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Abstract

Many methods exist to avoid disclosing sensitive information when releasing a

database. However these methods either cannot guarantee that the information

of individuals is secure or are aimed at specific use cases. In this paper we

develop a method which is both provably private and retains the overall form of

the original database. To achieve this we derive a privacy measure, ε-dependence.

Intuitively, ε-dependence requires that the input and output databases are nearly

independent. We show that ε-dependence can be seen as an information theoretic

refinement of differential privacy. We then adapt the KRIMP [20] algorithm to

generate databases while satisfying ε-dependence. We show through experiments

that the generated databases are comparable to the original databases when

performing machine learning or itemset mining tasks. The results are especially

good on larger databases.

1 Introduction

The setting of protecting the privacy of individuals in a database can be described

as follows. A database containing sensitive information is processed by a privacy

mechanism, i.e. an algorithm, to produce a sanitized release of the database. Often the

privacy mechanism is a randomized algorithm. Ideally, no or little sensitive information

must be contained in the sanitized release, while not losing too much utility. An attacker

will try to infer sensitive information from the sanitized release. The information

an attacker learns about a sanitized release depends on the knowledge an attacker

already has before the sanitized release is published. This prior knowledge will be called

auxiliary information. Throughout this paper we will use the following notation and

conventions. The auxiliary information of a database D is modeled by a distribution

D. We will assume that D is discrete. We partition D by D = (U1, . . . , Un) where Ui
represents a random variable modeling the information of an individual i = 1, . . . , n.

We denote the sanitized release of a privacy mechanism A operating on a database D

by A(D).

A result by Dwork [9], later simplified by Kifer et al. in [13] and termed the no-free-

lunch theorem of data privacy, provides the following important insight into the relation

between sensitive information, auxiliary information and utility. Suppose a database

is released through a privacy mechanism. If an attacker can have arbitrary auxiliary

information then the database can be determined with large probability by the attacker

unless the utility is severely limited. For virtually any meaningful definition of sensitive

information, an attacker knowing the exact database with large probability would be

considered a breach of privacy. The following example provides some insight in the no-

free-lunch theorem. Suppose a database contains the height of various individuals along
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with names and other sensitive information. The goal is to release the average height

in the database without compromising any other attributes. Before the release, an

attacker has managed to limit the number of possible databases to two. The databases

are such that the average height differs significantly between the two databases. If the

average height is released the attacker will be able to differentiate with large probability

between the two remaining databases based on the average height. This is still the case

if a small amount of noise is added to the average height.

Note that it is not necessary that the sensitive attributes reside inside the database,

as Dwork showed in [9]. For example, if the attacker knows a relation exists between the

average height of individuals in the database and an individual outside the database,

this individual could be compromised.

However, the background knowledge in these examples seems somewhat contrived.

An attacker which has auxiliary information such that only two (or a limited amount

of) databases are possible is often a privacy breach on its own. A relationship between

the average height in a database and the height of an individual seems unlikely to be

obtained if the height of the individual is unknown to the attacker. Therefore attention

must be paid to the limiting of auxiliary information. The strongest assumption is to

assume that the auxiliary information distribution is uniform, i.e. the attacker has no

auxiliary information at all. Alternatively, we might assume that the attacker only

has auxiliary information on the level of the individual. This can be represented by

assuming that the individuals, U1, . . . , Un are mutually independent, i.e. by assuming

that P (U1 = u1 ∧ . . . ∧ Un = un) = P (U1 = u1) · · ·P (Un = un) for all u1, . . . , un.

However, for certain types of data, such as social networks in which properties of

individuals leak to other individuals, this assumption is not correct [13].

Furthermore assumptions must be made about the definition of sensitive informa-

tion: if all information obtainable from the database is considered sensitive, nothing

can be released. A common goal is to make it difficult for an attacker to determine

whether or not an individual participated. See for example [1, 2, 9, 13]. This directly

avoids the ability of an attacker to identify an individual. Alternatively, when viewing

the problem from an information theoretic angle, the information about an individual

can be limited. This makes it possible to avoid information disclosure, besides hiding

the identity of an individual.

We will continue with summarizing available privacy measures in the literature and

connecting these measures with the concepts given above. In Section 1.1 we consider

differential privacy. In Section 1.2 we consider privacy measures based on information

theoretic concepts. Finally, in Section 1.3 we consider the privacy measure k-anonymity

and successors.
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1.1 Differential privacy

In [9] Dwork proposed the privacy measure differential privacy. We will briefly summa-

rize it here. Suppose that the information of a number of individuals is stored together

in one database and that each individual controls its own information. Differential

privacy guarantees that the output of the privacy mechanism differs little regardless of

the input that an individual provides. Therefore an individual has very little to lose (or

gain) by not participating truthfully in the database. In this way differential privacy

can be seen as a relative privacy guarantee, hence the name differential privacy. The

formal definition of differential privacy uses the notion of database neighbors. Two

databases D1 and D2 are neighbors if the data differs on at most one individual. A

randomized algorithm A achieves ε-differential privacy if for all neighbors D1 and D2

P (A(D1) ∈ S) ≤ eεP (A(D2) ∈ S)

for all S ⊆ imA. In case the image of A is finite, this is equivalent to requiring that

P (A(D1) = s) ≤ eεP (A(D2) = s)

for all s ∈ imA. Often it is useful to represent a database as an n-dimensional vector

where each component represents the information state for an individual. In this

way, the neighborhood for a database D = (U1, . . . , Un) is the set of databases with

Hamming distance at most one from D.

There exists a relaxation of differential privacy called (ε, δ)-differential privacy. We

say that a randomized algorithm A achieves (ε, δ)-differential privacy [12] if

P (A(D1) ∈ S) ≤ eεP (A(D2) ∈ S) + δ

for all S ⊆ imA. Due to the inclusion of the δ parameter the constraints are relaxed

for low-probability events.

1.2 Information theoretic

1.2.1 Preliminaries

We start this section by introducing some preliminary concepts. Consider the discrete

probability space defined by the sample space Ω and the probability mass function

p : Ω → [0, 1]. We define the information content as I : Ω → R, I(ω) = − log p(ω).

The Shannon entropy H(X) for a random variable X is defined as

H(X) = E[I(X)] =
∑
x∈X

p(x)I(x) = −
∑
x∈X

p(x) log p(x).
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The mutual information of two random variables X and Y is defined as

I(X;Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
.

Conditional versions also exists. Let X, Y, Z random variables. For a z ∈ Z, we

define H(X | Z = z) by replacing p(x) with p(x | z) in the definition of H(X), and

we likewise define I(X;Y | Z = z) by replacing p(x) with p(x | z), p(y) with p(y | z)

and p(x, y) with p(x, y | z). Conditioning on random variables instead of elements is

defined by

H(X | Z) =
∑
z∈Z

p(z)H(X | Z = z)

and

I(X;Y | Z) =
∑
z∈Z

p(z)I(X;Y | Z = z).

