The Effect of Automatic Stubbing on
Measurement of Energy Consumption

MASTER’S THESIS

J.M. Robeer

Utrecht University

Department of Information and Computing Sciences

July 20, 2018

Author

J.M. Robeer

Utrecht University
Student ID: 3802337

First Supervisor
dr. J. Hage
Utrecht University

Second Supervisor
dr. ir. JM.E.M. van der Werf
Utrecht University

First External Supervisor
ir. R. van Vliet
Centric

Second External Supervisor

dr. E.A. Jagroep
Centric, Utrecht University

N ;
% TL\::% Utrecht University ce n t r I c

engage.succeed.

ABSTRACT

Focus on sustainable software has been increasing the past few years. There
is a huge potential in the optimization of software applications for energy ef-
ficiency. Insight in the energy consumption of software applications is needed
for software producing organizations to optimize their applications for en-
ergy efficiency. In this thesis we propose an extensions to the Stubbed Energy
Profiling (StEP) method of Jagroep et al. by automating the creation of stubs
using the capture and replay technique. A tool is developed which imple-
ments the automatic creation of stubs. The tool and extended method are
used in a preliminary experiment and case study to show the feasibility of
the approach. The extended method reduces the manual effort required to
apply the StEP method, and enables the measurement of energy consumption
of software applications.

Abstract

Contents

List of Figures

List of Tables

1. Introduction

2. Background
2.1. GreenIT
2.1.1. Green Software.

Contents

2.1.2. Measuring Software Energy Consumption

2.1.3. Software Architecture
2.1.4. Software Testing
2.1.5. StEPMethod
2.2. The C# Programming Language
2.2.1. Language Concepts
2.2.2. Memory Management
2.2.3. The .NET Framework
2.2.4. Roslyn: the .NET Compiler Platform .

3. Research Approach
3.1. Research Questions
3.2. ExperimentSetup

3.3. Energy Consumption Measurement approach

viii

10
10

13
13
15
16

iii

Contents

4. Automatic Creation of Stubs

4.1. Approach oL

iv

4.2.
4.3.

4.4.
4.5.

4.6.

4.5.1.
4.5.2.
4.5.3.

4.1.1. Assumptionsl e e e e e e e
Using Capture and Replay to Automatically Create Stubs
4.2.1. TheRoleoftheEventLog
The Automated Stubbing Tool
The Automated Stubbing Tool: Command Line Application
The Automated Stubbing Tool: Event Log Interface

Interactionso
Encoding Interactions
Event Log Interface

The Automated Stubbing Tool: Instrumentation Logic

4.6.1.
4.6.2.
4.6.3.

Profiling
Extending the StEP Method
Measuring Software Energy Consumption.

5.1.
5.2.
5.3.

5.4.

Instrumentation0 e
Instrumentation withRoslyn
Using the Semantic Model to Guide Instrumentation

Measuring Software Energy Consumption of Instrumentation

5.3.1.
5.3.2.

Software Energy Consumption of Capture
Software Energy Consumption of Replay

Measuring Software Energy Consumption of the Functional Element

Experiments

6.1. Introduction e e e e e e e e e
6.2. Applying the StEPMethod

6.3.

6.2.1.
6.2.2.
6.2.3.
6.2.4.
6.2.5.
6.2.6.
6.2.7.
Results
6.3.1.
6.3.2.

Select Functional Elements
Adapt Architectural Description
Create Test Scenario
Determine Measurement Approach
Profile Baseline,
Introduce and Profile Stubbed Versions
Annotate Architectural Description
ExperimentsIa e
Experiments Ib: External Factor

19
19
20
21
22
22
23
23
24
25
27
28
28
29
33

6.3.3. ExperimentsII
6.4. DiSCUSSIONo e e e
6.4.1. Duration of Experimentsla
6.4.2. Influence of the Garbage Collector in Experiments Ib . . .

6.4.3. Software Energy Consumption of the Functional Element

6.4.4. Performance
6.5. Reflection on Experiments

7. Case Study

7.1. Introduction
7.2. Applying the StEPMethod
7.2.1. Select Functional Elements
7.2.2. Adapt Architectural Description
7.2.3. Create Test Scenario
7.2.4. Determine Measurement Approach
7.2.5. ProfileBaseline
7.2.6. Introduce and Profile Stubbed Versions
7.2.7. Annotate Architectural Description
7.3. Idle and Load Energy Consumption
74. Results L
7.4.1. ExperimentsIa
7.4.2. Experiments Ib: External Factor
7.4.3. Experiments II: MongoDB on the Same Server
7.4.4. Experiments III: AManual Stub
7.5. Discussion
7.5.1. The Impact of Two Network Interfaces
7.5.2. Using a Single Network Interface
7.5.3. Software Energy Consumption of Motion
7.5.4. Performance
7.6. ReflectiononCaseStudy

8. Conclusions

8.1. FutureResearch v v v v i v i

A. Instrumentation Examples

B. Experiment Results

Contents

Contents

C. Case Study Results

References

vi

81

87

List of Figures

2.1. StEPmethod. 8
4.1. Capture and replay method. L. 21
4.2. Automated Stubbing tool process.o 23
4.3. C# field and function members syntax relationships. 24
5.1. StEP Method combined with Automated Stubbing. 36
5.2. Expected software energy consumption of the stubbed versions. 38
6.1. Experiment environment.ttt e e 44
6.2. Software energy consumption of experimentsIa. 46
6.3. Software energy consumption of experimentsIb. 48
6.4. Software energy consumption of experiments II. 49
6.5. CPU utilization and memory usage of an experiment run. 51
6.6. Generational Garbage Collector memory usage pattern. 52
7.1. Adapted architectural description of Motion. 57
7.2. Apache JMeter test case activities. 57
7.3. Case study environment. e u e e e 58
7.4. Experiment run duration of case studyla. 61
7.5. Software energy consumption of case studyla. 62
7.6. Experiment run duration of case study Ib. L. 63
7.7. Software energy consumption of case studyIb. 63
7.8. Experiment run duration of case study IL. 64
7.9. Software energy consumption of case study II. 64
7.10.Experiment run duration of case study II. 65
7.11.Software energy consumption of case study IIL. 65
7.12.Distribution of case study Ia duration. 66
7.13.Network usage pattern of case study Ia. 67

vii

List of Figures

7.14.Cumulative energy consumption of case study Ib

viii

3.1.

6.1.
6.2.
6.3.

6.4.
6.5.

7.1.

B.1.
B.2.
B.3.

C.1.
C.2.
C.3.
C.4.
C.5.
C.6.
C.7.
C.8.

List of Tables

Specification of systems available for research. 16
Software energy consumption of experimentsIa. 46
Software energy consumption of experimentsIb. 47
Software energy consumption of the MD5 message-digest application in

experimentsIb.. L L o 47
Software energy consumption of experiments IL. 49

Software energy consumption of the MD5 message-digest application in
experiments IL. L e e e 49

Power consumption of HP DL360 G7 servers in the experiment environment. 60

Performance measurements of experimentsIa. 79
Performance measurements of experimentsIb. 80
Performance measurements of experiments IL. 80
Performance measurements of case study Ia of the Application server. . . . 82
Performance measurements of case study Ia of the Database server. 82
Performance measurements of case study Ib of the Application server. . . . 83
Performance measurements of case study Ib of the Database server. 83
Performance measurements of case study II of the Application server. . . . 84
Performance measurements of case study II of the Database server. 84
Performance measurements of case study III of the Application server. . . . 85
Performance measurements of case study III of the Database server. 85

ix

Chapter 1

Introduction

With the rise of energy consumption, sustainability is gaining more and more attention.
Growth of renewable energy resources such as solar power and wind power, is surpassing
the growth of traditional energy resources such as fossil and nuclear energy over the past
decade [2]. Because Information Technology (IT) solutions are ubiquitous, sustainability
has attracted the attention of researchers. Research focuses on creating a more sustain-
able environment with the help of IT solutions, and by optimizing the energy efficiency
of IT solutions. There is a huge potential for the optimization of energy efficiency of IT
solutions, because software can account for up to 66 % of the energy consumption of
systems [3].

Following up on the work of Jagroep [4], we will consider in detail how to automate
energy consumption measurements of realistic software applications under development
at the case company Centric. The goal is to assist developers in measuring the energy
consumption of software components within applications during the development pro-
cess, to optimize the energy efficiency of the applications. In this thesis, we continue on
the work “The Hunt for the Guzzler : Architecture-based Energy Profiling using Stubs” by
Jagroep et al. [1]. The StEP (Stubbed Energy Profiling) method proposed in their paper
is extended such that it can be applied in an automated fashion.

In Chapter 2 we give an overview of the current state of the research on green soft-
ware, and introduce concepts used by the method proposed in this thesis. Chapter 3
outlines the research approach used. We formulate the research questions which we will
attempt to answer in this research. Chapter 4 presents the method developed to automate
the creation of stubs, and discusses the tool which implements the method. Chapter 5
describes the extensions to the StEP method, illustrating how software energy consump-
tion measurements should be performed when using the method proposed to automate

1. Introduction

the creation of stubs. In Chapters 6 and 7 the proposed method is tested using a set of
experiments and a case study to determine the feasibility of applying the method. Chap-
ter 8 concludes this thesis by summarizing the presented work, answering the research

questions, and outlining opportunities for future research.

Chapter 2

Background

In this chapter we discuss the background presented in literature on the main topics used
throughout the Master’s Thesis. First, in Section 2.1 we discuss the background of the field
of Green IT. Second, in Section 2.2 we discuss the background of the C# programming
language, which is used for the method proposed in the following chapters.

2.1. Green IT

The field of Green IT proposes a holistic approach to follow toward creating a more sus-
taining environment [5]. The holistic approach encompasses four paths to follow: usage,
disposal, design, and manufacturing of IT systems in a sustainable manner [5]. Green IT
can be divided into greening by IT and greening of IT [5]. Greening by IT is applying IT
systems, within IT and other fields, to create a more sustainable environment. Greening
of IT is optimizing IT systems for sustainability to create a more sustainable environment.

There has been a focus on the greening of hardware for years, the focus on greening
software is behind that of greening of hardware [6]. Major gains are still to be made in
greening software, as software remains the main contributor of consumed energy in IT
[5, 7]. For example, software can account for up to 66 % of the energy consumption of
systems [3], which demonstrates the potential for the greening of software.

2.1.1. Green Software

Green software is defined as “software, whose direct and indirect negative impacts on
economy, society, human beings, and environment that result from development, de-
ployment, and usage of the software are minimal and/or which has a positive effect on
sustainable development” [8]. The definition of green software encompasses the four

2. Background

dimensions of sustainability: economic, social, environmental, and technical [6]. Green-
ing of software focusses on the environmental dimension of sustainability by optimizing
software to reduce energy consumption. Thereby, reducing the carbon dioxide emission
that can be attributed to the software, and resulting in a more sustainable environment.

The focus on the environmental dimension also impacts the three other dimensions.
To give an example. To perform the software optimizations, the developers of the soft-
ware choose for some set of libraries to use in their software which are known for their
low energy consumption. The choice for the set of libraries affect the long-term use of
the software, as the software depends on the (active) development of the libraries (tech-
nical dimension). Reducing the energy consumption of the software contributes to an
decrease of the cost of software (economic dimension), which results in capital which
can be invested in new employees (social dimension).

A lot of effort has been put in reducing the energy consumption of hardware, how-
ever software is the true consumer of energy in systems [9] data centers running cloud
applications on thousands of servers form the backbone of the fast-growing IT industry
[10]. Greening these data centers provide a huge potential for energy savings [10, 11].
Deploying green software on data centers benefits the progress towards the sustainable
goal of Green IT [9].

2.1.2. Measuring Software Energy Consumption

Accurate energy consumption measurements are required to create energy-aware opti-
mizations when developing green software [12]. Measuring software energy consump-
tion can be grouped into three categories: hardware measurements, power models, and
software measurements [13].

Hardware measurements offer high-precision measurements, but at the cost of course-
grained measurements as they only measure the energy consumption of the system as a
whole. Power models estimate the energy consumption based on mathematical models.
The models are often too generic, or dependent on a specific platform [13]. Software
measurements — also known as energy profilers (EPs) — use statistical sampling or code
instrumentation. They decompose energy consumption for each resource utilized by the
software. For example, using CPU utilization and Random Access Memory (RAM) usage.
Energy profilers often include power models to compute the energy consumption estima-
tions [13]. The resource utilization of software measured by the EP is used as input for
the power model.

Of the three categories, according to Noureddine et al. [13], software measurements
are the most promising approach. The works of Jagroep et al. [1] can be categorized

2.1. Green IT

under software measurements. Hardware measurements are used by Jagroep et al. to
validate and calibrate the software measurements.

Various energy profilers have been reviewed and compared in recent research [13, 14].
Although energy profilers still have their shortcomings [14], this can be overcome by also
including hardware measurements. Jagroep et al. found significant differences in the en-
ergy measurement of energy profilers compared to the actual energy consumption [14].
By also including hardware measurements, the measured difference in energy consump-
tion can be corrected for.

2.1.3. Software Architecture

Software architecture in relation to Green IT can be divided into three areas of contribu-
tion: quality attributes, software architecture perspectives, and tactics. The contributions
follow the software architecture guidelines of Rozanski and Woods as presented in [15].

Quality Attributes
To position sustainability within software architectures, existing literature proposes sus-
tainability as a quality attribute (QA) [6, 16]. The proposals in the literature follow the
format of ISO 25010, the standardized quality model of software products [17]. A qual-
ity attribute is a “measurable or testable property of a system that is used to indicate how
well the system satisfies the needs of its stakeholders” [18]. By including sustainabil-
ity as a quality attribute in the software architecture, trade-offs can be made during the
software development process to satisfy the target sustainability of a software product.
Software energy consumption can be positioned as part of the sustainability quality
attribute, along with its measures and measure elements. The measures include soft-
ware utilization measurements, energy usage, and workload energy of tasks. This allows
software energy consumption to be quantitatively evaluated [16].

Software Architecture Perspectives

The software energy consumption perspective [16] provides a means to identify, measure
and analyze the architectural elements behind energy consumption. The perspective en-
ables stakeholders to consider sustainability as part of the design of a software product.
To apply the software energy consumption perspective a set of activities is provided by
the authors [16]. Creating an energy profile of the software product is one of the ac-
tivities. The energy profile relates the software architectural elements to their energy
consumption. It is constructed by performing software energy consumption and perfor-
mance measurements.

2. Background

Tactics

To address the concerns of the stakeholders in the software architecture various tactics are
proposed [16, 19]. The tactics provide guidelines how the desired effect of sustainability
as a quality attribute can be attained. The proposed set of tactics is not yet complete, and
are subject to further research [16].

2.1.4. Software Testing

Automating software testing has been extensively researched for the past four decades
[20]. Research has focused on: the test oracle problem [20], the generation of input for
test cases [21], the extraction of software interfaces [22], and the automatic generation
of unit tests [23]. In many areas of software testing research human input is often still
required to determine whether the observed behavior in tests is correct.

The automatic generation of unit tests is performed for test factoring to increase test ef-
ficiency, or for exploring behavior not exercised by existing unit tests [23]. Test efficiency
is creating and running tests more efficiently [23]. Test factoring creates unit tests from
system tests, where each unit test exercises a subset of the behavior of the system test
[24]. Exploring behavior not exercised by existing unit tests can be done by modifying
the state of objects to explore new paths (OCAT [25]), or by mining dynamic traces of
program executions (DyGen [26]).

Test factoring creates unit tests automatically by applying the capture and replay method.
The created unit tests contain stubs which simulate the environment of the software el-
ement under test. A stubbed software element replaces some software element by sim-
ulating its functionality [27]. Capture and replay does not modify the original behavior
of the program under test.

Capture and Replay

Capture and replay is a technique to improve test efficiency, traditionally used for graph-
ical user interface (GUI) or web application testing, by creating and running test inputs
more efficiently [23]. For example, the technique can be used to automatically create
unit tests from the execution of a regression test or a system test.

The technique consists of two phases. First, the capture phase monitors the interactions
between the element(s) under test and its environment during execution of the software
system. Based on the monitored interactions, unit tests are generated for the element(s)
under test. Each unit test uses the monitored interactions of the element under test as
test input, and provides test oracles based on the return values of the elements. Second,
the replay phase reruns the created unit tests.

2.1. Green IT

Various researchers applied the capture and replay technique to software testing. Saff
et al. [24] applied the capture and replay technique to automatically create unit tests from
system tests for Java applications, showing the feasibility of using the capture and replay
method to automate test creation. Orso et al. [28] propose an extension of the capture
and replay technique to increase efficiency, by capturing a minimal subset of the state of
the application and environment suitable for replay. The increased efficiency results from
decreasing the overhead of the capture and replay method at execution time.

2.1.5. StEP Method

The Stubbed Energy Profiling (StEP) method enables software producing organizations to
“create an in-depth energy profile of their software products” [1]. The method measures
energy consumption of software elements by comparing a benchmarked version of the
software product to a version where some selected software element is stubbed. The
difference in energy consumption between the benchmarked version and the stubbed
version indicates the software energy consumption of the software element. The StEP
method is applied manually by Jagroep et al. in their evaluation of the method.

Besides measuring the difference in energy consumption between the benchmarked
and stubbed versions of the software product, the StEP method consists of eight activities
in total [1]. The final three activities are repeated for each of the functional elements
selected during activity 2. Figure 2.1 illustrates the StEP method activities.

