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Abstract

This thesis concerns the analysis of the first-order electroweak phase transition in a con-
formal extension of the standard model (SM). The model we consider is the classically
conformal SM which is extended by a scalar doublet and a hidden SU(2) gauge group.
First, we review the quantum effective action and the techniques of thermal field theory.
We explain why usual perturbation theory breaks down at high temperatures and intro-
duce a novel method to alleviate this problem by resumming diagrams with the so-called
gap equation. By this approach, we restore the validity of perturbation theory at finite
temperature and thus account for reliable results in the early universe. With such an im-
proved potential at hand we study the thermal history of the universe within the context
of the conformal extension of the SM and compare it with the SM results. We study the
phase transitions of our model by three different approaches: Sequential symmetry break-
ing, Gildener-Weinberg method and the multi-field approach. In the last case, we obtain an
improved effective potential dependent on two background fields which allows us to trace
the global minimum in the two-dimensional field space with increasing temperature. We
show that with the Gildener-Weinberg method and the multi-field approach, the conformal
extension of the SM entails a strong first-order phase transition. Moreover, the multi-field
approach indicates that the phase transitions in our model is a two-step transition. Us-
ing these results we analyze the process of bubble nucleation for the Gildener-Weinberg
method and the multi-field approach. Finally, we estimate the stochastic gravitational wave
backgrounds (SGWB) produced by the collision of bubble walls. Our estimates show that
the conformal model in consideration leads to the production of a SGWB which could be
detected by the prospective LISA gravitational wave detector.
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Notation and Conventions

• We work in natural units, i.e. the speed of light c, the reduced Planck constant ~ and
the Boltzmann constant kB are set to one,

c = ~ = kB = 1.

• The Minkowski metric ηµν has the signature (+,−,−,−).

• Four-vectors are denoted by k and spatial vectors by k.

• We will work in Landau gauge. This does not require ghost-compensating terms and
the free propagator for gauge bosons reads

∆µν(k) =
−i

k2 + iε

(
ηµν −

kµkν
k2

)
.

• Divergent integrals are regulated by dimensional regularization d = 4− ε and we use
the MS renormalization scheme. The counter-terms are proportional to(

1

ε
− 1

2
γE −

1

2
log(4π)

)
.
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Introduction

Since the discovery of the Higgs boson at the LHC in 2012, the Standard Model (SM) of
particle physics is considered as an experimentally validated theory describing in one frame-
work interactions of elementary particles. With that discovery the important complement
of the SM with the Brout–Englert–Higgs mechanism was confirmed. The Brout–Englert–
Higgs mechanism explains the generation of masses of gauge bosons and fermions in the
SM. Despite this remarkable success, several issues like dark matter, baryogenesis, the hi-
erarchy problem, inflation and ultimately the unification with gravity are not addressed
by the SM and remain open problems of particle physics and cosmology. Supersymmetric
versions of the SM are one widely studied proposal to extend the SM offering solutions to
the aforementioned issues. However, the current lack of experimental evidence for super-
partnes of the minimal supersymmetric SM, motivates to also take alternative extensions
of the SM into account. Compared to supersymmetry these alternatives often offer more
minimalistic approaches to extend the SM and it seems appealing to study them with
regard to the open problems in high-energy physics.

Promising canditates are classically conformal extensions of the SM. The proposed confor-
mal SM (cSM) has a classical scale invariance because the Higgs mass term in the calssical
potential is omitted. Therefore, only dimensionless paramaters are present in the model.
It was proposed first by W. Bardeen [1] to allievate the hierarchy problem of the SM.
Due to the absence of the Higgs mass parameter, no fine-tuning between the tree-level
mass of the Higgs boson and its quantum corrections is needed. In the cSM all masses
are generated purely by quantum corrections. This generation of mass scales is based on
radiative symmetry breaking (RSB) introduced in the seminal paper of S. Coleman and
E. Weinberg [2]. To generate the Higgs mass in the cSM by RSB requires a rather large
self-coupling of the Higgs field [3, 4]. This is considered to be problematic because it leads
to Landau poles below the Planck scale [5]. This is a reason why reserach has propelled
directed towards extended versions of the cSM where the experimentally measured mass of
the Higgs can be generated via RSB. It was proposed to extend the cSM in various ways:
a real scalar, a complex scalar, multiple scalars, gauge groups or fermions (see ref. [5] and
references therein). A particular appeal of these models is that they can address problems
like dark matter, neutrino masses and baryogenesis. We give a more thorough introduction
to conformal extensions of the SM in the beginning of chapter 5 and introduce the model
which we will study in this thesis: an extension with a scalar doublet and a hidden SU(2)
gauge group (SU(2)cSM).

Conformal extensions of the SM have, among other SM extensions, the striking feature to
potentially entail a strong first-order electroweak phase transition. Phase transitions are
phenomena which can be observed at all scales. The boiling of water, the magnetization of
ferromagnets and superconductivity are just a few examples of this phenomena. The phase
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transition which we will study in this thesis are rooted in the theory of the electroweak
interactions and might lead to cosmological remnants. The vacuum expectation value of
the Higgs boson 〈h〉 consititutes the order paramter of this phase transition because it
seperates the phase 〈h〉 = 0 where electroweak symmetry is preserved and the phase
〈h〉 6= 0 where it is broken. We know that the electroweak symmetry is broken in the
universe today, because the observed finite masses of the electroweak gauge bosons require
a condensation of the Higgs field to 〈h〉 6= 0. It was D. Kirzhnits [6] who discovered first
that the symmetry might be restored at high temperatures in the early universe. The phase
transition is characterized by the critical temperature, above which electroweak symmetry
is restored. This started research to study the cosmological consequences of the electroweak
phase transition of the SM. However, it was shown that the transition in the SM is too
smooth (i.e. a crossover) to lead to cosmological remnants [7]. However, this situation can
be altered in various scenarios beyond the SM.

The cosmological implications of the electroweak phase transition are significant if it is a
first-order phase transition. This can be characterized by a critical temperature where the
free energy (i.e. the effective potential) has two local minima coexisting for some temper-
ature range. If the temperatures drops below the critical temperature, the system can be
trapped in a metastable state (false vacuum) because of the potential barrier between the
two local minima. The system can transition from the false vacuum to the stable state
(true vacuum) by quantum or thermal tunneling through the potential barrier. In this
case the phase transition leads to bubble nucleation. This is a phenomenon, where bubbles
of the true vacuum are formed in the sea of the old phase until the whole system is in
the true vacuum. In cosmology, these bubbles can be formed in the early stages of the
universe and expand until they fill the whole universe. Eventually the bubbles will collide
and these events might trigger a production of a stochastic background of gravitational
waves (SGWB). Furthermore, cosmological bubble nucleation from an electroweak phase
transition offers the possibility of electroweak baryogenesis [8].

In this thesis, we will consider the SGWB from bubble collisions in a conformal extension
of the SM. This is a promising research area due to recent developments in the possibility
of gravitational wave detection. In 2016, the LIGO collaboration announced the successful
detection of gravitational waves produced by a black hole merger. However, the sensitivity
of the LIGO detector is not high enough to eventually measure SGWB from a first-order
phase transition at the electroweak scale. The potential detection of a SGWB is therefore
postponed to the LISA mission expected to launch in 2034. The LISA detector will be
the first space-based gravitatioanl wave detector consisting of three spacecrafts seperated
by 2.5 million km in a triangular formation following the Earth in its orbit around the
Sun [9]. The vast length of the arms of this laser interferometer increases the sensitivity
of gravitational wave detection in the low frequency band (∼ mHz) and paves the road
to measure SGWB from first-order phase transition. This has propelled research to study
cosmological first-order phase transition in extension of the SM and estimate its SGWB
(see e.g. refs. [10–16]).

The investigation of a thermal phase transition in the early universe is based on an effective
potential which takes quantum and thermal effects into account. The effective potential
can be computed perturbatively where the usual approach is an expansion in number of
loops. This method is not valid at high temperatures due to infrared divergences of so-
called hard thermal loops of bosonic fields. This issues is usually resolved by resumming
so-called daisy diagrams yielding thermal masses for bosons [17–20]. This approach is the
standard technique in the literate to restore perturbativity of the effective potential at high
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temperatures and to study thermal phase transitions in the early universe. We propose a
new method which is related to the method of ref. [21] in section 3.3, resumming a broader
class of diagrams. The resummation technique we introduce is based on the self-consistent
gap equation for the scalar fields in theory. This approach yields resummed masses for the
scalar fields, which can be used to derive the improved effective potential directly. With
this we hope to increase the accuracy compared to the daisy resummation and also give a
formalism which is valid beyond the high temperature expansion. With our method we are
able to restore perturbativity also at low temperatures at which the daisy resummation
technique is not sufficient. Furthermore, this method is appealing since the gap equation
can be derived from the two-particle-irreducible (2PI) effective action and allows to resum
certain classes of higher-order diagrams. In the method we present, we use the resummed
masses to obtain the effective potential directly which corresponds to the 1PI approach
(see section 3.3 for more details). If the full 2PI approach is used, the computation of the
2PI effective action yields a resummation of a broader class of diagrams compared to our
method. This approach is not studied in this thesis, but it should be compared to our
method in the future. Moreover, the gap equation offers the possibility to include finite
momentum corrections to the effective action which allows the inclusion of the gradient
corrections to the effective action, but this is beyond the scope of this thesis and is left for
future research.

This thesis is structured as follows. First, we will review in chapter 1 the quantum effective
action which is a useful formalism to study phase transition of QFTs. The formalism is then
generalized to field theories at finite temperature in chapter 2. The beginning of chapter
3 concerns the occurence of hard thermal loops at high temperatures and the method of
daisy resummation. Subsequently, we introduce the aforementioned gap equation method
to consistently resum diagrams and show how to obtain the improved effective potential.
The numerical implementation of solving the gap equation is explaind in chapter 4, where
we in particular analyze the impact of improving the effective potential by comparing it
with standard one-loop results. The conformal extension of the SM which will be studied
in this thesis is introduced in chapter 5. Chapter 6 contains the study of the thermal phase
transition by three approaches: sequential symmetry breaking, Gildener-Weinberg method
and the multi-gap equation approach. The results we find are re-investigated in chapter 7
regarding the details of bubble nucleation and finally in chapter 8 we estimate the power
spectra of potential SGWB from bubble collisons.
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Chapter 1

The Quantum Effective Action

To study phase transitions in the early universe, it is of significant importance to know
the vacuum expectation value (VEV) of the quantum scalar field, since it constitutes the
order parameter of phase transitions. The VEV itself can be treated as a classical field and
it is possible to describe the dynamics of the VEV field by building a classical effective
theory taking quantum effects to a certain loop order into account. This formalism is called
the quantum effective action. We introduce the standard one-particle irreducible effective
action in section 1.1 which is sufficient at one-loop order. This approach is generalized
in section 1.2 to the two-particle irreducible approach, which encodes a resummation pre-
scription for a certain class of diagrams and can improve the perturbative approach beyond
the usual loop expansion.

1.1 One-particle Irreducible Approach

In this section we follow the references [2, 22–25]. To introduce the general concept of the
effective action, we consider a theory of one scalar field described by the lagrangian L[φ(x)]
and an action functional

S[φ] =

∫
d4xL[φ(x)]. (1.1)

We can introduce an external source J(x) to the theory by coupling it linearly to the scalar
field. The generating functional for this theory in the in-out formalism is denoted by the
path integral

Z[J ] = 〈0out|0in〉J =

∫
Dφ exp [i (S[φ] + φ · J)] , (1.2)

where we used the shorthand notation

φ · J =

∫
d4xφ(x)J(x). (1.3)

The physical meaning of the generating functional (1.2) is the transition amplitude between
the two vacuum states |0in〉 and |0out〉 in presence of the source J(x). In diagrammatic
language, the generating functional is the sum of all connected an disconnected Feynman
diagrams in the vacuum to vacuum amplitude, where the Feynman rules are defined by
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the action S[φ] and the source term φ ·J . The generating functional Z[J ] can be expanded
in a series

Z[J ] = 1 +
∞∑
n=1

∫
d4x1 . . . d

4xnG
(n)(x1, . . . , xn)J(x1) . . . J(xn), (1.4)

which contains all connected and unconnected correlation functions (i.e. Green’s functions)
G(n). The time ordered n-point functions are obtained by functional differentiation with
respect to the sources and setting the sources then to zero

G(n)(x1, . . . , xn) = 〈0|Tφ(x1) . . . φ(xn)|0〉 =
(−i)n

Z[0]

δnZ[J ]

δJ(x1) . . . δJ(xn)

∣∣∣∣
J=0

. (1.5)

One can obtain a generating functionalW [J ] for the connected Green’s function by defining

Z[J ] = exp (iW [J ]) . (1.6)

The expansion of the functional W [J ]

W [J ] =
∞∑
n=1

in−1

n!

∫
d4x1 . . . d

4xnG
(n)
c (x1, . . . , xn)J(x1) . . . J(xn), (1.7)

contains all connected Green’s functions. They can be obtained by the formula

G(n)
c (x1, . . . , xn) = 〈0|Tφ(x1) . . . φ(xn)|0〉c = (−i)n−1 δnW [J ]

δJ(x1) . . . δJ(xn)

∣∣∣∣
J=0

. (1.8)

That this functional actually generates connected Green’s functions, can be illustrated by
considering for instance the connected two-point function

G(2)
c (x1, x2) =

1

i

δ2W [J ]

δJ(x1)δJ(x2)

∣∣∣∣
J=0

= 〈0|Tφ(x1)φ(x2)|0〉 − ( 〈0|φ(0)|0〉)2, (1.9)

where the disconnected diagrams in G(2)(x1, x2) = 〈0|Tφ(x1)φ(x2)|0 are canceled by the
second term. ∗. Therefore, the two-point function G(2)

c corresponds to connected Feynman
diagrams. This generalizes for arbitrary n-point functions. In the presence of a source J(x)
we can obtain the vacuum expectation value of φ(x), which corresponds to the one point
function, by

G
(1)
C (x) =

δW [J ]

δJ(x)

∣∣∣∣
J=0

=
1

iZ[J ]

δZ[J ]

δJ(x)

∣∣∣∣
J=0

=

(
〈0|φ(x)|0〉
〈0|0〉

)
J

= ϕ(x)J . (1.10)

The subscript J is to indicate that the expectation value depends on the source term. To
define the effective action, we will assume that eq. (1.10) is invertible. We define Jϕ(x) as
the source term for which the field φ(x)J has the prescribed value ϕ:

ϕJ(x) = ϕ(x) if J(x) = Jϕ(x). (1.11)

The classical field ϕJ(x) (also called average or background field) reduces to the VEV v of
the field φ for a vanishing source term

v = ϕJ(x)

∣∣∣∣
J=0

. (1.12)

∗We used a translational invariant vacuum state in eq. (1.9), i.e. 〈0|φ(x)|0〉 = 〈0|φ(0)|0〉.
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The effective action is defined as a functional Legendre transformation of W [J ]

Γ[ϕ] = W [Jϕ]−
∫

d4xϕ(x)Jϕ(x), (1.13)

which is a functional of the classical field ϕ(x). The dependence on the source term is
eliminated by means of eqs. (1.10) and (1.11). A functional derivative of the effective
action with respect to the classical field yields

δΓ[ϕ]

δϕ(x)
=
δW [Jϕ]

δϕ(x)
−
∫

d4x′
(
δϕ(x′)

δϕ(x)
Jϕ(x′) + ϕ(x′)

δJϕ(x′)

δϕ(x)

)
=

∫
d4x′

[(
δW [J ]

δJ(x′)

) ∣∣∣∣
J=Jϕ

δJϕ(x′)

δϕ(x)
+ ϕ(x′)

δJϕ(x′)

δϕ(x)

]
− Jϕ(x), (1.14)

where we used δϕ(x)/δϕ(x′) = δ(4)(x− x′) and the functional chain rule in the first term.
By equation (1.10) with ϕJ(x) = ϕ(x) eq. (1.14) simplifies to

δΓ[ϕ]

δϕ(x)
= −Jϕ(x) (1.15)

and for a vanishing source term this reduces to

δΓ[ϕ]

δϕ(x)

∣∣∣∣
J=0

= 0. (1.16)

Due to eq. (1.12) this is equivalent to requiring

δΓ[ϕ]

δϕ(x)

∣∣∣∣
ϕ=v

= 0. (1.17)

This relation reveals that the vacuum expectation value of the quantum field φ in the
absence of sources is a functional stationary point of the effective action Γ. In this way, it
explains the terminology of the effective action: the VEV of a quantum field is obtained
by a stationary principle of an action functional as in a classical theory with action S[ϕ]
but also taking quantum effects into account. These quantum effects can be accounted for
by perturbation theory organized in an expansion in terms of loops.

The effective action has also a useful interpretation in terms of Feynman diagrams, which
we discuss next. We will show that the effective action contains all correlation functions
(also called proper vertices) of the quantum theory to a given loop order. To see this, we
start by expanding the effective action in the classical field

Γ[ϕ] =

∞∑
n=1

1

n!

∫
d4x1 . . . d

4xn
δnΓ[ϕ]

δϕ(x1) . . . δϕ(xn)
ϕ(x1) . . . ϕ(xn) (1.18)

and we will show that the coefficients defined by

Γ(n)(x1, . . . , xn) =
δnΓ[ϕ]

δϕ(x1) . . . δϕ(xn)
(1.19)

correspond to the mentioned correlation functions. For n = 1 we directly find using eq.
(1.15) that we obtain the one-point correlation function given by the source term. Going
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one order higher, we need to exploit the relation

δ4(x− y) =
δϕ(x)

δϕ(y)
=

δ

δϕ(y)

δW [J ]

δJ(x)

∣∣∣∣
J=Jϕ

=

∫
d4z

δJϕ(z)

δϕ(y)

δ2W [J ]

δJ(z)δJ(x)

∣∣∣∣
J=Jϕ

=

∫
d4z

δΓ[ϕ]

δϕ(y)δϕ(z)

δ2W [J ]

δJ(z)δJ(x)

∣∣∣∣
J=Jϕ

. (1.20)

For J = 0 and thus ϕ = v this shows us that

Γ(2)(x, y)

∣∣∣∣
ϕ=v

=

(
δ2W [J ]

δJ(x)δJ(y)

∣∣∣∣
J=0

)−1
= i
(
G(2)
c

)−1
(x, y). (1.21)

In the light of eq. (1.8) we obtain the inverse of the connected two-point function. We car
interpret Γ(2) as the one-particle irreducible (1PI) amputated two-point Green’s function.
By taking higher functional derivatives we obtain similar expressions to eq. (1.21) for
proper n-point vertices.

It is convenient to write eq. (1.18) in momentum space. Therefore, we write the n-point
functions in terms of their Fourier transforms

Γ(n)(x1, . . . , xn) =

n∏
i=1

[∫
d4pi
(2π)4

]
(2π)4δ(4)

(
n∑
i=1

pi

)
Γ̃(n)(p1, . . . , pn) exp

(
i

n∑
i=1

xipi

)
.

(1.22)

Writing the delta function as integral, eq. (1.18) reads

Γ[ϕ] =
∞∑
n=1

1

n!

n∏
i=1

[∫
d4xi

∫
d4pi
(2π)4

ϕ(xi)

] ∫
d4x Γ̃(n)(p1, . . . , pn) exp

(
i
n∑
i=1

(xi − x)pi

)
.

(1.23)

Furthermore, we expand Γ̃(n) around vanishing momenta

Γ̃(n)(p1, . . . , pn) = Γ(n)(0, . . . , 0) +

n∑
i=1

∂

∂pµi
Γ̃(n)(p1, . . . , pn)

∣∣∣∣
pi=0

pi,µ + . . . . (1.24)

Substituting eq. (1.24) to eq. 1.23 we can cast the effective potential in the following form

Γ[ϕ] =

∞∑
n=1

1

n!

∫
d4x Γ̃(n)(0, . . . , 0)ϕ(x)n +

1

2

∫
d4xZ(ϕ)∂µϕ∂

µϕ+ . . . . (1.25)

Our formalism can be further simplified if the field is in the ground state ϕ(x) = vϕ which
is constant in space-time. In this case, we can work with an effective potential Veff(vϕ)
instead of the effective action functional Γ[ϕ]. The effective potential is defined as the
zero-momentum term of the effective action (cf. eq. (1.25))

Veff(ϕ) = −
∞∑
n=1

1

n!
Γ̃(n)(0, . . . , 0)ϕ(x)n. (1.26)
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For a constant field ϕ(x) = vϕ we have the relation

Γ[vϕ] = −Veff(vϕ)

∫
d4x , (1.27)

and thus the functional stationary condition of the effective action in eq. (1.17) reduces to
a stationary point of the effective potential

∂Veff
∂ϕ

∣∣∣∣
ϕ=v

= 0. (1.28)

Note that the effective potential is a function of ϕ and not a functional of ϕ as the effective
action Γ[ϕ]. The expansion of the effective potential in eq. (1.26) can be interpreted in a
convenient diagrammatic way if the desired loop order of the effective potential is specified.
In fact, this is the approach we will use to derive the effective potential for certain models.

The coefficients Γ̃(n)(0, . . . , 0) correspond to proper vertices in momentum space with van-
ishing external momenta. At zero loop order the proper vertex functions are given by the
regular vertex functions defined by the classical potential V (0)(ϕ) in the lagrangian. So
at zero loop order we find that the effective potential reduces to the tree level potential
V (φ) = Veff(ϕ), which is what we expect at this order in perturbation theory. However,
at the one loop level the proper vertex function get modified by quantum corrections. We
denote this part as

V (1)(ϕ) =

∞∑
n=1

ϕn

n!
Γ̃
(n)
(1) (0, . . . , 0), (1.29)

where Γ̃
(n)
(1) are the 1PI irreducible Feynman diagrams at one-loop order and n external legs

connected to the background field ϕ. Thus, eq. (1.29) corresponds to the sum of all one-
loop diagrams with vanishing external momenta, with n external legs each contributing the
factor ϕ. The one-loop part of the effective potential is also often called Coleman-Weinberg
potential [2]. To render the final result finite, we have to add counter terms ∆V (ϕ) to the
effective potential. To sum up, at one loop order the effective potential is

Veff(ϕ) = V (0)(ϕ) + V (1)(ϕ) + ∆V (ϕ). (1.30)

In the following three subsections, we derive the one-loop corrections V (1) for scalar fields,
fermion field and gauge boson fields by the aforementioned diagrammatic approach fol-
lowing refs. [26, 27]. Another diagrammatic approach to derive the one-loop corrections is
given in ref. [25]. In this approach, one uses the Feynman rules for the shifted theory † and
computes the loops without external legs.

1.1.1 Scalar Fields

Consider a massive scalar theory with the lagrangian

Lφ =
1

2
∂µφ∂

µφ− V (0)(φ). (1.31)

and classical potential

V (0)(ϕ) =
m2

2
ϕ2 +

λ

4!
ϕ4, (1.32)

where ϕ is the background field. The Feynman rules for this theory are:
†The shifted theory is obtained by replacing S[φ]→ S[ϕ+ φ̃], where ϕ is the background field of φ.

12



• scalar propagator: i
k2−m2+iε

,

• self-interaction vertex: −iλ.

At one-loop order V (1)
ϕ should be computed as the sum of all 1PI diagramms containing one

loop and zero external momenta. Due to the structure of the classical potential (1.32) only
diagrams with an even number of external legs contribute. In terms of Feynman diagrams,
the sum follows the pattern

+ + + . . .

The n-th diagram of this infinite sum, consists of n propagators inside the loop, n vertices
and 2n external legs. With the Feynman rules of lagrangian (1.31) the propagators give a
factor in(k2 − m2 + iε)−n, the vertices including the symmetry factor of exchanging the
external legs give a factor −iλ/2 and the pairs of external legs contribute ϕ2n. The overall
symmetry factor is n!/2n because the vertices can be positioned in n! ways but there is
a mirror symmetry rendering some of these diagrams equivalent, hence we need to divide
by 2n. Additionally, this coefficient is multiplied by 1/n! in the expression for V (1) (cf. eq.
(1.29)). According to eq. (1.29) we obtain for the scalar field

V (1)
ϕ (ϕ) = i

∞∑
l=1

1

2n

∫
d4k

(2π)4

(
λϕ2/2

k2 −m2 + iε

)l
. (1.33)

The additional i is coming from the definition of the generating functional W [J ] (cf. eq.
(1.6) and (1.27)). By performing the sum over l we obtain

V (1)
ϕ (ϕ) = − i

2

∫
d4k

(2π)4
log

(
1− λϕ2/2

k2 −m2 + iε

)
. (1.34)

To compute this integral we perform a Wick rotation

k0 = ik0E , kE = (−ik0,k), k2 = −k2E , (1.35)

where the subscript E stands for Euclidean. Now we get

V (1)
ϕ (ϕ) =

1

2

∫
d4kE
(2π)4

log

(
1 +

λϕ2/2

k2E +m2

)
=

1

2

∫
d4kE
(2π)4

[
log
(
k2E +m2 + λϕ2/2

)
− log

(
k2E +m2

)]
. (1.36)

Both integrals are UV-divergent and require some regularization prescription. The second
term is a field-independent infinite constant term and can be dropped from the effective
potential. Using dimensional regularization and the MS scheme the finite part of the first
term in eq. (1.36) which is not canceled by counterterms is [2]

V (1)
ϕ (ϕ) =

m(ϕ)4

64π2

[
log

(
m(ϕ)2

µ2

)
− 3

2

]
. (1.37)

This is the result for dimensional regularization with MS scheme, with renormalization
scale µ whereas in ref. [2] a cutoff regularization scheme was used. The computation in
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the MS scheme can be found in ref. [27]. The infinite part of the integral (1.36) will be
canceled by a suitable choice of the counterterms ∆V in the effective potential. We have
defined the so-called field-dependent mass of the scalar field

m(ϕ)2 = m2 +
λ

2
ϕ2. (1.38)

Eq. (1.37) is the usual one-loop term in the effective potential (or Coleman-Weinberg
potential) for scalar fields with field dependent mass m(ϕ).

