
UTRECHT UNIVERSITY

MASTER THESIS

Ensemble of Code Tables

Author:
Jaspreet SINGH
ICA_3754022

Supervisors:
Prof. dr. Arno SIEBES

dr. Ad FEELDERS

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science

in the

Department of Information and Computing Sciences
Division of Artificial Intelligence

Algorithmic Data Analysis Research Group

July 10, 2018

iii

UTRECHT UNIVERSITY

Abstract
Faculty of Science

Department of Information and Computing Sciences

Master of Science

Ensemble of Code Tables

by Jaspreet SINGH

ICA_3754022

In this master thesis non-disjoint clustering algorithms are presented, which are
based on the Minimum Description Length (MDL) principle. The algorithms cap-
ture the underlying distribution from different perspectives by compressing the data
using a series of code tables. A cover algorithm describes how to compress the
database using a code table. Every code table is iteratively grown until compres-
sion does not improve any more. Experiments show that the algorithms are able to
identify structure in the data because the data gets compressed to some extent by the
code tables. Clustering experiments show that the general structure is captured by
all obtained code tables and that the different groups of patterns that are dissimilar
to the general patterns, are captured by different code tables. This confirms that the
code tables view the data from different perspectives. The classification experiments
show that, given the class labels, the code tables are dissimilar enough to capture the
different characteristics of the classes. Without the class labels it is able to find the
difference between the classes when the support is sufficiently low. It is also possible
to identify multi-valued dependencies in the data. This is the case when code tables
in a single iteration are anti-chains and later end up in the same code table.

v

Acknowledgements
First of all, I would like to thank my thesis supervisor professor Arno Siebes for
always providing constructive feedback and giving guidance. One of my friends,
Oscar Bartman also deserves praise because he read through the project proposal
to identify spelling- and grammar mistakes. I am also grateful that my parents,
my sisters and my friends supported me, and kept me motivated throughout this
process.

vii

Contents

Abstract iii

Acknowledgements v

1 Introduction 1

2 Literature Study 3
2.1 Ensemble Learning . 3

2.1.1 Boosting . 3
2.1.2 Bagging and Random Forests . 4

2.2 Clustering . 5
2.2.1 Clustering and Ensemble Structures 6

Clustering and Boosting . 7
Clustering and Bagging . 7

2.3 Compression Based Data Mining . 8
2.3.1 Krimp: mining items sets that compress 8
2.3.2 Compression picks the significant item sets 11
2.3.3 Characterising the Difference . 11
2.3.4 Identifying the components . 12
2.3.5 A structure function for transaction data 13
2.3.6 Directly Mining Descriptive Patterns 16

3 Problem Description and Research Questions 19
3.1 Problem Description . 19
3.2 Research Questions . 22
3.3 Relevance for Science, Technology and Society 22

4 Methodology 25
4.1 Data . 25
4.2 Methodology . 25

4.2.1 Clustering Performance . 26
4.2.2 Classification Performance . 27
4.2.3 Scaling and Stability . 28

5 Algorithms 29
5.1 GroeiNoS - Groei No Structure Function 29
5.2 GroeiSlim - Candidate Generation Inspired by Slim 31

6 Experiments 33
6.1 Setup . 33
6.2 Datasets . 33
6.3 Compression . 34

6.3.1 Compression . 34
6.3.2 Run Time . 36

viii

6.3.3 Convergence . 37
6.3.4 Lowering the support . 38
6.3.5 Beam-Width . 38

6.4 Clustering . 39
6.4.1 Entropy . 39
6.4.2 Dissimilarity . 41
6.4.3 Distribution . 43

6.5 Classification . 44
6.5.1 Classification Performance . 44
6.5.2 Purity . 45

6.6 Identifying Multi-Valued Dependencies in Data 47

7 Discussion 51

8 Conclusion 53

Bibliography 55

1

1 Introduction

The aim in machine learning always has been to approximate the underlying data
distribution as well as possible using some model. The world of machine learning
can be divided into supervised learning and unsupervised learning. In supervised
learning the models are trained using labelled data (examples) and are evaluated to
determine their performance. In unsupervised learning there is no labelled data, so it
is impossible to train and evaluate models. The main goal in unsupervised learning
is to describe interesting patterns in the data. One such way of describing the inter-
esting patterns in the data is to use clustering. In clustering, groups of objects are
identified that are similar in some sense. This commonly performed in exploratory
data analysis. The domain where overlap between clusters is allowed is called fuzzy
clustering. Here, all the data points have a degree-of-membership towards all the
clusters. Another problem in clustering is that the number of clusters is not known
beforehand and that models have to be tuned to give the best results.

The Krimp-algorithm introduced by Siebes et. al. has been extended to also be
able to perform clustering [VVLS11]. The algorithm was originally introduced to
tackle to problem of pattern mining by using the concept of the Minimum Descrip-
tion Length principle. This is: ‘The best set of patterns that describe the data the
best are those that compress the data the best’. The authors observed that the ob-
tained model could also be used for classification, which is a supervised learning
task. The difference between classification and clustering is that in classification the
clusters are already given by the classes, while clustering the goal is to find these
classes. Later, the extension to disjoint clustering was made by Leeuwen et. al.
[LVS09]. This is done by randomly partitioning the database into k components and
swapping transactions until the database cannot be compressed any further, or by
first applying Krimp to the entire database and then creating k copies and iteratively
eliminating itemsets in the code tables that reduce the compressed size the most.
Siebes et. al. observe that a series of models are able to give a better description of
the data than one single model is able to [SK11]. This resembles the idea of boosting,
where a series of weaker models is used to get a better description of the data. The
models in this case are a series of code tables, and give a structure function. The
structure functions suggests a natural partitioning of the data. They observe that
different numbers of code tables give insight into the data on different levels.

The aim of this thesis project is to find clusters and to allow for overlap be-
tween clusters by extending Krimp and the works that follow it. Allowing overlap is
achieved by using techniques more similar to bagging than boosting. Both bagging
and boosting are a form of ensemble learning, which means that a series of weaker
models have similar performance as a strong model. An advantage of bagging is
that it tries to de-correlate the data by using bootstrap sampling, which decreases
the bias and variance of the model. A better description of the data can be achieved
by allowing overlap between clusters because the variety in the data is captured in
the overlap between clusters.

In order to gain insight in the problem domain a literature study is presented
in Chapter 2. Relevant works to the problem are discussed and summarised. In

2 Chapter 1. Introduction

Chapter 3 a formal problem definition is given based on the literature study. Also the
the relevance of the project to science, technology and society is argued. In Chapter
4 the methodology for evaluation is presented. In Chapter 5 the newly developed
algorithms are presented. These are experimentally evauated and the results of the
evaluation are presented in Chapter 6. The obtained results are then discussed in
Chapter 7. Finally, the conclusion is given in Chapter 8.

3

2 Literature Study

In this chapter a literature review is presented where relevant works with respect
to this thesis project are summarised. First, works related to ensemble learning are
discussed. Second, the notion of compression and works related to clustering with
ensemble structures are discussed. At last, the works related to machine learning by
means of compression are summarised. In particular, the Krimp-algorithm and the
works following up upon the the Krimp-algorithm are summarised [VVLS11].

2.1 Ensemble Learning

Ensemble learning methods were originally created to reduce variance, and thereby
increase accuracy in decision-making systems [Pol12]. A metaphor to describe this
is: rather than consulting a single expert with lots of knowledge, consult a series of
experts where each of the experts focuses on a certain aspect of the problem. From
a statistical point of view, any classification error consists of two components: bias
and variance. Bias is captured in the accuracy of a classifier and the variance in
the precision of the classifier when trained on various training sets. Often there is
a trade-off between these two components: classifiers with low bias tend to have
high variance and vice versa. It is known that averaging has a smoothing effect,
this means that smoothing reduces variance. Ensemble systems create a series of
classifiers with similar bias. By combining the outputs (averaging), the variance is
reduced. Combining the outputs does not generally lead to a better performance but
the likelihood that a bad classifier is chosen is reduced.

An ensemble learning system consists of three components: data sampling and
selection, training the classifiers and combining the classifiers. Data sampling and
selection is important for the notion of diversity. If every classifier is trained on rel-
atively diverse data, the outputs will be independent or preferably negatively cor-
related. The most common way to achieve is by training the classifiers on different
subsets of training data. Another way is by using different subsets of features to
train each classifier. Training the individual classifier is the core of ensemble-based
systems. Combining the outputs can be done in many ways. This depends some-
what on the type of classifier used.

2.1.1 Boosting

The idea behind boosting is that a combination of simple classifiers, obtained by
a weak learner, are able to perform better than any of the simple classifiers alone
[FF12]. A weak learner is a learning algorithm which classifies cases correctly with
probability strictly higher than 0.5. It needs to be slightly better than random guess-
ing. A strong learner on the other hand yields a classifier with high accuracy. The
concept of weak and strong learners is rooted in the theory of PAC (probably ap-
proximately correct) learning.

4 Chapter 2. Literature Study

Definition 1 (Strong learner). Let f : X → {−1,+1} be a hypothesis (classification
rule), such that f ∈ F , where F is some class of functions from X to {−1,+1}. Let
{(x1, y1), . . . , (xN , yN)} be a set of pairs such that yi = f (xi) and xi are samples from some
distribution P. Given enough data, a strong learner is able to produce an arbitrarily good
classifier with high probability: for every P, f ∈ F , ε ≥ 0 and δ ≤ 0.5, with probability
no less than 1− δ, it outputs a classifier h : X → {−1,+1} which satisfies PP[h(x) 6=
f (x)] ≤ ε

Definition 2 (Weak learner). Let f : X → {−1,+1} be a hypothesis (classification
rule), such that f ∈ F , where F is some class of functions from X to {−1,+1}. Let
{(x1, y1), . . . , (xN , yN)} be a set of pairs such that yi = f (xi) and xi are samples from some
distribution P. Given enough data, a weak learner is able to produce an arbitrarily good
classifier with high probability: for every P, f ∈ F and a particular pair ε0 ≥ 0 and δ0 ≤
0.5, with probability no less than 1− δ, it outputs a classifier h : X → {−1,+1} which
satisfies PP[h(x) 6= f (x)] ≤ ε0

The underlying idea behind boosting is that a strong learner can be obtained by
combining weak learners. This means that weak and strong learnability are equiv-
alent in the sense that one can obtain a strong learner from a combination of weak
learners.

A popular boosting algorithm, proposed by Freund and Schapire, is the adap-
tive boosting (AdaBoost) algorithm [FS95]. AdabBoost uses weighted versions of
the same training data instead of selecting random samples. Because the same data
is used repeatedly, the dataset does not need to be very large. AdaBoost learns a set
of classifiers by using a weak learner. The weak classifiers are obtained sequentially
by using reweighed versions of the training set. These weights depend on the mis-
classification errors of the previous classifiers. This allows for focus on the patterns
that were not classified well by the previous weak classifiers.

2.1.2 Bagging and Random Forests

Bagging is another form of ensemble learning, which stands for Bootstrap Aggre-
gation [Pol12]. Given a dataset D with N records, bagging trains T independent
classifiers. Each of the classifiers is trained by sampling N instances with replace-
ment from D. The diversity between the classifiers comes from the variation within
the bootstrapped samples on which each of the classifiers is trained in combination
with using a weak classifier. The output of the classifiers is combined by using a
simple majority vote.

Random forests are an extension of bagging, and were developed to be a com-
petitor of boosting [CCS12]; [Bre01]. From a computational perspective Random
Forests are appealing because they are relatively fast to train, predication is also fast,
have very few parameters to tune, and can directly be used for high-dimensional
problems. From a statistical point of view Random Forests are interesting because
they can be used for unsupervised learning, measuring variable importance and dif-
ferential class weighting.

A Random Forest is an ensemble model consisting out of trees. Like before, the
goal is to find a function f (x) for predicting y. The prediction function is determined
by a loss function L(y, f (x)) such that the expected value of the loss is minimised
with respect to the joint distribution X and Y.

EXY(L(y, f (x)))

2.2. Clustering 5

The prediction function f consists out of a collection of base classifiers h1(x), . . . , hN(x).
The base classifiers formally are trees h(x, θ) but θ is omitted from notation. The out-
put of the function f is the majority output from all base classifiers.

2.2 Clustering

In clustering the goal is to separate an unlabelled data set into a set of natural hidden
data structures [XW05]. Clustering is also called unsupervised classification because
the class labels are unknown. This is applied in exploratory data analysis. Clustering
algorithms partition the data into a number of groups. A cluster can be seen as a
group containing homogeneous objects in some sense and is separated from other
groups. This means that patterns in the same cluster must be similar and patterns
in different clusters must be different. Hard partitioning is the most popular form
of clusters, here an object can only belong to a single cluster. The goal is to divide a
dataset D into k disjoint groups.

Definition 3 (Hard Clustering). Let D denote the dataset, K the number of clusters and
Di ⊆ D a cluster. A hard partitioning of data set D tries to find K partitions such that:

1. ∀i ∈ [1, K] : Dj 6= ∅

2.
K⋃

i=1
Di = D

3. ∀i, j ∈ [1, K] : i 6= j⇒ Di ∩Dj = ∅

The borders between clusters can be softened using some kernel. To go even
further, it is also possible for a pattern to belong to all clusters with a degree of
membership ui,j ∈ [0, 1], which is the membership coefficient of the jth object in the
ith cluster and is called fuzzy clustering. The membership coefficient must satisfy
the following two constraints:

∀j :
K

∑
i=1

ui,j = 1 and ∀i :
N

∑
j=1

ui,j < N

Fuzzy c-means (FCM) clustering is one of the most widely used fuzzy clustering
algorithms [Dun73]. The algorithm partitions the set of data points X = {x1, . . . , xn}
into a set of c fuzzy clusters. The algorithm returns a set of cluster centres C =
{c1, . . . , cc} and a partition matrix U. The matrix contains a weight ui,j for every
data point xi and cluster cj, such that ui,j represents the degree of which data point
xi belongs to cluster cj. Each of the cluster centres ck are computed using a weighting
function wk for every data point x:

ck =
∑x wk(x)mx
∑x wk(x)m

where m is any positive real number. This is the mean of all data points, weighted by
their degree of belonging to cluster k. The goal is to minimize the following objective
function

arg min
C

n

∑
i=1

c

∑
j=1

wm
i,j ‖ xi − cj ‖2 where wi,j =

1

c
∑

k=1

(
‖xi−cj‖
‖xi−ck‖

) 2
m−1

6 Chapter 2. Literature Study

The FCM algorithm works as by first choosing a number of clusters, then assign
random weights in the first partition matrix U(0). Then, until convergence is reached:
computer the centre ck for every cluster and for every data point compute wk(x). In
the FCM algorithm, m is the current iteration the algorithm is in. Convergence is
defined as the change in coefficient values being no more than ε.

