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Abstract

Tree decompositions can be traversed with a dynamic programming algorithm in order
to compute exact answers to various graph problems. A particular operation called a
join operation is performed in these algorithms, and commonly this operation forms the
bottleneck. In this master thesis, I will present a number of different results pertaining to
these join operations. First, we will see that every 2×2 join operation can be computed in
O∗(2k), where k represents treewidth. We will see that two s×s join operations, named the
Fourier- and Möbius-Transform-based join operations, can be computed in O ∗ (sk). We
will introduce a new technique called filtering that computes join operations by computing
a different but related join operation and doing only polynomially extra work. We will
use this technique to prove a new result relating to an extension of Disjoint Set Sum.

1 Introduction

This is a master thesis about computational techniques for join operations for dynamic pro-
gramming algorithms on tree decompositions. Tree decompositions are a type of structural
decomposition for graphs that encode the tree-like structure of a graph. This data structure
can be traversed with a dynamic programming algorithm in order to compute exact answers
to various graph problems. A particular operation called a Join is used in these algorithms,
and commonly these operations form the bottleneck of the algorithm. Join operations come
in many shapes and sizes, but there are nonetheless certain things we can say about the time
complexity of join operations.This master thesis will outline a couple of results that make it
easier to determine efficient algorithms for computing join operations of various forms.

In Section 2, we will discuss the foundations for the theory behind the research. This includes a
summary of tree decompositions, treewidth and an example dynamic programming algorithm.
Section 3 delves into more detail about specific techniques that can be applied for computing
join operations. In Section 4 we prove that every join operation of size 2× 2 can be computed
in O∗(2k), where k represents the treewidth of the tree decomposition we’re using. In Sections
5 and 6 we prove that Fourier- and Möbius-Transform-based join operations of size s × s can
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be computed in O∗(sk). In Section 7 we introduce a new technique called filtering that can
compute join operations using a different related join operation and doing only polynomially
extra work. Which join operations can be computed with this method is something that will
be discussed in this section as well. We will also prove a new result relating to an extension of
Disjoint Set Sum. Finally, Section 8 will offer conclusions and thoughts for further research.

2 Foundation

2.1 Tree decompositions

Let G = (V (G), E(G)) be an undirected graph. A tree decomposition T of G is defined as
follows:

Tree Decomposition: A tree decomposition of a graph G is a pair T = (T, {Bt}t∈V (T )), where
T is a tree in which every node t is assigned a vertex subset Bt ⊆ V (G), called a bag, such that
the following three conditions hold:

1.
⋃
t∈V (T )Bt = V (G). In other words, every vertex of G is in at least one bag.

2. For every uv ∈ E(G), there exists a node t of T such that the bag Bt contains both u
and v.

3. For every v ∈ V (G), the set Tv = {x ∈ V (T ) : v ∈ Bt}, i.e. the set of nodes whose
corresponding bags contain v, induces a connected subtree of T .

The tree decomposition for a graph G is not unique. There always exists at least one valid
Tree Decomposition, namely, the tree T with one node t, where Bt = V (G). The usefulness of
different tree decompositions can be quite varied however. Therefore, an important performance
measure for tree decompositions, known as treewidth, is often used.

Treewidth: The treewidth of a tree decomposition T = (T, {Bt}t∈V (T )) of a graph G is defined
as maxt∈V (T )|Bt|−1.

In other words, the treewidth of a tree decomposition, often denoted by k, is the size of its
largest bag minus 1. Tree decompositions and treewidth can, in general terms, be used to
measure how ‘tree-like’ a certain graph is. Indeed, any tree will have a treewidth of 1.

These definitions for tree decompositions and treewidth were first introduced by Robertson
and Seymour [1]. Computing a tree decomposition with minimal treewidth for a graph is
unfortunately an NP-hard problem [2], though there are some alternatives that can be used.
Calculating a tree decomposition for a fixed treewidth k, should such a tree decomposition
exist, is possible with linear time complexity [3], albeit with a high constant factor.

We can however obtain tree decompositions with small treewidth efficiently if the graph a tree
decomposition is computed for belongs to certain graph classes. [4] There are also several upper
bounds available that can work well if exact solutions aren’t needed. [5].
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2.2 Dynamic programming with tree decompositions

As mentioned, one of the reasons tree decompositions are used is that they allow for dynamic
programming algorithms for solving various exact graph problems. These algorithms are ex-
ponential in treewidth k, the value of which is often much smaller than n, the value that is
generally in the exponent of time complexities for these problems.

Before we can take a look at how these algorithms are set up however, we will introduce the
concept of a nice tree decomposition, which will assist in the formulation of our algorithm.

Nice Tree Decomposition: A nice tree decomposition is a tree decomposition for which a
node p is chosen as the root, and for which the following holds:

1. Bp = ∅, where p is the root of T .

2. Bq = ∅, for all leaves q of T .

3. Every non-leaf node of T is one of the following:

• Introduce node: a node t with exactly one child d such that Bt = Bd ∪ {v} for
some vertex v /∈ Bd.

• Forget node: a node t with exactly one child d such that Bt = Bd\{v} for some
vertex v /∈ Bd.

• Join node: a node t with two children l, r such that Bt = Bl = Br.

Nice tree decompositions were first introduced by Kloks. [6] Any tree decomposition can be
changed into a nice tree decomposition without increasing its treewidth. This is left as an
exercise to the reader.

Dynamic programming algorithms on tree decompositions make use of the structure of nice
tree decompositions. Depending on the problem, the algorithm uses a state set S containing s
states that a vertex in the graph can take on. The algorithm is performed using a bottom-up
approach, starting at the leaf nodes of the decomposition. A table At is calculated for each node
t using results from its child node(s). This table is indexed by so-called colorings; assignments
of the states in S to all the vertices in Bt. The set of all colorings of a bag B is denoted by SB.
For each coloring c ∈ SB, the table assigns a value in Z. What this value represents or how it
is calculated again depends on the problem. This is repeated until the root node p is reached,
at which point the answer can be extracted.

A summary of a dynamic programming algorithm for the Minimum Dominating Set problem
is given below. For a more detailed version of this algorithm see Exact Exponential-Time
Algorithms for Domination Problems in Graphs. [9, section 11.2, p.208]

Let T = (T, {Bt}t∈V (T )) be a nice tree decomposition of a graph G. We will use the state set S =
{1, 01, 00}, where 1 represents a vertex in the dominating set, 01 represents a dominated vertex
not in the dominating set, and 00 represents an undominated vertex. The table corresponding
to a node t in our decomposition T is denoted as At(c), where c is a coloring of the vertices in
the bag Bt using the states in S. The table entry At(c), for node t and coloring c, stores the
size of the smallest partial solution to Minimum Dominating Set for which:
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1. The vertices in the bag Bt take on their color in c.

2. All vertices that have been forgotten by a forget node in the current branch are dominated.

For a vertex u ∈ V (G), c(u) is defined as the state the vertex u has in the coloring c. For a
vertex v ∈ V (G), we say that N(v) is the set of all neighbors of v in G. We use the notation
c × θ in order to denote a coloring that ends in the state θ ∈ S. Let t be an Introduce node
that introduces a vertex v and has a child node d. We say that a coloring ct of Bt matches a
coloring cd of Bd if:

1. For all u ∈ Bd\N(v): ct(u) = cd(u).

2. For all u ∈ Bd ∩N(v): either ct(u) = cd(u) = 1, or ct(u) = 01 and cd(u) ∈ {01, 00}.

With this, we can finally show the formulas used by our algorithm. These formulas are all in
terms of a node t that may or may not have child nodes d, l, r:

• Leaf node: At({1}) = 1, At(01) =∞, At(00) = 0.

• Forget node: At(c) = min{At(c× {1}), Ad(c× {01})}.

• Introduce node: (where v is the newly introduced vertex)

– At(c× {01}) =

{
Ad(c) if v has a neighbor with state 1 in c
∞ otherwise

– At(c× {00}) =

{
Ad(c) if v has no neighbor with state 1 in c
∞ otherwise

– At(c× {1}) =

{
∞ if c(u) = 00 for some u ∈ N(v)
1 + min{Ad(c′)|c′ matches c} otherwise

These operations scale with the size of Bt. Since the treewidth k is the largest size for a bag Bt,
we use the term k in our time complexities. The running times of these operations are O∗(3k)
for the Leaf and Forget nodes, and O∗(4k) for the Introduce node. See Exact Exponential-Time
Algorithms for an explanation [9, section 11.2, p.210]

The only part of the algorithm that remains is the operation for Join nodes, which we call a join
operation. For a Join node t, the join operation combines the tables from the two child nodes
of t, l and r, into one table. The bags Bt, Bl and Br all have exactly the same contents. Similar
to the Introduce node, we will use a concept of colorings from these three bags matching. In
this case, we will say that three colorings ct, cl and cr of Bt, Bl and Br respectively match if
for each vertex v ∈ Bt:

• either ct(v) = cl(v) = cr(v) = 1

• or ct(v) = cl(v) = cr(v) = 00

• or ct(v) = 01 while cl(v) and cr(v) are 01 or 00, but not both 00.
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To put this into words: if a vertex in a coloring of Bt is either in our dominating set or
undominated, then this must also be the case for any two colorings from the child nodes that
we combine. However, if a vertex is not in the dominating set but is dominated, then we allow
a couple more options. Such a vertex can be dominated by a vertex from the left side or a
vertex from the right side of the tree decomposition, but it needs to be dominated from at least
one of the two sides.

This now gives us the following formula for join nodes:

At(ct) = min
ct,cl,cr match

Al(cl) + Ar(cr)−#1(ct)

The term #1(ct) in this formula is defined as the number of 1-states in the coloring ct. For any
combination of colorings we count the number of 1-states twice; once from the left side, and
once from the right.

In order to compute tables for Join nodes, 5 combinations need to be considered, giving it
a complexity of O∗(5k). This makes it the most complex type of node to compute in this
algorithm.