1.2.2 Knowledge gain

Let A a privacy mechanism operating on D with a finite number of outcomes and

let s ∈ imA. Then we would like to limit the sensitive information of individuals,

which can be expressed as the certainty of P (Ui | A(D) = s) for all i = 1, . . . , n. A

general method to assess the certainty of a distribution is through uncertainty functions

[5]. An uncertainty function U takes a probability distribution and maps it to a non-

negative real. Higher values indicate more uncertainty. In [8] Duncan and Lambert

proposed among others the measure U(prior) − U(posterior), termed knowledge gain,

to determine the increase in knowledge. One choice for U is Shannon entropy. The

knowledge gain R is then

R = H(D)−H(D | A(D)).

With this definition the increase in knowledge corresponds to the mutual information

of D and A(D). More explicitly

R =
∑

d∈D,s∈imA

P (D = d ∧ A(D) = s) log
P (D = d ∧ A(D) = s)

P (D = d) · P (A(D) = s)
.

We can rewrite R as∑
d∈D,s∈imA

P (D = d ∧ A(D) = s) log
P (D = d | A(D) = s)

P (D = d)
. (1)
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This shows that R is a weighted average of the change in belief due to the release of

the database. The weights are in part based on the likeliness of the sanitized result s.

Therefore privacy guarantees will be lower when an unlikely result is published.

1.2.3 Rate-distortion

A related approach uses rate-distortion theory. In short, rate-distortion theory consid-

ers the problem of determining the minimum information required to approximate a

probability distribution within an acceptable threshold. This allows us to make utility

explicit. Via a distance function l we measure the loss of utility between two databases

if one is used for the other. A maximum distance l∗ specifies the maximum loss of

utility that is allowed. The goal is to approximate D by A(D) with acceptable util-

ity such that the mutual information I(D;A(D)) is lowest. The mutual information

I(D;A(D)) represents the information of D that is contained in A(D): lower values

mean that less information about D must be communicated. Therefore I(D;A(D)) is

used to measure the disclosure of sensitive information.

More formally, the goal is to find the minimum knowledge gain

R(l∗) = inf
P (A(D)|D): E(l(D,A(D))≤l∗

H(A(D))−H(A(D) | D).

The infimum is taken over all distributions P (A(D) | D) such that∑
d∈D,s∈imA

P (D = d) · P (A(D) = s | D = d) · l(d, s) ≤ l∗.

It has been shown by Mir [17] that the probability distribution P (A(D) | D) that

minimizes R(l∗) also achieves differential privacy. This result can be summarized as

follows. Let d ∈ D a database we wish to sanitize. Let P (A(D) | D = d) the

distribution which minimizes R(l∗). Select a sanitized result from this distribution, i.e.

select s ∈ imA with probability P (A(D) = s | D = d). Define

∆l = sup
s∈imA,d1∈D,d2∈N (d1)

||l(d1, s)− l(d2, s)||.

∆l bounds the maximum loss when replacing a database with a neighbor. Then the

privacy mechanism outlined above achieves 2ε∆l-differential privacy where ε is deter-

mined entirely by l∗.
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1.2.4 Mutual-information differential privacy

In [4] a privacy measure is given which the authors name mutual-information differen-

tial privacy. This measure is equivalent to (ε, δ)-differential privacy for the case that

D is finite. Let D = (U1, . . . , Un) a database distributed by D and let A a randomized

algorithm. To satisfy ε-mutual-information differential privacy, it must hold that for

all individuals i and all distributions D

I(Ui;A(D) | U1, . . . , Ui−1, Ui+1, . . . , Un) ≤ ε.

Intuitively, this definition requires that the outcome A(D) must not reveal too much

information about an individual i, even though the information of all other individ-

uals is known. Therefore this definition limits the sensitive information. Using this

definition the authors are able to prove a number of insightful results. One immediate

result shows that when U1, . . . , Un are mutually independent, i.e. there is only auxiliary

information on the individual level, then

I(Ui;A(D)) ≤ ε

for all distributions D and all individuals i. This gives a more precise meaning to the

intuition that when individuals are independent, differential privacy limits knowledge

gain. Specifically, this makes the assumption that the attacker cannot use other in-

dividuals to infer properties about an individual. For example, if two individuals are

friends, then it is perhaps not unlikely to think that they share many common interests.

Therefore knowing the interests of one individual gives information about the other.

This would clearly violate the independence assumption.

Another result shows that when Y1, . . . Yn are n independent copies of A(D), then

together these satisfy nε-mutual-information differential privacy. This result shows

how the privacy degrades when the same query is repeated.

1.2.5 Event-based

In [10] a privacy measure Ī is defined that considers the maximum leakage for any

individual. To be precise, Ī for a database D = (U1, . . . , Un) ∼ D and a randomized

algorithm A is defined as

Ī(D;A(D)) = sup
i
I(Ui;A(D)).

Participation by an individual is viewed by the authors as an event, and in this light

Ī limits the leakage of an event. Suppose that an adversary wants to guess the exact

value of an individual i given an outcome A(D). We can model the distribution of
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Ui an adversary has by an estimator Ûi(A(D)). Using Fano’s inequality, the authors

prove that the probability that Ûi(A(D)) equals Ui is upper bounded by

H(Ui)− I(Ui;A(D))− 1

log |Ui|

where |Ui| denotes the number of information states for individual i. By examining

this upper bound we can see a connection between mutual information and privacy.

Namely suppose Ī(D;A(D)) is bounded above; the confidence with which the correct

Ui can then be determined can only raise a limited amount above the initial knowledge

represented by H(Ui).

1.2.6 Min-entropy

Equation 1 makes it clear that when using mutual information to represent knowledge

gain the changes in probability due to the release of a sanitized result are summarized

as a weighted average. The weights depend on two things: the probability which the

attacker assigns to a database, i.e. auxiliary information, and the probability that A
produces a certain outcome. However the probability that a certain outcome occurs is

small does not automatically imply that when it occurs the attacker is allowed to make

an important inference. This is a trade-off that must be considered. The limitations

of mutual information also become apparent from the event-based privacy measure

Ī. This privacy measure guarantees that the exact information state of an individual

cannot be determined with certainty, however it does not guarantee that no attribute

of an individual can be determined. Equally weighting every change in probability

leads us to the requirement that

I(d)− I(d | A(D) = s) ≤ ε

for some ε > 0, all d ∈ D, all s ∈ imA and all distributions D. It turns out that this

is equivalent to ε-differential privacy where all databases are neighbors of each other.

A general proof from which this equivalence is a corollary is given in the appendix;

see Theorem 8. Let us state the differential private version explicitly: we require

for all databases d1, d2 and S ⊆ imA that P (A(d1) ∈ S) ≤ eεP (A(d2) ∈ S). In

[13] this privacy measure is called free-lunch privacy, because, the authors claim, the

measure does not make any assumptions about the data. We provide an argument

which supports this claim. Essentially, for any query on the database it is guaranteed

that the outcome of that query will not change significantly due to the release of A(D).

This query can be seen as a way of extracing possibly sensitive information from the
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database. If q is the query function, s ∈ A(D) and y ∈ im q, then

I(q(D) = y)− I(q(D) = y | A(D) = s) ≤ ε.

