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Abstract

This thesis examines the relation between asymptotic BMS-symmetries and the shock wave S-matrix.

After reviewing both formalisms, we see that the shock wave S-matrix in Minkowski space is invariant

under supertranslations, which leads to antipodal matching of supertranslation charges between past

and future null in�nity. We thus identify a simple explicit scattering example of general results found

by Strominger and collaborators, which has thus far gone unnoticed in the BMS-literature. For a

Schwarzschild black hole, we show that the shift of the event horizon induced by a shock wave satis�es

the same relation to the energy-momentum tensor in the two formalisms. This suggests that a de-

scription of particle scattering in a black hole background in terms of BMS-charges may be found. We

brie�y review the derivation of BMS-like symmetries acting at the event horizon of a black hole and

show that the Dray-'t Hooft shock wave in tortoise coordinates generates a non-zero horizon superro-

tation charge. As the BMS-description of black holes is still under development, further exploration

of the relation between the two formalisms is deferred to future research.
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Notation and conventions

In this thesis, we use metric convention p´,`,`,`q. We use lower case Roman tensor indices a, b for

general tensor expressions and reserve Greek indices µ, ν for expressions that are given in a particular

coordinate system. We use upper case Roman indices A,B to label the two transversal directions,

as we exclusively consider p1 ` 3q-dimensional space-times. Occasionally, we will use α, β to label

longitudinal coordinates, namely, t, r and various light-cone coordinates. However, because of possible

confusion with general tensor indices µ, ν, we try to keep this to a minimum. Lastly, we use natural

units, where c, ~, GN , and kB are set to unity.
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Introduction

Hawking's discovery that Schwarzschild black holes emit thermal radiation [1] gives rise to an apparent

con�ict between general relativity and quantum mechanics. Namely, if a pure state collapses to form

a black hole, the subsequent evaporation of this black hole would give rise to a �nal state consisting

of thermal radiation. It thus seems as if Hawking evaporation allows pure states to evolve into mixed

states via intermediate black hole formation, which would violate unitarity. On the basis of his cal-

culation, Hawking and many others contended that unitarity is indeed violated and that information

can disappear in physical systems. However, Hawking assumed in his calculation that the black hole

state is unchanged under the emission of Hawking radiation, thus ignoring the gravitational backre-

action at the event horizon. By taking into account this backreaction in the form of a longitudinal

shift, 't Hooft has derived a unitary description for the scattering of shock waves o� a Schwarzschild

black hole [2] [3] [4] [5]. The unitary scattering of shock waves on a black hole background, as well

other arguments such as the non-conservation of energy through disappearance of information and the

unitary time evolution of the boundary CFT of an AdS-black hole space, have done much to shift the

general consensus towards black hole unitarity, thus vindicating sustained resistance against the idea

of information loss in black holes by 't Hooft, Susskind, and others. Indeed, Hawking himself conceded

his position, admitting that he had changed his mind in favour of black hole unitarity.

Some of Hawking's last contributions to black hole physics were collaborations with Perry and Stro-

minger [6] [7], which consider the e�ect of so-called BMS-transformations on various black hole space-

times. BMS is the somewhat incomplete acronym for Bondi, van der Burg, Metzner, and Sachs,

who examined the symmetries at null in�nity of a broad class of asymptotically �at space-times [8]

[9]. B(B)MS found that the Poincaré group of Minkowski space is extended by an in�nite number

of symmetries given by angle-dependent time translations. Their program was recently revisited by

Barnich and Troessaert [10] [11], who tentatively extended the BMS-group to include localized gener-

alizations of the Lorentz group, and subsequently by Strominger and collaborators, who used results

due to Christodoulou and Klainermann [12] to show that BMS-transformations at future and past null

in�nity have to be antipodally matched for spaces in a �nite parameter neighbourhood of Minkowski

space [13] [14]. One of the main reasons for the recently refound interest in BMS-transformations is

the fact that an in�nite number of BMS-symmetries lead, via Noether's theorem, to an in�nite number

of conserved charges. This would allow one to store an in�nite amount of (classical) information, so

that it is suspected that BMS-charges could play a role in the resolution of the black hole information

paradox.

