) 0.1442 (0.0002) 0.1539 (0.0002) 0.3627 (0.0004) 0.3407 (0.0005) 0.3546 (0.0004)
OTM 0.0076 (0.0000) 0.0065 (0.0000) 0.0076 (0.0000) 0.0619 (0.0001) 0.0569 (0.0001) 0.0614 (0.0001) 0.1799 (0.0002) 0.1694 (0.0002) 0.1762 (0.0002)

Table 5.2: The hybrid measure KVA values compared with the Q-measure and the frozen EE KVA.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Time

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

K
C

C
R

Q
-K

C
C

R

P

ITM

ATM

OTM

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

K
C

C
R

Q
 -

 K
C

C
R

P

ITM

ATM

OTM

(b)

0 0.5 1 1.5

Time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

K
C

C
R

Q
-K

+
C

C
R

P

ITM

ATM

OTM

(c)

Figure 5.7: The difference between the KQ
CCR

and KP
CCR values for each moneyness and maturity.

Regarding Figure 5.7, the difference in regulatory capital between the values, calculated
by the hybrid historical parameters and the implied Heston parameters, is again present
for the Bermudan put option with the Heston model dynamics for the underlying asset.
This coincides with the results presented in Table 5.2. In that Table it is evident that the
use of the hybrid P in Q measure results in a systematically lower KVA value than the
values obtained through the implied volatility measure.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Time

0

0.5

1

1.5

2

2.5

K
C

C
R

ITM Q

ATM Q

OTM Q

ITM P

ATM P

OTM P

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time

0

1

2

3

4

5

6

K
C

C
R

ITM Q

ATM Q

OTM Q

ITM P

ATM P

OTM P

(b)

0 0.5 1 1.5

Time

0

1

2

3

4

5

6

7

K
C

C
R

ITM Q

ATM Q

OTM Q

ITM P

ATM P

OTM P

(c)

Figure 5.8: The KQ
CCR

and KP
CCR values for the three different levels of moneyness.

As was previously seen in the Black and Scholes test case it also holds for the Heston
test case that the origin of the difference between the hybrid measure and the single Q
measure KVA pricing lie in the EE calculation, see Figures 5.8 and 5.9.



54 5. Numerical KVA

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Time

0

5

10

15

20

25

U
n

c
o

n
d

it
io

n
a

l 
E

E

ITM Q

ATM Q

OTM Q

ITM P

ATM P

OTM P

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time

0

5

10

15

20

25

U
n

c
o

n
d

it
io

n
a

l 
E

E

ITM Q

ATM Q

OTM Q

ITM P

ATM P

OTM P

(b)

0 0.5 1 1.5

Time

0

5

10

15

20

25

U
n

c
o

n
d

it
io

n
a

l 
E

E

ITM Q

ATM Q

OTM Q

ITM P

ATM P

OTM P

(c)

Figure 5.9: The unconditional EEQ and EEP values for the three different levels of moneyness.

5.7 Conclusion

This chapter has successfully shown that it is possible to apply the KVA-SGBM for hy-
brid measure KVA calculations to the problem of Bermudan option pricing under both
the Black and Scholes model and the Heston model. By incorporating the early-exercise
effects of the Bermudan option into the exposure calculations the KVA-SGBM algorithm
can efficiently price the regulatory capital charge related to the CCR.

From the results in this chapter it is clear that the hybrid measure calculation has
an advantage over the Q measure calculation. As was shown, the Q measure estimation
overestimation of the cost of the regulatory capital related to the option. This is lowered
when the P measure is incorporated through the use of the historical volatility, noted that
this is volatility should lower than the implied volatility.

This effect is explained by the fact that when the volatility is higher, the probability
of the option ending up in-the-money is higher, and when this occurs it is likely to exceed
the strike price by a greater amount. On the other side of this also hold for the out-of-
the-money case. However, since the payoff value will be zero and does not depend on the
level of out-of-the-moneyness this effect is thus limited. This leads to the option to have
an increased value for an increased volatility.

For this thesis it was attempted to create another reference value through the use of the
fully nested Monte Carlo algorithm. The preliminary results showed that the KVA values
were quite comparable however the nested algorithm was still suffering from substantial
standard deviations. Since KVA calculation through use of both the single measure and
the frozen EEPE approaches already provided good reference values and due to the severe
computational costs of the nested algorithm when applied to Bermudan option pricing
these calculations are not included.