3 Current techniques for computing join operations

In this section, we will examine a number of different ways join operations can be performed.
Before we can go into that however, we will first need to provide these definitions:

State combination: Given a state set S with an ordering. The state combination between
two states p, q ∈ S is denoted by jp,q if p ≤ q

The constraint of a ≤ b is important here since we want to make sure that our join operation is
symmetrical. An asymmetrical join operation would treat the two children of a join node differ-
ently, which generally is not behaviour we want. The set JS is the set of all state combinations
for a state set S. It follows that |JS|= 1

2
s(s+ 1).

Join operation: A join operation P is function that takes two tables Al, Ar : SB 7→ Z and
returns a table At : SB 7→ Z.

Each join operation P has a mapping from JS to S ∪ {×}, where × represents the empty
combination. This mapping is what determines how the tables Al and Ar are joined in order to
form the resulting table At. If a state combination has the empty combination × assigned to it,
then this means that that state combination is not allowed to be performed when performing
join operation P . We abuse notation and write P (jp,q) = a with jp,q ∈ JS and a ∈ S ∪ {×},
denoting that P either combines states p and q into state a, or doesn’t combine p and q at all.

Let us say that a join operation P combines two colorings cl and cr. How exactly the values
Al(cl) and Ar(cr) are combined depends on the problem at hand. For our algorithm of Minimum
Dominating Set above, the way in which we combined these values was Al(cl) + Ar(cr) −
#1(ct). Generally however, the way in which we combine values is multiplication, i.e. At(ct) =
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1 01 00

1 1
01 01 01

00 01 00

Figure 1: Join table for the join operation for Minimum Dominating Set. The empty cells
in the table represents the empty combination ×.

Al(cl) · Ar(cr).

Each join operation can be visualized by using a join table. The join table for the join operation
for Minimum Dominating Set shown in the previous section is displayed in Figure 1.

With this, we can start exploring some computation techniques for join operations. All of these
techniques will be performed on a join node t with child nodes l and r.

3.1 Standard method

The first technique for computing join operations that we will discuss is the standard method.
The computation that we used for Minimum Dominating Set in the previous section is an
example of the standard method. When computing a join operation P using the standard
method, the states used for the problem are simply combined with each other in the way
prescribed by P .

The complexity of computing a join operation P using the standard method can be readily
determined. Namely, for p =

∑
ja,b∈JS 2[a=b][P (ja,b) 6= ×], the complexity of computing P with

the standard method is O∗(pk). Terms with square bracket notation, such as [a = b], are equal
to 1 if the statement inside the square brackets is true, and 0 otherwise. More simply, p is equal
to the amount of non-empty cells in the join table for P . Given this, computing the Minimum
Dominating Set join operation with the standard method would have a time complexity of
O∗(5k), which is the same time complexity we arrived at in the previous section.

3.2 State change

The state change method involves using a second state set different from the one the join
operation normally uses in order to compute the table for the join node. Denoting the original
state set by S1 and the second state set by S2, the state change method is performed as follows.
First, the tables Al and Ar are transformed so that they use the new state set S2. The join
operation is performed using the new state changed tables to create a single table using the
state set S2. This table is then state changed back to S1 to get the result we initially wanted.

In order to examine this technique, we will look at a different algorithm for Minimum Domi-
nating Set. The idea of using a different set of state than the usual states in order to solve
Minimum Dominating Set was first introduced in a paper by Alber et al.[8], with an al-
gorithm with a complexity of O∗(4k). Van Rooij, Bodlaender and Rosmanith were the first
to use the State Change method, and with it managed to construct an algorithm that has a
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complexity of O∗(3k).[10] This is the algorithm that will be discussed in this section.

Recall that the state set that we used for this problem in the previous section was S1 =
{1, 01, 00}. The state set that we will change to is S2 = {1, 0?, 00}. The states 1 and 00 are
shared between both state sets and carry the same meaning in both. The new state, 0?, is a
state that represents a vertex that is not in the Dominating Set, but may be dominated or not.
It is essentially a state which means that a vertex with that state would have either the state
01 or 00 if that vertex were to be represented in S1.

Before we tackle the actual changing of states, we must first change something about how we
try to solve this problem. Namely, in order to apply state change in this case we must have
our algorithm solve for the number of Minimum Dominating Sets instead of just its size.
In other words, the tables construed at each node in the decomposition tree will be indexed by
a coloring c and a size κ with 0 ≤ κ ≤ n, meaning they are now represented as At(c, κ). We
do this because otherwise, it is impossibly to say with certainty whether a vertex represented
with state set S2 is dominated or not. These tables hold strictly more information, which will
allow us to carry out the state change without losing information

In order to transform a table At(c, κ) from one state set to another, we use |Bt| steps. Each
step, one of the vertices in all the colorings will be changed, and the values will be updated
accordingly. We continue this until all vertices have been converted.

We will first tackle the conversion from S1 to S2. For any step of the algorithm, we denote by
c1 the part of the coloring that has not yet been changed and therefore uses the state set S1,
and by c2 we denote the part of the coloring that has already been changed and therefore uses
the state set S2. The formula for changing a coloring to use the state 0? then becomes:

At(c1 × {0?} × c2, κ) = At(c1 × {00} × c2, κ) + At(c1 × {01} × c2, κ)

Entries with states 1 or 00 are kept unchanged. If we instead change from S2 to S1, then we
get the following formula for changing back to state 01:

At(c2 × {01} × c1, κ) = At(c2 × {0?} × c1, κ)− At(c2 × {00} × c1, κ)

This completes the explanation for performing a state change. As mentioned, the algorithm
contains a total of |Bt| steps, since each step, one of the vertices in the bag Bt is transformed.
Each step contains O(|At|) operations, one for each entry in the table. This brings the total
computation time to O(|Bt||At|), meaning that we get a general time complexity of O(nk3k)
for performing the state change, which is we can also write as O∗(3k).

Now that we know how to apply the state change, we can look at the full algorithm. In
particular, we will look at the Join node. For the computation of the Leaf, Introduce and
Forget nodes, please refer to Exact-Exponential Time Algorithms. [9, section 11.3, p219-220]

We start with two tables, Al and Ar for the nodes l and r that get joined into node t. The
tables Al and Ar, that use state set S1 will be transformed to use state set S2 using the above
method. Then comes the actual joining of the two tables. In Figure 2, the join tables for
combining two tables using state set S2 is shown.
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1 0? 00

1 1
0? 0?

00 00

Figure 2: Join table for the join operation of Minimum Dominating Set with state set
{1, 0?, 00}.

In order to compute the join operation now, we will simply be using the standard method.
This means that the complexity of joining Al and Ar using state set S2 is O∗(3k), which is
significantly less than our previous method. In particular, we can determine the values for
specific entries in the table using the following formula:

Ax(c, κ) =
∑

κl+κr=κ+#1(c)

Al(c, κl) · Ar(c, κr)

Since for this state set, colorings match one-to-one, we can multiply the two values from either
side for each coloring. Since these values represent the amount of partial solutions on either side,
and the shared vertices between the two (i.e. the ones in the bag Bt) have the same coloring, we
can simply multiply these two values together to obtain our new value. The constraint on the
summand is used in order to make sure that the correct combinations of solutions are assigned
to the correct values of κ, which determines the size of a solution. Since the vertices in the bag
Bt are going to be present in solutions in both the left and right sides of a decomposition, they
will be counted twice in any combination, and thus we need to account for this, which is done
by the term #1(c). Alltogether, this comes down to a time complexity of O(n23k).

After this, we simply change our table back to the original state set, and we can continue on
with the rest of the dynamic programming algorithm. The time complexity of performing the
join operation for Minimum Dominating Set in this manner is O∗(3k), since this is the time
complexity for the two state changes and for the joining of the state changed tables.

3.3 Counting tricks

We will now examine an instance of a counting trick which may be required in order to compute
certain join operations after a state change. In this case, the counting trick involves remember-
ing certain properties of a coloring when applying a state change. These properties can then
be used to compute the join operation.

This time we will consider a new problem, Perfect Matchings. In particular, we will be
counting the number of perfect matchings in a graph. For this problem, we will be using a state
set consisting of two states: S1 = {0, 1}. The state 0 represents a vertex that is not matched yet,
and the state 1 represents a vertex that is matched. The join table for this problem with this
state set is shown in Figure 3. Combining the states 1 and 1 results in an invalid combination
because every vertex must be matched to precisely one other vertex, thus we assign j1,1 the
empty combination ×.

The table for node t is indexed simply by a coloring c, and the values they hold represent the
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0 1

0 0 1
1 1

0 ?

0 0
? ��?

Figure 3: Join matrix for a join computation of Perfect Matching using the state sets {0, 1}
and {0, ? }. The symbol ��? indicates that we need to be careful when performing the state com-
binating j?,? in S2, since we need to take care of the situation where we combine two vertices
that are already matched.

amount of perfect matchings in which the vertices of Bt that have the state 0 are unmatched,
and the vertices with state 1 are matched to a vertex that has been forgotten in a Forget node.

Using the standard method, computing this join operation has a complexity of O∗(3k). However,
this can be improved by using a state change to the state set S2 = {0, ? }. In this state set, the
state ? represents a vertex that may be matched or not. The state change works in a similar
manner to the state change we used for Minimum Dominating Set, so we will not cover that
here.

Figure 3 shows the join table with the state set S2. Only two combinations are legal in this join
table, which would give way to an algorithm with complexity O∗(2k). While the states 0 and ?
can be sensibly combined to the state ?, such a combination is not performed. With the current
combinations in the join table, all possible combinations from the original state set {0, 1} are
made, so no information is lost. In addition, the current combinations are all we need in order
to convert back to the original state set of {0, 1}. The combinations between the states 0 and
? would therefore not add any information, nor are they necessary to perform the reverse state
change, so they are no performed.