In this thesis, we examine the relation between BMS-symmetries and the shock wave S-matrix. During

the course of this thesis research, we encountered many allusions to the similarities between the BMS-

formalism and 't Hooft's S-matrix formalism [15] [16] [17] [6], but these similarities had thus far

not been explored. In chapter 1, we review BMS-symmetries and how they give rise to an in�nite

number of antipodally matched conserved charges. We then review the derivation of the shock wave

S-matrix in chapter 2. The two formalisms are then compared in chapter 3 where we will use an
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alternative derivation due to the Verlindes [18] to show that shock wave scattering in Minkowski

space is characterized by an in�nite number of antipodally matched BMS-charges, thus giving an

explicit realization of recent �ndings by Strominger and collaborators. As far as the we are aware,

this was not previously pointed out in the literature. We then consider black holes, where the relation

between the two formalisms is decidedly less clear, particularly since the BMS-description of black

holes is still under development. We review Hawking, Perry, and Strominger's treatment of linearized

supertranslations on a Schwarzschild black hole induced by shock waves with a non-trivial spherical

pro�le [7]. We �nd that the shift of the event horizon satis�es the same constraint equation relating it

to the energy-momentum tensor impinging on a black hole in the BMS-formalism [7] and the Dray-'t

Hooft shock wave [2], which is used to calculate the shock wave S-matrix [3] [4]. This result, which has

not been previously noted in the literature, suggests that one may describe the black hole S-matrix

in terms of BMS charges at null in�nity. We then brie�y summarize a recent derivation by Donnay

and collaborators of BMS-like symmetries acting on the event horizon of a black hole [19] [20]. We

show that the Dray-'t Hooft shock wave in tortoise coordinates satis�es the required fall-o� conditions

and that it implants a non-zero superrotation charge at the horizon. This suggests another means of

describing shock wave scattering in terms of BMS-charges, located in this case at the event horizon.
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1 Asymptotic structure of gauge and gravitational scattering

processes

We would like to analyze symmetries at the boundaries of space-time and the constraints these place

on scattering events. Because of its comparative conceptual simplicity, we �rst consider a simple

electromagnetic example, known as the Liénard-Wiechert potential. We will see that the physical data,

in this case the radial component of the electric �eld, obeys an antipodal matching between past and

future null in�nity [21]. We then consider the asymptotic symmetries of a broad class of asymptotically

�at space-times, where we will review the in�nite-dimensional extension of the Poincaré group by BMS-

symmetries. For space-times in a �nite parameter neighbourhood of Minkowski space, we will see that

BMS-transformations and the corresponding conserved charges obey antipodal matching between past

and future null in�nity.

1.1 A simple electromagnetic example

Let us consider the electromagnetic �eld strength of of massive particles labelled by j P t1, 2, . . . , nu

with charges Qj and constant four-velocities Uµj “ γj

´

1, ~βj

¯

“ 1?
1´β2

j

´

1, ~βj

¯

. The electromagnetic

current is thus given by

jµpxq “
n
ÿ

j“1

Qj

ż

dτ Uµj δ
4 pxν ´ pUjqντq . (1)

The equations of motion, given by BνFµν “ ´jµ, are solved by the Liénard-Wiechert solution. We will

focus on the radial component of the electric �eld, which is given by

Frtp~x, tq “
1

4π

n
ÿ

j“1

Qjγjpr ´ tx̂ ¨ ~βjq

|γ2
j pt´ rx̂ ¨

~βjq2 ´ t2 ` r2|3{2
, r “

?
~x ¨ ~x , x̂ “

~x

r
. (2)

One easily sees that Frt vanishes at past- and future time-like in�nity, denoted by i´ and i`, respec-

tively, by keeping ~r �nite and taking the limit tÑ ˘8. The same conclusion can be drawn for spatial

in�nity, denoted as i0, by keeping t �nite and taking ~r Ñ ˘8. Past and future null in�nities, written

as I´ and I`, respectively, have a richer structure. To investigate the Liénard-Wiechert solution at

I, we introduce light-cone coordinates given by

v “ t` r , u “ t´ r . (3)

The topology (in the sense of homeomorphism rather than homotopy) of past and future null in�nity

is I˘ » R b S2, where u, v P R and S2 is parametrized by spherical coordinates which we generally
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denote by Θ. To analyze I´, it is convenient to use a mixed pv, r,Θq coordinate system, in which the

Minkowski metric is given by

ds2 “ ´dv2 ` 2dvdr ` 2r2γABdΘAdΘB . (4)

By plugging the �rst equality of (3) into (2), we see that the radial component of the electric �eld is

given by

Frt “ Frv “
e2

4π

n
ÿ

j“1

Qjγj

´

r ´ pv ´ rqx̂ ¨ ~βj

¯

|γ2
j

´

v ´ r ´ rx̂ ¨ ~βj

¯2

´ pv ´ rq2 ` r2|3{2
. (5)

We analyze the solution at null in�nity by �xing v and taking the limit r Ñ8. From the form of the

metric in (4), we see that, by �xing v and varying r, we traverse zero metric distance. We thus �x v

and take r Ñ8 to �nd the solution for Frt at I´

Frtpx̂q
∣∣∣
I´
“ lim
rÑ8

Frvp~x, vq “
e2

4πr2

n
ÿ

j“1

Qj

γ2
j

´

1` x̂ ¨ ~βj

¯2 . (6)

We see that if we take βj “ 0, we get a Coulomb �eld for a charge Qj at r “ 0, as one would expect.