1. Select the functional elements that should be prioritized for testing, in relation to
an energy requirement of the software architecture;

2. Adapt the architectural description to identify the places where the stubbed soft-
ware elements are required, and to identify what stubs can be created for the dif-
ferent functions of software elements;

3. Create test case(s) that execute the functional elements identified in the previous
step. Where possible, (re)use existing tests to minimize the impact of applying the
StEP method on the software development process;

4. Determine measurement approach based on the test cases(s), and identify the met-
rics that should be measured to quantify the energy requirement;

5. Profile the benchmark version of the software product by performing the test case(s)
on the non-stubbed version;

6. Introduce the stub into the software product by stubbing an identified functional
element;

7. Profile the stubbed version in the same manner as the benchmark version was pro-

2. Background

filed;
8. Annotate the architectural description by including the energy consumption that
was caused by stubbing a functional element.

’

Select functional elements

il

Adapt architectural description

il

Create test case —

il

Determine measurement
approach

il

Profile baseline

[Improvements_ |
required]

Introduce stub in software
product

il

Profile stubbed version

il

Annotate architectural description

[Additional
elements to profile]

Figure 2.1.: StEP method, after [1].

2.2. The C# Programming Language

In this section we introduce the C# programming language, the .NET Framework on
which programs written in C# run, and the compiler platform of the .NET Framework.
We use the C# 6.0 specifications when referring to concepts of the C# programming
language. However, as the C# 6.0 specification [29] is a draft at the time of writing,
we refer to the C# 5.0 standard specification [30] whenever concepts have not changed

between the versions of the specification.

2.2. The C# Programming Language

2.2.1. Language Concepts

Executable code in C# programs is contained in assemblies: “one or more files output by
the compiler as a result of program compilation” [30]. Assemblies are either class libraries
(.d11 which can be used by other applications), or an application (.exe) [30].

A C# program is organized using namespaces, which can contain nested namespaces
and type declarations [30]. A type declaration defines a class, struct, interface, enum, or
delegate [30]. Types are either reference types or value types [30, Ch. 9]. Value types
directly contain their data, whereas reference types store references to their data [30].
We refer to objects when discussing structs and classes. Struct type declarations are value
types, and class type declarations are reference types [30].

Depending on the type declaration, a type declaration can contain various kinds of
members. Members of classes and structures are either data members, which store the
data contained in the type, or function members, which contain executable statements
[30]. Moreover, members can be declared as a static member or an instance member [30].
Static members are declared with a static modifier, and are bound to the type declara-
tion; they are shared among all instances of the type declaration. Instance members are
bound to instances of object types, and operate on a specific instance thereof.

Whether or not a member declaration is accessible from other parts of the program is
determined by the declared accessibility of the member [30]. The declared accessibility is
determined by one of the following access modifiers on the member declaration: public,
private, protected, internal, or protected internal.

Type declarations can be split over multiple C# source files by including the partial
modifier to each part of the partial type [30]. The partial definitions of a type declaration
are merged at compile-time.

2.2.2. Memory Management

Memory is managed automatically for C# applications, which is implemented by a garbage
collector [30, Sec. 8.9]. The garbage collector manages the allocations of objects, and
reclaims the memory of objects that are no longer used by the application [31]. Alloca-
tions and deallocations of objects are performed in a managed heap in memory. Garbage
collection is performed in two parts [32]:

1. Garbage detection: determine which objects in memory are live—allocated objects
reachable by some path of execution in the application code—and which objects
are garbage;

2. Background

2. Garbage reclamation: free the memory of objects that are no longer accessible by
the application.

The garbage collector implements generational collection [31, 32]. The managed heap
is divided in generations which separates objects by age. The garbage collector used
by C# has three generations: generation O, 1 and 2 [31]. Generation O contains the
youngest and short-lived objects, and generation 2 contains the olders and long-lived
objects. Generation 1 acts as a buffer between the short-lived and the long-lived objects.
When an object is not reclaimed by the garbage collector, it is advanced to the next
generation. Objects in the final generation remain in the final generation until they are
reclaimed. Garbage collection is performed more frequently for young objects, as most
objects live a very short time [32].

2.2.3. The .NET Framework

The .NET Framework supports the building and running of applications developed in C#,
F#, Visual Basic, and C++/CLI [33]. The .NET Framework has two main components:
the Common Language Runtime (CLR) [34], and the .NET Framework class library [33].

The Common Language Runtime manages and executes code written for the .NET
Framework [35]. It is an implementation of the Common Language Infrastructure (CLI)
[35], as specified in the ECMA-335 standard [36]. It provides services such as code
execution, memory management, thread management, and exception handling [34].

The .NET Framework class library is a collection of object-oriented reusable types for
the use with the Common Language Runtime [33]. It provides types commonly used
when programming, such as: string management, data collection, serialization, and file
I/0.

2.2.4. Roslyn: the .NET Compiler Platform

The Roslyn .NET compiler platform exposes the internals of the .NET C# and Visual Basic
code analysis APIs [37]. It is extensively used for various Microsoft Visual Studio features
such as: IntelliSense, code refactoring, and renaming [37]. Furthermore, it exposes an
interface for interacting with MSBuild, the build tool used by Microsoft Visual Studio for
compiling applications for the .NET Framework [38].

Roslyn is divided into four APIs, each which expose a subset of the code analysis func-
tionality of the compiler [37].

* Compiler APIs. Exposes the syntactic and semantic objects models that the com-
piler uses internally.

10

2.2. The C# Programming Language

* Workspace APIs. Organizes information about Visual Studio solutions, projects,
and documents contained in such project. For example, a C# source file (.cs) is a
document that is part of a project.

* Diagnostic APIs. Information emitted by the compiler about warnings, errors and
improvements found during compilation of the source code of programs. Allows
user-defined analyzers to plug-in into the compiler, and produce user-defined diag-
nostic information.

* Scripting APIs. Allows hosted runtime execution of snippets of C# and Visual Basic
in user programs.

Roslyn performs compilation in a three-step process [39]:

1. Parsing of source code files into syntax trees (syntactic model);

2. Binding source code elements to symbols (semantic model);

3. Emitting the compiled code in the Intermediate Language (IL) format to an assem-
bly.

Syntax Model

The syntactic model of a program is represented by a syntax tree. A syntax tree consists
of three distinct elements: syntax nodes, syntax tokens, and syntax trivia [37]. Syntax
trees hold all information about the source code, including errors found during parsing,
and can be transformed back exactly to the original source code [37].

Syntax nodes are the non-terminal nodes of syntax trees. They represent syntactic
information, such as declarations, statements and expressions [37].

Syntax tokens are the terminal nodes of syntax trees. They represent syntactic termi-
nals, such as keywords, identifiers and literals [37]. Terminals are the elemental symbols
of a language as defined by its grammar [40].

Syntax trivia are parts of the source code which are not part of the language syntax
[371, such as comments and whitespace.

Semantic Model

The semantic model of a program is represented by its compilation. A compilation con-
tains all (external) references, compilation options, and source code files [37]. Addition-
ally, a compilation stores a set of symbols.

A symbol represents semantic information about some element declared in a source file
or referenced from an imported assembly [37]. Furthermore, symbols contain additional

11

2. Background

information determined by the compiler during compilation; where it is defined in the
source code; and, can be used to find references between symbols.

12

Chapter 3

Research Approach

The research that we present is divided into three phases. First, a software tool is devel-
oped to automatically generate stubs of functional components for software products for
which we want to determine the software energy consumption. Second, a set of exper-
iments is performed to show the feasibility of measuring software energy consumption
using the StEP method and stubs generated by our software tool. Third, a case study is
performed with a software product from the case company to show that, by improving
the StEP method using automatically generated stubs, we can reduce the effort required
to apply the StEP method. The experiments and case study follow the guidelines provided
in [41].

In this chapter we discuss the research approach that we use for the research presented
in this Master’s Thesis. Section 3.1 formulates the research questions that we aim to
answer. Section 3.2 discusses the hardware setup that is used to perform the experiments
and case study to measure the software energy consumption. In Section 3.3 we discuss
the method that we apply to measure software energy consumption.

3.1. Research Questions

This research focuses on automating the measurement of the energy consumption of
software architectural components as defined in the StEP method, as discussed in Sec-
tion 2.1.5. As noted by Jagroep et al. [1], the creation of stubs in the StEP method remains
time consuming and is subject to improvement. We aim to automate the creation of stubs
by applying the Capture and Replay method as discussed in Section 2.1.4. We formulate
a research question (RQ).

13

3. Research Approach

RQ1: How can we automatically measure the energy consumption of software ar-
chitectural components within the software development process by stubbing?
Measuring the energy consumption of software architectural components remains a time
consuming and manual effort. By applying the Capture and Replay method to the StEP
method, and studying its effects in relation to the software energy consumption, we aim
to reduce the manual effort.

The Capture and Replay method is chosen based on the software developed at the case
company, and based on the software development process used at the case company. They
are familiar with tools which apply the Capture and Replay method to test the software
applications under development. In consulation with the case company, we determined
the Capture and Replay method to be the most feasible approach for automating the
creation of stubs.

To answer the research question, six sub questions (SQs) are formulated. Each question
is individually addressed below.

SQ1: How can we automate the creation of stubs in the StEP method by
applying the Capture and Replay method?

Applying the capture and replay method requires the modification of soft-
ware, which can be done using a variety of techniques. Furthermore, both
the capture and replay phase are configurable in terms of what to capture,
how to store the captures, and how to play them back.

SQ2: How do we isolate the software architectural components to mea-
sure its energy consumption as accurately as possible?

The energy consumed by a software architectural component is not necessar-
ily confined to the component itself. The component might cause side effects,
where energy consumption changes happen outside of the reach of the soft-
ware architectural component. Measuring energy consumption accurately re-
quires an isolation of where the energy consumption happens.

SQ3: How do we measure the impact of instrumentation on the energy
consumption?

Instrumentation can be added to existing source code or programs by vari-
ous means of modification. Adding instrumentation introduces an overhead
on energy consumption in the energy profile of the program. To accurately
measure the energy consumption of a software architectural component the
overhead introduced by instrumentation must be identified.

14

3.2. Experiment Setup

SQ4: How do we measure the impact of the replay on the energy con-
sumption?

The replay of the captured interactions consumes energy by reading from the
log. Measuring the energy consumption of the capture phase is possible, by
comparing the unmodified program to the program with the capture phase
built in. For the replay phase there is no benchmark to compare against, hence
a different approach is required to gain insight into the energy consumption
of the replay phase.

SQ5: How do side effects of components influence the energy consump-
tion during capture and replay?

Side effects of the software architectural component that is being investigated
can indirectly lead to changes in energy consumption of other software archi-
tectural components, or of different systems. For example, when the software
architectural component uses a database that is deployed on a different server.

SQ6: What are effective ways to show the measured energy consumption
during the software development process?

The StEP method communicates the measured energy consumption of the se-
lected functional elements by annotating the architectural description. Mak-
ing such an annotation is often done manually. Providing direct feedback of
the energy consumption changes might be better suited to fit the automated

process.

3.2. Experiment Setup

The experiment setup is built according to the guidelines of Jagroep et al. [1, 16]. Ta-
ble 3.1 summarizes the specifications of the systems available for the research. A total of
six servers are available, three HP DL380 G5 servers and three HP DL360 G7 servers. De-
pending on the requirements of experiments to be performed, the HP DL380 G5 servers,
the HP DL360 G7 server, or a combination of both servers can be deployed for the test and
control servers. Two Watts UP? PRO (WUP) meters are available to perform power mea-
surements, that can be placed between the power lines of the test servers. Furthermore,
a laptop is available for development and remote control of the server systems.

15

3. Research Approach

Laptop Server Server
Model Dell Latitude 5580 HP DL380 G5 HP DL360 G7
Operating System Windows 10 Windows Server 2008 Windows Server 2016
Processor Intel Core i5-7200U Intel Xeon E5335 Intel Xeon E5645
Memory 8 GB DDR4-2400 8 GB FB-DDR2 42 GB, 36 GB, 24 GB
DDR3-1333

Table 3.1.: Specification of systems available for research.

3.3. Energy Consumption Measurement approach

Profiling a software product to measure software energy consumption requires a mea-
surement approach to ensure consistency. Following the methods described in [1, 16],
the measurement approach consists of five aspects.

Energy consumption measurements

Energy consumption measurements are taken using a combination of hardware and soft-
ware measurements. A Watts UP? PRO (WUP) power meter device is used to perform the
hardware measurements. Microsoft Joulemeter energy profiler performs the software
measurements on the test servers.

Performance measurements

Hardware performance is recorded to accurately relate energy consumption measure-
ments to individual software elements [42]. Following the Unit Energy Consumption
definition [16], the following hardware resources will be monitored using performance
counters:

CPU: utilization %.

* Memory: working memory bytes.

Disk: bytes read/sec, bytes write/sec.
Network: bytes sent/sec, bytes received/sec.

Idle energy consumption and cooldown time

Calculating the software energy consumption requires us to know the idle energy con-
sumption for the hardware [42]. The idle energy consumption needs to be determined
for each piece of hardware, by performing energy consumption measurements on the
hardware that is running without any active software. Measurements for the idle energy

16

3.3. Energy Consumption Measurement approach

consumption need to include the measurement software, as the measurement software
itself causes energy consumption as well.

Furthermore, the cooldown time of the systems after a reboot need to be determined
[42]. After a reboot, various processes and services related to the operating system are
active on the systems. The energy consumption of these processes and services would
pollute the energy consumption measurements. The period until when these processes
and services become inactive is the cooldown time.

Data synchronization

Energy consumption and performance measurements are taken from multiple systems.
For the measurements to be compatible, they need to be synchronized. Synchronization
of the clocks of the systems is done using the Network Time Protocol (NTP).

Measurement protocol

To perform reliable measurements and ensure consistency between measurements we
use the following measurement protocol, based on the measurement protocol followed
by Jagroep et al. [1]:

Restart the test server.

Close unnecessary applications, services and processes.

Remain idle for the duration of the cooldown time.

Start Watts UP? PRO, Joulemeter, and performance measurements.
Start test and wait for test to finish.

Collect data.

A

17

Chapter 4

Automatic Creation of Stubs

The effort required to apply the StEP method is one of its largest limitations [1]. A major
contributor to this limitation is the creation of the required stubs. Depending on the
functional element that is to be stubbed, creating an implementation for the stubs could
become very complex.

The effort required to apply the StEP method can be reduced by automating the cre-
ation of stubs, thereby tackling one of the largest limitations of applying the StEP method.
The goal of this chapter is to answer the first research sub question.

SQ1: How can we automate the creation of stubs in the StEP method by applying
the Capture and Replay method?

This chapter is organized as follows. Section 4.1 introduces the approach that we take
to automate the creation of stubs. Section 4.2 explains how we apply the Capture and
Replay method within the presented approach. Sections 4.3 to 4.6 discuss the implemen-
tation of the Automated Stubbing tool.

4.1. Approach

To automate the creation of stubs we apply the Capture and Replay method [24, 28].
Given a selected functional element for which we want to identify the software energy
consumption, as determined in the StEP method, the Capture and Replay method is used
to generate stubs by building two versions of the selected functional element. First, we
create a version where the selected functional element is modified by inserting instru-
mentation statements for the capture of program traces. Second, we create a version
where the selected functional element is replaced by a functional element which exposes
an identical interface, but which replays the captured program traces.

19

4. Automatic Creation of Stubs

Four versions of the program play a role in determining the software energy consump-
tion:

Baseline version. The unmodified version of the program, which provides the baseline
for the software energy consumption measurements.

Capture version. The program modified for capture of the interactions of the selected
element.

Replay version. The program modified for the replay of the captured interactions.

Baseline+Replay version. The program modified for the replay of the captured interac-
tions, whilst preserving the computations of the baseline version.

By measuring and comparing the software energy consumption of the four versions of
the program we can determine the software energy consumption of the selected func-
tional element. Compared to the StEP method, an extra step of profiling needs to be
performed. We discuss the method of acquiring and computing the software energy con-
sumption when using the Automated Stubbing method in Chapter 5.

4.1.1. Assumptions

The Automated Stubbing approach that we present works under the following assump-
tions.

First, we assume that side effects of interactions are limited to the state of the selected
functional element. We can inspect the interal state of the selected functional element,
however, it is not straightforward to determine which side effects happen outside of the
state of the selected functional element. We leave it up to the users of the Automated
Stubbing approach to identify suitable functional elements with limited side effects.

Second, we assume that the order in which the interactions take place that are captured
and replayed is deterministic. Concurrent interactions which result in non-linear orders
are not supported. The replay performs the captured interactions in the same linear order
as they were captured. Would concurrent interactions cause a different order, then the
replay run will be ignored. This simplifies the replay of the interactions, and allows us to
verify that we are replaying the same execution of the captured interactions over multiple
replay runs.

Third, we assume that the replay stub of the selected functional element removes any
heavy computations from the element. The resource utilization and software energy con-
sumption of the replay stub is expected to be significantly lower compared to the resource
utilization and software energy consumption of the Baseline and Capture versions of the
program.

20

4.2. Using Capture and Replay to Automatically Create Stubs

4.2. Using Capture and Replay to Automatically Create Stubs

The Capture and Replay method consists of the capture phase and the replay phase [28].
First, the capture phase monitors the interactions between some selected functional el-
ement and its environment during the execution of the software system. Based on the
monitored interactions a stub of the selected functional element is generated. Second,
the stub of the selected functional element replays the captured interactions.

Figure 4.1 illustrates the Capture and Replay method. Within the program, element
M is some selected functional element for which we want to capture and replay its inter-
actions. Interactions are sequences of program instructions that expose a set of function-
alities within the program. Element M’ is the stub of the selected functional element M
modified for replay of the captured interactions. The dark grey area around M and M’ is
the boundary on which the interactions between the element and its environment take
place. The environment consists of all functional elements of the program, including all
functional elements in standard and third-party libraries, besides the selected functional
element M. The input of the program is provided by a test case. The event log stores all
captured interactions, which can later be retrieved for replay.

Input — Output Input —H — Output
N N]
— Event Event —H
Log Log
Program __/ __/ Program
(a) Capture phase (b) Replay phase

Figure 4.1.: Capture and replay method, after [28].