The algorithm described above is based on the k-means clustering algorithm,
which computes a hard clustering and is also referred to as Lloyd’s algorithm [Llo06].
The algorithm partitions a set of n data points X = {x1, . . . , xn} into k sets S =
{s1, . . . , sk}. The object function then is:

arg min
S

k

∑
i=1

∑
x∈S
‖ x− µi ‖2

This assigns each data point to the cluster whose mean has the least squared Eu-
clidean distance is the lowest. The downside of the methods is that both use all
features of the data and thus suffers from the curse of dimensionality. This means
that the distance between data points will increase when the number of dimensions
grow. A method of which the performance does not rely on the number of dimen-
sion is preferred.

2.2.1 Clustering and Ensemble Structures

Vega and Ruiz survey a number of clustering ensemble algorithms [VPRS11]. The
observation is made that clustering ensemble algorithms are made up of two steps:
generation and consensus. The generation step generates a number of clusterings.
These can be obtained quickly when using weak clustering algorithms. The next
step is to combine these generated clusterings. A consensus function determines the
assigned cluster for each data point by aggregating the obtained clusterings in the
previous step. This can be done by either object co-occurrence or median partition-
ing. In object co-occurrence the cluster of a data point is the majority of the clusters
it belongs to in the ensemble structure. In the second approach the median partition
is defined as:

P∗ = arg max
Pi∈P

∑
j

Γ(Pi, Pj)

Here Γ is some similarity function between partitions. This is the partition that max-
imizes the similarity with all clusterings in ensemble structure. This is generalised
in algorithm 1:

Algorithm 1: A general template for a clustering algorithm by using ensemble
structures

Data: Dataset D, number of clusterings m, consensus function Γ and weak
clustering algorithm C

Result: A clustering P∗

1 P ← ∅;
2 for i← 0 to m do
3 Di ← selectData(D);
4 P ← P ∪ C(Di);
5 end
6 P∗ ← arg max

Pi∈P
∑m

j Γ(Pi, Pj);

2.2. Clustering 7

Clustering and Boosting

Frossyniotis et. al. propose an iterative multiple clustering approach that is called
boost-clustering, which iteratively recycles the data set and provides multiple clus-
terings and results in a single partition [FLS04]. A distribution over the data points
is computed and a new training set is randomly sampled from the original dataset.
Afterwards, a basic clustering algorithm is used to partition the newly samples data
set. The final clustering is obtained by means of weighted voting, a weight is as-
signed to every partition according to some quality measure.

Smeraldi et. al. propose Cloosting, iterative clustering by using AdaBoost [Sme+11].
It is argued that the homogeneity within the cluster and separation between the
clusters are obtained by, first, the use of regularised AdaBoost to reject outliers. Ad-
aBoost has a tendency to put higher weights on data points which are difficult to
classify. These data points often happen to be outliers in high-noise cases. This issue
is alleviated by using the regularised version of AdaBoost. Second, weak learners
allow for specialisation of a particular region in the feature space. At last, the de-
cision boundaries are smoothed with a Gaussian kernel. The algorithm works by
starting with K random partitions. Then, until convergence is reached: First train
K strong classifiers to recognise the elements of each cluster using regularised Ad-
aBoost. Second, compute the score Sk for each data point for each cluster using some
score function Sk. Assign each point to the cluster which maximizes the score.

Algorithm 2: A general template for a clustering algorithm by using boosting
Data: Dataset D, number of clusterings m, consensus function Γ and weak

clustering algorithm C
1 P ← ∅;
2 for i← 0 to m do
3 Di ← sampleData(D);
4 P ← P ∪ C(Di);
5 end
6 P∗ ← arg max

Pi∈P
∑m

j Γ(Pi, Pj);

Clustering and Bagging

Dudoit and Fridlyand describe a method to apply bagging to clustering called Bag-
Clust [DF03]. First apply a clustering algorithm P to the entire data set D to obtain
the clusters for each data point. Second, form a bootstrap sample on the data set, Db

denotes the bth bootstrap sample. Then apply P on Db to obtain the cluster for each
data point. Afterwards, permute the cluster labels in the bootstrap sample Db such
that there is maximum overlap between Db and D. Repeat this procedure B times
and then assign a bagged cluster label to each data point.

The approach by Minaei et. al. is similar to the previous one [MBTP04]. First,
create a reference clustering using some algorithm P. Then draw b bootstrap samples
Db of D and cluster each one using P to obtain a clustering Pb. At last, use some
consensus function Γ on the obtained clusterings to obtain a final clustering. The
labels are assigned according to the initial clustering.

The major difference between both methods is the sampling method that are
used. The boosting methods use random samples or samples derived from the last

8 Chapter 2. Literature Study

Algorithm 3: A general template for a clustering algorithm by using bagging
Data: Dataset D, number of clusterings m, consensus function Γ and weak

clustering algorithm C
Result: A clustering P∗

1 P ← ∅;
2 Pre f ← C(D);
3 for i← 0 to m do
4 Di ← bootstrapSample(D);
5 P ← P ∪ C(Di);
6 end
7 P∗ ← arg max

Pi∈P
∑m

j Γ(Pi, Pj);

8 P∗ ← assignLabels(Pre f , P∗)

iteration while bagging uses bootstrap samples. Bagging however requires a refer-
ence clustering Pre f to assign the labels. The algorithm templates 1, 2 and 3 can all
be easily extended by inserting additional steps as long as the output is a clustering.

2.3 Compression Based Data Mining

Many data mining problems can be related to the Kolmogorov Complexity [Grü05].
This means they can be practically solved by means of compression. MDL is a prac-
tical version of the Kolmogorov Complexity. MDL and the Kolmogorov Complexity
make use of the principle of Induction by Compression. For two-part MDL, this is
described as:

Definition 4. Given a set of modelsH, the best model H ∈ H is the model that minimises

L(H) + L(D | H)

, where L(H) is the length of the description of H in bits, and L(D | H) is the length of the
description encoded by using H in bits.

Two-part MDL is used because we want to find the set of frequent item sets that
yield the best compression. This is called the compressor. In order to use MDL we
need to answer the following three questions:

• What are the modelsH?

• How does H ∈ H describe a database?

• How is all this encoded in bits?

2.3.1 Krimp: mining items sets that compress

Siebes et al. use the notion of the Minimum Description Length (MDL) to create code
tables, which are used to mine the interesting sets of patterns from data [VVLS11].
The main idea is the use of a code table to compress the database.

Definition 5 (Code Table). Let I be a set of items and C be a set of codes. A code table CT
over I and C is a table with two columns such that: The first column contains subsets over
I , all singleton item sets must be present. The second column contains codes from C and
every code is allowed to occur at most once.

2.3. Compression Based Data Mining 9

In order to encode a transaction t ∈ D over I , a cover function cover(CT, t,) is
needed to identify which elements of CT are used to encode the transaction t. The
output of this function is a disjoint set of element of CT that cover t:

Definition 6 (Cover). Let D be a database over a set of I , t drawn from D, let CT be
the set of all possible code tables over I , and CT a code table such that CT ∈ CT . Then,
cover : CT × P(I) 7→ P(P(I)) is a cover function iff it returns a set of item sets such
that:

1. cover(CT, t) is a subset of CS

2. if X, Y ∈ cover(CT, t), then either X = Y or X ∩Y = ∅

3. The union of all item sets in cover(CT, t) equals t

A database D can be encoded with code table CT by replacing each transaction
t ∈ D by the code of the items sets in the cover of t, that is:

t→ {codeCT(X) | X ∈ cover(CT, t)}

The codes in the code table should be chosen in such a way that the used item set
which is used the most has the shortest length to get the best compression. The
actual codes are never used, only the lengths of codes of the item sets. The optimal
lengths of the codes can be computed by using the Shannon entropy.

Theorem 1. Let P be a distribution on some finite set D, there exists an optimal prefix code
C on D such that the length of the code for d ∈ D, which is denoted as L(d), is given by

L(d) = − log(P(d))

The goal is to find the best code table and not to actually compress the dataset.

Definition 7. Let D be a transactional database over the set of items I , C a prefix code,
cover a cover function, and CT a code table over I and C. The usage of an item set X ∈ CT
is then defined as:

usageD(X) = |{t ∈ D | X ∈ cover(CT, t)}|

From this we can derive a probability distribution for all item sets X in the code
table CT.

P(X | D) = usageD(X)

∑Y∈CT usageD(Y)

A code table is code-optimal iff all the codes for all item sets are optimal, that is:

∀X ∈ CT : L(codeCT(X)) = codeCT(X) = − log(P(X | D))

Lemma 1. Let D be transactional database over I , CT be a code table over I and code-
optimal for D, and usage the usage function for cover:

1. For any t ∈ D, the encode length in bits L(t | CT) is:

L(t | CT) = ∑
X∈cover(CT,t)

L(codeCT(X))

2. The encoded size L(D | CT) of D when encoded by CT is:

L(D | CT) = ∑
t∈D

L(t | CT)

10 Chapter 2. Literature Study

To use the MDL principle we need L(H) and L(D | H), the latter can be com-
puted by using Lemma 1. To compute L(H), we make use of the standard code table
ST. This is the optimal coding for D when only the frequencies of the singleton item
sets are known, and is the simplest independent description of the data.

Definition 8. Let D be transactional database over I , CT be a code table over I and code-
optimal for D. The size of CT L(CT | D) in bit is:

L(CT | D) = ∑
X∈CT:usageD(X) 6=0

= L(codeST(X)) + L(codeCT(X))

The set of item sets of a coding table is called the coding set CS. The goal is to
find the smallest coding set from a set of item sets CS ⊆ F such that for the corre-
sponding code table CT, L(D, CT) is minimal. This is called the Minimal Coding Set
Problem. This means that we have to find the optimal code table and cover function.

Since the search space is too large to search exhaustively, a heuristic is applied.
This heuristic considers the code table in a fixed order and is called the Standard
Cover Order. The elements in the code table are first decreasingly sorted by cardi-
nality, second decreasing on support, and at last increasing on lexicography. This
makes the ordering total. The standard cover algorithm works as follows: for a
transaction t, the code table is traversed in the standard cover order. An item set
X ∈ CT is included in the cover of t iff X ⊆ t. Afterwards X is removed from t. This
is repeated for t\X until everything is covered. Before starting the Krimp-algorithm,
the set of candidate item sets F is sorted by the Standard Candidate Order. We first
sort F decreasing on support, second decreasing on cardinality, and at last increas-
ing on lexicography.

• Start with the standard code table ST

• Keep adding candidates from the sorted set F one by one. Each time, take
the item set that is maximal according to the Standard Candidate Order. Then
cover the database using the standard cover algorithm. If the obtained encod-
ing compresses the data better, keep it. Else, discard it.

Algorithm 4: The Krimp algorithm

1 Function Krimp(D,F)
Data: Dataset D, candidate set F , both over a set of items I
Result: Code table CT

2 CT ← Standard Code Table(D);
3 F0 ← F in Standard Candidate Order;
4 for F ∈ F0\I do
5 CTc ← (CT ∪ F) in Standard Cover Order;
6 if L(D, CTc) < L(D, CT) then
7 CT ← CTc;
8 end
9 end

10 return CT;

The Krimp-algorithm can also be used for classification. The assumption made
here is that database is an independent and identically distributed (i.i.d.) drawn
sample from some underlying distribution. The assumption is similar to the Naive

2.3. Compression Based Data Mining 11

Bayes assumption, the item sets in CT are independent if any co-occurrence of two
item sets X, Y ∈ CT in the cover of a transaction is independent. This means that
L(t | CT) = − log(P(t | D)).

Lemma 2. Let D1 and D2 be two bags of transactions over I , which are samples from two
different distributions, and t an arbitrary transaction over I . Let CT1 and CT2 be the optimal
code tables for D1 and D2 respectively, then:

L(t | CT1) > L(t|CT2)⇒ P(t | D1) < P(t | D2)

This means the best choice is to assign t to the distribution which yields the short-
est code length.

2.3.2 Compression picks the significant item sets

Leeuwen et al. argue that Krimp picks the item sets that matter [LVS06]. From enor-
mous amounts of candidates it only selects a low amount of item sets. The selected
item sets obtain a high compression ratio on the data and, furthermore, it shows sim-
ilar performance with today’s top classifying methods even though Krimp has not
been designed for classification. The conclusion made is that Krimp is well suited for
capturing the characteristics of the data.

An observation made is that while the compression of the item sets is already
very good, but by allowing overlap in the cover of transaction, fewer item sets would
be needed for a full cover of the database. This would, however, make covering
and properly selecting the item sets computationally more complex. The Krimp-
algorithm also scales particularly well. This is because the time to consider a sin-
gle candidate set scales linearly with its support. An improvement in the runtime
is obtained when only using the closed frequent item sets. The reason for this is
that the closed representation is good at preserving the most important item sets,
so this means there are less candidate sets that have to be considered by the Krimp-
algorithm.

2.3.3 Characterising the Difference

Vreeken et al. extend the notion of capturing the data distribution by using compres-
sion with a generic dissimilarity measure on databases [VVLS07]. This approach can
identify the patterns that characterise the difference between two distributions.