To �nd the form of Frt at I`, we go to retarded time coordinates, in which the Minkowski metric is

ds2 “ ´du2 ´ 2dudr ` 2r2γABdΘAdΘB . (7)

Plugging the second equality of (3) into (2), �xing u, and taking the limit r Ñ8, gives

Frtpx̂q
∣∣∣
I`
“ lim
rÑ8

Fru “
e2

4πr2

n
ÿ

j“1

Qj

γ2
j p1´ x̂ ¨

~βjq2
. (8)

We thus see that

Frtpx̂q
∣∣∣
I`
“ Frtp´x̂q

∣∣∣
I´
. (9)

Reminding ourselves that x̂ is a unit vector on the two-sphere at null in�nity, we see that taking

x̂Ñ ´x̂ corresponds to the antipodal map on the S2. Although the Liénard-Wiechert potential dates

from the late 19th century, the antipodal matching of Frt as in (9) was only recently pointed out in

the literature [21]. One sees that the two solutions are equal only when ~βj “ 0 for all j. For small β,

we have 1

p1˘x̂¨~βq
2 « 1¯ 2x̂ ¨ ~β, which can be intuitively understood from the fact that if we accelerate

towards I`, we accelerate away from I´. In this very simple example, we see that physical data at I`

7



and I´ are antipodally matched. Although one might suspect this to be a peculiarity of the Liénard-

Wiechert potential, this antipodal matching can be show to hold for more general electromagnetic

con�gurations, including cases where particles scatter in the bulk. The physical reason for this is that

there is a residual, local gauge transformation parametrized by a function of the spherical coordinates

εpx̂q at I˘, which has to satisfy εpx̂qI` “ εp´x̂qI´ [22].

Figure 1: In the conformal compacti�cation of Minkowski space onto the Einstein static universe,
Minkowski space is wrapped around a cylinder with topology R ˆ S3. The antipodal matching of
electromagnetic �eld con�gurations in the Liénard-Wiechert potential, as well as more general electro-
magnetic con�gurations, is then equivalent to the continuity of physical data along the null generators
of I even as they pass through i0. Image taken from [23].

As this thesis is concerned mostly with gravitational scattering, we will not consider the electromag-

netic case much further. We do note an intuitive illustration, due to Strominger [23], of how antipodal

matching can be understood from the conformal compacti�cation of Minkowski space. This is particu-

larly insightful for the case of electromagnetism due to its invariance under conformal transformations.

We conformally compactify Minkowski space onto the Einstein static universe, which wraps Minkowski

space around a cylinder as illustrated in �gure (1). Null in�nity I » I`
Ť

I´ is then given by the

light cone of i0. Antipodal identi�cation corresponds to the requirement that the electromagnetic �eld

is continuous along the null generators of I even when the generators pass through i0. This is quite
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surprising since i0 is a point in the conformal compacti�cation of Minkowski space, where physical

data such as Frt is typically singular. We now consider the case of gravity, which we will �nd to be

largely analogous to this simple electromagnetic example.

1.2 Supertranslations

We would like to analyze the asymptotic symmetries of asymptotically �at space-times. We will limit

ourselves to consider only massless particles, as this signi�cantly simpli�es our calculations and su�ces

for comparison with the shock wave S-matrix due to 't Hooft [3] [4]. The analysis below has been

generalized to include massive particles [24] [25]. There exist several notions of asymptotic �atness

with corresponding fall-o� conditions on metric components. One would like to pick suitable fall-o�

conditions to allow for `interesting' space-times we would like to analyze but to exclude `unphysical'

space-times. Various notions of asymptotic �atness can be said to arise from various notions of what

is interesting and what is physical. In this section, we follow the approach due to Bondi, van der Burg,

Metzner, and Sachs, whose initials form the basis for the somewhat incomplete acronym `BMS'. Their

analysis of asymptotic structures was done in Bondi gauge, which is given by

grA “ 0 “ grr , Br det
´gAB
r2

¯

“ 0 . (10)

This �xes all four gauge freedoms of general relativity. From Br det
`

gAB
r2

˘

“ 0, it follows that r is equal

to the luminosity distance. The most general metric can then be written as [8] [9]

ds2 “ ´Udu2 ´ 2e2βdudr ` gAB

ˆ

dΘA `
1

2
UAdu

˙ˆ

dΘB `
1

2
UBdu

˙

. (11)

We would like to only consider metrics with �nite radiative energy �ux, which corresponds to the

following fall-o� conditions for the Weyl tensor

CrArB , CrurA “ Op1{r3q . (12)