VI
Conclusion and outlook

6.1 Conclusion

T his thesis reviewed the application of the SGBM to the pricing of the counterparty
credit risk part of the KVA term as proposed in literature, [JKK17], and applied this

technique to the example problem of Bermudan option pricing. After starting with the
definition of the mathematical framework in which the value adjustments can be priced
and the construction of the KVA terms, two numerical methods, the SGBM and as a
benchmark the LSM, were presented to price Bermudan options under both Black and
Scholes and Heston dynamics. These methods were then compared against each other and
the convergence of the SGBM with respect to the number of bundles and basis functions
has been demonstrated. For the LSM the convergence with respect to number of Monte
Carlo paths, choice of - and number of basis functions.

The new part of this thesis has been the contribution of a case study performed on
Bermudan options. The original algorithm proposed in literature has been generalised to
also include Bermudan style derivatives through the alteration of the initial assumptions.
The case study proved that the pricing of KVA under the Q compared to the pricing under
the hybrid P in Q measure is certainly not trivial. The test cases of the modified algorithm
has shown that the use of a hybrid measure to price KVA could produce beneficial results
for Bermudan option pricing, as the hybrid measure KVA price is lower.

6.2 Outlook

Very little has been written about the calculation of the other KVA terms related to the
credit valuation adjustment, CVA, and the market risk, MR. There is no literature yet on
the computation of these terms through the efficient Greek calculation of the SGBM. In
[GKD14] Kenyon and Green refer to [GK15] to use two techniques to calculate these two
other KVA terms. It would be an interesting point to apply the SGBM for these calcu-
lations and offer an alternative to their proposed techniques since the SGBM is a highly
efficient algorithm.
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Appendix - A

A.1 Black and Scholes Geometric Average

Under GBM dynamics the asset prices are governed by

dSi
t = rSi

tdt+ Si
tσidW

i
t , i = 1, ..., d.

Where W i
t is a Brownian motion, the correlation is dW i

t dW
j
t = ρijdt, r is the risk-free

rate and σi the volatility. For the construction of the characteristic function a transition
is made to the log-process Xi

t = log(Si
t), which results in

dXi
t = (r − σ2

i

2
)dt+ σidW

i
t .

For this process Xtm is, given Xi
tm−1

, bivariate normally distributed,

Xtm ∼ N (Xtm−1 + µ,Σ)

The characteristic function of then is given by

ϕ(u; tm, tm+1,Xtm) = eiµu− 1
2
uΣu,

µ = Xi
tm +

1

d
(r − σ2

i

2
)∆t,

Σ =
1

d2

d∑
i=1

d∑
j=1

ρi,jσiσj∆t.

From this analytic formula the moments can be derived by using the relation defined in
4.4.2.

A.2 Heston

Under the Heston dynamics the asset prices are governed by

dXt = (r − vt
2
) + ρ

√
vtdW

1
t +

√
1− ρ2

√
vtdW

2
t ,

dvt = κ(θ − vt)dt+ γ
√
vtdW

1
t .
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For the one dimensional basis function

φk(Xt) = Xk
t , k = 0, ...,K,

the expectation functions are defined as

ϕk(Xt, vt) = EA[φk(Xt)|(Xt−1, vt−1)], k = 0, ...,K.

These moments can then be constructed out of the characteristic function of the Heston
model related to the one dimensional variable Xt defined as

ϕ(u; tm, tm+1, Xtm , vtm) = EQ[eiuXtm+1 |(Xtm , vtm)].

Since the Heston model is a special case of an affine model, it has been shown, [DPS00],
that the characteristic function has the log-linear form

ϕ(u; tm, tm+ 1, Xtm , vtm) = eÃ(∆t)+B̃1(∆t)Xtm+B̃2(∆t)vtm ).

where the coefficients are defined as

B̃1 = iu, B̃2 =
1

γ
(κ− iuγρ+D1)−

2D1

γ2(1−D2e−D1∆t)
,

Ã =
κθ

γ2
((κ− iuγρ−D1)∆t− 2 log(1−D2e

−D1∆t)

1−D2
),

D1 =
√

(κ− γρiu)2 + γ2(u2 + iu),

D2 =
κ− γρiu−D1

κ− γρiu+D1
.

From this analytic formula the moments can be derived by using the relation defined in
4.4.2.
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