1.1.2 Fermion Fields

We consider N fermionic fields ψ1, . . . , ψN interacting with one scalar field with the la-
grangian

Lψ = iψ̄aγ
µ∂µψ

a + ψ̄ay
a
bφψb, (1.39)

where yba is the Yukawa coupling matrix between two fermionic fields and one scalar field.
The Feynman rules of this theory are

• fermion propagtor: i
/k+iε

δab ,

• Yukawa interaction vertex: −iyabϕ = −i(Mψ(ϕ))ab ,

where we already defined the field-dependent mass matrix Mψ(ϕ) of the fermions. We now
need to sum all vacuum one-loop diagrams with fermion propagators in the loop. The
contributing diagrams are depicted by

+ + . . .

where the black dots denote the Yukawa vertex which in this case includes the external
leg ϕ. Diagrams with an odd power of ϕ drop out, because the number of propagator is
then also odd and the trace of an odd number of γ-matrices vanishes. For a diagram with
2l vertices the propagators contribute

Tr
[
i2l(γ · k)2l(k2)−2l

]
, (1.40)

with a trace in the spinor space. We have dropped the ε terms for convenience. The vertices
contribute

Trf [−iMψ(ϕ)2l], (1.41)

where the trace rungs over the different fermionic fields. If we combine these two, multiply
by the appropriate symmetry factors and include a minus sign for the fermion loop, we
obtain

− 1

2l

Trf [Mψ(ϕ)2l]

k2l
Tr[1], (1.42)

where we have used (γ · k)2 = k2. The trace in spinor space σ = Tr[1] counts the degrees
of freedom of the fermions. For Dirac fermions that is σ = 4 and for Weyl fermions σ = 2.
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Including now the overall factor i and integration over the loop momentum we obtain for
the one-loop term of the fermions

V
(1)
ψ (ϕ) = −iσ

∞∑
l=1

Trf

∫
d4k

(2π)4
1

2l

[
M2
ψ

k2

]2l

= i
σ

2

∞∑
l=1

Trf

∫
d4k

(2π)4
log

(
1−

M2
ψ

k2

)
. (1.43)

As in the previous section, the integral is solved after performing a Wick rotation for the
momenta

V
(1)
ψ (ϕ) = −σTrf

1

2

∫
d4kE
(2π)2

log
(
k2E +M2

ψ(ϕ)
)
, (1.44)

where we have omitted the field independent term. The integral which has to be solved in
eq. (1.44) is the same as in the case of scalar fields. For a diagonal mass matrix Mψ(ϕ) =
mψ(ϕ)1 the trace Trf reduces to a factor N and we obtain [27]

V
(1)
ψ (ϕ) = −σN

mψ(ϕ)4

64π2

[
log

(
mψ(ϕ)2

µ2

)
− 3

2

]
, (1.45)

which differs by a factor of (−σN) compared to the scalar field (cf. (1.37)). For instance,
a quark has the factors σ = 4 and N = 3 and thus eq. (1.45) counts correctly its twelve
degrees of freedom (3 colors × 2 spins × 2 electric charges).

1.1.3 Gauge Bosons

Consider now a gauge boson interacting with a scalar field, described by the lagrangian

LA = −1

4
FµνF

µν + e2AµA
µφ2. (1.46)

The Feynman rules in Landau gauge read:

• gauge boson propagator: −i
k2+iε

∆µν = −i
k2+iε

(
ηµν − kµkν

k2

)
,

• scalar-gauge-boson vertex: 2ie2ηµν .

To compute the one-loop term of the gauge boson V
(1)
A we have to sum the diagrams

depicted by

+ + + . . .

The derivation of V (1)
A is very similar to the scalar field case, but the trace of the projectors

∆µν changes the final result. The projector has the property

Tr[∆n] = Tr[∆] = d− 1, (1.47)
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where d counts space-time dimensions. With that in mind, the l-th diagram of the sum
reads

1

2l

(
(eϕ)2

k2 + iε

)2l

(d− 1) (1.48)

The one-loop term is obtained by including the overall i, summing over l and integrating
over the loop momentum k. After performing the summation and omitting field indepen-
dent terms, we obtain the Euclidean integral

V
(1)
A (ϕ) =

1

2

∫
d4kE
(2π)4

(d− 1) log
(
k2E +m2

A(ϕ)
)
, (1.49)

where mA(ϕ) = eϕ is the field dependent mass of the gauge boson. Using dimensional
regularization when solving the integral, the factor d−1 = 3−ε causes a slight modification
of the final result [27]

V
(1)
A (ϕ) = 3

m4
A(ϕ)

64π2

[
log

(
m2
A(ϕ)

µ2

)
− 5

6

]
. (1.50)

The factor 3 counts the degrees of freedom of a massive gauge boson.

1.1.4 General One-Loop Corrections

To sum up the last three sections, we give the general one-loop term

V
(1)
i (ϕ) = ni

m4
i (ϕ)

64π2

(
log

(
m2
i (ϕ)

µ2

)
− Ci

)
, (1.51)

for a field with field dependent mass mi(ϕ). The coefficients ni and Ci can be determined
by

ni =


1 for scalar fields,
−4 for Dirac fermions,
3 for gauge boson,

(1.52)

Ci =

{
3
2 for scalar fields and fermions,
5
6 for gauge bosons.

(1.53)

If a model contains multiple particles, the total one-loop correction is given by the sum
over all particles present in the theory

V (1)(ϕ) =
∑
i

V
(1)
i (ϕ). (1.54)

1.2 Two-particle Irreducible Approach

Cornwall, Jackiw and Tomboulis generalized the 1PI effective action approach to a n-
PI approach [28]. The n-PI effective action Γn[ϕ,G(2), . . . , G(n)] has next to functional
dependence on the one-point function ϕ(x) also functional dependence on the n-point
functions denoted by G(2)(x1, x2), . . . , G

(n)(x1, . . . , xn). Previously, we have seen that the
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only functional dependence on the 1PI effective action is the one-point function, i.e. the
classical background field ϕ(x). We will discuss this generalization by the example of the
2PI effective action following ref. [29]. As the name suggests, the 2PI effective action
contains 2PI diagrams. Since one-loop diagrams cannot be 2PI, this method is usually used
if results beyond one-loop level are desired. In fact, at one-loop order, it is not necessary
to go beyond the 1PI approach, since the 2PI effective action would simply reduce to the
usual 1PI effective action. In contrast, for results at n-loop order it is necessary to use the
m-PI effective action with m ≥ n to be self-consistent [29]. All descriptions with m ≥ n
are then equivalent, so it is usually most convenient to choose m = n.

The 2PI effective action is a helpful formalism if the usual perturbative expansion in loops
breaks down (e.g. at high temperatures) and a resummation technique alleviating this
problem is needed. This method can be seen as a reorganization of perturbation theory
where infinite number of diagrams belonging to a certain class is resummed into effective
proper vertices encoded by the effective action. In this way, the perturbative approach to
the effective potential can be improved significantly. We will elaborate on this resummation
technique in more detail in chapter 3.

The generating functional Z[J,R] in the 2PI description for a scalar field φ with action
S[φ] is defined by

Z[J,R] = exp(iW [J,R])

=

∫
Dφ exp

[
i

(
S[φ] +

∫
d4xφ(x)J(x) +

1

2

∫
d4x

∫
d4y φ(x)R(x, y)φ(y)

)]
,

(1.55)

where apart from the local source J(x) a bilocal source R(x, y) is introduced. As in the
1PI approach, the functionalW [J,R] generates connected Green’s functions. The connected
one- and two-point functions are defined by

〈φ(x)〉 =
δW [J,R]

δJ(x)
= ϕ(x), (1.56)

〈Tφ(x)φ(y)〉 = 2
δW [J,R]

δR(x, y)
= (G(x, y) + ϕ(x)ϕ(y)) , (1.57)

respectively. Eq. (1.57) is defined such that the contribution of the disconnected part drops
out (cf. eq. (1.9)). The 2PI effective action is obtained by a double Legendre transformation
of W [J,R] with respect to both source terms,

Γ2PI[φ,G] = W [J,R]−
∫

d4x
δW [J,R]

δJ(x)
J(x)−

∫
d4x

∫
d4y

δW [J,R]

δR(x, y)
R(x, y). (1.58)

Here we assumed that eqs. (1.56) and (1.57) can be inverted to get an expression for J(x)
and R(x, y) for prescribed ϕ(x) and G(x, y) (according to eq. (1.11)). For simplicity, we
do not denote this dependence in this section. Using eqs. (1.56) and (1.57) we get

Γ2PI[φ,G] = W [J,R]−
∫

d4xϕ(x)J(x)− 1

2

∫
d4x

∫
d4y G(x, y)R(x, y)

− 1

2

∫
d4x

∫
d4y ϕ(x)ϕ(y)R(x, y)

= W [J,R]− ϕ · J − 1

2
Tr(R ·G)− 1

2
ϕ ·R · ϕ, (1.59)
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where the functional dependence on J and R on the right hand side is removed by means of
eqs. (1.56) and (1.57). We can take two different functional derivatives of the 2PI effective
action

δΓ2PI[φ,G]

δϕ(x)
= −J(x)−

∫
d4y R(x, y)ϕ(y), (1.60)

δΓ2PI[φ,G]

δG(x, y)
= −1

2
R(x, y), (1.61)

In the case of vanishing sources, the 2PI effective action obeys two stationary conditions,

δΓ2PI[ϕ,G]

δϕ

∣∣∣∣
J,R=0

= 0 (1.62)

δΓ2PI[ϕ,G]

δG

∣∣∣∣
J,R=0

= 0. (1.63)

Also in the 2PI formalism, the first condition (1.62) determines the VEV of the field. To
relate the effective action to diagrams and interpret the second stationary condition (1.63),
we write the classical action as

S[φ] =

∫
d4x

∫
d4y φ(x)iD0(x− y)φ(y) + Sint[φ], (1.64)

where D0 is the inverse of the free propagator and Sint includes cubic and higher interaction
terms. Furthermore, we introduce the functional operator

D−1(ϕ;x, y) =
δS[ϕ]

δϕ(x)δϕ(y)
= D−10 (x, y) +

δSint[ϕ]

δϕ(x)δϕ(y)
, (1.65)

which is the propagator in the shifted theory at tree level. With these definitions the 2PI
effective action can be written as [28]

Γ[ϕ,G]2PI = S[ϕ] +
i

2
Tr Log(G−1) +

i

2
Tr(D−1G) + Γ2[φ,G] + const. (1.66)

The term Γ2 contains all 2PI irreducible vacuum diagrams with vertices defined by Sint
in the shifted theory and G used as propagator. Applying stationary condition (1.63) to
(1.66) yields the so-called gap equation

G−1(ϕ;x, y) = D−1(x, y)− 2i
δΓ2[ϕ,G]

δG(x, y)
. (1.67)

The last term can be identified with a self energy

Σ(ϕ,G;x, y) = −2i
δΓ2[ϕ,G]

δG(x, y)
, (1.68)

because inverting the gap equation to get an expression for G gives a Dyson-Schwinger-like
equation

G(ϕ;x, y) = D(x, y)−D(x, y) · Σ(ϕ,G;x, y) ·D(x, y) + . . . . (1.69)

This infinite series resums the self-energies according to
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= + Σ + Σ Σ + . . .

In this way, the resummed propagator G (double line) is obtained by iterating the self-
energies Σ with the tree-level propoagator D (single line). It should be noted that the self-
energies Σ are obtained self-consistently, i.e. the resummed propagator G is used. Hence,
the iteration of the gap equation is more complicated than the diagrams suggest. We will
clarify this method in chapter 3 with a concrete example and show which class of diagrams
is resummed if Γ2 is computed at the two-loop level. Solving the gap equation (1.67) is
equivalent to resumming an infinite number diagrams to obtain the resummed propagator
G(ϕ). Once G(ϕ) is found, it has to be plugged into eq. (1.66) to obtain the 2PI effective
action. After the integrals in eq. (1.66) are solved, the 2PI effective action Γ2PI[φ,G(φ] =
Γ[φ] reduces to a 1PI effective action Γ because it has only functional dependence on ϕ.
The effective action Γ then generates the n-point functions in the resummed theory [30].
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Chapter 2

Field Theory at Finite Temperature

All methods introduced in the last chapter where derived on the assumption of an empty
space-time. This reflects for instance in the computation of the n-point functions
〈Tφ1(x1) . . . φn(xn)〉 where the expectation values are taken in the vacuum state denoted by
|0〉 (cf. eq. (1.5)). This formalism is suitable for instance for particle interactions in collider
experiments but not for particle interactions in the early universe. The early universe was
hot and the matter and radiation densities were non-negligible. Hence, expectation values
should not be taken with the vacuum state, but with a thermal state. This adaption of
the field theoretic description introduced in chapter 1 will result in so-called field theory
at finite temperature which is the suitable formalism for particle interactions in the early
universe. The approach we use is based on the assumption that the typical timescale of
particle interactions in the early universe were small compared to the Hubble time scale.
Hence, particles interact many times during one Hubble time, keeping the universe in
thermal equilibrium. In other words, the universe is expanding adiabatically and correlation
functions can be computed in thermal equilibrium for the processes we are interested in
in this thesis. This chapter is directed towards the derivation of the one-loop effective at
finite temperature, allowing us to study thermal phase transitions in the early universe.
We will follow closely the review [26]. In addition, we recommend the reviews [31, 32] and
the textbook [33].

2.1 Grand-canonical Ensemble

First, we briefly introduce the grand-canonical ensemble, to show how expectation values
are calculated in thermal equilibrium. The grand-canonical ensemble describes a system
connected with a reservoir (or thermal bath) at temperature T . In this formalism energy
and particles can be exchanged between the system and reservoir, but the temperature T ,
the chemical potentials µi and the volume are fixed. The canonical density operator for a
system with Hamiltonian H reads

ρ =
1

Z
exp

(
−βH − β

∑
i

µiQi

)
, (2.1)
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where β = 1/T is the inverse temperature and Qi is a set of conserved charges. The
partition function Z defined as

Z = Tr

[
exp

(
−βH − β

∑
i

µiQi

)]
(2.2)

ensures the correct normalization of the density operator

Tr(ρ) = 1. (2.3)

The grand canonical average (or thermal average) of an operator Ô is computed by〈
Ô
〉

= Tr
(
Ôρ
)
, (2.4)

which is the desired formula to compute expectation values in a thermal bath with tem-
perature T and chemical potentials µi. In the following of this thesis we will consider only
cases with zero chemical potentials.

2.2 The Kubo-Martin-Schwinger Relation

The Kubo-Martin-Schwinger (KMS) relation is a very powerful relation for field theory
at finite temperature. To derive it, we start by considering the Feynman propagator of a
scalar field

G(x, x′) = θ(t− t′)G+(x, x′) + θ(t′ − t)G−(x, x′), (2.5)

where G±(x, x′) are the positive and negative frequency Wightman functions defined by

G+(x, x′) =
〈
φ(x)φ(x′)

〉
, G−(x, x′) =

〈
φ(x′)φ(x)

〉
. (2.6)

For a field theory at finite temperature the expectation values are obtained by means of
eq. (2.4), i.e.

iG+(x, x′) =
1

Z
Tr
(
e−βHφ(x)φ(x′)

)
. (2.7)

For a time independent Hamiltonian H, we can write the scalar field as

φ(t,x) = eitHφ(0,x)e−itH . (2.8)

Using the cyclic property of the trace, we obtain

iG+(x, x′) =
1

Z
Tr
(
eiH(t+iβ)φ(0,x)e−iH(t+iβ)e−βHφ(t′,x’)

)
=

1

Z
Tr
(
e−βHφ(t′,x’)φ(t+ iβ,x)

)
, (2.9)

from which we can derive the KMS relation

iG+(t,x; t′,x’) = iG−(t+ iβ,x; t′,x’), (2.10)

stating that the Wighman functions are periodic in imaginary time with period β. This
motivates to analytically continue the time t to the complex plane and exploit the KMS
relation (2.10) to derive the Feynman propagator for fields at finite temperature.
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2.3 Generating Functionals

Since we want to analytically continue the time t, we have to adjust the definitions of
the generating functional introduced in chapter 1. The Green’s function contain a time-
ordering operator T which has to be generalized to a time-ordering operator in the complex
plane TC . This time ordering means that the fields should be ordered along a contour C
in the complex plane, which will be specified later. The Green’s function read now

GC,(n)(x1, . . . , xn) = 〈TCφ(x1) . . . φ(xn)〉 . (2.11)

If we define a parametrization of C by t = z(τ), where τ is real, the time ordering TC
reduces to the usual time ordering T along τ . The step function is then simply given
by θc(t − t′) = θ(τ − τ ′) and the delta function by δc(t) = (∂z/∂t)−1δ(τ). Furthermore,
functional derivatives obey

δf(x)

δf(x′)
= δc(t− t′)δ(3)(x− x’). (2.12)

The generating functional for the Green’s function (2.11) reads

ZT [J ] =
∞∑
n=0

in

n!

∫
c
d4x1 . . . d

4xn J(x1) . . . J(xn)GC,(n)(x1, . . . , xn)

=

〈
TC exp

[
i

∫
C

d4xJ(x)φ(x)

]〉
, (2.13)

where the time integral has to be computed along the contour C. Similarly to the T = 0 case
we can define ZT [J ] = exp

(
iW T [J ]

)
and obtain the effective action at finite temperature

by

ΓT [ϕ] = W T [J ]−
∫
C

d4xϕ(x)J(x). (2.14)

This effective action satisfies the stationary condition in eq. (1.17) and can be used to
define an effective potential at finite temperature (cf. eq. (1.27)).

2.3.1 Feynman Propagator at Finite Temperature

Boson Fields

First, we want to determine which time contours C are allowed by requiring the Green’s
function to be analytic with respect to t. First, we need to define the Feynman propagator
(2.5) with the correct step function along the contour C,

GC(x− y) = θC(x0 − y0)G+(x− y) + θC(y0 − x0)G−(x− y). (2.15)

We use a complete set of energy-eigenstates |n〉 with eigenvalues H |n〉 = En |n〉 to write
eq. (2.6) at the point x = y = 0 in the spectral form

G+(x0 − y0) = Z−1
∑
m,n

|〈m|φ(0) |n〉|2e−itEn(x0−y0)eitEm(x0−y0+iβ). (2.16)
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We now require that the sum over m and n is convergent to ensure that G+(x0 − y0) is
analytic where we assume that the exponential dominate this convergence. This implies
that −β ≤ Im(x0 − y0) ≤ 0 and hence requires θC(x0 − y0) = 0 if Im(x0 − y0) > 0. The
convergence of G−(x0 − y0) is analyzed by using (2.6). It shows that 0 ≤ Im(x0 − y0) ≤ β
and hence θC(y0 − x0) = 0 for Im(x0 − y0) < 0 is required. The final requirement for the
convergence of the Feynman propagator defined on the strip

−β ≤ Im(x0 − y0) ≤ β, (2.17)

is the definition θC(t) = 0 for Im(t) > 0. The latter condition implies that C must be chosen
such that a point moving along it has monotonically decreasing or constant imaginary part
[26]. By the KMS condition (2.10), it is sufficient to define the Green functions on the strip
−β ≤ Im(t) ≤ 0.

To derive the Feynman propagator for a free scalar field with mass m, it is useful to expand
the field in creation and annihilation operators

φ(x) =

∫
d3p

(2π)32ωp

[
a(p)e−ip·x + a†(p)eip·x

]
, ωp =

√
p2 +m2, (2.18)

which obey the equal-time commutation relation[
a(p), a†(k)

]
= δ(3)(p− k). (2.19)

Furthermore, it can be checked with eq. (2.18) that the Feynman propagator satisfies the
Klein-Gorden propagator equation

−
(
∂µ∂

µ +m2
)
GC(x− y) = iδC(x0 − y0)δ(3)(x− y). (2.20)

The Hamiltonian can be expressed in terms of the ladder operators as

H =

∫
d3p

(2π)3
ωpa

†(p)a(p). (2.21)

Using eqs. (2.19) and (2.4) and the energy-eigenstate basis |n〉 to compute the trace, we
obtain the thermal averages of the number operator and its hermitian conjugate〈

a†(p)a(k)
〉

= nBE(ωp)δ
(3)(p− k), (2.22)〈

a(p)a†(k)
〉

= [1 + nBE(ωp)]δ
(3)(p− k), (2.23)

where nBE(ωp) is the Bose-Einstein distribution,

nBE(ω) =
1

eβω − 1
. (2.24)

We take the Fourier tansform of the Wightman function

G+(x− y) =

∫
d4k

(2π)4
G̃+(k)e−ik·(x−y), (2.25)

and use eqs. (2.18), (2.22) and (2.23) to obtain

G+(x− y) =

∫
d4p

(2π)4
ρ(k)

[
1 + nBE(k0)

]
e−ik·(x−y), (2.26)
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where we defined the so-called spectral density ρ(k) = πδ(k2−m2)
[
θ(k0)− θ(−k0)

]
. Using

the KMS relation (2.10) in Fourier space

iG̃−(k) = e−βk
0
iG̃+(k), (2.27)

we obtain for the Feynman propagator

GC(x− y) =

∫
d4k

(2π)4
ρ(k)

[
θC(x0 − y0) + nBE(k0)

]
e−ik·(x−y), (2.28)

where we used θC(x) = 1−θc(−x). The particular representation of the Feynman propaga-
tor depends on the choice of the time contour C, which has to fulfill the conditions derived
in this section. The common choices for C are the so-called imaginary time formalism and
the real time formalism. We will elaborate on the imaginary time formalism in section 2.4
and for the real time formalism we refer to ref. [26]. Before that, we give the general form
of the Feynman propagator for fermionic fields.

Fermion Fields

For fermion field eq. (2.15) gets replaced by

SCαβ(x− y) =
〈
TCψα(x)ψ̄β(y)

〉
= θC(x0 − y0)S+

αβ(x− y)− θC(y0 − x0)S−αβ(x− y), (2.29)

where α and β are spinor indices. The Wightman functions for fermions are

S+
αβ(x− y) =

〈
ψα(x)ψ̄(y)

〉
, (2.30)

S−αβ(x− y) =
〈
ψ̄β(y)ψα(x)

〉
. (2.31)

The KMS relation for fermions can be derived analogous to the scalar fields, but gets
modified by a sign due to anti-commutation of fermion fields to

S+
αβ(t,x) = −S−αβ(t+ iβ,x). (2.32)

This shows that the fermionic Wightman functions are anti-periodic in imaginary time
with period β. The Feynman propagator for fermions should satisfy the equation

(iγ · ∂ −m)αλS
C
λβ(x− y) = iδC(x0 − y0)δ(3)(x− y)δαβ. (2.33)

It is possible to decompose the Feynman propagator according to

SCαβ(x− y) = (iγ · ∂ +m)αβS
C(x− y), (2.34)

where SC(x − y) satisfies eq. (2.20). The further procedure is equivalent to the previous
section: we expand the Fermion fields in creation operators b† and annihilation operators
b obeying the anti-commutation relation

{
b†, b

}
= 1. The thermal averages can then be

computed with a complete set of eigenstates and using the Pauli exclusion principle,〈
b†(p)b(k)

〉
= nFD(ω)δ(3)(p− k), (2.35)〈

b(p)b†(k)
〉

= [1− nFD(ω)] δ(3)(p− k). (2.36)
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We obtain the Fermi-Dirac distribution

nFD(ω) =
1

eβω + 1
(2.37)

as statistical weights. Finally, we obtain

SC(x− y) =

∫
d4k

(2π)4
ρ(k)

[
θC(x0 − y0)− nFD(k0)

]
e−ik·(x−y). (2.38)

The Feynman propagator for fermions is now determined by eqs. (2.38) and (2.34).

2.4 Imaginary Time Formalism and Feynman Rules

So far, the result for the Feynman propagators depend on the choice of the time contour
C from an arbitrary time t down to t − iβ. This is sufficient because the KMS relations
(2.10) and (2.32) provide the (anti-) periodicity of the Wightman functions in imaginary
time with period β. Different choices of the contour correspond to different formulations of
quantum field theory at finite temperature. The most obvious choice for the contour is to
consider a straight line along the imaginary axis connecting the two boundary points. This
can be parameterized by t = −iτ with 0 ≤ τ ≤ β. This contour is also called Matsubara
contour since Matsubara first set up this formalism. The main advantage of this formalism
is that the quantum field theory is formulated very close the know formalism at T = 0.
A perturbation theory based on the imaginary time formalism will resemble the T = 0
Feynman rules, as we will see later.

First, we introduce the convenient notation for the Feynman propagator

G(τ,x) =

∫
d4k

(2π)4
ρ(k)eik·xe−τk

0[
θ(τ) + ηn(k0)

]
(2.39)

where η is a symbol for either η = ηb ≡ +1 for bosons or η = ηF ≡ −1 for fermions. The
Bose-Einstein and Fermi-Dirac distributions can be replaced by

n(ω) =
1

eβω − η
. (2.40)

In this way, we can treat bosons and fermions within one framework. With the specified
contour, the Feynman propagator reads

G(τ,x) = θ(τ)G+(τ,x) + θ(−τ)G−(τ,x) (2.41)

The KMS relation can now be expressed by G(τ + β) = ηG(τ) for −β ≤ τ ≤ 0 and
G(τ − β) = ηG(τ) for 0 ≤ τ ≤ β. Eq. (2.39) can be Fourier transformed to

G̃(ωn,k) =

∫ α

α−β
dτ

∫
d3x eiωnτ−ix·kG(τ,x), (2.42)

where 0 ≤ α ≤ β. The Fourier transform in imaginary time is discrete due to the periodicity
of G(τ). The discrete frequencies, also called Matsubara frequencies are given by

ωn = 2nπβ−1, (2.43)

ωn = (2n+ 1)πβ−1, (2.44)
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for bosons and for fermions, respectively. After inserting eq. (2.39) into eq. (2.42), we obtain
the Feynman propagator in momentum space

G̃(ωn,k) =

∫ ∞
−∞

dk0

2π

ρ(k)

k0 − iωn
=

1

k2 +m2 + ω2
n

, (2.45)

where the residue theorem was used in the derivation. To show the formal analogy to T = 0
QFT, we can define an Euclidean propagator by

i∆(−iτ,x) = G(τ,x). (2.46)

With eq. (2.45) we obtain the the inverse Fourier transform

∆(τ,x) =
1

β

∞∑
n=−∞

∫
d3k

(2π)3
−i

ω2
n + k2 +m2

e−iωnτ+ik·x

=
1

β

∞∑
n=−∞

∫
d3k

(2π)3
i

k2 −m2
e−iωnτ+ik·x. (2.47)

In the last line, we introduced an Euclidean four momentum by pµ = (p0,p) = (iωn,p).
From eq. (2.47) we can deduce Feynman rules for field theory at finite temperature in the
imaginary time formalism:

Boson propagator:
i

k2 −m2
, kµ = (i2πnβ−1,k),

Fermion propagator:
i

γ · k −m
, kµ = (iπ(2n+ 1)β−1,k),

Loop integral:
i

β

∞∑
n=−∞

∫
d3k

(2π)3

Vertex function: − iβ(2π)3δ

(∑
i

ωi

)
δ(3)

(∑
i

pi

)
(2.48)

Integrating over internal momenta translates to an integral over the spatial momenta and
a summation over the Matsubara modes. For the limiting case β → ∞ one can replace
β−1

∑
→
∫

dk0E /(2π). In this limit, the imaganiray time formalism reduces to the Eu-
clidean formulation of QFT at zero temperature.