Both the capture phase and the replay phase consist of three steps [28]. The first two
steps in both phases are equivalent. The capture and replay method is performed for a
selected functional element under test.

1. Identify the interactions between the element and its environment;
2. Instrumenting the application code;
3. Capture or replay interactions between the element and its environment:

a) Capture interactions at runtime, and output captured events to an event log.
b) Replay captured interactions from an event log.

21

4. Automatic Creation of Stubs

The Automated Stubbing tool implements the steps of the capture and replay phases
for the automatic creation of stubs. The final step of the capture and replay method is
performed when the profiling of the stubbed version of the application is performed, as
part of the StEP method.

4.2.1. The Role of the Event Log

Multiple approaches can be taken to implement the event log. Most importantly, the
interactions that are captured have to persist between the capture phase and the replay
phase. The approach taken during capture may differ from the approach taken during
replay.

For example, the captured interactions can be stored in a file on disk, or in some
database. During replay the interactions can be replayed by providing a replay scaffold-
ing — interactions are collected from the event log at runtime and replayed accordingly
[28] — or by implementing a mock object [24] in which the event log is compiled as a
lookup table as part of the object.

The Automated Stubbing method presented in this chapter uses the replay scaffolding
approach. Replay scaffolding allows for more flexibility compared to a mock object. First,
capture and replay can be performed for many different inputs without having to recom-
pile the stubbed versions of the application. The replay scaffolding replays the events
from the event log regardless of how many captures are performed, whereas a new mock
object is to be created if the capture differs. Second, even though a mock object imple-
mentation can provide a lookup in O (1) time — e.g. when using a perfect hash function
— creating such a mock object can become difficult when dealing with increasingly large
event logs. If the size of the event log becomes too large, the compiler might not be able
to produce an assembly.

4.3. The Automated Stubbing Tool

The method proposed in this chapter is implemented in an automatic stubbing tool de-
veloped in C#, and supports the automated creation of stubs for programs written in
the C# programming language. The tool implements the process shown in Figure 4.2.
Based on the selected functional element, the interactions of the functional element and
its environment are identified. The identified interactions are instrumented for capture
and for replay, resulting in two new versions of the program. Finally, the instrumented
versions of the program are compiled and output to their corresponding assemblies.
The automatic stubbing tool consists of three components: a command line application

22

4.4. The Automated Stubbing Tool: Command Line Application

Instrument for
Capture

Select functional R Identify
element interactions

Output assembly

Instrument for
Replay

Figure 4.2.: Automated Stubbing tool process.

which can be used to create the stubbed versions of a given program (Section 4.4); a
class library which implements the interface into the event log (Section 4.5); and, a class
library which implements the instrumentation logic (Section 4.6).

4.4. The Automated Stubbing Tool: Command Line
Application

The command line application (CLI) is the primary interface of the Automated Stubbing
tool. Given a Visual Studio C# project file and the fully-qualified name of some object
type within the project file, it generates the Capture and Replay versions of the assemblies
defined by the project file. The CLI instruments the object type where required, and
invokes the MSBuild program to build the executable assemblies.

The CLI depends on the class libraries which implement the event log interface, and

the instrumentation logic. Furthermore, the connection with the event log interface from
the Capture and Replay versions can be configured by the CLI.

4.5. The Automated Stubbing Tool: Event Log Interface

The event log class library exposes the interface that the Capture and Replay versions of
the applications use to communicate and serialize with the event log. The class library
contains data types which specify how interactions are encoded. Furthermore, the class
library contains an interface which allows the capture and replay of interactions.

In this section we discuss which interactions we identify, and how we encode these
interactions.

23

4. Automatic Creation of Stubs

4.5.1. Interactions

Interactions are sequences of program instructions that expose some set of functionalities
within the program, which take place between the selected functional element and its
environment [28]. For example: function calls, field accesses, and thrown exceptions.

We distinguish between ingoing interactions, and outgoing interactions [28]. Ingoing
interactions are interactions that originate from the environment, and request some func-
tionality from the selected functional element. Outgoing interactions are interactions that
originate from the selected functional element, and request some functionality from the
environment.

Interactions in C#

Capturing interactions between the environment and the selected functional element,
and vice versa, limits the capture of interactions of C# object members which are acces-
sible by other types. We refer to the accessible members which are candidates for inter-
actions as exposed members. Exposed members have a declared accessibility of: public,
protected, internal, or protected internal. Members with a declared accessibil-
ity of private are not captured, as these occur only within objects themselves and are
implicitly captured and replayed.

Furthermore, capture and replay is performed for function members only — object
members that contain executable statements. Field accesses are not captured, as our
approach captures the internal state of the object within each method interaction, and
thereby keeps track of changes to fields of the objects. C# has the following function
members [30]: methods, properties, events, indexers, user-defined operators, instance
constructors, static constructors, and finalizers.

Member

+ ¥
BaseMethod BaseProperty ‘ BaseField ‘

> Method ‘ Property ‘ Field
> Operator ‘ Event ‘ EventField

» Constructor

Figure 4.3.: C# field and function members syntax relationships.

Indexer ‘

24

4.5. The Automated Stubbing Tool: Event Log Interface

Figure 4.3 illustrates the relationships between the C# function and field members as
part of the syntactic model, and the base syntax declarations which contain the common
abstractions.

Properties, events, and indexers share the same base type: BaseProperty. They share
two common properties [30]: a field tied to the property, and a set of accessors containing
executable statements. Properties and indexers use accessors to get and set the value of
the field associated with the property or indexer. Events use accessors to add or remove
delegates to notify when the event is fired. Delegates are types which references methods
with a given return type and parameter list [30] The accessors can be implemented by
developers, or are generated automatically by the compiler. The compiler adds a new
field to the object of which the property is a member when it generates accessor methods.
Therefore, a property in C# can be seen as a set of methods which is tied to some field.

Methods, operators, constructors, and destructors share the BaseMethod base type.
They share three common properties [30]: a body of executable statements, a set of
parameters (which can be empty), and optionally a return expression.

The Atuomated Stubbing tool only captures method interactions. Because methods,
operators, constructors and destructors share the same base type; and properties, events
and indexers are a combination of a set of methods which are tied to some field.

4.5.2. Encoding Interactions

For each interaction that we capture and replay, we encode information to be able to
uniquely identify interactions.

Within interactions we distinguish instances of objects by using an instance ID to uniquely
identify object instances. The instance ID functions like the object ID described by Orso et
al. [28]. Instance IDs are implemented using a global numeric counter. When capture or
replay starts, the global counter is initialized to zero. Every time a object instance is cre-
ated, the instance is assigned an instance ID from the global counter. Furthermore, static
instances and null references use predefined unique instance IDs, which are assigned
negative numbers internally.

Objects require an additional field to track the instance ID of the instances of the object.
However, within applications instrumented by the approach many functional elements
and their objects are not instrumented by our method, or cannot be instrumented. For
example, objects found in the .NET Framework library cannot be instrumented by our
method. The instance IDs of these objects are tracked using an instance map: a key-value
map which tracks which instance ID belongs to a given object reference [28]. To not
extend the lifetime of the objects stored in the instance map, which in cases could lead to

25

4. Automatic Creation of Stubs

the program running out of memory, the object references are stored as weak references.
A weak reference holds a reference to some object, but allows the object to be collected
by the garbage collector [39, Ch. 12].

Method Interaction

Method interactions are implemented in C# as calling sequences and return sequences,
where code is divided between the calling method (caller), and the method that it calls
(callee) [40, Sec. 7.2.3]. We identify two kinds sequences that we encode: method entry
and method exit. Method entry is the calling sequence that takes place when code exe-
cution moves from the caller to the callee. Method exit is the return sequence that takes
place when code execution moves from the callee back to the caller.

For a method interaction we encode: the instance ID of the instance to which the
method belongs, the signature of the method, the parameters passed to the method, a
key-value map which stores the state of the containing object at the moment of capture,
and optionally the return value.

The signature includes the fully-qualified name of the method, including its containing
namespaces and classes, and the types of the parameters [30, Sec. 8.6]. We do not
capture the return type of the method, as C# does not allow polymorphism on the return
type [30, Sec. 8.6]. Therefore, the return type is given by the signature of the method.

Parameters

For a parameter we encode: the type, the name, and the value passed to the parameter.
We distinguish between parameters that have a value type, and those that have a ref-
erence type. The values of value types are serialized and stored as the value of the pa-
rameter. For reference types we resolve an instance ID of the referenced instance, which
is stored as the value of the parameter. Reference types are not serialized to limit the
overhead of serialization, which time-wise can become as large as 500 % [28].

Object State

The state of the object is encoded as a map of key-value pairs, which we refer to as the
object state map. The state map is used to recreate side effects that occur as a result of
interactions that we capture and replay for the selected functional element. Each field of
the object is stored in the state map, except for fields having a const or readonly mod-
ifier. Fields with a const or readonly modifier cannot be changed during the execution
of the program, and thereby do not change when capturing and replaying the selected

26

4.5. The Automated Stubbing Tool: Event Log Interface

functional element. A field is stored in the map as a key-value pair with the name of the
field, and its value.

Storing the state of the object in a state map limits the types of objects which we are
able to capture and replay. As we store the values of fields, the types of the fields have
to be serializable. Furthermore, we require the serialization to be automatic, i.e. no
modifications to types are required to perform serialization.

The .NET Framework class library includes three serialization mechanisms: data con-
tract serialization, binary serialization, and XML serialization [39]. Of the three serial-
ization mechanisms the binary serialization is highly automated, and implemented for
many of the types of the .NET Framework class library [39]. Binary serialization is sup-
ported for types that have the Serializable attribute, or implement the ISerializable
interface. Binary serialization provided by the .NET framework for types that have the
Serializable attribute is limited to the serialization of public and private fields, and
public properties [39].

However, not all user defined types that we encounter during capture and replay are
automatically serializable. We do assume that all types that are stored in the state map
are serializable, and we leave it up to the developer the implement the serialization if
required.

4.5.3. Event Log Interface

Executing the program modified for capture, the capture instrumentation generates events
from the captured interactions and writes these to the event log. Executing the program
modified for replay, the replay instrumentation collects events from the event log. Based
on the collected event the captured interaction is replayed. The execution depends on the
input provided for the program, which should execute the selected functional element for
which we determine the software energy consumption.

The event log can be stored on a remote server, to minimize the impact of the event log
on the software energy consumption of the server which runs the program for the exper-
iments. The event log is implemented using MongoDB. MongoDB is a NoSQL database,
which stores data in documents — dynamic semi-structured data structures represented
in a JSON-like format [43]. The document model used by MongoDB allows us to map
C# objects directly to documents stored in MongoDB. The flexibility provided by the
document model enables us to store and retrieve the encoded interactions as required.

The MongoDB document model stores the documents in the BSON format'. The BSON
serialization implemented by the MongoDB class libraries works on the same principles

1h‘ctp ://bsonspec.org/

27

http://bsonspec.org/

4. Automatic Creation of Stubs

as the serialization mechanisms of the .NET Framework class library. However, the BSON
serialization requires C# object types and their members to be mapped to BSON docu-
ments, which is referred to as class mapping?, The class mapping process is automated,
but most user defined types must explicitly be registered to implement serialization. We
leave it up to the developer to register the class maps of types if required.

4.6. The Automated Stubbing Tool: Instrumentation Logic

The instrumentation logic class library implements the generation of the Capture and
Replay stubs, and outputs compiled assemblies of the stubbed versions of the application.

Appendix A contains source code examples of how the instrumentation is performed
for various versions of the MD5 message-digest application of the experiments, which we
discuss in Chapter 6.

This section is organized as follows. First, in Section 4.6.1 we discuss what instrumen-
tation method we apply. Second, Section 4.6.2 discusses how the .NET Compiler Platform
Roslyn is used to perform the instrumentation.

4.6.1. Instrumentation

To capture and replay interactions of the selected functional element, instrumentation
needs to be added to the program and the selected functional element [24, 28]. Instru-
mentation is a method which inserts extra code in a program to observe its behavior [44].
Instrumentation can be performed by source instrumentation, or by binary instrumenta-
tion [44]. Source instrumentation modifies the behavior of the program before or during
compilation, by transforming the source code of the program. Binary instrumentation
modifies the behavior of the program of the compiled executable, which can also be done
at runtime, by modifying the byte-code instructions.

The automated stub generation method presented in this chapter uses source instru-
mentation during compilation to add instrumentation to support capture and replay of
a selected functional element. There are several reason why we chose to use source in-
strumentation instead of binary instrumentation. First, as discussed by Jagroep et al. the
StEP method is applied during the development process of software [1]. As we are in-
terested in determining the software energy consumption of a functional element from
a software application during development, we have access to the source code of the
software application. Second, binary instrumentation can be difficult to implement [45].
Compared to binary instrumentation, the source instrumentation can be modified and

2http ://mongodb.github.io/mongo-csharp-driver/2.5/reference/bson/mapping/

28

http://mongodb.github.io/mongo-csharp-driver/2.5/reference/bson/mapping/

4.6. The Automated Stubbing Tool: Instrumentation Logic

extended by developers at the case company without the need of extensive knowledge of
binary instrumentation and/or binary instrumentation frameworks.

4.6.2. Instrumentation with Roslyn

The Automated Stubbing tool uses the .NET Compiler Platform Roslyn (Section 2.2.4)
to load C# project files, perform instrumentation, and emit executable assemblies. The
instrumentation logic class library depends on two inputs:

1. A C# project file which defines the assembly that contains the selected functional
element to stub;

2. A set of fully-qualified type names that determine the objects of the selected func-
tional element.

In this section we discuss how we use Roslyn for the Automated Stubbing tool, by
discussing the various parts of the instrumentation logic class library. First, we discuss
the workspace abstraction used for managing the C# project file. Then we discuss the
classes that implement the instrumentation logic for the automated building of stubs: the
Stub Builder classes.

The Workspace

The workspace manages the C# project file, and enables the building of the stubbed
versions of the assembly defined by the loaded project file. The workspace makes use of
compiler API and workspace API of Roslyn.

Given the path to a C# project file, the project is loaded into an instance of the Project
class of the workspace APIL. The Project class manages the project file, enables access
to the documents that are part of the project, and gives access to the syntax trees and
semantic models of the assembly.

After a C# project is loaded, the workspace uses the Stub Builders to generate the
stubbed versions of the selected functional element. The workspace uses the semantic
model from the Project instance to identify the objects and the function members of
the objects, based on the given set of fully-qualified types names. The semantic model
of a Project instance is contained in the compilation of the project. The compilation
contains symbols which represent the semantic information of the source assembly. The
semantic information is represented in a tree structure of namespaces, types, and type
members.

C+# objects can be defined in multiple source locations — multiple C# source code
files — when the object is declared with the partial modifier. The object has a single

29

4. Automatic Creation of Stubs

symbol defining its semantic information, however, each source location has its own type
declaration syntax node and subset of function members. The workspace invokes the
Stub Builders mutiple times when the given object is defined at multiple locations. For
each invocation, specialized Stub Builders use the type declaration syntax node and the
subset of the function members — as syntax nodes that are defined at the partial source
location — to perform the instrumentation.

The Stub Builder

The Stub Builder provides the interface used for the generation of stubs, and forms the
base class for specialized Stub Builder instances which implement the generation of a
specific kind of stub: Capture, Replay, or Baseline+Replay. The specialized Stub Builder
instances will be discussed in the coming sections.

The core functionality provided by the Stub Builder is given by three sets of functions.
Instrumentation is performed by modifying the syntax nodes of a C# object, and the
syntax nodes of the function members of the object.

First, the Stub Builder provides an abstract method [39] to perform instrumentation
for a method declaration. The specialized Stub Builder instances implement the abstract
method to customize the instrumentation logic as required for the kind of stub.

Second, the Stub Builder has a single method which performs the instrumentation for
a given object, and a set of function members of the object. We assume that the object
instrumentation method can be called multiple times, as C# objects can be defined at
multiple source locations. Each invocation is called with the object declaration syntax
node of the object declaration of a single source location, and the set of function members
to instrument. The set of function members are required to be children of the object
declaration syntax node. We include the set of function members to give developers more
options to configure the automated stub generation to their requirements. Depending on
the requirements, not all function members might need to be instrumented. The object
instrumentation method performs a two-step process to modify the object declaration
syntax node:

1. Two local field declarations are added as private members to the object: a field for
the connection with the event log, and a field which stores the instance ID of the ob-
ject. If the object is declared at multiple source locations, the field declarations are
added to one of the object declaration syntax nodes. Adding the field declarations
multiple times to the same object would result in a compilation error.

2. For each given function member, the abstract method declaration instrumentation
method of a specialized Stub Builder instance is invoked.

30

4.6. The Automated Stubbing Tool: Instrumentation Logic

Third, the Stub Builder provides a set of methods which are common to the specialized
Stub Builder instances. For example, the Replay Stub Builder and the Baseline+Replay
Stub Builder both use methods to instrument method declarations for the replay of cap-
tured events.

The Capture Stub Builder

The Capture Stub Builder provides a specialized implementation to perform instrumen-
tation for the capture version of a stub. It derives its basic functionality from the Stub
Builder class, and implements the method declaration instrumentation logic for building
stubs.

The Capture Stub Builder adds instrumentation statements to the body of the given
method declaration in two locations: at method entry, and at method exit. At each in-
strumented location, part of the interaction with the method is captured, and an event is
created and written to the event log. The instrumentation is performed as follows.

First, we add a statement to capture the parameters passed to the method at the be-
ginning of the method body. The statement is only generated when the instrumented
method has parameters. The captured parameters are used for both the method entry
event, as well as the method exit event. Depending on the type of the parameter, we
create an instance which references the parameter according to the encoding discussed
in Section 4.5.2.

Second, to capture the method entry interaction we insert a set of statements after the
capture of the parameters.

