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Abstract

The solar energy market has grown rapidly over the last few years.
Since solar energy depends strongly on weather and climate, solar resource
assessment is essential for photovoltaic power plants. Accurate solar radi-
ation climatology data sets are the foundation of photovoltaic power plant
performance models. In this study data from two polar-orbiting satellite
spectrometers (OMI and SCIAMACHY) was used to create a daily mean-
monthly mean surface solar irradiance product. This product shows good
agreement with surface measurements and a comparable surface solar ir-
radiance product, CERES. The created surface solar irradiance product is
used to analyze trends, time series and anomalies, globally and locally. It
is found that a difference in aerosol optical depth input can affect the local
surface solar irradiance up to 60 W/m2, but globally differences aerosol
optical depth input does not affect the surface solar irradiance. There
is no clear trend in the created surface solar irradiance product in the
overlapping time period of the two satellites.
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1 Introduction

As the world is transitioning towards more sustainable ways of generating en-
ergy, the solar energy market has grown rapidly over the last few years. In order
to predict the performance of photo-voltaic power plants an accurate solar re-
source assessment is crucial. In this research a surface solar irradiance daily
mean-monthly mean product is derived from the surface solar irradiance (SSI)
measurements from two satellites, OMI and SCIAMACHY.

OMI (Ozone Measuring Instrument) is a Dutch-Finnish instrument on board
of the EOS-Aura satellite from NASA which is part of the A-train. The A-
train consists of six satellites that are only a few minutes apart and crosses
the equator each day approximately around 13:30. Aura (with OMI on board)
crosses the equator as the last satellite in the constellation. OMI is a UV-
visible spectrometer with a wavelenght range from 270 to 500 nm, the spectral
resolution of OMI is 0.42 to 0.63 nm. This makes OMI not just capable of
measuring ozone, but also other gases and aerosols. OMI has a wide enough
swath to capture a global image in one day with a resolution of 13 x 24 km2.
OMI was launched in July 2004 and is still collecting data. SCIAMACHY
(SCanning Imaging Absorption SpecroMeter for Atmospheric CHartographY)
is an instrument onboard of ENVISAT (Environmental Satellite) and was active
from 2002 until 2012. SCIAMACHY is a spectrometer with a wavelength range
from 240 to 2380 nm with a spectral resolution of 0.2 to 1.5 nm. The goal of
SCIAMACHY was to improve our knowledge of the amounts and distribution
of several gases in the atmosphere. SCIAMACHY has a more narrow swath
width than OMI and will reach global coverage after six days of measurements.

This report describes how these two satellite measurements can be combined
into a daily mean-monthly mean SSI product. First both satellite SSI products
will be individually validated using surface measurements from the Baseline
Surface Radiation Network (BSRN). After this the combined product will be
derived, first the daily mean and from the daily mean the monthly mean will
be calculated, hence the daily mean-monthly mean. Furthermore the combined
product is validated with surface measurements from BSRN-stations and using
a comparable data-set from CERES (Clouds and the Earth’s Radiant Energy
System). After the validation, the created data-set is analyzed, looking for
trends and anomalies. The research questions asked in this research are:

• Is it possible to create a reliable global surface solar irradiance product
from two polar-orbitting spectrometers?

• What is the influence of clouds on the surface solar irradiance?

• What is the influence of aerosols on the surface solar irradiance?

• Are there significant trends in the surface solar irradiance, regional or
global?
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Figure 1: The 4 most important influences on SSI, 1: Solar Zenith Angle, 2:
Clouds, 3: Atmospheric Gases, 4: Aerosols.

When researching the SSI there are four major components that influence
the amount of radiation that reaches the surface of the earth. Figure 1 shows
those four components. The first component is the solar zenith angle. This
is the angle between the normal of the earth’s surface and the position of the
sun. If the solar zenith angle becomes smaller the SSI increases and vice versa.
Clouds, atmospheric gases and aerosols affect the SSI by their reflecting, scatter-
ing and absorbing characteristics. Figure 2 shows two adjacent days of surface
observations to demonstrate the impact of clouds on SSI. The first day, the
blue line, is a cloud-free day and shows a parabola with the maximum at 720
minutes (12 hours) after midnight, just as expected. The second day, the red
line, is a cloudy day. The graph shows how large the influence of clouds can
be on the SSI, because it deviates significantly from the parabola from the day
before. At the time where the cloud is present, the SSI is even a bit higher than
the cloud-free SSI. This is due to the multiple scattering and reflection between
scattered clouds.

Figure 2: SSI of February 1, 2005 (cloud-free, blue) and February 2, 2005
(cloudy, red) at Alice Springs, Australia
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2 Theoretical background

2.1 Solar irradiance and scattering

To understand the amount of solar irradiance that reaches the surface of the
earth, the processes that the light will endure during the journey from the sun to
the earth’s surface have to be understood. What happens to the irradiance from
the sun before it reaches the top of the atmosphere. The amount of irradiance
that reaches the top of the atmosphere depends on two things. The first one is
the distance between the sun and the earth. The distance between the sun and
the earth has long term variabilities (Milankovich cycles) of thousands of years
and short term variabilities within a year. This research does not contain the
long term change in SSI, therefore the Milankovich cycles will not be discussed.
The short term variability in the distance between the earth and the sun is
created by the movement of the earth in an ellipse around the sun, see figure 3.

Figure 3: The orbit of the earth around the sun. From Brittanica encyclopedia,
2015

Figure 3 shows that the distance between the earth and the sun is minimal
on January 3 and maximal on July 4. Therefore, the solar irradiance at the top
of the atmosphere varies between 1415 W/m2 on January 3 and 1321 W/m2 on
July 4 (Sengupta et al., 2015).

The second aspect that influences the magnitude of the solar irradiance at
the top of the atmosphere on a short term is the appearance of regions of reduced
surface temperature on the sun called sunspots. The larger the area covered by
sunspots the smaller the solar irradiance is. The amount of sunspots on the sun
has an 11-year periodicity and therefore induces an 11-year periodicity in the
solar irradiance (Sengupta et al., 2015). The 11-year cycle is featured in figure
4
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Figure 4: The relataion between solar irradiance and sunspots. From R. A.
Rhode, 2008

The important feature from figure 4 is that the relation between the observed
sunspots and the measured annual solar irradiance at the top of the atmosphere
is very clear.

Now that it is clear what determines the solar irradiance that reaches the
top of the atmosphere it is necessary to find out what happens when the solar
irradiance enters the atmosphere. When the light enters the atmosphere it will
stumble upon particles. These particles can absorb and scatter the sunlight. As
a consequence the spectrum of the light that reaches the surface of the earth
differs from the spectrum at the top of the atmosphere. Figure 5 shows the
spectrum of sunlight at the top of the atmosphere and the spectrum at sea
level, due to absorption and scattering.
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Figure 5: The relataion between solar irradiance and sunspots. From R. A.
Rhode, 2007

Due to the interaction between light and a particle, light will scatter (Young
and Freedman, 2015). The way of scattering is determined by the size of the
particle and the wavelength of the light. There are three ways of scattering,
Rayleigh scattering, Mie scattering and Geometric scattering. When the particle
is much smaller than the wavelength the way of scattering will be Rayleigh
scattering. When the size of the particle is in the same order of magnitude the
way of scattering will be Mie scattering and when the particle is much larger
than the wavelength Geometric scattering will occur (D.W. Hahn, 2009). In the
atmosphere there will be Rayleigh scattering, because the particles of the gases
in the atmosphere are much smaller than the wavelength of sunlight. Droplets in
clouds have a similar size as the wavelength of sunlight, therefore when sunlight
reaches a cloud, Mie scattering will occur.

If the sunlight collides with a much smaller particle than the wavelength,
Rayleigh scattering will occur. Equation 1 shows the intensity I of the scattered
light (D.W. Hahn, 2009).

I = I0
1 + cos2θ

2R2
(
2π

λ
)4(

n2 − 1

n2 + 2
)2(

d

2
)6 (1)

In this equation I0 is the initial intensity, θ the scattering angle, n is the
refractive index of the particle, d the diameter of the particle, R is the distance
between the particle and the observer and λ is the wavelength of the light.
Equation 1 shows that the intensity of the scattered light highly depends on
the wavelength of the light. As can be seen from the equation, the shorter the
wavelength, the stronger the scattering. This means for the visible light regime
that blue light is scattered the strongest, hence a cloud-free sky is blue when
not looking directly at the sun.
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Mie scattering is the scattering that occurs when the size of the particle has
the same order of magnitude as the wavelength. In the case of Mie scattering
the scattering does not depend as heavily on the wavelength as Rayleigh scat-
tering (1/λ). This means that every wavelength is about equally scattered and
therefore the light observed from clouds is white (D.W. Hahn, 2009).