Writing the spherical metric as

gAB “ r2γAB ` rCAB `Op1q,

the requirement in (12) leads to

UA “ DBCAB ,

where DA is the covariant derivative with respect to γAB , which is the metric of the unit sphere.
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Spherical indices A,B are henceforth raised and lowered by applying γAB and γAB , respectively. The

leading and subleading terms in the 1{r-expansion around the Minkowski metric at I` are given by

[8] [9]

ds2 “´du2 ´ 2dudr ` 2r2γABdΘAdΘB
looooooooooooooooooooomooooooooooooooooooooon

Minkowski metric

`

`
2mB

r
du2 ` rCABdΘAdΘB `DACABdudΘB`

`
1

r

ˆ

4

3
pNA ` uBAmBq ´

1

8
pCABC

ABq

˙

dudΘA ` . . . (13)

In (13), CAB , mB , and NA depend only on pu,ΘAq, since we are expanding in 1{r. mB and NA

are known as the Bondi mass aspect and the angular mass aspect, respectively. For BMS-symmetries

known as supertranslations, to be considered in this section, only the �rst two lines of (13) are required.

The third line plays a role for the case of superrotations, which we brie�y review in the next section.

Note that the class of metrics given by (13) includes the Schwarzschild metric, which is given by

mBpu,Θ
Aq “ M “ constant and CAB “ 0 “ NA. One can easily see that the Bondi gauge choice

for the transversal part of the metric entails that CAB is traceless. Namely, using the fact that

ln p1`Bq “
8
ÿ

n“1

p´1qn`1B
n

n
for

∥∥∥B∥∥∥ ă 1 , where
∥∥∥.∥∥∥ is the matrix norm [26], we �nd

det
´gAB
r2

¯

“ exp tr ln

„

γAC

ˆ

δCB `
CCB
r

˙

`O
`

1{r2
˘



“ det γ exp tr

„

CCB
r
`Op1{r2q



“ det γ

„

1`
CAA
r
`O

`

1{r2
˘



, (14)

so that Br det
`

gAB
r2

˘

“ 0 entails that CAA “ 0, as claimed. Let us consider the most general di�eomor-

phism ξ which leaves the gauge and fall-o� conditions invariant. For now, we restrict our attention to

di�eomorphisms with the following asymptotic behaviour

ξu, ξr „ Op1q , ξA „ Op1{rq . (15)

These conditions entail that the vector �elds ξ are asymptotically Op1q in an orthonormal frame. Note

that these conditions exclude Lorentz transformations, which asymptotically grow as Oprq. The action
on the metric of a di�eomorphism with respect to a Killing vector �eld ξ can generally be written as

Lξgµν “ ξλBλgµν ` gµλBνξ
λ ` gνλBµξ

λ . (16)
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The fall-o� and gauge conditions of the BMS-metric in (13) which we require to be preserved by ξ are

guu “ ´1`
2mB

r
`Op1{r2q , gur “ ´1`Op1{r2q , guA “

1

2
DBCAB `Op1{rq

gAB “ r2γAB ` rCAB ` hAB `Op1{rq , grr “ 0 “ grA , (17)

where hAB is an additional Op1q term which we will need to �nd the form of ξr. Let us �rst consider

the action of ξ on the rr-component of the metric. This is given by

Lξgrr “ 2Brξ
ugur ,

which is required to be zero from the Bondi gauge condition that grr “ 0. It follows that

Brξ
u “ 0 ñ ξu “ ξu

`

u,ΘA
˘

. (18)

For gur, we �nd

Lξgur “ ξµBµgur ` guµBrξ
µ ` grµBuξ

µ

“ gur pBrξ
r ` Buξ

uq `Op1{r2q

“ ´ pBrξ
r ` Buξ

uq `Op1{r2q .

From (15), Buξ
u “ Op1q and Brξr “ Op1{rq at I`, so that

ξu “ fpΘAq `Opr´2q . (19)

Similarly, we require that Brξ
r “ Opr´2q so that, to leading order, ξr is independent of r. We now

expand ξµ in 1{r

ξ “ fBu `
8
ÿ

n“0

ξpnqr

rn
Br `

8
ÿ

n“1

ξpnqA

rn
BA . (20)

i.e. ξpnqµ is the nth order term in the 1{r-expansion of ξµ. We then have

Lξguu “ fBuguu ` ξ
rBrguu ` ξ

ABAguu ` 2gurBuξ
r ` 2guABuξ

A

“ ´2Buξ
p0qr `

2fBumB ´ 2Buξ
p1qr `

`

Buξ
p1qA

˘

DBCAB

r
`Op1{r2q . (21)
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We will return this expression in due time to read o� the action of a supertranslation on the Bondi

mass aspect. The action of a supertranslation on grA is given by

LξgrA “ BrξBgBA ` gurBAf

“ ´γAB

´

ξp1qB `DBf
¯

´
2γABξ

p2qB ` CABξ
p1qB

r
`Op1{r2q . (22)