1. A state map of the object is created, capturing the current state at method entry;
2. A method entry event is created and added to the event log. The method entry
event captures the method signature, the method parameters, and the object state.

Third, to capture the method exit interaction(s), each return statement is replaced to
capture the return value of the method: a state map of the containing object is created,
capturing the current state at method exit; the expression that is returned is captured
in a temporary local variable; a method exit event is created and added to the event
log; and, the temporary local variable containing the return expression is returned. If
the method returns void, the return expression cannot be captured, and the temporary
variable need not be created. Furthermore, methods that return void can have an implicit
return statement at the end of the method body. The instrumentation is always added
to the end of the method body for methods that return void, but do not have return
statements as the last statement of the method body. The method exit event captures:

31

4. Automatic Creation of Stubs

the method signature, the method parameters, the object state, and optionally the return
expression.

The size of the instrumented code depends on the size of the state map — the number
of fields of the object, and the amount of return statements present in a method body.
Each return statement, including the implicit return statement that a method which re-
turns void can have, requires the creation of the state map. Therefore, the size of the
instrumented code can grow considerably large when dealing with objects with many
fields, or when dealing with methods with many return statements.

The Replay Builder

The Replay Stub Builder provides a specialized implementation to perform instrumenta-
tion for the replay version of a stub. It derives its basic functionality from the Stub Builder
class, and implements the method declaration instrumentation logic for building stubs.

The instrumentation for replay replaces the body of the method that is instrumented.
The instrumentation is performed by inserting the following statements in the method
body:

1. The parameters that are passed to the method are captured identical to how pa-
rameters are captured by the capture instrumentation. Clearly, no statement needs
to be created if the method does not have parameters.

2. A method exit event is collected from the event log, given the object instance ID,
the method signature, and the parameters captured in the first statement. If the
event log does not find an event, an exception is thrown by the event log stopping
the replay of events.

3. The state of the object is restored given the state map that is captured with the
method exit event. This statement is not generated when the object does not con-
tain any state members.

4. If the method returns some value, the return expression from the collected event is
returned.

The Baseline+Replay Builder

The Baseline+Replay Stub Builder provides a specialized implementation to perform in-
strumentation for the Baseline+Replay version of a stub. It derives its basic functionality
from the Stub Builder class, and implements the method declaration instrumentation
logic for building stubs.

32

4.6. The Automated Stubbing Tool: Instrumentation Logic

The instrumentation for the Baseline+Replay stub adds replay instrumentation to a
method, while preserving the statements present in the method body. The instrumenta-
tion is performed as follows.

First, similar to the other Stub Builders, a statement that captures the parameters
passed to the method is inserted as the first statement of the method body. The statement
is not created if the method does not have parameters.

Second, at each method exit interaction a subset of the replay instrumentation is in-
serted. This is inserted at the same locations as where the Capture Stub Builder captures
method exit interactions. A method exit event is collected from the event log, the state
of the object is restored given the state map that is captured with the method exit event,
and the return expression is returned (if the method returns some value). We return
the return expression present in the unmodified method declaration, because the return
expression could invoke methods performing computations that we want to preserve, or
invoke methods which are instrumented by the Automated Stubbing method also.

4.6.3. Using the Semantic Model to Guide Instrumentation

The Stub Builder classes use the semantic model of the C# project to guide the instrumen-
tation. Three parts of the semantic model are used: the fully-qualified names of types,
the semantic information of types and type members, and the syntax trees attached to
the semantic information.

First, the semantic model contains the fully-qualified names of all types that are part
of the project, and that are referenced by the project. Given the set of fully-qualified type
names that determine the objects of the selected functional element, the semantic model
is used to gather the symbols that define the objects of the selected functional element.

Second, the information of the symbols that define the objects of the selected functional
elements is used to identify the interactions which are candidates for instrumentation.
Each symbol that defines a C# object contains the members defined by the object. Ex-
posed members of the object are collected as a list of symbols. Together with the object
symbol, the exposed members are passed to the Stub Builder instance to perform the
instrumentation for an object.

Third, the specialized Stub Builder classes use the semantic information in the symbols
of objects and object members. The symbols are used to extract the syntax trees for which
the instrumentation will be performed. A single symbol may refer to multiple syntax
trees, because C# objects may be defined in multiple source locations with the partial
modifier. Furthermore, the fully-qualified names of types, and the signatures of members
provided by the symbols are used to encode the interactions.

33

Chapter 5

Profiling

To measure the software energy consumption (SEC) [16] of a software application when
applying the Automated Stubbing method, multiple versions of the software application
need to be profiled. Compared to the StEP method — which compares the SEC of the
unmodified application to the software energy consumption of the stubbed application [1]
— by applying the Automated Stubbing method three versions of the stubbed application
play a role in determining the SEC.

This chapter is organized as follows. Section 5.1 demonstrates how to apply the StEP
method when using the Automated Stubbing method. Sections 5.2 to 5.4 discuss how to
determine the SEC of the stubbed versions of an application when applying the Automated
Stubbing method.

5.1. Extending the StEP Method

To determine the SEC of an application when using the StEP method combined with
the Automated Stubbing method, four versions of the application need to be profiled:
the Baseline version, the Capture version, the Baseline+Replay version, and the Replay
version. Figure 5.1 shows the StEP method as extended with the Automated Stubbing
method. We discuss the activities which are changed compared to the StEP method in
detail.

Create Test Scenario

A collection of test cases which execute the selected functional elements should be de-
signed in the Create test scenario activity. The test cases should induce varying levels of
stress, to observe differences in the performance of the application [1]. The ability to

35

5. Profiling

’

Select functional elements

il

Adapt architectural description

il

Create test scenario ¢

il

Determine measurement
approach

Profile Baseline

;* [Improvements
'Y required]

Introduce and profile
Capture version

- +
Introduce and profile Introduce and profile
Baseline+Replay version Replay version
L |

Annotate architectural description

[Additional *

elements to profile] E

Figure 5.1.: The activities of the StEP Method combined with Automated Stubbing.

automatically perform the test cases repeatedly is of importance as well, to exclude in-
cidental findings caused by external factors and to gather a sample set of decent size.
Furthermore, it is recommended to use realistic usage scenarios when designing the test
cases [1].

Profile Baseline

First, the created test scenario is used to profile the unmodified application. The perfor-
mance and SEC measurements should be used to validate the test scenario. Irregularities
in the measurements of the Baseline version profiling can indicate that there are external
factors which influence the measurements. For example, such irregularities may include
a large standard deviation in the runtime of the test cases, or when the measurement
results contain many outliers. Improvements to the test scenario, the measurement ap-
proach, or the experiment environment must be applied before proceeding with profiling

36

5.2. Measuring Software Energy Consumption
of the stubbed versions of the application.

Introduce and Profile Stubbed Versions

Additional activities are performed compared to the StEP method to be able to get SEC
measurements. Compared to the StEP method, when using the Automated Stubbing
method multiple stubbed versions of the application are part of the computations for the
SEC. We discuss the computations in Sections 5.2 to 5.4 in detail.

The Introduce stub in software product and Profile stubbed version activities of the StEP
method are performed for each stubbed version of the application. We combined the
two activities in a single Introduce and profile stubbed version activity. The combined
acitivity is performed in order: first for the Capture version, then for the Baseline+Replay
version, and finally for the Replay version. A capture must be performed before a replay
can take place, as the replay requires an event log containing a sequence of captured
interactions. However, the Replay version can be profiled before the Baseline+Replay
version, considering that the Capture has already been performed.

The measurements of the profiled versions are used to compute the SEC of the func-
tional element. To exclude irregular measurements, the profiling activities are performed
multiple times to gather a reliable sample set of decent size. Individual review of inci-
dental findings may be required to determine whether some external factor was at play,
or whether the incidental finding was caused by the application under test. Validation of
the profiling activities is therefore required, likewise to the validation performed during
the profiling of the Baseline version.

5.2. Measuring Software Energy Consumption

The SEC — the measure for the total energy consumed by the software — is computed
by subtracting the idle energy consumption from the total measured energy consumption
[16] (Equation 5.1).

SEC = ECtotal — ECidte (5.1)

The StEP method allows us to identify the SEC of a functional element of a software
application [1]. By subtracting the SEC of a stubbed element from the measured baseline
SEC, we get an indication of the SEC of the stubbed functional element (Equation 5.2).

SECelement = SECbaseline - SECstub (5-2)

Valid comparisions between the SEC of different versions of an application, or of mul-

37

5. Profiling

tiple profiling runs of a single application, can only be performed when the parameters
supplied to the application, and the environment where the measurements are taken are
consistent for each measurement sample. The hardware which runs the application must
be the same for each sample, as energy consumption is dependent on the hardware in
the environment [14, 46, 47]. The usage of different hardware configurations can have
a significant impact on the SEC [47]. Furthermore, to ensure validity of the SEC mea-
surements a measurement protocol should be followed [1].

5.3. Measuring Software Energy Consumption of

Instrumentation

The Automated Stubbing method creates three stubbed versions of a selected functional
element of a software application by applying the capture and replay method. The instru-
mentation required to perform the capture and replay lead to an increase of the SEC of
the functional element. To give an accurate indication of the SEC of the stubbed version
of the functional element when applying the Automated Stubbing method, the overhead
of the capture and the overhead of the replay on the energy consumption need to be taken
into account.

As the instrumentation performs additional work compared to the baseline of the ap-
plication, we expect the stubbed versions of the applications to include an overhead of
the energy consumption. The expected SEC of some application and its stubbed versions
is shown in Figure 5.2.

100

Energy (%)

Baseline Capture Baseline + Replay Replay

Figure 5.2.: Expected software energy consumption of the stubbed versions.

In this section we discuss how to determine the instrumentation overhead. First, we

38

5.3. Measuring Software Energy Consumption of Instrumentation

discuss how to determine the SEC of the capture instrumentation in Section 5.3.1. Sec-
ond, we discuss how to determine the SEC of the replay instrumentation in Section 5.3.2.

5.3.1. Software Energy Consumption of Capture

The instrumentation added to the software application to perform the capture of inter-
actions introduces performance overhead ,and changes the energy consumption of the
application. Identifying the overhead of the capture instrumentation can be used to op-
timize the instrumentation statements, thereby reducing the overhead of the capture.

SECcapture overhead = SECcapture stub — SEChaseline (5.3)

The SEC of the capture instrumentation can be computed by subtracting the baseline
energy consumption from the measured energy consumption of the capture version of the
application (Equation 5.3). The instrumentation performs extra work compared to the
baseline, therefore we assume that the energy consumption of the capture version of the
application is always larger than the energy consumption of the baseline application.

5.3.2. Software Energy Consumption of Replay

Like the capture instrumentation, the replay instrumentation introduces performance
overhead and the energy consumption of the application. Knowledge of the overhead of
the replay instrumentation is required to acquire accurate measurements of the software
energy consumption of the selected functional element. The energy consumption intro-
duced by the replay is not part of the original functional module, and therefore should
not be taken into account when calculating the SEC.

SECreplay overhead = SECbaseline+replay stub — SEChaseline (5.4)

The SEC of the replay instrumentation can be computed by subtracting the baseline en-
ergy consumption from the measured energy consumption of the Baseline +Replay version
of the application (Equation 5.4). We use the Baseline+Replay version of the application,
as this version performs the work of the Baseline version and the replay instrumentation.
The Replay version of the application includes the overhead of the replay, but does not
include the work originally performed by the application. Therefore, the Replay version
of the application cannot be used to identify the overhead of the replay instrumentation.

39

5. Profiling

5.4. Measuring Software Energy Consumption of the

Functional Element

The SEC of the replay version of the application, which plays the role of the stubbed
version of the application in the StEP method, provides an indication of the SEC of the
functional element under study — which can be computed as shown in Equation 5.2.
However, the replay version of the application includes the overhead of the replay instru-
mentation. The overhead needs to be taken into account to accurately determine the SEC
of the functional element when applying the Automated Stubbing method.

SECfunc = SEChpaqseline — SECreplay + SECreplay overhead
= SECpaqseline — SECreplay + (SECbaseline—i-replay stub — SECbaseline)
= SECbaseline+replay stub — SECreplay (5-5)

The SEC of the functional element when applying the Automated Stubbing method
can be computed by taking the difference between the SEC of the Baseline and the SEC
of the Replay stub, and adding the SEC of the replay instrumentation (Equation 5.5).
The SEC of the replay instrumentation is added, because the Replay instrumentation
overhead has a negative impact on the SEC. Without adding the Replay instrumentation,
we underestimate the SEC of the stub.

The Baseline and Capture versions of the application should always be profiled, al-
though the SEC of the element can be determined by profiling the Baseline +Replay ver-
sion and the Replay version of the application. The profiling results of the Baseline and
Capture versions of the application should be used to validate the created test scenario,
validate the measurement protocol, and to ensure that external factors which could in-
fluence the profiling and measurements are under control.

40

Chapter 6

Experiments

To demonstrate the feasibility of using the Automated Stubbing method, a set of pre-
liminary experiments is performed to determine the software energy consumption of a
software application. The StEP method is applied in combination with the Automated
Stubbing method to obtain the software energy consumption measurements, following
the method outlined in Section 5.1.

This chapter is organized as follows. First, we discuss the application under test for the
experiments (Section 6.1). Second, we discuss how the StEP method and the Automated
Stubbing method are applied during the experiments (Section 6.2). Third, we show the
results obtained from the execution of the experiments (Section 6.3). Fourth, we discuss
the experiments, results, and findings (Sections 6.4 and 6.5).

6.1. Introduction

The experiments test the performance and software energy consumption (SEC) of an
application which implements the MD5 message-digest algorithm to compute a hash
value for a given input. The MD5 message-digest algorithm takes an input of arbitrary
length, and computes a 128 bit message digest [48]. The MD5 message-digest algorithm
is chosen because of readily available open source implementations, a set of computa-
tions which are suitable for stubbing, and an internal state which is updated throughout
the rounds of the message-digest algorithm.

An open source implementation of the MD5 message-digest algorithm is used, provided
by the Bouncy Castle Crypto package for C#'. The interface provided by the open source
implementation is extended to provide an easy to use interface to compute hashes of

IThe open source project page can be found at https://github.com/bcgit/bc-csharp/.

41

https://github.com/bcgit/bc-csharp/

6. Experiments

textual data using the MD5 message-digest algorithm.

6.2. Applying the StEP Method

To determine the SEC of the MD5 message-digest application the StEP method is applied,
in combination with the Automated Stubbing method. In this section we discuss how
we approach the activities of the combined method, following the process outlined in
Section 5.1.

6.2.1. Select Functional Elements

The MD5 message-digest application computes the MD5 message-digest as a string rep-
resentation for given textual data as input. The core functionality of the application is
contained in a single functional element, which computes the MD5 message-digest from
an array of bytes. The input textual data is encoded as an array of bytes before it is passed
to the message-digest function. We formulate the requirement to determine the SEC of
the MD5 message-digest application while performing its core functionality.

The MD5 message-digest functionality is implemented in a single C# class: MD5, which
exposes a single functional member used to compute the MD5 message-digest for a given
byte array of input. Thus, the selected functional element which will be stubbed is the
MD5 class.

6.2.2. Adapt Architectural Description

The MD5 message-digest application implements a single core functionality, therefore it
does not have an architectural description. In the remainder of the chapter we use the
selected functional element as well as the MD5 message-digest application to refer to the
core functionality exposed by the application. The SEC of the selected functional element
that we compute will be presented in tables.

6.2.3. Create Test Scenario

To test the core functionality of the MD5 message-digest application, a test scenario is
designed which varies the load on the application. The application is stressed by varying
the size of the input, where larger input sizes induce a larger load on the application.
To get reliable measurements the application needs to run for at least one second, be-
cause the Watts UP? PRO (WUP) power meter and Joulemeter energy profiler sample
power measurements once a second. Would the application complete its computations

42

6.2. Applying the StEP Method

within one second, the power measurements might not record the load created by the
application as it falls between two measurement samples. The same holds for the perfor-
mance measurements, because the Performance Monitor application takes performance
samples of the system once a second. Initial testing of the application showed that to get
reliable measurements, the minimum size of the input is 32 MB. The application com-
putes the MD5 message-digest of an input of 32 MB in about one second. The minimum
input size was determined by running the application with small amounts of input, and
measuring the execution time. The smallest input size which would stress the application
for at least one second is chosen.

To obtain a reliable data set from the experiments, each combination of the application
version and input is executed 10 to 20 times. A cool down time of 15 minutes is used
between each individual run. Each combination is executed a limited number of times due
to the limited time available in the experiment environment to perform the experiments.
For example, for a single test case which is repeated 10 times for each of the four versions
of the application, the experiments take at least 10 hours (10 X 4 X 15min = 600 min)
to complete as result of the cool down time between the runs, not including the time it
takes for the application to complete the test case.

6.2.4. Determine Measurement Approach

The energy consumption measurements are performed in the experiment environment,
presented in Section 3.2. Following the measurement protocol outlined in Section 3.3,
and the guidelines presented in [1, 42].

Energy Consumption and Performance Measurements

Energy consumption measurement data is collected using hardware measurements and
software measurements. The hardware measurements use the WUP power meter device,
the software measurements use the Microsoft Joulemeter energy profiler. Microsoft Per-
formance Monitor is used to measure the performance of the test server. The clocks of
the different systems are synchronized using the Network Time Protocol, to be able to
relate events that occur on different systems.

Figure 6.1 illustrates the experiment environment. The servers used in the environ-
ment are HP DL380 G5 servers. The application server hosts the MD5 message-digest
application, the management server hosts the MongoDB server instance, and the logging
server is used to collected the power measurements from the WUP power meter device.
A separate server is required to minimize the impact of the logging, and of the measure-
ment collection on the energy consumption measurements. The dashed lines indicate

43

6. Experiments

Power
meter

Il
Il
Il

Logging Server , Application Server Management Server

Figure 6.1.: Experiment environment.

power cables, the lightning bolt is the power source. The solid lines are network and USB
cables used to transfer data between the systems.