For this research the molecular absorption of light is used to determine the
surface solar irradiance. OMI and SCIAMACHY are both spectrometers that
measure the light spectrum returning from the atmosphere. In order to know
how much light reaches the surface of the earth it is necessary to know whether
there are clouds present. To measure the presence of clouds, the data from
known oxygen absorption bands was used. This is because oxygen is known to
be a well mixed gas and therefore the amount of absorption is linear with the
distance that the solar irradiance travelled before reaching the spectrometer on
the satellite (Stammes et al., 2008). Therefore the data used from OMI is the
reflection at 477 nm (O2−O2 absorption) and from SCIAMACHY the reflection
at 760 nm (O2 −A absorption). Using these reflectances a cloud fraction needs
to be derived and from that cloud fraction a surface solar irradiance can be
calculated.

2.2 Lambertian cloud model for OMI

The algorithm used to calculate SSI for OMI is based on a Lambertian cloud
model. This is necessary because the pixels of OMI are too big to capture each
single cloud. Therefore there are very little pixels that are completely without
clouds. So it is assumed that pixel has a cloudy fraction c and a cloud-free
fraction (1− c). There are four cloud-parameters that have the most influence
on the reflectance at the top of the atmosphere, the cloud fraction c, the cloud
optical thickness τ , the thickness of the cloud h and the height of the cloud
zc. Because the satellites have a limited resolution and do not provide us with
information on parameters like cloud vertical structure and particle shape and
size the model is simplified. So therefore instead of a cloud with thickness h
a Lambertian reflector is assumed with a fixed albedo. It is assumed that no
light will be transmitted through the cloud. With these assumptions an effective
cloud fraction ceff can be calculated which agrees with measured reflected SSI.
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Figure 6: Left: a scattering cloud model, right: a Lambertian cloud model.
From Stammes et al., 2008

Figure 6 shows a scattering cloud model and a lambertian cloud model. It
shows that in a scattering cloud model assumes either a cloudy pixel or a non-
cloudy pixel. The cloud in the scattering cloud model has a certain optical
thickness, a thickness and a height. In the simplified Lambertian model the
fraction ceff is covered by a Lambertian reflector with a fixed albedo.

The reasoning for the cloud albedo is as follows. There is assumed to be
zero transmission through the Lambertian reflector and zero absorption. This
means that the missing transmission from the Lambertian reflector has to be
compensated by the part of the pixel without the reflector, (1− ceff ). In order
to calculate the Lambertian cloud albedo the case of a fully clouded pixel is
studied. The goal is to find the reflection and transmission of a scattering
cloud, RS and TS , using the Lambertian cloud model, RL(Ac). So when a fully
clouded pixel is assumed this means c = 1 (not ceff = 1). The equations that
are obtained are:

Rs = RL(Ac) = (1− ceff )Rclear + ceffRAc (2)

Ts = TL = (1− ceff )Tclear (3)

Note that the second equations does not have a component in the cloudy
fraction of the pixel, because it is assumed that the transmission is zero in that
fraction. Combining these equations yields:

RAc =
RsTclear − TsRclear

Tclear − Ts
(4)

Now that RAc
is isolated from ceff . RAc

can be calculated when Rs and
Ts are obtained from a model run. In Stammes et al., 2008 the DAK (Double-
Adding KNMI) model was run for multiple cloud optical thicknesses.
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Figure 7: The output of the DAK model run in order to find the cloud albedo
for the Lambertian cloud model, From Stammes et al., 2008

The result is shown in figure 7. The O2-O2-method uses the wavelength of
477 nm. So when observing figure 7 and following the line of the global mean
cloud optical thickness to where it intersects with the black line of 470 nm, it
shows that the albedo of the Lambertian reflector in the cloud model has to be
0.9.

2.3 FRESCO for SCIAMACHY

In the case of SCIAMACHY, FRESCO (Fast REtrieval Scheme for Clouds from
the Oxygen A-band) is used to retrieve an effective cloud fraction and cloud
pressure. In FRESCO it is assumed that reflectance only occurs at the top of
the cloud and at the surface, both are assumed to be Lambertian reflectors. The
reflectance at the top of the atmosphere is then given by:

RTOA = cTcAc + cRc + (1− c)TsAs + (1− c)Rs (5)

The factor cTcAc is the reflectance at the top of the cloud and (1−c)TsAs is
the reflectance at the surface. cRc and (1− c)Rs represent the single Rayleigh
scattering above the cloud and above the surface. Tc, Rc, Ts and Rs are obtained
from look-up tables. The surface albedo As is also known. The algorithm can
not calculate both the cloud fraction c and the cloud albedo Ac and therefore
Ac is assumed to be a fixed value. This fixed value was found by finding the
cloud albedo for which the SCIAMACHY SSI performs best (see figure 7). This
is a cloud albedo of 0.95. So now c can be calculated by measuring RTOA .

2.4 Heliosat Method for both satellites

The satellite measures the reflectance of the clouds, which is used to calculate
the effective cloud fraction using the lambertian cloud model or FRESCO. Once
the effective cloud fraction is obtained it is used to obtain a full sky SSI from a
clear sky SSI. For this the Heliosat method is used. The heliosat method assumes
that te cloud cover index is the dominant factor in blocking the radiation from
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the sun. From Wang et al., (2014) the definition of the clear sky index is used.
Which is defined as:

SSI = SSIclr · k (6)

SSIclr is calculated using the MAGIC algorithm (Mueller et al., 2004) and
is the clear sky surface solar irradiance. The clear sky surface solar irradiance
is the SSI without the effects of clouds. So the full sky surface solar irradiance
is the SII with the effects of clouds taken into account. In order to calculate the
clear sky index k the relation with the cloud cover index is needed. Hammer et
al., (2003) and Rigollier et al., (2004) found it to be:

−0.2 < ceff < 0→ k = 1.2 (7)

0 ≤ ceff ≤ 0.8→ k = 1− ceff (8)

0.8 < ceff ≤ 1.1→ k = 2.0667− 3.6667ceff + 1.6667c2eff (9)

1.1 < ceff → k = 0.05 (10)

These equations were found by comparing surface measurements with sat-
telite observations at several locations. Once k is determined the full sky SSI
can be calculated by using equation 6.
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3 Data

3.1 OMI

The data that is used from the OMI instrument is the clear sky SSI and the full
sky SSI, which are calculated as explained in the theory section. These values
are used to calculate the transmission coefficient as explained in the method
section. An example of the data used from OMI for this research is shown in
figure 8. OMI has an overpass time around 13:30 and orbits measures from
south to north. The orbid width is 2600 kilometers. The grid size is 0.25 x 0.25
degrees, which is 13 x 24 km2 at nadir, and only the data from 60 degrees north
until 60 degrees south is used. This is because the measurements of the cloud
fraction does not function optimally over an area with a high albedo.

Full sky SSI 01-01-2005 (W/m2)

0 150 300 450 600 750 900 1050 1200

Clear sky SSI 01-01-2005 (W/m2)

0 150 300 450 600 750 900 1050 1200

Figure 8: Global image of daily measurement of OMI, with on the left the full
sky SSI and on the right the clear sky SSI

Figure 8 shows that OMI provides a full global image every day. OMI does
so in fifteen overpasses, which can be seen in the figure by counting the bands.

3.2 SCIAMACHY

The same data output as OMI is used from SCIAMACHY. So the full sky SSI
and the clear sky SSI. SCIAMACHY has an overpass time at 10:00 in the morn-
ing local time and orbits from north to south while measuring. SCIAMACHY
has nadir and limb measurements during an orbit and the gaps in an orbit are
due to limb measurements. The orbit width is 960 km and the pixel size is
30x 60 kilometers. The obtained grid size is also 0.25 x 0.25 degrees and again
the data from 60 degrees north to 60 degrees south is used. Figure 9 shows an
example of the daily data from SCIAMACHY.
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Full sky SSI 01-01-2005 (W/m2)

0 150 300 450 600 750 900 1050 1200

Clear sky SSI 01-01-2005 (W/m2)

0 150 300 450 600 750 900 1050 1200

Figure 9: Global image of daily measurement of SCIAMACHY, with on the left
the full sky SSI and on the right the clear sky SSI

In contrast to OMI, SCIAMACHY does not provide a full global image
every day. It takes about 6 days of data to obtain a full global image from
SCIAMACHY. By counting the bands it can be seen that SCIAMACHY also
has fifteen overpasses each day.