This argument is proved in the Appendix, specifically Theorem 9. It is the case how-

ever that free-lunch privacy limits the utility to the point that the sanitized result is

unusable. One way this can be seen is via the connection to mutual information. To

be explicit, we have that for any d ∈ D, s ∈ A(D):

I(d)− I(d | A(D) = s) = log
P (D = d | A(D) = s)

P (D = d)
= log

P (D = d ∧ A(D) = s)

P (D = d)P (A(D) = s)
.

Therefore free-lunch privacy implies that the mutual information I(D;A(D)) is less

than ε bits when using logarithm with base 2. In other words, the sanitized release

contains at most ε bits of information about D. For example, when 10 bits can be

communicated, i.e. ε = 10, the likeliness of a database can change from 1/2048 to 1/2,

as log 1/2
1/2048

= 10. Such a change would be problematic for most databases containing

sensitive information. Meanwhile 10 bits might just be sufficient to communicate a

single average of the whole database.

1.3 k-anonymity, l-diversity, t-closeness

A number of privacy measures apply to databases itself, as opposed to a release mech-

anism. One example is k-anonymity [19]. k-anonymity relies on a partitioning of the

database attributes using the following categories:

1. explicit identifiers. These attributes uniquely identify an individual. An example

would be a name or a social security number.

2. quasi-identifiers. These are attributes that are not uniquely identifying, but can

be used together with other quasi-identifiers to create a unique identifier.

3. sensitive attributes. The goal of k-anonymity is to limit the gain in information

about the sensitive attributes of individuals.

Clearly, explicit identifiers must be removed from the database. k-anonymity re-

quires further that all quasi-identifiers are generalized such that each combination of

quasi-identifier values appear at least k times in the database. Each such combination

of quasi-identifier values is called an equivalence class.

Such a scheme is not required to be stochastic and therefore k-anonymity does

not imply differential privacy. However a randomized algorithm described in [14] does

provide k-anonymity with differential privacy. In short, this extension first randomly
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samples from the database, then generalizes the rows using an arbitrary method in-

dependent of the data, and then finally suppresses any row that appears less than k

times.

In [16] it was shown that k-anonymity has some weaknesses, and an alternative was

proposed: l-diversity. One of the attacks is called the homogeneity attack. This attack

considered the problem that when all sensitive attributes within an equivalence class are

the same, knowing the equivalence class of an individual is sufficient to determine the

sensitive attribute. Another attack involved specific forms of background knowledge.

Namely ”instance-level background knowledge”: partial knowledge about individuals

appearing in the database, and ”demographic background knowledge”: knowledge of

the distribution of attributes. The partial knowledge of an individual might determine

the equivalence class of the individual. Further knowledge about the distribution of

attributes might rule out certain rows, leading to a unique row, compromising the in-

dividual. To combat this, l-diversity requires that for each equivalence class, sensitive

attributes must be “well represented”. In the simplest sense, each equivalence class

must contain at least l different sensitive attributes. Another instantiation is via en-

tropy, named entropy l-diversity. This instantiation requires that for each equivalence

class ∑
s∈S

ps log ps ≥ log l

where S is the set of possible sensitive attribute values and ps is the fraction of values

in the equivalence class with values equal to s. More instantiations are described in

[16].

In [15] it was found that l-diversity also has certain weaknesses despite the extra

requirements. Mainly, diversity of sensitive attributes within an equivalence class does

not imply that the statistical properties within that equivalence class are similar to

that of the whole database. For example, suppose that a database registers whether or

not an individual has a certain disease. The probability of having this disease could be

50% in an equivalence class while being 1% in the global population. Even though the

equivalence class contains both individuals with and without the disease, there is still

major leakage of sensitive information which could be used by for example an insurance

company. To avoid this a new refinement named t-closeness was introduced. t-closeness

requires that for each equivalence class, the distribution of sensitive attributes within

that equivalence class must be similar to the distribution over the entire database. The

earth mover’s distance was chosen as a particularly suitable method to determine the

similarity of distributions.

Like k-anonymity and l-diversity, the definition of t-closeness does not imply differ-

ential privacy. However as shown in [7] the notions are related. In particular, t-closeness

requires additional assumptions about the auxiliary information to satisfy differential
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privacy, and differential privacy together with k-anonymity yields stochastic t-closeness

which is an extension of t-closeness.

2 Privacy measure

In this section we will introduce a privacy measure. We then continue with proving

various guarantees about the data that this privacy measure implies, and how trade-offs

can be made. Because the requirements of this definition depend in part on the knowl-

edge of the attacker, we cannot directly write an algorithm that satisfies it. Therefore

we provide two techniques which convert a requirement solely on the algorithm A such

that it satisfies the privacy measure.

2.1 Notation

Vector notation is used to denote a tuple of (random) variables, e.g. if x1, . . . , xn are

defined then ~x = (x1, . . . , xn). The notation ~x−i is used to denote a vector without

element i, i.e. ~x = (x1, . . . , xi−1, xi+1, . . . , xn). The notation xxi←x′i is used to denote a

vector where element i is substituted by x′i, i.e. xxi←x′i = (x1, . . . , xi−1, x
′
i, xi+1, . . . , xn).

2.2 Dependence

Suppose that, for a certain person, X is a Bernoulli random variable which has the

value 1 if that person has a certain disease and 0 otherwise. If a sanitized release A(D)

of a database is made, then we would like to see that

P (X = x | A(D) = d)

is uncertain, e.g. close to 1/2, for x ∈ {0, 1}, regardless of the release, i.e. for all

d ∈ imA. However if the attacker has knowledge that either {X = 1} or {X = 0}
is more likely, then a probability close to 1/2 for P (X = x | A(D) = y) is often

impossible. However, we could require that the probability does not change too much

due to the release. If the real number ε > 0 determines the maximum allowed change,

then we require that

e−ε ≤ P (X = x)

P (X = x | Y = y)
≤ eε.

We use eε instead of ε to allow a connection with both differential privacy and infor-

mation theory; this will be explained later. If we rewrite this condition, we get

e−ε ≤ P (X = x) · P (Y = y)

P (X = x ∧ Y = y)
≤ eε.
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We will formalize this requirement as the property ε-dependence. In this section we

will assume that if D and A(D) are ε-dependent, then the privacy of the individuals

in the database is guaranteed. The formal definition of ε-dependence follows.

Definition 1. Two random variables X and Y are ε-dependent if for all x ∈ X and

all y ∈ Y
P (X = x) · P (Y = y) ≤ eε · P (X = x ∧ Y = y)

and

P (X = x ∧ Y = y) ≤ eε · P (X = x) · P (Y = y).

One property of ε-dependence is that it implies that the mutual information is low.

Namely, we have that I(X;Y ) ≤ ε nats. Therefore, if D and A(D) are assumed to be

ε-dependent without any further assumptions, this effectively means that the sanitized

release has no practical utility, or provides no practical privacy. We will later provide

reasonable assumptions that can be made about the database distribution to allow

more utility while keeping the same level of privacy.

The mutual information implication is proved formally in the following theorem.

Theorem 1. Suppose that random variables X and Y are ε-dependent for some ε > 0.

Then I(X;Y ) ≤ ε.

Proof. For x ∈ X and y ∈ Y we have that∣∣∣∣ P (X = x ∧ Y = y)

P (X = x) · P (Y = y)

∣∣∣∣ ≤ eε.