2.5 The Effective Potential at Finite Temperature

In this section, we derive the effective potential at finite temperature in the one-loop
approximation using the imaginary time formalism. Ultimately, the goal is to split the
one-loop corrections in effective potential to a T = 0 contribution and T > 0 contribution
∗ which allows us to clearly identify the temperatures dependence of the effective potential.
In other words, we intend to write the effective potential as

Veff(ϕ) = V (0)(ϕ) + V (1)(ϕ) + V T (ϕ), (2.49)

∗In general, this is not possible at arbitrary loop order. However, it is possible for the one-loop correc-
tion.
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where V (0) is the classical potential, V (1) are the one-loop contributions at T = 0 (derived
in section 1.1) and V T are the one-loop thermal corrections which vanish at T = 0. We
will use the results from sections 1.1.1, 1.1.2 and 1.1.3 and translate them to the Feynman
rules of the imaginary time formalism to derive the thermal corrections V T . As before, we
split this derivation to scalar fields, fermion fields and gauge bosons.

2.5.1 Scalar Fields

If we translate eq. (1.36) to the Feynman rules at finite temperature in eq. (2.48), we obtain

V1(ϕ, T ) =
1

2β

∞∑
n=−∞

∫
d3k

(2π)3
log
(
ω2
n + ω2

)
, (2.50)

where

ω2 = k2 +m2(ϕ). (2.51)

The field dependent mass is defined in eq. (1.38). The one-loop correction V1(ϕ, T ) in
eq. (2.50) is temperature-dependent, but does not classify the temperature-dependent and
temperature independent part separately as it was required in eq. (2.49). To achieve this,
the first step is to perform the sum over Matsubara frequencies. We define,

v(ω) =
∞∑

n=−∞
log
(
ω2
n + ω2

)
(2.52)

such that,

∂v

∂ω
=

∞∑
n=−∞

2ω

ω2
n + ω2

. (2.53)

The identity

f(y) =
∞∑
n=1

y

y2 + n2
= − 1

2y
+
π

2
coth(πy) = − 1

2y
+
π

2
+ π

e−2πy

1− e−2πy
(2.54)

with y = βω/2π gives

∂v

∂ω
= 2β

(
1

2
+

e−βω

1− e−βω

)
. (2.55)

This can be integrated to

v(ω) = 2β

[
ω

2
+

1

β
log
(

1− e−βω
)]

+ (ω − independent terms) (2.56)

Omitting the constant term, the final result of the summation is

V1(ϕ;β) =

∫
d3k

(2π)3

[
ω

2
+

1

β
log
(

1− e−βω
)]
. (2.57)

The second term vanishes in the limit T = 0, hence it suggest that ω/2 is the one-loop
effective potential at zero temperature and the second term is the thermal correction. The
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first term, can be cast into the known form of one-loop corrections for T = 0 by using the
residue theorem for the integral

ω

∫ ∞
−∞

dx

2πi

1

−x2 + ω2 − iε
=

1

2
, (2.58)

where the contour is closed anticlockwise below the real interval (−∞,∞). In this way, we
pick up the pole at x = −

√
ω2 − iε giving the residue 1/2ω. Integration of eq (2.58) with

respect to ω yields

− i
2

∫ ∞
−∞

dx

2π

1

−x2 + ω2 − iε
=
ω

2
+ const (2.59)

So we may rewrite up to constant∫
d3k

(2π)3
ω

2
= − i

2

∫
d4k

(2π)4
log
(
−(k0)2 + ω2 − iε

)
(2.60)

and, after performing a Wick rotation k0 = ik0E , this reads

V
(1)
T=0(ϕ) =

∫
d3k

(2π)3
ω

2
=

1

2

∫
d4kE
(2π)4

log
(
k2E +m(ϕ)2

)
. (2.61)

This is the expression we obtained in eq. (1.36) for T = 0 case. To sum up, we are able to
write the one-loop correction according to

V1(ϕ, T ) = V (1)(ϕ) + V T (ϕ), (2.62)

where V (1) is defined in eq. (1.37) and the thermal corrections are defined by

V T (ϕ) =
1

2π2β4
JB

[
m(ϕ)2

T 2

]
, (2.63)

where JB is the thermal function for boson fields,

JB(y2) =

∫ ∞
0

dxx2 log
(

1− e
√
x2+y2

)
. (2.64)

The integral can be solved analytically if a high temperature expansion is performed,

JB(y2) =− π4

45
+
π2

12
y2 − π

6

(
y2
)3/2 − 1

32
y4 log

y2

aB

− 2π7/8
∞∑
m=1

(−1)m

(m+ 2)!
Γ

(
m+

1

2

)(
y2

4π2

)m+2

ζ(2m+ 1), (2.65)

aB =16π2 exp

(
3

2
− 2γE

)
, (2.66)

which is valid for y2 = (m/T )2 � 1. The calculation of eq. (2.65) can be found in appendix
A. The high temperature expansion (2.65) is widely used in the context of electroweak phase
transition.
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2.5.2 Fermion Fields

For fermions, we consider the theory defined in section 1.1.2 but assume for simplicity
a diagonal mass matrix Mf (ϕ) for the N fermions. We start from eq. (1.44) at finite
temperature, i.e.

V ψ
1 (ϕ, T ) = −σN

2β

∞∑
n=−∞

∫
d3k

(2π)3
log
(
ω2
n + ω2

)
, (2.67)

where in this section ω2 = k2 + M2
f (ϕ). As in the previous section, we perform the Mat-

subara sum. It is helpful to denote first

1

2
f
(y

2

)
=

∞∑
n=1

y

y2 + 4n2
, (2.68)

∞∑
n=0

y

y2 + (2n+ 1)2
= f(y)− 1

2
f
(y

2

)
=
π

4
− π

2

1

eπy + 1
, (2.69)

where the function f is defined in eq. (2.54). The sum in eq. (2.67) reads

v(ω) = 2
∞∑
n=0

log

(
π2(2n+ 1)2

β2
+ ω2

)
, (2.70)

and its derivative is

∂v

∂ω
=

4β

π

∞∑
n=0

y

y2 + (2n+ 1)2
, (2.71)

where we defined y = βω/π. We can sum this according to eq. (2.69), hence

∂v

∂ω
= 2β

(
1

2
− 1

1 + eβω

)
. (2.72)

After integration with respect to ω and omitting the ω independent terms we obtain

V ψ
1 (ϕ, T ) = −σN

∫
d3k

(2π)3

(
ω

2
+

1

β
log
(

1 + e−βω
))

(2.73)

As for scalar fields, the first term corresponds to the zero temperature one-loop correction
and the second term corresponds to the one-loop thermal correction. The first term can be
rewritten to the standard T = 0 result in eq. (1.44) by the method showed in the previous
section. To sum up, we obtain

V ψ
1 (ϕ, T ) = V

(1)
ψ (ϕ) + V T

ψ (ϕ), (2.74)

where V (1)
ψ is defined in eq. (1.45) and the thermal correction is defined

V T (ϕ) = − σN

2π2β4
JF
[
Mf (ϕ)2β2

]
, (2.75)
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containing the thermal function for fermions

JF (y2) =

∫ ∞
0

dxx2 log
(

1 + e−
√
x2+y2

)
. (2.76)

The corresponding high temperature expansion is given by [26]

JF (y2) =
7π4

360
− π2

24
y2 − 1

32
y4 log

y2

af

− π7/2

4

∞∑
l=1

(−1)l
ζ(2l + 1)

(l + 1)!
(1− 2−2l−1)Γ

(
l +

1

2

)(
y2

π2

)l+2

, (2.77)

af =π2 exp

(
3

2
− 2γE

)
. (2.78)

2.5.3 Gauge Bosons

The derivation for thermal corretions of gauge bosons is closely related to the scalar field
case. We consider the model specified in eq. (1.46) and start by translating eq. (1.49) to
Feynman rules at finite temperature,

V A
1 (ϕ, T ) = (d− 1)

1

2β

∞∑
n=−∞

∫
d3k

(2π)3
log
(
ω2
n + ω2

)
, (2.79)

where here ω2 = mA(ϕ)2 +k2. The only difference to the scalar field case is the additional
factor of (d−1) counting the three degrees of freedom of the gauge boson. We can follow the
derivation from the scalar field (starting at eq. (2.52)) to compute the one-loop corrections
coming from a gauge boson. The result is

V A
1 (ϕ, T ) = V

(1)
A + 3

1

2π2β4
JB

(
m2
A(ϕ)

T 2

)
, (2.80)

where the zero temperature part V (1)
A is defined in eq. (1.50).

2.5.4 General Thermal Corrections

To sum up the last three sections, we give the general one-loop thermal correction

V T
i (ϕ) =

T 4

2π2
niJi

(
m2
i (ϕ)

T 2

)
, (2.81)

where mi(ϕ) is the field dependent mass of particle species i and ni is defined as in eq.
(1.52). With the notation Ji we indicate that the function JB is used for bosons and
the function JF for fermions. If a model contains multiple particles, the total one-loop
correction at finite temperaturer reads (cf. eqs. (1.51) and (1.54))

V1(ϕ, T ) =
∑
i

(
V

(1)
i (ϕ) + V T

i (ϕ)
)
. (2.82)
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Chapter 3

Improved Effective Potential

In this chapter we argue why the one-loop effective potential at finite temperature derived in
section 2.5 is not a good approximation for the processes we intend to study. The derivation
of the 1PI effective potential is based on certain perturbative approach, the expansion in
number of loops. This expansion converges badly if terms of higher-loop orders are of a
similar magnitude as terms with lower loop order and the validity of the perturbative
computation is jeopardized. To restore the validitiy of the perturbative approach, one
has to use techniques which resum terms of all loop orders to new a expression (e.g. an
effective mass). The aim of this resummation is to rearrange the perturbative expansion
in such a way that perturbativity is restored and the perturbative result is a reasonable
approximation to the problem. We call the effective potential improved by such a technique
the improved effective potential.

One of these techniques is the renormalization group (RG) improvement, which can be
used in case of large logarithms in the one-loop corrections. The large logarithms occur
at all loop orders when a large hierarchy between the mass scale and the renormaliza-
tion scale µ is present and might spoil the perturbative expansion although the coupling
parameter λ is small (λ < 4π). By using the RG group equations one can change the
renormalisation scale to a convenient field-dependent value, rendering the logarithm small
enough such that the perturbative expansion can be trusted. This was studied by S. Cole-
man in E. Weinberg [2] in case of a massless φ4 theory and scalar QED. They use the
RG equation to resum the large logarithms into a running coupling constant. Using this
method, one integrates the beta function to obtain the running coupling constant and this
corresponds to summing a power series of the large logarithms. However, this technique is
not straightforward when multiple scales are present in the case of multiple scalar fields. In
this case, the field-dependent masses of the fields can have very different values and fixing
the renormalisation scale such that all logarithms are rendered small is not possible. For
this reason, multi-renormalisation scale methods have been introduced [34]. The authors
of ref. [35] developed a formalism where the RG improvement of multiscale models can
be handled with a single renormalization scale by solving the RG equations with suitably
chosen boundary conditions.

In this thesis, we will not use the method of RG improvement. The main reason for im-
proving the effective potential in this work is the breakdown of the loop expansion due
to thermal effects. We will see in the following section, that thermal field theory contains
so-called hard thermal loops for bosons. These are diagrams which contain infrared diver-
gences at high temperatures and this class of diagrams will spoil the usual perturbative
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approach. We will comment on a sub-class of diagrams which contain hard thermal loops
and how this issue is usually resolved in the lituature by the so-called daisy resummation
yielding thermal masses for the bosons. In section 3.2 we introduce a resummation tech-
nique by the gap equation which is encoded in the 2PI formalism. We show that by solving
the gap equation a richer class of diagrams than the daisy diagrams can be resummed into
an effective massM . The gap equation we derive can be used beyond the high temperature
expansion and also at T = 0. We will show that in certain limits this approach reduces
to the computation of thermal masses following from the daisy resummation. The impor-
tance of the resummation we introduce in this chapter is anaylzed in chapter 4. Another
advantage of the gap equation is that an eventual momentum dependence of the effective
mass M(k) can be taken into account. In this thesis, we derive the gap equation only for
scalar fields, but the method can be in principle generalized to gauge bosons and fermions.

3.1 Breakdown of Perturbation Theory at Finite Tempera-
ture

It is a well-known problem in field theories at high temperatures, that the conventional
perturbative expansion in number of loops breaks down. The root of this problem are in-
frared divergences of the loop integrals at finite temperature. The task is therefore to resum
these diagrams into an effective theory, where perturbation theory is restored. E. Braaten
and R. Pisarski [36] developed such an effective theory for the strong interactions. They
resum the so-called hard thermal loops causing the infrarered divergences into effective
propagator and vertices. If the effective propagator and vertices are used, the validity of
perturbation theory as loop expansion is restored also at high temperatures.

A resummation method for a scalar field at finite temperature was first adressed by R.
Parwani [17] in was generalized to the SM by P. Arnold and O. Espinosa [37]. In both works,
the resummation techqniue is based on resumming so-called daisy diagrams. This procedure
yields effective masses, also called thermal masses in the context of finite temperature field
theory. This method is widely used in the literature to improve the effective potential
in regard to the study of electroweak phase transitions (see e.g. refs. [18–20, 26]). We
will follow the argumentation of ref. [26] to explain why the resummation of daisies is
appropriate and constitutes the dominant part which causes the breakdown of perturbation
theory.

Consider the Feynman diagram for a scalar field with tree-level mass m and self interaction
λ:

= A

With Feynman rules at finite temperature T (cf. eq. (2.48)) the diagram corresponds to

A = λT
∞∑

n=∞

∫
d3k

(2π)3
1

ω2
n + k2 +m2

, (3.1)

and is related to the integral we solved in eq. (2.50) by

A = λT
∂

∂m2

∞∑
n=∞

∫
d3k

(2π)3
log
(
ω2
n + k2 +m2

)
. (3.2)
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The thermal part of this diagram, which vanishes if T = 0, is therefore given by

AT = λ
T 4

π2
∂

∂m2
JB

(
m2

T 2

)
= λ

T 2

π2
∂

∂y2
JB(y)

∣∣∣∣
y=m/T

. (3.3)

In the high temperature limit y � 1 the leading term is AT ∼ λT 2 (cf. eq. (2.65)). So
at high temperatures the diagram A is O(λT 2) and if m ∼ λT 2 the one loop expression
A is of the same order as the tree-level contribution. A breakdown of loop expansion at
high T can be expected. This is clarified for higher order diagrams if we consider the daisy
diagrams

. . .

.

The dots are supposed to indicate that the diagrams has n petals, i.e. the loops which
contain only one vertex. The daisy diagrams contain in total n + 1 loops and at leading
order in temperature they scale as [26]

An = λn+1 T
2n+1

m2n−1 . (3.4)

The comparison of two consecutive orders

α =
An+1

An
= λ

T 2

m2
, (3.5)

shows that α is the expansion parameter of the expansion in loops if we consider the daisy
diagrams. If perturbation theory is valid, we should have α � 1. The high temperature
expansion which we introduced is based on (m/T )2 � 1. Eq. (3.5) shows that even if λ� 1
is guaranteed, in the high temperature limit the expansion parameter α grows large and
perturbation theory breaks down. The daisy resummation consists of resumming all orders
of α. This is performed by computing the self-energies resembling diagram A of all bosons
in the high temperature expansion and then solving the corresponding Dyson-Schwinger
equation. This approach yields the so-called thermal masses M2 = m2 + Π(T ) which are
then substituted in the usual one-loop effective potential for the tree-level masses (see
e.g. ref. [20]). Of course more diagrams can be resummed, but the daisy diagrams are the
leading contribution. We intend to resum a broader class of diagrams without using the high
temperature expansion in the next section to improve the accuracy of our results. With that
approach we can also ensure for reliable results in the intermediate stage between the low
temperature limit and high temperature limit. In that stage, we expect that resummation
of hard thermal loops should be taken into account but the high temperature expansion for
the self-energies is a bad approximation. If the high temperature expansion is not reliable,
the argument of only considering diagram A in the self-energies breaks down. Instead, at
the one-loop level we should also take into account that the diagram

= B,
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is of similar order as diagram A. That is why we intend to resum self-consistently diagrams
belonging to class A and class B with the gap equation. Furthermore, we think it gives
a theoretically more consistent framework to perform thermal resummation than ad hoc
methods like daisy resummation. We compare the method introduced in the next section
to the usual daisy resummation technique in chapter 4 for a scalar field.

3.2 Resumming with the Gap Equation

This section is dedicated to introduce the resummation procedure which is is encoded in the
gap equation which was derived in section 1.2 from the 2PI effective action. We introduce
this approach by studying a simple scalar theory with the tree-level potential defined in
eq. (1.32) and field-dependent mass m2(ϕ) defined in eq. (1.38). The 2PI effective action of
a scalar field at finite temperature was among others studied in refs. [21, 38]. The general
form of the 2PI effective action (1.66) contains three different propagators. The tree-level
propagator in the symmetric phase (ϕ = 0) is

D0(k) =
i

k2 −m2
, (3.6)

and the tree-level propagator in the shifted theory is

D(k) =
i

k2 −m2(ϕ)
. (3.7)

The resummed propagator is denoted byG(k) and has to be obtained form the gap equation
(1.67). The term Γ2 contains all vacuum 2PI diagrams in the theory with vertices defined
in the shifted theory and using the resummed propagator G(k). We will approximate this
term up to two-loop order, which corresponds here to the lowest order. We will see that on
the level of the gap equation this will yield an equation at one-loop level. The two diagrams
contributing to Γ2 are:

Γ
(a)
2 = , Γ

(b)
2 = .

Double lines indicate that the resummed propagator G is used. We refer to diagram (a) as
the double-bubble diagram and to diagram (b) as the sunset diagram. Including the overall
factor (−i) for the effective action (cf. eq. (1.6)), (−iλ) for a vertex and the symmetry
factors we obtain in position space

Γ
(a)
2 [φ,G] = −λ

8

∫
d4x G̃(x, x)G̃(x, x), (3.8)

Γ
(b)
2 [φ,G] = i

(λϕ)2

12

∫
d4x d4y G̃(x− y)G̃(x− y)G̃(x− y), (3.9)

where G̃(x− y) is the propagator in position space. Using the Fourier transform

G̃(x− y) =

∫
d4k

(2π)4
G(k)e−ik(x−y) (3.10)
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we can write Γ2 as

Γ2[φ,G] =Γ
(a)
2 [φ,G] + Γ

(b)
2 [φ,G]∫

d4x

(
λ

8

∫
d4k

(2π)4

∫
d4p

(2π)4
G(k)G(p)

−i(λϕ)2

12

∫
d4k

(2π)4

∫
d4p

(2π)4
G(k)G(k − p)G(p)

)
. (3.11)

The effective potential for the 2PI effective action is derived by factoring out the volume
integral as it was done in eq. (1.27). Applying this to eq. (3.11) we get the expression

V2(φ,G) = −Γ2[φ,G]∫
d4x

= +
λ

8

∫
d4k

(2π)4

∫
d4p

(2π)4
G(k)G(p)

− i(λϕ)2

12

∫
d4k

(2π)4

∫
d4p

(2π)4
G(k)G(k − p)G(p). (3.12)

The other terms in the 2PI effective action can be written as,

Tr
(
D−1G− 1

)
=

∫
d4x

∫
d4k

(2π)4
(
D−1(k)G(k)− 1

)
, (3.13)

Tr log
(
D0G

−1) =

∫
d4x

∫
d4k

(2π)4
log
(
D0G

−1). (3.14)

Thus, we can write the effective potential for the 2PI formalism as

Veff(ϕ,G) =− Γ2PI[φ,G]∫
d4x

=V (0)(ϕ)− i

2

∫
d4k

(2π)4
log
(
D0G

−1)− i

2

∫
d4k

(2π)4
(
D−1(k)G(k)− 1

)
+ V2(φ,G). (3.15)

The tree-level propagator D0 is independent of ϕ and G (cf. (3.6)), so that term can be
dropped and we obtain

Veff(ϕ,G) =Vtree(ϕ)− i

2

∫
d4k

(2π)4
log
(
G−1

)
− i

2

∫
d4k

(2π)4
(
D(k)−1G(k)− 1

)
+ V2(ϕ,G). (3.16)

Exploiting the second stationary condition of the 2PI effective potential, we will obtain the
gap equation for this model. After picking a certain ansatz for the resummed propagator G
we obtain an equation which prescribes a resummation of infinite diagrams into an effective
mass M of the scalar field. The functional stationary condition in eq. (1.63) reduces to a
partial derivative with respect to the resummed propagator if we use the effective potential
Veff(ϕ,G) instead of the effective action Γ2PI(ϕ,G),

∂Veff
∂G(k)

=
i

2

(
G−1(k)−D−1(k)

)
+

∂V2
∂G(k)

= 0, (3.17)

where the last term can be interpreted as the self-energy

Σ(ϕ,G, k) =
∂V2
∂G(k)

=
λ

4

∫
d4p

(2π)4
G(p)− i(λϕ)2

4

∫
d4p

(2π)4
G(k − p)G(p). (3.18)
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To proceed it is necessary to pick an ansatz for the form of the resummed propagator. We
will use the standard form for a scalar field,

G(k) =
i

k2 −M2(ϕ, k)
, (3.19)

but with a momentum-dependent resummed mass M . In this notation the gap equation is
an self-consistent equation to determine the resummed mass,

M2(ϕ, k) = m2(ϕ) + Σ(ϕ,M, k). (3.20)

The self-energies in eq. (3.21) are 1PI diagramms containing one loop. Hence, the two loop
2PI diagrams in Γ2 generate one loop 1PI diagrams in the gap equation. The gap equation
for the scalar field can be represented by

-1 = -1 +

(c)

+

(d)

Note, that the the diagrams (c) and (d) are amputated so no propagators are used for the
external legs. Since the self-energies are obtained self-consistently, the gap equation can be
read as an iterative resummation prescription. Moreover, it is evident from eq. (3.18) that
the sunset diagram (diagram (d)) introduces a momentum dependence to the resummed
mass. If we consider only the bubble diagram (c) in the gap equation, the iteration will
generate the daisy diagrams as a subclass. The full class of resummed diagrams will contain
infinitely many iterations of diagram A and B from the last section and combinations of
both. Note, that the gap equation is iterated in the loops of diagrams (c) and (d) and in
the external legs facilitating a resummation of a broad class of diagrams. This class can be
extended further, if diagrams beyond two-loop order are considered in Γ2.

Translating eq. (3.18) with the help of Feynman rules at finite temperature and using the
Feynman trick for the second integral (cf. appendix B) we obtain for the full temperature-
dependent self-energy

Σ(ϕ, k, T ) =− λ

4β

∞∑
n=∞

∫
d3p

(2π)3
1

ω2
n + p2 +m2(ϕ)

+
(λϕ)2

4β

∞∑
n=∞

∫ 1

0
dx

∫
d3p

(2π)3
1

(ω2
n + p2 + a(k, x)2)2

, (3.21)

where we defined

a(k, x)2 = k2x(1− x)−M2. (3.22)

In order to solve the integrals in eq. (3.18), we introduce

I0(m
2) =

1

2β

∞∑
n=∞

∫
d3k

(2π)3
log
(
ω2
n + k2 +m2

)
, (3.23)

Ia(m
2) =

1

2β

∞∑
n=∞

∫
d3k

(2π)3
1

(ω2
n + k2 +m2)a

. (3.24)
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The first integral I0 was computed in the derivation of the effective potential at finite
temperature (see section 2.5.1). Therefore, it is helpful to introduce the relation

Ij+1(m
2) =

(−1)j

j!

∂j

∂(m2)j
I1(m

2). (3.25)

In this notation, the gap equation (3.20) reads

M(ϕ, T, k)2 = m(ϕ)2 + λI1(M
2)− (λϕ)2

∫ 1

0
dx I2(a(k, x)2). (3.26)

The two integrals can be solved by using eq. (3.25) and using the result for eq. (2.62),
(2.63) and (1.37). If dimensional regularization is used, the results before renormalization
is

I1(M
2) =

M2

32π2

(
−2

ε
+ γE + log(4π)

)
+

M2

32π2

[
log

(
M2

µ2

)
− 1

]
+

1

2π2β2

(
∂JB(y2)

∂y2

)∣∣∣∣
y=M/T

, (3.27)∫ 1

0
dx I2(a(k, x)2) =

1

32π2

(
2

ε
− γE − log(4π)

)
− 1

32π2

∫ 1

0
dx

[
log

(
a(k, x)2

µ2

)
+ 16

(
∂2JB(y2)

∂(y2)2

)∣∣∣∣
y=a(k,x)/T

]
. (3.28)

The first terms in eqs. (3.27) and (3.28) should be canceled by counter-terms in the MS
scheme. In fact, to renormalize the gap equation it is necessary to renormalize the 2PI
effective action first and then derive the gap equation. This is indicated by the fact that
the divergent terms in eqs. (3.27) and (3.28) depend on the resummed mass M which
cannot be included in the counter-terms of the lagrangian since M is not a parameter
of the original theory. The renormalization of the 2PI effective action is compared to the
1PI approach rather involved since it contains diagrams to all loop orders. For a detailed
treatment of this procedure we refer to ref. [30]. After renormalization the divergent terms
in eqs. (3.27) and (3.28) will be canceled an we obtain the renormalized gap equation [38]

MR(ϕ, k)2 =mR(ϕ)2 + λR

{
M2
R

32π2

[
log

(
M2
R

µ2

)
− 1

]
+

1

2π2β2

(
∂JB(y2)

∂y2

)∣∣∣∣
y=MR/T

}

− (λRϕ)2

π2

∫ 1

0
dx

[
1

32
log

(
aR(k, x)2

µ2

)
+

1

2

(
∂2JB(y2)

∂(y2)2

)∣∣∣∣
y=a(x)/T

]
(3.29)

In the further, we will drop the subscript R again. In the next subsections we give the gap
equation in various limits. We derive the gap equation for the Higgs boson in the SM in
appendix C for vanishing external momentum. We drop the dependence of M on ϕ, T and
k from now on.