The MDL principle implies that when we have an optimal encoding for a database
D1, D1 will have a shorter encoding than some other database D2. So let MDLi
be the optimal compressor induced from Di, and let t be a transaction in D1, then
| MDL1(t)−MDL2(t) | is small if t is equally likely to be generated by the under-
lying distributions of D1 and D2. This difference is large if t is more likely to be
generated by the underlying distribution from one database than the other. This
means that if the differences in code length is large, then on average the smallest
code length will be MDL1(t). This should also hold for the code tables generated by
the Krimp-algorithm, CT1(t)− CT2(t) measures how characteristic t is for D1. Now
we need a way to aggregate the difference over all transactions. This is defined as
the Aggregated Code Length Difference:

ACLD(D1, CT2) =
CT2(D1)− CT1(D1)

CT1(D1)

12 Chapter 2. Literature Study

Note that ACLD is not symmetric, it is not a proper measure. To make this sym-
metric, the maximum value of two Aggregated Code Length Differences is taken:
max{ACLD(Da, CTb), ACLD(Db, CTa)}. This can be rewritten in terms of the sizes
of the compressed database to get the following definition for dissimilarity measure:

Definition 9 (Dissimilarity Measure). For all databases x and y, define the code table
dissimilarity measure DS between x and y as:

DS(x, y) = max

{
CTy(x)− CTx(x)

CTx(x)
,

CTx(y)− CTy(y)
CTy(y)

}

There are three methods for analysing the difference. First, the code table covers
of databases can be compared. This gives information on which patterns are impor-
tant in one database are either over or under-expressed in another database. This
shows the characteristics of the differences in structure between the two databases.
To perform this analysis, first the Krimp-algorithm is run to obtain a code table for a
database D2, which is used to cover D1. The identification of the differences is then
done by finding those patterns in the code table that have a large shift in frequency
between the two database covers. The same can be done the other way around to
gain even more insight. The second approach is to analyse how specific transactions
are covered by different code tables. This gives information, in detail, where differ-
ences are identified by the code tables. This is useful in case specific transactions are
of interest. This analysis is performed by computing the respective code tables for
two databases. After computing the individual code length differences, pick those
transactions that fit well in one database and not in the other. After selecting a trans-
action, cover it with both code tables separately and visualise which patterns are
used for this. It is covered by longer and more frequent patterns if it belongs to
a certain distribution. Last, knowledge can be extracted about specific differences
and similarities between the distributions from the code tables. This analysis is per-
formed by directly comparing the patterns in both code tables. For each pattern in a
code table, its own length is compared to its encoded length in the other code table. If
the distributions are similar, the encoded lengths should be similar. The patterns for
which the encoded lengths differ significantly characterise the difference between
the two distributions.

2.3.4 Identifying the components

Leeuwen et al. observe that databases are a mixture of different distributions and
that each of these distributions are characteristic components of a database [LVS09].
The goal is to discover an optimal partitioning of the database. The characteristics of
the different components are heterogeneous, while the individual components are
homogeneous. The formal problem statement is as follows: Find a partitioning of
the database such that

∑
i∈{1,...,k}

L(CTi, dbi)

is minimised. The optimal number of components is determined by MDL by pick-
ing the smallest encoded size over every possible partitioning and all possible code
tables. For any partitioning, the best code tables are the optimal code tables. Given a
set of code tables, each transaction goes to the code table that compresses the trans-
action best. This gives two ways to solve the problem: find an optimal partitioning
or try to find an optimal set of code tables.

2.3. Compression Based Data Mining 13

Model-driven component identification is concerned with identifying compo-
nents by finding an optimal set of code tables. The idea is that a code table that cap-
tures the entire distribution of a database models the underlying component distri-
butions implicitly. The code tables for specific components can be extracted from the
original code table. The algorithm first obtains a code table for the entire database by
using the Krimp-algorithm. Then, for all possible values of k ∈ [1, |D|], identify the
best k components. The solution is the one that minimises the total encoded size. To
identify the k components, start with k copies of the original code table. Iteratively
eliminate the code table element that reduces the compressed size the most until
compression cannot be improved any more. Iteratively remove each element in the
code table temporarily to determine the best possible elimination. To compute the
total compressed size, each transaction is assigned to the code table that compresses
the transaction the best. For each component, recompute the optimal code lengths
and the total encoded size. A property of this method is that the number of patterns
required to define the components is never higher than the number of item sets in
the original code table.

Data-driven component identification is concerned with identifying the compo-
nent by finding the MDL-optimal partitioning of the data. Provided a particular
source distribution has more transactions in one database than in another, trans-
actions of that distribution will be encoded shorter by a code table (compressor)
induced on that data. This property can be exploited to find the components of a
database. Given a partition of the data, a code table can be induced for each part.
Each transaction is assigned to the code table which encodes it the shortest. This is
done iteratively until all transactions remain in the same part. This gives insight of
the found clusters through code tables. The algorithm starts with a random parti-
tioning and lets MDL pick the best result.

The optimal number of components is automatically determined by MDL for
both methods. No parameters have to be set. When dealing with very large databases,
the data-driven methods will provide good results quickly. For analysis of reason-
able amount of data, the model-driven method has the advantage of the data-driven
method of characterising the components very well in a modest number of patterns.
Both methods are suitable to identify the components without prior knowledge,
without the need of a distance metric and without a specification of the number
of components.

2.3.5 A structure function for transaction data

Siebes and Kersten use a set of code tables to characterize the data instead of a single
code table [SK11]. The fundamental assumption made in data analysis is that a
dataset D consists out of a structural component and an an accidental component.
The structural component is the data to be captured by the model and the accidental
component is the data as generated from that model. In practice often there are
good models instead of the optimal model, which captures all the structure in the
data. Siebes and Kersten characterise a dataset by a series of models, where each of
the models captures an aspect of the structural component, in this case the models
are code tables. Each of these code tables is the best from a set of alternative models
for the dataset. All the models in this set have the same complexity. The complexity
of a code table is the number of non-singleton item sets in the leftmost column. The
best model based on the MDL principle from the set of all models is the one that best
compresses the dataset. The non-on singleton item sets in the code table describe the
essential correlation structure in the data. By varying the complexity of the sets of

14 Chapter 2. Literature Study

alternative models, a function is defined from the set of natural numbers to the set
of models for the data set. This is called the structure function, denoted by KD. The
structure function KD allows for inspection of the correlation structure of the data at
different levels of granularity.

The definition of the code tables differs from the definition used before. First, it
is not required that all singleton item sets are present in the code table. Second, the
code tables produced by the Krimp-algorithm have stronger restrictions on the order
of item sets, these do not hold here. The code table only containing the singleton item
sets from P(I) is denoted by CTα. The Shannon code is based on usageD({i}) =
sup({i}). The code table which contains all unique transaction for some dataset,
ordered first on length and then lexicographically, is denoted by CTω. The Shannon
code is based on usageD(t) = sup(t). Given a CT, a database DCT can be constructed
for which CT is a code table. This is possible because for every I ∈ CT, P(I) is
known.

Theorem 2. For each D ∈ D there exists at least one CT ∈ CT such that CT is a code table
for D. And, for each CT ∈ CT there exists at least one D ∈ D such that CT is a code table
for D.

This gives the following definition:

Definition 10. Let D ∈ D and CT ∈ CT , D defines a subset of CT by

CT |D = {CT ∈ CT | CT is a code table for D},

and, CT defines a subset of D by

D|CT = {D ∈ D | CT is a code table for D}

There exists an equivalence relation on CT . We say that CT1, CT2 ∈ CT are
equivalent, CT1 ≡ CT2 ⇔ every row in CT1 is also a row in CT2, and for I, J ∈ CT1,
I ∩ J 6= ∅ ∧ I occurs before J in CT1 ⇒ I occurs before J in CT2. This follows
from the fact that if two code tables were equivalent, then all the transactions would
have the same cover for both code tables. This means that databases are completely
characterised by their code tables.

Theorem 3. Let D1, D2 ∈ D, then

CT |D1 = CT |D2 ⇔ ∀I ∈ P(I) : supD1(I) = supD2(I)

This theorem shows that, whatever structure D has, it is captured by at least one
of the code tables. This also holds the other way: code tables are characterised by
the databases they model.

Theorem 4. Let CT1, CT2 ∈ CT , then

D|CT1 = D|CT2 ⇔ CT1 ≡ CT2

Some code tables are satisfied by smaller sets of databases. This means that exists
a natural partial order on code tables based on these sets.

Definition 11. Let CT1, CT2 ∈ CT :

CT1 � CT2 ⇔ D|CT1 ⊇ D|CT2

2.3. Compression Based Data Mining 15

In general it is hard to check D|CT1 ⊇ D|CT2 . Since the assumption is made that
CT1 and CT2 are models of the same dataset the check can be done by using the
following theorem:

Theorem 5. Let D ∈ D and let CT1, CT2 ∈ CT |D, CT1 � CT2 iff:

∀J ∈ CT2 : cover(CT1, J) succeeds ∧ ∀I ∈ CT1∃J ∈ CT2 : I ∈ cover(CT1, J)

This means that we obtain a more restrictive model by either extending one of the
item sets or by adding a new item set. A consequence is that there exists a smallest
and largest element for CT D.

Theorem 6. Let D ∈ D, then for all CT ∈ CT D:

CTD
α � CT � CTD

ω

Putting all this together we get the following insights on the structure of CT :

Corollary 1. Let D1, D2 ∈ D, then:

1. CT |D1 ∩ CT |D2 6= ∅⇔ CTD1
α ≡ CTD2

α

2. CTD1
ω ∈ CT |D2 ⇔ CT |D1 ⊆ CT |D2

The series of models that characterise D lie somewhere between CTα and CTω,
since they respectively are an under-specification and over-specification. There are
two methods to make a code table more restrictive. We can either extend the item
sets or add an item set. The second methods suggests that there is a natural parti-
tioning of CT |D.

Definition 12. For k ∈N:

CT |kD = {CT ∈ CT |D | CT has exactly k non-singletons }

This definition means that all code tables in CT |kD have the same complexity.
This also means that CT |kD � CT |

k+1
D . The structure function is then defined as:

Definition 13 (Structure function). For D ∈ D, the partial function KD : N→ CT D is
defined as:

KD(k) = arg min
CT∈CT |kD

L(CT, D)

The goal is then to find an algorithm that computes this structure function and
to show how the structure function provides insight into the structure of the data.

There is not enough structure on CT |D to compute KD efficiently, for this reason
the heuristic algorithm Groei is introduced to approximate KD. First, the candidate
set is restricted to all-non singleton frequent item sets and all singleton item sets.
The algorithm is a beam search on CT |kD. For every k, starting from k = 1, search for
the b best CT ∈ CT |kD. If the best of these b solutions is better than the best for k− 1,
continue as before with k + 1, else halt. For k = 0, the ‘best’ table is CTD

α . In the
end we have b tables of complexity k. The algorithm tries to grow more and more
complex tables to get insight in the structure of the data.

16 Chapter 2. Literature Study

2.3.6 Directly Mining Descriptive Patterns

Smets and Vreeken introduce Slim, an any-time algorithm for mining sets of item
sets directly from the data. It is argued that the search space grows to be infeasible for
Krimp for large and dense databases because it first needs to mine the frequent item
sets. Also, Krimp only considers candidates once and in fixed order. The implication
of this is that candidates are rejected that can be useful later on. The key idea of the
paper is to find good code table candidates by mining good item sets in the cover
space.

The cover of a data setD by a code table CT can be viewed as a |D| × |CT| binary
matrix C, where every row corresponds to a transaction t ∈ D and each column
corresponds to the elements X ∈ CT. The value of a cell is 1 when X ∈ cover(t), and
0 otherwise. This cover matrix is also called the cover space.

In optimising compression, the quality of a candidate X is the gain in total com-
pression when X is added to CT. Every candidate X corresponds to the combination
of code table elements, which is identified by itemset Y ∈ C. Every candidate X can
be construction by taking the union of various code table elements Xi ∈ CT identi-
fied by i ∈ Y. The candidate X is then defined as X =

⋃
i∈Y Xi.

It is possible to estimate the compression gain and then only calculate the exact
gain for the best estimated candidate. The itemsets that will most likely give the
best gain are the highly frequent sets which consist of only a few items. Let X and
Y be item sets in CT, and let CT′ be the code table after adding the union of these
two item sets, i.e. CT′ = CT ⊕ X ∪ Y. The usage of X ∪ Y can be estimated as
|usage(X) ∩ usage(Y)|. Let ∆L denote the difference in encoded size between CT
and CT′. This is the gain in bits for candidate X ∪Y.

Definition 14 (Compression Gain).

∆L(CT ⊕ X ∪Y,D) = L(CT,D)− L(CT ⊕ X ∪Y,D)
= ∆L(D | CT ⊕ X ∪Y,D) + ∆L(CT ⊕ X ∪Y,D | D)

Let x = usage(X) for item set X ∈ CT, and s = ∑X∈CT x. Similarly, x′ and s′ are used
for CT′. Finally, let xy′ = usage(X ∪Y) for CT′. The difference between encoding D
by either CT or CT′ is then defined as:

Definition 15.

∆L(D | CT ⊕ X ∪Y) = s log s− s′ log s + xy′ log xy′ − ∑
C∈CTc 6=c′

(c log c− c′ log c′)

And the difference in the complexity of the models is:

Definition 16.

∆L(CT ⊕ X ∪Y | D) = log xy′ − L(X ∪Y | ST) + |CT| log s− |CT′| log s′

+ ∑
C∈CT
c′ 6=c
c′c 6=0

log c′ − log c + ∑
C∈CT
c′ 6=c
c′c 6=0

log c′ − L(C | ST)

+ ∑
C∈CT
c′ 6=c
c′c 6=0

L(C | ST)− log c

The assumption made is that only the usage for X, Y and X ∪ Y will change. For
calculating the estimated gain in compressed size, the following rules are used:

2.3. Compression Based Data Mining 17

xy′ = |usage(X) ∩ usage(Y)|, x′ = x − xy′, y′ = y − xy′ and s′ = s − xy′. This
makes it easy to compute an accurate estimate of ∆L for X ∪Y.

From this, the Slim algorithm has been created (Algorithm 5). First the standard
code table is constructed from the data set. All pairwise combinations of X, Y ∈ CT
are considered as candidates in Gain Order (descending on ∆L(CT ⊕ (X ∪ Y),D))
every iteration. A candidate is added to CT in Standard Cover Order. This process
is repeated until the compression does not improve any more. It is not necessary
to explicitly compute all the possible candidates. By applying branch-and-bound to
find X ∪ Y with highest estimated gain, it is not needed to consider any element V
or W with lower usage than the current best candidate X ∪ Y because the elements
are traversed on usage.

Algorithm 5: The Slim algorithm

1 Function Slim(D)
Data: Dataset D
Result: Code table CT

2 CT ← Standard Code Table(D);
3 for F ∈ {X ∪Y : X, Y ∈ CT} in Gain Order do
4 CTc ← (CT ⊕ F) in Standard Cover Order;
5 if L(D, CTc) < L(D, CT) then
6 CT ← post− prune(CTc);
7 end
8 end
9 return CT;

19

3 Problem Description and
Research Questions

In this chapter the problem description is presented with the formal problem defi-
nition. The research questions with their respective rationale are given in order to
be able to solve the problem and evaluate the model. Furthermore, the relevance of
this thesis project with respect to science, technology and society is argued.