There is a slight complication in this join table however, namely the state combination j?,? is
assigned the state ��?. This is because a problem exists with simply combining two ? states.
Namely, we had previously established that combining two 1 states is not allowed, but simply
combining two ? states would not take this restriction into account. We will be using a counting
trick in order to deal with this problem.

For the computations for the Leaf, Introduce and Forget nodes, we again refer to [9][section
11.4, p.222-225]. Instead of immediately applying a state change to the tables, we will first
adjust them slightly. For a table Ad(c), with d ∈ {l, r}, we will compute the table A′d(c, i),
where i represents the number of vertices in Bd with state 1. We then define:

A′d(c, i) =

{
Ad(c) if #1(c) = i
0 otherwise

We then apply the state change to A′l and A′r instead of the original tables. The state changed
tables, while they do not use the state 1 in their state set, still retain information from the
previous representation via the index i. This is what will allow us to compute the join operation
while also making sure that two vertices with state 1 do not get matched together. The formula
we will use to compute this join operation is:
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A′t(c, i) =
∑

il+ir=i

A′l(c, il) · A′r(c, ir)

After this operation, our table A′t(c, i) now contains the total number of partial solutions such
that vertices with state 0 are unmatched, and vertices with state ? are matched either twice,
once or not at all.

We can apply a state change again in order to revert the table A′t back to state set S1. Due
to allowing the ? state in the previous representation to represent a vertex that is matched
either twice, once or not at all, the 1 state now represents a vertex that is matched either twice
or once. However, we can use the index i to determine the correct entries for the table At.
Namely, the entry A′t(c,#1(c)) holds the correct value of partial matchings in which no vertex
is matched twice.

In this way, we can use a counting trick to compute the join operation for counting perfect
matchings with a complexity of O∗(2k).

4 The 2 × 2 join operations

In this section, we will try to classify the join operations of size 2 × 2, using the general state
set S = {0, 1}. We would like to determine the time complexities of these 2×2 join operations,
with particular interest for the join operations that can be computed in O∗(2k). The following
result is therefore quite a nice one.

Theorem 4.1. All 2× 2 join operations can be computed in O∗(2k).

A join operation of size 2 × 2 has 3 possible state combinations, JS = {j0,0, j0,1, j1,1}. The
values we can assign are those in the set S ∪ {×}, where × represents the empty combination.
Therefore, the amount of different 2× 2 join operations would seemingly be 33 = 27.

However, there are some equivalences that can be established between join operations. In
particular, the states assigned to the state combinations by the join operation do not carry any
specific meaning, apart from the empty combination ×. Other than that though, the states 0
and 1 don’t differ from each other, so it stands to reason that a join operation where the states
0 and 1 are switched would be calculated in the same manner as the original join operation.

In fact, we can be a bit more specific in how we switch the states 0 and 1 in a join operation.
We can choose to switch the states only for the input colorings or only for the output colorings.
In both cases we can also calculate these new join operations by using the calculation for
the original join operations by inverting the colorings in the tables before and after the join
operation is performed respectively. The equivalence classes formed by this equivalence relation
all have a size of at most 4, such as the one shown in Figure 4.

This equivalence relation allow us to reduce the amount of join operations that we need to
check the time complexity of. The amount of equivalence classes these equivalence relations
give rise to is 10. A representative of each equivalence class is shown in Figure 5.
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.

Figure 4: One of the equivalence classes for 2× 2 join operations

P1

0 1

0
1

P2

0 1

0 0
1

P3

0 1

0 0
1 0

P4

0 1

0 0
1 0

P5

0 1

0 0 0
1 0

P6

0 1

0 0 0
1 0 0

P7

0 1

0 0
1 1

P8

0 1

0 0 1
1 1

P9

0 1

0 0 1
1 1 0

P10

0 1

0 0 0
1 0 1

Figure 5: The representatives of the ten equivalence classes of 2× 2 join operations
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? 1

? ?
1 1

? 1

? ?
1

Figure 6: Join operations P5 and P6 after being state changed to state set {? , 1}.

0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

Figure 7: Join table for 3× 3 Fourier-Transform-based join operation with S = Z3.

Thus, we only need to find out the time complexity for these 10 different join operations. It
can be noted immediately that join tables P1, P2, P3, P4 and P7 can be computed in O∗(2k).
Since only two combinations are non-empty in these tables, the time complexity for performing
these join operations is trivially O∗(2k), as discussed in Section 3.1. For join operation P8, we
can refer to Section 3.3, where this operation was shown to have a time complexity of O∗(2k).

The state change technique discussed in Section 3.2 can be used to perform join operations P5

and P6 in time complexity O∗(2k). Namely, we perform a state change from the state set {0, 1}
to the state set {? , 1}, where the state ? implies that a vertex can have either state 0 or 1. The
join tables for P5 and P6 using this new state set are shown in Figure 6. Both join operations
only have 2 non-empty combinations, and thus join operations P5 and P6 can be computed in
O∗(2k) as well.

This leaves join operations P9 and P10. The general-form s× s versions of these join operations
are proven to have time complexity O∗(sk) in Sections 5 and 6, and thus the 2 × 2 versions
can be computed in O∗(2k). With this, we have shown that every 2× 2 join operation can be
computed with time complexity O∗(2k). �

5 Fourier-Transform-based join operation

The s×s Fourier-Transform-based join operation, denoted by FTs, is one of the join operations
that can be performed in O∗(sk) time complexity, for s ≥ 2. The s×s Fourier-Transform-based
join operation combines two states set of size s in such a way that, if the states were numbered
from 0 to s− 1, the resulting state would be the sum of those states taken modulo s. In other
words, FTs(jp,q) = p+ q (mod s) where S = Zs, the cyclic group of size s, and jp,q ∈ JS. The
join table for the 3× 3 Fourier-Transform-based join is given Figure 7.

The standard way to calculate this transform described in Section 3.1 would result in a time
complexity of O∗(s2k), but using an s-dimensional Fourier Transform, this time complexity can
be lowered to O∗(sk). This method of computing the Fourier-Transform-based join operation
was first introduced by Cygan et al. [11], but only FT2 and FT4 were actually proven to have
time complexities of O∗(2k) and O∗(4k) respectively.
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The Fourier Transform used here is basically a state change which changes our states to states in
the Fourier Domain. In the following formulas, A will represent the table we are state changing
and B will be the current bag. We use Zs to denote the state set, meaning that ZBs is the set of
all colorings. For a vertex v ∈ B and a coloring x ∈ ZBs , we retain our definition of x(v) to refer
to the color the vertex v takes on in coloring x. However, for these state change definitions, we
also use xb for 0 ≤ b ≤ |B|−1 to refer to the b-th vertex in our coloring x. We define the inner
product x · y =

∑
v∈B x(v) · y(v) for x, y ∈ ZBs . The term ε is the s-th root of unity, meaning

that εs = 1.

Just like with a state change, we will be transforming each vertex in our bag separately, resulting
in |B| different steps. For x ∈ ZBs and 0 ≤ b ≤ |B|−1, we define:

Ãb+1(x1, . . . , xb+1, yb+2, . . . , y|B|) =
∑

yb+1∈Zs

Ãb(x1, . . . , xb, yb+1, . . . , y|B|)ε
xb+1·yb+1

This recursive definition of a table basically performs a Fourier Transform on each vertex of
the current bag. The table Ãb+1 represents a table with colorings that are made up of new
states for the first b+ 1 vertices, and old states for the other vertices. In our definition, we use
the coloring x to denote a coloring in the new states and the coloring y to denote a coloring
in the old states. The table Ã0 contains only old states and is therefore equal to A. The table
Ã|B| will contain only new vertices, and thus this is the table after the state change is fully

performed and we denote it by Ã. The table Ã can also be written as:

Ã(x) =
∑
y∈ZB

s

A(y) · εx·y (1)

The inverse state change is very similar, but has a couple of slight changes. The inverse state
change is basically an inverse Fourier Transform, and is also performed on each vertex in
succession. We denote this state change by Ā, and the recursive table Āb+1 for 0 ≤ b ≤ |B|−1
is defined as:

Āb+1(x1, . . . , xb+1, yb+2, . . . , y|B|) =
1

s

∑
yb+1∈Zs

Āb(x1, . . . , xb, yb+1, . . . , y|B|)ε
−xb+1·yb+1

Similar to Ã, we define Ā0 = A and Ā|B| = Ā. We also now know that Ā is equal to:

Ā(x) =
1

s|B|

∑
y∈ZB

s

A(y) · ε−x·y (2)

Given b such that 0 ≤ b ≤ |B|−1 and Ãb has already been calculated. For all entries in Ãb,
which are at most sk, a sum with s summands is calculated, which results in sk+1 steps, giving
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a general time complexity of O(sk). This is repeated for k vertices in our bag, which results in
a final time complexity of O(ksk) for calculating Ã. The same argument holds for calculating
Ā, so it also has a time complexity of O(ksk).

This concludes the explanation of the state changes that we will used in our proofs. We will
first prove the following lemma, which will be used later:

Lemma 5.1. For y ∈ Zs,

∑
x∈Zs

(εy)x =

{
s when y = 0

0 when y 6= 0

where ε is the s-th root of unity.

When y = 0, the value of εy is 1. Then we get the sum:

∑
x∈Zs

1 when y = 0

which is equal to the amount of terms being summed, which in this case is |Zs|= s.

When y 6= 0, we can instead use a well-known identity for geometric sequences. Namely:

k∑
i=0

ri =
1− rk

1− r
when r 6= 1

which implies that:

∑
x∈Zs

(εy)x =
1− (εy)s

1− εy
when εy 6= 1

Since we know that y 6= 0, we know that εy 6= 1 as required. We also know that (εy)s = (εs)y =
1y = 1 since ε is the s-th root of unity. Therefore, we can now determine that:

∑
x∈Zs

(εy)x =
1− 1

1− εy
= 0 when y 6= 0

which proves the lemma. �

Now we can use this lemma to first show that our two formulas defined in equations (1) and
(2) are inverses.