3.2.1 Zero Temperature

In this limit the terms involving the thermal functions vanish and the gap equation sim-
plifies to

M2 =m2(ϕ) +
λM2

32π2

[
log

(
M2

µ2

)
− 1

]
+

(λϕ)2

32π2

∫ 1

0
dx log

(
a(k, x)2

µ2

)
. (3.30)

The remaining x-integral is solved in appendix B.
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3.2.2 Vanishing External Momentum

For vanishing external momentum we have a(k, x)2 = M2 and the x-integral is solved
trivially. The gap equation reads in this limit

M2 = m2(ϕ) + λI1(M
2)− (λϕ)2I2(M

2). (3.31)

We can substitute eqs. (3.27) and (3.28) and we get

M2 =m2(ϕ) + λ

(
M2

32π2

[
log

(
M2

µ2

)
− 1

]
+

1

2π2β2

(
∂JB(y2)

∂y2

)∣∣∣∣
y=M/T

)

+ (λϕ)2

(
1

32π2
log

(
M2

µ2

)
+

1

2π2

(
∂2JB(y2)

∂(y2)2

)∣∣∣∣
y=M/T

)
. (3.32)

We will use this gap equation for vanishing external momentum to obtain an improved
effective potential. We elaborate on this method in section 3.3. To handle the derivatives
of the thermal function one can either use the high temperature expansion (see section
3.2.4) or use the integral representation (cf. eq. (2.64)). The second option will be valid for
any temperature but requires numerical solutions to the integrals J ′B and J ′′B. To study the
electroweak phase transition it can be important to compute the effective potential beyond
the high temperature expansion, since bubble nucleation might begin at low temperatures
where this approximation is not justified.

3.2.3 Hartree-Fock Approximation

In this approximation the sunset diagram is neglected over the double-bubble diagram. In
a scalar theory with O(N) symmetry this can be justified because double-bubble diagram
is O(N2) and the sunset diagram is O(N) [39]. The gap equation simplifies to

M2 =m2(ϕ) + λ

(
M2

32π2

[
log

(
M2

µ2

)
− 1

]
+

1

2π2β2

(
∂JB(y2)

∂y2

)∣∣∣∣
y=M/T

)
. (3.33)

3.2.4 High Temperature Expansion

To approximate the gap equation at high temperatures, we will use the high temperature
expansion of the thermal function for bosons (cf. eq. (2.64)) and apply the derivatives,

∂JB
∂(y2)

=
π2

12
− π

4
(y2)1/2 − 1

16
y2 log

(
y2

aB

)
− 1

32
y2

− π−9/8

2

∞∑
m=1

(−1)m

(m+ 1)!
Γ

(
m+

1

2

)
ζ(2m+ 1)

(
y2

4π2

)m+1

, (3.34)

∂2JB
∂(y2)2

=− π

8
(y2)−1/2 − 1

16
log

(
y2

aB

)
− 3

32

− π−25/8

8

∞∑
m=1

(−1)m

m!
Γ

(
m+

1

2

)
ζ(2m+ 1)

(
y2

4π2

)m
. (3.35)

When we substitute these expansions into the general gap equation (3.29) we observe that
the log

(
M2
)
of the T = 0 part and in the high temperature expansion cancel. In the further
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we will truncate the high temperature expansions in eqs. (3.34) and (3.35) at the infinite
sums with index m. The contribution to gap equation coming from the bubble diagram (c)
reads

∆M1 = λ

(
M2

32π2
log

(
aBT

2

4πµ2

)
− 3M2

64π2
+
T 2

24
− MT

8π

)
(3.36)

and the contribution from the sunset diagram (d) reads

∆M2 = (λϕ)2
∫ 1

0
dx

[
− 1

32π2
log

(
aBT

2

4πµ2

)
+

1

16π

(
a(k, x)2

T 2

)−1/2
+

3

64π2

]
. (3.37)

In this notation the gap equation can be written as

M2 = m(ϕ)2 + ∆M1 + ∆M2. (3.38)

Interestingly, at leading order in temperature the gap equation is approximated by

M2 ≈ m(ϕ)2 +
λT 2

24
, (3.39)

which is automatically solved. This is the correct thermal mass M for a scalar field if the
daisy resummation technique is used (e.g. refs. [17, 18]).

3.3 Improved Effective Potentials from Gap Equations

To obtain an effective potential in the 2PI formalism, it is necessary to first solve the gap
equation. This yields the resummed propagator G(ϕ) as a function of the background field.
The resummed propagator is then substituted in the 2PI effective action (cf. eq. (1.66)),

Γ2PI[ϕ,G(ϕ)] = Γ[ϕ]. (3.40)

This gives a an effective action which was improved by resummation of higher loop order
diagrams and has ϕ as only functional dependence. The 1PI effective action Γ encodes all
information of a quantum field theory, since it is the generating functional for all n-point
functions [30]. The 2PI formalism resummed certain classes of diagrams and and should
be seen as a consistent resummation method.

The expression for Γ2PI[ϕ,G(ϕ)] contains integrals which have to be solved before gener-
ating n-point functions. The computation of the integrals amounts to a second stage of
diagram resummation on top of the gap equation. We will skip this step in this thesis and
use the solution of the gap equation to directly obtain the improved effective potential.
The method presented here, only uses the gap equation to resum diagrams. This should be
seen as an approximation to the full 2PI formalism which can be only applied in this form
in the limit of vanishing external momentum for the gap equation. The approximation is
based on the fact that the effective action generates the propagator by

δ2Γ

δϕ(x)δϕ(y)
= i
(
G̃(x, y)

)−1
, (3.41)

and identifying G̃(x, y) with the resummed propagator in the gap equation. We will now
use the ansatz (3.19) for G(k). In the limit of vanishing momenta that propagator is

i G̃(k)−1
∣∣∣∣
k=0

= −M2, (3.42)
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where M is momentum independent. So we find in position space

i
(
G̃(x, y)

)−1∣∣∣∣
k=0

= −M2

∫
d4p

(2π)4
eip·(x−y) = −M2δ(4)(x− y). (3.43)

The left hand side of eq. (3.41) can be computed in the vanishing momentum limit by
using the expansion around zero momentum (cf. eq. (1.25)),

δ2Γ

δϕ(x)δϕ(y)

∣∣∣∣
k=0

=

∞∑
n=∞

1

(n− 2)!
Γ̃(n)(0, . . . , 0)ϕ(x)n−2δ(4)(x− y)

= −∂
2Veff(ϕ)

∂ϕ2
δ(4)(x− y), (3.44)

where in the second line we used the definition of the effective potential (cf. eq. (1.26)).
Using eqs. (3.41), (3.42) and (3.44) we find for vanishing momentum that

M2(ϕ) =
∂2Veff(ϕ)

∂ϕ2
. (3.45)

We will use this relation to directly obtain the effective potential by integration after M
was computed,

V I
eff(ϕ) =

∫ ϕ

0
dϕ′

∫ ϕ′

0
dϕ′′M2(ϕ′′). (3.46)

If the gap equation is solved for finite external momenta k, the resummed mass acquires
a momentum dependence M2(ϕ, k). In that case the expansion in eq. (3.44) is not valid
and one has to use the full momentum expansion of the effective action (cf. eq. (1.24)).
The solution of M2(ϕ, k) should then be also expanded in powers of momenta and thus
one can obtain the coefficients of the finite momentum corrections (for instance Z(ϕ) in
eq. (1.25)).

In addition, this method can be used to obtain the self-energy from the usual one-loop
terms in the effective potential at finite temperature V (1)

eff (ϕ, T ). According to eq. (3.45)
we can write this in terms of the field-dependent tree-level mass and the second derivative
of the one-loop corrections,

(
M (1)

)2
(ϕ) =

∂2V
(1)
eff (ϕ, T )

∂ϕ2
= m2(ϕ) +

∂2V (1)(ϕ)

∂ϕ2
+
∂2V T (ϕ)

∂ϕ2
. (3.47)

The gap equation at zero external momentum is

M2(ϕ) = m2(ϕ) + Σ(ϕ,M)

∣∣∣∣
k=0

. (3.48)

If we now set the tree-level mass to the resummed mass m(ϕ) → M in eq. (3.47) we can
match the second derivative of the one-loop effective potential (3.47) to second derivative of
the improved effective potential (3.48), i.e. M (1)(ϕ) = M(ϕ). In this way we can compute
the self-energies by

−2 Σ(ϕ)

∣∣∣∣
k=0

=

(
∂2V (1)(ϕ)

∂ϕ2
+
∂2V T (ϕ)

∂ϕ2

)∣∣∣∣∣
m2=M2

, (3.49)
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i.e. by taking two derivatives with respect to the background field, and then replacing
the field-dependent mass with the resummed mass M . This formulates a self-consistent
equation equivalent to the gap equation. We checked this explicitly for the gap equation
of the Higgs boson in the SM (see appendix C).

To apply the derivatives in eq. (3.49), it is convenient for future reference to rewrite them
according to the chain rule to

∂2

∂h2
= 2

∂

∂(h2)
+ 4h2

∂2

∂(h2)2

=

[
2
∂(m2

i )

∂(h2)
+ 4h2

∂2(m2
i )

∂(h2)2

]
∂

∂(m2
i )

+ 4h2
[
∂(m2

i )

∂(h2)

]2
∂2

∂(m2
i )

2
. (3.50)

If the derivative acts on the thermal correction V T we use

∂2

∂h2
=

1

T 2

[
2
∂(m2

i )

∂(h2)
+ 4h2

∂2(m2
i )

∂(h2)2

]
∂

∂(y2i )
+

4h2

T 4

[
∂(m2

i )

∂(h2)

]2
∂2

∂(y2i )
2
, (3.51)

where y2i = m2
i /T

2. In this way, the first and second derivatives of the thermal function
JB are generated in the gap equation (cf. eq. (3.29)). In the multi-field case we also need
the derivative with respect to two different background fields,

∂2

∂ϕ1∂ϕ2
=
∂2(m2

i )

∂ϕ1∂ϕ2

∂

∂m2
i

+
∂(m2

i )

∂ϕ1

∂(m2
i )

∂ϕ2

∂2

∂(m2
i )

2
. (3.52)

3.4 Renormalization Group Improvement of the Gap Equa-
tion

In this section we show how the gap equation improvement introduced in the previous
section can be combined with RG improvement. We use the fact that the physical infor-
mation of the theory is independent of the choice of the renormalization scale µ. Hence,
the quantum effective action cannot depend on µ and should satisfy

µ
d

dµ
Γ[ϕ] =

µ ∂

∂µ
+

Nλ∑
i=1

βi
∂

∂λi
− 1

2

Nϕ∑
j=1

γj

∫
d4xϕj(x)

δ

δϕj(x)

Γ[ϕ] = 0, (3.53)

which is called the RG (Callan-Symanzik) equation. We wrote eq. (3.53) for a model with
Nϕ scalar fields and parametrized by the couplings λ1 . . . λNλ couplings. Furthermore, we
defined the standard β function and anomalous dimensions

βi = µ
∂λi
∂µ

, (3.54)

γj = µ
∂ logZj
∂µ

, (3.55)

respectively. The β functions take the running of the coupling constants with µ into account
and the anomalous dimensions γ the runnning with µ of the field normalisations Zj . Eq.
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(3.53) can be used to derive a RG equation for the effective potential ∗

µ
dVeff
dµ

=

µ ∂

∂µ
+

Nλ∑
i=1

βi
∂

∂λi
− 1

2

Nϕ∑
j=1

γjϕj
∂

∂ϕj

Veff = 0. (3.56)

In the light of eq. (3.45) we find that the resummed mass is also scale independent,

µ
d

dµ
M2 =

µ ∂

∂µ
+

Nλ∑
i=1

βi
∂

∂λi
− 1

2

Nϕ∑
j=1

γjϕj
∂

∂ϕj

M2 = 0. (3.57)

The scale invariance of the resummed mass M shows that the RG improvement technique
can also be applied on the level of the resummed mass M . Eq. (3.57) allows us to evaluate
M at a certain renormalisation scale by using the running coupling constant λi(µ) and
running field normalization Zj(µ). For that one has to determine the β and γ functions to
a certain loop order. In this way, large logarithms in the T = 0 corrections can be rendered
small by choosing a conveninent renormalization scale and the perturbative approach is
improved. If it is necessary to do both, gap equation improvement to handle hard thermal
loops and RG improvement to handle large logarithms, then one has to solve the gap
equation to obtainM2 and subsequently perform the RG improvement ofM2. Finally, one
obtains the improved effective potential by integration (cf. eq. (3.46)).

∗In general the vacuum energy Veff(0) is not scale invariant and contributes to the RG equation of the
effective potential. However, for classically conformal model this term is zero. Since we are interested in
classically conformal models in thesis, we neglect this contribution in our discussion.
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Chapter 4

Numerical Solutions of the Gap
Equation

This chapter serves as an introduction to the numerical method we will use to improve the
effective potential in the proceeding chapters. We analyze the dependence of the resummed
mass on parameters of a simple scalar theory. These methods will be used to compute the
effective potential for the SU(2)cSM which is introduced in the next chapter. Finally,
we conclude with a discussion of the significance on improving the effective potential for
this example and give an outlook why this improvement is important for studying phase
transitions of more complicated models. In addition, we compare the gap equation approach
to the daisy resummation approach.

4.1 Scalar Field with Vanishing External Momentum

We solve the gap equation at finite temperature and at zero momentum for the scalar
theory studied in the previous chapter with the tree-level potential defined in eq. (1.32).
The gap equation in that limit reads

M(ϕ)2 =m(ϕ)2 + λ

(
M2

32π2

[
log

(
M2

µ2

)
− 1

]
+

1

2π2β2

(
∂JB(y2)

∂y2

)∣∣∣∣
y=M/T

)

+ (λϕ)2

(
1

32π2
log

(
M2

µ2

)
+

1

2π2

(
∂2JB(y2)

∂(y2)2

)∣∣∣∣
y=M/T

)
, (4.1)

with the tree-level mass

m2(ϕ) = m2
0 +

λ

2
ϕ2. (4.2)

The dimension-full parameters of this theory are the mass parameter m0 and the temper-
ature T . We will quantify these parameters in this chapters in units of the renormalisation
scale µ, in practice setting µ to one in our computations. Since eq. (4.1) contains derivatives
of the thermal function JB, one either can use the high temperature expansion if y � 1
or the low temperature expansion y � 1. In the intermediate case y ∼ 1 one should use
numerical solution to the integral in JB(y). To account for correct results in all cases and
an efficient numerical implementation we use the code of [40]. With that code at hand, we
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are able to obtain reliable numerical solutions to the gap equation for any temperatures.
The numerical solutions are obtained by starting with an arbitrary initial value forM2 and
plugging it in the right hand side of eq. (4.1). The numerical result is plugged back in that
expression and iterated until M2 converges. In a diagrammatic view on this procedure,
each iteration corresponds to iterating the gap equation. Figure 4.1 shows the solution for
an increasing number of iterations. For this model we find that the solution converges to
a value with a precision of 10−4 for M2 after four to five iterations.
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Figure 4.1: Value of M2 after n iterations for the parameters specified in the box.

Figure 4.2 shows the dependence of the resummed mass on the parameters present in this
model. We plot the corrections to the field-dependent mass defined as

δM2(ϕ) =
M2(ϕ)−m2(ϕ)

m2(ϕ)
. (4.3)

For increasing temperature (cf. Fig. 4.2a) the correction to the field-dependent mass grows
significantly. This provides evidence that the inclusion of diagrams with higher loop order
is important at high temperature since they are of equal magnitude as the tree-level ex-
pression m2(ϕ). Furthermore, this signals the breakdown of perturbation theory induced
by hard thermal loops as pointed out for instance in ref. [36]. Compared to that, the cor-
rections at low temperature are very small even if ϕ � µ (cf. Fig. 4.2b). However, we
know from Fig. 4.2b that the corrections for ϕ/µ . 5 are larger for finite temperature than
for vanishing temperature. At large field values ϕ � µ the correction does not depend
significantly on the temperature, since the dominant contribution is expected to be due to
the large logarithm in eq. (4.1). From the plot with increasing coupling (cf. Fig. 4.2c) we
deduce that at finite temperature the corrections grow faster than at zero temperature. The
increasing mass parameter (cf. Fig. 4.2d) shows that the corrections are most significant
if the mass parameter is small compared to the temperature, i.e. in the high temperature
limit. Hence, these corrections are most important in conformal models where m0 = 0.
Next, we compare our resummation techqniue not only with the usual one-loop results,
but also with the inclusion of thermal masses. We do this on the level of the effective
potential.
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Figure 4.2: The dependence of δM2/µ2 on (a) T/µ, (b) ϕ/µ, (c) λ and (d) m0/µ. For
panels (b),(c) and (d) the plots are shown for T = 0 and T = 1µ.

The improved effective potential V I
eff(ϕ, T ) for this theory is obtained by eq. (3.46). The

standard one-loop effective potential at finite temperature for the scalar theory reads

Veff(ϕ, T ) = V (0)(ϕ) +
m4(ϕ)

64π2

[
log

(
m2(ϕ)

µ2

)
− 3

2

]
+
T 4

2π2
JB

(
m2(ϕ)

T 2

)
. (4.4)

The thermal mass MT (ϕ) of the scalar field is defined in eq. (3.39). Daisy resummation
corresponds to replacing the tree-level mass m(ϕ) in eq. (4.4) with MT (ϕ)

V daisy
eff (ϕ, T ) = Veff(ϕ, T )

∣∣∣∣
m(ϕ)=MT (ϕ)

. (4.5)

Fig. 4.3 shows the comparison of V I
eff(ϕ) and Veff(ϕ) at zero temperature and indicates that

the two potentials are in accordance. Note, V daisy
eff (ϕ) reduces to Veff(ϕ) at T = 0. This

shows that the conventional perturbative approach at zero temperature is valid and the
resumming of higher-order diagrams has no significant effect on the effective potential. Fig.
4.3b shows the effective potentials in the vicinity of the minimum and illustrates that the
location of the minimum and the second derivative at the minimum of both approach match
to a high precision. We might also interpret this accordance of both effective potentials as
a validation of the prescription for improving the effective potential introduced in chapter
3, since we do not expect a large effect of resummation at zero temperature.
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Figure 4.3: The improved effective potential V I
eff (solid blue line) versus the conventional

one-loop effective potential Veff (dashed yellow line) at zero temperature. The right plot
shows the global minimum in higher resolution. In both panels the two plots are overlap-
ping.

At finite temperature (cf. Fig. 4.4) the impact of the improvement of the effective potential
is especially visible, if the VEV is not located at the origin. At low temperatures T < µ (cf.
Fig. 4.4a) the three approaches to the effective potential do not show a significant difference
as in the T = 0 case (cf. Fig. 4.3). We expect that this case is in the low temperature limit
and thermal resummation is not necessary at this temperature. In contrast, Fig. 4.4b
shows that Veff and V daisy

eff coincide, but V I
eff differs. These plots are generated for T = 2.5µ

and we find for the ratio m(ϕ)/T ∼ 0.5 at the VEV. This results suggests that this is
the intermediate stage between high temperature and low temperature limit, where the
daisy resummation technique asses thermal corrections wrongly. We conclude that the gap
equation method is capable to improve the effective potential correctly at the intermediate
stage, too. At T = 5µ (cf. Fig. 4.4c Veff and V daisy

eff coincide less but the difference to V I
eff is

still significant. The two VEVs computed from Veff and V I
eff in Fig.4.4c vary approximately

by ∆v ≈ 0.25µ and the two second derivatives evaluated at the VEV vary by about√
V ′′eff(v) = ∆M ≈ 0.58µ. At even higher temperature T = 10µ (cf. Fig. 4.4d), when

the VEV is located at the origin, the improvement of resummation by the gap equation
approach compared to the daisy resummation approach is less significant. For this case the
high temperature expansion is valid and the daisy resummation technique assess thermal
corrections correctly. We can interpret this accordance at high temperatures again as a
validation of the gap equation method. Although we find for Veff and V I

eff that the VEV is
located at the origin, the second derivatives at the VEV vary by about ∆M ≈ 0.41µ2.

Furthermore, the overall shape of the potential plays an important role for models with a
first-order phase transition. In that case the effective potential exhibits two local minima
seperated by a potential barrier. The shape of this bump is crucial for the tunneling rate
and hence for the correct description of bubble nucleation. We revisit this discussion in
section 6.3.1 where a first-order phase transition is present.
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Figure 4.4: The improved effective potential V I
eff (solid blue line) versus the conventional

one-loop effective potential Veff (dashed yellow line) and the daisy resummed effective
potential V daisy

eff (dotted green line) at different temperatures.
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Chapter 5

Conformal Extensions of the
Standard Model

In this chapter we introduce conformal extensions of the standard model (SM) and discuss
how they remedy some shortcomings of the SM. Since the discovery of the Higgs boson
at the LHC, we know that the masses of the electroweak gauge bosons are generated by
the Brout–Englert–Higgs mechanism. In this mechanism, the condensation of the Higgs
boson spontaneously breaks the electroweak symmetry and generates the masses of the
W and Z gauge bosons. Moreover, the masses of the fermions in the SM are generated
through Yukawa couplings to the Higgs boson. The only mass parameter, hence the only
dimensionfull parameter, which is present in the SM lagrangian is the tree-level mass term
of the Higgs boson. In fact, a negative mass-squared term in the potential is needed to
explain the non-zero VEV of the Higgs boson which is necessary for the Brout–Englert–
Higgs mechanism.

The existence of this term is responsible for the so-called hierarchy problem of the SM. In
the SM the Higgs boson receives quadratic divergent corrections form new heavy degrees of
freedom to the mass, if a cut-off regularization scheme is used. One has to rely on unnatural
fine-tuning for the cancelation of these terms [41]. It has been proposed that this can be
resolved if the tree-level mass term of the Higgs boson is forbidden [1]. If the mass term is
omitted, all parameters of the theory are dimensionless and the classical potential is scale
invariant (conformal). A conformal SM (cSM) was first proposed in [1] and has also been
studied in refs. with enlarged scalar sectors [41–45].

We do not observe conformal symmetry in nature at accessible energies and are led to
the conclusion that conformal symmetry is radiatively (by quantum effects) broken at
these energy scales and the Higgs boson acquires a finite mass. It is clear from the fact
that the Higgs has no mass term in the classical potential of the cSM, this symmetry
breakdown cannot be explained with the Brout–Englert–Higgs mechanism. It is necessary
to invoke other mechanisms of symmetry breaking to open the window to conformal theories
describing nature. The seminal paper of S. Coleman and E. Weinberg [2] proposes such a
mechanism called radiative symmetry breaking (RSB). They have shown that a classically
conformal symmetry of a theory can be broken by including quantum corrections. This
means that the consideration of the the effective potential at one-loop level rather than
only the classical potential is necessary. The interplay of the classical potential and one-
loop terms in the effective potential might induce a non-zero VEVs of scalar fields. This
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radiatively breaks the conformal symmetry since the vacuum condensate of a scalar field
〈φ〉 introduces a dimensionful quantity into the lagrangian. It is conceivable that applying
RSB mechanism in the cSM might be responsible for the non-zero VEV of the Higgs doublet
and thereby a dynamical generation of all masses in the cSM by quantum effects. In other
words, the SM could be interpreted as an effective field theory of the cSM at energies below
some cutoff scale Λ below the Planck scale.

In ref. [2] it was argued that the cSM with dynamical generation of all masses by RSB
is not realised in nature. The argument the authors give is a too small mass of the Higgs
boson. However, the contribution from the top quark was not included since it was not
yet discovered. With the inclusion of the top quark it is possible to generate the right
Higgs mass via RSB with rather large self-coupling [3, 4]. This can lead to Landau poles
of the running coupling constant before the Planck scale and is therefore conisdered as
problematic [5]. For this reason, it was proposed to extend the cSM with an additional scalar
field such that the electroweak vacuum can be generated via RSB. Such an extension can
be achieved with so-called Higgs-portal models. In these models the additional scalar field
only couples to Higgs boson with a dimensionless coupling constant and does not couple
to other SM fields. In this way, there exists a portal between the hidden sector consisting
of the additional scalar and possibly other matter fields and the cSM consisting of the
SM fields. The process of spontaneous symmetry breaking in this model is particularly
insightful if we consider a sequential approach. In this approach it is expected that the
additional scalar acquires a VEV via RSB. The vacuum condensates of the additional scalar
then consitutes a tree-level mass term for the Higgs boson and the spotaneous symmetry
breaking in the SM sector looks like the Brout–Englert-Higgs mechanism. The actually
realized process of symmetry breaking can be more complicated and will be discussed
in chapter 6. Numerous extension with multiple real or complex scalar fields, additional
gauge groups and additional fermions have been studied in the literature. The appeal to
study these models is that they can address problems like dark matter, neutrino masses,
inflation and electroweak baryogenesis (see ref. [5] and references therein). In particular,
promising for this work, these models can entail a strong first-order phase transition in the
electroweak or hidden sector. The absence of the negative m2 in the tree-level potential of
the cSM makes the potential flat around the origin and naturally supports the occurrence
of a first-order phase transition if thermal corrections are included [5].