Software Energy Consumption

The SEC of the application is computed by subtracting the idle energy consumption from
the energy consumption measured during the experiments, following from Equation 5.1.
The SEC is calculated by taking the average power between two measurements multi-
plied by the time between measurements, and taking the sum over the duration of the
measurements.

Computing the SEC of the experiments requires the idle power consumption of the test
servers. The idle power consumption is determined by measuring the power consumption
of the hardware running without any active software [42]. The idle energy consumption
of the servers is established at 249.49 W.

Measurement Protocol

The measurement protocol presented in Section 3.3 is used to perform the experiments.
The experiment test runs are automated by usage of a batch script. The script repeat-
edly performs the following sequence of actions, following the profiling order of the StEP
method combined with the Automated Stubbing method:

I. Record the start time of the execution;

II. Execute the given version of the application with the corresponding load;
III. Record the end time of the execution and write to the log file;
IV. Wait for the specified cool down time (15 minutes).

The time stamps in the log files are used to determine the duration of runs, and to relate
SEC and performance measurements to specific runs.

44

6.3. Results

6.2.5. Profile Baseline

The Baseline version of the application is profiled using the created test scenario, and the
determined measurement approach. The collected SEC and performance measurements
are used to verify the created test scenario. The profiling results, and the discussion of
the results are presented in the following sections.

6.2.6. Introduce and Profile Stubbed Versions

The stubbed versions of the MD5 message-digest application are created using the Auto-
mated Stubbing tool. The implementation of the stubbed versions are verified by com-
paring the logs from running the stubbed version to the program traces of the unmodified
application. Verification of the stubbed versions demonstrated that the stubbed versions,
given the same input, exercise the same program behavior as the unmodified application.
The profiling results, and the discussion of the results are presented in the following sec-

tions.

6.2.7. Annotate Architectural Description

As the MD5 message-digest application does not have an architectural description, we
present the computed SEC of the functional element in tables.

6.3. Results

In this section we report the results of the profiling of the MD5 message-digest application,
and its various stubbed versions. Three sets of experiments are performed, resulting in
a total of 660 SEC and performance measurements. Combined, the measurements are
collected over the course of two weeks.

SEC measurements are given in Tables 6.1-6.5. The measurements report the median
energy consumption measured using the WUP power meter, median duration, and stan-
dard deviation (SD) of the duration. Performance measurements are given in Tables B.1-
B.3 in Appendix B. The measurements report the CPU utilization, Memory usage, HDD
utilization, and Network usage are reported as the median over all recorded samples.

The figures in this section use abbreviations for the various versions of the application:
B for the Baseline version, C for the Capture version, B+R for the Baseline+Replay version,
and R for the Replay version.

45

6. Experiments

Version Input SEC (J) Duration (s) SD (s)

Baseline 8GB 2463.01 350.00 39.87
32GB 10328.57 1400.00 111.96
64GB 20008.93 2795.00 160.91
Capture 8 GB 3390.57 511.50 21.30
32GB 13726.27 2036.00 74.32
64GB 27417.75 4070.00 47.87
Replay 8 GB 1900.39 302.50 10.31
32GB 7724.12 1198.50 20.90
64GB 15911.48 2389.50 36.12

Table 6.1.: Software energy consumption of experiments Ia.

20000

10000

Energy Consumption (J)

B C R B C R B C R

Figure 6.2.: Software energy consumption of experiments Ia.

6.3.1. Experiments la

The first set of experiments is performed with an input of 8 GB, 32 GB and 64 GB of
data. Experiment runs are repeated 20 times for each combination of application version
and input, for a total of 180 measurement samples. The SEC measurements of are sum-
marized in Table 6.1, and illustrated in Figure 6.2. Table B.1 summarizes the collected
performance data.

The first set of experiments is performed to validate the measurement approach, and to
determine whether the stubbed versions created using the Automated Stubbing tool exe-
cute the capture and replay method properly. Therefore, only the Baseline, Capture, and
Replay versions are included in the performance measurements. The Baseline+Replay
version is not included, as it performs the replay precisely like the Replay version.

We make a single observation: we observe a large deviation of the duration of experi-
ment executions for the Baseline version of the application.

46

6.3. Results

Version Input SEC (J) Duration (s) SD (s)

Baseline 2GB 622.89 88.00 7.13
4GB 1262.16 175.00 1.69

8GB 2581.39 349.50 10.62

32GB 10853.30 1396.00 125.81

Capture 2GB 851.02 130.00 1.78
4GB 1747.97 258.50 4.66

8GB 3616.80 512.50 25.45

32GB 14375.29 2031.50 26.48

Baseline 2GB 824.92 122.00 4.40
+Replay 4GB 1664.17 242.00 6.73
8GB 3404.97 485.00 20.30

32GB 17789.31 1938.50 30.30

Replay 2GB 500.42 79.00 4.58
4GB 1012.06 154.00 1.66

8GB 2031.22 300.00 16.30

32GB 8285.99 1204.50 18.00

Table 6.2.: Software energy consumption of experiments Ib.

Input SEC (J) Ratio (%) SEC (J/MB)

2GB 334.54 50.79 0.1582
4GB 639.47 51.37 0.1581
8GB 1401.49 52.72 0.1696
32GB 9411.15 85.72 0.2502

Table 6.3.: Software energy consumption of the MD5 message-digest application in ex-
periments Ib.

6.3.2. Experiments Ib: External Factor

The second set of experiments is performed with an input of 2 GB, 4 GB, 8 GB and 32 GB
of data. Experiment runs are repeated 10 times for each combination of application
version and input, for a total of 160 measurement samples. The SEC measurements
are summarized in Table 6.2, and illustrated in Figure 6.3. Table B.2 summarizes the
collected performance data.

Given the SEC measurements, the SEC of the MD5 functional element is computed using
Equation 5.5. Table 6.3 shows the calculated SEC of the functional element. The Ratio
column shows the SEC of the MD5 functional element relative to the application baseline.

We make a few observations:

* We observe high CPU and HDD utilization of the Baseline+Replay application with
32 GB data as input.

47

6. Experiments

15000

10000

5000

Energy Consumption (J)

B C B+R R B C B+R R B C B+R R B C B+R R

Figure 6.3.: Software energy consumption of experiments Ib.

* The SEC ratio of the MD5 functional element relative to the application baseline
(Table 6.3) increases as the size of the input increases. Given an input of 8 GB the
SEC ratio is 52.72 %, compared to a SEC ratio of 85.72 % given an input of 32 GB.

6.3.3. Experiments Il

The third set of experiments is performed with an input of 32 MB, 64 MB, 128 MB and
256 MB of data. Experiment runs are repeated 20 times for each combination of applica-
tion version and input, for a total of 320 measurement samples. The SEC measurements
are summarized in Table 6.4, and illustrated in Figure 6.4. Table B.3 summarizes the
collected performance data.

Given the SEC measurements, the SEC of the MD5 functional element is computed using
Equation 5.5. Table 6.5 shows the calculated SEC of the functional element. The Ratio
column shows the SEC of the MD5 functional element relative to the application baseline.

We make a few observations:

* The ratio of the MD5 functional element relative to the baseline varies for each input
size.

* The SEC of the MD5 functional element is higher for an input of 32 MB than for an
input of 64 MB.

* We observe a high CPU utilization for the Replay version of the application with
256 MB as input.

48

6.3. Results

Version Input SEC (J) Duration (s) SD (s)

Baseline 32MB 10.49 2.00 0.22
64 MB 18.50 3.00 0.44

128MB 27.73 6.00 0.00

256 MB 76.49 12.00 0.57

Capture 32MB 19.66 4.00 0.45
64 MB 33.03 6.00 0.00

128 MB 61.14 10.00 0.22

256 MB 103.91 18.00 0.88

Baseline 32MB 21.16 4.00 0.00
+Replay 64 MB 27.61 6.00 0.37
128MB 56.23 9.00 0.69

256 MB 108.38 17.00 0.37

Replay 32MB 6.78 3.00 0.00
64 MB 22.06 4.00 0.00

128MB 36.58 6.00 0.37

256 MB 71.78 11.00 0.37

Table 6.4.: Software energy consumption of experiments II.

Input SEC (J) Ratio (%) SEC (J/MB)

32MB 12.68 119.39 0.3448
64 MB 7.47 42.02 0.1322
128 MB 20.11 59.36 0.1493
256 MB 33.98 45.59 0.1147

Table 6.5.: Software energy consumption of the MD5 message-digest application in ex-
periments IL

100

50

Energy Consumption (J)

B C B+R R B C B+R R B C B+R R B C B+R R

Figure 6.4.: Software energy consumption of experiments IL

49

6. Experiments

6.4. Discussion

In this section we discuss the results and the findings of the software energy consump-
tion experiments with the MD5 message-digest application, where we applied the StEP
method combined with the Automated Stubbing method.

6.4.1. Duration of Experiments la

The SEC measurements of the first set of experiments (Table 6.1) show that for the Base-
line version of the application, the SD of the duration of the experiment runs becomes
increasingly large as the input size increases. Particularly, the Baseline version of the
application with 64 GB of input has a SD of 160.91s. We observe the large SDs only
for the Baseline version of the application, the Capture and the Replay versions have a
smaller SD. Analysis of the collected performance measurements do not indicate that the
large SD can be attributed to other software processes running on the test server. There-
fore, we expect that the deviation of the duration is caused by a side effect of the MD5
message-digest application. We suspect the side effect to be the .NET garbage collector.

First, the memory available to the test server is 8 GB, whereas the inputs supplied to the
application do not fit completely into memory. As memory is managed automatically for
C# applications, the garbage collector will allocate and free memory for the application
to process the inputs.

Second, the performance data summarized in Table B.1, shows that the application is
primarily memory intensive. The CPU and HDD utilization remains stable as the input to
the application increases, in contrast to the memory and network usage which increase
with larger inputs.

Based on the initial analysis, the second set of experiments were designed to test our
hypothesis that the execution time of the experiments could be influenced by the .NET
garbage collector. We expect the execution time to be more consistent for inputs smaller
than 8 GB. Hence, we select two inputs smaller than 8 GB: 2 GB and 4 GB, and repeat
the experiments with 8 GB and 32 GB of input.

6.4.2. Influence of the Garbage Collector in Experiments Ib

The second set of experiments were performed to test the hypothesis that the execution
time of the experiments with the MD5 message-digest application are influenced by the
.NET garbage collector. Table 6.2 summarizes the SEC measurements of experiments Ib.

The SEC measurements of the Baseline version with an input of 32 GB, show a large
SD similar to the Baseline version with the same input from experiments Ia. The SD of

50

6.4. Discussion

40
35

30

CPU (%)

25

20

800

700

Memory (MB)

600

20:30 20:32 20:34
Time

Figure 6.5.: CPU utilization and memory usage of an experiment run with an input of
8 GB.

the other versions and input sizes are smaller.

Figure 6.5 shows the CPU utilization and memory usage of a single experiment run
of the application with an input of 8 GB. During the highlighted experiment run the
following performance measurements were collected: CPU utilization of 26.50 %, mem-
ory consumption of 9744 MB, HDD utilization of 7.15 %, and network usage of 1.84 MB
received/0.15 MB sent. The memory usage pattern of the experiment run indicates that
there is a garbage collector active, as can be seen when comparing to the memory usage
pattern of a generational garbage collector [32], illustrated in Figure 6.6. memory is
allocated when the memory usage increases, and the garbage collector collects garbage
when the memory decreases.

Comparing the CPU utilization and memory usage pattern of the single experiment run
side by side, we cannot identify a direct relation. When the garbage collector is active
and memory is freed we expect the CPU utilization to increase, but the Figure does not
show an increase in CPU utilization consistently.

51

6. Experiments

100

Memory (%)
n o
g 3

N
]

00:00 00:05 00:10 00:15 00:20

Figure 6.6.: Generational Garbage Collector memory usage pattern, after [32, Fig. 11].

6.4.3. Software Energy Consumption of the Functional Element

The stubbed versions of the MD5 message-digest application of experiments Ia (Fig-
ure 6.2), and of experiments Ib (Figure 6.3) show the expected energy consumption
pattern — as discussed in Section 5.3. The SEC of the Capture version and the SEC of the
Baseline+Replay are higher than the SEC of the Baseline version. Furthermore, the SEC
of the Replay version is lower than the SEC of the Baseline.

The results of experiments Ib give an indication of the SEC of the MD5 functional ele-
ment, reported in Table 6.3. The functional element uses on average 0.1620J/MB (SD
= 0.0152) for inputs smaller than or equal to 8 GB. For larger inputs, the functional
element uses on average 0.2502J/MB (SD = 0.0705). Thus, the MD5 message-digest
application uses 1.54 times more J per MB when processing 32 GB of input than when
processing 2 GB to 8 GB of input.

The results of experiments II give an indication of the SEC of the MD5 functional element
as well. Table 6.5 summarizes the computed SEC of the functional element. We observe
a functional element which consumes more energy than the application as a whole, the
SEC of the functional element is larger than the SEC of the application given an input of
32MB. Moreover, the functional element consumes less energy when given an input of
64 MB compared to an input of 32 MB. We expected the SEC of the functional element to
increase as the input increases, however for small inputs this appears not to be the case.
We suspect that the energy consumed by the MD5 functional element is too small compared
to the SEC of the instrumentation introduced by the Automated Stubbing method.

6.4.4. Performance

The collected performance measurements show that the MD5 message-digest application
is primarily memory intensive. The CPU and HDD utilization remains stable as the input
to the application increases, in contrast to the memory and network usage which increase
as the input increases.

52

6.5. Reflection on Experiments

In the performance measurements of experiment Ib (Table B.2) we observed a high
CPU and HDD utilization of the Baseline+Replay application with 32 GB data as input.
Inspection of the performance logs shows that the high CPU and HDD utilization can be
attributed to the ccsvchst.exe process. The process is part of the anti virus software on
the system, and was likely performing a scan of the system or an update. Because of com-
pany policy the anti virus software cannot be disabled for the servers in the experiment
environment.

In the performance measurements of experiment II (Table B.3) we observed a high CPU
utilization for the Replay version of the application with 256 MB as input. Analysis of the
performance logs shows that the high CPU utilization is caused by the ccsvchst.exe
process as well, analogous to the high CPU utilization observed in the performance mea-
surements of experiment Ib.

6.5. Reflection on Experiments

From the results in this section we can conclude that it is feasible to compute the SEC
of a selected functional element using the StEP method combined with the Automated
Stubbing method. There are, however, limitations which have to be taken into account
when applying the approach.

First, the SEC of the selected functional element should be significantly larger than
the SEC caused by the instrumentation inserted for the Automated Stubbing method.
Otherwise, the SEC of the selected functional element ‘disappears’ in the dispersion of the
SEC caused by the instrumentation — it becomes impossible to determine whether the
SEC of the functional element was caused by the element itself, or whether it was caused
by a deviation in the SEC measurements. The load caused by the test scenario should
be large enough to negate this effect. Further research is required to learn the minimum
load needed to perform valid calculations for the SEC of the functional element with the
Automated Stubbing method.

Second, further research is required to understand how external factors such as the
garbage collector or anti virus software influences the SEC. We have seen that the SEC of
the MD5 functional element with an input of 32 GB uses 1.54 times more J/MB compared
to smaller inputs.

53

Chapter 7

Case Study

A case study is performed at the case company Centric to demonstrate the feasibility of
using the Automated Stubbing approach to determine the SEC using the StEP method for
a real-world application.

This chapter is organized as follows. First, we discuss the application under test for the
case study (Section 7.1). Second, we discuss how the StEP method and the Automated
Stubbing method are applied for the case study experiments (Section 7.2). Third, we
show the results obtained from the execution of the experiments (Section 7.4). Fourth,
we discuss the experiments, results, and findings (Section 7.5 and 7.6).

7.1. Introduction

The application under test for the case study is Motion': a human resources and pay-
roll application developed at the case company Centric. Motion allows an organization
to maintain a database containing employees and their records; provide a platform for
employees to keep their information up-to-date, track their time off work including sick
days, and process expense statement forms; perform analyses to gain insights in the per-
formance of the organization; and, automate the payroll process. The Motion application
is deployed in a cloud environment, and can be accessed online or on mobile devices.

To set up the experiments with Motion, a trip was made to the Centric office in Romania
to consult with the software architects, developers, and testers of the application. With
their help we selected the functional element to study, we set up a local deployment of
the application suitable to perform energy consumption measurements on, and designed
a test scenario based on the automated tests that they use during development.

1https ://www.centric.eu/NL/Default/HR-software/Motion

55

https://www.centric.eu/NL/Default/HR-software/Motion

7. Case Study

7.2. Applying the StEP Method

The StEP method combined with the Automated Stubbing method is applied to determine
the SEC of the application under test. In this section we discuss how we perform the
activities of the combined method for the case study experiments, following the process
outlined in Section 5.1.

7.2.1. Select Functional Elements

The application under test is developed in C#, and deployed in a cloud environment at
the case company. The application consists of three core components: a web front end, a
RESTful service? back end, and a database.

The application back end contains the business logic of the application, and hosts the
computationally expensive parts of the code of the application. Business logic is separated
in modules which use an adapter interface [51] for the modules to be interchangeable.
Based on the requirements that we set for the use with the Automated Stubbing tool (Sec-
tion 4.1), few functional elements contain computationally expensive algorithms which
could cause a high energy consumption, and for which we can determine that the side
effects are limited to the selected functional element.

In consulatation with software architects and developers of the application under test,
a single functional element is identified for which we want to determine the SEC. The
selected functional element, Role Assignment, allows users of the application under test
to assign user-defined roles to employees and users in the system. The core functionality
of the selected functional element split into three activities:

A. Getltems: query which returns the collection of defined roles;
B. Saveltems: saving of roles assigned to a user;
C. GetRoles: query the roles assigned to a user.