14



Theorem 5.2. ¯̃A = A

Our first steps will be to work out ¯̃A. For x ∈ ZBs :

¯̃A(x) =
∑
y∈ZB

s

A(y)εx·y

=
1

s|B|

∑
z∈ZB

s

∑
y∈ZB

s

A(y)εz·y

 ε−x·z

=
1

s|B|

∑
y∈ZB

s

A(y)
∑
z∈ZB

s

(
ε(y−x)

)z

The steps above are simple rewritings of ¯̃A using equations (1) and (2).

=
1

s|B|

∑
y∈ZB

s
y=x

A(y)
∑
z∈ZB

s

(
ε(y−x)

)z
+

1

s|B|

∑
y∈ZB

s
y 6=x

A(y)
∑
z∈ZB

s

(
ε(y−x)

)z

Here, we split the equation into two parts: one where the sum over y has the requirement that
y = x, and one where it has the opposite requirement y 6= x. These two requirements cover
every possibility for y, so it is clear that it is equal to what came before it. When y = x, the
exponent y − x will be equal to 0, whereas when y 6= x, the exponent will not be equal to 0.
Having written the formula in this way allows us to then apply Lemma 5.1:

=
1

s|B|

∑
y∈ZB

s
y=x

A(y) · n|B| + 1

s|B|

∑
y∈ZB

s
y 6=x

A(y) · 0

=
1

s|B|
s|B|

∑
y∈ZB

s
y=x

A(y)

=
∑
y∈ZB

s
y=x

A(y)

=A(x)

which proves that ¯̃A = A. �

Now we will try to prove that these state changes allow us to compute the Fourier-Transform-
based join operation:
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Theorem 5.3. The s× s Fourier-Transform-based join can be computed in O∗(sk).

The idea behind this way of calculating the Fourier-Transform-based join is the perform the
state change defined in Ã, perform a pointwise multiplication on the resulting colorings, and

then perform the state change back defined in Ā. Thus, we plan to work out Ãl(x) · Ãr(x) for
x ∈ ZBs .

Ãl(x) · Ãr(x) =
1

s|B|

∑
z∈ZB

s

Ãl(z) · Ãr(z) · ε−z·x

=
1

s|B|

∑
z∈ZB

s

 ∑
y1∈ZB

s

fL(y1) · εz·y1
 ·

 ∑
y2∈ZB

s

fR(y2)ε
z·y2

 · ε−z·x
=

1

s|B|

∑
y1,y2∈ZB

s

Al(y1) · Ar(t2)
∑
z∈ZB

s

εz·(y1+y2−x)

All the above steps can be obtained by rearranging and using the definitions in equations (1)
and (2).

=
1

s|B|

∑
y1,y2∈ZB

s

Al(y1) · Ar(y2)
∏
v∈B

 ∑
z(v)∈Zs

(
εy1(v)+y2(v)−x(v)

)z(v)

In the above step, we simply work in terms of the individual states in a coloring, rather than
the full coloring itself.

We know from Lemma 5.1 that when y1(v) + y2(v) − x(v) = 0 in the nested sum above, the
value of that sum is equal to s, and otherwise it is equal to 0. This can be expressed with the
following formula.

=
1

s|B|

∑
y1,y2∈ZB

s

Al(y1) · Ar(y2)
∏
v∈B

(s · [y1(v) + y2(v)− x(v) = 0])

Again, the notation in the term [y1(b) + y2(b) − x(b) = 0] simply means that if the statement
inside the square brackets is true, then the value of of that term is equal to 1, and otherwise it
is equal to 0.
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=
1

s|B|

∑
y1,y2∈ZB

s

Al(y1) · Ar(y2) · s|B| · [y1 + y2 − x = 0]

=
1

s|B|
s|B|

∑
y1,y2∈ZB

s

Al(y1) · Ar(y2) · [y1 + y2 = x]

=
∑

y1,y2∈ZB
s

y1+y2=x

Al(y1) · Ar(y2)

The above steps are simple rewritings. Bringing everything together, we arrive at:

(Ãl(x) · Ãr(x)) =
∑

y1,y2∈ZB
s

y1+y2=x

Al(y1) · Ar(y2)

We can see that the right-hand side here is exactly the Fourier-Transform-based join operation.
For a given coloring x, the sum on the right-hand side only allows precisely those pairs of
colorings in ZBs that are equal to x when added together in Zs.

Now we only need to determine the time complexity of this algorithm. Joining the table with
changed states takes sk steps (the amount of entries in the two tables, since we simply perform
an entry-wise multiplication). The two state changes have already been shown to have O(ksk)
time complexity, thus our final time complexity is O(ksk). �

6 Möbius-Transform-based join operation

The s× s Möbius-Transform-based join operation, denoted by MTs, is another join operation
that can be performed in O∗(sk) time complexity, for n ≥ 2. The Möbius-Transform-based
join effectively combines two states in such a way that resulting state is equal the highest value
between the two combined states. In other words, MTs(jp,q) = max(p, q), where S = Zs, the
cyclic group of size s, and jp,q ∈ JS.

We perform the Möbius-Transform-based join operation by performing a state change. This
state change allows for the Möbius-Transform-based join operation to be computed in O∗(sk),
as opposed to the standard algorithm which would give a time complexity of O∗(s2k).

We will begin by defining the two state sets S1 and S2. The state set S1 simply has s states
enumerated from 0 to s−1. The state set S2 instead has s states denoted by a≤ for a ∈ Zs−0,
and has one extra state of 0. The state 0 in S2 is equivalent to the state 0 in S1, but a state of
the form a≤ indicates that the vertex in question could have any value from 0 to a. Both state
sets are represented by Zs in the following proofs.

The join tables for the 3×3 Möbius-Transform-based join operation in both state sets is shown
in Figure 8, in both S1 and S2 .
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0 1 2

0 0 1 2
1 1 1 2
2 2 2 2

0 1≤ 2≤

0 0
1≤ 1≤
2≤ 2≤

Figure 8: 3× 3 join table for Möbius-Transform-based join operation, using both S1 and S2.

Now we will look at how the actual state changes will work. As is usual for state changes,
we will perform the state change by iterating over the table we’re state changing one time for
each vertex in our bag B. In the change from S1 to S2, changing to a state of the form aleq
requires us to consider all states from S1 lower than or equal to a in value. For x ∈ ZBs and
0 ≤ b ≤ |B|−1, we define:

Ãb+1(x1, . . . , xb+1, yb+2, . . . , y|B|) =
∑

yb+1∈Zs

yb+1≤xb+1

Ãb(x1, . . . , xb, yb+1, . . . , y|B|)

The definition of xb is the same as in Section 5. We say that x ≤ y if, for all v ∈ B, x(v) ≤ y(v).
We also define x − 1 as the coloring where (x − 1)(v) = x(v) − 1. In the event that x(v) = 0,
we especially define the value of (x− 1)(v) = −1 in order to avoid complications later on. We
define Ã0 to be equal to A, which is the table we are performing the state change on. The
table Ã|B| is therefore the table after the state change is complete. Using the above formula,

we obtain that the value of Ã|B|, which we denote by Ã, is:

Ã(x) =
∑
y∈ZB

s
y≤x

A(y) (3)

We will use a similar approach to do the reverse state change. In this case, we want to change
from S2 to S1. We can obtain a state a from S1 by calculating the difference a≤ − (a − 1)≤.
This leads us to the following recursive formula:

Āb+1(x1, . . . , xb+1, yb+2, . . . , y|B|) =
∑

yb+1∈Zs

(x−1)b+1≤yb+1≤xb+1
0≤yb

Āb(x1, . . . , xb, yb+1, . . . , y|B|)(−1)[yb+1=(x−1)b+1]

We again define Ā0 to be equal to A. The symbol 0 refers to the coloring that has the state 0
for every vertex. The term [yb = (x − 1)b] is equal to 1 if and only if the equation inside the
square brackets is true, and is equal to 0 otherwise. The final table after the state change is
again given by Ā|B|, which we denote by Ā, and is equal to:

Ā(x) =
∑
y∈ZB

s
(x−1)≤y≤x

0≤y

A(y)(−1)
∑

v∈B [y(v)=(x−1)(v)] (4)
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The time complexity calculation for Ã and Ā are almost identical to those in Section 5, but
we will repeat it here. Given b such that 0 ≤ b ≤ |B|−1 and Ãb has already been calculated.
For all entries in Ãb and Āb, which are at most sk, a sum is calculated. For Ãb, the sum has at
most s summands, and for Āb, the sum has 2 summands. In both cases, this results in a time
complexity of O(sk). This is repeated for k vertices in our bag, which results in a final time
complexity of O(ksk) for calculating Ã and Ā.

We will again first prove a lemma which will end up being quite useful.

Lemma 6.1. For x, z ∈ ZBs ,

∑
y∈ZB

s
(x−1)≤y≤x

z≤y

(−1)
∑

v∈B [y(v)=(x−1)(v)] =

{
1 when z = x

0 when z 6= x

When z is equal to x the above sum is equal to 1. This is because of the requirement placed
on y that z ≤ y. Since z = x, this also means that x ≤ y. Due to this, none of the vertices in
the coloring y can possibly have the same state as that of the coloring x− 1. This causes the
term

∑
v∈B[y(v) = (x − 1)(v)] to equal 0, which causes the summand to take on the value 1.

The sum also has the requirement that y ≤ x, which when combined with x ≤ y shows that y
can only take on one value, namely that of the coloring x. This means that the summand 1 is
only counted once, causing the final value of this sum to be 1.

When z ≤ x and z 6= x, we need to do a bit more work. We first split the sum up into two
sums.