3.1 Problem Description

In order to give the problem description, definitions for the encoded length L(X)
for the encoded length of tuples (data point) d, clusters C and the database D are
needed. The definitions given in Chapter 2 cannot be applied directly because data
points d belong to all clusters C with some degree of membership. The degree-of-
membership is expressed as the probability that data point dj belongs to cluster Ci,
P(dj ∈ Ci). This probability is proportional to length of tuple dj when encoded by
the respective code table of cluster Ci, CTi.

Definition 17 (Membership Coefficient). The Membership Coefficient is the probability
that tuple dj ∈ D belongs to cluster Ci:

P(dj ∈ Ci) =
2−CTi(dj)

C
∑
l

2−CTl(dj)

This definition is based on the principle of induction, and in particular, the prin-
ciple of the Universal Prior [RH11]. This Universal Prior uses the Kolmogorov com-
plexity and is expressed as: wU

v = 2−K(v). Since the Kolmogorov complexity is not
computable, code tables with the cover algorithm are used instead because they are
based on the Minimum Description Length principle, which is more practical. The
encoded length of a data point dj, given some cluster Ci, is based on the the code
table CTi and the probability that dj belongs to Ci. This is inspired by the idea of the
Bayesian mixture.

For the following definitions: let d denote a tuple in D; let N denote the number
of tuples in D; let C denote the number of clusters; let CTi denote the code table
which belongs to cluster Ci;

Definition 18 (Expected Encoded Length). The Encoded Length of a tuple d is:

E[L(d)] =
C

∑
i

L(d | CTi) =
C

∑
i

P(d ∈ CTi)CTi(d)

Now it is possible to define the encoded length of some cluster Ci by its respective
code table CTi in terms of all the data points in the database D. This is the sum of
the length all data points encoded by the code table CTi of cluster Ci.

20 Chapter 3. Problem Description and Research Questions

Definition 19 (Encoded Cluster Length). The Encoded Cluster Length of a cluster Ci is
determined by its code table CTi, and is the Code Table Encoded Length over all the transac-
tions in the database D:

L(Ci | CTi) =
N

∑
j=1

L(dj | CTi)

The length of the encoded database is then the length of all the code tables of all
clusters and the Encoded Length of all data points.

Definition 20 (Expected Encoded Database Length). The total encoded size of the database
D using a set of code tables CT is:

E[L(D | CT)] =
C

∑
i=1

L(CTi) +
N

∑
j=1

L(dj)

=
C

∑
i=1

(
L(CTi) + L(Ci | CTi)

)
Proof.

E[L(D | CT)] =
C

∑
i=1

L(CTi) +
N

∑
j=1

L(dj) (Definition 20)

=
C

∑
i=1

L(CTi) +
N

∑
j=1

C

∑
i=1

L(dj | CTi) (By Definition 18)

=
C

∑
i=1

L(CTi) +
C

∑
i=1

N

∑
j=1

L(dj | CTi) (Commutativity Rule)

=
C

∑
i=1

(
L(CTi) +

N

∑
j=1

L(dj | CTi)

)
(Distributive Rule)

=
C

∑
i=1

(
L(CTi) + L(Ci | CTi)

)
(By Definition 19)

Recall that the goal is to approximate the underlying distribution as well as pos-
sible. This is, find the set of code tables that compresses the database the best. The
ideal situation is when there is an infinite amount of data available. In that case the
underlying distribution is approximated the best.

∞

∑
i=1

C

∑
c=1

P(di ∈ Ci)CTc(dj)

However, this is not computable in finite time. This problem can be tackled from
several angles. The first one is the most straightforward approach. That is:

Problem Defintion. Let D denote a database, and let I denote the set of items in the
database. The database D is then a subset of P(I), D ⊆ P(I). So, every tuple t ∈ D is
also an element of P(I). The goal is then to find the code table CT that best compresses D.

min CT(D)

3.1. Problem Description 21

This is the problem definition that is tackled by Krimp and Slim. This definition can
be extended to deal with partitions of a database and multiple code tables.

Problem Defintion. Let D denote a database, and let CT denote a set of code tables such
that CT1, CT2 ∈ CT . Then either:

• CT1, CT2 ∈ CT form an antichain;

• or, ∃D1,D2 ⊂ D given both partitions are large enough that:

CT1(D1) ≤ CT1(D2) and CT2(D2) ≤ CT2(D1)

An anti-chain is a subset of some partially ordered finite set S such that any two
distinct elements in the subset are incomparable. These code tables differ in a single
item set. If it is possible to find two tables according to this definition then the dataset
contains a multi-valued dependency.

The last and hardest problem to tackle is that only the code tables which com-
press the database than some quality threshold Q are accepted to be part of the set
of code tables CT .

Problem Defintion. let D denote a database, let CT denote a set of code tables, let Q some
quality threshold, and let C denote the number of code tables possible for D

∀i ∈ C :
[
CTi(D) > Q⇒ CTi /∈ CT

]
This problem is hard to tackle because the number of possible code tables for a single
database D is potentially extremely large, O(|F |).

First, a good description of the underlying data distribution needs to be found.
This is according to the definition given by Leeuwen et. al. [LVS09]. The goal is
to characterise the the underlying distribution - the best characterisation is the most
concise description of the data. The probability (weight) that a data point belongs to
a certain cluster is proportional to the encoded length of the data point by the code
table of that cluster. The weight is thus determined by this probability because a
higher probability will give a higher weight to a data point and vice versa. When
this is compared to k-means and c-means fuzzy clustering, the concept of a middle
point (centre) is given by the code table because it summarises a certain characteristic
[Dun73]; [Llo06]. The concept of distance to the centre is represented by the ability
of a code table to compress a data point. The shorter the encoded length, the better
it is represented by the cluster, and hence the relative probability that it belongs that
cluster is high. The aim here is not to minimise the encoded database length because
the best encoding is a disjoint clustering.

Current clustering approaches do not scale well to high-dimensional datasets be-
cause most approaches use some kind of distance measure based on the attributes
and require domain knowledge [CV05]. The performance goes down when apply-
ing them to high-dimensional datasets because of the curse of dimensionality. The
distance between data points becomes larger when dealing with high-dimensional
datasets. The approach which allows overlap between clusters is called fuzzy clus-
tering and suffers from the same issue when using a distance measure based on the
attributes. Approaches based on the notion of compression do not suffer from the
curse of dimensionality because no feature information is used other than the raw
values are used. Furthermore, no domain knowledge is required. The idea behind
compression-based measures/metrics is that the similarity is determined by how

22 Chapter 3. Problem Description and Research Questions

well objects can be compressed given the information in other objects. The compres-
sion methods are based on the notion of the Kolmogorov complexity, which is not
computable [GV03]; [LP08]; [FM07]. A more practical version of the Kolmogorov
complexity is the notion of the Minimum Description Length (MDL) [Grü07]. The
MDL principle has been successfully applied in data mining tasks [VVLS11], and in
particular, for the purpose of clustering [LVS09]; [Böh+06].

The current approaches for clustering by means of compression based on ensem-
ble learning, are based on boosting [FF12] techniques. With boosting, data is sam-
pled without replacement from a dataset, whereas in bagging data is sampled with
replacement [Pol12]; [CCS12]. An exception to this is AdaBoost, which reweighs
the same data iteratively based off the performance of the previous base classifier,
making it somewhat similar to bagging [FS95]. The difference between Random
Forests and AdaBoost is that with Random Forests the attributes are sampled while
AdaBoost uses the entire data set [Bre01]. To allow overlap, an approach similar to
AdaBoost and Random Forests must be taken because AdaBoost uses the misclas-
sified samples and Random Forests use a bootstrap sample. Siebes and Kersten’s
approach finds the best b code tables that describe the database best of the same
complexity [SK11]. They observe that adding an item set to a code table makes it
more restrictive - and suggests a natural partitioning on the dataset when using a
series of code tables. However, they have not made any efforts to investigate this
further with the use of the Groei-algorithm. The approach then becomes to itera-
tively grow code tables, like the Groei-algorithm, but letting go of the restriction
that all code tables need to be of the same complexity. A consequence of this is that
the best b code tables need be tracked with varying complexities, rather than the b
code tables with the same complexity.

3.2 Research Questions

The goal of the project is to allow overlap in the partitions by using ensembles of
code tables to get a better description of the data. This suggests that clustering has
to be performed from the beginning, not afterwards, we have to keep track of many
potential clusters from the beginning. The aim is to get a better description for the
data, while also having dissimilarities within the ensemble of code tables to show
the ability to identify specific database components. Another aim is to keep the
number of components low; this allows for an expert to interpret the found relations
by hand. It also good to have low run time, this will make the method suitable for
interactive usage by data analysts/data scientists.

Research Question 1. Are the obtained clusters able to identify a multi-valued relation-
ship, if present?

Research Question 2. Do the obtained clusters capture the characteristics of the underly-
ing data distribution?

Research Question 3. Are the clusters dissimilar enough to each describe a specific char-
acteristic of the database?

Research Question 4. Is the runtime low enough for interactive usage?

3.3 Relevance for Science, Technology and Society

By allowing overlap in the partitions, the margins between the partitions become
soft. For every entry in the database there is a probability for every cluster to which

3.3. Relevance for Science, Technology and Society 23

it belongs. This can be seen as a degree of membership for every cluster. The main
contribution to science is that this method allows for a better approximation of the
underlying empirical distribution of the databases. Another contribution to science
is that this form of soft-clustering exposes the relations between clusters if they are
present. In high-dimensional domains, where the partitioning of attributes is not
as clear, the code tables are able to give insight in the characterisation of clusters
and relations between clusters. This method further motivates the need for non-
attribute-based measures and metrics to allow for generic and scalable algorithms.
High-dimensional domains are hard to visualize and interpret for humans. The code
tables each give a good characterisation of the components they model in terms of
item sets.

The technology that can be built upon the contributions of this thesis project will
allow to give a probabilistic interpretation of the patterns in the dataset with respect
to the found clusters. This means that current data mining tools will be able to give
better insight into patterns present in datasets.

Having overlap in the partitions of high-dimensional data will introduce a de-
gree of membership to clusters instead of hard membership. The generic approach
can be applied to a large variety of domains which are characterized by having
datasets with many attributes. Some example domains with high-dimensional data
are: medicine, consumer behaviour research, DNA research and multimedia analy-
sis.

25

4 Methodology

In this chapter the methodology for experimentation is discussed. First the data that
will be used for the experiments will be discussed. Second, the methodology for
evaluating the experiments is argued.

4.1 Data

For the experimental validation of the developed model, a variety of data sets will
be used. For the sake reproducibility, the data sets used are freely available. Further-
more, the data sets are used in most data mining research for evaluation, this makes
it easier to compare to other work.

The LUCS-KDD data repository contains a variety of data sets [Coe04], most of
these come from the UCI machine learning repository [Lic13] but are normalised and
discretised. Data sets from the UCI machine learning repository have widely used in
machine learning research. The Frequent Itemset Mining Dataset Repository (FIMI)
contains classic benchmark data sets [Fim]. The data sets in the FIMI repository
are obtained from click-stream data, retail market basket data and traffic accidents
data. The mammals data set contains the presence/absence of European mammals
within geographical areas of 50× 50 kilometres [Mam]. This data set is useful for
visualising the obtained clusters.

4.2 Methodology

The main goal in machine learning is to describe the underlying data distribution
using some model. In this case, the model is the set of code tables as clusters in
combination with the cover algorithm. The code tables allow for compression of the
data set and show the ability to give a good description of the underlying distribu-
tion while using a relatively small amount of itemsets. The number of code tables are
the number of clusters found. Each of the clusters should describe a unique charac-
teristic of the underlying distribution. This is evaluated using a purity measure and
a dissimilarity measure. The purity describes how well a characteristic is captured
by a cluster and the dissimilarity measures the separation between clusters.

In order to evaluate whether the obtained model truly captures the underlying
distribution, it must be able to correctly classify new cases from the same domain to
the found clusters. This allows for the measurement of the accuracy.

The model should be robust against changes in: data set size, the number of
itemsets present and the density of the data set. Robust in the sense that the run-
time and the performance measures mentioned above should not be affected by too
much. The runtime should not vary more than the order of change in the size of the
data set and dimensionality. This ensures scalability and stability of the model and
allows the model to be used in practical applications.

26 Chapter 4. Methodology

4.2.1 Clustering Performance

Code tables contain the itemsets with their respective code lengths. Since there will
be multiple code tables, each of the itemsets is compressed by the table which com-
presses it the best, i.e. giving it the shortest code length. This result can be compared
to the results of previous works [VVLS11]; [SK11]; [LVS09]. Siebes et al. use the
relative total compressed size of the data set D [VVLS11]:

L% =
L(D, CT)
L(D, ST)

× 100

For some data sets the optimal number of clusters is known. The objective to
get as close as possible to this optimal value. A similar approach to Lonardi et al.
can be taken to parameter-free data mining [KLR04]. This is done by choosing a
compression-based dissimilarity measure.

A survey conducted on the methods for evaluation of disjoint clustering tech-
niques show that purity and entropy are most commonly used in the fields of fuzzy-
and kernel-based clustering for validation [Ami+09]. In clustering the objects within
a cluster must be closely related, this is measured by the entropy. On the other hand,
clusters must be as distinct as possible, and this is expressed by the purity.

Purity is a commonly used clustering measure, it indicates how well a charac-
teristic of the underlying data distribution is captured by the clusters. This is the
weighted sum of the purity of the individual clusters. The baseline purity is the ra-
tio of cases belonging to the majority class. Let D = {D1, . . . ,Dk} the set of clusters,
and let denote C = {c1, . . . , cm} denote the set of classes where each class cj is the
set of all cases which belong to cj, then the purity is:

purity(D , C) =
1
N

k

∑
i=1

max
j
|Di ∩ cj|

Since each of the code tables represents a cluster, the obtained tables also allow for
calculation of the dissimilarity between clusters using the code table dissimilarity
measure devised by Leeuwen et. al. [VVLS07] because it is based on compression.
A relatively high dissimilarity indicates a better separation of the clusters. The most
interesting dissimilarity will be between the clusters where there is overlap, this
dissimilarity will be lower than non-overlapping clusters.

The partition entropy E, defined by Chuang et. al, measures the homogeneity of
the clusters [Chu+06]. The lower the entropy is, the more homogeneous the objects
are in each of the clusters.