The Role Assignment element is part of the RESTful service back end of the application.

7.2.2. Adapt Architectural Description

Each activity of the core functionality is mapped to the selected functional element in
Figure 7.1. The figure shows an adapted architectural description of the application in
a high-level overview to fit the core functionality of the selected functional element. Be-
cause of the size of the application the adapted architectural description only highlights
some architectural elements.

2Web service which implements the Representational State Transfer (REST) architectural style [49, 50].

56

7.2. Applying the StEP Method

Organization
A
> RoleAssignment [

>Z Payroll ‘
>Z Authentication ‘

>Z Database ‘

Web
WebApi

-

Figure 7.1.: Adapted architectural description of Motion.

H Login H Timeout ‘ Perform Request ’ Timeout H Logout }—b.

[repeat}

Figure 7.2.: Apache JMeter test case activities.

7.2.3. Create Test Scenario

A test case is created for each activity that is part of the core functionality of the selected
functional element. Each functionality can be performed by performing a REST request
to the service back end of the application. Test cases for each functionality are developed
with Apache JMeter. Stress of the functional element is varied by performing the REST
requests 25, 100, 250 and 1000 times. We refer to the number of times the REST request
is performed as the number of users given as input for the test case, because each REST
request is a request from a user in practice. The activities performed by a test case are
shown in Figure 7.2. We discuss each activity in detail.

First, HTTP requests are made to the application to perform the login procedure to
obtain an access token. The access token is required to communicate with the secured
application back end. After the login procedure is completed, a timeout is included to
let the energy consumption of the system stabilize. The SEC measurements focus solely
on the functionality exposed by the Role Assignment functional element. The login and
logout procedures are not part of the functionality, and the energy consumption that they
cause should not be included in the energy consumption measurements performed during
the test case. A timeout of 2 minutes is determined by experimentation to be sufficient.

Second, the functional element is stressed by repeatedly performing REST requests.
The requests are performed in sequence: only when a request is finished is the next
request performed.

Third, a timeout is included to prevent the logout procedure from influencing the SEC

3h‘ctps ://jmeter.apache.org/

57

https://jmeter.apache.org/

7. Case Study

Logging Server Database Server

Power
meter

Il

_ _| Power | _
meter
o

Application Server Management Server

Sy
1

Il

Figure 7.3.: Case study environment.

of the functional element. The logout procedure is performed to be able to repeat the
activities. It is not possible to obtain an access token with the login procedure would the
logout procedure not be performed.

7.2.4. Determine Measurement Approach

The Motion application is deployed on the servers in the experiment environment, as
discussed in Section 3.2, to resemble the cloud environment on which the application is
deployed for production. We use the measurement protocol outlined in Section 3.3, and
the guidelines presented in [1, 42].

Energy Consumption and Performance Measurements

Energy consumption measurement data is gathered using hardware measurements and
software measurements. The hardware measurements use the Watts UP? PRO (WUP)
power meter device, the software measurements use Microsoft Joulemeter energy profiler.
Microsoft Performance Monitor is used to measure the performance of the test server. The
clocks of the different systems are synchronized using the Network Time Protocol, to be
able to relate events that occur on different systems.

Figure 7.3 illustrates the case study experiment environment. The servers used in the
environment are HP DL360 G7 servers, except the logging server, which is a HP DL380
G5. The application server hosts the web front end and the RESTful service back end,
the database server hosts the Microsoft SQL database server. The logging server is used
to collect the power measurements, and the management server is used to control the
experiments and host the MongoDB server instance. The dashed lines indicate power
cables, the lightning bolt is the power source. The solid lines are network and USB cables
used to transfer data between the systems.

58

7.2. Applying the StEP Method

Software Energy Consumption

The SEC of the application is computed by subtracting the idle energy consumption from
the energy consumption measured during the experiments, following from Equation 5.1.
The SEC is calculated by taking the average power between two measurements multi-
plied by the time between measurements, and taking the sum over the duration of the
measurements.

Computation of the SEC requires the idle power consumption to be known. Moreover,
the Joulemeter energy profiler requires the power consumption under full load for cali-
bration of its measurements. The HP DL360 G7 servers in the experiment environment
are newly deployed by the case company for the case study experiments. Therefore, the
idle power consumption and the power consumption when the servers are under full load
are determined in preparation. We will discuss these measurements and their results in
Section 7.3.

Measurement Protocol

The measurement protocol presented in Section 3.3 is used to perform the experiments.
The case study test runs are automated by executing a batch script. Following the profiling
order of the StEP method combined with the Automated Stubbing method, the Apache
JMeter test case is repeated 10 times for each input and application version. Between
each test run the batch script waits for the specified cool down time of 15 minutes. A
limited number of repeats is selected due to the limited time available in the experiment
environment. Performing a single test case for one application version takes about 12
hours to complete, including the cool down time between runs when repeated 10 times.

7.2.5. Profile Baseline

The Baseline version of the application is profiled using the created test scenario, and the
determined measurement approach. The collected SEC and performance measurements
are used to verify the created test scenario. The profiling results, and the discussion of
the results are presented in the following sections.

7.2.6. Introduce and Profile Stubbed Versions

The stubbed versions of the application are created using the Automated Stubbing tool.
The implementation of the stubbed versions are verified by comparing the logs from run-
ning the stubbed version, to the program traces of the unmodified application. Verification

59

7. Case Study

Server Idle (W) Load (W) Delta (W)
Application 96.7793 161.3181 64.5388
Database 78.3928 148.0000 69.6071

Management 102.9494 210.7484 107.7990

Table 7.1.: Power consumption of HP DL360 G7 servers in the experiment environment.

of the stubbed versions demonstrated that the stubbed versions, given the same input, ex-
ercise the same program behavior as the unmodified application. The profiling results,
and the discussion of the results are presented in the following sections.

7.2.7. Annotate Architectural Description

After the profiling of the application is finished, the adapted architectural description is
annotated with the measured SEC.

7.3. Idle and Load Energy Consumption

The idle power consumption and power consumption under full load are determined
for the HP DL360 G7 servers in the experiment environment, as the servers are newly
deployed for the case study experiments. The idle power consumption is used for the
computation of the SEC. The idle and load power consumption are used to calibrate the
Joulemeter power profiler software on the test servers. Table 7.1 presents the measured
power consumption when running idle or under a full load of the servers.

To measure the power consumption when the servers are running idle, power consump-
tion measurements are taken over a timespan of 60 hours using the WUP power meter
device. The idle power consumption is taken as the mean measured power consumption.

To measure the power consumption when the servers are under full load, the Heavy-
Load* application is used to stress the servers, following the process outlined in [14]. A
total of ten runs using the HeavyLoad application are performed, where each run puts
the server under a full load for one hour. The power consumption under full load is taken
as the mean measured power consumption over the ten runs. The reported delta is the
difference between the power consumption under full load, and the power consumption
when running idle.

4https ://jam-software.com/heavyload/

60

https://jam-software.com/heavyload/

7.4. Results

7.4. Results

In this section we report the results of the profiling of the Motion application, and its
various stubbed versions. Four sets of experiments are performed, resulting in a total of
640 SEC and performance measurements. Out of the 640 measurement samples, one
sample was removed because the application returned the HTTP status code 500 Internal
Server Error. Inspection of the logs produced by Motion revealed a serialization exception.
Serialization was implemented for the required classes, and the updated application did
not throw any more exceptions. Review of the event logs confirmed that the serialization
was implemented correctly.

SEC measurements are summarized in Figures 7.4-7.11. Performance measurements
are given in Tables C.1-C.8 in Appendix C. The measurements report the CPU utilization,
Memory usage, HDD utilization, and Network usage are reported as the median over all
recorded samples.

The figures in this section use abbreviations for the various versions of the applications;
B for the Baseline version, C for the Capture version, B+R for the Baseline+Replay version,
and R for the Replay version.

7.4.1. Experiments la

The first set of experiments is performed using the Getltems test case, stressing the se-
lected functional element 25, 100, 250 and 1000 times. Figure 7.4 shows the duration
of the experiment runs. Figure 7.5 illustrates the measured SEC, reported separately
for the application and database servers. Tables C.1 and C.2 summarize the collected
performance data.

500

400

Duration (s)

200

Figure 7.4.: Experiment run duration of case study Ia.

We make the following observations:

* The duration of the Baseline and Capture experiments with an input of 1000 users,

61

7. Case Study

3000
2000

1000

3000

Energy Consumption (J)

2000

1000

B C B+R R B C B+R R B C B+R R B C B+R R
Figure 7.5.: Software energy consumption of case study Ia.

show a large spread in its distribution compared to the other versions and inputs.

* The SEC of the stubbed versions do not show the expected SEC pattern discussed
in Section 5.3; the SEC of the Replay versions is equal to or larger than the SEC of
the Baseline versions.

7.4.2. Experiments Ib: External Factor

The second set of experiments is performed using the Getltems test case, stressing the
selected functional element 25, 100, 250 and 1000 times. The HP DL360 G7 servers are
reconfigured to use a single network interface, in constrast to the two network interfaces
they had previously. Figure 7.6 shows the duration of the experiment runs. Figure 7.7 il-
lustrates the measured SEC, reported separately for the application and database servers.
Tables C.3 and C.4 summarize the collected performance data.

We make the following observations:

* The duration of the Baseline and Capture experiments with an input of 1000 users,
do not show the large spread in its distribution compared to the other versions and
inputs as we observed in the first set of experiments;

* The SEC of the stubbed versions do not show the expected SEC pattern discussed in
Section 5.3; the SEC of the Capture and Baseline+Replay versions is smaller than

62

7.4. Results

400

300

Duration (s)

200

Figure 7.6.: Experiment run duration of case study Ib.

3000
2000

1000

3000

2000

Energy Consumption (J)

1000

B C B+R R B C B+R R B C B+R R B C B+R R

Figure 7.7.: Software energy consumption of case study Ib.

the SEC of the Baseline version.

7.4.3. Experiments Il: MongoDB on the Same Server

The third set of experiments is performed using the Getltems test case, stressing the se-
lected functional element 25, 100, 250 and 1000 times. The MongoDB server is moved
from the management server to the application server. Figure 7.8 shows the duration
of the experiment runs. Figure 7.9 illustrates the measured SEC, reported separately
for the application and database servers. Tables C.5 and C.6 summarize the collected
performance data.

We make the following observation: the SEC of the stubbed versions do not show the ex-

63

7. Case Study

IS
S
S)

Duration (s)
w
8

N
=}
S)

Figure 7.8.: Experiment run duration of case study IL.

3000
2000

1000

3000

2000

Energy Consumption (J)

1000

B C B+R R B C B+R R B C B+R R B C B+R R

Figure 7.9.: Software energy consumption of case study IL

pected SEC pattern discussed in Section 5.3; the SEC of the Capture and Baseline+Replay
versions is smaller than the SEC of the Baseline version.

7.4.4. Experiments lll: A Manual Stub

The third set of experiments is performed using the Getltems test case, stressing the se-
lected functional element 25, 100, 250 and 1000 times. The stubs created with the
Automated Stubbing tool are replaced by a manual built stub, which returns a predeter-
mined answer from the functional element. As the manual stub does not implement the
functionality of the Automated Stubbing tool, the Capture and Baseline+Replay versions
are not profiled. Figure 7.10 shows the duration of the experiment runs. Figure 7.11 il-

64

7.5. Discussion

lustrates the measured SEC, reported separately for the application and database servers.

400

300

Duration (s)

200

Figure 7.10.: Experiment run duration of case study IIL

3000
2000

1000

3000

2000

Energy Consumption (J)

1000

Figure 7.11.: Software energy consumption of case study III.

We make the following observation: the SEC of the stub is larger than the SEC of the
baseline.

7.5. Discussion

In this section we discuss the results and observations of the software energy consumption
experiments as part of the case study performed at the case company Centric with the
Motion application. We applied the StEP method combined with the Automated Stubbing
method to perform the case study experiments.

65

7. Case Study

Count

400 450 500 550 400 450 500 550
Duration

Figure 7.12.: Distribution of case study Ia duration.

7.5.1. The Impact of Two Network Interfaces

We observe a large spread in the distribution of durations of the Baseline and Capture
version with an input of 1000 in the first set of experiments in Figure 7.4. If we plot the
durations of the two versions in a histogram, as shown in Figure 7.12, the distribution of
durations appears to be split in two. We suspect this to be caused by an external factor of
the experiment environment. Because the experiments use MongoDB for the event log,
which is placed on a server separate from where the application is deployed, we decided
to repeat the experiments to identify the impact caused by MongoDB on the capture and
replay. The experiments are repeated with MongoDB placed on the same server as the
application, and the experiments are repeated with a stubbed version of the application
which does not use MongoDB.

Analysis of the performance data of the test servers shows unusual usage of the network
interfaces. Figure 7.13 shows a fragment of the usage of the network interfaces on the
database server. The fragment shows six runs of the Baseline version of the application
with an input of 1000 users. The areas highlighted in grey indicate when an experiment
run is performed.

We make two observations which support our hypothesis. First, the throughput of the
network interfaces differ. The throughput of Ethernet 0 is 457.54 KB/s (SD = 3.78 KB/s)
on average, whereas the throughput of Ethernet 1 is 313.49KB/s (SD = 1.83KB/s) on
average. Second, the duration of the experiment runs varies depending on the network
interface that is active. Experiments using Ethernet O have a duration of 401s (SD =
2.58s) on average, whereas experiments using Ethernet 1 have a duration of 530s (SD
= 2.715s) on average. The observations show that the duration of the experiments is tied
to the throughput of the network interfaces.

66

7.5. Discussion

Interface Ethernet 0 Ethernet 1

600

400

Network (KB)

N
o
o

23:00 23:30 00:00 00:30 01:00
Time

Figure 7.13.: Network usage pattern of case study Ia, Baseline version with an input of
1000 users.

7.5.2. Using a Single Network Interface

For the second set of experiments the HP DL360 G7 servers are reconfigured to use a
single network interface. We think that using a single network interface eliminates the
network as external factor, and improves the distribution of experiment durations ob-
served in experiments Ia.

The durations of experiments Ib are shown in Figure 7.6. The figure shows that for
the Baseline and Replay versions with an input of 1000 the dispersion of the durations is
much smaller compared to experiments Ia. This confirms our expectations.

7.5.3. Software Energy Consumption of Motion

Due to the limited time remaining for the case study experiments, and the network in-
terfaces eliminated as external factor, the decision was made to focus on a single test
scenario where we vary the way in which MongoDB is used as event log. Thus, the effect
on the SEC caused by MongoDB can be indentified. Case study Ib has MongoDB deployed
on the management server, case study I has MongoDB deployed on the application server,
and case study III does not use MongoDB. Figures 7.7, 7.9 and 7.11 show the results of
the SEC measurements.

The stubbed versions of the Motion application do not show the expected SEC pattern
discussed in Section 5.3: the SEC of the Capture and Baseline+Replay versions is smaller

67

7. Case Study

Version Baseline Replay

200
300

150
200
100

100

o 50
=
g O 0
g 0 50 100 150 0 50 100 150
>
S
o 3000
3 600
- 2000
400
200 1000
0 0
0 50 100 150 200 0 100 200 300 400
Time

Figure 7.14.: Cumulative energy consumption of case study Ib.

than the SEC of the Baseline version (case study Ib and II); and, the SEC of the stub is
larger than the SEC of the baseline (case study III). We suspect that the behavior that we
see has the same cause as the SEC measurements of the preliminary experiments II. The
energy consumed by the Role Assignment functional element is too small compared to
the SEC of the instrumentation introduced by the Automated Stubbing method.

The cumulative SEC of the Baseline and Replay version in case study Ib are shown in
Figure 7.14. SEC measurements are averaged over the 10 runs. Given an input of 25 and
250 users, the cumulative SEC of the Replay version is consistently smaller compared to
the cumulative SEC of the Baseline version. But given an input of 100 and 1000 users, the
cumulative SEC of the versions overlap and cross one another. Because the cumulative
SEC of the Replay is not consistently smaller compared to the cumulative SEC of the
Baseline, we cannot determine the SEC of the functional element.

7.5.4. Performance

The collected performance measurements show that the work exercised on the Motion
application does not stress the application. The CPU utilization (max = 6.09 %), memory
usage (max = 106.21 MB), and HDD utilization (max = 0.17 %) are all limited. But we
observe a pattern in the network usage for all case study experiments. The majority of the
network usage appears to be limited to communication between the Application server

68

7.6. Reflection on Case Study

and the Database server.

We analyzed the network usage to determine whether the data sent and received from
the different servers come from the same distribution. The network usage data was tested
for normality, and the Mann-Whitney U test is used for the non-normally distributed data
[52]. The data sent from the application server (Mdn = 4.80 MB) is significantly different
from the data received by the database server (Mdn = 2.71 MB); U = 1965.5, p < 0.05.
The data sent from the database server (Mdn = 14.02 MB) is significantly different from
the data received by the application server (Mdn = 24.47 MB); U = 1148, p < 0.05.

7.6. Reflection on Case Study

From the results in this section we have established that the created test scenario did
not stress the application sufficiently to compute the SEC of the functional element re-
liably. Like the experiments with the MD5 message-digest application we have learned
that to apply the Automated Stubbing method, the energy consumed by the selected func-
tional element needs to significantly differ from the energy overhead introduced by the
instrumentation from the method. Further research is required to determine the right
granularity between the SEC of the functional element and the SEC of the instrumenta-
tion.

Furthermore, we identified the network configuration as an external factor which in-
fluences SEC measurements. The network configuration, in particular the throughput of
the network and configuration of network interfaces, has an impact on the duration of
the experiments. The impact was also observed as a large dispersion in the SEC measure-
ments.