As already mentioned, in the simplest extension with one singlet scalar field the masses of
the SM particles can be generated, but this recquires a large coupling between the Higgs
doublet and the singlet. Consequently, this leads to a Landau pole close the the electroweak
scale [5]. Hence, we will consider other extensions of the cSM in this thesis. The extension
consists of an hidden SU(2)X gauge group and a scalar forming a doublet under SU(2)X .
The additional doublet is a singlet under the full SU(3)×SU(2)×U(1) SM gauge group
and all SM fields are singlets unter the additional SU(2)X gauge group. This model was
proposed in [46] with a hidden U(1)X gauge group and has generated a lot of research to
accommodate dark matter in the models [47–51]. We refer to this model as SU(2)cSM.

5.1 Introducing the SU(2)cSM

In this section we introduce a Higgs-portal model with the aforementioned additional scalar
doublet and a hidden gauge group SU(2)X . The tree-level potential includes self interaction
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of both scalar doublets and a portal interaction between them. It reads

V (0)(H,Φ) = λ1(H†H)2 + λ2(H†H)(Φ†Φ) + λ3(Φ
†Φ)2, (5.1)

where the Higgs doublet H and the additional scalar doublet Φ can be written in terms of
real scalar field as

H =
1√
2

(
h1 + ih2
h3 + ih4

)
, Φ =

1√
2

(
ϕ1 + iϕ2

ϕ3 + iϕ4

)
. (5.2)

We demand that the effective potential is stable in the UV. Hence, the running coupling
constants should satisfy at the Planck scale the stability conditions [52]

λ1 ≥ 0, λ3 ≥ 0, λ2 ≥ −2
√
λ1λ2. (5.3)

The Lagrangian consisting of the hidden sector and the scalar fields reads

LX = −1

4
FXµν −

1

2
(DµH)†DµH− 1

2
(DµΦ)†DµΦ− V (0)(H,Φ), (5.4)

where FXµν is the field strength of the SU(2)X gauge group and Dµ are the covariant
derivatives, which can be written as

DµH =
(
∂µ − igW a

µ t
a − ig′Bµy

)
H, (5.5)

DµΦ =
(
∂µ − igXXa

µs
a
)
Φ, (5.6)

where W a
µ and Bµ are the SM SU(2)×U(1) gauge bosons before electroweak symmetry

breaking with generators ta and y. The Xµ gauge bosons correspond to the hidden SU(2)X
gauge group with generators sa. Eqs. (5.5) and (5.6) show that H transforms as a singlet
and Φ as a doublet under the SU(2)X gauge group. Due to the gauge symmetries the
tree-level potential only depends on the radial fields defined by

h2 = 2(H†H) =
4∑
i=1

h2i , ϕ2 = 2(Φ†Φ) =
4∑
i=1

ϕ2
i . (5.7)

Hence, the tree-level potential can be written as

V (0)(h, ϕ) =
1

4

(
λ1h

4 + λ2h
2ϕ2 + λ3ϕ

4
)
. (5.8)

The effective potential is given as a function of the two corresponding background fields
hJ and ϕJ , defined in eq. (1.10) as the expectation values in the presence of a source term
J ,

hJ =

(
〈0|h|0〉
〈0|0〉

)
J

, ϕJ =

(
〈0|ϕ|0〉
〈0|0〉

)
J

. (5.9)

For a vanishing source term these fields correspond to the real VEVs of these quantum
fields, i.e. the stationary points of the effective potential. We define these VEVs as

hJ=0 = v, ϕJ=0 = w. (5.10)

From now on we will drop the subscript J of the background fields in eqs. (5.9). The scalar
tree-level masses can be obtained from the Hessian of the tree-level potential. By using the
gauge symmetries we can align the field basis such that the multiple of the background
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fields ~h = (h1, h2, h3, h4) points along the fourth direction ~h0 = (0, 0, 0, h) and similarly
we define for ~ϕ = (ϕ1, ϕ2, ϕ3, ϕ4) this direction as ~ϕ0 = (0, 0, 0, ϕ). In general, the field-
dependent masses are obtained by evaluating the Hessian of the tree-level potential at the
background fields. For our choice this means

m2
ij(h, ϕ) =

∂2V (0)

∂ψi∂ψj

∣∣∣∣∣
~h=~h0,~ϕ=~ϕ0

, (5.11)

where ~ψ = (~h, ~ϕ). With these definitions we obtain the components

∂2V (0)

∂hi∂hj

∣∣∣∣∣
~h=~h0,~ϕ=~ϕ0

= δij

(
λ1h

2 +
λ2
2
ϕ2 + δi42λ1h

2

)
, (5.12)

∂2V (0)

∂ϕi∂ϕj

∣∣∣∣∣
~h=~h0,~ϕ=~ϕ0

= δij

(
λ3ϕ

2 +
λ2
2
h2 + δi42λ1ϕ

2

)
, (5.13)

∂2V (0)

∂ϕi∂hj

∣∣∣∣∣
~h=~h0,~ϕ=~ϕ0

= δi4δj4λ2hϕ. (5.14)

The masses which follow from eqs. (5.12) and (5.13) for i = 1, 2, 3 correspond to the
Goldstone fields of the Higgs doublet and the other scalar doublet, respectively. Their
masses vanish at the stationary points of V (0). From eq. (5.14) it is clear that due to the
Higgs portal coupling λ2 the Hessian has off-diagonal components. To find the remaining
two eigenvalues it is sufficient to diagonalize the matrix(

m2
hh m2

hϕ

m2
ϕh m2

ϕϕ

)
=

(
3λ1h

2 + λ2
2 ϕ

2 λ2hϕ

λ2hϕ 3λ3ϕ
2 + λ2

2 h
2

)
, (5.15)

which yields

m2
±(h, ϕ) =

1

2
h2
(

3λ1 +
λ2
2

)
+

1

2
ϕ2

(
λ2
2

+ 3λ3

)

± 1

2

√(
h2
(

3λ1 −
λ2
2

)
− ϕ2

(
3λ3 −

λ2
2

))2

+ 4λ22h
2φ2. (5.16)

Together with the six Goldstone fields with masses

m2
1(h, ϕ) =m2

2(h, ϕ) = m2
3(h, ϕ) = λ1h

2 +
λ2
2
ϕ2 (5.17)

m2
5(h, ϕ) =m2

6(h, ϕ) = m2
7(h, ϕ) = λ3ϕ

2 +
λ2
2
h2 (5.18)

this defines the eight mass eigenvalues of the scalar sector. To obtain the mass eigenstates
φ± corresponding to mass eigenvaluesm± we have to perform an orthogonal transformation
on the gauge eigenstates h and ϕ according to(

φ−
φ+

)
=

(
cos θ − sin θ
sin θ cos θ

)(
h
ϕ

)
. (5.19)

It should be noted, that these masess do not correspond to physical masses unless quantum
corrections are included. Nevertheless, we stress that one of the mass eigenstates φ− and
φ+ once quantum corrections are included is identified with the physical Higgs field. Which
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one is the Higgs field is determined by matching one of the two mass eigenvalues to the
experimental value of 125 GeV. In general it is possible that the Higgs boson is either
the lighter or heavier scalar field. The mixing angle θ (cf. eq. (5.19)) is constrained by
experimental results from LHC and LEP. The bounds are |cos θ| ≥ 0.93 in case the Higgs
boson is the lighter field and |sin θ| ≥ 0.87 in the other case [53–55] ∗. The authors of ref.
[56] show how Higgs portal models can be explored at the LHC. To obtain the correct
Feynman rules for this model in the basis of the mass eigenstates one has to invert eq.
(5.19) and express the Lagrangian in terms of φ+ and φ−, which will modify the couplings.
In some cases (see section 6.3), it is more convenient to work in the basis of the gauge
eigenstates (h, ϕ) and with an off-diagonal tree-level mass matrix as in (5.15).

The squared masses of the gauge bosons in the SM sector are

m2
W+(h) = m2

W−(h) =
g2h2

4
, (5.20)

m2
Z(h) =

h2

4
(g2 + g′2), (5.21)

m2
A = 0. (5.22)

The massless photon field follows from the residual gauge symmetry U(1)EM of the SM.
The hidden sector SU(2)X contains three gauge bosons with masses squared given by

m2
X(φ) =

g2Xϕ
2

4
. (5.23)

We introduced three dimensionless gauge coupling constants g, g′ and gX . The coupling g
and g′ are the SM SU(2) and U(1) gauge couplings which are related by the weak mixing
angle

tan(θW ) =
g′

g
. (5.24)

The hidden gauge group SU(2)X has the coupling gX . The top quark acquires its mass by
the Yukawa coupling to the Higgs field. The field-dependent top quark mass squared is

mt(h)2 =
y2t
2
h2, (5.25)

where yt is the dimensionless Yukawa coupling of the top quark. We refrain from introducing
other quark flavors or leptons to the analysis due their small masses at the electroweak
scale.

The model we introduced has indeed a classical conformal symmetry since the stationary
point of a stable classical potential is located at the origin (h = 0, ϕ = 0) and there
all fields are massless. Furthermore, all couplings in the model (λ1, λ2, λ3, g, g′, gX , yt) are
dimensionless in four space-time dimensions. The SU(2)cSM contains two parameters more
to the SM with parameters (mh, λh, g, g

′, yt) Including quantum and thermal corrections
to the effective potential might induce VEVs for the background fields and thus generate
masses. In this case, the classical conformal symmetry is spontaneously broken.

∗In these references the bounds were obtained for different models. We expect that these bounds also
applies for the SU(2)cSM since the scalar sectors is similiar to the models in the ref. [53–55].
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Chapter 6

Phase Transition in the SU(2)cSM

In this chapter we study the effectve potential of the SU(2)cSM at finite temperature. We
are in particular interested in describing first-order phase transition and the corresponding
critical temperature. To do that, we compute the improved effective potential with the
methods introduced in chapter 3. We tackle this task by three approaches starting from
appoximative methods. Firstly, we introduce the so-called sequential approach to the sym-
metry breaking in the SU(2)cSM which is valid for small portal couplings. This method is
used for instance in refs. [47, 49]. Secondly, we use the Gildener-Weinberg (GW) method
which is based on the assumption that the tree-level potential has a flat direction at some
renormalisation scale in the field space. Also this method is used broadly in the literature
(e.g. [50, 51]) and in particular to study phase transitions of Higgs portal models (e.g.
[13, 14]). Both mentioned methods ultimately allow us to reduce the effective potential of
the SU(2)cSM with multi-field dependence to a single-field dependence, which simplifies
the improvement of the effective potential and the analysis of the phase transition signifi-
cantly. Finally, we derive the improved effective potential with its full two-field dependence
and show that GW method is not always a good approximation to study first-order phase
transition with multiple fields. Moreover, it shows that the sequential approach is not ap-
plicable to study the phase transition of this model. Before that, we comment in section
6.1 on the methods we will use for the three cases.

6.1 Setup

6.1.1 Field Content

The field content of the SU(2)cSM which we will consider in our computations for the
effective potential are the W ,Z and X gauge bosons, the top quark and the two scalar
fields with masses defined in eq. (5.16). All other tree-level masses can be found in section
5.1. The six Goldstone modes of this model (eqs. (5.17) and (5.18)) will be neglected in
the one-loop term in the effective potential and thermal corrections. This is a common
procedure in the literature since the effect of the Goldstone modes on the phase transitions
is small [5, 57, 58]. This is based on the fact that these contribution scale as λ2 so they
are negligible compared to λ and g4 contributions. Furthermore, the Goldstone bosons
cause infrared divergences in the effective potential due to their vanishing masses at the
stationary point. Resummation techniques exist to tame these divergences [59, 60], but we
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choose a simple path by omitting the Goldstone bosons in the one-loop corrections.

6.1.2 Thermal Masses

Although we introduced the gap equation resummation technique to take care of the hard
thermal loops, we will only apply this method to the two scalars in the model. This approach
can be also applied to derive corrections to the gauge bosons masses. We refrain from
deriving gap equations for the gauge bosons and use the results for the thermal masses
from the literature. We do so since that will allow us to explicitly study the role of the
gap equation resummation in the scalar sector of this multi-scalar model. From the gap
equation perspective, the thermal masses are obtained by taking the leading order terms of
the high temperature expansion of the gap equation (see section 3.2.4). For the derivation
and discussion for a scalar field see ref. [18] and for the extension to gauge bosons see refs.
[19, 20]. Corrections to the top quark mass are not necessary since fermions do not suffer
from IR divergences due to their finite zero Matsubara mode [19]. At leading order in the
high-temperature expansion only the longitudinal gauge bosons acquire a thermal mass. In
the gauge field basis (Aaµ and Bµ) before electroweak symmetry breaking the longitudinal
thermal masses read [13, 20]

M2
L(h, T ) =

h2

4


g2 0 0 0
0 g2 0 0
0 0 g2 −gg′
0 0 −gg′ g′2

+
11

6
T 2


g2 0 0 0
0 g2 0 0
0 0 g2 0
0 0 0 g′2

 . (6.1)

Transforming the above matrix to the W+
µ , W−µ , Zµ and Aµ basis, we obtain the thermal

masses of the longitudinal W , Z and photon [61]

M2
WL

= m2
W (h) +

11

6
g2T 2, (6.2)

M2
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1

2
m2
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12

g2

cos2(θW )
T 2 +

∆

2
, (6.3)

M2
γL

=
1

2
m2
Z(h) +

11

12

g2

cos2(θW )
T 2 − ∆

2
, (6.4)

∆2 = m4
Z(h) +

11

3

g2 cos2(2θW )

cos2(θW )

[
m2
Z(h) +

11

12

g2

cos2(θW )
T 2

]
T 2. (6.5)

For the gauge bosons of the hidden gauge group, the thermal masses resemble the ones
for the W bosons but with the gauge coupling gX . This is in agreement with the general
formula for thermal masses in extensions of the SM presented in ref. [62]. For the benchmark
point (6.9) we will study in this thesis, the X gauge boson have a relatively high tree-level
mass mX ≈ 1 TeV at the VEV. In the vicinity of this point, i.e. for large values of ϕ,
the ratio m2

X/T
2 > 1 shows that the high temperature limit is not valid for the X gauge

bosons for temperatures at the electroweak scale T ∼ O(100 GeV). For this case, the daisy
resummation is not valid since the high temperature expansion does not apply and one
should rather use the tree-level mass. However, at lower values for ϕ, the high temperature
limit is valid m2

X/T
2 < 1 and the thermal mass gives the better estimate to the physical

mass. To account for good accuracy in both cases, we use for the longitudinal mass of the
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X gauge boson the expression

MXL =

{
m2
X(ϕ) + 11

6 g
2
XT

2 for m2
X
T 2 < 1

m2
X(ϕ) for m2

X
T 2 > 1.

(6.6)

This is crude approximation to the mass of the X gauge boson and can lead to disconti-
nuities of our results at the point where mX(ϕ) = T . To account for better accuracy in
the range mX(ϕ) ∼ T and a smooth transition between the high temperature and low
temperatures phase, one should generalize the gap equation approach to gauge bosons.
In that formalism, which is not presented in this thesis and left for future research, the
thermal mass of the X gauge boson can be computed for any temperature and without
reliance on the high temperature expansion.

All transverse gauge boson masses are to the leading order in the high temperature ex-
pansion given by their tree-level masses. The degrees of freedom n = 3 of a massive gauge
boson at T = 0 are converted to one longitudinal degree of freedom nL = 1 and two
transverse degrees of freedom nT = 2 at T > 0.

6.1.3 Benchmark Point

We closely follow ref. [5] in this section. The SU(2)cSM has four free parameters: three
scalar couplings λ1,2,3 and the hidden gauge coupling gX . With knowledge of experimental
data (Higgs VEV and mass) at T ≈ 0 on can reduce the number of free parameters. The
two stationary conditions for this model at T = 0,

∂Veff(h, ϕ)

∂h

∣∣∣∣
h=v,ϕ=w

= 0, (6.7)

∂Veff(h, ϕ)

∂ϕ

∣∣∣∣
h=vϕ=w

= 0. (6.8)

can be used to replace the λ1 and λ3 in favor of λ2, gX and the VEVs v and w. The
VEV of the Higgs doublet is known experimentally and will be fixed to its value v ≈ 246
GeV, so the free paramaters left are λ2, gX and w. One can express w as a function of λ2
and gX requiring that mH = 125 GeV. Thus, the SU(2)cSM can be parametrized by two
parameters λ2 and gX . Furthermore, points in parameter space which entail a Landau pole
below the Planck scale and which violate the bounds on the mixing angle θ are excluded.
For a precise description of this anaylises we refer to ref. [5].

To study the phase transition, we will use one benchmark point found in ref. [5] which fulfill
all aforementioned constraints. In sections 6.2 and 6.4 we will use the set of parameters
given by

µ = v,

λ1 = 0.1236,

λ2 = −0.0030,

λ3 = −0.0047,

gX = 0.8500,

w = 2411GeV, (6.9)
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where all parameters are given at the scale µ of the Higgs VEV v . For the Gildener-
Weinberg case in section 6.3, we use

µGW = 940GeV,
λ1 = 0.1055,

λ2 = −0.0030,

λ3 = 2 · 10−5,

gX = 0.8141,

w = 2722GeV, (6.10)

where a flat direction was found at the renormalisatoin scale µGW in [5]. All parameters
in (6.10) parameters are given at this scale at are related to the values in eq. (6.9) by the
running of the coupling constants. More points in the parameter space fulfill all mentioned
constraints and should by considered in a systematic study of phase transitions of the
SU(2)cSM but this is beyond the scope of this thesis and is left for future research.

6.1.4 Running of the SM Parameters

To ensure correct numerical results, we need to use the running coupling constants of the
SM evaluated at the renormalisation scales used in (6.9) and (6.10). We will use the one-
loop beta functions of the weak couplings g and g′ and the Yukawa top coupling yt. They
read [63, 64]

βg = µ
∂g

∂µ
= − 19g3

96π2
, (6.11)

βg′ = µ
∂g′

∂µ
= −41g′3

96π2
, (6.12)

βyt = µ
∂yt
∂µ

=
yt

16π2

[
9

2
y2t − 8g2s −

9

4
g2 − 17

12
g′2
]
, (6.13)

βgs = µ
∂gs
∂µ

= − 7g3s
16π2

, (6.14)

where gs is the QCD coupling constant. The solution of these differential equations are
obtained with the use of the initial values determined by their experimental values.

6.2 Sequential Symmetry Breaking

We start with the simplest approach to the electroweak phase transition of the SU(2)cSM.
So-called sequential symmetry breaking gives an insightful intuition of the electroweak
symmetry breaking pattern of the SU(2)cSM and how the usual Higgs mechanism is re-
stored. The sequential approach to symmetry breaking is based on the assumption of a
small portal coupling λ2. In this limit the additional scalar decouples from the SM sector
and acquires a VEV through RSB caused by loop corrections from the SU(2)X gauge fields.
This VEV generates an effective mass term for the Higgs boson and the symmetry breaking
proceeds in the SM sector as usual. We discuss the validity of the sequential approach in
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more detail since not only the value of the portal coupling is important, but also the ratio
of the two VEVs. The effective potential has two stationary conditions

∂Veff
∂h

∣∣∣∣
h=v,ϕ=w

= λ1v
3 +

1

2
λ2vw

2 +
∂V (1)

∂h

∣∣∣∣∣
h=v,ϕ=w

= 0, (6.15)

∂Veff
∂ϕ

∣∣∣∣
h=v,ϕ=w

= λ3w
3 +

1

2
λ2v

2w +
∂V (1)

∂ϕ

∣∣∣∣∣
h=v,ϕ=w

= 0, (6.16)

which are formulated at zero temperature. If scalar contributions to the one-loop term V (1)

are dropped, then the last term in eq. (6.15) only contains contribution from the SM sector
and the last term in eq. (6.16) contains only contribution form the hidden sector. This is
a reasonable approximation if λi � λ2i and thus tree-level terms dominate over scalar loop
terms. The only terms which couple both equations are the ones proportional to λ2. If we
divide eq. (6.15) by v3 and eq. (6.16) by w3 we obtain

λ1 +
1

2
λ2
w2

v2
+

1

v3
∂V (1)

∂h

∣∣∣∣∣
h=v,ϕ=w

= 0, (6.17)

λ3 +
1

2
λ2
v2

w2
+

1

w3

∂V (1)

∂ϕ

∣∣∣∣∣
h=v,ϕ=w

= 0. (6.18)

If λ2 � λ1, λ3 and w � v then the second term in eq. (6.18) is negligible which means
that the stationary condition for the VEV of ϕ is decoupled from the SM sector. In that
case, ϕ can acquire a VEV through RSB if the hierarchy O(λ3) ∼ O(g4X) applies (see ref.
[5]). Furthermore, one can drop the one-loop contribution in eq. (6.17) since RSB is not
effective in the SM sector [2] and the tree-level part dominates over the one-loop terms. In
these approximations, the stationary conditions read

λ1 +
1

2
λ2
w2

v2
= 0, (6.19)

λ3 +
1

w3

∂V (1)

∂ϕ

∣∣∣∣∣
h=v,ϕ=w

= 0. (6.20)

Due to the assumption w � v the λ2 term in eq. (6.19) is not negligible. The above
equations clarify the sequential symmetry breaking pattern. The scalar field ϕ decouples
from the SM sector and might acquire a non-zero VEV w through RSB. If the hierarchies
w � v and λ2 < 0 are true, the VEV w triggers the condensation of the Higgs doublet to
its VEV v2 = − λ2

2λ1
w2 by eq. (6.19). A further condition for that is λ2 < 0.

The objective is now to study the symmetry breaking in the SM sector. In this approach
the additional scalar field will be fixed to its vev 〈ϕ〉 = w at T = 0 and it becomes just
a parameters of the model. To put it differently, the two-dimensional effective potential
at finite temperature will be studied only along the constant ϕ = w directions. This is of
course a strong approximation, since thermal effects might change the true location of the
minimum to regions where ϕ 6= w. We do not expect any interesting results here since it has
been shown with non-perturbativ methods [7] that the electroweak phase transition in the
SM is a crossover. The present approach reduces to the SM case and hence no first-order
phase transition along the h direction should be expected.
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As mentioned, the effective potential becomes a function of only h rather than a function
of than h and ϕ,

V (0)(h) =
1

4
(λ1h

4 + λ2w
2h2) + const, (6.21)

where λ2w2 can now be thought of as a mass term for the Higgs field. The field-dependent
mass eigenvalue which correspond to the Higgs field is

m2(h) = 3λ1h
2 +

λ2w
2

2
. (6.22)

We use the set of parameters given in eqs. (6.9) use the method of section 3.3 to derive the
gap equation and obtain the improved effective potential. For that we need the standard
one-loop effective potential with thermal corrections,

Veff(h, T ) = V (0)(h) + V (1)(h) + V T(h, T ). (6.23)

We use the general formulas provided in eqs. (1.51) and (2.81) for V (1) and V T and then
sum according to eq. (2.82) over the fields. This sum runs over transverse W and Z gauge
bosons, longitudinal W ,Z and γ gauge bosons, top quark and the scalar field with mass
m(h). With that at hand, the gap equation at zero external momentum can be written as

M2(h, T ) = m2(h) +
∂2

∂h2

(
V (1) + V T

)∣∣∣∣
m2=M2

. (6.24)

Once this equation is solved for M2 we can obtained the improved effective potential by
two integrations with respect to h (cf. eq. (3.46)).

We show the results for Veff(h), V ′eff(h) and M2 = V ′′eff(h) in Fig. 6.1 for T = 0 and a high
T = 200 GeV temperature where electroweak symmetry is restored (left column). Further-
more, we found a critical temperature Tc ≈ 180.843 GeV where the effective potential has
two degenerate minima. We also show the results for Tc and a temperature slightly above
it to show that then the true VEV is located at the origin (right column). The physical
information in Fig. 6.1 can be summarized by the following table:

Table 6.1: VEVs and masses for the SM case

T [GeV] v(T ) [GeV] M [GeV]
0 246.6 126.6
180.843 (= Tc) 0/20.0 4.7/4.8
180.850 0 4.7
200 0 44.5

The slashes in the second row indicate the degeneracy of the global minimum at T = Tc.
It is surprising that our results point to a first-order phase transition which is excluded for
the SM scenario in ref. [7], where non-perturbative methods were used. We expect that the
barrier between the two degenerate minima in Fig. 6.1f is an artifact of the perturbative
approach to the problem. Additionally, we can point out that the observed phase transition
is extremely weak. The height of the barrier in Fig. 6.1f is small if we compare it to the
energy density of a radiation bath which scales as T 4. This is also the reason why we
normalize the plot of the effective potential as Veff/T 4 . Then the height of the barrier is
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O(10−7). Furthermore, the condition for a strong first-order electroweak transition in the
literature is often stated by v/T > 1 ∗ while in our case v/T ∼ O(10−1). Therefore the
first-order phase transition predicted by our model is extremely weak.
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Figure 6.1: Improved effective potential Veff(h) (bottom panel), its first derivative V ′eff(h)
(middle panel) and second derivativeM2 = V ′′eff(h) (upper panel) for different temperatures
derived from the sequential approach. Left column: T = 0 result and a high temperature
result, where Veff(h) has only one local minimum. Right colum: the results at the critical
temperature Tc = 180.643 GeV and a temperature slightly above it. Note that in the
bottom right plot the effective potential is normalized by T 4. The VEVs and the values
of running physical mass of the Higgs boson for these temperatures are given in table 6.1.
The kink in panel (b) is a numerical artefact due to divergences in the gap equation at
h = 0 and is smoothed by numerical integrations in the plots in panel (d) and (f).

∗For reasons which will be clarified in chapter 8.

59



6.3 Gildener-Weinberg Method

The Gildener-Weinberg method [65] allows to study RSB for the case of multiple scalar
fields, i.e. for an effective potential with multidimensional domain. In the absence of large
logarithms and for a perturbative theory, the tree-level term in the effective potential is
dominant over the one-loop scalar contribution. In case of a scalar theory with self interac-
tions proportional to λ, the tree-level term is O(λ) and the one-loop term is O(λ2). Hence,
the quantum corrections are too small to modify the tree-level potential significantly and
no minimum away from the origin can be generated through RSB. † However, in the mul-
tidimensional case, it is conceivable that the tree-level potential at some renormalisation
scale is flat along a certain direction (see Fig. 6.2 for an illustration). We call that renor-
malisation scale the Gildener-Weinberg scale µGW . In this approach one has to use the
running coupling constants of the model and search for this scale at which the tree tree-
level potential exhibits a flat direction. Since the tree-level potential vanishes along the flat
direction, the subleading one-loop terms can change the structure of the effective potential
along that direction and induce a non-zero VEV located at the flat direction. In general,
the condition for applicability is that away from the flat direction the tree-level potential
dominates, i.e. V (0) > V (1). If instead in the whole field space V (0) ∼ V (1) applies, then one
should check whether the minimum found along the flat direction is the global minimum
[5].