LξgrA has to equal zero to respect Bondi gauge, from which we �nd that

ξp1qA “ ´DAf , ξp2qA “
1

2
CABDBf . (23)

For gAB , we have

LξgAB “ fBugAB ` ξ
rBrgAB ` ξ

CBCgAB ` guBBAf ` BAξ
CgCB ` guABBf ` BBξ

CgCA

“ r
´

fBuCAB ` 2γABξ
p0qr `DAξ

p1q
B `DBξ

p1q
A

¯

` fBuhAB ` CABξ
p0qr ` 2γABξ

p0qr ` 2γABξ
p1qr `

1

2

`

DCCCA
˘

DBf `
1

2

`

DCCCB
˘

DAf

` ξp1qCDCCAB `DAξ
p2q
B `DBξ

p2q
A ` CACDBξ

p1qC ` CBCDAξ
p1qC `Op1{rq . (24)

From the condition that the Oprq-term is traceless, as found in (14), it follows that

ξp0qr “
1

2
DADAf . (25)

For gAB , given in (17), we have

det
”gAB
r2

ı

“ exp tr log

„

γAB

ˆ

δ BA `
1

r
C B
A `

1

r2
hBA `Op1{r3q

˙

“ det γ exp tr log

ˆ

δ BA `
1

r
C B
A `

1

r2
hBA `Op1{r3q

˙

“ det γ

„

1`
C A
A

r
`

1

r2

ˆ

hAA ´
C B
A C A

B

2

˙

`Op1{r3q



.

Hence, Br det
“

gAB
r2

‰

“ 0 leads to

h A
A “

C B
A C A

B

2
. (26)

To �nd the Op1{rq-term of ξr, we look at the action of a supertranslation on (26), i.e. we require that

δhAA “ CABδCAB . Using (23) as well as the tracelessness of CAB , we �nd

12



δh A
A “ CABδCAB

fBuh
A
A ` 4ξp1qr ` 2

`

DAf
˘

DBCAB ´ CABD
ADBf “ fCABBuCAB ´ 2CABD

ADBf , (27)

so that

ξp1qr “ ´
1

4

“

2
`

DAf
˘

DBCAB ´ CABD
ADBf

‰

. (28)

Combining (19), (23), (25), and (27), the �nal result for ξ is given by

ξµBµ “ fBu `

ˆ

´
DAf

r
`

1
2C

ABDBf

r2
`Op1{r3q

˙

BA

`

˜

1

2
DAD

Af ´
1
2

`

DAf
˘

DBCAB `
1
4CABD

ADBf

r
`Op1{r2q

¸

Br . (29)

Note, from the �rst term on the right hand side of (29), that the ` “ 0 and ` “ 1-modes in the

expansion of f “ fpz, z̄q in spherical harmonics correspond to global time- and spatial translations,

respectively. De�ning the Bondi news tensor as

NAB :“ BuCAB , (30)

the action of a supertranslation guu and gAB is given by

Lξguu “
1

r

„

2fBumB `
`

DAf
˘

DBNAB `
1

2
pBuCABqD

ADBf



`Op1{r2q ,

LξgAB “ r
“

fBuCAB ` γABDCD
Cf ´ 2DADBf

‰

`Op1q . (31)

From (13), (30), and (31), we read o�

LξCAB “ fBuCAB ` γABDCD
Cf ´ 2DADBf

LξNAB “ fBuNAB

LξmB “ fBumB `
1

2

`

DAf
˘

DBNAB `
1

4
NABD

ADBf . (32)

For convenience, we now parametrize S2 using stereographic coordinates. That is, we write ΘA P tz, z̄u,

where z̄ is the complex conjugate of z. Stereographic coordinates at I` are de�ned as
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z
∣∣∣
I´
“
x1 ` ix2

x3 ` r
, z̄

∣∣∣
I´
“
x1 ´ ix2

x3 ` r
; r2 “ ~x ¨ ~x . (33)

The Minkowski metric at I` is then given by

ds2 “ ´du2 ´ 2dudr ` 2r2γzz̄dzdz̄ , γzz̄ “
2

p1` zz̄q2
.