E =

−
N
∑
j

C
∑
i

uij log uij

N
=

−
N
∑
j

C
∑
i

P(dj ∈ Di) log P(dj ∈ Di)

N

The entropy Ec of a single cluster c is then defined as:

Ec = −
N

∑
j

ucj log ucj = −
N

∑
j

P(dj ∈ Dc) log P(dj ∈ Dc)

4.2. Methodology 27

4.2.2 Classification Performance

The difference between supervised classification and clustering is that in supervised
learning the clusters are given as the class labels. It is possible to evaluate the perfor-
mance of classifying new cases. Since we are dealing with overlapping clusters, the
probability that a case d belongs to cluster Di is proportional to its encoded length
CTi(d), that is:

P(d ∈ Di) ∝
1

CTi(d)

The assigned class C(d) is then:

C(d) = arg max
Di∈D

P(d ∈ Di) = arg max
Di∈D

1
CTi(d)

The accuracy describes the systematic errors made by the found model, this gives
information on the bias of the model. This performance measure can be computed
using a confusion matrix (Table 4.1). Each cell in the matrix represents how many

actual class→
predicted class ↓ D1 . . . Dn

D1
. . .
Dn

TABLE 4.1: A confusion matrix. The predicted classed are the rows and the actual classes are the
column. Every cell represents the number of cases that were classified as Di (row), while the true
class is Dj. Note that the cells where i = j are the number of cases which are classified correctly.

cases that are actually in class Dj are predicted as being in class Di. The diagonal
in the confusion matrix contains the number of cases per class/cluster that have
classified correctly. The sum over the a row i indicates how many cases have been
identified as belonging to class Di. The sum over a column j indicates how many
actually belong to class Dj.

The true positives (TP) are cases that have been correctly identified as belonging
to class Dj. The true negatives (TN) are those cases that have been correctly identi-
fied not belonging to class Dj. False negatives (FN) are those that actually belong to
class Dj but have been predicted to belong to some other class. False positives (FP)
are those classes that have been predicated as belonging to class Di but actually be-
long to some other class. For class Dj and confusion matrix M we get the following
definitions:

TPDj = Mjj TNDj(M) =
n

∑
i=1

Mii −Mjj

FNDj =
n

∑
i=1

Mij −Mjj FPDj(M) =
n

∑
i=1

Mji −Mjj

The performance measures can now be defined in terms of the data in confusion
matrix M. The accuracy A is the fraction of cases identified correct for class Dj.

ADj =
TPDj + TNDj

TPDj + TNDj + FPDj + FNDj

28 Chapter 4. Methodology

4.2.3 Scaling and Stability

Changes in the data set size, the number of itemsets present and the density of the
data set might affect the performance of the model. It is important that the model
scales to larger datasets because this allows it to be used in practical applications.

An increase in the size of the dataset and the number of itemsets will lead to a
greater runtime. The increase in runtime is dominated by the increase in the number
of items because the set of candidate itemsets grows exponentially in the number of
items O(F) = O(2|I|). An itemset is called frequent if and only if it’s support is
above some threshold θ. The support of an itemset I in dataset D is the number of
transactions that contain I [VVLS11]:

suppD(I) = |{t ∈ D | I ⊆ t}|

The set of all frequent itemsets is then defined as:

{I ∈ F | suppD(I) ≥ θ}

The density of a data set can also influence the performance of a model. A data
set can be viewed as a matrix containing boolean values where every transaction is
a row and and every item is represented as a column. A transaction t contains item i
if and only if the cell corresponding to (t, i) = 1. The density ρ ∈ [0, 100] of data set
D is then the percentage of one’s in the matrix:

ρ(D, I) = |{(t, i) | t ∈ D ∧ i ∈ I ∧ (t, i) = 1}|
|D| × |I| × 100%

A value closer to 100 indicates a dense data set whereas a value closer to 0 indi-
cates a sparse data set. A sparse data set is harder to compress because the itemsets
in the code table will be relatively shorter and relatively more itemsets are needed
to cover a single transaction. This observation is made from Table 3 and Table 4 in
[VVLS11] with the Retail data set.

29

5 Algorithms

In this chapter the clustering algorithms are presented. The basis for these algo-
rithms is the Groei algorithm presented by Siebes and Kersten [SK11]. The first
algorithm is a variation of the Groei algorithm where the the restriction is lifted that
all code tables need to be of the same complexity. The second algorithm differs in
the candidates are generated, and is inspired by the Slim algorithm [SV12].

Unlike the Groei algorithm, which tries to insert candidate item sets into every
possible place in a code, or Groei-F, which only inserts candidate item sets at the end
of the code tables, these algorithms insert candidates into the code tables based on
their lengths (Standard Cover Order). This similar to the Krimp and Slim algorithm.

5.1 GroeiNoS - Groei No Structure Function

The algorithm presented in this subsection is a variation of the original Groei algo-
rithm, where the the restriction is lifted that all code tables need to be of the same
complexity and is called GroeiNoS (Groei No Structure Function). The psuedo code
is given in Algorithm 6.

Algorithm 6: The GroeiNoS algorithm.

1 Function GroeiNoS(D, b)
Data: Dataset D, Beam-width b
Result: Code tables CT = {CTi, . . . , CTk}

2 k← 1;
3 CT cand

1 ← Generate(CTDα);
4 CT best

1 ← {CT | best b tables from CT cand
1 };

5 repeat
6 k← k + 1;
7 CT cand

k ← Generate(CT best
k−1);

8 CT best
k ← {CT | best b tables from CT cand

k ∪ CT best
k−1};

9 until L(D | CT best
k) ≥ L(D | CT best

k−1);
10 return CT best

k ;

The GroeiNoS algorithm starts by generating candidate tables from CTα and se-
lecting the best b code tables. In the following iterations, new candidates are gener-
ated from the best b candidates from the previous iteration. The best code tables in
iteration k are the best b candidates generated in that iteration CT cand

k and the best
candidates from the previous iteration CT best

k−1. The original Groei algorithm, given
in Algorithm 7, is very similar to GroeiNoS, except for that it only selects the best
candidates from the set of candidates generated in the current iteration CT cand

k .
The GroeiNoS and Groei algorithms are template algorithms where the candi-

date generation algorithm, Generate, can be implemented as desired. More post-
processing steps can be added after selecting the best set of code tables at every

30 Chapter 5. Algorithms

Algorithm 7: The Groei algorithm.

1 Function Groei(D, b)
Data: Dataset D, Beam-width b
Result: Code tables CT = {CTi, . . . , CTk}

2 k← 1;
3 CT cand

1 ← Generate(CTDα);
4 CT best

1 ← {CT | best b tables from CT cand
1 };

5 repeat
6 k← k + 1;
7 CT cand

k ← Generate(CT best
k−1);

8 CT best
k ← {CT | best b tables from CT cand

k };
9 until L(D | CT best

k) ≥ L(D | CT best
k−1);

10 return CT best
k ;

iteration (after line 8). One example of a post-processing step is pruning the code
tables to eliminate superfluous item sets in the tables.

Algorithm 8: The original candidate generation algorithm.

1 Function Generateoriginal(CT)
Data: Code tables CT = {CT1, . . . , CTn}
Result: Code tables CT = {CT1, . . . , CTk}

2 CT cand = {};
3 for I ∈ F do
4 for CT ∈ CT do
5 if I 6∈ CT then
6 for i ∈ [0, |CT\CTST| > do
7 CT cand = CT cand ∪ {(CT ∪ I) Insert at Position i}};
8 end
9 end

10 end
11 end
12 return CT cand;

In the implemention of the basic Groei algorithm, candidates are generated by
inserting them in the place where they orignally belong in the code table, this is in
Standard Cover Order [VVLS11]. The Groei algorithm, created by Siebes and Ker-
sten, generates even more candidates by creating a candidate for inserting an item
set at every possible position in the code table. The time complexity of Generateoriginal

5.2. GroeiSlim - Candidate Generation Inspired by Slim 31

is O(|F | ×
|CT |
∑
i
(|CTi| × |D| × |I|)). This algorithm is given in 8.

Algorithm 9: The basic candidate generation algorithm.

1 Function Generatebasic(CT)
Data: Code tables CT = {CT1, . . . , CTn}
Result: Code tables CT = {CT1, . . . , CTk}

2 CT cand = {};
3 for I ∈ F do
4 for CT ∈ CT do
5 if I 6∈ CT then
6 CT cand = CT cand ∪ {(CT ∪ I) Standard Cover Order };
7 end
8 end
9 end

10 return CT cand;

Algorithm 10: Candidate generation where the itemset is inserted at the end of
the code table.
1 Function Generate f ast(CT)

Data: Code tables CT = {CT1, . . . , CTn}
Result: Code tables CT = {CT1, . . . , CTk}

2 CT cand = {};
3 for I ∈ F do
4 for CT ∈ CT do
5 if I 6∈ CT then
6 CT cand = CT cand ∪ {(CT ∪ I) End of Non-Singleton Sets };
7 end
8 end
9 end

10 return CT cand;

5.2 GroeiSlim - Candidate Generation Inspired by Slim

The previous methods use a pre-mined set of (frequent) item sets F as the potential
new item sets. This can become infeasible for the previous when datasets get larger
and more dense. The Slim algorithm solves this problem by directly creating candi-
dates from the data [SV12]. This way a set of pre-mined (frequent) item sets is not
needed and the candidates are created and evaluated on-the-fly.

In some sense the Groei and Slim algorithms work similarly. Groei uses a beam-
search and a set of pre-mined candidates to grow a set of code tables and Slim either
extends or creates a new item set from the item sets available in the code table. The
Slim algorithm can be altered and used as a candidate generation method for Groei.
This creates the GroeiSlim algorithm. The generation method works by keeping
all the possible code tables in memory and then letting Groei pick the best set of
candidates. The generation algorithm Generateslim is given in Algorithm 11. The
original Slim algorithm can be considered as GroeiSlim with beam-width b = 1.
This only keeps track of the best code like Slim because only the best candidate is
considereda at every iteration.

32 Chapter 5. Algorithms

Algorithm 11: The smart (slim) candidate generation algorithm.

1 Function Generateslim(CT)
Data: Code tables CT = {CT1, . . . , CTn}
Result: Code tables CT = {CT1, . . . , CTk}

2 CT cand = {};
3 for CT ∈ CT do
4 for F ∈ {X ∪Y : X, Y ∈ CT} do
5 CT cand = CT cand ∪ {(CT ∪ F) Standard Cover Order };
6 end
7 end
8 return CT cand;

The worst time complexity is O(|F |3 × |D| × |I| × |CT |) but according to the au-
thors of Slim and by inspecting previous results, this is rather pessimistic because
code tables are often magnitudes smaller than the size of the set of all possible item
sets.

33

6 Experiments

In this chapter the results from performing the evaluation methods as described in
Chapter 4 are applied on the algorithms presented in Chapter 5. First the setup and
the datasets used for experimentation are presented. Afterwards results concerning
compression, clustering and classification are presented. Finally, results are shown
whether it is possible to find multi-valued dependencies.

6.1 Setup

The experiments have been performed on a MacBook Pro (13-inch, 2015) with a 2.9
GHz Intel Core i5 processor and 8GB of 1867MHz DDR3 RAM Memory. The cut-off
time for compressing a single dataset is set to 24 hours and the maximum number
of iterations is 250. The beam-width b is set to 10, unless mentioned otherwise.

6.2 Datasets

For the experimental validation of the developed models, a variety of data sets is
used. All datasets are freely available. The datasets are commonly used for the
evaluation of machine learning models.

The datasets used, come from a variety sources. The LUCS-KDD data repository
contains a variety of data sets [Coe04], most of these come from the UCI machine
learning repository [Lic13] but are normalised and discretised. The Frequent Item-
set Mining Dataset Repository (FIMI) contains classic benchmark data sets [Fim].
The mammals dataset contains the presence/absence of European mammals within
geographical areas of 50× 50 kilometres [Mam].

The datasets with their respective statistics are shown in Table 6.1. This table
shows general information on the number of rows, alphabet size, density, the min-
imum support, and the number of frequent item sets with respect to the minimum
support θ.

34 Chapter 6. Experiments

D |D| |I| ρ θ |F |
anneal 898 71 20.1% 100 2.55× 104

breast 699 16 62.4% 1 9.92× 103

chess 3196 75 49.3% 2500 1.15× 104

ionosphere 351 157 22.3% 125 1.03× 104

iris 150 19 26.3% 1 5.43× 103

led7 3200 24 33.3% 1 1.53× 104

mushroom 8124 119 19.3% 2500 2.37× 103

mammals 2183 121 20.5% 850 9.26× 103

pageblocks 5473 44 25.0% 1 6.36× 104

pima 768 38 23.7% 1 2.88× 104

wine 178 68 20.6% 10 8.81× 103

wine 178 68 20.6% 20 1.45× 103

wine 178 68 20.6% 30 3.99× 102

Lower support:
chess 3196 75 49.3% 500 8.46× 109

ionosphere 351 157 22.3% 35 2.26× 109

mushroom 8124 119 19.3% 1 1.56× 1010

mammals 2183 121 20.5% 200 9.38× 107

TABLE 6.1: The statistics of all the data sets used in for the experiments. The first column D
denotes the name of the data set, the second column |D| denotes the number of rows in the data
set, the third column |I| denotes the size of the alphabet, the fourth column ρ is the density of the
data set expressed in the 1-s%, the fifth column shows the minimum support used, and the sixth

column |F | is the size of the item set collection based on the minimum support.

6.3 Compression

Compression measures to what extent a structure has been captured by the model.
The lower the compression ratio, the more structure is captured. In this section the
results with respect to the compression ratio are reported. First the results will be
presented when using a fixed beam-width on all algorithms and compressing all
datasets. Afterwards, the runtime and convergence is reported. Results with lower
support settings are also presented because the overall runtime of GroeiSlimNoS is
magnitudes smaller than the runtime of Groei. At last, the effect of varying the
beam-width on the compression is presented.

6.3.1 Compression

The compression of the best code tables is compared for each algorithm. The baseline
used is the Groei-F algorithm because it only inserts an item set at a single point in
the code table, and so does this version of Groei. Each of the algorithms is compared
with and without pruning. The compression is expressed as the total compressed
size relative to the compression obtained by using the standard code table.

L% =
L(D, CT)
L(D, ST)

× 100%

The results without pruning are shown in Table 6.2 and the results with pruning are
shown in Table 6.3. The beam-width for all experiments shown in these tables is set
to b = 10.