3.3 CLARA

CLARA is a dataset created by CM SAF (The Satellite Application Facility on
Climate Monitoring). The method that is used to derive this dataset uses the
MAGIC radiative transfer model to include the properties of the atmosphere.
Which is the same model used for deriving the OMI and SCIAMACHY SSI.
Figure 10 shows the flowscheme of the CLARA model for the daily mean clear
sky SSI. This is the product that will be used in this research to calculate the
full sky daily mean SSI based on OMI and SCIAMACHY.

Figure 10: Flowchart of the CLARA clear sky SSI product, from Mueller et al.,
2009

14



The input data for the radiative transfer model is partly from satellites, like
the TOA albedo and the surface albedo. Aerosol and ozone input is taken from
climatological datasets and the water vapour is analysis data by the German
weather service. For more information on the CLARA algorithm see Mueller
et al, 2009 or CM SAF, 2016. Figure 11 shows an example of the CLARA
daily mean clear sky SSI. The data has been reduced to 60 degrees north to 60
degrees south, because that is range of data that will be used from OMI and
SCIAMACHY.

Clear sky SSI 01-01-2005 (W/m2)

0 60 120 180 240 300 360 420 480

Figure 11: Global clear sky daily mean SSI from CLARA on January 1 2005

Figure 11 shows obviously that the SSI in january is higher on the southern
hemisphere, than on the northern hemisphere, as to be expected. Compared to
figures 9 and 8 the CLARA dataset does not contain the bands that the datasets
created by the satellite data contain, due to the orbits of the satellites.

3.4 CERES

The dataset of CERES is used to validate the full sky SSI product that are
created in this research. Just like the CLARA dataset, the CERES dataset is
based on a radiative transfer model. In figure 12 the flowscheme of CERES is
shown.
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Figure 12: Flowchart of the CERES full sky SSI product, From Loeb et al., 2001

The biggest difference between the input of CERES and CLARA is that
CERES uses measurements for the aerosol input from MODIS (Moderate-Resolution
Imaging Spectroradiometer) and ozone analysis data from NCEP (National Cen-
ters for Environmental Predictions). By using data from multiple satellites, also
geostationary satellites, instead of climatology, CERES can assumed to be more
exact. Therefore CERES is useful for validating the combined product.

In figure 13 an example of a full sky monthly mean SSI from CERES is
shown. Because SCIAMACHY does not provide a full global dataset on a daily
basis, the combined product will be compared to CERES by using the monthly
means.

Full sky SSI 01-2005 (W/m2)

0 60 120 180 240 300 360 420

Figure 13: Global full sky daily mean SSI from CERES on January 1 2005
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3.5 BSRN

For the validation of the obtained products in this research the data is com-
pared to the data from fifteen measurement stations from the BSRN-database
(Baseline Surface Radiation Network). The BSRN-measurments are a project
of GEWEX (Global Energy and Water Cycle Experiment) to detect changes in
climate. The locations of the used measurement stations are shown in figure 14.

Figure 14: The locations of the 15 BSRN measurement stations

From the BSRN-stations the data at the overpass time of each satellite will be
used to validate the data from OMI and SCIAMACHY. Furthermore, a daily
and monthly mean will be calculated to validate the monthly mean dataset
developed by in this research.

3.6 MODIS

To evaluate the climatology dataset that is used in the OMI and SCIAMACHY
SSI, data from MODIS is used. MODIS is a measurement instrument on board
of the Terra/Aqua satellites and can create a global map in one day. Figure
15 shows an example of a monthly mean aerosol optical thickness and figure 16
shows the time series of the aerosol optical depth climatology used by OMI and
SCIAMACHY and the measured aerosol optical depth by MODIS.
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Figure 15: Global aerosol optical thickness from MODIS on January 1, 2005
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Figure 16: Monthly mean of the aerosol optical depth climatology and the
aerosol optical depth measured by MODIS
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4 Method

4.1 Gridding OMI and SCIAMACHY

In order to obtain a global image the data from the satellites has to be gridded
to a grid with grid cells of the size of 0.25 ◦ x 0.25 ◦, lattitude x longitude. To
do that the algorithm runs through all the data from one day and assigns each
datapoint to a grid cell based on the lattitude and longitude information of that
datapoint. There are several filters that remove negative values or unrealistic
values, to prevent outliers. These outliers for instance occur a lot above areas
with snow or ice at the surface. The cloud pressure is only selected and used if
the cloud fraction at that location is above 0.05. At the end of the daily dataset
the averages SSI and SSIcls will be calculated for each grid cell. From there
the averaged daily global data was stored per satellite. So a dataset of OMI
SSI and a dataset of SCIAMACHY SSI was created. It is important to mention
that during the course of 2007 a row anomaly developed in the measurements
of OMI. This means that under a certain angle the spectrometer was blocked
by a different instrument which can be seen as a row on the map. Therefore the
term ’row anomaly’. The data having an anomaly are removed in the analysis.

4.2 Validating OMI and SCIAMACHY

After gridding the data for both the OMI and the SCIAMACHY satellite, the
data has been validated with the use of BSRN-surface measurements. The
product of SCIAMACHY and OMI will be compared to the CERES-dataset
and the CLARA-dataset.

Due to the fact that the satellite measures every location only once per
day, the data from the surface measurement has to be filtered to obtain the
measurement that coincides with the satellite measurement. For this the solar
zenith angle is used, see figure 17. The solar zenith angle is the angle between
the normal on the earth’s surface and the line from the earth’s surface to the
centre of the sun. Both OMI and SCIAMACHY store the solar zenith angle
at the time of the measurement. For the BSRN-measurements the solar zenith
angle has to be calculated using the longitude, lattitude, the date and the time.
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Figure 17: The Solar Zenith Angle

After the solar zenith angles of the BSRN-dataset are calculated they are
compared to the measured solar zenith angles from the satellites. This has to be
done carefully because the solar zenith angle is symmetric in the morning and
afternoon, therefore for SCIAMACHY the solar zenith angles in the afternoon
have to be ignored (overpass time in the morning) and for OMI the solar zenith
angles in the morning have to be ignored (overpass time in the afternoon).
After the removal the time of the day is found where the difference between
the solar zenith angle of the satellite and the solar zenith angle of the surface
measurement is the smallest. It is assumed that the surface measurement at that
time is the closest possible time to the overpass time. To avoid the interference
of outliers and to match the pixel size of the satellite the value is averaged with
the surrounding values of plus and minus thirty minutes. So we obtain an hourly
average of the surface solar irradiance around the overpass time of the satellite
measured at the surface. These values can then be compared to the satellite
observations.

4.3 Combining OMI and SCIAMACHY

In order to create a daily mean full sky SSI derived from OMI and SCIAMACHY
equation 11(Moser & Raschke, 1984) is used:

SSIdm = SSIclr,dm ∗
∑

i SSIi∑
i SSIclr,i

(11)

In this equation SSIclr,dm is the clear sky daily mean product from CLARA,
SSIi are the full sky observations of OMI and SCIAMACHY, SSIclr,i are the
clear sky observations of OMI and SCIAMACHY and i is the number of satel-
lites. The clear-sky daily mean from CLARA is used because it is created by
the same algorithm as the SSI products from OMI and SCIAMACHY. What
this equation in fact does, is that it calculates an average transmission coef-
ficient and multiplies that with the clear sky daily mean to obtain a full sky
daily mean. In theory the average transmission coefficient should get better
by increasing the number of satellites. To test this, the daily mean clear sky

20



SSI, the daily mean full sky SSI using OMI, the daily mean full sky SSI us-
ing SCIAMACHY and the daily mean full sky SSI using both satellites are all
compared to the CERES dataset and the BSRN measurement stations. For
the CERES dataset this is done by comparing global means of both datasets.
For the surface measurements a lattitude and a longitude is extracted from the
data and the corresponding grid cell from the gridded SSI datasets is used to
compare the SSI with the surface measurements. To validate the data set with
the BSRN measurement stations a daily mean has to be calculated from the
BSRN data. This is done by calculating the average from sunrise until sunset
and by discarding a day once there is over an hour of data missing, because that
will highly effect the daily mean (Roesch et al., 2011).

4.4 Statistical methods

To intercompare the datasets with each other a few statistical methods are
used. For starters the correlation coefficient is often calculated to measure the
correlation between two datasets. The correlation coefficient (r) is defined as:

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(12)

Here n is the number of datapoints, x and y are respectively the satellite
measurements and the surface measurements, where x̄ and ȳ are the averages.
The correlation coefficient is a measure of the linear relatedness between two
datasets. The closer it is to one the better the linear relation is between the
datasets.