For convenience, we choose the spherical metrics at I` and I´ to be related by the antipodal map,

which is given by z Ñ ´1{z̄. This will simplify a lot of expressions throughout the remainder of this

thesis. Thus, at I`, we choose

z
∣∣∣
I`
“ ´

r ` x3

x1 ´ ix2
. (34)

One can easily show that γzz̄dzdz̄ is invariant under the antipodal map, as one would expect. In these

coordinates, supertranslations at I` are given by

ξ “ ξµBµ “ fBu ´
1

r

`

DzfBz `D
z̄fBz̄

˘

`DzDzfBr , (35)

and their e�ect on Czz and mB is [23]

LξCzz “ fBuCzz ´ 2D2
zf

LξmB “ fBumB `
1

4

“

2 pDzN
zzqDzf `N

zzD2
zf ` c.c.

‰

. (36)

One immediately sees that LξNzz “ fBuCzz from the fact that Buf “ 0. The �rst term on the right

hand side of both equalities in (36) is simply a translation along light-cone coordinate u which is

modulated by some angle-dependent function f “ fpz, z̄q. Note that �at Minkowski space is given

by mB “ 0 “ Czz, which immediately gives Nzz “ 0. If we act on such a space-time with a su-

pertranslation, we see from (36) that the resulting space-time will still have mB “ 0 “ Nzz, so that

the corresponding Riemann tensor will still be zero. We thus see that there is an entire class of �at

space-times characterized by a function C “ Cpz, z̄q, where

Czz “ ´2D2
zC , LξC “ C ` f

We would like to see how mB changes when we insert energy in our space-time in the form of a

matter stress energy source TMµν . To do so, we consider the leading term in the 1{r-expansion of the

uu-component of Einstein's equations. A tedious but straightforward calculation reveals
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8πTMuu “ Ruu ´
1

2
guuR

“
1

r2

„

´2BumB `
1

2

`

D2
zN

zz `D2
z̄N

z̄z̄ ´NzzN
zz
˘



`Op1{r3q , (37)

which we rewrite to give

BumB “ ´4πGr2TMuu `
1

4
rD2

zN
zz `D2

z̄N
z̄z̄

looooooooomooooooooon

„BΓ

´NzzN
zz

looomooon

„Γ2

s `Op1{rq . (38)

One can easily convince oneself that terms in (38) which are linear in Nzz arise from Riemann tensor

components involving the derivative of the Christo�el connection, while those quadratic in Nzz arise

from terms involving the square of the connection. Note that the latter terms correspond to gravita-

tional wave contributions to the energy-momentum tensor. Following Strominger [13], we de�ne

Tuu :“ 4πr2TMuu `
1

4
NzzN

zz . (39)

There is, of course, an analogous story at I´ to the one described above for I`. At I´, we write the
metric as

ds2 “ ´dv2 ` 2dvdr ` 2r2γzz̄dzdz̄ `
m´B
r
dv2 ` rDzzdz

2 ` rDz̄z̄dz̄
2 ` . . . . (40)

Repeating the above analysis at I´ reveals that the supertranslations here are given by

ζ “ gBv `
1

r

`

DzgBz `D
z̄gBz̄

˘

´DzDzgBr , g “ gpz, z̄q. (41)

Note that the radial component of the asymptotic Killing vector at I´ has the opposite sign of that

at I` by comparing with equation (35). Writing the Bondi news at I` as Mzz “ BvDzz, we �nd that

LζDzz “ gBvDzz ` 2D2
zg , LMzz “ gBvMzz , (42)

and [23]

Bvm
´
B “ 4πGr2TMvv `

1

4
rD2

zM
zz`D2

z̄M
z̄z̄`MzzM

zzs`Op1{rq “: Tvv`
1

4

`

D2
zM

zz `D2
z̄M

z̄z̄
˘

`Op1{rq .
(43)

The sign di�erence between the matter stress energy tensors in (38) and (43) can be easily understood

from the fact that energy carried by massless particles enters space-time at I´ and exits it at I`.
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Hence, assuming the null energy condition, Tvv pTuuq gives a positive (negative) contribution to the

Bondi mass.

1.3 Superrotations

The fall-o� conditions on ξ given by (15) exclude Lorentz transformations. B(B)MS [8] [9] analyzed

di�eomorphisms which need not satisfy condition (15); we brie�y review these here. At I`, global
Lorentz transformations are given by

ζz

∣∣∣
I`
“ Y zBz `

u

2
DzY

zBu ` c.c. , Y z P t1, z, z2, i, iz, iz2u . (44)

The action on the metric of general Y z is given by

Lζgzz “ 2r2γzz̄Bz̄Y
z `Oprq , (45)

so that we only have globally well-de�ned Y z which satisfy the fall-o� conditions for the spherical metric

in (17) in case of the Lorentz transformations indicated in (44). All the other metric components respect

the fall-o� conditions under the action of ζ, so that (45) is the only o�ending term. The form of equation

(45) led B(B)MS to ignore extensions to the Lorentz group [8] [9]. However such extensions recently

received new-found attention due to the fact that expression (45) is the same equation found by Belavin,

Polyakov, and Zamolodchikov in their analysis of 2D CFT's [27], where such singular transformations

are used to great e�ect. This led various authors to suggest that one should allow for transformations

parametrized by Y z “ zn for general n P Z [28] [29] [10] [11]. These (pseudo)symmetries are known

as superrotations. Due to their violating the fall-o� conditions, the interpretation of superrotations is

decidedly less clear than that of the supertranslations we encountered in the previous section.