Hence the pointwise mutual information is bounded by ε nats. We conclude that

I(X;Y ) ≤ ε nats.

2.3 Towards a practical application

The definition of ε-dependence depends on the database distribution. However this

distribution is often not known. As outlined in the beginning, we will proceed to work

towards a formulation that no longer depends on the distribution. We will also address

assumptions to improve the utility/privacy trade-off.

An alternative definition of ε-dependence which is equivalent is to require that

P (X = x | Y = y) is roughly constant over all y ∈ Y . A similar statement is true for

P (Y = y | X = x) due to symmetry. More precisely, P (X = x | Y = y) must be equal

to P (X = x) up to a factor eε. This is proven by the following theorem.
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Theorem 2. Let X and Y random variables. Let ε > 0. For all x ∈ X and all y ∈ Y

eε · P (X = x | Y = y) ≥ P (X = x) (2)

and

P (X = x | Y = y) ≤ eε · P (X = x)

if and only if X and Y are ε-dependent.

Proof. Dividing Equation 2 by P (Y = y) gives the first condition for ε-dependence.

Multiplying Equation 2 by P (Y = y) gives the second condition for ε-dependence.

A somewhat stronger version of this statement which is our main result is given

below as a corollary.

Corollary 1. Let X and Y random variables. Let ε > 0. If for all x ∈ X and all

y, y′ ∈ Y
P (X = x | Y = y) ≤ eε · P (X = x | Y = y′).

then X and Y are ε-dependent.

Proof. By summing over y ∈ Y we see that∑
y∈Y

P (X = x | Y = y) · P (Y = y) ≤ eε ·
∑
y∈Y

P (X = x | Y = y′) · P (Y = y).

which is equivalent to

P (X = x | Y = y) ≤ eε · P (X = x).

The other bound can be found by summing over y′ ∈ Y .

We will show how this corollary helps with determining the conditions on A to

guarantee privacy. However first we will have to introduce some terminology.

Suppose we can split the database D in n independent parts which we denote by

the random variables X1, . . . , Xn, i.e. D = ~X. For example, if we assume that each

individual is independent, each Xi could denote an individual i. Or if we have a column

which contains data that is released for the first time, we might use X1 to denote this

column and X2 to denote all other columns. If both columns and rows are independent

each part represents a database cell. To protect each part, we introduce sanitizers. A

sanitizer Si for Xi is a random variable that is only ε-dependent on Xi and is mutual

independent of ~X−i and ~S−i. We could represent such a sanitizer as a randomized

algorithm which takes Xi as its argument: Si(Xi). In this setting, a database release
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is a release of all the sanitizers, i.e. A(D) = ~S. Because the sanitizers are mutually

independent, we have that A(D) and Xi are ε-dependent for all i = 1, 2 . . . , n.

Corollary 1 shows that to prove that Xi and Si are ε-dependent, it suffices to show

that

P (Si = s | Xi = x) ≤ eε · P (Si = s | Xi = x′)

for all s ∈ Si, x, x′ ∈ Xi. By looking at Si as a randomized algorithm, this is equivalent

to

P (Si(x) = s) ≤ eε · P (Si(x
′) = s).

From this statement it is clear that there is only a dependency on the randomness of

the sanitizer. This randomness can be controlled by the implementation, unlike the

randomness of Xi. Furthermore, the ε can depend on the sanitizer: independent parts

which require little sanitizing can have higher ε values which improves utility.

By symmetry we also have that for all x ∈ Xi and s, s′ ∈ Si

P (Xi = x | Si = s) ≤ eε · P (Xi = x | Si = s′).

This shows very clearly that the specific outcome of Si does not significantly influence

the knowledge of the attacker.

We have now explained the main points of this section. In the remaining section

we give further improvements and generalizations of the concepts introduced in this

section.

2.4 Generalizations

So far A(D) consisted of mutual independent sanitizers. However it is possible to

formulate a constraint directly on A(D), without using sanitizers. Essentially this

condition is a generalization of differential privacy as it allows privacy tuning of the

individual parts. If Y represents a release then the condition is that there exists

ε1 > 0, . . . , εn > 0 such that∣∣∣∣∣ P (Y = y | ~X = ~x)

P (Y = y | ~X = ~xxi←x′i)

∣∣∣∣∣ ≤ eεi

for all i ∈ {1, . . . , n}, y ∈ Y , ~x ∈ ~X, x′i ∈ Xi. Again, because the conditioning is on
~X, the only randomness that remains is that of the randomized algorithm itself. This

condition guarantees that Xi and Y are εi-independent for all i. The formal theorem

and proof are given below.

Theorem 3. Let X1, . . . , Xn mutually independent random variables. Let Y a random
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variable, not necessarily independent from X1, . . . , Xn. If for all x1 ∈ X1, . . . , xn ∈ Xn,

i ∈ {1, . . . , n} and x′i ∈ Xi

P (Y = y ∧ ~X = ~x) · P ( ~X = ~xxi←x′i) ≤ eεi · P (Y = y ∧ ~X = ~xxi←x′i) · P ( ~X = ~x) (3)

then for all i ∈ {1, . . . , n} Xi and (Y, ~X−i) are εi-dependent.

Proof. Let i ∈ {1, . . . , n}. By substitution of variables in Equation 3 we see that

P (Y = y ∧ ~X = ~xxi←x′i) · P ( ~X = ~x) ≤ eεi · P (Y = y ∧ ~X = ~x) · P ( ~X = ~xxi←x′i). (4)

Because X1, . . . , Xn are mutually independent we can rewrite Equation 3 as

P (Y = y ∧ ~X = ~x) · P (Xi = x′i) ≤ eεi · P (Y = y ∧ ~X = ~xxi←x′i) · P (Xi = xi).

If we sum both sides over all x′i ∈ Xi we obtain

P (Y = y ∧ ~X = ~x) ≤ eεi · P (Y = y ∧ ~X−i = ~x−i) · P (Xi = xi).

Repeating the same steps for Equation 4 yields

P (Y = y ∧ ~X−i = ~x−i) · P (Xi = xi) ≤ eεi · P (Y = y ∧ ~X = ~x).

Therefore the definition of Xi, (Y, ~X−i) εi-dependence is satisfied.

In some cases it might not be possible to guarantee that X1, . . . , Xn are mutually

independent, but the variables are likely to be nearly mutually independent. For this

case we give a generalization of the theorem above that shows how the privacy degrades

when Xi and X−i are ε-dependent.

Theorem 4. Let X1, . . . , Xn random variables such that Xi and ~X−i are εdi -dependent

for all i = 1, . . . , n. Let Y a random variable, not necessarily independent from

X1, . . . , Xn. If for all x1 ∈ X1, . . . , xn ∈ Xn, i ∈ {1, . . . , n} and x′i ∈ Xi

P (Y = y ∧ ~X = ~x) · P ( ~X = ~xxi←x′i) ≤ eεi · P (Y = y ∧ ~X = ~xxi←x′i) · P ( ~X = ~x) (5)

then for all i ∈ {1, . . . , n} Xi and (Y, ~X−i) are (εi + 2εdi )-dependent.