We will use this approach as a next approximate method since it will allow us to reduce
the two-dimensional case of the SU(2)cSM to a one dimensional case. We will use the zero-
temperature effective potential to determine the polar angle of the flat direction where
the VEV is located. Subsequently, we will formulate the gap equation along that direction
and study the effective potential on that ray in field space for finite temperature. This is
possible because the polar angle of the flat direction (i.e. direction to the minimum) is
equal to the angle of the orthogonal transformation which diagonalizes the mass matrix at
tree-level. We show this in more detail below.

As in the previous case, this approach is a rough approximation to study thermal phase
transition with multiple scalar fields with a one-dimensional effective potential. It is not
guaranteed, that thermal correction will shift the VEV only along the flat direction towards
the origin. In fact, the trajectory of the VEV with increasing temperature might be more
complicated or a multi-step phase transition might occur. To take account of all that one
has to use the full two-dimensional effective potential of this model as we do in the next
section. However, with the Gildener-Weinberg approach the situation is somewhat altered
with respect to the sequential approach since the interplay of the hidden sector and the
SM sector is taken into account and more interesting results can be expected.

†If gauge fields with gauge coupling g and fermions with Yukawa coupling y are included, one has
to ensure for the hierarchy y4, g4 � λ, such that the tree-level contribution is dominant over one-loop
contributions in the effective potential.
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Figure 6.2: Example of a two-dimensional potential with flat directions (red lines).

Using the Gildener-Weinberg approach, we assume that the tree-level potential is dominant
over the one-loop-term at the scale µGW . Hence, the stationary conditions for the SU(2)cSM
at that scale can be approximated by (cf. eqs. (6.15) and (6.16))

∂Veff
∂h

∣∣∣∣
h=v,ϕ=w

≈ ∂V (0)

∂h

∣∣∣∣∣
h=v,ϕ=w

= λ1v
3 +

1

2
λ2vw

2 = 0, (6.25)

∂Veff
∂ϕ

∣∣∣∣
h=v,ϕ=w

≈ ∂V (0)

∂ϕ

∣∣∣∣∣
h=v,ϕ=w

= λ3w
3 +

1

2
λ2wv

2 = 0, (6.26)

which lead to

4λ1λ3 − λ22 = 0,

w2 = −2λ1
λ2

v2. (6.27)

These equations can be seen as the conditions existence of a flat direction, because sub-
stitung them into the tree-levle potential shows that V (0)(v, w) = 0. Subleading quantum
contributions might change the location of the true minimum. For this reason, the flat di-
rection determined by eqs. (6.27) should be seen as an approximation to the angle pointing
to the true global minimum. Moreover, we can us eqs. (6.27) to simplify the tree-level mass
matrix (cf. eq. (5.15)) of the two scalars fields h and ϕ evaluated at the VEVs

M2 =

(
3λ1v

2 + λ2
2 w

2 λ2vw

λ2vw 3λ3w
2 + λ2

2 v
2

)
=

(
2λ1v

2
√
−2λ1λ2v

2
√
−2λ1λ2v

2 −λ2v2
)
. (6.28)

This matrix has two mass eigenvalues

M2
1 = (2λ1 − λ2)v2, (6.29)

M2
2 = 0. (6.30)

The second one corresponds to the flat direction since the second derivative along that
directions should vanish. In the basis of the mass eigenstates one direction is given along
the flat direction (corresponding to eigenvalue M2

2 ) and one perpendicular to it. The two
mass eigenstates can be written as

H = h cos(θ∗) + ϕ sin(θ∗), (6.31)
S = ϕ cos(θ∗)− h sin(θ∗). (6.32)
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In the benchmark point we study (cf. eq. (6.10)) the physical Higgs field H is fixed to the
field with tree-level mass M2 and the other scalar S to the field with level-mass M1, but
in general the other choice is also valid. In our case this Higgs tree-level mass vanishes and
this means that the Higgs mass will be purely generated by quantum effects. The polar
angle of the flat direction is denoted by θ∗. It is convenient to work in polar coordinates
for the gauge eigenstates,

h = ρ cos(θ),

ϕ = ρ sin(θ), (6.33)

where we introduce a radial field ρ and an angular field θ. For the VEVs we write this as

v = vρ cos(θ∗),

w = vρ sin(θ∗), (6.34)

where v2ρ = v2 + w2. From eq. (6.31) it is clear that the Higgs mass eigenstate H reduces
the radial field ρ on the flat direction where θ = θ∗. To determine the value of θ∗, we give
the tree-level potential in polar coordinates (eq. (6.33))

V (0)(ρ, θ) =
ρ4

4

(
λ1 cos4(θ) + λ2 cos2(θ) sin2(θ) + λ3 sin4(θ)

)
(6.35)

The polar angle of the flat direction can be determined by eqs. (6.27)

θ∗ = arctan

(√
−2λ1
λ2

)
= arctan

(√
−λ2
2λ3

)
, (6.36)

which is also the angle which diagonalizes the mass matrix in eq. (6.28). The non-zero tree
level mass can be casted to

M2
1 = (2λ1 − λ2)v2 = −λ2v2ρ. (6.37)
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Figure 6.3: Panel (a): tree-level mass of the radial field vs the mass of the radial field
obtained as second derivative of the one-loop effective potential along the flat direction
θ = θ∗. Panel (b): tree-level part V (0) and one-loop part V (1) of the potential along the
flat direction. In contrast, panel (c) shows the angular dependence of V (0) and V (1) if the
radial field is fixed to the VEV vρ. The vertical grey line marks the flat direction θ∗. All
plots are generated at T = 0.

We use now the benchmark point (6.10) to obtain results with the Gildener-Weinberg
method. Fig. 6.3 illustrates that the aforementioned conditions for the validity of the
Gildener-Weinberg approach are fulfilled. Fig. 6.3a and 6.3b exemplify that along the flat
direction the effective potential is dominated by the one-loop contributions. In contrast,
figure 6.3c shows that along the angular direction, the effective potential is dominated
by the tree-level part thus justifying the classical approximation in eqs. (6.25) and (6.26).
This means that along the perpendicular direction the tree-level potential is dominant over
the one-loop term. Therefore we can approximate the mass of the perpendicular field by
its tree-level mass in eq.(6.37). However, if quantum corrections are included in the mass
matrix, the angle of the flat direction θ∗ estimates the mixing angle θ in eq. (5.19) badly.
See ref. [5] for a detailed discussion.

The Gildener-Weinberg method effectively reduces the two-dimensional problem to a one-
dimensional problem. In other words, if the effective potential is written in polar coordiantes
(as in eq. (6.35)), the only variable is ρ since θ is fixed to θ∗. For our approach to improve the
effective potential this means to formulate the gap equation only along the flat direction.
In this way, we obtain the mass of the Higgs boson by solving

M2
2 (ρ, T ) = m2

ρ +
∂2

∂ρ2

(
V (1)(ρ) + V T(ρ)

)∣∣∣∣
m2=M2,θ=θ∗

(6.38)

The tree-level mass is mρ = 0 since it is the second derivative of the classical potential
along the flat direction. To derive the gap equation (6.38) one has to derive V (1) + V T
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in coordinates (θ, ρ) with the help of eqs. (6.33). The field content is W ,Z and X gauge
bosons, the top quark and the radial scalar field ρ. The flat direction is determined by

θ∗ ≈ 84◦.

To discuss the results, we show the effective potential and its first and second derivatives
as in the previous section for the temperatures T = 0, a high temperature (here T = 600
GeV), the critical temperature Tc and a temperature slightly above it in Fig. 6.4 and
summarize the physical information in table 6.2. Note that the phsyical mass and the
VEV of the Higgs boson do not match their experimental values since in ref. [5] (reference
for the benchmark point) the parameters are fixed to give correct results at the electroweak
scale µ = v. The results presented here are obtained at the Gildener-Weinberg scale µGW.

We can identify a first-order phase transition at the critical temperature Tc ≈ 360 GeV.
In this case the phase transition can be classified as strong since vρ/Tc > 1. The barrier
seperating the two degenerate minima has the height of order O(10−1) if it is normalized
by T 4. The results obtained from the GW method show that SU(2)cSM can entail a
thermal strong-first order phase transition leading to bubble nucleation of the new phase.
We investigate these issues further in chapter 7 and 8.

Table 6.2: VEVs and masses for the Gildener-Weinberg case

T [GeV] vρ [GeV] v [GeV] M2 [GeV]
0 2742 315 151
360 0/2582 0/296 110/122
380 2515 289 111
600 0 0 186
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Figure 6.4: Improved potential (bottom panels) and the first two derivative (middle and
upper panels) are shown for different temperatures derived in the Gildener-Weinberg ap-
proach. The left column show the zero temperature result and a high temperature result,
where only one minimum exist. The right column shows the results at the critical temper-
ature Tc = 360 GeV and a temperature slightly above it. Note that in the bottom right
plot the effective potential is normalized by T 4. The VEVs and the values of the physical
mass of the Higgs boson for these temperatures are shown in table 6.2.

6.3.1 Revisiting the Improvement of the Effective potential

In this section we discuss the effect of the improvement of the potential by the gap equation.
The discussion in chapter 4 was applied to a simple toy model. Here we would like to see
how the improvement affects physical quantities like the critical temperature of a more
realistic model. As in chapter 4, we compare the improvement of the effective potential
by the gap equation to the one-loop results and to the results of the daisy resummation
method. For the latter, we use the thermal masses of the gauge bosons (see section 6.1.2)
in the usual one-loop effective potential at finite temperature.

65



The deviation of the critical temperatures derived from the gap equation approach and the
daisy resummation approach is (cf. Fig. 6.5b)

∆Tc ≈ 360− 343 ≈ 17 GeV,

which shows that for this case at relatively high temperatures the gap equation improve-
ment is more accurate than the daisy resummation approach. At lower temperature T = 40
GeV (cf. Fig. 6.5a), which will turn out to be approximately the nucleation temperature
in section 7.3 for this case, the difference around false vacuum is considerable. The shape
of the effective potential in the vicinity of the false vacuum is important for the details
of bubble nucleation. We think that with the gap equation approach the accuracy of the
determination of nucleation temperature, duration of the transition and latent heat ‡ for
cosmological first-order phase transitions is improved. The discontinuities visible in Fig.
6.5 for the daisy approach are due the step-wise definition of the thermal mass of the X
gauge bosons (cf. eq. (6.6)). In the gap equation results this jump is smoothed out due to
interpolation and the two integrations to obtain the effective potential from M2.

On the other hand, we compare in Fig. 6.5 the usual one-loop potential at finite temperature
without thermal masses to the improved potential for T = Tc and T = 40 GeV. The
deviation is significant for both temperatures and the error in the critical temperature is

∆TC ≈ 360− 334 ≈ 26 GeV.
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Figure 6.5: Improved effective potential (blue solid line), the one-loop effective potential
with thermal masses (yellow dashed line) and the one-loop effective potential with tree
level masses (green dotted line) at the approximately the nucleation temperature (a) and
at critical temperature (b). Note that panel (a) shows only the vicinity of the false vacuum
at ρ = 0. The discontinuity of the result with thermal masses in panel (b) is due to the
definition of the thermal mass for the X gauge bosons (cf. eq. (6.6)).

6.4 Multi-Gap Equation Method

As a final approach to the analysis of the phase transition in the SU(2)cSM we aim to
study the effective potential in its full two-dimensional domain. This allows to examine the
phase transition not solely along one direction (as in the Gildener-Weinberg approach) but
to generate the two-dimensional effective potential at the critical temperature. Hence, one

‡These quantities will be defined in chapter 7.
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can determine the true direction to the global minimum, search for a potential multi-step
transition and study bubble nucleation in multi-dimensional field space. However, the dis-
advantage of this approach is the high computation time of the numerical implementation
of the improved effective potential. Therefore, the resolution of the results in this section is
lower than in the previous two sections and the results are afflicted with higher numerical
errors. In the next paragraph we introduce the concept of the improvement for effective
potentials with multiple scalar fields, which we refer to as the multi-gap equation method.

The SU(2)cSM contains two background fields h and ϕ. If we consider the effective potential
in the (h, ϕ) basis, its Hessian M2 is non-diagonal due to the portal coupling λ2 (cf. eq.
(5.15)). This shows that three gap equations need to be considered for obtaining the two
dimensional improved effective potential. Therefore, we consider the non-diagonal tree-
level matrix with the components given by eq. (5.15). We derive the gap equation by the
approach of section 3.3 and therefore we need the one-loop terms of the effective potential
at finite temperature. The field content is the W , Z and X gauge bosons, the top quark
and the two scalar fields with masses m±. The scalar field masses m± in the one-loop terms
can be written in terms of the masses mh, mϕ and mhϕ in the off-diagonal basis,

m2
±(h, ϕ) =

1

2

(
m2
h(h, ϕ) +m2

ϕ(h, ϕ)±
√(

m2
h(h, ϕ)2 −m2

ϕ(h, ϕ)
)2

+ 4m4
hϕ

)
. (6.39)

With that at hand, we can formulate three gap equations for the three components of the
off-diagonal mass matrix. We obtain the three resummed masses by

M2
h(h, ϕ, T ) =m2

h(h, ϕ)

+
∂2

∂h2

(
V (1)(h, ϕ) + V T(h, ϕ)

)∣∣∣∣
mh=Mh,mϕ=Mϕ,mhϕ=Mhϕ

, (6.40)

M2
ϕ(h, ϕ, T ) =m2

ϕ(h, ϕ)

+
∂2

∂ϕ2

(
V (1)(h, ϕ) + V T(h, ϕ)

)∣∣∣∣
mh=Mh,mϕ=Mϕ,mhϕ=Mhϕ

, (6.41)

M2
hϕ(h, ϕ, T ) =m2

hϕ(h, ϕ)

+
∂2

∂h∂ϕ

(
V (1)(h, ϕ) + V T(h, ϕ)

)∣∣∣∣
mh=Mh,mϕ=Mϕ,mhϕ=Mhϕ

. (6.42)

Solving eqs.(6.40)-(6.42) by iterations yields the improved mass matrix

M2(h, ϕ, T ) =

(
M2
h M2

hϕ

M2
hϕ M2

ϕ

)
. (6.43)

In our considerations we use benchmark point (6.9) and are restricted to the case where the
field with the lower mass of 125 GeV is the Higgs boson. We can integrate the components
in the matrix (6.43) to obtain the two first derivatives of the effective potential

∂Veff
∂h

(h, ϕ) =

∫ h

0
dh′M2

h(h′, ϕ) +

∫ ϕ

0
dϕ′M2

hϕ′(0, y), (6.44)

∂Veff
∂ϕ

(h, ϕ) =

∫ ϕ

0
dϕ′M2

ϕ(h, ϕ′) +

∫ h

0
dh′M2

hϕ(h′, 0), (6.45)

where the off-diagonal component of the mass matrix (6.43) are used to fix the integration
constants. Finally, we obtain the improved effective potential by

Veff(h, ϕ, T ) =

∫ h

0
dh′

∂Veff
∂x

(x, ϕ)

∣∣∣∣
x=h′

+

∫ ϕ

0
dϕ′

∂Veff
∂y

(0, y)

∣∣∣∣
y=ϕ′

, (6.46)
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carrying the full dependence on h and ϕ.

6.4.1 Zero Temperature Results

At zero temperature we find the global minimum of the improved potential to be located
at

v ≈ 250 GeV, w ≈ 2431 GeV. (6.47)

In Fig. 6.6 we illustrate the improved effective potential by contour plots. The stationary
points of the effective potential are found by the intersection of the zero contours of ∂Veff/∂h
and ∂Veff/∂ϕ (cf. Fig. 6.7a and 6.7b). We then evaluate the effective potential at these
points and the VEV is then defined as the values of the fields for which the minimum of
that set is acquired. Further physical information is encoded in the resummed mass matrix
(6.43). The two eigenvalues of that matrix can be computed at any point in the field space
spanned by (h, ϕ). The two eigevalues M1(v, w) and M2(v, w) at the VEV (cf. Fig. 6.7c
and 6.7d) are the masses of the Higgs boson and the additional scalar, respectively. The
two eigenvalues are complex at some points in field space, since the second derivative of
the effective potential is negative in some regions (white regions in Fig. 6.7c and 6.7d).
Evaluating the mass eigenvalues at the VEVs (6.47) we find the physical masses

M1 ≈ 124 GeV, M2 ≈ 148 GeV. (6.48)
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Figure 6.6: Improved effective potential at T = 0. The white points represent the global
minimum of the potential.
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Figure 6.7: Upper panels: the two derivatives of the effective potential at T = 0, the
red dotted lines correspond to the zero contours. Bottom panels: the eigenvalues of the
resummed mass matrix (6.43) and the red dots indicate the location of the global minimum
of the potential. At this point the eigenvalues are given by eqs. (6.48). The white regions
correspond to imaginary masses M1 or M2.

6.4.2 Turning on the Temperature

To study the improved effective potential at finite temperature systematically, we look
numerically for the VEV as we did for zero temperature in the previous section. To do
that, we discretize the temperature to steps of δT = 5 GeV and scan in the interval
0 ≤ T ≤ 330 GeV. The resulting locations of the minima for various temperatures are
visualized in Fig. 6.8. This intermediate result hints to the possibility of a multi-step phase
transition. For T > 327 GeV the VEV is located at the origin. At T1 ≈ 327 GeV we register
a jump in the ϕ direction of about 2316 GeV which could correspond to a first-order phase
transition. We refer to this event as critical point I and discuss it in the next subsection.
For temperatures in the range 179 < T < 327 GeV, the VEV is located approximately at
h ≈ 0 and ϕ ∼ 2300 GeV and no phase transition is observed. At T2 ≈ 179 GeV the VEV
jumps again about 40 GeV in the h direction (see figure 6.8b) and refer to this as critical
point II. For low temperatures O < T < 179 GeV the VEV seems to continuously shift to
the T = 0 VEV at h = v and ϕ = w.
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Figure 6.8: The dots indicate the location of the VEVs with varying temperature in steps
of δT = 5 GeV. The top panel covers the the temperature range 0 ≤ T ≤ 330 GeV and
thus showing both phase transitions. The bottom panel covers for the temperature range
0 ≤ T ≤ 180 GeV, thus giving a more detailed picture on the first phase transition. The
jump in the ϕ direction at h ≈ 200 GeV is solely due to the definition of the thermal mass
of the X gauge bosons in eq. (6.6).

Critical Point I

The critical point I might lead to a first-order transition since two degenerate minima were
found in Fig. 6.9b. The transition is aligned approximately at the h = 0 line. The critical
values

wc ≈ 2316 GeV, T1 ≈ 327 GeV, (6.49)

are obtained from the improved effective potential in Fig. 6.9. If the transition proceeds
between the two generated minima in Fig. 6.9a then it can be classified as strong first-order
phase transition with a relatively high potential barrier. In that case it can be considered
as a phase transition solely in the hidden sector, since the VEV of the Higgs doublet v
does not jump, whereby the VEV of the additional scalar field w does.
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Figure 6.9: Left panel: the improved effective potential at the critical temperature T1. The
degnerate minima are both located at h = 0 and the ϕ-coordinates are ϕ = 0 and ϕ = wc.
The right panel indicates the ϕ dependence of the improved effective potential for the
constant h = 0.

Critical point II

We analyze the jump in the h direction of the global minimum which can be best seen in
figure 6.8b in more detail. At the temperature T2 the effective potential is exhibiting two
degenerate minima and the corresponding critical values are

vc ≈ 40 GeV, T2 ≈ 179 GeV. (6.50)

The line connecting the degenerate minima is given approximately by the constant φ ≈
2437 GeV line and vc is the distance of the degenerate minima in that direction. The
barrier is relatively small since at this point Veff/T 4

2 ∼ O(10−5). Although vc/T2 � 1 at
this critical point, the phase transition might start at lower temperatures (i.e. the nucleation
temperature) where the phase transition can be classified as strong v/T > 1. Furthermore,
to discuss the phase transition for this effective potential with two critical points, one has
to scrutinize the process of bubble nucleation in the multi-field case. Two scenarios are
in general possible for the case with two critical points. On the one hand, the field can
first transition from the origin to the critical point I and subsequently from this point to
the critical point II. On the other hand, the field can transition directly from the origin
to the critical point II if the nucleation temperature is very small. To take account of all
that, we introduce the theory of bubble nucleation in the next chapter and study the phase
transition of the multi-gap results in section 7.4.
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Figure 6.10: Improved effective potential at the critical temperature T2. The two degnerate
minima are both located at ϕ = 2437 GeV and the h-values are h = 0 and h = vc. The
barrier between the two degenertate minima is very small compared to the depth of the
effective potential, hence it is not visible in this contour plot.
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Chapter 7

Bubble Nucleation

In the last chapter we have shown that the SU(2)cSM can entail a first-order phase tran-
sition. In this chapter we would like to study the cosmological implications of this phase
transition, in particular the process of bubble nucleation. A first-order phase transition is
characterized by the coexistence of two degenerate minima at a critical temperature Tc.
These two minima are seperated by a potential barrier which prevents the background field
to directly jump from the false vacuum (global minimum for T < Tc) to the true vacuum
(global minimum for T > Tc). Hence, the metastable phase might be present in the system
up to some lower temperature which is called nucleation temperature Tn. At finite temper-
ature the transition between the two vacua proceeds via thermal tunneling. This process
is called bubble nucleation because the true vacuum is generated by formation of bubbles
in which the field is in the true vacuum. The bubbles then expand in the sea of the false
vacuum and in this way the false vacuum in the universe is converted to the true vacuum
[26]. This process is particularly interesting to study in the context of cosmology, since we
know that the universe is cooling down adiabatically with T ∼ a−1(t) were a(t) is the scale
factor in the FLRW metric. In the case where the potential barrier between the minima
is sufficiently high and broad to suppress the tunneling rate on Hubble time scales, the
true vacuum is supercooled by the expansion of the universe ∗. Once the tunneling rate is
efficient enough to nucleate at least one bubble in the Hubble volume the system undergoes
a strong first-order transition since the energy difference between the two states is high
and as a results the vacuum energy which is released into the radiation bath is very high.
To understand and quantify these processes better, below we give a brief introduction to
the theory of bubble nucleation based on refs. [11, 12, 26, 66, 67].

The computation of the decay rate (i.e. the tunneling rate) of the metastable state is based
on the calculation of the imaginary part of effective potential at the metastable vacuum
[66]. This rate per unit time per unit volume is written as [66]

Γ = A(T )e−SE(T ), (7.1)

where the exponent is the euclidean action at finite temperature

SE(T ) =

∫ 1/T

0
dτ

∫
d3x

[
1

2

(
dφ

dτ

)2

+
1

2
(∇φ)2 + V (φ, T )

]
, (7.2)

∗At the level of the effective potential at finite temperature is reflected in the decrease of the potential
energy at the true minimum 〈φ〉 = ϕ 6= 0 with decreasing temperature (e.g. Fig. 6.1e, 6.1f).
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for a scalar field φ(x, τ) which is periodic in imaginary time τ with period β = T−1. The
potential V (φ, T ) is the effective potential at finite temperature. It should be defined such
that at the false vacuum V (φf , T ) = 0. The fact that this theory is Euclidean can also
be understood as a horizontal flip of the potential converting the local minima to local
maxima. At T = 0, or β → ∞, the classical solution to the euclidean action (7.2) with
O(4) symmetry φ(r4 = x2 + τ2) and boundary conditions †

φ

∣∣∣∣
r4→∞

→ φf ,
dφ

dr4

∣∣∣∣
r4=0

= 0 (7.3)

is the so-called O(4) bounce solution or instanton solution which realizes the tunneling
process at zero temperature. Although this is a classical solution, some quantum effects
are taken into account since the effective potential is used in eq. (7.2). At finite temperature
the symmetry of the bounce solution is broken to the O(3) symmetry because the period
of the solution in imaginary time is finite [66]. For high temperatures the Euclidean action
(7.2) is well approximated by the spatial Euclidean action S3 [11]

S(T ) ≈ S3(T )

T
=

1

T

∫
d3x

[
1

2
(∇φ)2 + V (φ, T )

]
, (7.4)

and using the O(3) symmetry we can cast the integral to

S3(T ) = 4π

∫
dr r2

[
1

2

(
dφ

dr

)2

+ V (φ, T )

]
. (7.5)

The classical euclidean equation of motion following from that action is

d2φ

dr2
+

2

r2
dφ

dr
− dVeff

dφ
= 0, (7.6)

where r = |x| is the spatial radius. The boundary conditions of the O(3) bounce solution
read now

φ

∣∣∣∣
r→∞

→ φf ,
dφ

dr

∣∣∣∣
r=0

= 0. (7.7)

The boundary conditions tells us that the field is in the true vacuum at the origin and in
the false vacuum φf at infinite distance [11]. For a thermal field theory the nucleation rate
per unit time per unit volume can be expressed as [26]

Γ(T ) = ωT 4e−S3(φ,T )/T , (7.8)

where ω is a constant roughly of order O(1).

An important feature to characterize the bubbles is the thickness of their walls‡. We follow
closely the discussion of ref. [26] by analyzing the scaling of the Euclidean action (7.5).
Considering one bubble with radius R and φ = 0 outside the bubble, we can write eq. (7.5)
as

S3(T ) = 4π

∫ R

0
dr r2

[
1

2

(
dφ

dr

)2

+ V (φ, T )

]
, (7.9)

†We denote the false vacuum outside of the bubble as φf . In the literature one often finds that φf = 0
since this is usually the case in thermal phase transitions.