To calculate the difference between two datasets the root mean square error
(RMSE) and the mean absolute error (MAE) are used. They are defined as:

RMSE =

√∑n
i=1(xi − yi)2

n
(13)

MAE =

∑n
i=1 |xi − yi|

n
(14)

In these equations x, y and n mean the same as in equation 12.
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5 Results

5.1 Validating OMI and SCIAMACHY

In figure 18 the scatterplot between OMI and the surface measurements are
shown and the scatterplot between SCIAMACHY and the surface measurement
are shown for the location ALice Springs in Australia. Each datapoint represents
the SSI at overpass time of the satellite. For OMI this means that there is a
datapoint every day and for SCIAMACHY there is a datapoint every six days.
The data shown in figure 18 is of 2005 and 2006.
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Figure 18: Scatter plots of total SSI at Alice Springs (Australia). The blue line
is the diagonal, the green line is the best fit and the dashed red lines are the best
fit plus or minus the standard deviation. r is the Pearson correlation coefficient.
The data is from 2005 and 2006

The correlation between the surface measurements and the satellite obser-
vations when averaging all 15 surface measurement locations is for the OMI-
instrument 0.92 and for the SCIAMACHY-instrument 0.86. Tables 1 & 2 show
the statistics of this validation of the OMI and SCIAMACHY instruments
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BSRN-site lat lon OMI SSI BSRN SSI Bias (%) RMSE MAE correlation
ASP -23.6 133.9 719.6 720.7 -0.15 80.8 51.6 0.93
BER 32.3 -64.7 578.1 567.4 1.88 138.3 95.5 0.86
BOU 40.1 -105.2 572.8 585.4 -2.15 127.5 89.0 0.87
CAR 44.1 5.1 555.2 554.6 0.12 67.1 44.4 0.97
CLH 36.9 -75.7 583.6 583.6 0.01 80.9 53.9 0.95
COC -12.2 96.8 669.3 637.7 4.96 112.8 79.5 0.87
KWA 8.7 167.7 703.5 584.5 20.3 223.6 167.9 0.71
LAU -45.0 169.7 402.8 408.8 -1.47 108.8 71.9 0.90
LIN 52.1 14.1 367.5 383.5 -4.18 81.5 55.8 0.95
MAN -2.1 147.4 561.6 555.4 1.13 157.0 115.0 0.82
REG 50.2 -104.7 414.0 468.0 -11.5 150.9 100.9 0.87
SBO 30.9 34.8 747.0 737.8 1.24 84.6 51.7 0.93
TAM 22.8 5.5 750.3 782.3 -4.09 113.1 78.5 0.88
XIA 39.8 117.0 533.4 506.1 5.38 89.6 64.0 0.93

Table 1: OMI-BSRN comparison, bias is (OMI-BSRN)/BSRN, RMSE is the
root mean squared error and MAE is the mean absolute error

BSRN-site lat lon SCIA SSI BSRN SSI Bias (%) RMSE MAE correlation
ASP -23.6 133.9 646.5 690.9 -6.42 153.8 114.9 0.74
BER 32.3 -64.7 582.8 581.7 0.19 141.1 102.8 0.84
BOU 40.1 -105.2 569.2 639.6 -11.0 127.2 99.6 0.89
CAR 44.1 5.1 524.1 542.0 -3.31 100.5 69.5 0.92
CLH 36.9 -75.7 534.3 542.4 -1.48 69.5 48.7 0.97
COC -12.2 96.8 642.1 614.4 4.51 135.7 85.8 0.80
KWA 8.7 167.7 668.9 675.8 -1.03 114.1 80.2 0.86
LAU -45.0 169.7 382.1 366.5 4.26 118.6 78.7 0.88
LIN 52.1 14.1 393.0 394.4 -0.36 79.2 57.9 0.95
MAN -2.1 147.4 538.8 579.9 -7.08 310.5 238.1 0.19
REG 50.2 -104.7 486.8 492.3 -1.11 102.6 67.5 0.92
SBO 30.9 34.8 645.1 728.6 -11.45 142.1 110.3 0.84
TAM 22.8 5.5 783.7 822.6 -4.73 91.9 67.4 0.85
XIA 39.8 117.0 531.9 486.8 9.27 111.8 82.0 0.90

Table 2: SCIA-BSRN comparison, bias is (SCIA-BSRN)/BSRN, RMSE is the
root mean squared error and MAE is the mean absolute error

Not just the total surface solar irradiance is measured by the BSRN-locations
and the satellite-instruments, but also the direct irradiance. The direct radiance
is the radiation that reaches the surface of the earth without being scattered or
reflected. And using the same method as with the total surface solar irradiance
by finding corresponding solar zenith angles the correlation was calculated, the
results are shown in Appendix A.1. The distance between a datapoint and the
one-to-one line is the absolute error and the mean of this error of all datapoints
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is the mean absolute error. To check whether this absolute error for the total
surface solar irradiance is seasonally dependent or dependent on the measured
cloud fraction the correlation between the MAE is compared to the seasonality
and the cloud fraction. The results are shown in Appendices A.2 and A.3. The
seasonal mean absolute errors are normalized in this case with the mean of that
season.
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5.2 Daily mean clear sky product from CLARA

5.2.1 Comparison to BSRN

To see what the results are of using the satellite data from OMI and SCIA-
MACHY, first the agreement between the clear sky daily mean and the BSRN-
observations is looked at. The results of the comparison between the BSRN-
measurements and the CLARA daily mean - monthly mean are shown in figure
19 and table 3.

BSRN-site lat lon CLARA cs BSRN SSI Bias (%) RMSE MAE correlation
ASP -23.6 133.9 281.1 262.7 7.03 26.9 19.3 0.96
BER 32.3 -64.7 257.5 194.5 32.21 65.1 63.0 0.98
BOU 40.1 -105.2 244.9 197.0 24.32 51.9 47.9 0.99
CAM 50.2 -5.3 196.1 128.1 53.09 76.1 68.0 0.98
CAR 44.1 5.1 217.0 182.8 18.73 37.5 34.2 0.99
CLH 36.9 -75.7 240.3 185.6 29.43 58.1 54.6 0.98
COC -12.2 96.8 294.2 219.0 34.35 69.9 67.9 0.84
KWA 8.7 167.7 293.4 227.2 29.14 67.3 66.2 0.83
LAU -45.0 169.7 225.8 163.2 38.37 72.9 62.6 0.99
LIN 52.1 14.1 186.2 130.7 42.40 63.8 55.4 0.98
MAN -2.1 147.4 293.8 198.4 48.09 96.9 95.4 0.47
REG 50.2 -104.7 204.3 157.6 29.58 56.3 46.6 0.98
SBO 30.9 34.8 258.9 272.8 -5.10 44.8 30.2 0.94
TAM 22.8 5.5 278.9 261.5 6.6 22.6 18.6 0.96
XIA 39.8 117.0 229.6 162.3 41.49 77.2 67.4 0.95

Table 3: CLARA clear sky daily mean, BSRN comparison of the years 2005 and
2006, bias is (CLARA - BSRN)/BSRN, RMSE is the root mean squared error
and MAE is the mean absolute error

The first thing that stands out is that the mean of the clear sky is signifi-
cantly higher than the mean of the BSRN-measurements stations. This makes
sense, because there are no clouds reflecting the sunlight. This means that the
calculated sunlight that reaches the surface of the earth is higher than it should
be. This is also represented by the high bias. The second important feature is
that the correlation coefficient is already very high ( 0.9 for most cases). This
means that the transmission coefficient of the atmosphere does not influence the
trend significantly, it mostly influences the absolute value of the surface solar
irradiance. The large correlation coefficients are due to the effects of the solzar
zenith angle on the SSI, which is the same for the clear sky SSI and the full sky
SSI.

25



0 100 200 300 400 500
CLARA clear sky SSI (W/m2)

0

100

200

300

400

500

BS
RN

 S
SI

 (W
/m

2 )

Bou
Xia
Tam
Asp
Car

0 100 200 300 400 500
CLARA clear sky SSI (W/m2)

0

100

200

300

400

500

BS
RN

 S
SI

 (W
/m

2 )

Clh
Coc
Kwa
Lau
Sbo

0 100 200 300 400 500
CLARA clear sky SSI (W/m2)

0

100

200

300

400

500

BS
RN

 S
SI

 (W
/m

2 )

Reg
Ber
Cam
Lin
Man

Figure 19: Scatter plots of the bsrn locations monthly means compared to the
CLARA monthly means of the years 2005 and 2006.
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5.2.2 Comparison to CERES

In order to compare the dataset to the dataset from CERES, a monthly global
mean is created for the years 2005 until 2011 for both the CLARA dataset and
the CERES dataset. After this the statistics, just like the comparison with
the BSRN-data, several statistics are calculated to assess the comparison on a
yearly basis. The results of the comparison are shown in table 4. It is clear that
the statistics hardly vary on a yearly basis and that the CLARA SSI is about
32% per cent higher than the CERES SSI, this is off course due to the fact that
clouds are not included in the CLARA dataset.