6.3. Compression 35

D θ Groei-F Groei GroeiNoS GroeiSlim GroeiSlimNoS
anneal 100 51,3% 45,2% 45,2% 43,0% 43,0%
breast 1 23,2% 16,5% 16,5% 15,6% 15,6%
chess 2500 65,4% 65,1% 65,1% 65,1% 65,1%
ionosphere 125 78,3% 71,8% 71,8% 71,1% 71,1%
iris 1 46,4% 45,5% 45,5% 45,5% 45,5%
led7 1 39,6% 28,3% 28,3% 27,4% 27,4%
mammals 850 66,7% 65,3% 65,3% 65,0% 65,0%
mushroom 2500 66,1% 65,7% 65,7% 66,2% 66,2%
pageblocks 1 7,3% 5,0% 5,0% 5,0% 5,0%
pima 1 39,1% 33,9% 33,9% 31,0% 31,0%
wine 10 71,7% 72,2% 72,2% 73,0% 73,0%
wine 20 74,7% 75,3% 75,3% 75,1% 75,1%
wine 30 76,8% 77,5% 77,5% 77,6% 77,6%

TABLE 6.2: Results of the running the various compression algorithms with beam-width b = 10.
The remaining columns show the relative compression ratio for each of the algorithms. The bold

cells are the best results for each row.

D θ Groei-P GroeiNoS-P GroeiSlim-P GroeiSlimNoS-P
anneal 100 44,5% 44,5% 42,4% 42,4%
breast 1 16,0% 16,0% 15,6% 15,6%
chess 2500 65,0% 65,0% 65,1% 65,1%
ionosphere 125 71,7% 71,7% 70,9% 70,9%
iris 1 45,5% 45,5% 45,5% 45,5%
led7 1 27,7% 27,7% 27,3% 27,3%
mammals 850 65,3% 65,3% 63,7% 63,7%
mushroom 2500 65,7% 65,7% 66,3% 66,3%
pageblocks 1 4,9% 4,9% 5,0% 4,9%
pima 1 32,2% 32,5% 30,8% 30,8%
wine 10 72,0% 72,0% 72,2% 72,2%
wine 20 74,8% 74,8% 74,2% 74,1%
wine 30 77,1% 77,1% 77,1% 77,1%

TABLE 6.3: Results of the running the various compression algorithms with pruning and beam-
width b = 10. The two leftmost columns show the dataset D with their respective minimum
supports θ. the remaining columns show the relative compression ratio for each of the algorithms.

The bold cells are the best results for each row.

Both tables show that, in almost all cases, compression improves or performs
on-par with Groei-F, except for the ‘wine’ dataset. However, this dataset is rela-
tively small compared to the remainder of the datasets, as shown in Table 6.1. The
Groei(NoS) and GroeiSlim(NoS) algorithms show similar performance across the
board. Even though the differences are small, the GroeiSlim(NoS) variants have a
slight edge for most datasets. As expected, the pruning variants further improve the
performance of all algorithms.

36 Chapter 6. Experiments

C
om

pr
es

se
d

si
ze

 L
%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Dataset
anneal breast chess ionosphere led7 mushroom pageblocks pima

Groei-F GroeiNos GroeNoS-P GroeiSlimNoS GroeiSlimNoS-P

FIGURE 6.1: The compressed size of the datasets in L%.

The results of Table 6.2 and Table 6.3 are summarised in Figure 6.1. This figure
confirms the claims above, Groei-F is beaten in almost every case, and Groei(NoS)
and GroeiSlim(NoS) show similar performance.

6.3.2 Run Time

There is no information on the run time of Groei-F because the implementation was
not available and the runtime is also not reported. Figure 6.2 shows the runtime of
the ‘NoS’ algorithms on various datasets. The time scale is shown on a logarithmic
scale because of the large differences between the runtimes. Even though compres-
sion ratio’s are similar, there is a large difference in the runtime between the regular
Groei algorithm and the GroeiSlim variants.

lo
g(

ru
n-

tim
e

(s
))

1

10

100

1000

10000

100000

Dataset
anneal breast chess ionosphere led7 mushroom pageblocks pima

GroeiNoS GroeNoS-P GroeiSlimNoS GroeiSlimNoS-P

FIGURE 6.2: Run time in log(run-time) (run-time in seconds) of each algorithm ran on the datasets.

The large differences in the run times mainly come from the candidate genera-
tion procedures because the remainder of the template algorithm is the same. Even
though the worst case scenario for the GroeiSlim algorithms is that the code tables
contain all possible item sets, and all the non-singleton item sets have to extended,
it is unlikely that this will be the case. This is confirmed by the run times shown in
Figure 6.2.

For each iteration, the Groei algorithms have to go over the entire mined (fre-
quent) item set collection for every candidate. At every iteration k, every one of the
b best candidate tables from the previous iteration k− 1 has to be extended with ev-
ery item in the entire item set collection |F | and every newly generated candidate
code table has to cover the dataset |D| to recompute the encoded size L(D, CT).
With the GroeiSlim algorithms, every item set I has to be combined with every
other item set J in every code table, this results in |CT|2 evaluations per code ta-
ble. The code tables start with small item sets because only the alphabet is available
in CTα. At every iteration, either an existing item set is extended, or a new one is

6.3. Compression 37

created using the singleton items. The amount of evaluations with the GroeiSlim
algorithms will be larger than the number of evaluations with the Groei algorithms
only if |CT| >

√
|F |.

6.3.3 Convergence

Figure 6.3 shows the amount of iterations before convergence is reached for each
dataset. The GroeiSlim algorithms need more iterations before reaching conver-
gence than the Groei algorithms. Even though more iterations are needed, the run
time is much shorter for the GroeiSlim algorithms. This is confirmed by Figure 6.4,
which shows the compressed size over the iterations.

N
um

be
r o

f i
te

ra
tio

ns

0

45

90

135

180

Dataset
anneal breast chess ionosphere led7 mushroom pageblocks pima

Groei-F GroeiNos GroeNoS-P GroeiSlimNoS GroeiSlimNoS-P

FIGURE 6.3: The amount of iterations needed before convergence is reached on various datasets.

The convergence of the algorithms run on the led7 with settings from Table 6.2, is
shown in Figure 6.4. The convergence showed the same relative curves for all tested
datasets. The dashed curves show the convergence of the compressed database size
L(D | CTbest) of the GroeiSlimNoS algorithm and the solid lines show the conver-
gence of the GroeiNoS algorithm. The dotted line is the reported compression by
Siebes and Kersten of the Groei-F algorithm [SK11].

The reason that the GroeiSlim requires more iterations before convergence is
reached, is that in the earlier iteration GroeiSlim only creates small candidates be-
cause it needs to start by merging singleton item sets. On the other side, because
the Groei algorithms require a pre-mined itemset collection, it is already possible in
these cases to identify the larger item sets with high supports values.

38 Chapter 6. Experiments

25,0%

40,0%

55,0%

70,0%

85,0%

100,0%

Iteration

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

GroeiNos
GroeiNos-P
GroeiSlimNoS
GroeiSlimNoS-P
Groei-F

FIGURE 6.4: Convergence of the compression on the led7 dataset when run by the various algo-
rithms. The parameters have the same values as shown in the tables above.

6.3.4 Lowering the support

Since Slim is able to compress datasets with very low support in a reasonable amount
of time, GroeiSlim should also be able to the same. Table 6.4 shows the compres-
sion when support is lowered for some of the datasets. The Groei algorithms did
not complete the compression task because even a single iteration took a very large
amount of time. The reason for this is that the number of frequent item sets with
low support is extremely large (mushroom θ = 1 has 1.56× 1010 frequent item sets).
This is why the Groei algorithm is only tested with higher support settings.

GroeiSlimNoS
D θ b = 1 b = 3
chess* 500 27,0% 27,0%
mushroom** 1 23,5% 23,7%
ionosphere 35 56,8% 56,9%
mammals* 200 47,0% 46,8%

TABLE 6.4: GroeiSlimNoS compression results on a selection of datasets with lower support set-
tings.

(*) Terminated because of iteration limit.
(**) Terminated because of time limit.

Table 6.4 shows that the compression ratio improves when the support is low-
ered. However, as is noted, for some of the datasets the set time limit or maximum
number of iterations was reached. Compression could have been better if these lim-
its were not imposed.

6.3.5 Beam-Width

Previous experiments have been conducted with a fixed beam-width. Figure 6.5
shows the effect on the compression ratio when the beam-width is altered. For
all datasets the beam-width did not influence the relative compression ratio. The
changes in compressed size are minimal.

6.4. Clustering 39

L%

0,0%

25,0%

50,0%

75,0%

100,0%

Beam-width

1 2 3 5 10 20 50

anneal-100
breast-1
chess-2500
pima-1
wine-20

FIGURE 6.5: Running GroeiSlimNoS with varying beam-widths on different datasets. The vertical
axis shows the relative compressed size L% and the horizontal axis shows the beam-width.

6.4 Clustering

Clustering performance cannot be directly measured. One can compute the entropy
of all the transactions over the identified clusters to measure the homogeneity of the
items. Since a single code table models a single cluster, the dissimilarity between
the clusters can be computed and used to measure the relative difference between
clusters. The differences between the code tables can be visualised by computing
the probability distribution over all code tables for every transaction. This shows
whether each code table captures different characteristics of the data set.

6.4.1 Entropy

The entropy of a transaction over all clusters measures the uniformity of the distri-
bution over all code tables. The more uniform the distribution, the closer the entropy
will be to the value of 1 and vice versa. The entropy of a single transaction t is de-
fined as:

E = −
C

∑
i=1

P(t ∈ Di) logb P(t ∈ Di),

where b is the beam-width.

40 Chapter 6. Experiments

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Entropy per transaction of ionosphere-125 with GroeiSlimNos - b = 10

(A) ionosphere-125

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Entropy per transaction of pima-1 with GroeiSlimNos - b = 10

(B) pima-1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Entropy per transaction of mammals-850 with GroeiSlimNos - b = 10

(C) mammals-850

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Entropy per transaction of anneal-100 with GroeiSlimNos - b = 10

(D) anneal-100

FIGURE 6.6: The entropy for various datasets over all unique transactions using GroeiSlimNos
with b = 10. The higher the entropy, the more uniform the distribution is over all code tables.
The lower the entropy, the larger the difference between encoded size between the code tables of

a transaction.

Figure 6.6 shows the entropy of the unique transactions of various datasets using
GroeiSlimNos with b = 10. In all plots there is a large amount of transactions with

6.4. Clustering 41

CT10

CT9

CT8

CT7

CT6

CT5

CT4

CT3

CT2

CT1

C
T

1

C
T

2

C
T

3

C
T

4

C
T

5

C
T

6

C
T

7

C
T

8

C
T

9

C
T

10

Code tables (ranked)

C
od

e
ta

bl
es

 (
ra

nk
ed

)

0.0014

0.001

7e−04

3e−04

0

Values

Relative dissimilarity heat map for GroeiSlimNoS on ionosphere−125 with b =10

(A) ionosphere-125

CT10

CT9

CT8

CT7

CT6

CT5

CT4

CT3

CT2

CT1

C
T

1

C
T

2

C
T

3

C
T

4

C
T

5

C
T

6

C
T

7

C
T

8

C
T

9

C
T

10

Code tables (ranked)

C
od

e
ta

bl
es

 (
ra

nk
ed

)

0.0322

0.0241

0.0161

0.008

0

Values

Relative dissimilarity heat map for GroeiSlimNoS on breast−1 with b =10

(B) breast-1

CT10

CT9

CT8

CT7

CT6

CT5

CT4

CT3

CT2

CT1

C
T

1

C
T

2

C
T

3

C
T

4

C
T

5

C
T

6

C
T

7

C
T

8

C
T

9

C
T

10

Code tables (ranked)

C
od

e
ta

bl
es

 (
ra

nk
ed

0.0035

0.0026

0.0017

9e−04

0

Values

Relative dissimilarity heat map for GroeiSlimNoS on anneal−100 with b =10

(C) anneal-100

CT10

CT9

CT8

CT7

CT6

CT5

CT4

CT3

CT2

CT1

C
T

1

C
T

2

C
T

3

C
T

4

C
T

5

C
T

6

C
T

7

C
T

8

C
T

9

C
T

10

Code tables (ranked)

C
od

e
ta

bl
es

 (
ra

nk
ed

)

0.0139

0.0104

0.0069

0.0035

0

Values

Relative dissimilarity heat map for GroeiSlimNoS on pima−1 with b =10

(D) pima-1

FIGURE 6.7: Relative dissimilarity heat map for the code tables outputted by GroeiSlimNoS on
various datasets with b = 10. Lighter shades indicate relatively lower dissimilarities while darker

shades indicate relative higher dissimilarities.

an entropy around the value of 1. All these transactions are equally characterised
by the code tables. In all cases, there is smaller group of transactions that have
lower entropy. These transactions are characterised by a smaller group of tables.
The lower the entropy, the fewer code tables characterise the transaction. These
experiments show that GroeiSlimNoS identifies common patterns in all code tables,
and also identifies patterns that are specific to smaller amount of tables. In the plots
it is also visible, that in (B)-(D) the entropy does not drop below 0.5. This means
that the transactions in general are characterised by a larger amount of tables which
compress the transaction similarly.

6.4.2 Dissimilarity

The dissimilarity between two code tables on the same dataset is the relative differ-
ence in the compressed database size L(D | CT), note that this is different from the
overall compressed size L(D, CT). The first definition does not include the length
of the code table self, and the latter definition does respectively. The obtained code
tables CT = {CT1, . . . , CTb} are always sorted by in ascending order on total com-
pressed size L(D, CT). This does not necessarily imply that the compressed database
size L(D | CT) will also be sorted in ascending order.

42 Chapter 6. Experiments

ionosphere-125 pima-1
CT rank |CT| L(D | CT) L(CT) L(D, CT) |CT| L(D | CT) L(CT) L(D, CT)
1 62 55724 4119 59844 52 6720 1607 8328
2 62 55739 4107 59846 52 6729 1599 8328
3 61 55770 4078 59848 51 6761 1570 8332
4 61 55755 4096 59851 51 6770 1562 8332
5 60 55784 4068 59851 52 6743 1592 8335
6 60 55785 4068 59853 52 6742 1592 8335
7 60 55798 4056 59854 51 6775 1563 8339
8 60 55787 4068 59855 51 6784 1554 8339
9 60 55801 4054 59855 51 6784 1555 8339
10 59 55800 4056 59856 50 6813 1528 8341

TABLE 6.5: Compressed size per code table for the ionosphere-125 and pima-1 datasets with
GroeiSlimNoS b = 10. |CT| shows the number of non-singleton item sets in the code table.