∑
y∈ZB

s
(x−1)≤y≤x

z≤y

(−1)
∑

v∈B [y(v)=(x−1)(v)] =

∑
v∈B [z(v)≤(x−1)(v)]∑

i=0

∑
y∈ZB

s
(x−1)≤y≤x

z≤y∑
v∈B [y(v)=(x−1)(v)]=

∑
v∈B [z(v)≤(x−1)(v)]−i

(−1)
∑

v∈B [y(v)=(x−1)(v)]

The sum is split up so that the inner sum now only looks at colorings y such that the term∑
v∈B[y(v) = (x−1)(v)] is equal to the value of

∑
v∈B[z(v) = (x−1)(v)]−i, which is determined

by the outer sum and runs from
∑

v∈B[z(v) ≤ (x − 1)(v)] to 0. Therefore we can be certain
that this step has not changed the value of the term we were rewriting. We have to use the
statement z(v) ≤ (x− 1)(v) rather than z(v) = (x− 1)(v) because, unlike the coloring y, there
is no constraint that x− 1 ≤ z.

Now let’s say that in the inner sum, the value
∑

v∈B[z(v) ≤ (x − 1)(v)] − i is equal to some
value α. Then the nested sum is equal to (−1)α multiplied by the amount of different colorings
y that conform to the requirements set in the sum’s subscript. Due to the requirement of
(x − 1) ≤ y ≤ x, we know that each y(v) has to be equal to either (x − 1)(v) or x(v). Since
z ≤ y, the vertices v where y(v) can be equal to either (x − 1)(v) or x(v) are precisely the
vertices for which z(v) ≤ (x − 1)(v). Thus the amount of vertices v where y(v) can end up
being equal to (x− 1)(v) is equal to

∑
v∈B[z(v) ≤ (x− 1)(v)].
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As mentioned, for each of these vertices the state y(v) has to be equal to either (x − 1)(v) or
x(v). The amount of colorings y that conform to the requirements set by the sum is precisely
the amount of subsets of size α that can be made out of the

∑
v∈B[z(v) ≤ (x− 1)(v)] vertices.

This number can be found using the binomial coefficient. Specifically, it’s equal to:

(∑
v∈B[z(v) ≤ (x− 1)(v)]

α

)
=

( ∑
v∈B[z(v) ≤ (x− 1)(v)]∑

v∈B[z(v) ≤ (x− 1)(v)− i

)
=

(∑
v∈B[z(v) ≤ (x− 1)(v)]

i

)

Which we can then plug back into the equation we left off at:

=

∑
v∈B [z(v)≤(x−1)(v)]∑

i=0

(∑
v∈B[z(v) ≤ (x− 1)(v)]

i

)
(−1)

∑
v∈B [z(v)≤(x−1)(v)]−i

For c, d ∈ R it holds that 1c = 1 and (−1)c−d = (−1)d−c. Using this, we can rewrite this formula
as follows:

=

∑
v∈B [z(v)≤(x−1)(v)]∑

i=0

(∑
v∈B[z(v) ≤ (x− 1)(v)]

i

)
(−1)i−

∑
v∈B [z(v)≤(x−1)(v)](1)

∑
v∈B [z(v)≤(x−1)(v)]

And due to Newton’s Binomium, this is equal to:

= (−1 + 1)
∑

v∈B [z(v)≤(x−1)(v)] = 0

It should be noted that since z ≤ x and z 6= x, the term
∑

v∈B[z(v) ≤ (x−1)(v)] will not equal
0. Therefore the above statement is always defined, and we have proven the Lemma. �

Using this, we can show that the two equations in (3) and (4) are inverses of each other in the
following theorem:

Theorem 6.2. ¯̃A = A

We will start by trying to rewrite ¯̃A in terms of the definitions in (3) and (4).

¯̃A =
∑
y∈ZB

s
(x−1)≤y≤x

0≤y

Ã(y)(−1)
∑

v∈B [y(v)=(x−1)(v)]

=
∑
y∈ZB

s
(x−1)≤y≤x

0≤y

∑
z∈ZB

s
z≤y

A(z)

 (−1)
∑

v∈B [y(v)=(x−1)(v)]
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Then we switch the order of the two nested sums:

=
∑
z∈ZB

s
z≤x

A(z)
∑
y∈ZB

s
(x−1)≤y≤x

z≤y

(−1)
∑

v∈B [y(v)=(x−1)(v)]

The nested sum above looks a lot like something that we can use Lemma 6 for, but we will first
need to split it in two sums as follows:

=
∑
z∈ZB

s
z=x

A(z)
∑
y∈ZB

s
(x−1)≤y≤x

z≤y

(−1)
∑

v∈B [y(v)=(x−1)(v)]

+
∑
z∈ZB

s
z≤x
z 6=x

A(z)
∑
y∈ZB

s
(x−1)≤y≤x

z≤y

(−1)
∑

v∈B [y(v)=(x−1)(v)]

As you can see, we have split the sum into precisely the two cases described in Lemma , which
we can use to arrive at:

=
∑
z∈ZB

s
z=x

A(z) · 1 +
∑
z∈ZB

s
z≤x
z 6=x

A(z) · 0

=
∑
z∈ZB

s
z=x

A(z)

=f(x)

which proves the lemma. �

And now we can continue with the following Theorem.

Theorem 6.3. The Möbius-Transform-based join can be computed in O∗(sk).

Given a coloring x ∈ ZBs . We will work out the result of the state change with (3) and (4).

This comes down to working out the value of Ãl(x) · Ãr(x). We can rewrite this as follows:
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(Ãl(x) · Ãr(x)) =

∑
z1∈ZB

s
z1≤x

Al(z1)

 ·
∑
z2∈ZB

s
z2≤x

Ar(z2)


=

∑
z1,z2∈ZB

s
z1,z2≤x

Al(z1) · Ar(z2)

=
∑
y∈ZB

s
(x−1)≤y≤x

0≤y

 ∑
z1,z2∈ZB

s
z1,z2≤y

Al(z1) · Ar(y2)

 (−1)
∑

v∈B [y(v)=(x−1)(v)]

=
∑
y∈ZB

s
(x−1)≤y≤x

0≤y

(−1)
∑

v∈B [y(v)=(x−1)(v)] ·
∑

z1,z2∈ZB
s

z1,z2≤z

Al(z1) · Ar(y2)

This follows from definitions (3) and (4).

=
∑

z1,z2∈ZB
s

z1,z2≤x

Al(z1) · Ar(z2) ·
∑
y∈ZB

s
(x−1)≤y≤x
z1,z2≤y

(−1)
∑

v∈B [y(v)=(x−1)(v)]

Here we switch the order of the two sums, and rewrite the subscripts accordingly.

=
∑

z1,z2∈ZB
s

z1,z2≤x
cmax(z1,z2)=x

Al(z1) · Ar(z2) ·
∑
y∈ZB

s
(x−1)≤y≤x

cmax(z1,z2)≤y

(−1)
∑

v∈B [y(v)=(x−1)(v)]

+
∑

z1,z2∈ZB
s

z1,z2≤x
cmax(z1,z2)≤x
cmax(z1,z2)6=x

Al(z1) · Ar(z2) ·
∑
y∈ZB

s
(x−1)≤y≤x

cmax(z1,z2)≤y

(−1)
∑

v∈B [y(v)=(x−1)(v)]

We define cmax(z1, z2) ∈ ZBs as the component-wise maximum of z1 and z2, or more formally,
cmax(z1, z2)(v) = max(z1(v), z2(v)) for all v ∈ B. In this step, we split up the sum into two
parts: one where cmax(z1, z2) is equal to x, and another where it is not. A note to make is
that the requirement of cmax(z1, z2) ≤ y is equivalent to the requirement that z1, z2 ≤ y. We
rewrote the requirement in this manner so that it would be easier to apply Lemma 6. Since
the sum is now split into two parts corresponding to the two cases in Lemma 6, the following
holds:
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=
∑

z1,z2∈ZB
s

z1,z2≤x
cmax(z1,z2)=x

Al(z1) · Ar(z2) · 1 +
∑

z1,z2∈ZB
s

z1,z2≤x
cmax(z1,z2)≤x
cmax(z1,z2)6=x

Al(z1) · Ar(z2) · 0

=
∑

z1,z2∈ZB
s

z1,z2≤x
cmax(z1,z2)=x

Al(z1) · Ar(z2)

Bringing everything together, we can see that we have proven that:

Ãl(x) · Ãr(x) =
∑

z1,z2∈ZB
s

z1,z2≤x
cmax(z1,z2)=x

Al(z1) · Ar(z2)

Meaning that our state changes end up giving a result that is equal to sum of all products
between pairs of two colorings for which the component-wise maximum is equal to x. This is
exactly the behaviour that the Möbius-Transform-based join is supposed to give.

In this algorithm, we perform two state changes that both have time complexity O(ksk), and in
between the two state changes we perform a component-wise multiplication of time complexity
O(sk). These parts combine to give us an algorithm with time complexity O∗(sk). �

7 Filtering

The next step that we are going to cover is a result that has some wide application, namely
filtering. Filtering is a technique that can be used in order to compute a join operation Q by
using a different join operation P while only doing polynomially extra work. This is done by
excluding results from the table obtained after performing join operation P in order to get the
table that performing join operation Q would have given. In addition, it is not necessary to
know how P is computed in order to use this technique.

In this section, we will first explain the filtering algorithm. Then we will look more closely at
determining when a join operation Q can in fact be performed using join operation P with the
filtering algorithm. Lastly, we will show an example of this technique being put to use and
prove a result relating to an extension of Disjoin Set Sum.

7.1 The filtering algorithm

Before we start on the algorithm, we will establish some additional definitions. If a join op-
eration P uses s states, then we use the cyclic group Zs to represent the state set S used by
P .
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0 1 2

0 0 1 2
1 1 1 2
2 2 2 2

0 1 2

0 0 2
1 1
2 2 2

Figure 9: The join table on the left represents a full join operation. The join table on the
right represents a suboperation of the operation represented by the join table on the left.