‡The bubble walls separate the regions of the two phases φf = 0 (false vacuum) and φ = φm (true
vacuum) of the field.
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which scales like

S3 ∼ 2πR2

(
δφ

δR

)2

δR+
4πR3 〈V 〉

3
(7.10)

where δR is the thickness of the bubble wall, δφ2 ∼ φ2m and 〈V 〉 is the average of the
potential over the bubble volume. The first term can be interpreted as a surface term and
the second term as a volume term. For temperatures slightly lower the Tc the height of
the potential barrier V (φM , T ) at the local maximum is large compared to depth of the
potential −V (φm, T ) at the global minimum φm. The minimization of S3 at this temper-
ature is therefore dominated by minimizing the volume term in the region around φM .
This corresponds to configurations with thin wall bubbles δR/R � 1 and hence the field
changes quickly from φ = 0 outside the bubble to φ = φm inside the bubble. If the nucle-
ation happens at much lower temperatures T � Tc the situation is different. The height
of the potential barrier V (φM , T ) at the local maximum is small compared to depth of the
potential −V (φm, T ) at the global minimum φm. Hence, the contribution of the volume
term around the maximum φM is negligible and S3 is dominated by the surface term.
Minimizing the surface term amounts to thick bubble walls with δR/R ∼ O(1).

We see that the details of bubble nucleation strongly depend on the shape of the potential
at the temperature at which the nucleation happens. For this is reason it is important
to find out when the nucleation rate is high enough to actually allow the nucleation in
an expanding universe. This temperature is called the nucleation temperature Tn and is
defined as the temperature at time tn at which the probability to nucleate a single bubble
within one horizon volume is O(1) [11],∫ tn

0
dt

Γ

H3
∼ 1. (7.11)

To derive an equation to estimate Tn we will use the decay rate (7.8) with ω = 1 and con-
sider the dynamics of an expanding universe during radiation domination. Since the typical
energy scale for the electroweak phase transition is O(100 GeV), the universe is actually
in the radiation dominated era. During that epoch the Friedmann equation governing the
evolution of the universe is

H(t)2 =
8π

3M2
Pl
ρr, (7.12)

and the energy density of radiation is

ρr(T ) =
g∗π

2

30
T 4. (7.13)

We assume that the relativistic degrees of freedom g∗ are temperature independent during
the time of the transition §. Assuming an adiabatic expansion of the universe T ∼ a−1 we
then know by eq. (7.12) that the Hubble parameter scales as a−2 and hence

H(t) = H(t0)

(
a(t0)

a(t)

)2

. (7.14)

§A general formula is g∗(T ) =
∑
i gB(T )+

7
8

∑
i gF (T ), where gB counts bosonic and gF counts fermionic

degress of freedom. For the SM at the electroweak scale gSM = 106.75 [26]
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It follows that

t0 =

∫ t0

0
dt =

1

H(t0)

∫ a0

0

da

a

(
a

a0

)2

=
1

2H(t0)
. (7.15)

Together with (7.12) we get an relation between time and temperature

t =
1

4π

√
45

πg

MPl

T 2
= ξ

MPl

T 2
. (7.16)

This allows to transform the time integral in (7.11) to an integral over temperature [26]∫ ∞
Tn

dT

T

(
2ξMPl

T

)4

e−S3(T )/T ∼ 1. (7.17)

We will use this equation to determine the nucleation temperature.

With regard to gravitational wave production we are also interested in the approximate
duration of the phase transition. We denote T∗ as the temperature of the radiation bath at
the time t∗ at which the gravitational waves are produced. For typical transition without
signifcant reheating one can approximate it by the nucleation temperature T∗ ≈ Tn [10],
as we will do throughout this thesis. We expand the euclidean action around the transition
time

S3(t)

T
≈ S3(t∗)

T∗
− β(t− t∗), (7.18)

where we defined

β = − d(S3/T )

dt

∣∣∣∣
t=t∗

. (7.19)

Then we see that Γ(t) ∼ eβt and β might be interpreted as an approximate inverse time
scale of the duration of the phase transition [11]. During radiation domination the ratio of
this time scale to the Hubble time is expressed as

β

H∗
= T∗

d(S3/T )

dT

∣∣∣∣
T=T∗

, (7.20)

where we assumed an adiabatic expansion of the universe by writing dT (t)/dt = −TH(t).
If (7.20) is large the transition proceeds very fast compared to the cosmological time scale.
For the gravitational wave signal we would also like to know how much energy is released
during the phase transition. The latent heat ε is the free energy difference between the
true vacuum and the false vacuum. It consists of the differencethe effective potential and
additionaly by an entropy variation [12]

ε = (∆V + T∆s)

∣∣∣∣
T=T∗

=

(
∆V − T∆

∂V

∂T

)
,

∣∣∣∣
T=T∗

, (7.21)

where we used the general notation ∆f = f(φfalse)− f(φtrue). In the limit of large super-
cooling Tn � Tc the entropy variation is negligible ε ≈ ∆V and ∆V ∼ v/T [14]. For the
gravitational wave signal it is crucial to determine the ratio of ε to the energy density of
radiation at the time of the transition

α =
ε

ρ∗r
. (7.22)

To sum up we aim to compute the nucleation temperature Tn, the time scale of the tran-
sition β/H∗ and α for phase transition of the SU(2)cSM model and subsequently we will
estimate stochastic gravitational wave signals in chapter 8.
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7.1 Overshooting-Undershooting Method

To obtain results regarding the bubble nucleation we need to solve the equation of motion
(7.24) with boundary conditions (7.7). The boundary condition can be translated to the
numerically more convenient form

dφ

dr

∣∣∣∣
r=0

= 0, φ

∣∣∣∣
r=0

= φe, (7.23)

where φe is the so-called escape point which is determined by the overshooting-undershooting
method. In general, φe is the field value inside the bubble and is not necessarily equal to
the true vacuum since the field does not always directly tunnel to this point as it is a less
likely event. The overshooting-undershooting is basically a trial and error process to solve
the equations of motion with the right escape point φe such that the original boundary
conditions (7.7) are satisfied. We follow the discussion of ref. [11]. As already mentioned,
the effective potential is flipped if we consider the equation of motion in euclidean space
instead of Minkowski space. The correct choice of φe corresponds to case (a) in Fig. 7.1
where the field overcomes the friction force and comes to rest at the false vacuum φ = 0
and hence satisfies φ → 0 if r → ∞. If a value to the right of φe is chosen (case (b)) it
overshoots the false vacuum and continues to φ → −∞. In case (c), a value to the left
of φe is chosen and the field can not overcome the friction force and undergoes instead a
damped oscillation around the minimum of −V (φ). By a trial and error approach one can
find numerically the right initial condition and for the bounce solution φ(r). The bounce
solution for case (a) in the bottom panel of Fig. 7.1 is also called bubble profile since it
shows the spatial profile of the bubbles.

7.2 Multi-Field Case

All previous statements were made for the case of only one scalar field. However, the
SU(2)cSM contains two background fields and the effective potential is therefore two-
dimensional. The effective potential can be reduced to one dimension if the Gildener-
Weinberg method is used and the previously stated methods can be applied. This is the
objective of section 7.3.
In the case of N scalar fields φ1, . . . , φN we have N equation of motions

d2φi
dr2

+
2

r2
dφi
dr
− dVeff

dφi
= 0, for i = 1, . . . , N, (7.24)

with 2N boundary conditions given by (7.7) for each field φi. In the case of two fields, the
effective potential can be imagined as a mountain range. Multiple paths might connect two
valleys. It might be the shortest path connecting the two valleys or there might be a path
going through another valley in the vicinity. In a sense the situation is similar for bubble
nucleation for two fields. Which path of nucleation in field space is realized most likely,
depends on the value of the action S3(T )/T along that path. To find (numerically) the
bounce solution minimizing the Euclidean action and satisfying all boundary conditions is
more complicated than in the one field case. A first numerical approach to this problem
was given in [68] and later among others for instance in [69]. We will use the numerical
implementation of ref. [70] (AnyBubble) in section 7.4 to find the bounce solution for the
two-dimensional effective potential of the SU(2)cSM and discuss the bubble profiles in more
detail.
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Figure 7.1: The top panel gives an example of an potential for temperatures below the
critical temperature T < Tc and the middle panel is the corresponding flipped potential.
Bottom panel: three different solutions to the euclidean equation of motion. Case (a) cor-
responds to the correct bounce solution with φ

∣∣
r=0

= φe and case (b) and (c) illustrate
overshooted and undershooted solutions, respectively. The figure is taken from ref. [11].
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7.3 Results for the Gildener-Weinberg Case

In this section, we continue to examine the phase transition in Gildener-Weinberg case
(section 6.3). To do that, we use the improved effective potential for temperatures T <
Tc ≈ 360 [GeV] and search for the two local minima: the false vacuum at ρ = 0 and the
true vacuum at vρ. With the knowledge of these two points and the effective potential, we
use the numerical implementation of [70] to solve for the O(3) bounce solutions. In Fig.
7.2 the bubble profiles for different temperatures are shown. At temperatures close to the
critical temperatures (cf. Fig. 7.2b) the bubble walls are thin. This can be seen by the sharp
transition from the true vacuum inside the bubble to the false vacuum outside the bubble.
In contrast to that, for lower temperatures (cf. Fig. 7.2a) the bubble profiles indicate
thicker bubble walls. These observations are in accordance with the scaling discussion we
gave after eq. (7.10). To clarify this, we show the improved effective potentials in Fig. 7.3
for the cases considered in Fig. 7.2a. The plots reveal that the barrier of the potential is
small compared to the depth of the potential at the global minimum, which leads to thick
bubble walls.
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Figure 7.2: Bubble profiles (solutions to eq. (7.24)) for different temperatures. Left panel:
low temperatures with thick-walled bubble profiles. Right panel: Bubble profiles for thin-
walled bubbles at higher temperatures closer to the critical temperature Tc = 360 GeV.
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Figure 7.3: Effective potentials for the temperatures in figure 7.2a. The left panel shows
the potential around the false vacuum in higher resolution.

With the bubble profiles at hand, we can integrate eq. (7.5) numerically [70] to obtain the
Euclidean action. This is done for temperatures T < Tc in steps of ∆T = 1 GeV down to
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the temperature where the false vacuum at the origin becomes unstable. With these points
we interpolate to obtain the scaling of S3(T )/T with temperature shown in Fig. 7.4. Using
the condition (7.17) we obtain an estimate for the nucleation temperature

Tn ≈ 40 GeV. (7.25)

Furthermore we compute the time scale of the transition by (7.20) and find

β

H∗
≈ 390. (7.26)

The result in (7.25) shows that the nucleation temperature is much lower than the critical
temperature and assuming Tc ≈ Tn will yield wrong results. Hence the nucleation proceeds
by formation of thick-wall bubbles (cf. Fig. 7.2a) and a large amount of supercooling can be
expected. Furthermore, eq. (7.26) shows that the transition proceeds fast. The amount of
supercooling is indeed large and leads to an extreme release of energy during the transition,
quantified by the parameter

α ≈ 114, (7.27)

telling us that the energy density released during the transition is roughly 100 times the
radiation energy density at the time of the transition (cf. eq. (7.22)).
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Figure 7.4: Euclidean action of the O(3) bounce solution for the Gildener-Weinberg case.

7.4 Results for Multi-Gap Case

In this section we study the nucleation of bubbles of the true vacuum in the full two-
field setting. We have elaborated on the case of multiple scalar fields in section 7.2. The
numerical implementaiton of ref. [70] allows us to also compute bubble profiles and the
euclidean action in the multi-dimensional case. The conclusion from section 6.4.2 was that
the phase transition of the SU(2)cSM at the chosen benchmark point is actually a multi-
step transition. We denote points in field space by Φ = (h, ϕ) for the further discussion. To
unfold the transition in the cosmological setting in chronological order, we have to start
at high temperatures T → ∞ where the system is in the symmetric phase denoted by
Φf = (0, 0). With decreasing the temperature, the first transition is observed at T1 ≈ 327
GeV and the global minimum jumps mostly along the Φ direction to Φ1 = (0, wc). A second
transition is then observed at T2 ≈ 179 GeV along the h direction to Φ2 = (vc, wc). How
the nucleation process is realized for this multi-step transition strongly depends on the
nucleation temperature. We split this into two cases:
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• If the nucleation temperature for the transition from Φf to Φ1 is in the range T1 >
Tn > T2, then the nucleation process is as follows. The fields will tunnel from Φ0 to
Φ1 before the temperature drops below T2 since the tunneling is efficient enough to
nucleate in the expanding universe before the global minimum is formed at Φ2 by the
adiabatic cooling of the universe. If we then assume that Tn is not too close to T2,
we expect that the new phase Φ1 fills completely the universe by nucleating bubbles
before temperature T1 is reached. After that one has to compute the tunneling rate
from Φ1 to Φ2 and find a second nucleation temperature T ′n < T2. To sum up,
the bubble nucleation proceeds in two steps, first nucleating the phase Φ1 and then
nucleating the phase Φ2.

• In the case of a nucleation temperature Tn < T2 for the transition Φf to Φ1, we
know that a new global minimum is formed at Φ2 before the tunneling from Φf to
Φ1 has started. Since the bounce solution has the boundary condition Φ→ Φtrue as
r → ∞ we have to instead calculate the nucleation temperature for the transition
from Φf to the true vacuum Φ2. Which path connecting the Φf and Φ2 is minimizing
the euclidean action and hence giving the correct bubble profile depends on the
effective potential at the nucleation temperature. This scenario has been studied for
non-conformal models for instance in [68, 71]

To study the bubble nucleation with the two-dimensional effective potential obtained in
section 6.4, we first have to determine which of the two aforementioned cases applies.
First, we analyzed with the code of ref. [70] the nucleation rate for the transition Φf to
Φ1 and found that no bubbles can form for temperature above 179 GeV, i.e. eq. (7.17)
is not satisfied. So, we conclude that case two applies and find the following quantities
characterizing the bubble nucleation for the transition Φf → Φ1,

Tn ≈ 58 GeV, (7.28)
β

H∗
≈ 1400, (7.29)

α ≈ 21. (7.30)

Compared to the Gildener-Weinberg case, the difference between nucleation and critical
temperate is smaller. Similarly, the latent heat α is smaller for this case, but still large
enough to correspond to a large amount of supercooling. The time scale of the phase
transition duration is roughly four times smaller than in the Gildener-Weinberg case. We
conclude that the Gildener-Weinberg approach gives wrong estimates on the details of
bubble nucleation for our model.

Furthermore, the bubble profile at the nucleation temperature in Fig. 7.5a displays the
details of the bubble nucleation in the two field case. The additional scalar ϕ tunnels
roughly along the h = 0 contour from the false vacuum to the escape point at roughly
Φe = (he, ϕe) ≈ (0, 350) GeV. The scalar fields then roll down towards the global minimum
which is located roughly at the VEV Φ0 ≈ (v, w) for T = 0 (cf. Fig. 7.5b). In regard to
production of gravitational waves a detailed study of the dynamics of the bubble expansion
after the onset of nucleation is appropriate but beyond the scope of this thesis. The fields at
the bubble wall might expierence a frictional force due to the interaction with the thermal
plasma in the vicinity which slows down the veloctiy of bubble expansion. We refer the
reader to ref. [72].
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Figure 7.5: The bubble profile (a) close to the nucleation temperature Tn for the two field
case consists of two solutions: The h field with constant soloution h(r) = 0 and the ϕ
field with a usual bubble profile. The contour plot (b) shows the effective potential at that
temperature. Note that the bump along the ϕ direction is not visible due to the large depth
of the potential at the true vacuum Φ0.
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Chapter 8

Prediction of Stochastic
Gravitational Wave Background

The gravitational wave signals which are produced by cosmological phase transitions in
the early universe are called stochastic gravitational wave background (SGWB) and are
sourced by the collision of bubble walls. These backgrounds are stochastic because the
gravitational waves are produced from numerous uncorrelated sources. If the gravitational
waves are produced during a radiation dominated universe, where the horizon volume was
much smaller than today, then the signal which we observe today is a superposition from
uncoherent sources from different independent Hubble patches [12]. This would be exactly
the case if gravitational waves are produced from bubble collisions during a first-order
phase transition at the electroweak scale.

As final part of this thesis, we would like to estimate the SGWB produced by the first-
order phase transitions we predicted for the SU(2)cSM. From these results we hope that
the signal is strong enough to be measured by the LISA mission and thus offering an
opportunity to rule out or approve (conformal) Higgs portal models. Before that, we would
like to stress again that we only consider the benchmarkpoint (6.9). The details of the
bubble nucleation encoded in the quantites Tn, β/H∗ and α are model dependent. As a
consequence, the SGWB is expected to be altered for different choices of paramters. An
extensive analysis of the paramater space of the SU(2)cSM model and the resulting SGWB
is desirable but is beyond the scope this thesis. Such systematic analyses can be found in
the literature for various extensions of the SM for instance in ref. [15].

The predictions we give in this chapter should be read with caution, since we do not
study all possible sources of gravitational waves and use common fitting formulas for the
power spectra of SGWB used in the literature (e.g. ref. [10]) which might not apply to the
very strong transitions we found in the previous chapter. In the context of strong first-
order phase transitions at the electroweak scale, three processes involving the production
of gravitational waves are expected [10]:

• The collision of bubble walls. In this case it is expected that the vacuum energy
is mostly transformed to kinetic energy of the bubble expansion. Plasma effects are
neglected. The expansion of a single bubble can not produce gravititaional waves due
the spherical symmetry (Birkhoff’s theorem). Therefore, the collision of bubbles is
necessary to break the spherical symmetry.
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• Sound waves in the plasma which are produced after the collision of bubble walls.

• Magnetohydrodynamic turbulences in the plasma after bubble collisions.

In general the three processes coexist and the total SGWB is approximately a linear com-
bination of them. Which of the three sources give a significant contribution to the SGWB
depends on the details of bubble nucleation. For a detailed treatment for all three sources
we refer to [10] and references therein. In the following, we outline why we expect that
only the first source is significant for the first-order phase transitions found in sections 6.3
and 6.4.

In the case of large supercooling (i.e. α � 1) plasma effects are negligible and bubble
wall will accelerate indefinetely since no friction forces are present in this approximation.
The bubble wall velocity then quickly approaches the speed of light [10]. This case is also
called a vacuum-dominated epoch since the energy density at that time is dominated by
the vacuum energy at the global minimum. Furthermore, we assume that that the vacuum
energy is transformed mostly to the kinetic energy of the scalar field (i.e. the velocity of
the bubble wall). In other words, the plasma effect on the expansion of the bubbles are
neglected in our results. This should be seen as an approximation since the vacuum energy
can be transformed partly to the plasma, effectively slowing down the expansion of the
bubbles. The two values we obtained for α in the Gildener-Weinberg (GW) case (section
7.3) and in the multi-gap (MG) case (section 7.4) display the large supercooling limit.

The method used to compute the power spectra of SGWB produced by bubble collision is
called the envelope approximation. This approximation is based on the assumption that a
fraction of the latent heat κ is deposited in a thin shell at the bubble wall and that most
of the gravitational waves are produced by the collision of only two of these shells. The
energy is expected to disperse quickly after the collision and further effects of collided shells
on the uncollided ones are neglected [10]. With numerical simulations using the envelope
approximation it is suggested that the power spectrum of the SGWB is given by [10]

h2Ω(f) =
8

105

(
H∗
β

)2( κα

1 + α

)2(100

g∗

)1/3( 0.11v3w
0.42 + v2w

)
Senv(f), (8.1)

where the spectral shape is defined by

Senv(f) =
3.8(f/fp)

2.8

1 + 2.8(f/fp)3.8)
, (8.2)

and the peak frequency today is

fp = 15.5 · 10−3mHz
(

0.62

1.8− 0.1vw + v2w

)(
β

H∗

)(
T∗

100GeV

)( g∗
100

)1/6
. (8.3)

The parameter κ = ρφ/ρvac is defined as the ratio of kinetic energy of the scalar field to
the vacuum energy and vw is the terminal bubble wall velocity. Interestingly, in the case
of large supercooling α � 1 the dependene of the spectrum on α drops out (cf. (8.1)).
Moreover, a phase transition with short duration β/H∗ � 1 decreases the intensity of the
signal but increases the peak frequency fp.

We will use eqs. (8.1), (8.2) and (8.3) for a phase transition in a vacuum-dominated epoch.
As discussed, we set κ = 1 and vw = 1 for this case. The power spectra are shown in Fig.
8.1 and other parameters used are summarized in table 8.1.
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Table 8.1: Details of the gravitational wave spectra

T∗ [GeV] β/H∗ α fp [mHz] h2Ω(fp)

GW 40 390 113 0.605 8.148 · 10−12

MG 58 1400 21 3.089 5.867 · 10−13
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Figure 8.1: SGWB for the first-order phase transition of the Gildener-Weinberg (GW)
case and the multi-gap (MG) case. Details can be found in table 8.1. The purple dotted
line is the sensitivity curve of the LISA mission (obtained from Fig. 1 in ref. [10] for the
configuration C1).

As a concluding remark, we would like to confront the obtained GW spectra with the
LISA sensitivity. The sensitivity of LISA can be seen in Fig. 8.1 and were obtained from
ref. [10]. The comparison with our results show that LISA could eventually measure the
SGWB predicted for the SU(2)cSM. However, lower values of β/H∗ are desirable to push
the signal more within the detection range. The authors of ref. [16] projected the sensitivity
of the LISA mission for the case of runaway bubbles in a vacuum dominated epoch (see Fig
8.2). In this case the GW signal only depends on two paramters of the phase transition:
β/H∗ and T∗. Again we see that our results (cf. table 8.1) the signals can potentially
be detected by LISA. We would like to stress once more that we only considered one
benchmark points of the SU(2)cSM model and other choices of parameters might lead to
stronger SGWB. With our results we have shown that the first-order phase transition of
the SU(2)cSM model is generally capable to lead to SGWB which could be detected by the
LISA mission. Our results can be interpreted as a proof of concept for SGWB production
of the SU(2)cSM.
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Figure 8.2: Projected sensitivity for the future gravitational wave experiment network with
runaway bubbles in a vacuum-dominated epoch (i.e. α � 1, κ = 1, vw = 1). The colored
regions indicate for which values of β/H∗ and T∗ the SGWB from collosion of runaway
bubbles in a vacuum-dominated epoch can be detected with a signal-to-noise ratio > 10
by different experiments. The blue region is ruled out by BBN bounds. The results from
table 8.1 are within the detection range of LISA. The figure is taken from ref. [16]
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Conclusions

Physics beyond the SM is not yet observed directly but is necessary to give answers to
unsolved problems in high-energy physics. The number of various extensions of the SM
which are studied to address these problems is vast. The minimal supersymmetric SM has
been popular field of study to address these problems, but the lack of experimental evidence
for the minimal supersymmetric SM motivates the consideration of other options. With
that motivation in mind, we study conformal models, where all masses are generated by
radiative symmetry breaking (RSB). In particular, we have studied the SU(2)cSM which
consists of the conformal SM extended by a scalar doublet and a hidden SU(2) gauge group.
The main objective was to analyze potential first-order phase transitions at the electroweak
scale and the resulting bubble nucleation and production of a stochastic gravitational wave
background.

To do that, we have introduced a novel resummation technique utilizing the gap equation
which is encoded in the 2PI formalism to obtain an improved effective potential which is
reliable at high temperatures. In fact, the gap equation we derived does not rely on a high
temperature expansion, but rather accounts for resummation at any temperature. In chap-
ter 4 we have shown that the resummation is especially important at high temperatures
to guarantee the validity of perturbation theory for a scalar toy model. In addition, the
comparison with daisy resummation method shows that daisy resummation takes thermal
corrections not accurately into account when the high temperature limit is not applica-
ble. We extended this discussion in section 6.3.1 for the SU(2)cSM, which showed that
the numerical difference between our approach to the common daisy resummation is sig-
nificant. Moreover, we believe that the gap equation approach gives a theoretically more
appealing framework to perform the resummations and directly obtain the improved ef-
fective potential. In addition, the class of diagrams which were resummed in our results is
a broader class than the daisy diagrams. Application of this approach to obtain thermal
corrected masses for gauge bosons and fermions is beyond the scope of this thesis and is
left for future research. Furthermore, the relation between the gap equation improvement
and the RG improvement should be studied in more detail in the future. In adittion, the
finite momentum corrections in the gap equation that have been neglected in our results
could be investigated. So far the finite momentum corrections to the self-energies of par-
ticles at finite temperature have not been studied yet in the context of electroweak phase
transitions.

With the improved effective potential we have studied potential phase transitions in the
early universe within the context of SU(2)cSM. We have performed the analysis for one
benchmarkpoint from ref. [5] using three different approaches. Firstly we have used the
approach of sequential symmetry breaking. Not surprisingly, it was found that the model
does not entail a strong first-order phase transition. This could have been expected since
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in sequential symmetry breaking the additional scalar acquires its VEV first, consituting
an effective mass term for the Higgs doublet. Therefore, the symmetry breaking proceeds
in the SM sector in the usual way and it has been shown that the SM does not en-
tail a strong first-order electroweak phase transition but instead a crossover. Secondly,
we used the Gildener-Weinberg method which is based on the assumption that the two-
dimensional classical potential exhibits a flat direction at a certain renormalization scale.
With that method and the help of the results from ref. [5] we could effectively reduce
the two-dimensional potential to a one-dimensional potential which simplifies the intro-
duced method of improving the effective potential by the 2PI gap equation. In this case,
we confirmed that the SU(2)cSM entails a strong first-order phase transition. However,
the Gildener-Weinberg method should be seen as an approximation scheme to the phase
transition for models with multiple scalar fields and should be compared with results from
the study of the full effective potential. These results were obtained in section 6.4. Here,
we generalized the gap equation approach to multiple scalar fields and obtained the full
effective potential with dependence on both background fields. The analysis of the global
minimum with varying temperature points to the conclusion that the SU(2)cSM at the
considered benchmark point entails a two-step transition. The phase transition which is
approximately along the background field of the additional scalar fulfills the requirement
for a strong phase transition. Hence, it is a strong first-order phase transition in the hidden
sector. Comparing this result with the results from the Gildener-Weinberg method shows
that the Gildener-Weinberg method, which is often used in the context of electroweak
phase transition, in this particular case is a crude approximation and gives a false picture
of the phase transition. However, if only a rough estimate for vc/Tc is desired, it is a useful
tool for models with extended scalar sector.