Year CLARA cs dm SSI CERES SSI Bias (%) RMSE MAE correlation
2005 265.04 195.76 32.60 74.88 65.87 0.94
2006 264.30 196.88 32.16 73.81 64.95 0.94
2007 264.37 196.60 32.37 74.51 65.31 0.94
2008 264.57 197.19 31.99 73.85 64.78 0.94
2009 263.92 197.29 31.89 73.27 64.43 0.94
2010 264.26 196.12 32.53 74.63 65.56 0.94
2011 264.42 196.70 32.31 74.44 65.23 0.94
Average 264.41 196.65 32.26 74.20 65.16 0.94

Table 4: CLARA daily means compared with CERES, bias is (CLARA -
CERES)/CERES, RMSE is the root mean squared error and MAE is the mean
absolute error.

5.3 Daily mean product using SCIAMACHY

5.3.1 Comparison to BSRN

After comparing the CLARA clear sky daily mean with the BSRN measurements
and the CERES dataset, a sky daily mean product was created by using only
data from SCIAMACHY and CLARA. This was done by using equation 11.
With the daily mean results the monthly means were calculated. Table 5 shows
the statistics of the comparison of the monthly means from the product of
equation 11 using only SCIAMACHY and the BSRN data. For these statistics
the monthly means from the years 2005 and 2006 were used. Figure 20 shows
the scatter plots of this data. Compared to the case where only the CLARA
data was used, the bias has decreased significantly due to the implementation
of a transmission coefficient. The correlation coefficients are comparable to the
correlation coefficients in table 3.
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BSRN-site lat lon SCIA dm SSI BSRN SSI Bias (%) RMSE MAE correlation
ASP -23.6 133.9 233.8 262.7 -11.01 33.9 28.9 0.95
BER 32.3 -64.7 198.5 194.5 2.07 25.7 18.7 0.92
BOU 40.1 -105.2 189.0 197.0 -4.07 20.2 16.3 0.97
CAM 50.2 -5.3 121.0 128.1 -5.56 20.9 16.3 0.97
CAR 44.1 5.1 169.2 182.8 -7.46 19.5 15.0 0.99
CLH 36.9 -75.7 176.3 185.6 -5.04 33.1 27.0 0.90
COC -12.2 96.8 238.2 219.0 8.77 26.0 22.5 0.83
KWA 8.7 167.7 231.2 227.2 1.76 28.2 22.3 0.64
LAU -45.0 169.7 170.8 163.2 4.67 21.0 15.9 0.97
LIN 52.1 14.1 127.7 130.7 -2.34 14.3 12.1 0.99
MAN -2.1 147.4 191.7 198.4 -3.38 26.1 20.5 0.44
REG 50.2 -104.7 155.7 157.6 -1.27 17.8 14.7 0.98
SBO 30.9 34.8 206.0 272.8 -24.51 81.8 66.9 0.93
TAM 22.8 5.5 260.6 261.5 -0.33 20.2 16.6 0.93
XIA 39.8 117.0 170.8 162.3 5.26 21.9 14.7 0.96

Table 5: SCIAMACHY daily mean, BSRN comparison of the years 2005 and
2006, bias is (SCIA - BSRN)/BSRN, RMSE is the root mean squared error and
MAE is the mean absolute error
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Figure 20: Scatter plots of the bsrn locations daily mean - monthly means
compared to the Sciamachy daily mean - monthly means of the years 2005 and
2006.
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5.3.2 Comparison to CERES

The generated SSI dataset by using SCIAMACHY to create a fullsky SSI prod-
uct is compared to the CERES dataset in the same way as the CLARA dataset
was compared to the CERES dataset. This means that the monthly global
means are compared per year. This provides the numbers shown in table 6.
The numbers are still stable from year to year. The important difference com-
pared to the CLARA dataset is that the bias between the datasets is smaller
than 1 %. Also 6 shows that the correlation coefficient has increased compared
to the case without satellite data.

Year SCIA dm SSI CERES SSI Bias (%) RMSE MAE correlation
2005 196.71 195.82 -0.62 22.43 16.45 0.97
2006 197.29 196.50 -0.63 22.67 16.66 0.97
2007 196.75 196.21 -0.77 22.01 16.15 0.97
2008 197.39 196.82 -0.74 21.40 15.76 0.97
2009 197.42 196.85 -0.76 22.01 16.20 0.97
2010 196.18 195.77 -0.82 22.14 16.27 0.97
2011 197.19 196.30 -0.55 21.43 15.81 0.97
Average 196.99 196.32 -0.70 22.01 16.19 0.97

Table 6: SCIAMACHY daily mean compared with CERES, bias is (SCIA -
CERES)/CERES, RMSE is the root mean squared error and MAE is the mean
absolute error.

5.4 Daily mean product using OMI

For the OMI satellite the exact same thing has been done as in the previous
section with the SCIAMACHY satellite. So a full sky daily mean SSI products
was produced, using the transmission coefficient of OMI. This will of course
provide a different dataset than the one using SCIAMACHY for several rea-
sons. The most important reason is that OMI has a different overpass time
than SCIAMACHY, therefore the measured cloud fraction will be different and
therefore the transmission coefficient will not be the same as the one obtained
from the SCIAMACHY data. This new dataset is then compared to the BSRN
measurement stations and the results are shown in table 7 and figure 21.
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5.4.1 Comparison to BSRN

BSRN-site lat lon OMI dm SSI BSRN SSI Bias (%) RMSE MAE correlation
ASP -23.6 133.9 249.5 262.7 -5.02 15.2 13.7 0.99
BER 32.3 -64.7 195.7 194.5 0.59 8.3 6.1 0.99
BOU 40.1 -105.2 184.0 197.0 -6.56 16.2 13.1 0.99
CAM 50.2 -5.3 129.8 128.1 1.36 7.0 4.9 1.00
CAR 44.1 5.1 179.2 182.8 -1.96 7.0 5.9 1.00
CLH 36.9 -75.7 187.2 185.6 0.85 8.2 6.3 0.99
COC -12.2 96.8 238.7 219.0 8.98 19.2 14.4 0.87
KWA 8.7 167.7 233.6 227.2 2.81 8.1 6.8 0.97
LAU -45.0 169.7 156.8 163.2 -3.92 13.0 9.6 0.99
LIN 52.1 14.1 122.9 130.7 -5.98 10.5 8.1 1.00
MAN -2.1 147.4 190.3 198.4 -4.08 11.3 9.2 0.90
REG 50.2 -104.7 140.3 157.6 -11.03 31.2 18.1 0.96
SBO 30.9 34.8 236.4 272.8 -13.35 52.1 36.4 0.95
TAM 22.8 5.5 243.1 261.5 -7.03 20.1 18.4 0.98
XIA 39.8 117.0 172.3 162.3 6.22 12.9 10.7 0.99

Table 7: OMI daily mean, BSRN comparison of the years 2005 and 2006, bias
is (OMI - BSRN)/BSRN, RMSE is the root mean squared error and MAE is
the mean absolute error
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Figure 21: Scatter plots of the bsrn locations daily means - monthly means
compared to the OMI daily means - monthly means of the years 2005 and 2006.
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Table 7 shows that the correlation between the OMI full sky daily mean SSI
and the surface measurements is very high, in three occasions the correlation
coefficient is even equal to 1.00. This can also be seen in figure 21, because for
most surface measurement locations the scattering is very much aligned with
the 1- to 1-line.

5.4.2 Comparison to CERES

Of course the dataset created with the OMI satellite has also been compared to
the CERES dataset and the results are shown in table 8. The first thing that
stands out is that the correlation coefficient is again consistently high (0.99).
The second thing that stands out is that the bias is consistently positive. So
the created dataset is consistently higher than the CERES dataset. Whereas
for the dataset created with the SCIAMACHY transmission coefficient this was
the other way around. The RMSE and the MAE are smaller than for the
SCIAMACHY daily mean product.