1.4 The antipodal matching condition

In the section 1.2, we saw that the fall-o� and Bondi gauge conditions in (17) at I are left invariant by

an asymptotic Killing vector which translates the time coordinate in an angle-dependent manner. Note

that I “ I´
Ť

I` and that we have an asymptotic Killing vector at both I` and I´, given by (35) and
(41), respectively. It is easy to see that we cannot transform I` and I´ independently, for example,

a global time translation on Minkowski space corresponds to taking fpz, z̄q “ constant “ gpz, z̄q. In

general, f and g are allowed to depend non-trivially on spherical coordinates, so that these functions

have to matched in some way for the combined transformation to be a symmetry of space-time. The

need for a matching condition arises from the fact that supertranslations have a non-trivial e�ect on

the physical data as they act at the boundary of space-time. For example, a supertranslation at I´

(I`) can change the time at which a particles enters (exits) space-time. Let us consider the simplest

conceivable such example, which is a radially propagating massless particle entering Minkowski space

16



at the south pole at v “ 0 on I´ and exiting at the north pole at u “ 0 on I`. If we now act

on I´ with a supertranslation that shifts v at the south pole by some amount ∆, we clearly have

to act on I` with a supertranslation which shifts the north pole by the same amount, so that the

particle exits at u “ ∆. One can of course consider more complicated situations with multiple particles

that interact in the interior to make the non-trivial e�ect of a supertranslation more acute. Yet this

simple example illustrates an important point, namely, that supertranslations at I´ and I` have to

be antipodally matched for the combined transformation to be a symmetry of space-time [13]. As the

supertranslations have a non-trivial e�ect on the physical data, as expressed in (36), these have to be

antipodally matched as well.

Figure 2: The action of a supertranslation, illustrated here on I`, is to translate the time coordinate in
an angle-dependent manner. The null generators of I` and I´ meet in the limit where they approach
i0; these limits are indicated as I`´ and I´` , respectively. Antipodal matching of supertranslations
leads to antipodal matching of physical data at I`´ and I´` . Image adapted from [23].

To see how antipodal matching of supertranslations comes about, we �rst de�ne the future and past

limits of null in�nity

I`˘ :“ lim
uÑ˘8

I` , I´˘ :“ lim
vÑ˘8

I´ , (46)

as indicated in �gure 2. Following Strominger, we then apply a result from Christodoulou and Klainer-

mann's seminal work on asymptotically �at spaces, which proved the existence of geodesically complete

asymptotically Minkowski solutions [12]. For these space-times, one has
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mB

∣∣
I`
`

“ 0 “ m´B
∣∣
I´
´

. (47)

Hence, if black holes are allowed to form in the interior, they have to radiate away in �nite time.

Further, in Christodoulou-Klainermann spaces, the Bondi news Nzz decays like |v|3{2 or faster for

|v|Ñ8, with the same condition in terms of |u| for the |u|Ñ8. For such spaces, one can show that

[13]

Czz

∣∣∣∣
I`
´

“ ´2D2
zCpz, z̄q ,

where C is a function on the two-sphere at I´. One can then integrate Nzz “ BvCzz with integration

constant Czz
∣∣
I´
`

“ ´D2
zC to give Czz for all of I`. Similarly, we have Dzz

∣∣
I´
`

“ ´2D2
zD, from which

we �nd Mzz for all of I´. The physical data at I` and I´ are therefore speci�ed by

tm´B
∣∣
I´
`

, D
∣∣
I´
`

,Mzzu , tmB

∣∣
I`
´

, C
∣∣
I`
´

, Nzzu .

Let us then consider the action of a global Lorentz transformation on I. These act on mB and m´B as

Lχ`mB “

ˆ

χz`Bz `
u

2
Dzχ

z
`Bu `

3Dzχ
z
`

2

˙

mB ´
u

2
Bu

“

Uz
`

1´D2
z

˘

χz`
‰

,

Lχ´m´B “
ˆ

χ´z´ Bz `
u

2
Dzχ

´z
´ Bu `

3Dzχ
´z
´

2

˙

mB `
u

2
Bu

“

Vz
`

1´D2
z

˘

χ´z´
‰

, (48)

where Uz “
1
2D

zCzz and Vz “ ´
1
2D

zDzz, as in (11) and (13), and χ˘ P t1, i, z, iz, z
2, iz2u. Global

Lorentz transformations are then given by

χz` “ χ´z´ . (49)