We say that a join operation P is full if P (j) 6= × for all j ∈ JS. We say that a join operation Q
is a suboperation of a join operation P , denoted by Q ⊆ P , if for all j ∈ JS, either Q(j) = P (j)
or Q(j) = ×. These two definitions are visualized in Figure 9.

We define the terms τm and υm for m ∈ ZS as the number of occurrences of m in a coloring,
where τm is used for colorings from the input tables of P and υm is used for colorings from the
table outputted by P . A filter rule is a linear function f(τ0, τ1, . . . , τs−1, υ0, υ1, . . . , υs−1). We
also define the vector space Fs ⊆ R2s spanned by unit vectors with the values τ0, τ1, . . . , τs−1,
υ0, υ1, . . . , υs−1 to be the filter rule vector space that contains all possible filter rules. We can
link each vector in Fs to a filter rule f by simply summing all the coordinates of the vector.

We start the algorithm off with two tables Al, Ar : ZBs → Z to join. The join operations that
we will use are P and Q, with Q ⊆ P . We want to join Al and Ar using P , and then use a
filter rule f ∈ Fs to filter our resulting table in order to get a table equivalent to that of joining
Al and Ar using Q.

The first step of our algorithm is to augment Al and Ar a little bit in order to be able to success-
fully apply the filter rule later on. We define τf (τ0, τ1, . . . , τs−1) = f(τ0, τ1, . . . , τs−1, 0, . . . , 0)
and υf (υ0, υ1, . . . , υs−1) = f(0, . . . , 0, υ0, υ1, . . . , υs−1). For a given table Ad with d ∈ {l, r}, we
define:

A′d(c, τ) =

{
Ad(c) if τ = τf (#0(c),#1(c), . . . ,#s−1(c))
0 otherwise

(5)

This allows us to retain information about the colorings we are combining during the join
operation. The values for τm for m ∈ Zs range from 0 to k, which means that τ can take on at
worst ks−1 different values. This is because of the extra constraint that τ0 + τ1 + · · ·+ τs−1 = k,
which has s − 1 degrees of freedom. We can therefore essentially view a table augmented in
this manner as at most ks−1 copies of the original table. For d = {l, r, t}, we denote by A′d(∗, τ)
the table A′d which has a fixed value of τ .

The table A′d is indexed by colorings c, of which there are sk, and by all possible values for
τ . Therefore, this step has a time complexity of O(kssk). In practice however, the amount
of possible values τ can take on turns out to be significantly lower, which decreases the time
complexity.

We then join the augmented tables A′l and A′r together using P in order to form the augmented
table A′t. We index the table A′t by υ which can take on all the possible values that υf can take
on. The next step is then:
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A′t(∗, υ) =
∑

τl+τr=υ

P (A′l(∗, τl), A′r(∗, τr)) (6)

For this step, we have to iterate over all possible values for υ, of which there are at most ks−1.
For each of these steps, we calculate a sum with ks−1 summands. This number comes from
the fact that τl + τr = υ has one degree of freedom in τl or τr, both of which can take on
ks−1 different values. This results in k2(s−1) times that we perform the join operation P , the
complexity of which we denote by P (k). This results in a time complexity of O(k2(s−1)P (k)).

In order to now obtain the joined table that we want, we have to select entries from A′t in the
following manner:

At(c) = A′t(c, υ) where υ = −υf (#0(c),#1(c), . . . ,#s−1(c)) (7)

We want to keep results precisely when f = 0, or equivalently when τf = −υf . When two
colorings are joined such that f = 0, then we know that the state combinations we want to
deny did not occur in joining these two colorings. The reasoning behind this will become clear
in Section 7.2. This is why we need to augment our tables with τ prior to performing our join
operation P . It allows us to retain the information from before the join that we need in order
to apply our filter rule.

This step involves going through the full table At, which has size sk, and performing a calcu-
lation that uses at most s steps, meaning that sk+1 steps may be required. This results in a
complexity of O(sk) for this step.

After this step, the table At is exactly the table that we are supposed to get after joining tables
Al and Ar together with join operation Q. Between all of the steps in this algorithm, the most
costly one was the joining of the two augmented tables, meaning that the time complexity of
this algorithm is O(k2(s−1)P (k)).

7.2 Filterable sets of state combinations and their filter rules

While the algorithm above is quite nice, we have yet to prove that it actually works. In this
section we will not only show that the above algorithm works, but we will also show how to
determine whether a set of state combinations can be filtered from a join operation, and how
to determine a filter rule that will allow this.

We shall start with an s× s join operation P and a set of state combinations J ⊆ JS. We can
construct a new join operation PJ by setting PJ(j) = P (j) if j /∈ J and PJ(j) = × if j ∈ J .
It is clear that PJ ⊆ P . We say that J can be filtered from P (or that J is filterable in P ) if
there exists a filter rule f ∈ Fs such that if performing the algorithm in Section 7.1 with P and
f results in a table equivalent to joining the two input tables with PJ . We want to have a way
to determine whether J can be filtered from P , and if so, what its filter rule would be.
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Since filter rules are made up of the terms τm and υm with m ∈ Zs, it would make sense to start
off by trying to work with these terms. Define lj as the amount of times the state combination
j ∈ Js is performed when executing a given join operation. Next, we will try to write filter rule
terms τm and υm for all m ∈ Zs in terms of lj.

The terms τm for m ∈ Zs are terms that represent the amount of m-states in a coloring before
the join operation is performed. With this, we can form the following equation:

τm = 2ljm,m +
∑
a∈Zs
a<m

lja,m +
∑
a∈Zs
a>m

ljm,a

Recall that jp,q for p, q ∈ S refers to the state combination that combines p and q. Every time
that the state combination jm,m is performed, the original two colorings had ljm,m different
vertices each that had the state m, resulting in at least 2ljm,m m-states in the colorings before
the join operation. A similar argument for the joins in which only one side has the state m gives
us the above formula. Important to note is that this equation doesn’t change with different
join operations.

The terms υm for m ∈ Zn are instead terms that represent the amount of m states in a coloring
after the join operation has been performed. The equation for this is quite straightforward as
well; if P (j) = m, then that means that when joining two colorings together, the amount of
times the state combination j has to be performed is the amount that gets contributed to υm.
In other words:

υm =
∑
j∈J

[P (j) = m] · lj

We re-use the same square bracket notation as from Sections 5 and 6. These equations do
change with different join operations, since these equations explicitely use the join operation
P .

The introduction of the terms lj and rewriting the filter rule terms in these equations is not
without reason. Since we want to filter the state combinations in J from our resulting join
table, what we essentially want is for lj = 0 for all j ∈ J . In writing our filter rule terms as
equations in terms of lj, we can tackle them as a system of linear equations which allows us to
see what we can do in order to get the required lj terms set to 0.

As with any system of linear equations, we can write the system in the form of a matrix, which
we will call the filtering matrix for join operation P and denote by MP . The filtering matrix MP

has two parts: a non-augmented part denoted by M ′
P containing the columns corresponding to

the lj terms, and an augmented part denoted by M ′′
P containing columns corresponding to the

filter rule terms τ0, τ1, . . . , τs−1, υ0, υ1, . . . , υs−1. Initially, M ′′
P is simply I2s, the 2s× 2s identity

matrix. The filtering matrix MP for a general join operation P is shown in Figure 10. We note
that we don’t write M ′′

P in matrix form in order to save space.

The dimensions of MP can be determined quite easily. The filtering matrix MP has precisely
one row for each of the terms τm and υm with m ∈ Zs, of which there are 2s. Each column
in M ′

P corresponds to one of the lj terms in our original equations, meaning the amount of
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2 1 · · · 0 τ0
0 1 · · · 0 τ1
...

...
. . .

...
...

0 0 · · · 2 τs−1
[P (j0,0) = 0] [P (j0,1) = 0] · · · [P (js−1,s−1) = 0] υ0
[P (j0,0) = 1] [P (j0,1) = 1] · · · [P (js−1,s−1) = 1] υ1

...
...

. . .
...

...
[P (j0,0) = s− 1] [P (j0,1) = s− 1] · · · [P (js−1,s−1) = s− 1] υs−1


Figure 10: Filtering matrix MP for a general join operation P . M ′

P is on the left side, and
M ′′

P is on the right side. Note that we do not write M ′′
P in matrix form in order to save space.

2 1 1 0 0 0 τ0
0 1 0 2 1 0 τ1
0 0 1 0 1 2 τ2
1 0 0 0 1 0 υ0
0 1 0 0 0 1 υ1
0 0 1 1 0 0 υ2


Figure 11: Filtering matrix MFT3 for the 3×3 Fourier-Transform-based join operation. Intu-
itively, the first s coordinates of a column vector in M ′

FT3
correspond to the state combination

j ∈ JZ3 that column vector refers to, and the last n coordinates correspond to the value of
FT3(j). If we look at the third column vector from the left for example, we see that the coor-
dinates corresponding to τ0 and τ2 both have a value 1, meaning that this column corresponds
to the state combination j0,2. This column vector also has a value of 1 on the coordinate corre-
sponding to υ2, meaning that FT3(j0,2) = 2, which is indeed true.

columns in M ′
P is equal to |JS|= 1

2
s(s + 1). This also implies that the amount of columns

in M ′
P is equal to or larger than the amount of rows when s ≥ 3. Since M ′′

P is I2s, it has 2s
columns and therefore the dimensions 2s× 2s.

Since the filtering matrix MP shown in Figure 10 is perhaps a little overwhelming, we also show
the filtering matrix MFT3 for the 3 × 3 Fourier-Transform-based join operation FT3 in Figure
11.

We can make a couple of observations on our filtering matrix.

Lemma 7.1. For a full join operation P , M ′
P is not a full-rank matrix.