Figure 6.7 shows that the obtained code tables are of varying similarity for a
selection of datasets, this implies that the code tables are not equivalent. The dissim-
ilarity measure is applied in the following way: since the dataset has no single code
table, and the dataset is the same for every pair of code tables, the normalisation step
is done by dividing by the encoded database length of both code tables. For dataset
D with code tables CTx and CTy, the code table dissimilarity measure DS between
CTx and CTy is:

DS(CTx, CTy,D) = max

{
CTy(D)− CTx(D)

CTx(D)
,

CTx(D)− CTy(D)
CTy(D)

}

For (A) and (B) in Figure 6.7, the higher ranked tables are more similar to each
other, and the same holds for the lower ranked tables. However, this is not the case
for (C) and (D). Here the code tables get more dissimilar as the difference in rank
increases.

Table 6.5 shows the absolute compression values for the code tables. It shows that
the algorithm is able to find different code tables for the same dataset that compress
the data on a similar level. The code tables obtained for ionosphere-125 by using
GroeiSlimNos with b = 10 are inspected manually to identify the commonalities
and differences between the tables. For CT1 and CT2, the first 11 item sets are the
same. The 12th item set in CT1 is not present in CT2. The absence of this itemset in
CT2 influences the usage count of the 18th item set in CT2 because it is a subset of the
12th item set. Another difference between the two is that CT2 contains an additional
smaller itemset. When looking at the difference between CT1 and CT10, the first 11
item set are the same, similar to the previous case. In this case though, the code
tables differ in 4 item sets. This difference influences the usage counts of 13 item sets
in CT10. The general pattern that shows is that the first 11 item sets are the same for
all code tables, and then the differences start occurring. The different characteristics
of the dataset are captured by the smaller item sets in the tables.

The difference between code tables CT1 and CT5 of the pima-1 dataset is that
CT1 contains two more item sets at positions 22 and 45. Like with the ionosphere-
125 dataset, the common patterns are captured in the larger item sets, which reside
at the top of the tables. The difference between CT1 and CT10 is that CT1 contains
3 more item sets, these sets reside at the top of the table, this is why difference in
compressed size is larger. This is also visible in Figure 6.7. To check whether each of
the code tables capture different characteristics, the probability distribution of each

6.4. Clustering 43

(A) CT1 versus CT2. (B) CT1 versus CT10.

FIGURE 6.8: Probability distribution of Code tables in the form of a scatter plot on the ionosphere-
125 dataset using the GroeiSlimNoS algorithm with b = 10.

transaction over the obtained set of tables must be inspected.

6.4.3 Distribution

To show whether the set of code tables truly captures different characteristics of
the datasets, the probability distribution of each row in the dataset over the set of
code tables is inspected. This information is shown as a set of scatter plots and
shows the pairwise probability of all data points of a dataset. When two code tables
equally characterize a data point (have the same compression), the point will lie on
the diagonal line. The larger the deviation from this line, the better the one code
table characterizes the data point than the other. This all is shown in Figures 6.8 and
6.9.

Figure 6.8 shows the probability distribution between two code tables in each
figure for the ionosphere-125 dataset using the GroeiSlimNoS algorithm with b =
10. In (A) CT1 is compared to CT2. Figure 6.7 shows that these two code tables
are relatively similar. Even though the code tables show database rows that lie on
the diagonal line, there are also transactions that are compressed very poorly by
one, and better by the other. The code tables also show similarity in the sense that
both also compress some database rows such that the probability P(d ∈ CTi) > 1

b .
In (B) CT1 is compared to CT10. Figure 6.7 shows that these two code tables are
relatively dissimilar. Even though CT10 is the ‘worst’ performing code table, it is
still able to compress a portion of the transaction better than CT1. Compared to
(A), more transactions are scattered around the P = 1

b area, and less transactions lie
on the diagonal line. The amount of extremes also is larger, more transactions are
compressed relatively very well by one and bad by the other table.

Figure 6.9 shows the probability distribution between two code tables in each fig-
ure for the anneal-100 dataset using the GroeiSlimNoS algorithm with b = 10. In (A)
CT1 is compared to CT5. Figure 6.7 (C) shows that these two code tables are neither
very similar or dissimilar. This figure shows a combination of results shown in Fig-
ure 6.8. There are some transactions that have equal compressed length, and some
transactions are compressed well by one and bad by the other. This is less extreme
than when the code tables are very dissimilar. In (B) CT5 is compared to CT10. Fig-
ure 6.7 (C) shows that these two code tables are moderately dissimilar. Compared to
(A), the transactions are more grouped around the 1

b area. The most notable differ-
ence between the two is that in (B) the ‘scatteredness’ of the transactions that do not
lie close to the diagonal is larger.

44 Chapter 6. Experiments

(A) CT1 versus CT5. (B) CT5 versus CT10.

FIGURE 6.9: Probability distribution of Code tables in the form of a scatter plot on the anneal-100
dataset using the GroeiSlimNoS algorithm with b = 10.

Having compared various degrees of relative similarity and varying entropy lev-
els between code tables, in all situations it shows that there is a group of transactions
that are captured equally well by both code tables. In all situations, there are also
transactions that are captured well by one code table table and less well by the other.
As the tables become more dissimilar, this phenomenon occurs more often.

6.5 Classification

The goal here is not to build the best classifier but rather to capture the underly-
ing data distribution. A reasonable classification performance will indicate that the
underlying data distribution is sufficiently captured by the obtained code tables.
Another method of confirming this, is by first clustering by setting the beam-length
equal to the amount of classes present in the dataset and afterwards classifying the
cases by each of the clusters to obtain the purity. This will show how well the differ-
ent characteristics are captured.

6.5.1 Classification Performance

The classification experiments have been performed using classed datasets with
varying amount of classes and 10-fold cross validation. For each of the experiments,
the classification accuracy is measured. The number of classes per dataset are shown
in Table 6.6 and the results are presented in Figure 6.10.

Dataset D Number of classes |cl|
ionosphere 2
letterrecognition 26
mushroom 2
pendigits 10
wine 3

TABLE 6.6: Number of classes per dataset.

Figure 6.10 shows that the accuracy is well above the established baseline for all
cases. Lower levels of support show that the accuracy increases in most cases, and
thus the underlying distribution is better captured. The claim is not that a set of code
tables obtained by GroeiSlimNoS deliver results that are on-par with state-of-the-art

6.5. Classification 45

FIGURE 6.10: Classification performance (Accuracy) with respect to each of the baselines of the
classed datasets with GroeiSlimNoS and b = 10. The baseline for the datasets is the accuracy

when assigning to the majority class.

classifiers, but rather that the results show that the algorithm captures the underly-
ing data distribution of each of the classes. It is also interesting to measure whether
the algorithm is able to capture the the different classes without prior knowledge of
the class labels. This ability expressed as the purity.

6.5.2 Purity

Since class labels show the true data distribution, one can measure how well a clus-
tering algorithm is able to find this distribution by using purity as the performance
measure. In this case, the beam-width is set equal to the amount of classes for the
classed databases (b = |cl|). Since the minimum support θ controls the amount
granularity that is to be captured by the code tables, this is also varied. In the ex-
periments, the code table which best compresses a transaction, is the code table that
assigns the transaction to a class.

FIGURE 6.11: Purity of different datasets with varying support levels using GroeiSlimNoS and
b = 10. The baseline is the ratio of classed belonging to the majority class.

Figure 6.11 shows that in all cases the purity is at least at the level of the baseline.
This indicates that the general structure of the data is captured. When the support
is low enough, like with the wine-10 dataset, the purity increases. With the classi-
fication experiments, Figure 6.10 shows that the accuracy decreases slightly when

46 Chapter 6. Experiments

clusters ↓, classes→ cl1 cl2 cl3
CT1 468 216 63
CT2 72 27 342
CT3 99 288 27

clusters ↓, classes→ cl1 cl2 cl3
CT1 378 405 306
CT2 117 36 45
CT3 144 90 81

TABLE 6.7: Tables showing |Di ∩ Cj| in each cell, in terms of code tables and class labels using
GroeiSlimNoS. For each cluster i (represented as a code table), the class for which |Di ∩ Cj| is

maximal is shown in bold. Left: wine-10, Right: wine-15

lowering the support from 15 to 10 for the wine dataset. In this case though, the
purity increases. The difference between the classification and purity experiments
is that in the classification experiments the structure of the individual classes is cap-
tured separately, while in the purity experiments the structure of the entire dataset
is captured with the number of clusters being equal to the amount of classes of the
respective datasets. This is why the purity and classification accuracy are not com-
parable.

Table 6.7 shows the amount of transactions that overlap between the clusters and
classes for the wine-10 and wine-15 datasets. With the wine-15 dataset (right), CT1
compresses most transaction the best and therefore is allowed to assign a class label
to most transactions. With the wine-10 dataset, CT1 assigns 46.6% of the transac-
tions to a class, and with the wine-15 dataset this is 68.0% of the transactions. A
consequence of this is that the separation between the classes is better visible for
the wine-10 dataset. This is confirmed by Figure 6.12. This figure shows the differ-
ence in the obtained code tables between wine-10 and wine-15. The most notable
difference between the two rows is that in the upper row (wine-10) the transactions
appear more scattered, while in the bottom row (wine-15) the transaction are more
cluttered. Because of the lower support level, more differences between transactions
are captured in the code tables. When comparing CT1 and CT2 ((A) and (D)), the
transactions that are better compressed with CT2 are further away from the diago-
nal, thus better characterised by the code table for the wine-10 dataset. This is also
clearly visible in Table 6.7 when comparing the first two rows of both tables. CT2
characterises an entirely different class than CT1 does. The same shows for code
tables CT2 and CT3 ((C) and (F)). However, code tables CT2 and CT3 cannot clearly
separate the data between classes cl1 and cl2 for the wine-10 dataset. This is also
visible in Figure 6.12 (B), most transactions are close to the diagonal, meaning that
there is not much of a difference between the encoded length of transactions. This
explains why still many transactions are classified to cl2 by CT1 for wine-10.

6.6. Identifying Multi-Valued Dependencies in Data 47

0 0.1 0.2 0.3 0.4 0.5

CT1

0

0.1

0.2

0.3

0.4

0.5

C
T

2

(A) wine-10, CT1 - CT2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

CT1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
T

3

(B) wine-10, CT1 - CT3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

CT2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
T

3

(C) wine-10, CT2 - CT3

0 0.1 0.2 0.3 0.4 0.5 0.6

0

0.1

0.2

0.3

0.4

0.5

0.6

(D) wine-15, CT1 - CT2

0 0.1 0.2 0.3 0.4 0.5 0.6

CT1

0

0.1

0.2

0.3

0.4

0.5

0.6

C
T

3

(E) wine-15, CT1 - CT3

0 0.1 0.2 0.3 0.4 0.5 0.6

CT2

0

0.1

0.2

0.3

0.4

0.5

0.6

C
T

3

(F) wine-15, CT2 - CT3

FIGURE 6.12: Probability distribution of Code tables in the form of a scatter plot on the wine-
10 and wine-15 datasets using the GroeiSlimNoS algorithm. The top row shows the code tables
obtained from the wine-10 dataset and bottom row shows the code tables obtained from the wine-

15 dataset.

6.6 Identifying Multi-Valued Dependencies in Data

It is unknown whether the previously used datasets contain multi-valued dependen-
cies. For the next set of experiments, three custom-made datasets will be used. One
contains multi-valued dependencies, one also contain multi-valued dependencies
but the data will be more noisy and one dataset will contain no such dependencies.
The experiments are performed using the GroeiSlim algorithm because it only se-
lects the best code tables that are generated in the same iteration and improve the
compression of the previous best.

The Multi-Valued Dependency (MVD) dataset consists out of thee columns, β, γ
and ψ. There is an obvious multi-valued dependency between β and γ and this is
shown in Table 6.8.

(β, γ, ψ) Number of occurrences
(A, J, ∗) 4
(B, K, ∗) 4
(C, K, ∗) 4
(D, L, ∗) 4
(E, M, ∗) 2
(F, K, ∗) 2
(G, J, ∗) 2
(H, L, ∗) 2
(I, J, ∗) 1

TABLE 6.8: The number of occurrences per triple in the MVD dataset. An asterisk (*) indicates that
this can be any value. The value of ψ is unique for every entry of (βi, γi).

Figure 6.13 shows the selected candidate tables with their respective non-singleton
item sets for every table from every iteration when running GroeiSlim on the MVD

48 Chapter 6. Experiments

dataset. Only item sets from the columns β and γ are selected in all iterations. Al-
though not all pairs shown in Table 6.8 are present, the multi-valued dependency is
clearly visible in the code tables.

FIGURE 6.13: The selected candidate tables lattice with the non-singleton item sets for every table
from every iteration when running GroeiSlim on the MVD dataset. Every edge indicates that the

table in iteration i can be generated from the parent in iteration i− 1.

Table 6.8 shows the anti-chains present in the lattice of code tables in Figure 6.13.
It shows that all code tables that share a common parent table are anti-chains. This
is not surprising because the child is generated when either a new item set is created
from the alphabet and added or an existing itemset is extended in the parent. Let
CT i denote all candidates from iteration i, then all sets of anti-chains Si for a single
iteration i are then be defined as:

S = {S | CT ′i ⊆ CT i ∧ S =
⋂

CTi,x∈CT ′i

CTx,i ∧ |S| = i− 1}

All anti-chains share the exact same non-singleton item sets except for one. GroeiSlim
is successfully able to create anti-chains and identify the multi-valued dependency
in this case.

6.6. Identifying Multi-Valued Dependencies in Data 49

Iteration i Anti-chains
0 {}
1 {CT1,1, CT1,2, CT1,3, CT1,3}
2 {CT2,1, CT2,2, CT2,3}
3 {CT3,1, CT3,2}, {CT3,1, CT3,3}, {CT3,2, CT3,3, CT3,4}
4 {CT4,1, CT4,2}, {CT4,1, CT4,3, CT4,4}, {CT4,2, CT4,3}
5 {CT5,1, CT5,2}
6 {}

TABLE 6.9: The sets of anti-chains present in every iteration as shown Figure 6.13. All pairs of
code table in a single set are anti-chains.