The indication of a strong first-order phase transition for the results from the Gildener-
Weinberg method and the multi-gap equation approach motivated us to analyze the prop-
erties of bubble nucleation in the early universe. In both cases, it was found that the
nucleation and the critical temperature are separated by more than 200 GeV. This leads
to large supercooling of the true vacuum and as a consequence a lot of energy is released
into the radiation bath during the phase transition. We expect that this energy is mostly
converted into the kinetic energy of the bubble walls which are expanding with a velocity
close to the speed of light. This feature is referred to as runaway-bubbles in a vacuum-
dominated epoch. Based on this assumption we estimated the stochastic gravitational wave
background from the bubble collisions with the additional assumptions that subsequent
plasma effects, which could also produce gravitational waves are negligible. The results for
both cases show that for the considered benchmark point of the SU(2)cSM bubble col-
lisions induced by the first-order phase transition lead to the production of a stochastic
gravitational wave background. A detailed analysis whether the assumption of runaway
bubbles in a vacuum-dominated epoch is valid and whether plasma effects are negligible
were not presented in this thesis. In addition, it was not studied whether the large energy
release during the phase transition leads to considerable reheating of the thermal plasma
and the consequences it has on the dynamics of bubble nucleation. These issues should be
scrutinized in more detail but were not the main focus of this thesis.

Finally, we stress again that all presented results are only for one benchmark point of
the SU(2)cSM. These preliminary results indicate that the phase transition could leave
an observable imprint on the stochastic gravitational wave background. Therefore, in the
future it would be interesting to scan the parameter space of the SU(2)cSM for regions
where it can reproduce the physical Higgs mass, the Higgs VEV (e.g. ref. [5]) and give rise
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to a strong first-order phase transition. With that analysis and eventual observation form
stochastic gravitational wave backgrounds once could discriminated the parameter space of
the SU(2)cSM. Moreover, it would be interesting to study other, more general, conformal
extension of the SM, for instance with hidden gauge group SU(N)X and additional fermions
in the hidden sector. In addition, a proper treatment of gauge fields would be appropriate
for our results. One should include the pseudo-Goldstone bosons of our model and scrutinize
the gauge dependence of the effective potential in future research.

The LISA mission is expected to launch in 2034 and the collected data might be of sub-
stantial importance for particle physics. It will offer new insights to physics beyond the SM
and might enable targeted search for particles from the hidden sector at the LHC. Next to
the implications for physics beyond the SM, the dawn of gravitational wave astronomy will
also open a new window of cosmological observation. The cosmic microwave background
is the earliest observation which can be made by detection of electromagnetic waves. With
gravitational waves it is possible to observe the local universe in the epoch before recom-
bination during which processes like inflation and reheating took place, which are not well
understood yet.
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Appendix A

High Temperature Expansion for JB

In this appendix we derive the high temperature expansion which is valid for m2/T 2 � 1
for the thermal function for bosons. We define the variable y2 = m2/T 2 and note the
thermal function as

JB(y2) =

∫ ∞
0

dxx2 log
(

1− e
√
x2+y2

)
. (A.1)

We will follow the derivation of ref. [39]. At the boundary we find

JB(0) =

∫ ∞
0

dxx2 log
(
1− e−x

)
= −

∞∑
n=1

∫ ∞
0

dxx2e−xn = −2ζ(4) = −π
4

45
, (A.2)

∂

∂y2
JB

∣∣∣∣
y2=0

=

∫ ∞
0

dx
x/2

ex − 1
=

1

2
ζ(2)Γ(2) =

π2

12
. (A.3)

For the next order in this expansion we need dimensional regularization where we set the
dimension to d = 3− ε, then we obtain

∂2

∂(y2)2
JB(y2) =

1

4

∫ ∞
0

dx
x−ε√
x2 + y2

1

e
√
x2+y2 − 1

. (A.4)

Using the series coth(x) =
∑∞

n=−∞
x

x2+π2n2 we obtain

∂2

∂(y2)2
JB(y2) = I1(y

2) + I2(y
2), (A.5)

I1(y
2) =

1

4

∫ ∞
0

dxx−ε
∞∑

n=−∞

1

(x2 + y2) + π2n2
, (A.6)

I2(y
2) = −1

8

∫ ∞
0

dx
x−ε√
x2 + y2

. (A.7)

For I2 we obtain after expanding at ε = 0

I2(y
2) = − 1

8ε
+

1

8
log(y/2) +O(ε). (A.8)
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Integrating I1 yields

I1(y
2) =

π

8

∞∑
n=−∞

(
y2 + 4n2π2)

)−(1+ε)/2
=
π

8

(
1

y1+ε
+ 2

∞∑
n=1

(
y2 + 4n2π2)

)−(1+ε)/2)

=
π

8y
+
π−ε

8
2−εζ(1 + ε) +

π

4

∞∑
n=1

(
1

(2πn)1+ε
(y2 + 4n2π2)

)−(1+ε)/2
− 1)︸ ︷︷ ︸

=K(y2)

. (A.9)

Using (2π)−εζ(1 + ε) = 1/8(1/ε− log(2π) + γE) +O(ε), we get

I1 + I2 =
1

8
log
(y

2

)
+

π

4y
+

3γe
8

+K(y). (A.10)

Integrating this twice with respect to y2, keeping the boundary term in mind, the thermal
function reads now

JB(y2) =− π

6

(
m2

T 2

)3/2

− 1

32

m4

T 4
log

m2

abT 2
+ JB(0) +

∂

∂y2
JB

∣∣∣∣
y2=0

y2

+

∫
d(y2)

∫
d(y2)K(y)

=− π4

45
+
π2

12

m2

T 2
− π

6

(
m2

T 2

)3/2

− 1

32

m4

T 4
log

m2

abT 2

+

∫
d(y2)

∫
d(y2)K(y). (A.11)

Now we expand for K(y)

K(y) = −π
4

∞∑
n=1

1

2πn

∞∑
m=1

(−1)m

m!

(
1

2

)
m

xm, for x =
y2

4π2n2
,

= − 1

8Γ(12))

∞∑
m=1

(−1)m

m!
Γ

(
m+

1

2

)(
y2

4π2

)m
ζ(2m+ 1). (A.12)

Integrating eq. (A.12) twice results in∫
d(y2)

∫
d(y2)K(y) = −2π7/8

∞∑
m=1

(−1)m

(m+ 2)!
Γ(m+

1

2
)

(
y2

4π2

)m+2

ζ(2m+ 1). (A.13)

Summing up all terms, we finally get the desired high temperature expansion

JB(m2/T 2) =− π4

45
+
π2

12

m2

T 2
− π

6

(
m2

T 2

)3/2

− 1

32

m4

T 4
log

m2

abT 2

+−2π7/8
∞∑
m=1

(−1)m

(m+ 2)!
Γ(m+

1

2
)

(
y2

4π2

)m+2

ζ(2m+ 1). (A.14)
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We can express the last term alternatively as

2π7/8
∞∑
m=1

(−1)m

(m+ 2)!
Γ(m+

1

2
)

(
y2

4π2

)m+2

ζ(2m+ 1)

=2π7/8
∞∑
m=1

(−1)m

(m+ 2)!
Γ(m+

1

2
)

(
y2

4π2

)m+2 ∞∑
n=1

1

n2m+1

=
π4

6

∞∑
n=1

(
m2

4π2nT 2

)3

2F1

(
1,

3

2
; 4,− m2

4π2n2T 2

)
. (A.15)

Hence, we can also write

JB(m2/t2) =− π4

45
+
π2

12

m2

T 2
− π

6

(
m2

T 2

)3/2

− 1

32

m4

T 4
log

m2

abT 2

+
π4

6

∞∑
n=1

(
m2

4π2nT 2

)3

2F1

(
1,

3

2
; 4,− m2

4π2n2T 2

)
, (A.16)

ab =16π2 exp

(
3

2
− 2γE

)
. (A.17)
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Appendix B

Sunset Diagram in the Gap Equation

This appendix concerns the computation of the so-called sunset diagram in the gap equa-
tion. To do that, we need to solve the Euclidean integral

S =

∫
d4p

(2π)4
1

(k − p)2 −m2 + iε

1

p2 −m2 + iε
. (B.1)

With the definition A = (k− p)2−m2 + iε and B = p2−m2 + iε we can use the Feynman
trick and write the integral as

S =

∫
d4p

(2π)4

∫ 1

0
dx

1

(xA+ (1− x)B)2

=

∫
d4p

(2π)4

∫ 1

0
dx

1

(p2 + x(k2 − 2p · k)−m2 + iε)2

=

∫
d4p

(2π)4

∫ 1

0
dx

1

((p− xk)2 − x2k2 + xk2 −m2 + iε)2

=

∫
d4p

(2π)4

∫ 1

0
dx

1

(p2 + k2x(1− x)−m2 + iε)2
. (B.2)

With the definition a(k, x)2 = m2 − k2x(1− x) + iε and under the assumption that the x
and p integrals can be interchanged we get for a thermal field theory,

S =

∫ 1

0
dx

1

β

∞∑
n=∞

∫
d3p

(2π)3
1

(ω2
n + p2 + a2)2

= 2

∫ 1

0
I2(a(k, x)2). (B.3)

According to eq. (3.28) we obtain

S =

∫ 1

0
dx

1

16π2

(
2

ε
− γE

)
− 1

16π2
log

(
a(k, x)2

4πµ2

)
− 1

π2

(
∂2JB(y2)

∂(y2)2

)∣∣∣∣
y=a(k,x)/T

. (B.4)

The two finite terms in eq. (B.4) we define as

S1 = − 1

32π2

∫ 1

0
dx log

(
a(k, x)2

4πµ2

)
, (B.5)

S2 = − 1

2π2

∫ 1

0
dx

(
∂2JB(y2)

∂(y2)2

)∣∣∣∣
y=a(x)/T

. (B.6)
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S1 integral

In order to compute the integral S1 we reintroduced the iε-prescription, to use the correct
definition of the logarithm. We define the logarithm of a complex number z as the principal
value logarithm

log(z) = ln(r) + iϕ, where r = |r| and ϕ ∈ (−π, π]. (B.7)

By this definition the branch cut of the complex logarithm is located on the negative real
axis (−∞, 0]. According to our iε-prescription, if the argument in the logarithm is negative,
we take the limit from above. For the principal value logarithm this means that we can
write

S1 = − 1

32π2

∫ 1

0
dx log

(
m2 − k2x(1− x) + iε

4πµ2

)
= − 1

32π2

∫ 1

0
dx

[
ln

(∣∣∣∣m2 − k2x(1− x)

4πµ2

∣∣∣∣)+ iπθ(k2x(1− x)−m2)

]
. (B.8)

For further evaluation of the integral we assume that M2, k2 and x are real. Then we can
express the absolute value in eq. (B.8) by

S1 = − 1

32π2

∫ 1

0
dx

[
θ(m2 − k2x(1− x)) ln

(
m2 − k2x(1− x)

4πµ2

)
+ θ(k2x(1− x)−m2)

(
ln

(
k2x(1− x)−m2

4πµ2

)
+ iπ

)]
. (B.9)

For the further computation we have to analyze the zeros of the function f(x) = m2 −
k2x(1− x) in the interval [0, 1]. The zeros read

x± =
1

2
±
√

1

4
− m2

k2
. (B.10)

We split the location of the zeros in three cases:
(a)m

2

k2
≥ 1

4 then Re(x±) = 1
2 and θ(f(x)) = 1 ∀x ∈ [0, 1]

(b)0 < m2

k2
< 1

4 then 1 > x+ > 1
2 > x− > 0

and θ(f(x)) = 1 ∀x ∈ [0, x−] ∪ [x+, 1], θ(−f(x)) = 1 ∀x ∈ [x−, x+]

(c)m
2

k2
= 0 then x− = 0, x+ = 1 and θ(−f(x)) = 1 ∀x ∈ [0, 1]

(B.11)

Case (a)
In this case the only non-zero term in eq. (3.27) is the first one. After evaluating the step
function we get

S1 = − 1

32π2

∫ 1

0
dx ln

(
m2 − k2x(1− x)

4πµ2

)
= − 1

32π2

∫ 1

0
dx

(
ln

(
m2

4πµ2

)
+ ln

(
1− k2

m2
x(1− x)

))
. (B.12)
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The first term can be easily integrated and in the second term we expand the logarithm,

S1 = − 1

32π2

(
ln

(
m2

4πµ2

)
−
∫ 1

0
dx

∞∑
n=1

1

n

(
k2

m2
x(1− x)

)n)
. (B.13)

In the next step, we assume that the sum and the integral can be interchanged. Moreover,
we use the integral ∫ 1

0
dx

1

n

(
k2

m2
x(1− x)

)n
=

Γ(n+ 1)2

nΓ(2n+ 2)

(
k2

m2

)n
, (B.14)

which can be rewritten to

Γ(n)Γ(n+ 1)

Γ(2n+ 2)

(
k2

m2

)n
. (B.15)

The Legendre duplication formula tells us that Γ(z)/Γ(2z) =
√
π21−2zΓ(z+ 1/2)−1. In eq.

(B.15) we have z = n+ 1 and hence we obtain

Γ(n)Γ(n+ 1)

Γ(2n+ 2)

(
k2

m2

)n
=

√
π

2

Γ(n)

Γ(n+ 3
2)

(
k

2m

)2n

. (B.16)

Summing now over n,

∞∑
n=1

√
π

2

Γ(n)

Γ(n+ 3
2)

(
k

2m

)2n

= 2

(
1−

√
4m2

k2
− 1 arcsin

(
k

2m

))
. (B.17)

Finally, we obtain for the integral in eq. (B.13)

S1 = − 1

32π2

(
ln

(
m2

4πµ2

)
− 2

(
1−

√
4m2

k2
− 1 arcsin

(
k

2m

)))
, (B.18)

which is valid for m2/k2 > 1/4.

Case (b)
For the case (b), the square root in eq. (B.18) becomes imaginary and the inverse sine will
be evaluated on its branch cut. Hence, we want to use the analytic continuation of the
inverse sine to extend this result to case (b). We will use that

arcsin(z) = −i ln
(
iz +

√
1− z2

)
, (B.19)

and thus √
4m2

k2
− 1 arcsin

(
k

2m

)
=

√
1− 4m2

k2
ln

(
i
k

2m
+ i

√
k2

4m2
− 1

)
. (B.20)

Writing i = eiπ/2 and using the principal value yields√
4m2

k2
− 1 arcsin

(
k

2m

)
=

√
1− 4m2

k2

[
ln

(
k

2m
+

√
k2

4m2
− 1

)
+ i

π

2

]
. (B.21)
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With this result we find for S1 in case (b)

S1 = − 1

32π2

(
ln

(
m2

4πµ2

)
− 2

(
1−

√
1− 4m2

k2

[
ln

(
k

2m
+

√
k2

4m2
− 1

)
+ i

π

2

]))
,

(B.22)

where the only imaginary contribution is from the last term.

Case (c)
In this case we have m = 0 and thus

S1 = − 1

16π2

∫ 1

0
dx ln

(
k2x(1− x)

4πµ2

)
+ iπ. (B.23)

The integration yields

S1 = − 1

16π2

(
ln

(
k2

4πµ2

)
− 2 + iπ

)
. (B.24)
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Appendix C

Gap Equation for the Higgs Boson in
the SM

In this appendix we consider the gap equation

M2(h, ϕ) = m2
h1(h, ϕ) + Σ (C.1)

of the Higgs field in the SM with vanishing external momentum. The self energy due to
interaction with other fields will be divided to a contribution coming from scalars, gauge
bosons and fermions

Σ = Σφ + ΣGB + Σψ. (C.2)

For each contribution, we split the self-energies to contribution coming from the bubble
diagram and from the sunset diagram

Σi = Σi
B + Σi

S . (C.3)

We derive the self-energies from the 2PI approach, i.e. we compute 2PI diagrams Γ2 at
two loop level with vertices in the shifted theory and use the resummed propagator G for
the Higgs boson. For the propagators of other fields, we use the propagator at tree-level in
the shifted theory. In this approach, self-energies are obtained by taking a derivative of Γ2

with respect to G.

Scalar Fields

Bubble contribution

Here we consider the interaction of the Higgs field h1 with itself

(−i)2 3

4
λ1

∫
d4k

(2π)4
Gh1(k)

∫
d4p

(2π)4
Gh1(p) (C.4)

and with the three Goldstone bosons

(−i)231

2
λ1

∫
d4k

(2π)4
GGB(k)

∫
d4p

(2π)4
Gh1(p). (C.5)
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The symmetry factor of this diagram is 1/4 but there are three would-be Goldstone bosons
which are running in the loop. So the two-loop 2PI diagrams involving only scalar fields
are

V φ,B
2 = −3λ1

4

[∫
d4k

(2π)4
Gh1(k)

∫
d4p

(2π)4
Gh1(p) + 2

∫
d4k

(2π)4
GGB(k)

∫
d4p

(2π)4
Gh1(p)

]
(C.6)

Now we can obtain the corresponding self energies by taking the derivative with respect
to Gh1 and including the factor (−2) (cf. eq. (1.68))

Σφ
B(h) = −2

∂V φ,B
2

∂Gh1
=

6λ1
4

[
2

∫
d4k

(2π)4
Gh1(k) + 2

∫
d4k

(2π)4
GGB(k)

]
. (C.7)

Using Feynman rules at finite temperature and including the factor (−2) this reads

Σφ
B(h) =

6λ1
4β

∞∑
n=∞

∫
d3k

(2π)3

[
2

ω2
n + k +M(h2, ϕ2)2

+
2

ω2
n + k +mGB(h2, ϕ2)2

]
. (C.8)

In terms of the integral defined in (3.27) this can be written as

Σφ
B(h) = 6λ1[I1(M) + I1(mGB)], (C.9)

where M is the tree-level mass of the Higgs boson and mGB the tree-level mass of the
Goldstone bosons. The expression for I1 can be found in eq. (3.27)

Sunset Contribution

Here, we need the 3-point vertices which are given by −i(λ1h) ∗. The symmetry factor
of the sunset diagrams is 3. Also here we have two contributions. On the one hand, the
two-loop sunset diagram only with Higgs propagators

(−i)33(λ1h)2
∫

d4k

(2π)4

∫
d4p

(2π)4
Gh(k)Gh(p)Gh(k − p), (C.10)

and on the other hand, with two Goldstones and one Higgs propagator. The symmetry
factor is 1, but there are 3 Goldstone Boson running in the loop. We obtain for that
diagram

(−i)33(λ1h)2
∫

d4k

(2π)4

∫
d4p

(2π)4
Gh(k)GGB(p)GGB(k − p). (C.11)

In total we have

V φ,S
2 = −i3(λ1h)2

∫
d4k

(2π)4

∫
d4p

(2π)4
[Gh(k)Gh(p)Gh(k − p) +Gh(k)GGB(p)GGB(k − p)],

(C.12)

so the self energy is

Σφ
S = i6(λ1h)2

∫
d4k

(2π)4
[3Gh(k)Gh(k − p) +GGB(k)GGB(k − p)] (C.13)

∗One can derive this by working in the shifted theory.
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We evaluate this first for zero momenta p = 0 and for Feynman rules at finite temperature,

Σφ
S = i6(λ1h)2

i

β

∞∑
n=∞

∫
d3k

(2π)3

[
3

1

(ω2
n + k2 +M2)2

+
1

(ω2
n + k2 +m2

GB)2

]
= −(λ1h)2[36I2(M) + 12I2(mGB)]. (C.14)

Note that a factor of 1/2 was absorbed in the definition of I2. The solution of I2 (cf. eq.
(3.28)) has a negative sign, so the contribution to the resummed mass will be positive.

Gauge Bosons

The interactions we need to consider here are described the Lagrangian

L ⊇ g2

4
(h+ h1)

2W+
µ W

−,µ +
1

2

g2 + g′2

4
(h+ h1)

2ZµZ
µ. (C.15)

The vertices in the shifted theory which will be necessary in this section are given by

• h21 −W 2-vertex: igµν g
2

4 ,

• h21 − Z2-vertex: igµν g
2+g′2

8 ,

• h1 −W 2-vertex: igµν g
2h
2 ,

• h1 − Z2-vertex: igµν
(g2+g′2)h

4 .

Bubble Contribution

With the Feynman rules at hand, we can write down the two double bubble diagrams. We
will include the overall factor (−i). The diagram involving the Z gauge boson is

V Z,B
2 = −ig

2 + g′2

8

∫
d4k

(2π)4

gµν
(
gµν − kµkν

k2

)
k2 −m2

Z

∫
d4p

(2π)4
Gh1(p)

= −3i
g2 + g′2

8

∫
d4k

(2π)4
1

k2 −m2
Z

∫
d4p

(2π)4
Gh1(p). (C.16)

In the last line we performed the trace, which gives 3. Similarly, for the two W gauge
bosons we find

V W,B
2 = −3i

g2

4

∫
d4k

(2π)4
1

k2 −m2
W

∫
d4p

(2π)4
Gh1(p). (C.17)

We now can obtain the self energy of the Higgs field due to interaction with the massive
gauge bosons. It reads

ΣGB
B (h) = −12

8
i(g2 + g′2)

∫
d4k

(2π)4
1

k2 −m2
Z

+
12

8
ig2
∫

d4k

(2π)4
1

k2 −m2
W

(C.18)

Translating this expression to Feynman rules at finite temperature yields

ΣGB
B (h) =

6

4
(g2 + g′2)I1(mZ) +

12

4
g2I1(mW ). (C.19)
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Sunset Contribution

The diagram involving the Z gauge boson is

−i
(

(g2 + g′2)h

4

)2 ∫
d4k

(2π)4

∫
d4p

(2π)4

(
gµν − kµkν

k2

)(
gµν − (k−p)µ(k−p)ν

(k−p)2

)
(k2 −m2

Z)((k − p)2 −m2
Z)

Gh1(p). (C.20)

Thus, for the self energy follows

ΣZ
S (p) = 2i

(
(g2 + g′2)h

4

)2 ∫
d4k

(2π)4

(
gµν − kµkν

k2

)(
gµν − (k−p)µ(k−p)ν

(k−p)2

)
(k2 −m2

Z)((k − p)2 −m2
Z)

. (C.21)

We evaluate this in the limit p = 0,

ΣZ
S (0) = 2i

(
(g2 + g′2)h

4

)2 ∫
d4k

(2π)4

(
gµν − kµkν

k2

)(
gµν − kµkν

k)2

)
(k2 −m2

Z)(k2 −m2
Z)

= 6i

(
(g2 + g′2)h

4

)2 ∫
d4k

(2π)4
1

(k2 −m2
Z)2

. (C.22)

At finite temperature this reads

ΣZ
S (0) = −12

(
(g2 + g′2)h

4

)2

I2(mZ)

= −3

4

(
g2 + g′2

)2
h2I2(mZ). (C.23)

Similarly, for the W bosons we obtain

ΣW
S (0) = −6

4
8g4h2I2(mZ). (C.24)

Top Quark

The interaction of the Higgs boson with the top quark is described by the Yukawa coupling
in the SM Lagrangian

L ⊇ yt√
2

(h+ h1)q̄tqt, (C.25)

where h is the vev of the Higgs field and yt the Yukawa coupling constant of the top quark.
The propagator of the top quark is

Dt(k) =
i(γ · k +mt)

k2 −m2
t

. (C.26)

The only 2PI diagram containing the Higgs and top quark field is at two-loop order the
sunset diagram

V ψ
2 = −(−i)3 1

2

(
yt√

2

)2 ∫ d4k

(2π)4

∫
d4p

(2π)4
Gh1(p− k) Tr[Dt(k) ·Dt(p)]. (C.27)
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Furthermore, we included an overall minus for the fermion loop. The trace is taken in
spinor and color space. The corresponding self-energy for the Higgs boson is obtained by

Σψ(h, k) = −2
∂V ψ

2

∂Gh1(k)
. (C.28)

At zero momentum, that equation reduces to

Σψ(h, 0) =
y2t
2

∫
d4k

(2π)4
Tr[Dt(k) ·Dt(k)]. (C.29)

The trace in color space can be performed trivially since the propagator is diagonal in this
space and gives a factor of three. We are left with the trace in spinor space

Tr[Dt(k) ·Dt(k)] = −3 Tr[(γµkµ +m)(γνkν +m)]

(k2 −mt(h)2)2
. (C.30)

Since the trace of an odd number of gamma matrices vanishes, this simplifies to

Tr[(γµkµ +m)(γνkν +m)] = kµkν Tr[γµγν ] +mt(h)2 Tr[1], (C.31)

and for a Dirac fermion this is equal to

4(k2 +mt(h)2). (C.32)

We write the integrand as

−12
k2 +mt(h)2

(k2 −mt(h)2)2
= −12

k2 −mt(h)2 + 2mt(h)2

(k2 −mt(h)2)2

= −12

(
1

(k2 −mt(h)2)
+

2mt(h)2

(k2 −mt(h)2)2

)
. (C.33)

At finite temperatures eq. (C.29) gets replaced by

Σψ(h, 0) = 12i
y2t
2

i

β

∞∑
n=∞

∫
d3k

(2π)3

(
−1

(ω2
n + k +mt(h)2)

+
2mt(h)2

(ω2
n + k2 +mt(h)2)2

)
, (C.34)

where ωn are here the fermionic Matsubara frequencies. We write eq. (C.34) as

Σψ(h, 0) = 12y2t
[
−J1(m2

t ) + 2mt(h)2J2(m
2
t )
]
, (C.35)

where the Ja functions are defined by

Ja(m
2) =

1

2β

∞∑
n=∞

∫
d3k

(2π)3
1

(ωn + k2 +m2)a
. (C.36)

The finite parts of the two integral in eq. (C.35) in dimensional regularization are

J1(m
2) =

m2

32π2

[
log

(
m2

µ2

)
− 1

]
+
T 2

2π2
∂JF (y2)

∂y2

∣∣∣∣
y=m/T

, (C.37)

J2(m
2) = − 1

32π2
log

(
m2

µ2

)
− 1

2π2
∂2JF (y2)

∂(y2)2

∣∣∣∣
y=m/T

. (C.38)

The overall contribution of the top quark to the gap equation is negative as expected.
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