The sum of the last s row vectors of M ′
P is equal to a vector in which the coordinate corre-

sponding to the term lj takes on the value:

∑
m∈Zs

[P (j) = m]

The value of [P (j) = m] can only be 1 or 0. Since P is a full join operation, we know that for
all j ∈ JS, P (j) 6= × and thus P (j) = m for some m ∈ Zs. Since only one term in the sum is
equal to [P (j) = m] for this m, we know that the value of this coordinate is equal to 1. Since
the same reasoning holds for all coordinates, we know that the sum is equal to the 1 vector.
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Similarly, the sum of the first s row vectors is also equal to a vector where each coordinate has
the same value. If the coordinate corresponds to a term of the form lja,a , then the equation
with τa will contribute a value of 2 to the sum, and all the others will contribute 0. If the
coordinate corresponds to a term of the form lja,b with a 6= b, then the equations for τa and τb
will both contribute a value of 1 to the sum, and all the others 0. Thus, we see that the sum
of the first s row vectors is equal to the 2 vector. The 1 and 2 vectors are linearly dependent,
so we know that the rank of M ′

P is not full. �

Lemma 7.2. For a join operation P , M ′′
P is a full-rank matrix.

M ′′
P is the identity matrix I2s, so this is trivially true. �

Now that we have seen how a filtering matrix looks like and determined a couple of lemmas on
filtering matrices, we are ready to move onto the next step, which is to put the non-augmented
part of the filtering matrix, M ′

P , into row-reduced echelon form. During this process, we also
make sure to adjust the augmented park of the filtering matrix, M ′′

P , as necessary. While it isn’t
a necessity to put the filtering matrix in row-reduced echelon form, it does make the following
steps easier to carry out.

What we end up with is a collection of rows in our matrix that on one side represent formu-
las with lj for and on the other side contains formulas made up of the terms τ0, τ1, . . . , τs−1,
υ0, υ1, . . . , υs−1. The terms lj for j ∈ JS are terms we cannot influence or determine during
the course of the join operation. While we also can’t influence of the variables τm and υm for
m ∈ Zs, we can at least determine the values of these variables after the algorithm has com-
pleted and use those values in order to possibly determine values for lj for j ∈ JS. Of course,
for our purposes, we would like to be able to determine when lj = 0 for j ∈ J ., as that would
mean we would have a way of using the variables τm and υm for m ∈ Zs in order to find out
which results don’t use the joins that we want to filter.

So take a row from our filtering matrix. This doesn’t have to specifically be a row from the
row-reduced echelon form of the filtering matrix; any linear combination of rows from MP will
do. Since our matrix is based on a system of linear equations, we know this row will also
represent an equation. This equation has the following form:

cj1lj1 + cj2lj2 + · · ·+ cj|Js|lj|Js| = c′τ0τ0 + · · ·+ c′τs−1
τs−1 + c′υ0υ0 + · · ·+ c′υs−1

υs−1 (8)

where the coefficients c and c′ are defined as the coordinates of the row vector we took from
MP . The state combinations ji ∈ Js with 1 ≤ i ≤ |Js| are simply the state combinations in Js
in some arbitrary order.

This now leads into our main theorem of this paper.

Theorem 7.3. Given a full join operation A and a set J ⊆ Js. The set J can be filtered from
P if and only if we can make a row vector in M ′

P using basic row operations such that cj > 0
if j ∈ J and cj = 0 if j /∈ J .
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Assume we can make such a row vector in the filtering matrix MP . Then we can set up an
equation in the form of equation 8. We can take the right-hand side of this equation to be our
filter rule f(τ0, τ1, . . . , τs−1, υ0, υ1, . . . , υs−1). When we set the right-hand side equal to 0, as we
do to the filter rule f in the algorithm, then we find that:

cj′1lj′1 + · · ·+ cj′|J|lj′|J| = 0

where j′i ∈ J and cj′i > 0 for all 1 ≤ i ≤ |J |. Since all the cj′ terms are positive and since the
lj′ terms cannot be negative, the only way the above equation can hold true is if lj′ = 0 for all
j′ ∈ J . This means that our filter rule f does indeed filter out all state combinations in J , and
thus J can be filtered from P .

Assume that we cannot make a row vector as described in the theorem. Then we will have to
show that we cannot always determine that lj′ = 0 for all j′ ∈ J . In the event that cj′ = 0 for
j′ ∈ J , then lj′ can take on any value in N. If cj 6= 0 for j /∈ J , then make cj = 0 via basic row
operations. If this is not possible for all j /∈ J , then we will have extra degrees of freedom in
lj, for all j /∈ JS\J with cj 6= 0, so we cannot determine that lj′ = 0 for all j′ ∈ J . Therefore,
we can assume cj′ are non-zero if and only if j′ ∈ J .

In that case, we know some of our non-zero c coefficients are positive, and the other non-zero
c coefficients are negative. We denote the positive c coefficients by c+s and the negative c
coefficients c−t , where s and t range between 1 and smax and tmax, the total number of positive
and negative c coefficients respectively. Call the sum of the positive c coefficients C+, and the
sum of the negative c coefficients C−. We can then put all terms lj with a positive c coefficient
equal to −C− and all terms lj with a negative c coefficient equal to C+. These are both positive
values. This then gives us:

c+1l+1 + . . . + c+smax
l+smax

+ c−1l−1 + · · ·+ c−tmax
l−tmax

=− c+1C− − . . . − c+smax
C− + c−1C+ + · · ·+ c−tmax

C+

=− C−(c+1 + · · ·+ c+smax
) + C+(c−1 + · · ·+ c−tmax

)

=− C− · C+ + C+ · C−
=0

In short, our equation has a degree of freedom left. This means that if we were to apply the
filter rule in this case, we cannot actually be certain that all the state combinations that we
wish to filter appear 0 times in our join. Since this reasoning applies to all possible equations
we can make for J , we cannot filter J from P in this case. �

Having proven the main filtering theorem, we end this section with some corollaries.

Corollary 7.3.1. For a full s × s join operation P and filterable sets of state combinations
J1, J2 ⊆ JS and filter rules f1 and f2 that filter J1 and J2 from P respectively. If f1 = f2, then
J1 = J2.

We show that if J1 6= J2, then f1 6= f2. Since J1 and J2 are both filterable, we can construct
two row vectors complying to the requirements in Theorem 7.3 using basic row operations to
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0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

0 1 2

0 0 1 2
1 1 2
2 2

Figure 12: 3× 3 join tables for join operations FT3 and FT ∗3 .

the filtering matrix MP . These same basic row operations give us the filter rules f1 and f2,
which can be obtained from M ′′

P . Assume that f1 = f2. Then the row vectors in M ′′
P are clearly

linearly dependent, meaning the rank of M ′′
P cannot be full. However, we know from Lemma

7.2 that the rank of M ′′
P is full, leading to a contradiction. �

Corollary 7.3.2. For a full s × s join operation P , if J1, J2 ⊆ JS are filterable, then J1 ∪ J2
is also filterable

We know from Theorem 7.3 that if J1 and J2 are filterable, we can construct two row vectors
r1 and r2 from the rows in MP using basic row operations such that the equations that come
forth from r1 and r2 have cj > 0 if j ∈ J1 or j ∈ J2, and cj = 0 otherwise. Then the equation
corresponding to the row vector r1 + r2 has cj > 0 if j ∈ J1 ∪ J2 and cj = 0 otherwise, which
by Theorem 7.3 makes J1 ∪ J2 filterable. �

Corollary 7.3.3. For any full s× s join operation P with s ≥ 3, there will always be a J ⊆ JS
that cannot be filtered from P .

Assume that we can filter all J ⊆ JS from P . Then we can also filter all singleton sets of state
combinations, i.e. J ⊆ Jn with |J |= 1. From Theorem 7.3, we know that, for every j ∈ JS, we
must be able to use basic row operations on the filtering matrix MP in order to get a row vector
such that cj > 0, and all the others coordinates are equal to 0. This gives us |JS|= 1

2
s(s + 1)

row vectors which are all linearly independent. This implies that rank(M ′
P ) ≥ 1

2
s(s + 1). We

also know from Lemma 7.1 that rank(M ′
P ) < 2s. This implies that 1

2
n(n + 1) < 2s, which is

only true when s < 3. �

7.3 An example with Fourier-Transform-based join

In the final part of this section, we will give an example of how to calculate a join operation with
this method. The join operation we will be trying to compute is the 3× 3 Fourier-Transform-
based join operation FT3 with J = {j1,2, j2,2} our set of state combinations to filter. This new
join operation is denoted by FT ∗3 . The join tables for FT3 and FT ∗3 are shown in Figure 12.

The reason why we chose specifically this join operation as an example is that this join operation
already has a fairly clear filter rule that we could use. We can see that FT ∗3 (jp,q) = max(p+q, 2),
and thus a filter rule we can use is:

g(τ0, τ1, τ2, υ0, υ1, υ2) = 0 · τ0 + 1 · τ1 + 2 · τ2 − 0 · 2 · υ0 − 1 · 2 · υ1 − 2 · 2 · υ2
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1 0 0 0 0 −1 1

3
τ0 − 1

3
τ2 + 1

3
υ0 − 1

3
υ1

0 1 0 0 0 1 υ1
0 0 1 0 0 1 1

3
τ0 + 2

3
τ2 − 2

3
υ0 − 1

3
υ1

0 0 0 1 0 −1 1
6
τ0 + 1

2
τ1 − 1

6
τ2 − 1

3
υ0 − 2

3
υ1

0 0 0 0 1 1 −1
3
τ0 + 1

3
τ2 + 2

3
υ0 + 1

3
υ1

0 0 0 0 0 0 −1
2
τ0 − 1

2
τ1 − 1

2
τ2 + υ0 + υ1 + υ2


Figure 13: Filtering matrix MFT in reduced row-echelon form

We make gratuitous use of coefficients here in order to more clearly convey what is going on.
First off, the sum τ0+τ1+τ2 will always be twice as large as the sum υ0+υ1+υ2 due to it being
based on two colorings compared to one. The sum of two states in a legal state combination
in FT ∗3 is also its resulting state. This behaviour can be captured by multiplying each term τm
by m and summing these together, and setting this equal to the sum created by summing the
terms υm multiplied by 2m, all for m ∈ Zs. This then results in the above filter rule.