When random noise is added to the MVD dataset, the Noisy Multi-Valued De-
pendency (NMVD) dataset is obtained. It contains exactly the same entries as the
MVD dataset but random entries are added. Table 6.10 shows that only the item sets
listed in Table 6.8 are in the code table and that random noise is not captured in the
table. GroeiSlim is still able to detect de multi-valued dependency in the presence
of noise.

Item sets
{E, M}
{A, J}
{B, K}
{C, K}
{F, K}
{G, J}
{I, J}
{D, L}
{H, L}

TABLE 6.10: The item set in the final code table obtained by running GroeiSlimNoS on the NMVD
dataset.

The random noise (RN) dataset only contains random entries. In this case no
dependencies in the data should be found. By running GroeiSlim on this dataset,
the CTα code table is obtained. This table does not contain any non-singleton item
sets. This is because random data does not contain any structure, and the algorithm
tries to capture structure. These experiments do not only validate that the algorithm
is resistant against noise, but also that it is able to capture interesting patterns in the
data.

51

7 Discussion

The compression results of the experiments performed in Chapter 6 show that the
algorithms improve on the Groei-F in most cases. The most notable difference is the
improvement in runtime. Runtime improves by several orders of magnitude. This
means that the GroeiSlim(NoS) is able to handle datasets with lower supports. It
still is not able to handle supports as low as the Slim is tested with. These support
levels allow for more interactive and practical usages of the algorithms. Varying the
beam-width does not influence the ability to compress by much. The beam-width
is however important for clustering purposes, this means the beam-width cannot be
set to 1 if the purpose is to characterise the dataset from different perspectives.

The results from the clustering experiments shed light on the distribution uni-
formity per transaction, the differences between the obtain code tables, and the dis-
tribution of transactions over pairs of code tables in order to determine whether the
obtained code tables truly capture the underlying distribution from different per-
spectives. The results of experiments regarding entropy show that the code tables
are equally able to capture the general distribution of the datasets. It also shows
that a portion of the transactions does not have a uniform distribution over the ob-
tained code tables. This is because some code tables compress a transaction better
than others, thus characterising the dataset from a different perspective. All the
obtained code tables are unique. As the rank increases, the relative dissimilarity
increases because the compression ratio decreases. The obtained code tables differ
in the number of non-singleton item sets, the encoded database length L(D | CT)
and the total encoded length L(D, CT). Manual inspection shows that larger item
sets with high support are common between tables and the difference between the
clusters is expressed by a few item sets. These item sets characterise the difference
between clusters. The results that show the probability distribution over pairs of
code tables confirm that that the probability distribution is truly different and that
even a small difference between code tables can lead to non-uniform distributions.
The results also show that there is a group of transactions that are compressed uni-
formly by the code tables and the other group is compressed with varying proba-
bilities towards the various clusters. This is also visible in the entropy results. The
transactions that have a uniform distribution over the code tables show the larger
patterns in the data and the transactions with lower entropy and non-uniform dis-
tributions over the code tables show the the different characteristics of the obtained
clusters with respect to the code tables.

When comparing non-disjoint clusters to disjoint clusters, the non-disjoint clus-
ters should not be interpreted in the same way as disjoint clusters. While disjoint
clustering techniques explicitly try to find strictly separated groups of patterns, they
fail to show the commonalities in the data. These commonalities become visible in
the patterns that are similar in all code tables when applying the GroeiSlimNoS al-
gorithm. Next to identifying these commonalities, the algorithm is also able to find
the different groups in the data.

The classification results show that the difference between the classes is captured

52 Chapter 7. Discussion

when the actual class labels are given. Accuracy increases when the support is low-
ered because more details of the datasets is captured in the code tables. In all cases,
the performance is above the set baseline. The experiments regarding the purity
show that the purity is at the baseline and improves when the support gets low
enough because the finer differences get exposed. This exposes one of the points
where the algorithm can still be improved on, which is in order to get better results
in reasonable amounts of time, the support must be lowered. In order to deal with
lower support settings, the amount of evaluated candidate tables must be lowered.
Now for every candidate, the entire database is covered. By reducing the amount
of candidate tables which have to be evaluated, the amount of database covers that
have to be performed lowers too. This can be done by evaluating the generated
itemsets in Gain Order and only generating candidate tables with the c× b first item
sets. Here c ∈N+ is some constant greater than 1 and b is the beam-width. This will
reduce the amount of database covers in the worst case fromO(|F | × b) toO(c× b)
evaluations per iteration. There is a possibility that the compression performance
will go down when this is applied.

The GroeiSlim algorithm successfully shows the ability to identify multi-values
dependencies in data. The algorithm shows that in the presence of a multi-valued
dependency, the data in these columns is added as an itemset in the table and anti-
chains are generated within the same iteration. These are then present in the larger
tables. The amount of code tables also reduces as more data of the same dependency
ends up in a single table. The algorithm also is resistant against noise in the data and
does not identify a multi-valued dependency when it is not present.

53

8 Conclusion

In this master thesis project, algorithms have been presented in order to perform
non-disjoint clustering. These are inspired by the Groei algorithm. Experiments
show that the GroeiSlimNoS algorithm is able to identify the different characteristics
in the data, and that it both captures the general patterns and also patterns that differ
from the general patterns but can still be grouped together with other patterns. This
gives insight in the data from different perspectives. The obtained code tables are
different and capture different aspects of the dataset. The compression results show
that all code table are able to capture the structure in the data and improve on the
compression ratios obtained by the Groei-F algorithm.

The GroeiSlim algorithm is successfully able to find multi-valued dependencies
in data while being resistant to noise. This is done by creating anti-chains in every
iteration and the item sets from the different anti-chains end up in the same code
table in later iterations. This pattern of candidate table generation suggests that
such dependencies might be present in the data.

There is still room for improvement. Although the runtime is much lower than
the Groei algorithm, the support levels used in the experiments for the Slim algo-
rithm do not give results in reasonable amounts of time to allow the algorithm to be
used interactively. For this, the amount of database covers must be lowered. This
can be done evaluating only a limited amount of candidates in Gain Order. By be-
ing able to handle lower supports, more interesting groups of patterns can be found
in the data. This can be investigated in future works. Other improvements are in-
vestigating whether a parameter-free variant can be created such that the optimal
number of clusters is automatically determined.

55

Bibliography

[Ami+09] Enrique Amigó et al. “A comparison of extrinsic clustering evaluation
metrics based on formal constraints”. In: Information retrieval 12.4 (2009),
pp. 461–486.

[Bre01] Leo Breiman. “Random Forests”. In: Machine Learning 45.1 (2001), pp. 5–
32.

[Böh+06] Christian Böhm et al. “Robust information-theoretic clustering”. In: Pro-
ceedings of the 12th ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM. 2006, pp. 65–75.

[CCS12] Adele Cutler, D. Richard Cutler, and John R. Stevens. “Random Forests”.
In: Ensemble Machine Learning: Methods and Applications. Ed. by Cha Zhang
and Yunqian Ma. Boston, MA: Springer US, 2012, pp. 157–175. ISBN: 978-
1-4419-9326-7.

[Chu+06] Keh-Shih Chuang et al. “Fuzzy c-means clustering with spatial infor-
mation for image segmentation”. In: computerized medical imaging and
graphics 30.1 (2006), pp. 9–15.

[Coe04] Frans Coenen. The LUCS–KDD Discretised–normalised ARM and CARM
Data Library. 2004. URL: http://www.csc.liv.ac.uk/~frans/KDD/
Software/LUCS_KDD_DN/.

[CV05] Rudi Cilibrasi and Paul MB Vitányi. “Clustering by compression”. In:
IEEE Transactions on Information theory 51.4 (2005), pp. 1523–1545.

[DF03] Sandrine Dudoit and Jane Fridlyand. “Bagging to improve the accuracy
of a clustering procedure”. In: Bioinformatics 19.9 (2003), pp. 1090–1099.

[Dun73] J. C. Dunn. “A Fuzzy Relative of the ISODATA Process and Its Use in
Detecting Compact Well-Separated Clusters”. In: Journal of Cybernetics
3.3 (1973), pp. 32–57.

[FF12] Artur J. Ferreira and Mário A. T. Figueiredo. “Boosting Algorithms: A
Review of Methods, Theory, and Applications”. In: Ensemble Machine
Learning: Methods and Applications. Ed. by Cha Zhang and Yunqian Ma.
Boston, MA: Springer US, 2012, pp. 35–85. ISBN: 978-1-4419-9326-7.

[Fim] Frequent Itemset Mining Dataset Repository. URL: http://fimi.ua.ac.
be/data/.

[FLS04] D Frossyniotis, Aristidis Likas, and Andreas Stafylopatis. “A clustering
method based on boosting”. In: Pattern Recognition Letters 25.6 (2004),
pp. 641–654.

[FM07] Christos Faloutsos and Vasileios Megalooikonomou. “On data mining,
compression, and kolmogorov complexity”. In: Data mining and knowl-
edge discovery 15.1 (2007), pp. 3–20.

[FS95] Yoav Freund and Robert E Schapire. “A desicion-theoretic generaliza-
tion of on-line learning and an application to boosting”. In: European
conference on computational learning theory. Springer. 1995, pp. 23–37.

http://www.csc.liv.ac.uk/~frans/KDD/Software/LUCS_KDD_DN/
http://www.csc.liv.ac.uk/~frans/KDD/Software/LUCS_KDD_DN/
http://fimi.ua.ac.be/data/
http://fimi.ua.ac.be/data/

56 BIBLIOGRAPHY

[Grü05] Peter Grünwald. “A tutorial introduction to the minimum description
length principle”. In: (2005).

[Grü07] Peter D Grünwald. The minimum description length principle. MIT press,
2007.

[GV03] Peter D Grünwald and Paul MB Vitányi. “Kolmogorov complexity and
information theory. With an interpretation in terms of questions and an-
swers”. In: Journal of Logic, Language and Information 12.4 (2003), pp. 497–
529.

[KLR04] Eamonn Keogh, Stefano Lonardi, and Chotirat Ann Ratanamahatana.
“Towards parameter-free data mining”. In: Proceedings of the tenth ACM
SIGKDD international conference on Knowledge discovery and data mining.
ACM. 2004, pp. 206–215.

[Lic13] M. Lichman. UCI Machine Learning Repository. 2013. URL: http://archive.
ics.uci.edu/ml.

[Llo06] S. Lloyd. “Least Squares Quantization in PCM”. In: IEEE Trans. Inf. Theor.
28.2 (2006), pp. 129–137. ISSN: 0018-9448.

[LP08] Ming Li and MB Paul. P. Vit anyi, An introduction to Kolmogorov complex-
ity and its applications. 2008.

[LVS06] Matthijs van Leeuwen, Jilles Vreeken, and Arno Siebes. “Compression
picks item sets that matter”. In: Knowledge Discovery in Databases: PKDD
2006 (2006), pp. 585–592.

[LVS09] Matthijs van Leeuwen, Jilles Vreeken, and Arno Siebes. “Identifying
the components”. In: Data Mining and Knowledge Discovery 19.2 (2009),
pp. 176–193.

[Mam] Mammals data set. URL: http://www.european-mammals.org.

[MBTP04] Behrouz Minaei-Bidgoli, Alexander Topchy, and William F Punch. “En-
sembles of partitions via data resampling”. In: Information Technology:
Coding and Computing, 2004. Proceedings. ITCC 2004. International Confer-
ence on. Vol. 2. IEEE. 2004, pp. 188–192.

[Pol12] Robi Polikar. “Ensemble Learning”. In: Ensemble Machine Learning: Meth-
ods and Applications. Ed. by Cha Zhang and Yunqian Ma. Boston, MA:
Springer US, 2012, pp. 1–34. ISBN: 978-1-4419-9326-7.

[RH11] Samuel Rathmanner and Marcus Hutter. “A philosophical treatise of
universal induction”. In: Entropy 13.6 (2011), pp. 1076–1136.

[SK11] Arno Siebes and René Kersten. “A structure function for transaction
data”. In: Proceedings of the 2011 SIAM International Conference on Data
Mining. SIAM. 2011, pp. 558–569.

[Sme+11] F. Smeraldi et al. “CLOOSTING: CLustering Data with bOOSTING”. In:
Multiple Classifier Systems. Ed. by Carlo Sansone, Josef Kittler, and Fabio
Roli. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 289–298.

[SV12] Koen Smets and Jilles Vreeken. “Slim: Directly mining descriptive pat-
terns”. In: Proceedings of the 2012 SIAM International Conference on Data
Mining. SIAM. 2012, pp. 236–247.

[VPRS11] Sandro Vega-Pons and José Ruiz-Shulcloper. “A survey of clustering en-
semble algorithms”. In: International Journal of Pattern Recognition and
Artificial Intelligence 25.03 (2011), pp. 337–372.

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://www.european-mammals.org

BIBLIOGRAPHY 57

[VVLS07] Jilles Vreeken, Matthijs Van Leeuwen, and Arno Siebes. “Characteris-
ing the difference”. In: Proceedings of the 13th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM. 2007, pp. 765–
774.

[VVLS11] Jilles Vreeken, Matthijs Van Leeuwen, and Arno Siebes. “Krimp: mining
itemsets that compress”. In: Data Mining and Knowledge Discovery 23.1
(2011), pp. 169–214.

[XW05] Rui Xu and Donald Wunsch. “Survey of clustering algorithms”. In: IEEE
Transactions on neural networks 16.3 (2005), pp. 645–678.

	Abstract
	Acknowledgements
	Introduction
	Literature Study
	Ensemble Learning
	Boosting
	Bagging and Random Forests

	Clustering
	Clustering and Ensemble Structures
	Clustering and Boosting
	Clustering and Bagging

	Compression Based Data Mining
	Krimp: mining items sets that compress
	Compression picks the significant item sets
	Characterising the Difference
	Identifying the components
	A structure function for transaction data
	Directly Mining Descriptive Patterns

	Problem Description and Research Questions
	Problem Description
	Research Questions
	Relevance for Science, Technology and Society

	Methodology
	Data
	Methodology
	Clustering Performance
	Classification Performance
	Scaling and Stability

	Algorithms
	GroeiNoS - Groei No Structure Function
	GroeiSlim - Candidate Generation Inspired by Slim

	Experiments
	Setup
	Datasets
	Compression
	Compression
	Run Time
	Convergence
	Lowering the support
	Beam-Width

	Clustering
	Entropy
	Dissimilarity
	Distribution

	Classification
	Classification Performance
	Purity

	Identifying Multi-Valued Dependencies in Data

	Discussion
	Conclusion
	Bibliography