Year OMI dm SSI CERES SSI Bias (%) RMSE MAE correlation
2005 201.15 196.49 2.16 13.08 9.14 0.99
2006 201.44 197.14 1.98 12.59 8.94 0.99
2007 201.25 196.85 2.04 12.93 8.96 0.99
2008 201.95 197.46 2.07 12.82 8.96 0.99
2009 202.10 197.50 2.11 12.95 9.14 0.99
2010 202.02 196.40 2.66 13.92 9.89 0.99
2011 202.91 196.96 2.84 14.29 10.13 0.99
Average 201.83 196.97 2.27 13.22 9.31 0.99

Table 8: OMI daily mean compared with CERES, bias is (OMI -
CERES)/CERES, RMSE is the root mean squared error and MAE is the mean
absolute error.
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5.5 The OMI-SCIAMACHY product

5.5.1 Comparison to BSRN

At this point both satellites were used to obtain a daily mean SSI, by using
both SCIAMACHY and OMI in equation 11. Theoretically, the transmission
coefficient should improve when an average of two overpass times is used. To
test this, the dataset is compared to surface measurements in the same way as
the single-satellite datasets. The results are shown in table 9 and figure 22.

BSRN-site lat lon OMI-SCIA SSI BSRN SSI Bias (%) RMSE MAE correlation
ASP -23.6 133.9 235.0 262.7 -10.53 37.1 27.8 0.89
BER 32.3 -64.7 200.5 194.5 3.07 27.1 19.7 0.91
BOU 40.1 -105.2 189.3 197.0 -3.92 20.0 16.0 0.97
CAM 50.2 -5.3 125.4 128.1 -2.10 15.3 11.3 0.98
CAR 44.1 5.1 176.9 182.8 -3.25 15.2 12.0 0.99
CLH 36.9 -75.7 177.8 185.6 -4.23 30.2 25.3 0.91
COC -12.2 96.8 238.1 219.0 8.71 23.5 19.3 0.86
KWA 8.7 167.7 230.4 227.2 1.41 18.9 16.8 0.71
LAU -45.0 169.7 163.0 163.2 -0.10 13.6 11.0 0.98
LIN 52.1 14.1 124.0 130.7 -5.13 14.8 11.1 0.99
MAN -2.1 147.4 188.5 198.4 -4.96 25.4 20.8 0.63
REG 50.2 -104.7 148.7 157.6 -5.66 23.3 17.7 0.97
SBO 30.9 34.8 221.6 272.8 -18.80 64.8 51.3 0.95
TAM 22.8 5.5 251.2 261.5 -3.93 17.7 14.4 0.96
XIA 39.8 117.0 170.6 162.3 5.15 20.21 15.6 0.95

Table 9: OMI-SCIA, BSRN comparison, bias is (OMI-SCIA - BSRN)/BSRN,
RMSE is the root mean squared error and MAE is the mean absolute error

These results are very similar to the comparison between the one-satellite
datasets and the BSRN measurement stations. The comparison between the
CERES dataset and surface measurement has also been executed, the results
are shown in Appendix A.5.
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Figure 22: Scatter plots of the bsrn locations daily monthly means compared
to the SCIA-OMI daily monthly means.
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5.5.2 Differences between OMI-SCIAMACHY and CERES

The next step is to compare the dataset with the dataset of CERES. First this
is done with the same method as was used for the one-satellite datasets. These
results are shown in table 10 and a density plot is shown in figure 23.

Year OMI-SCIA SSI CERES SSI Bias (%) RMSE MAE correlation
2005 199.68 195.81 0.87 19.24 14.14 0.98
2006 200.13 196.49 0.79 19.58 14.42 0.98
2007 199.72 196.21 0.72 18.80 13.82 0.98
2008 200.34 196.80 0.73 18.50 13.64 0.98
2009 200.48 196.84 0.77 20.38 14.90 0.98
2010 199.81 195.74 1.00 21.26 15.54 0.98
2011 200.80 196.27 1.26 21.53 15.64 0.98
Average 200.14 196.31 0.88 19.90 14.59 0.98

Table 10: OMI-SCIA compared with CERES, bias is (OMI-SCIA -
CERES)/CERES, RMSE is the root mean squared error and MAE is the mean
absolute error.
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Figure 23: Density plot of each grid cell January 2005

Figure 23 shows that the scattering is concentrated around the one- to one-
diagonal, which explains why the correlation coefficient in table 10 is as high as
0.98. Table 9 also shows that the bias is on average lower than 1%.

Figure 24 shows the monthly mean of January 2005 for both the OMI-
SCIAMACHY daily monthly mean and the CERES daily monthly mean. Again
it can be seen that the data is not complete over the poles, therefore in the cal-
culation of the averages only the data between 60 degrees north and 60 degrees
south was used. Furthermore the OMI-SCIAMACHY map looks very similar
to the map created with CERES data.
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Figure 24: Global SSI

To see if there are large regional differences the difference between the OMI-
SCIAMACHY dataset and the CERES dataset is also plotted. This is done in
figure 25.
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Figure 25: Monthly mean difference January 2005 (SCIA-OMI - CERES)

Figure 25 shows that the difference is quite homogenous, apart from the area
near the poles (where the satellite detection is not fully functioning) and an area
over Western Africa. There is a difference up to 50 W/m2 over Western Africa.
In the data section it is stated that the CLARA, OMI and SCIAMACHY algo-
rithms use aerosol climatology to calculate the SSI. CERES on the other hand
uses MODIS aerosol observations in its algorithm to obtain the SSI. Therefore
the average Aerosol Optical Depth from MODIS of January 2005 is plotted in
figure 26.
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Figure 26: Aerosol Optical Depth January 2005

When comparing figures 25 and 26 it is clear that there is a relation between
the aerosol concentration and the difference between the two SSI datasets. To
investigate this relation further a scatter plot of the difference between the
datasets and the aerosol optical depth was created. To do this every grid cell is
plotted as a dot on the scatter plot. The result is shown in figure 27.
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Figure 27: Scatterplot of January 2005

In figure 27 the aerosol optical depth is plotted horizontally and the difference
(OMI-SCIAMACHY - CERES) is plotted vertically. The green line is the best
linear fit of this dataset, which has a slope of 30.35. r is the correlation coefficient
and is 0.18 in this case, which is not very convincing. The reason that the
correlation coefficient is that low is because most data has a very small aerosol
optical depth and there is quite some scattering around that small value. Table
11 shows the slopes of each linear fit of each month. The most important thing
about this table is that almost every value is positive, which suggests that a
relation between the difference and the aerosol optical depth is valid.
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Figure 28: Binned scatterplot of January 2005

2005 2006 2007 2008 2009 2010 2011 Average
January 30.35 32.5 32.02 31.53 32.77 19.18 26.08 29.20
February 24.15 17.8 26.04 26.01 24.56 20.86 18.74 22.59
March 16.67 18.17 17.21 17.71 18.47 20.26 12.78 17.32
April 15.11 10.4 20.93 10.07 6.45 15.84 15.02 13.40
May 11.06 17.3 13.64 14.21 12.72 12.62 12.28 13.40
June 8.19 5.87 3.77 15.68 7.33 10.38 16.56 9.68
July 10.12 8.39 10.98 14.55 13.1 7.04 15.41 11.37
August 14.03 9.86 11.87 9.07 14.79 18.7 13.1 13.06
September 21.91 13.55 28.48 13.55 7.35 22.19 12.34 17.05
October -0.94 10.91 9.85 2.96 3.44 14.76 1.47 6.06
November 11.63 6.55 7.19 7.68 2.09 7.66 8.37 7.31
December 19.19 21.54 26.24 26.77 22.52 20.02 24.79 23.01
Average 15.12 14.40 17.35 15.82 13.80 15.79 14.75 15.29

Table 11: Monthly slopes from the 60N-60S data

To see if there is really a strong relation between the aerosol optical depth
and the difference is to bin the data in steps of 0.02 in the horizontal direction.
So 50 bins are created and averaged, the results of this binning are shown in 28.