Despite already having a filter rule, we will still go through the steps outlined in the previous
section in order to find a filter rule for FT ∗3 . We set up the filtering matrix MFT3 , which was
shown in Figure 11. Then we put MFT3 in reduced row-echelon form, the result of which is
shown in Figure 13.

Our goal now is to be able to apply Theorem 7.3, since this theorem directly allows us to
determine whether or not we can filter J from FT3. According to this theorem, we can filter
J from FT3 if and only if we can make a row vector in M ′

FT3
using basic row operations such

that cj1,2 , cj2,2 > 0, and cj = 0 for j ∈ J − J .

Thankfully, this is the case, and quite clearly so. The 5th row vector in M ′
FT3

, which is equal to
(0, 0, 0, 0, 1, 1), is already in this form. This means we can extract our filter rule f quite easily
from the 5th row of M ′′

FT . Using Theorem 7.3, we have determined that it is possible to filter
J from FT , by using the filter rule f(τ0, τ1, τ2, υ0, υ1, υ2) = −1

3
τ0 + 1

3
τ2 + 2

3
υ0 + 1

3
υ1.

Interestingly though, the filter rule f is quite different from the filter rule g we had established
earlier. However, we can see with a little bit of effort that these two end up resolving to be
the same. First, we can multiply f by a constant 3, since we are setting f equal to 0 in our
algorithm anyway. We can also use the identity τ0 + τ1 + τ2− 2υ0− 2υ1− 2υ2 and add this onto
f (which also appears in the 6th row vector in M ′′

FT3
). This gives us:

3(−1

3
τ0 +

1

3
τ2 +

2

3
υ0 +

1

3
υ1) + τ0 + τ1 + τ2 − 2υ0 − 2υ1 − 2υ2

=− τ0 + τ2 + 2υ0 + υ1 + τ0 + τ1 + τ2 − 2υ0 − 2υ1 − 2υ2

=τ1 + 2τ2 − 2υ1 − 4υ2

=g(τ0, τ1, τ2, υ0, υ1, υ2)

and so we can see that the filter rules f and g give the same result.

We will now look at how to calculate FT ∗3 with the algorithm in Section 7.1. We can choose
to use either f or g, or any other filter rule that is a linear combination of these. We will
be using f ′ = 3f . The time complexity of the algorithm is O(k2(s−1)P (k)). In this case, the
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join operation we are using in our algorithm is FT3, which has been proven to have a time
complexity of O(k3k). The value of s here is 3, so if we strictly apply the algorithm in Section
7.1, then we get a time complexity of O(k53k).

We can improve this however. In the algorithm in Section 7.1, we augment our tables with a
term τ , which takes on all possible values that τf ′ can take on. Worst-case, this means τ takes
on k2(s−1) different values. However, for the filter rule we are using for this join operation, this
number is quite a bit lower. We can see from τf ′(τ0, τ1, τ2) = −τ0 + τ2 that the values that τf ′ ,
and therefore τ , can take on range from −k to k. Similarly, the values υf ′ , and therefore υ, can
take on range from 0 to 2k since υf ′(υ0, υ1, υ2) = 2υ0 + υ1. Since the values we augment our
tables with only have complexity O(k), rather than O(k2), we can reduce the time complexity
of our algorithm to O(k33k).

Another reason why we choose this join operation can solve an extension of the Disjoint Set
Sum problem. This problem asks for k-tuples A,B ⊆ {0, 1, . . . , s−1}k, what the size of the set
A
⊕
B is, where A

⊕
B = {(A1 +B1, A2 +B2, . . . , Ak +Bk)|Ai +Bi ≤ s− 1 for all 1 ≤ i ≤ k},

with Ai and Bi the i-th element of the k-tuple A and B respectively. We can solve this with
the join operation FT ∗s by using it with two tables Al and Ar, where Al(c) = Ar(c) = 1 for all
c ∈ ZBs .

An algorithm to solve this extension in O(k3sk) was given by Cygan and Pilipczuk [12], which
we have just matches. We will show that this problem can be solved in O(k2sk) for constant s
in the theorem below.

Theorem 7.4. The join operation FT ∗s can be computed in O(k2sk+2), which is O(k2sk) when
s is constant.

This algorithm follows a structure similar to that of the algorithm in Section 7.1. We start
with tables Al(c) and Ar(c). We can extend the filter rule g from the previous explanation in
order to fit with the general case join operation FT ∗s :

g(τ0, τ1, . . . , τs−1, υ0, υ1, . . . , υs−1) = τ1 + 2 · τ2 + · · ·+ (s− 1) · τs−1 + υ1 + 2 · υ2 + · · ·+ (s− 1) · υs−1

For this filter rule g, the values that τg and υg can both take on values ranging from 0 to sk. We
augment our tables Al(c) and Ar(c) to A′l(c, τ) and A′r(c, τ) respectively just like in equation 5,
which in this case has a time complexity of O(sksk) = O(ksk+1).

However, the step in equation 6 is performed differently. Instead of summing over possible
combinations of τl and τr and performing the join operation FT ∗s for each of theses combinations,
we instead start by performing FT ∗s on the full tables A′l(c, τ) and A′r(c, τ). In particular, we
perform the state change defined in Section 5, equation 1 on our tables A′l(c, τ) and A′r(c, τ).
These tables have ksk+1 entries, and the algorithm for state changing them iterates over the
entire table k times, so this step has time complexity O(k2sk+1).

Now we use the sum shown in equation 6 to join the state changed tables A′l(c, τ) and A′r(c, τ)
together. This works as follows:
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A′t(∗, υ) =
∑

τl+τr=υ

A′l(∗, τl) · A′r(∗, τr)

We iterate over sk possible values of υ and sk possible ways that τl + τr can be equal to υ.
Each of these iterations also performs an entry-wise multiplication on a table of size sk (since
τl and τr are fixed), just like in Theorem 5.3. This means that this step has a time complexity
of O(k2sk+2).

We state change our tables A′l and A′r back to Al and Ar, which has a time complexity O(ksk+1).
Lastly, we perform the filtering in the same way as in equation 7, which has time complexity.
O(sk). The total time complexity of our algorithm is therefore O(k2sk+2), which is O(k2sk)
when s is constant. �

8 Further research opportunities and conclusion

We end this thesis by discussing further research opportunities and concluding the thesis.

In Theorem 4.1, we gave an overview of the time complexities for the 2 × 2 join operations
and proved that each 2× 2 join operation has a time complexity of O∗(2k). There are further
research opportunities into other sizes of join operations, with the 3×3 join operations likely to
be the next step. Using the equivalence relation explained in Section 4, the amount of 3×3 join
operations can be determined to be at most 160. The filtering technique can be used to great
effect here as well, since given a join operation P with a certain complexity, then suboperations
Q ⊆ P that can be obtained by filtering P will have the same exponential complexity.

The filtering technique itself is also subject to further research. While the filtering technique
is already a very useful technique when the join operation P used to compute Q ⊆ P is not
known, it has the potential to be even more useful once we can make certain assumptions about
P and change the way that P is performed. We saw in Theorem 7.4 that as soon as we were
able to change the order of the steps that we normally take in the filtering algorithm, that we
were able to decrease the complexity of the algorithm by a factor k. Therefore, research into
other general-form filtering algorithms that make more assumptions on how P is calculated
might prove worthwhile.

There are further research opportunities for calculating components in join operations. We
define a component in a join operation P with state set S as a subset S ′ ⊂ S such that
js′,s = × for all s′ ∈ S ′ and s ∈ S\S ′. In Figure 14, a join operation using state set S = Z6

with components {0, 1, 2} and {3, 4, 5} is shown.

A useful result for join operations of this form would be for the components to be able to be
calculated as separate join operation. This would then allow us to use other algorithms for
computing the different components of a join operation. The join operation shown in Figure
14 could use the algorithm explained in Theorem 7.4 for both of its components, for example.
This would lead to improvements in algorithms for [ρ-σ]-domination problems, which were
introduced by Telle [7]. In particular, the join operation in Figure 14 is the same as the join
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0 1 2 3 4 5

0 0 1 2
1 1 2
2 2
3 3 4 5
4 4 5
5 5

Figure 14: Join table for a join operation using state set S = Z6. This join operation has
components {0, 1, 2} and {3, 4, 5}.

operation for a [ρ-σ]-domination problem with ρ = σ = {0, 1, 2}. A decomposing theorem could
also be useful when attempting to summarize the time complexities of all s× s join operations
for s > 2.

Finally, we answer the research questions that we posed at the beginning of the thesis period.

‘What properties must a join matrix have such that spe-
cific methods can be applied in the process of computing
a join operation with this join matrix? What complexity
can be achieved for join matrices of a specific form?’

(1)

This was a fairly open-ended research question, and thus this thesis does not give a complete
answer. However, our filtering theorem does provide a partial answer. In this theorem, we
have shown and worked out a method for computing join matrices and shown under which
circumstances this method can be applied.

‘Can a classification of the 2×2 join matrices be made?’ (2)

This research question has been fully answered. Yes, we can make a classification of the 2× 2
join matrices, and we have shown that all these join matrices can be computed in O∗(2k).

‘How do generalizations and join techniques scale to
larger state sets?’

(3)

While this question may not have been answered in any general way, we have always taken
scaling into account in the techniques that we have developed, including the filtering technique
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and the computation of the Fourier- and Möbius-Transform-based join operations. In all these
cases, scaling ended up working fairly straightforwardly.

‘Can we construct a generic theorem for join opera-
tions?’

(4)

This question cannot be answered as of now, but we have definitely made certain advancements
in this question as a result of this thesis. Filtering in particular allows for us to gain a clearer
picture of which join operations can be computed with which time complexities. Our result on
2× 2 join operations in Theorem 4.1 also contibutes to a generic theorem on join operations.
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