Proof. Let i ∈ {1, . . . , n}. Because Xi and ~X−i are εdi -dependent we have that

P ( ~X−i = ~x−i) · P (Xi = x′i) · e−ε
d
i ≤ P ( ~X = ~xxi←x′i)

and

P ( ~X = ~x) ≤ eε
d
i · P ( ~X−i = ~x−i) · P (Xi = xi).
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Therefore we can rewrite Equation 5 as

P (Y = y ∧ ~X = ~x) · P ( ~X−i = ~x−i) · P (Xi = x′i) · e−ε
d
i

≤ eεi · eεdi · P ( ~X−i = ~x−i) · P (Xi = xi) · P (Y = y ∧ ~X = ~xxi←x′i)

which is equivalent to

P (Y = y ∧ ~X = ~x) · P (Xi = x′i) ≤ eεi+2εdi · P (Xi = xi) · P (Y = y ∧ ~X = ~xxi←x′i).

If we sum both sides over all x′i ∈ Xi we obtain

P (Y = y ∧ ~X = ~x) ≤ eεi+2εdi · P (Y = y ∧ ~X−i = ~x−i) · P (Xi = xi).

The other bound is similar.

3 Database generation

In this section we explain a number of techniques based on ε-dependence to compute

averages, extract frequent itemsets, and, finally, generate databases.

3.1 Exact averages

One of the most basic statistics that can be computed for a database is an average

of the rows. The computation of an average can serve as a building block for more

advanced releases. In this section we will give conditions under which the release

of an exact average is safe. Consider the binary case. Define n independent random

variables X1, . . . , Xn ∈ {0, 1}. We wish to release Y =
∑n

i=1Xi such that Xi and Y are

ε-dependent for all i. Note that if Y = n it must be the case that X1 = . . . = Xn = 1.

Therefore if Y = n is released ε-dependence cannot be attained if Y is the exact count.

The same is true for Y = 0. Similarly, if all but one of the Xi are fully known by the

attacker an exact count cannot be released without violation ε-dependence. However

for values of Y more towards the center and when the Xi contain sufficient entropy it

becomes possible to release an exact count as there are many possible ~X configurations

that lead to the released average. We show that, in essence, it is safe to release the

exact average if for any Xi and value in {0, 1} the release of Y = y and Y = y − 1 are

approximately equally likely, for any valid release y. This is stated and proved below.

Theorem 5. Suppose that for some i ∈ {1, . . . , n} and all x ∈ {0, 1} and all valid
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releases y we have that

P (Y = y ∧Xi = x) ≤ eε · P (Y = y − 1 ∧Xi = x)

and

P (Y = y − 1 ∧Xi = x) ≤ eε · P (Y = y ∧Xi = x).

Then Xi and Y are ε-dependent.

Proof. For ease of notation we will limit ourselves to showing that X1 and Y are ε-

dependent. Let x ∈ {0, 1} and y ∈ Y . The conditions are equivalent to the two

statements ∑
x1=x,

∑n
i=2 xi=y−0

P ( ~X = ~x) ≤ eε
∑

x1=x,
∑n
i=2 xi=y−1

P ( ~X = ~x)

and ∑
x1=x,

∑n
i=2 xi=y−1

P ( ~X = ~x) ≤ eε
∑

x1=x,
∑n
i=2 xi=y−0

P ( ~X = ~x).

Because ∑
∑n
i=1 xi=y

P ( ~X = ~x)

= P (X1 = 0) ·
∑

x1=x,
∑n
i=2 xi=y−0

P ( ~X = ~x)

+ P (X1 = 1) ·
∑

x1=x,
∑n
i=2 xi=y−1

P ( ~X = ~x)

we have that ∑
x1=x,

∑n
i=2 xi=y−x

P ( ~X = ~x) ≤ eε
∑

∑n
i=1 xi=y

P ( ~X = ~x)

so

P (X1 = x ∧ Y = y) ≤ eε · P (X1 = x) · P (Y = y)

and similarly

P (X1 = x) · P (Y = y) ≤ eε · P (X1 = x ∧ Y = y).

If we are willing to accept the assumption of Theorem 5, then it is possible to

generate a database by creating Y rows with the value 1 and n − Y rows with the

value 0. This generated database will match the original database up to row order.

Typically however a row has more than one bit. Consider therefore the more general
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case where each Xi can take on m values, and we release the exact count of each of the

m values. We denote the count of value v by the random variable Yv. For this case a

similar theorem holds.

Theorem 6. Suppose that for some i ∈ {1, . . . , n} and all x ∈ {1, . . . ,m} and all valid

releases ~y ∈ ~Y we have that

P (~Y = ~y ∧Xi = x) ≤ eε · P (~Y = ~y′ ∧Xi = x)

for all ~y′ in the neighborhood of ~y which we define as all vectors which differ from ~y on

exactly one component by one.

Proof. Again we will restrict our proof to X1. Let x ∈ {1, . . . ,m} and ~y ∈ ~Y . The

conditions imply that for all ~y′ in the neighborhood of ~y we have that∑
x1=x,count(~x)=~y

P ( ~X = ~x) ≤ eε
∑

x1=x,count(~x)=~y′

P ( ~X = ~x).

The summation is over all ~x such that the counts of each value match ~y and ~y′ respec-

tively. We have that

∑
count(~x)=~y

P ( ~X = ~x) =
m∑
i=1

P (X1 = i)
∑

x1=x,count(i,~x)=~y

P ( ~X = ~x).

Therefore ∑
x1=x,count(x,~x)=~y

P ( ~X = ~x) ≤ eε ≤ eε
∑

count(~x)=~y

P ( ~X = ~x)

so

P (X1 = x ∧ ~Y = ~y) ≤ eε · P (X1 = x) · P (~Y = ~y)

and similarly

P (X1 = x) · P (~Y = ~y) ≤ eε · P (X1 = x ∧ ~Y = ~y).

Again, we can construct a generated database which is equal to the original database

up to row order. However, this requires that the assumption of Theorem 6 holds, which

in part implies that every possible row occurs multiple times in the database. This is

typically not feasible. A method which preserves less statistical properties but does

not have this requirement is the following. Suppose that we can assume that each row

of the database is independent, and that we can partition the columns in independent

column groups. So the database is split in independent parts where each part consist

of one or more cells in the same row. We proceed by computing the counts for each
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column group. For each column group, we generate a database. If the column groups

are picked to overlap with frequent itemsets, then those frequent itemsets are retained

in the generated database.

3.2 Frequent itemset extraction

In this section we show a mechanism to extract an itemset I which likely has high

support from a database d while guaranteeing ε-dependence. This mechanism can in

turn be used to generate a sanitized database that is similar to the original database.

A frequent itemset is an itemset which has a support of at least θ. The mechanism

works by generating an itemset at random from a distribution. The probability that

an itemset i is chosen depends only on the support of i. Namely,

P (I = i | D = d) = e
ε
4
min{θ,supp(i)} · c

where c is a normalization constant to make the distribution sum to one. As such we

have that

c = (
∑
i

e
ε
4
min{θ,supp(i)})−1

where the summation is over all itemsets i, including itemsets with support zero.

It is clear from the distribution that all frequent itemsets have equal probability to

be chosen. Itemsets with lower support have lower probabilities. These probabilities

reduce exponentially with the support. Lower values of ε make the distribution more

uniform, but increase privacy. More precisely, the mechanism satisfies ε-dependence

when the rows are independent.