69

Chapter 8

Conclusions

In this thesis, we have proposed the Automated Stubbing method for the automatic cre-
ation of stubs using the capture and replay technique, and applied it within the StEP
method. We extended the StEP method activities to include the activities required to
profile the various stubbed versions created with the Automated Stubbing method. We
have proposed equations to compute the software energy consumption for a selected
functional element given the various stubbed versions. The Automated Stubbing method
was implemented, and evaluated using a series of experiments and a case study. The
research in this thesis has been laid down in the main research question RQ1.

RQ1: How can we automatically measure the energy consumption of software
architectural components within the software development process by stubbing?

To answer the main research question, we formulated six sub questions. Combined,
the answers to the sub questions provide an answer for the main research question.

SQ1: How can we automate the creation of stubs in the StEP method by applying
the Capture and Replay method?

We proposed the Automated Stubbing method in Chapter 4 as answer to this question.
The Automated Stubbing method applies the capture and replay method to create three
stubbed versions of some software application: a Capture version, a Baseline+Replay ver-
sion, and a Replay version. The stubbed versions of the software application are used to-
gether with the Baseline version of the application to determine the SEC. The Automated
Stubbing method is implemented in the Automated Stubbing tool. The tool, developed in
C#, uses the .NET compiler platform Roslyn to insert the instrumentation required by the
method. A series of experiments and a case study were performed to show the feasibility
of using the Automated Stubbing method.

71

8. Conclusions

SQ2: How do we isolate the software architectural components to measure its
energy consumption as accurately as possible?

Energy consumed by a software architectural component is not necessarily confined
to the component itself. Side effects of the component might cause energy consumption
outside of the component. Within the Automated Stubbing method, the assumption is
made to restrict the method to architectural components for which the side effects are
limited to the state of the component. However, further research is required to extend
the Automated Stubbing method to objects for which side effects happen outside of the
state of the component.

SQ3: How do we measure the impact of instrumentation on the energy consump-
tion?

In Chapter 5 we proposed two equations to measure the impact of the instrumenta-
tion. Equation 5.3 calculates the overhead of the capture instrumentation by comparing
the SEC of the Capture version of some application to the SEC of the Baseline version.
Equation 5.4 calculates the overhead of the replay instrumentation by comparing the
SEC of the Baseline+Replay version of some application to the SEC of the Baseline ver-
sion. The experiments presented in Chapters 6 and 7 demonstrate that the impact of the
instrumentation can be measured using the equations.

SQ4: How do we measure the impact of the replay on the energy consumption?

To measure the impact of the replay on the energy consumption we introduced the
Baseline+Replay version within the Automated Stubbing method. The Baseline+Replay
version performs the replay on top of the Baseline version. By combining both the work of
the baseline and the work of the replay, Equation 5.4 can be used to measure the impact
of the replay. The experiments presented in Chapters 6 and 7 demonstrate that the impact
of the replay can be measured.

SQ5: How do side effects of components influence the energy consumption during
capture and replay?

We have examined multiple examples of how side effects influence the energy con-
sumption of software applications. In Chapter 6 we explored how the garbage collector
could influence SEC measurements. The garbage collector has more work to perform if
more memory is required by the application under test. Further research is required to

72

8.1. Future Research

identify the impact of garbage collection on energy consumption. In Chapter 7 we discov-
ered how network utilization plays a role in SEC measurements. Two network interfaces
with differing throughput caused a large dispersion in the duration of the experiment
runs. By reconfiguring the servers to use a single network interface, the dispersion was
minimized.

SQ6: What are effective ways to show the measured energy consumption during
the software development process?

The experiments and case study were performed in a controlled environment outside of
the software development processes of the case company. In Chapter 6 we determined the
SEC of the MD5 message-digest application. Because of the simplicity of the application
we presented the SEC of the selected functional element in a table. In the case study,
Chapter 7, we were unable to determine the SEC of the selected functional element from
Motion. Therefore, only the intermediate SEC measurements are presented. Further
research is required to identify effective ways to apply the Automated Stubbing method,
and show the measured energy consumption during the software development process.

8.1. Future Research

In this section we discuss the main limitations of the Automated Stubbing method pro-
posed in this thesis, and identify directions for future research.

Further Automation

The Automated Stubbing method automates a single activity of the StEP method. Ad-
ditional profiling activies are required when using the StEP method combined with the
Automated Stubbing method. Within our experiments, the profiling activites were par-
tially automated by batch scripts on the test servers. Analysis of the profiling results is
required throughout the Automated Stubbing method to obtain reliable measurements.
Therefore, using the combined method remains a time consuming effort.

Further research can reduce the effort of using the combined method. Scripts to au-
tomate the profiling activies could be generated automatically, and can be incorporated
in the automated testing used for the software development process. Automated tools to
detect performance issues could be used to limit the effort required to analyse profiling
results, by alerting users when performance issues occur during SEC measurements.

73

8. Conclusions

Side Effects

Side effects of software architectural components might cause energy consumption out-
side of the component under study. We made the assumption within the Automated Stub-
bing method that side effects are limited to the internal state of the component. Further
research is required to extend the Automated Stubbing method to software architectural
components with side effects outside of the component under study.

Granularity of the Software Architectural Components

We discovered from our experiments and case study that there is a minimum amount of
work required by the software architectural components to collect valid SEC measure-
ments, and to reliably determine the the SEC of the component. If the work performed
by the component is too small, we cannot distinguish between the dispersion of SEC
measurement samples and the actual work performed. Further research is required to
discover the bounds on the minimum work required.

To Conclude

To conclude, in this thesis we presented a method to automate the creation of stubs
and apply it within the StEP method. We demonstrated the feasibility of the presented
method by performing a series of experiments and a case study. More work is required
to optimize the implementation of the tool, understand the limitations of the Automated
Stubbing method, and research side effects and the external factors — such as the garbage
collector and the network utilization — which could have a significant impact on software
energy consumption.

Acknowledgements

First and foremost, I would like to thank my supervisors who guided me throughout this
Master’s Thesis research for without them this research would not have been possible,
Jurriaan Hage and Jan Martijn van der Werf at Utrecht University, and Erik Jagroep and
Rob van Vliet at Centric. In addition to my supervisors, this research would not have been
possible without the help of many others. In particular, I would like to thank Cosmin
Sontu and Mihai Mircescu from Centric Romania for their help with setting up the case
study experiments; Erwin Vergeer for his support with the hardware in the experiment
environment; and, Arjan van der Ent for countless valuable discussions and showing me
around the Centric office in Romania.

74

10

11

12

14

15

16

17

19

20

21

22

23

24

Appendix A

Instrumentation Examples

Listing A.1: Excerpt of the Baseline version of the MD5 message-digest application.

class MD5

{
public static int DigestLength { get; } = 16;
private void Update(byte input);
private int DoFinal (byte[] output, int outOff);

private byte[] =xBuf;

private int xBufOff;

private long byteCount;

private uint H1, H2, H3, H4;
private uint[] X = new uint[16];

private int x0ff;

public string ComputeHash(char[] data)

{

byte[] result = new byte[MD5.DigestLengthl];

foreach (var b in Encoding.UTF8.GetBytes (data))

{

Update (b) ;

}

DoFinal (result, 0);

return BitConverter.ToString(result).Replace("-"
}

"") . ToLower () ;

Listing A.2: Excerpt of the Capture version of the MD5 message-digest application.

class MD5

75

10

11

12

13

14

15

16

17

18

19

20

21

22

23

d

A. Instrumentation Examples

{
public string ComputeHash(char[] data)
{
var _cr__parameters = new CaptureReplay.Parameter []{new
CaptureReplay.ReferenceParameter ("data", "Char([]",
CaptureReplay.InstanceMap.ResolveInstance (data))};
var _cr__state = new CaptureReplay.StateMember []{new
CaptureReplay.StateMember ("xBuf", this.xBuf), new
CaptureReplay.StateMember ("xBufOff", this.xBufOff), new
CaptureReplay.StateMember ("byteCount", this.byteCount),
new CaptureReplay.StateMember ("H1", this.H1), new
CaptureReplay.StateMember ("H2", this.H2), new
CaptureReplay.StateMember ("H3", this.H3), new
CaptureReplay.StateMember ("H4", this.H4), new
CaptureReplay.StateMember ("X", this.X), new
CaptureReplay.StateMember ("x0ff", this.x0ff)};
_cr__eventLog.Capture (new
CaptureReplay.MethodEntry (_cr__instanceld,
"MD5.ComputeHash (Char[])", _cr__parameters), _cr__state);
var _cr__event = new
CaptureReplay.MethodExit (_cr__instanceld,
"MD5 . ComputeHash (Char [])", _cr__parameters);
byte[] result = new byte[MD5.DigestLength];
foreach (var b in Encoding.UTF8.GetBytes (data))
{
Update (b) ;
}
DoFinal (result, O0);
var _cr__expression =
BitConverter.ToString(result) .Replace("-", "").ToLower();
_cr__eventLog.Capture(_cr__event, _cr__state,
_cr__expression);
return _cr__expression;
}
private static CaptureReplay.IEventLog _cr__eventLog = new
CaptureReplay.MongoEventLog (CaptureReplay.EventLogMode.Capture,
"MD5.MD5") ;
private CaptureReplay.Instanceld _cr__instanceld;
}

Listing A.3: Excerpt of the Replay version of the MD5 message-digest application.

class MD5

76

10

11

12

13

15

16

17

18

19

20

21

10

11

13

public string ComputeHash(char[] data)

{
var _cr__parameters = new CaptureReplay.Parameter []J{new
CaptureReplay.ReferenceParameter ("data", "Char([]",
CaptureReplay.InstanceMap.ResolveInstance (data))};
var _cr__event = _cr__eventLog.Replay(_cr__instanceld,
"MD5 . ComputeHash(Char []1)", _cr__parameters);
xBuf = (byte[]) (_cr__event.State["xBuf"]);
xBuf0ff = (int) (_cr__event.State["xBuf0ff"]);
byteCount = (long)(_cr__event.State["byteCount"]);
H1 = (uint) (_cr__event.State["H1"]);
H2 = (uint) (_cr__event.State["H2"]);
H3 = (uint) (_cr__event.State["H3"]);
H4 = (uint) (_cr__event.State["H4"]);
X = (uint[]) (_cr__event.State["X"]);
x0ff = (int) (_cr__event.State["x0ff"]);
return (string) ((_cr__event as
CaptureReplay.MethodExit) .ReturnValue 77 default(string));
}
private static CaptureReplay.IEventLog _cr__eventLog = new

CaptureReplay.MongoEventLog (CaptureReplay.EventLogMode.Capture,
"MD5.MD5") ;

private CaptureReplay.Instanceld _cr__instanceld;

Listing A.4: Excerpt of the Baseline+Replay version of the MD5 message-digest applica-
tion.

class MD5
{
public string ComputeHash(char[] data)
{
var _cr__parameters = new CaptureReplay.Parameter []J{new
CaptureReplay.ReferenceParameter ("data", "Char[]",
CaptureReplay.InstanceMap.ResolveInstance (data))l};
byte[] result = new byte[MD5.DigestLength];
foreach (var b in Encoding.UTF8.GetBytes (data))
{
Update (b);

DoFinal (result, O0);

var _cr__event = _cr__eventLog.Replay(_cr__instanceld,

77

14

15

16

17

18

19

20

21

22

23

24
25

26

27

28

A. Instrumentation Examples

78

"MD5.ComputeHash(Char [])", _cr__parameters);
xBuf = (bytel[]) (_cr__event.State["xBuf"]);
xBuf0ff = (int) (_cr__event.State["xBufOff"]);
byteCount = (long) (_cr__event.State["byteCount"])

H1 = (uint) (_cr__event.State["H1"]);
H2 = (uint) (_cr__event.State["H2"]);
H3 = (uint) (_cr__event.State["H3"]);
H4 = (uint) (_cr__event.State["H4"]);

X = (uint[]) (_cr__event.State["X"]);

x0ff = (int) (_cr__event.State["x0ff"]);

return BitConverter.ToString(result).Replace("-",
"").ToLower () ;

private static CaptureReplay.IEventLog _cr__eventLog
CaptureReplay.MongoEventLog(CaptureReplay.EventLogMode.Capture,

"MD5.MD5") ;

private CaptureReplay.Instanceld _cr__instanceld;

>

new

Appendix B

Experiment Results

Network Network
Version Input CPU (%) Memory (MB) HDD (%) Received (MB) Sent (MB)
Baseline 8 GB 26.56 9878.05 4.18 1.89 0.15
32GB 26.56 38810.27 3.25 7.28 0.61
64 GB 26.56 76 957.33 3.43 14.71 1.27
Capture 8GB 26.17 10324.11 4.44 2.94 0.75
32GB 26.17 40429.09 2.96 11.59 3.04
64 GB 26.17 80287.42 3.13 22.29 6.08
Replay 8GB 26.17 2790.39 4.03 1.92 0.23
32GB 26.17 10564.02 2.97 8.68 0.92
64 GB 26.17 20890.01 3.37 14.87 1.81
Table B.1.: Performance measurements of experiments Ia.

79

B. Experiment Results

80

Network Network
Version Input CPU (%) Memory (MB) HDD (%) Received (MB) Sent (MB)
Baseline 2GB 26.20 2580.18 7.12 0.50 0.04
4GB 26.35 4983.62 7.37 0.94 0.07
8 GB 26.53 9757.76 6.93 1.84 0.15
32GB 26.71 38532.25 7.75 7.65 0.63
Capture 2GB 25.97 2727.51 6.86 0.96 0.19
4GB 25.97 5351.28 6.92 1.46 0.38
8 GB 26.15 10286.43 6.98 2.97 0.76
32GB 26.33 40343.57 7.17 12.52 3.06
Baseline 2GB 26.08 2584.03 7.84 0.73 0.08
+Replay 4GB 26.00 5058.30 7.07 1.45 0.15
8 GB 26.02 9850.69 6.97 3.04 0.33
32GB 36.65 39294.98 21.96 11.69 1.27
Replay 2GB 26.26 914.74 7.05 0.57 0.06
4GB 26.22 1548.50 7.16 0.99 0.11
8 GB 26.13 2643.91 6.68 1.86 0.22
32GB 26.52 10935.88 6.86 7.62 0.90
Table B.2.: Performance measurements of experiments Ib.
Network Network
Version Input CPU (%) Memory (MB) HDD (%) Received (MB) Sent (MB)
Baseline 32MB 18.85 49.47 7.93 0.01 0.00
64 MB 22.17 142.57 10.03 0.02 0.00
128 MB 23.17 290.66 10.46 0.03 0.00
256 MB 25.52 415.58 9.14 0.06 0.01
Capture 32MB 23.24 68.63 8.29 0.03 0.01
64 MB 23.99 175.20 8.76 0.04 0.01
128 MB 24.70 304.66 9.86 0.06 0.02
256 MB 25.92 515.64 8.31 0.11 0.03
Baseline 32MB 20.99 78.68 8.60 0.03 0.00
+Replay 64 MB 24.67 163.05 9.04 0.04 0.01
128 MB 24.66 316.37 8.65 0.06 0.01
256 MB 25.83 495.40 9.55 0.11 0.01
Replay ~ 32MB 20.95 57.91 6.25 0.02 0.00
64 MB 24.72 59.92 7.98 0.03 0.00
128 MB 25.11 227.43 8.37 0.04 0.01
256 MB 32.63 338.40 10.98 0.07 0.01

Table B.3.: Performance measurements of experiments II.

Appendix C

Case Study Results

81

C. Case Study Results

Network Network

Version Users CPU (%) Memory (MB) HDD (%) Received (MB) Sent (MB)
Baseline 25 0.84 34.86 0.09 4.46 0.97
100 1.70 24.01 0.09 14.52 2.90

250 2.90 37.31 0.09 34.72 6.77

1000 5.31 68.95 0.09 135.59 25.80

Capture 25 0.97 31.10 0.11 4.48 0.99
100 1.73 36.07 0.10 14.58 3.10

250 3.07 41.51 0.09 34.80 7.07

1000 4.37 97.74 0.09 136.14 28.47

Baseline 25 0.84 37.42 0.09 4.49 0.95
+Replay 100 1.77 32.60 0.08 14.63 2.88
250 3.03 51.20 0.08 34.97 6.80

1000 4.19 106.21 0.08 136.77 27.58

Replay 25 0.96 39.76 0.09 4.51 0.92
100 1.79 34.36 0.08 14.62 2.84

250 2.99 43.53 0.08 34.77 6.48

1000 4.09 104.03 0.09 136.17 26.43

Table C.1.: Performance measurements of case study Ia of the Application server.

Network Network

Version Users CPU (%) Memory (MB) HDD (%) Received (MB) Sent (MB)
Baseline 25 0.40 18.05 0.10 0.82 4.16
100 0.56 19.45 0.09 2.67 14.03

250 0.81 27.18 0.09 6.24 33.78

1000 1.36 65.25 0.09 24.37 132.59

Capture 25 0.44 18.28 0.10 0.80 4.14
100 0.57 24.35 0.10 2.75 14.00

250 0.81 27.71 0.11 6.23 33.77

1000 1.25 72.60 0.09 25.94 132.66

Baseline 25 0.37 15.98 0.07 0.81 411
+Replay 100 0.59 22.65 0.07 2.59 14.01
250 0.83 28.42 0.07 6.41 33.78

1000 1.19 80.04 0.08 25.93 132.70

Replay 25 0.55 22.21 0.12 0.74 4.14
100 0.61 18.28 0.09 2.55 13.96

250 1.01 27.15 0.08 5.95 33.60

1000 1.22 85.37 0.09 24.77 131.91

Table C.2.: Performance measurements of case study Ia of the Database server.