The linear relation between the aerosol optical depth and the difference
between the datasets is much clearer in the binned scatter plot, figure 28. This
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is also represented by increased correlation coefficient of 0.84. The slopes of all
months of data using this method are shown in table 12

2005 2006 2007 2008 2009 2010 2011 Average
January 28.46 9.92 29.47 24.74 18.16 16.12 26.2 21.87
February 12.23 2.52 13.05 30.73 18.15 21.87 10.92 15.64
March 20.67 19.77 27.27 14.77 21.64 21.89 5.30 18.76
April 17.37 11.80 19.33 12.08 17.00 18.24 22.9 16.96
May 11.03 14.86 20.12 16.65 6.89 8.62 9.78 12.56
June 12.43 5.6 9.68 20.12 6.98 8.63 18.32 11.68
July 18.42 22.81 21.86 19.74 20.64 12.8 16.55 18.97
August 28.69 15.66 21.22 19.56 18.59 25.98 20.21 21.42
September 40.13 27.21 42.22 23.12 11.19 43.42 23.59 30.13
October 10.96 20.64 22 5.55 7.46 21.14 2.24 12.86
November 3.49 6.60 10.51 16.94 12.15 15.02 17.12 11.69
December 18.07 12.82 13.93 21.16 17.60 13.74 21.44 16.97
Average 18.50 14.17 20.89 18.76 14.70 18.96 16.21 17.46

Table 12: Monthly slopes from the 60N-60S binned data

5.5.3 Correcting using MODIS data

Using these slopes a correction can be performed on the data to account for the
aerosol data. To see the effects of this correction, Africa is a useful case-study,
because it has high aerosol concentrations and large difference with the CERES
dataset. To highlight this, figure 29 shows the difference in SSI and the aerosol
optical depth over Africa.

It is very clear from 29 that the difference in SSI over Africa is high in the
same area that has a high aerosol optical depth. This can be corrected for by
using the slopes from table 12. The average monthly slopes are used in this
instance, because during the course of the year, different causes of high aerosol
concentrations occur. Because different aerosols have different effects on the
SSI, they cause a different slope. Therefore the monthly average slopes are used
to correct the data by the following equation:

SSIaer = SSISCIA−OMI − slope ·AOD (15)

Using this equation, again the difference between SCIA-OMI and CERES
can be plotted and this is featured in figure 30.

It is clear that the large differences over Western Africa have dissapeared by
applying this method.
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(a) Original monthly mean differences (SCIA-OMI - CERES)
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Figure 29: The SSI difference and aerosol optical depth over Africa in January
2005
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Figure 30: Aerosol optical thickness in Africa in January 2005
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5.6 Trends

Now that the OMI-SCIAMACHY is created and validated it can be used to
detect trends in SSI. Therefore the monthly mean of global (60◦N to 60◦S) SSI
is plotted in figure 31.
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Figure 31: Global monthly mean SSI

When observing this monthly mean, it is clear that the SSI is periodic and
peaks every year in February. Furthermore, there is no clear trend observable
in the monthly mean SSI.

In order to be able to explain the shape of the time series of the SSI, it is
necessary to look at the cloud fraction. In figures 32 and 33 the time series of
the measured cloud fractions are featured.
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Figure 32: Global monthly mean cloud fraction from OMI
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Figure 33: Global monthly mean cloud fraction from SCIAMACHY

The cloud fractions of OMI and SCIAMACHY show that the peaks and
troughs of the SSI are opposite to the peaks and troughs of the cloud fraction.
Which makes sens, because more clouds mean less sunlight reaching the surface
of the earth. There also seems to be a shift in the OMI cloud fractions in the
course of 2009. This is also the case when plotting the full time series of OMI,
figures 34 and 35 show those.
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Figure 34: Complete time series of OMI cloud fraction
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Figure 35: Complete time series of OMI SSI, at the overpass time of OMI

Figure 34 makes the shift in 2009 even clearer. The cause of this shift could
be the OMI row anomaly which started in 2007 and expanded at the end of
2008. A row anomaly is an anomaly which has an effect on the data, but only
at a certain measurement angle of the satellite. This means that this anomaly
will show on your map as a row, therefore the term. In the calculation of the
SSI a correction was performed for the row anomaly, therefore the row anomaly
does not show up in figure 35. It is clear from figures 34 and 35 and the theory
section that the cloud fraction and the full sky SSI are highly related. To see
in what manner these quantities are related figure 36 features the scatter plot
of the cloud fraction and SSI at overpass time from OMI. Because the cloud
fraction experiences the row anomaly from 2010 and on wards, the scatter plot
is divided into two groups. The blue dots represent the monthly means from
2005 until 2009 and the red dots the monthly means from 2010 until 2017. The
correlation coefficients are calculated for each group seperated because there is
a clear shift in the cloud fraction from 2010 on wards. The cloud fractions of
-0.96 and -0.98 show that the cloud fraction is highly anti-correlated with the
full sky SSI, as expected.
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Figure 36: Scatter plot of the monthly means of the Transmisscion coefficient
and the cloud fraction, 2005-2009 (blue) and 2010-2017 (red)

Previously it was shown that the bias between the created SSI datasets and
the CERES dataset was minimal, to see if this bias has a certain periodicity the
time series of the bias (monthly means) is plotted in figure 37.
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Figure 37: Time series of the monthly mean biases of the created products

Figure 37 shows that the bias is yearly periodic with peaks in the middle of
the years and troughs at the end/beginning of a year. Also there seems to be a
slight trend upwards. A possible cause of this periodicity could be the varying
aerosol concentration during the year. To check if this could be the case the
time series of the SCIAMACHY-OMI product is plotted together with the time
series of the aerosol optical depth from MODIS (figure 38).
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Figure 38: Time series of the monthly mean (SCIA-OMI - CERES)/CERES
bias and the aerosol optical depth monthly mean

Figure 38 shows that the aerosol optical depth has similar peaks and troughs
as the bias. To confirm that these two quantities are correlated a scatter plot
was created with the monthly means from 2005 up and until 2011. This scatter
plot is shown in figure 39
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Figure 39: Scatter plot of the monthly mean (SCIA-OMI - CERES)/CERES
bias and the aerosol optical depth monthly mean

The correlation coefficient of 0.79 shows that the bias between the two
datasets is correlated with the amount of aerosols in the atmosphere. In this
case the correlation was calculated by comparing the bias to the aerosol optical
depth measured by MODIS, the correlation with the aerosol optical depth cli-
matology is 0.83, the plots are shown in Appendix A.4. To check whether the
bias is caused by the difference between the MODIS aod and the climatology
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aod, the time series of the difference between MODIS aod and the climatology
aod is plotted with the bias in figure 40.
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Figure 40: Time series of the monthly mean (SCIA-OMI - CERES)/CERES
bias and the difference in aerosol optical depth (MODIS - climatology) monthly
mean

Figure 40 clarifies that the bias is not caused by the absolute difference be-
tween the aerosol optical depth input of the two datasets. This is also demon-
strated by the scatter plot of every monthly mean between 2005 and 2011 of
the difference in aerosol optical depth and the bias in figure 41. The correlation
coefficient for this scenario is -0.37.
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Figure 41: Scatter plot of the monthly mean (SCIA-OMI - CERES)/CERES
bias and the difference in aerosol optical depth (MODIS - climatology) monthly
mean
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6 Conclusion

A broadband daily mean and monthly mean surface solar irradiance product
has been derived from the effective cloud fractions from OMI and SCIAMACHY
and the clear sky data from CLARA. The surface solar irradiances at overpass
time have been calculated using the Lambertian cloud model and the Heliosat
method. In order to obtain daily means and monthly means equation 11 was
used. The individual satellite products at overpass time were validated using 15
BSRN surface stations. The correlation for the OMI data being on average 0.89
and for SCIAMACHY 0.83. The mean absolute biases were respectively 4.18
% and 4.73 %. Comparing the clear sky daily mean monthly mean SSI from
CLARA to the surface stations and the CERES dataset showed that without
the effect of clouds incorporated the average global SSI is 32.26 % to high. On
the other hand the correlation coefficient with the CERES dataset is 0.94 on
average, so this means that clouds highly affect the absolute value of the SSI,
but have a much smaller effect on the periodicity of the SSI. By including the
transmission coefficient of SCIAMACHY or OMI in equation 11 the bias of the
daily mean monthly mean decreases significantly. The mean absolute bias for
the daily mean monthly mean SSI using only SCIAMACHY compared to the
surface measurements is 5.83 % and compared to the CERES measurements it
is 0.70 %. For OMI this is respectively 5.31 % and 2.27 %. This is significantly
improved compared to the results from using just the clear sky dataset. The
average correlation coefficient of the SCIAMACHY daily mean SSI compared to
the surface stations is 0.89 and compared to the CERES dataset it is 0.97. For
OMI this is 0.97 and 0.99. Especially the correlation coefficients retrieved from
the OMI daily mean monthly mean SSI are exceptionally high, regarding the
fact that only the cloud fraction at 13:30 PM each day is taken into account.