Theorem 7. Suppose that the rows of D which we will denote by X1, . . . , Xn are

independent. Then the mechanism satisfies ε-dependence.

Proof. We will apply Theorem 3. Let ~x ∈ ~X and ~x′ ∈ ~X differ on at most one

element. Let I a random variable denoting the outcome of the mechanism and i an

arbitrary itemset. Define s = min{θ, supp~x(i)} and s′ = min{θ, supp~x′(i)}. Let c the

normalization constant for ~x and c′ the normalization constant for ~x′. By rewriting

P (I = i | ~X = ~x) and P (I = i | ~X = ~x′) we see that

P (I = i ∧ ~X = ~x) · P ( ~X = ~x′) = e
ε
4
(s−s′) c

c′
· P (I = i ∧ ~X = ~x′) · P ( ~X = ~x).

The support of any itemset on ~x and ~x′ will differ by at most two rows. Therefore

e
ε
4
(s−s′) ≤ e

ε
2
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and

(c′)−1 =
∑
j

e
ε
4
min{θ,supp~x′ (j)} ≤ e

ε
2 ·
∑
j

e
ε
4
min{θ,supp~x(j)}

so that
c

c′
≤ e

ε
2 .

Combining these bounds shows that

e
ε
4
(s−s′) c

c′
≤ eε

which completes the proof.

3.3 Counting

The mechanism used in the previous section can be used to generate frequent itemset

candidates, however it does not provide an estimate of the support. This can be done

using standard randomized response techniques. We sketch one of these techniques.

Define Z1, . . . , Zn, where Zi is 1 if row i contains the frequent itemset and 0 otherwise.

Note that Zi is a function of row i. For each row a sanitizer S1, . . . , Sn is constructed.

For each i, Si is defined as follows. With probability p: Si = Zi and with probability

1− p: Si = 1− Zi. The maximum value for p such that Si and Zi are ε-dependent is
eε

1+eε
. Define the true mean z = E[ 1

n

∑n
i=1 Zi]. The sanitized mean is s = E[ 1

n

∑n
i=1 Si].

These are related by

s = zp+ (1− z)(1− p).

Solving for z gives

z =
s+ p− 1

2p− 1
.

Hence an estimate of the support can be computed by determining the sanitizer average

s and computing the support z with the formula above using p = eε

1+eε
.

3.4 Krimp

Generating a database directly from frequent itemsets tends to be difficult. One ap-

proach would be interpreting the support of a frequent itemset I as the probability

that a frequent itemset occurs in a row. This probability in turn is the sum of all the

probabilities of the rows that support I. This way, a linear dependency is introduced

for each frequent itemset on the rows that support it. Given that there are usually

many more rows than frequent itemsets this leads to an underdetermined linear system

of equations. A further constraint is that all probabilities must be non-negative and
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sum to one. As such this set of constraints can be solved with linear programming.

However the number of variables is equal to the number of possible rows, which is

exponential in the number of columns. Solving this system directly would therefore

typically be too time consuming. In this section we explain a method based on Krimp

mining[20] which avoids this problem. Krimp mining is a method to find a set of

itemsets that characterize a database well, using the principle of Minimum Description

Length. We use these itemsets to model a distribution of the rows which we sample

repeatedly to generate a database.

3.4.1 Sanitized Krimp

The Krimp algorithm adjustments are not necessarily ε-dependent on the database.

Consider for example the case where each cell has the same value. This will lead to a

code table with a single item, from which the value of each individual can be deduced.

We introduce a variant of Krimp mining, Sanitized Krimp, which is only ε-dependent

on the database. Essentially, the algorithm ofsanitized Krimp is the same as Krimp

itself, except that the itemset mining occurs on a database with sanitized cells and

adjusted thresholds, as explained in the previous section. We sketch the algorithm

here. The details of the original Krimp algorithm can be found in [20].

Algorithm 1 The sanitized Krimp algorithm

Input: A sanitized database D and a candidate set F mined with adjusted threshold,
both over a set of items I

Output: A code table CT
1: CT ← Standard Code Table(D)
2: F0 ← F in Standard Candidate Order
3: for all F ∈ F0 − I do
4: CT c ← (CT ∪ F )
5: if L(D,CT c) < L(D,CT ) then
6: CT ← CT c
7: end if
8: end for

3.4.2 Dependent code tree

We do not use the Krimp code table directly, but instead use what we will call a

dependent code tree. The difference between the dependent code tree and the code table

is that the dependent code tree considers the conditional probabilities between elements

in the Krimp code table. This improves the generation process as the relation between
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code table elements is somewhat preserved. The exact definition of the dependent code

tree is as follows.

Definition 2 (Dependent code tree). Let D a database with n items. Fix an ordering

of the items: I1, . . . , In. Let X1, . . . , Xn random variables denoting the contents of each

column of the database. A dependent code tree T is a tree where each node except the

root has an associated item. The item index of a child must be strictly higher than

the item index of its parent. Each node has an associated probability, as follows. Let

i1, . . . , im denote the items of a path on the tree and let v1, . . . , vm the column values

on the path. Then the probability of node (im) is defined as P (i1 ∪ . . . ∪ im), i.e. the

probability that all items i1, . . . , im are contained in a single row. It is required that the

root node has all items as childs, such that each possible sequence can be generated.

3.4.3 Dependent code tree construction

Given a set of itemsets I1, . . . , In mined by the sanitized Krimp algorithm, we construct

a dependent code tree as follows. Initially we start with an empty tree T . For each

subset S ⊆ {I1, . . . , In} such that the probability that all itemsets in S are contained

in a row is larger than a threshold t, we sort the items in S according to the dependent

code tree ordering and add it as a path to the root of the tree. Once all subsets

S are added to the tree, the probabilities for each node are computed based on the

sanitized database using the counting method. All singletons must be added to the

root regardless their threshold value to satisfy the requirement that the root node has

all items as childs. Because the Krimp code table contains all singleton itemsets, it is

guaranteed that we can in fact do this.

3.4.4 Generation

Generation is done as follows. First create an array of itemsets s with indexes 1 . . . n.

Initially each itemset in s contains the root node. We proceed by generating a value

for each column i = 1, . . . , n in order as follows. We pick a node n from s[i] at random.

Then we pick a child c of n at random, with probabilities proportional (equal) to the

child node probabilities. We consider only children which have a higher column index

than the parent, which is always the case if n is not the root. Let j the column index

of c (j > i). We add c to s[j] and continue with the next i. This process is repeated

until all s[i] are enumerated.
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4 Experiments

In this section we list the results of a number of experiments to empirically determine

the quality of the generated databases. In all our experiments we use ε = 0.1, and a

frequent itemset support of 0.1. All our experiments have been repeated a 100 times.

We use the following measures:

• False Positives (FP): itemsets which are frequent in the generated database,

but not in the original database.

• False Negatives (FN): itemsets which are not frequent in the generated database,

but are frequent in the original database.