82

Network Network
Version Users CPU (%) Memory (MB) HDD (%) Received (MB) Sent (MB)

Baseline 25 1.43 42.79 0.14 4.53 1.25
100 2.36 41.63 0.14 14.64 3.22

250 3.45 54.12 0.11 34.89 7.58

1000 5.51 98.25 0.11 135.98 26.48

Capture 25 1.35 36.62 0.11 4.28 0.91
100 2.23 30.13 0.11 14.34 2.84

250 3.39 47.55 0.15 34.49 6.68

1000 5.89 87.03 0.17 135.11 25.67

Baseline 25 1.44 37.74 0.10 4.29 0.91
+Replay 100 231 33.25 0.12 14.34 2.83
250 3.53 39.97 0.09 34.49 6.67

1000 6.09 79.81 0.09 135.14 25.70

Replay 25 1.39 38.36 0.09 4.31 0.89
100 2.34 31.79 0.09 14.32 2.71

250 3.55 36.29 0.09 34.34 6.38

1000 6.05 76.99 0.09 134.45 24.51

Table C.3.: Performance measurements of case study Ib of the Application server.

Network Network

Version Users CPU (%) Memory (MB) HDD (%) Received (MB) Sent (MB)
Baseline 25 0.37 15.70 0.11 0.76 3.96
100 0.59 25.39 0.10 2.57 13.50

250 1.04 35.15 0.08 0.04 0.09

1000 1.25 69.80 0.10 12.17 64.11

Capture 25 0.44 15.64 0.09 0.77 4.01
100 0.65 18.47 0.08 2.59 13.57

250 0.87 22.43 0.09 6.21 32.62

1000 1.31 45.85 0.09 24.30 128.03

Baseline 25 0.34 14.36 0.10 0.76 3.96
+Replay 100 0.54 18.09 0.11 2.57 13.51
250 0.76 21.61 0.08 6.21 32.60

1000 1.18 49.92 0.09 24.32 128.11

Replay 25 0.37 15.63 0.08 0.74 4.00
100 0.52 15.00 0.07 2.46 13.47

250 0.80 23.52 0.07 5.91 32.42

1000 1.19 47.41 0.09 23.14 127.34

Table C.4.: Performance measurements of case study Ib of the Database server.

C. Case Study Results

Network Network

Version Users CPU (%) Memory (MB) HDD (%) Received (MB) Sent (MB)
Baseline 25 1.32 34.82 0.11 4.33 0.91
100 2.29 28.31 0.09 14.37 2.83

250 3.53 39.46 0.09 34.50 6.68

1000 5.95 82.83 0.09 135.17 25.66

Capture 25 1.31 32.55 0.08 4.29 0.94
100 2.27 35.42 0.09 14.39 2.95

250 3.49 38.83 0.10 34.58 6.96

1000 6.06 101.09 0.09 135.49 26.89

Baseline 25 1.40 34.38 0.13 4.38 0.94
+Replay 100 2.28 26.50 0.14 14.49 2.87
250 3.54 40.28 0.11 34.74 6.76

1000 5.77 83.99 0.11 136.11 26.04

Replay 25 1.44 30.86 0.16 4.33 0.89
100 2.30 39.85 0.10 14.41 2.75

250 3.46 40.86 0.09 34.55 6.47

1000 5.78 76.93 0.09 135.32 24.87

Table C.5.: Performance measurements of case study II of the Application server.

Network Network

Version Users CPU (%) Memory (MB) HDD (%) Received (MB) Sent (MB)
Baseline 25 0.52 18.21 0.10 0.77 4.03
100 0.67 19.10 0.10 2.58 13.51

250 0.91 24.80 0.08 6.22 32.63

1000 1.49 57.70 0.09 24.31 128.10

Capture 25 0.39 16.34 0.07 0.76 3.96
100 0.55 18.00 0.08 2.58 13.53

250 0.82 22.76 0.07 6.21 32.66

1000 1.25 47.93 0.10 24.35 128.11

Baseline 25 0.44 19.77 0.09 0.77 4.00
+Replay 100 0.56 18.04 0.13 2.58 13.53
250 0.79 21.84 0.09 6.22 32.66

1000 1.29 59.67 0.09 24.30 128.07

Replay 25 0.46 17.23 0.09 0.73 3.96
100 0.65 22.52 0.10 2.46 13.48

250 0.90 30.17 0.10 5.93 32.49

1000 1.52 66.67 0.09 23.15 127.42

Table C.6.: Performance measurements of case study II of the Database server.

84

Network Network

Version Users CPU (%) Memory (MB) HDD (%) Received (MB) Sent (MB)
Baseline 25 0.91 20.44 0.10 4.34 0.91
100 1.77 27.14 0.09 14.39 2.83

250 3.00 36.28 0.08 34.54 6.68

1000 5.31 76.87 0.10 135.18 25.66

Replay 25 1.39 25.59 0.11 4.29 0.87
100 2.23 28.78 0.09 14.28 2.71

250 3.44 34.16 0.08 34.30 6.37

1000 5.89 80.52 0.12 134.42 24.51

Table C.7.: Performance measurements of case study III of the Application server.

Network Network

Version Users CPU (%) Memory (MB) HDD (%) Received (MB) Sent (MB)
Baseline 25 0.39 16.93 0.09 0.77 4.00
100 0.62 19.75 0.08 2.59 13.55

250 0.81 25.68 0.08 6.22 32.66

1000 1.29 55.84 0.11 24.31 128.17

Replay 25 0.45 17.17 0.10 0.74 4.01
100 0.61 20.45 0.09 2.46 13.46

250 0.88 25.03 0.08 5.92 32.45

1000 1.36 51.32 0.11 23.16 127.41

Table C.8.: Performance measurements of case study III of the Database server.

85

[1]

[2]

[3]

[4]
[5]

(6]

[7]

(8]

[9]

[10]

References

E. Jagroep, A. van der Ent, J. M. E. M. van der Werf, J. Hage, L. Blom, R. van
Vliet, and S. Brinkkemper, “The Hunt for the Guzzler : Architecture-based Energy
Profiling using Stubs,” Information and Software Technology, 2017.

J. L. Sawin, J. Rutovitz, and F. Sverrisson, Renewables 2018 Global Status Report.
Renewable Energy Policy Network for the 21st Century (REN21), 2018.

J. Beckett and R. Bradfield, “Power Efficiency Comparison of Enterprise-Class Blade
Servers and Enclosures,” A Dell Technical White Paper, 2011.

E. Jagroep, “Green Software Products,” PhD thesis, Utrecht University, 2017.

S. Murugesan, “Harnessing Green It: Principles and Practices,” IT professional,
vol. 10, no. 1, 2008.

P. Lago, S. A. Kogak, I. Crnkovic, and B. Penzenstadler, “Framing sustainability as
a property of software quality,” Communications of the ACM, vol. 58, no. 10, Sep.
2015.

P. Lago, “Challenges and Opportunities for Sustainable Software,” Proceedings -
5th International Workshop on Product Line Approaches in Software Engineering,
PLEASE 2015, 2015.

S. Naumann, M. Dick, E. Kern, and T. Johann, “The GREENSOFT Model: A refer-
ence model for green and sustainable software and its engineering,” Sustainable
Computing: Informatics and Systems, vol. 1, no. 4, 2011.

Y. Sun, Y. Zhao, Y. Song, Y. Yang, H. Fang, H. Zang, Y. Li, and Y. Gao, “Green
challenges to system software in data centers,” Frontiers of Computer Science in
China, vol. 5, no. 3, 2011.

M. Dayarathna, Y. Wen, and R. Fan, “Data Center Energy Consumption Modeling:
A Survey,” IEEE Communications Surveys & Tutorials, vol. 18, no. 1, 2016.

87

References

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

88

M. Poess and R. O. Nambiar, “Energy cost, the key challenge of today’s data cen-
ters,” Proceedings of the VLDB Endowment, vol. 1, no. 2, Aug. 2008.

A. Noureddine, A. Bourdon, R. Rouvoy, and L. Seinturier, “A Preliminary Study of
the Impact of Software Engineering on GreenlIT,” 2012.

A. Noureddine, R. Rouvoy, and L. Seinturier, “A review of energy measurement
approaches,” vol. 47, no. 3, 2013.

E. Jagroep, J. M. E. M. van der Werf, S. Jansen, M. Ferreira, and J. Visser, “Profil-
ing energy profilers,” Proceedings of the 30th Annual ACM Symposium on Applied
Computing, vol. 2, 2015.

N. Rozanski and E. Woods, Software systems architecture: working with stakeholders
using viewpoints and perspectives. Addison-Wesley, 2011.

E. Jagroep, J. M. E. M. van der Werf, S. Brinkkemper, L. Blom, and R. van Vliet,
“Extending software architecture views with an energy consumption perspective,”
Computing, vol. 99, no. 6, 2017.

ISO/IEC, ISO/IEC 25010:2011, 2011. [Online]. Available: https://www. iso.
org/standard/35733.html (visited on 02/09/2018).

L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice, Third Ed.
2013.

G. Procaccianti, P. Lago, and G. A. Lewis, “A catalogue of green architectural tac-
tics for the cloud,” in Proceedings - 2014 IEEE 8th International Symposium on the
Maintenance and Evolution of Service-Oriented and Cloud-Based Systems, MESOCA
2014, vol. 52412, 2014.

E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo, “The oracle problem
in software testing: A survey,” IEEE Transactions on Software Engineering, vol. 41,
no. 5, 2015.

T. Xie, N. Tillmann, and P. Lakshman, “Advances in unit testing,” in Proceedings of
the 38th International Conference on Software Engineering Companion - ICSE 16,
New York, New York, USA: ACM Press, 2016.

J. Whaley, M. C. Martin, and M. S. Lam, “Automatic extraction of object-oriented
component interfaces,” ACM SIGSOFT Software Engineering Notes, vol. 27, no. 4,
2002.

X. Xiao, S. Thummalapenta, and T. Xie, Advances on Improving Automation in De-
veloper Testing. 2012, vol. 85.

https://www.iso.org/standard/35733.html
https://www.iso.org/standard/35733.html

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]
[36]

[37]

[38]

[39]

D. Saff, S. Artzi, J. H. Perkins, and M. D. Ernst, “Automatic test factoring for java,”
Automated Software Engineering, 2005.

H. Jaygarl, S. Kim, and C. K. Chang, “OCAT : Object Capture based Automated
Testing Categories and Subject Descriptors,”

S. Thummalapenta, J. D. Halleux, N. Tillmann, and S. Wadsworth, “DyGen : Auto-
matic Generation of High-Coverage Tests via Mining Gigabytes of Dynamic Traces,”
in International Conference on Tests and Proofs, Springer, 2010.

G. J. Myers, C. Sandler, and T. Badgett, The Art of Software Testing, Third Ed, 3.
2011, vol. 1.

A. Orso and B. Kennedy, “Selective capture and replay of program executions,”
ACM SIGSOFT Software Engineering Notes, vol. 30, no. 4, 2005.

C# 6 language specification (draft). [Online]. Available: https://github.com/
dotnet/csharplang (visited on 03/12/2018).

ECMA International, Standard ECMA-334: C# Language Specification, 5th Ed. 2017.

Microsoft, Fundamentals of Garbage Collection. [Online]. Available: https : / /
docs . microsoft . com/ en - us / dotnet / standard / garbage - collection /
fundamentals (visited on 06/14/2018).

P. R. Wilson, “Uniprocessor garbage collection techniques,” in Memory Manage-
ment, Springer Berlin Heidelberg, 1992.

Microsoft, Overview of the .NET Framework. [Online]. Available: https://docs.

microsoft.com/en-us/dotnet/framework/get-started/overview (visited on

05/02/2018).

Microsoft, Common Language Runtime (CLR) overview. [Online]. Available: https:
//docs.microsoft.com/en-us/dotnet/standard/clr (visited on 05/02/2018).

T. Thai and H. Lam, .NET Framework Essentials. O’Reilly Media, Inc., 2003.

ECMA International, Standard ECMA-335: Common Language Infrastructure (CLI),
6th Ed. 2012.

Microsoft, The .NET Compiler Platform ("Roslyn"). [Online]. Available: https://
github.com/dotnet/roslyn (visited on 02/22/2018).

Microsoft, MSBuild. [Online]. Available: https: //docs . microsoft . com/en-
us/visualstudio/msbuild/msbuild (visited on 05/03/2018).

B. Albahari and J. Albahari, C# 6.0 in a Nutshell: The Definitive Reference, 6th Ed.
O’Reilly Media, Inc., 2015.

89

https://github.com/dotnet/csharplang
https://github.com/dotnet/csharplang
https://docs.microsoft.com/en-us/dotnet/standard/garbage-collection/fundamentals
https://docs.microsoft.com/en-us/dotnet/standard/garbage-collection/fundamentals
https://docs.microsoft.com/en-us/dotnet/standard/garbage-collection/fundamentals
https://docs.microsoft.com/en-us/dotnet/framework/get-started/overview
https://docs.microsoft.com/en-us/dotnet/framework/get-started/overview
https://docs.microsoft.com/en-us/dotnet/standard/clr
https://docs.microsoft.com/en-us/dotnet/standard/clr
https://github.com/dotnet/roslyn
https://github.com/dotnet/roslyn
https://docs.microsoft.com/en-us/visualstudio/msbuild/msbuild
https://docs.microsoft.com/en-us/visualstudio/msbuild/msbuild

References

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]
[49]

[50]
[51]

[52]

90

A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: Principles, Techniques,
and Tools, 2nd Ed. Pearson Education, 2006.

C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell, and A. Wesslén, Exper-
imentation in software engineering. 2012, vol. 9783642290442.

E. A. Jagroep, J. M. van der Werf, S. Brinkkemper, G. Procaccianti, P. Lago, L. Blom,
and R. van Vliet, “Software Energy Profiling: Comparing Releases of a Software
Product,” in Proceedings of the 38th International Conference on Software Engineer-
ing Companion - ICSE 16, New York, New York, USA: ACM Press, 2016.

MongoDB for GIANT Ideas | MongoDB. [Online]. Available: https://www.mongodb.
com/ (visited on 04/20/2018).

C.-K. Luk, B. C. Ed, F. C. G. Hi, E. D. Q. Rs, A. Tu, R. Cohn, R. Muth, H. Patil,
A. Klauser, G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: building
customized program analysis tools with dynamic instrumentation,” Proceedings of
the 2005 ACM SIGPLAN conference on Programming language design and implemen-
tation - PLDI 05, vol. 40, no. 6, 2005.

N. Nethercote, “Dynamic binary analysis and instrumentation,” PhD thesis, Uni-
versity of Cambridge, Nov. 2004.

E. Jagroep, J. M. E. M. van der Werf, J. Broekman, L. Blom, R. van Vliet, and S.
Brinkkemper, “A Resource Utilization Score for Software Energy Consumption,”
Proceedings of ICT for Sustainability 2016, no. Ict4s, 2016.

A. E. Trefethen and J. Thiyagalingam, “Energy-aware software: Challenges, oppor-
tunities and strategies,” Journal of Computational Science, vol. 4, no. 6, 2013.

R. Rivest, “The MD5 Message-Digest Algorithm,” RFC 1321, Apr. 1992.

R. T. Fielding, “Architectural Styles and the Design of Network-based Software
Architectures,” PhD thesis, 2000.

L. Richardson and S. Ruby, RESTful Web Services. O’Reilly Media, Inc., 2008.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns: elements of
reusable object-oriented software. Addison-Wesley Professional Computing Series,
1995.

A. Field, Discovering statistics using IBM SPSS statistics. SAGE, 2013.

https://www.mongodb.com/
https://www.mongodb.com/

	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Background
	Green IT
	Green Software
	Measuring Software Energy Consumption
	Software Architecture
	Software Testing
	StEP Method

	The C# Programming Language
	Language Concepts
	Memory Management
	The .NET Framework
	Roslyn: the .NET Compiler Platform

	Research Approach
	Research Questions
	Experiment Setup
	Energy Consumption Measurement approach

	Automatic Creation of Stubs
	Approach
	Assumptions

	Using Capture and Replay to Automatically Create Stubs
	The Role of the Event Log

	The Automated Stubbing Tool
	The Automated Stubbing Tool: Command Line Application
	The Automated Stubbing Tool: Event Log Interface
	Interactions
	Encoding Interactions
	Event Log Interface

	The Automated Stubbing Tool: Instrumentation Logic
	Instrumentation
	Instrumentation with Roslyn
	Using the Semantic Model to Guide Instrumentation

	Profiling
	Extending the StEP Method
	Measuring Software Energy Consumption
	Measuring Software Energy Consumption of Instrumentation
	Software Energy Consumption of Capture
	Software Energy Consumption of Replay

	Measuring Software Energy Consumption of the Functional Element

	Experiments
	Introduction
	Applying the StEP Method
	Select Functional Elements
	Adapt Architectural Description
	Create Test Scenario
	Determine Measurement Approach
	Profile Baseline
	Introduce and Profile Stubbed Versions
	Annotate Architectural Description

	Results
	Experiments Ia
	Experiments Ib: External Factor
	Experiments II

	Discussion
	Duration of Experiments Ia
	Influence of the Garbage Collector in Experiments Ib
	Software Energy Consumption of the Functional Element
	Performance

	Reflection on Experiments

	Case Study
	Introduction
	Applying the StEP Method
	Select Functional Elements
	Adapt Architectural Description
	Create Test Scenario
	Determine Measurement Approach
	Profile Baseline
	Introduce and Profile Stubbed Versions
	Annotate Architectural Description

	Idle and Load Energy Consumption
	Results
	Experiments Ia
	Experiments Ib: External Factor
	Experiments II: MongoDB on the Same Server
	Experiments III: A Manual Stub

	Discussion
	The Impact of Two Network Interfaces
	Using a Single Network Interface
	Software Energy Consumption of Motion
	Performance

	Reflection on Case Study

	Conclusions
	Future Research

	Instrumentation Examples
	Experiment Results
	Case Study Results
	References