After this both the data from OMI and the data from SCIAMACHY were
taken into account in equation 11 to derive a daily mean monthly mean SSI. The
bias of this combined dataset compared to the surface measurements is 5.40 %
and compared to the CERES dataset it is 0.88 %. The correlation coefficients are
on average 0.91 compared to BSRN data and 0.98 compared to CERES data.
These statistics show that the data is in good agreement with on one hand
measurements at the surface of the earth and on the other hand with a dataset
created by different satellite data. It is clear from the results that regional
differences in aerosol optical depth input can create regional differences of up
to 60 W/m2 in SSI between the OMI-SCIA product and the CERES dataset.
This difference can be corrected for by using equation 15, because OMI-SCIA
products uses climatology and therefore does not include local events like forest
fires which could influence the regional aerosol optical depth quite severely.
These events are captured by using data from MODIS. Figure 40 shows that
the difference in aerosol input does not influence the global bias compared to
the CERES dataset. Figure 36 features the expected relation between SSI and
the cloud fraction. This relation is quite obvious, because the cloud fraction
is used to calculate the transmission coefficient, but this figure also shows that
anomalies like the row anomaly have to be understood to know that this scatter
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plot has to be plotted in two parts.
This research has proved that it is possible to create a global SSI product

from the OMI and SCIAMACHY satellites which is in good agreement with
surface measurements and comparable datasets. There is no clear trend in
the 7 years of overlapping data from OMI and SCIAMACHY, which can be
expected, because a lot of climatologies were used in deriving this dataset and
global yearly mean SSI does not vary a lot in the time frame of a few years.
For further research it would be interesting to look further into the periodicity
in the bias between the OMI-SCIA SSI and the CERES SSI. The cause of this
periodic bias might improve the product. It would also be interesting to obtain
surface measurements in areas with high aerosol optical depths, because these
areas contain large differences between the satellite products.
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thanks to André, Jetse and Marlous for correcting my grammar and my typos.

53



References

[1] J.R. Acarreta et al., Cloud pressure retrieval using the O2-O2 absorption
band at 477 nm, Journal of Geophysical Research, Volume 109, 2004.

[2] H. Bovensmann et al., SCIAMACHY: Mission Objectives and Measurement
Modes, Journal of the Atmospheric Sciences, Volume 56, 1999.

[3] D. Cano et al., A method for the determination of the global solar radiation
from meteorological satellites data, Solar Energy, Volume 37, 1986.

[4] E. Dribbsa et al., A modification of the Heliosat method to improve its per-
formance, Solar Energy, Volume 65, 1998.

[5] S. Gehlot et al., Impact of Sahara dust on solar radiation at Cape Verde
Islands derived from MODIS and surface measurements, Remote Sensing of
Environment, Volume 166, 2015.

[6] D.W. Hahn, Light Scattering Theory, University of Florida, 2009.

[7] H.C. van de Hulst, Light Scattering by Small Particles, Dover publications,
1957.

[8] D.P. Kratz et al., Validation of the CERES Edition 2B Surface-Only Flux
Algorithms, Journal of applied Meteoroly and Climatology, Volume 49, 2009.

[9] G. Louis Smith et al., Clouds and the Earth’s Radiant Energy System
(CERES) Algorithm Theoretical Basis Document, Journal of Geophysical
Research, 1997

[10] R.W. Mueller et al., The CM-SAF operational scheme for the satellite based
retrieval of solar surface irradiance - A LUT based eigenvector approach,
Remote Sensing of Environment, Volume 113, 2009.

[11] R.W. Mueller et al., Towards Optimal Aerosol Information for the Retrieval
of Solar Surface Radiation Using Heliosat, Atmosphere, Volume 6, 2015.

[12] A. Roesch et al., Assesment of BSRN radiation records for the computation
of monthly means, Atmospheric Measurement Techniques, Volume 4, 2011.

[13] H. Senghor et al., Seasonal cycle of desert aerosols in western Africa: anal-
ysis of the coastal transition with passive and active sensors, Atmospheric
Chemistry and Physics, Volume 17, 2017.

[14] M. Sengupta et al., Best Practices Handbook for the Collection and Use
of Solar Resource Data for Solar Energy Applications, National Renewable
Energy Laboratory, 2nd edition, 2015.

[15] M. Sneep et al., Three-way comparison between OMI and PARASOL cloud
pressure products, Journal of Geophysical Research, Volume 112, 2008.

54



[16] P. Stammes et al., Effective cloud fractions from the Ozone Monitoring
Instrument: Theoretical framework and validation, Journal of Geophysical
research, Volume 113, 2008.

[17] P. Wang et al., Evaluation of broadband surface solar irradiance derived
from the Ozone Monitoring Instrument, Remote Sensing of Environment,
Volume 149, 2014.

[18] P. Wang et al., Surface solar irradiance from SCIAMACHY measurements:
algorithm and validation, Atmospheric Measurement Techniques, Volume 4,
2011.

[19] H.D. Young & R.A. Freedman, University Physics wit Modern Physics,
Pearson, 14th edition, 2015.

[20] T. Zhang et al., The validation of the GEWEX SRB surface shortwave
flux data products using BSRN measurements: A systematic quality control,
production and application approach, Journal of Quantitative Spectroscopy
& Radiative Transfer, Volume 122, 2013.

55



8 Appendix

8.1 A.1: Comparing direct SSI measurements to BSRN
measurements

Figure 42 shows that the correlation between the direct irradiances is much
lower than the correlation between the total irradiances. This is because the
direct irradiance is much harder to measure due to the fact that you have to
divide the incoming light into scattered light and direct light.

8.2 A.2: Linking the MAE to the cloud fraction

Although it is possible to draw a positive linear relation in each scenario. There
is no clear relation between the MAE and the cloud fraction. The reason that
it is possible to obtain a positive slope each occasion is that the MAE is close
to 0 at a cloud fraction of 0, which pulls the best-fit down to (0,0).

8.3 A.3: Relating the MAE to seasonality

Figures 44 & 45 show that there is no clear connection between the mean abso-
lute error and the time of the year.
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8.4 A.4: Correlating climatology AOD to the SCIA-OMI
and CERES bias
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Figure 46: Time series of the monthly mean (SCIA-OMI - CERES)/CERES
bias and the aerosol optical depth monthly mean

Figure 46 shows that the aerosol optical depth has similar peaks and troughs
as the bias. To confirm that these two quantities are correlated a scatter plot
was created with the monthly means from 2005 up and until 2011. This scatter
plot is shown in figure 47. The correlation coefficient is 0.83.
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Figure 47: Scatter plot of the monthly mean (SCIA-OMI - CERES)/CERES
bias and the aerosol optical depth monthly mean
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8.5 A.5: Comparing CERES with BSRN data

BSRN-site lat lon CERES mm SSI BSRN SSI Bias (%) RMSE MAE correlation
ASP -23.6 133.9 186.0 262.7 -29.2 84.0 76.7 0.83
BER 32.3 -64.7 148.1 194.5 -23.9 56.4 47.5 0.89
BOU 40.1 -105.2 178.3 197.0 -9.5 27.3 22.3 0.96
CAM 50.2 -5.3 98.9 128.1 -22.7 47.9 32.2 0.93
CAR 44.1 5.1 116.6 182.8 -36.2 79.8 66.2 0.96
CLH 36.9 -75.7 189.8 185.6 2.3 23.2 20.0 0.95
COC -12.2 96.8 204.4 219.0 -6.7 48.1 41.8 0.58
KWA 8.7 167.7 208.6 227.2 -8.2 36.0 28.9 0.10
LAU -45.0 169.7 129.8 163.2 -20.5 38.8 33.4 0.97
LIN 52.1 14.1 103.7 130.7 -20.7 39.9 28.2 0.97
MAN -2.1 147.4 256.4 198.4 29.2 61.9 58.0 0.36
REG 50.2 -104.7 152.4 157.6 -3.4 21.7 16.1 0.97
SBO 30.9 34.8 197.4 272.8 -27.6 87.4 75.4 0.95
TAM 22.8 5.5 241.3 261.5 -7.7 29.6 23.9 0.90
XIA 39.8 117.0 152.3 162.3 -6.1 42.5 38.4 0.86

Table 13: CERES monthly mean, BSRN comparison, bias is (CERES -
BSRN)/BSRN, RMSE is the root mean squared error and MAE is the mean
absolute error
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Figure 48: Scatter plots of the bsrn locations daily monthly means compared
to the CERES monthly means.
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Figure 42: Scatter plots of direct SSI
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Figure 43: Scatter plots of MAE as a function of cloud fraction per location,
left OMI-BSRN MAE, right SCIA-BSRN MAE
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Figure 44: Scatter plots of seasonal OMI - BSRN SSI and the MAE/SSImean
per location per season
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Figure 45: Scatter plots of seasonal SCIA - BSRN SSI and the MAE/SSImean
per location per season
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