• Normalized Frequency Difference (NFD): this is computed for two databases,

an original database Do and a generated database Dg by summing over a set of

itemsets I, and averaging
|suppDo (i)−suppDg (i)|

suppDo (i)
over all i ∈ I. An NFD of 0 would

indicate that both databases are the same over I. Higher values indicate larger

differences between the supports in Do and Dg of the itemsets in I.

Five databases have been chosen from the LUCS/KDD discretised data set repository[3].

The databases we have chosen are some of the larger databases of this data set, and

are often used in the literature. Two databases have been chosen from the UCI Irvine

Machine Learning Repository[6]: the MSNBC.com Anonymous Web Data Data Set

(msnbc), and the US Census Data (1990) Data Set (uscensus). These databases have

been chosen for their large number of records. At the time of writing these databases are

the largest in the UCI Irvine Machine Learning Repository. Some preparation had to

be done to make these two databases suitable for testing. For the msnbc database, each

record represents page categories that a user visited in order. We removed duplicates,

and order is ignored in the final database. For the uscensus we used the categorial

variant, and chose to include only the first ten columns (excluding the caseid column).

Some basic statistics for all databases have been listed in Table 1. This table includes

the number of records and the number of items. For reference, we have also displayed

the Krimp compression ratio in this table. Some of these Krimp compression ratios

are also listed in [20].

In our first experiment we compare the itemset frequency between the original

database and the generated databases. We focus on frequent itemsets, as we are

specifically interested in high frequency patterns. The results can be found in Table 2.

Note that for the msnbc table we have used a support threshold of 1% due to the limited

number of items with a support of at least 10%. The columns contain from left to right:

the name of the database, the number of frequent itemsets in the original database, the

average number of frequent itemsets in the generated database, the average number
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Database Records Items Krimp compression
ratio (%)

adult 48842 97 24.4
led7 3200 24 38.6
letrecog 20000 102 35.7
nursery 12960 32 47.2
pendigits 10992 86 42.3
msnbc 989818 18 32.5
uscensus 2458285 69 44.3

Table 1: Basic statistics for each database. The Krimp compression ratio is the size of
the codetable and the compressed database divided by the baseline database size, in
percentages.

Database Database FIs Generated FIs Intersection FN FP
adult 21519 20577.2 20231.3 1288.9 346.4
led7 411 472.2 316.3 95.8 156.7
letrecog 9172 4465.2 3898.5 5253.8 542.1
nursery 179 184.3 156.0 23.1 28.8
pendigits 684 380.0 270.9 414.1 110.6
msnbc 99 97.2 96.5 2.4 1.1
uscensus 1241 1258.3 1232.8 24.1 27.3

Table 2: Number of itemsets with support at least 10% (1% for msnbc) for the listed
categories.

of frequent itemsets both in the original database and the generated database, the

average number of false negatives and the average number of false positives. To get an

idea of the differences in frequency for the the itemsets in the intersection, the false

negative itemsets and the false positives itemsets, we have computed the NFD for these

categories in Table 3.

Together, these tables show that the frequency for frequent itemsets with large

support remains comparable between the original and generated database.

To test the quality of the databases for machine learning tasks we have trained a

number of classifiers on a generated database and tested the quality of these classifiers

on the original database. To get class labels for the generated database, we have

separated the original database records by class label to create a database for each label.

For each of these databases a generated database was created with the corresponding

label. These generated databases were added back together to get a final generated

database with class labels. For comparison, we have also trained the same classifiers

on the original database. The score for these classifiers was computed by using 10 fold
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Database Intersection FN FP
adult 0.093 0.121 0.105
led7 0.193 0.306 0.203
letrecog 0.250 0.283 0.118
nursery 0.049 0.129 0.094
pendigits 0.169 0.204 0.130
msnbc 0.0142 0.0125 0.0161
uscensus 0.01812 0.01923 0.01752

Table 3: NFD for the intersection, false negatives and false positives.

Database Classes Krimp
orig.

Krimp
gen.

C4.5
orig.

C4.5
gen.

NB orig. NB gen.

adult 2 84.3 83.9 85.5 85.2 80.2 79.9
led7 10 75.3 72.4 75.3 73.2 75.4 74.1
letrecog 26 70.9 62.6 75.3 64.1 75.4 62.2
nursery 5 92.3 91.5 99.5 99.3 92.2 89.7
pendigits 10 95.0 93.4 95.6 92.2 84.2 81.5
msnbc 2 95.7 95.7 98.3 98.1 97.2 97.2
uscensus 5 64.5 64.5 72.3 72.2 74.1 73.9

Table 4: Classification results comparison between the original and generated
databases. The number of classes for each database is shown in the second column.

cross-validation. The classifiers are Krimp, C4.5[18] and Naive Bayes[11]. The results

can be found in Table 4. The generated results are mostly close to the original database.

An exception is the database letrecog. A possible explanation is that letrecog consists

of many categories, which makes each category to small to be learned well.

As an experimental validation of the privacy we have tested how many records are

present in both the original and generated database, as a percentage of the total. This

value can be seen both as the probability that a record occurs in the original database

given that the record occurs in the generated database and as the probability that a

record occurs in the generated database given that it appears in the original database.

These results have been listed in Table 5. It can be seen that these values are indeed

low, giving an indication of the privacy level. We have dissected these values in Figure

1 by showing an empirical CDF of the support of itemsets common in the original and

generated database, averaged over all databases. This plot makes it clear that the large

majority of the common records is due to records which occur more than once in the

original database, therefore making their appearance in the generated database more

likely.

To further validate the privacy we mined random itemsets which occured exactly
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Database Common
adult 0.000369
led7 0.00368
letrecog 0
nursery 0.000309
pendigits 0
msnbc 0.0324
uscensus 0.000957

Table 5: Fraction of records occurring in both the original and the generated databases.

once from the original database, and tested if the itemset occured in the generated

database. These fractions can be observed in Table 6. We have bucketed these itemsets

by length and computed for each bucket the empirical cumulative density. This can be

observed in Figure 2.

Figure 1: Support for records common in the original and generated database.

Finally, to see how similar the databases are in terms of Krimp, we have compressed
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Database Common
adult 0.9981
led7 0.9935
letrecog 0.99923
nursery 0.9973
pendigits 0.9937
msnbc 0.983
uscensus 0.99942

Table 6: Fraction of random itemsets with support 1 on the original database not
occurring in the generated database.

Figure 2: Empirical CDF of the length of random itemsets occurring in the generated
database.

the generated databases with the code table created for the original database. The

reduction in compression should be due to the privacy. This is similar to the notion of

KL-divergence. The results are listed in Table 7. We have also repeated the process

in reverse: an original database is compressed with a code table optimized for the
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Database Original Generated
adult 24.4 24.9
led7 38.6 41.3
letrecog 35.7 40.3
nursery 47.2 49.8
pendigits 42.3 45.2
msnbc 32.5 32.5
uscensus 44.3 44.4

Table 7: Krimp compression on the original and generated database, both using a code
table optimized for the original database.

Database Generated Original
adult 24.1 24.7
led7 38.2 40.9
letrecog 35.1 38.8
nursery 46.5 49.4
pendigits 41.3 44.2
msnbc 32.5 32.5
uscensus 44.3 44.3

Table 8: Krimp compression on the generated and original database, both using a code
table optimized for the generated database.

generated databases. The results are listed in Table 8. Overall the compression is

somewhat less but remains close, showing that code table elements are being preserved

in the sanitizing process - although there is a price to pay for privacy.

5 Conclusion

The Sanitized Krimp algorithm should generate data with ε-dependence. As such we

expect that no information specific to individuals can be determined from the database.

Our results make this likely, as the amount of random itemsets that occur rarely in

the original database do almost not show up in the generated database. Furthermore,

as shown in Figure 2, this probability seems to decrease with length, showing that any

occurrences are likely due to random generation instead of the individual’s input.

Using the definition of ε-dependence and our chosen value ε = 0.1, it follows that

the probability of any event should change by at most a factor eε ≈ 1.11 after a release

of the database. Table 5 and Table 6 show that this goal is met for the specific events

considered in these tables. If these tables are representative for all events then the

results show that the privacy guarantee might be even larger.
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No direct theoretical guarantee exists for the quality of the database. However

based on Theorem 1, we expect that when assuming cell independence the information

is limited to ε nats per cell. Given that we have chosen ε = 0.1 in our experiments,

this translates to about 0.144 bits. When summing this information over each cell

we see that if this upper bound is reached a large amount of information can still be

transferred. Indeed, the results show that especially for larger databases with over

a million rows the quality of the generated database is good. Krimp compression is

almost identical for the two largest databases, as is shown by Table 7 and Table 8.

The same holds for the frequent of itemsets, as can be observed in Table 2 and Table

3, which is what one would expect when the Krimp compression is good.

To conclude, this paper shows that it is possible to adapt the Krimp method to

sanitize databases with provable privacy guarantees while still retaining good Krimp

compression.

6 Appendix

Theorem 8. Let log denote logarithm with base e, including the log used for the

information content I. As in the definition of differential privacy, let A a randomized

algorithm and let N (d) the set of neighbors for a database d ∈ D. Let D a random

variable denoting a database distributed with a discrete distribution D such that the

knowledge gain

R := I(D = d | D ∈ N (d))− I(D = d | A(D) = s ∧D ∈ N (d))

is bounded from above by ε for all d ∈ D, s ∈ imA and all prior distributions D such

that R is well-defined, i.e. we consider D for which the following constraints hold:

P (D = d ∧D ∈ N (d)) > 0;

P (D ∈ N (d)) > 0;

P (D = d ∧D ∈ N (d) ∧ A(D) = s) > 0;

P (D ∈ N (d) ∧ A(D) = s) > 0.

Then this requirement imposes precisely the same constraints on A as ε-differential

privacy.

Proof. Let d ∈ D and s ∈ imA. Let D such that the knowledge gain is well-defined.
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We start by rewriting the knowledge gain. The knowledge gain equals

log
P (D = d | A(D) = s ∧D ∈ N (d))

P (D = d | D ∈ N (d))

= log
P (D = d ∧ A(D) = s ∧D ∈ N (d))

P (D = d | D ∈ N (d)) · P (A(D) = s ∧D ∈ N (d))

= log
P (D = d) · P (A(d) = s)

P (D = d | D ∈ N (d)) · P (A(D) = s ∧D ∈ N (d))

= log
P (D = d) · P (A(d) = s) · P (D ∈ N (d))

P (D = d ∧D ∈ N (d)) · P (A(D) = s ∧D ∈ N (d))

= log
P (D = d) · P (A(d) = s) · P (D ∈ N (d))

P (D = d) · P (A(D) = s ∧D ∈ N (d))

= log
P (A(d) = s) · P (D ∈ N (d))

P (A(D) = s ∧D ∈ N (d))

= log
P (A(d) = s)

P (A(D) = s | D ∈ N (d))
.

If we bound the knowledge gain above by ε, then

P (A(d) = s) ≤ eεP (A(D) = s | D ∈ N (d)).

We have that

P (A(D) = s | D ∈ N (d)) =
P (A(D) = s ∧D ∈ N (d))

P (D ∈ N (d))

=

∑
d′∈N (d) P (D = d′ ∧D ∈ N (d)) · P (A(d′) = s)

P (D ∈ N (d))

=
∑

d′∈N (d)

P (D = d′ | D ∈ N (d)) · P (A(d′) = s).

knowledge gain =⇒ differential privacy First we will show that the require-

ments on R imply differential privacy. We have that P (A(D) = s | D ∈ N (d)) is

bounded below by

min
d′∈N (d)

P (A(d′) = s)

for any choice of D. The bound can be achieved arbitrarily close by choosing D
such that each element has a non-zero probability and the remaining weight is put on

P (D = d′ | D ∈ N (d)) for the d′ ∈ N (d) where P (A(d′) = s) is minimal.
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When the bound is achieved we have that

P (A(d) = s) ≤ eε min
d′∈N (d)

P (A(d′) = s).

Therefore we require precisely that

P (A(d) = s) ≤ eεP (A(d′) = s)

for all d′ ∈ N (d) which is equivalent to the definition of ε-differential privacy.

differential privacy =⇒ knowledge gain Next we show that differential privacy

implies the requirements on R. As stated earlier we have that

P (A(d) = s) ≤ eε min
d′∈N (d)

P (A(d′) = s) ≤ eεP (A(D) = s | D ∈ N (d))

for all well-defined choices of D.

Corollary 2. Let A a randomized algorithm and let N (d) the set of neighbors for a

database d ∈ D. Limiting the knowledge gain of a database D, i.e. requiring that

I(D = d)− I(D = d | A(D) = s) ≤ ε

for all d ∈ D, s ∈ imA and all distributions D such that R is well-defined is equivalent

to requiring that

P (A(d1) = s) ≤ eεP (A(d2) = s)

for all d1, d2 ∈ D.

Proof. Set N (d) = {d′ ∈ D} for all d ∈ D and invoke Theorem 8.

Theorem 9. Let Y a set. Let q : D → Y an arbitrary function. Then if for some

ε > 0 and for all d ∈ D and s ∈ imA

I(D = d)− I(D = d | A(D) = s) ≤ ε

then we have that for all y ∈ Y and s ∈ imA

I(q(D) = y)− I(q(D) = y | A(D) = s) ≤ ε.

Proof. Let y ∈ Y . We have that P (q(D) = y) = P (D ∈ q−1({y})) where q−1 denotes

the inverse image. Likewise P (D ∈ q−1({y}) | A(D) = s) = P (D ∈ q−1({y}) | A(D) =

s) for all s ∈ imA. Write the elements of q−1({y}) as d1, . . . , dn. Write pi = P (D = di)
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and write qi = P (D = di | A(D) = s) for all i = 1, . . . , n. Then pi/qi ≤ ε for all

i = 1, . . . , n by assumption. We will prove the desired result, which is that

p1 + . . .+ pn
q1 + . . .+ qn

≤ ε

by induction. Without loss of generalization it suffices to prove that

p1 + p2
q1 + q2

≤ ε.

Because p1/q1 ≤ ε we have that p1 ≤ ε ·q1 and likewise we have that p2 ≤ ε ·q2. Adding

these inequalities gives p1 + p2 ≤ ε(q1 + q2). Dividing both sides by q1 + q2 gives the

desired result.
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