We see that these leave invariant the following matching condition [13]

mBpz, z̄q
∣∣
I`
´

“ m´Bpz, z̄q
∣∣
I´
`

, Cpz, z̄q
∣∣
I`
´

“ ´Dpz, z̄q
∣∣
I´
`

. (50)

Remember that spherical coordinates z and z̄ at I` and I´ are related by the antipodal map z ÞÑ ´1{z̄

as per our de�nitions in (33) and (34). Further, note that our conventions for C and D, which were

chosen to resemble the form of a supertranslation with f “ C, g “ D, are di�erent from those used

by Strominger in [23] and [13]. In addition to Lorentz transformations, the conditions in (50) are

invariant under CPT inversions. This can be seen from the fact that a parity inversion corresponds

to the antipodal map on the two-sphere, and time inversion takes us from I`´ to I´` . The charge
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inversion then switches the sign of the energy, akin to the sign switch between (38) and (43), so that

ingoing (outgoing) energy �ux gives a strictly positive (negative) contribution to the energy content

of space-time. The combined supertranslations which preserve (50) are given by

fpz, z̄q
∣∣
I` “ gpz, z̄q

∣∣
I´ . (51)

We thus �nd that f and g have to antipodally matched to preserve (50). Equation (51) holds for all

of I` and I´ since f and g do not depend on time, so that �xing them at I`´ and I´` �xes them for

all of I` and I´, respectively. Writing a point on Ω “ pθ, ϕq and its antipode as ´Ω “ pπ´ θ, π`ϕq,

we note that

Y`,mp´Ωq “ p´1q`Y`,mpΩq . (52)

Expanding the supertranslations at I` and I´ as f “
ř

`,m f`,mY`,m and g “
ř

`,m g`,mY`,m, respec-

tively, we �nd that the antipodal matching of f and g is expressed in spherical harmonics as

f`,m “ p´1q`g`,m . (53)

One can easily see that the antipodal matching in (50) implies that Nz should be antipodally matched

between I´ and I` as well. Namely the uz-component of Einstein equations for (13) is given by

BuNz “ ´uBuBzmB `
1

4
Bz

`

D2
zC

zz ´D2
z̄C

z̄z̄
˘

´ Tuz , (54)

where Tuz is a convenient momentum density expression de�ned as

Tuz :“ 8π lim
rÑ8

“

r2TMuz
‰

´
1

4
BzpCzzN

zzq ´
1

2
CzzDzN

zz . (55)

One thus sees that (50) �xes Nz up to an integration constant in the limit where I approaches i0. In

[30] [31], it is shown that this integration constant has to be antipodally matched as

Nzpz, z̄q
∣∣∣
I`
´

“ Nzpz, z̄q
∣∣∣
I´
`

, (56)

by showing that this is equivalent to a subleading soft graviton theorem.

The upshot is that we have an in�nite number of symmetries at I` and I´, known as supertrans-

lations, which are angle-dependent translations of the retarded and advanced light-cone coordinates,

respectively. By considering simple examples, such as global time translations or the action of su-

pertranslation with compact support on a massless particle, it is easy to see that supertranslations

at I` and I´ are not independent but have to be matched in some non-trivial manner. By using
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results from the work of Christodoulou and Klainermann, Strominger has argued that the appropriate

matching condition is antipodal matching. This in turn �xes the angular momentum aspect appearing

in the subleading term of the BMS-metric up to an integration constant. One can then show that this

integration constant has to similarly obey antipodal matching as well by showing its equivalence to a

recently found subleading soft graviton theorem.

1.5 BMS charges

Via Noether's theorem, the in�nite number of symmetry transformations at I lead to an in�nite

number of conserved charges, which we consider here. As noted before, a global time transformation

corresponds to a supertranslation given by

fpz, z̄q “ constant “ gpz, z̄q .

The corresponding conserved charge is given by global energy conservation. If we allow f and g

to depend non-trivially on angular coordinates z and z̄, the corresponding conserved charge is a

`localized' version of energy conservation. The rigorous treatment of conserved charges arising from

di�eomorphisms in general relativity is known as the covariant canonical formalism [32] [33]. The reason

that this formalism is needed is because more familiar treatments, such as the one due to Komar, do

not take into account the conserved charge that is radiated away. As the covariant canonical formalism

is rather involved, we follow Strominger [23] by using an analogy with electromagnetism and some of

the same simplifying assumptions which we use throughout this chapter. In particular, we assume the

null energy condition holds, that the Bondi mass aspect goes to zero at i˘, and that the radiative

energy goes to zero at the boundaries of I. These conditions hold for any Christodoulou-Klainermann

space-time; we used these in section 1.4 to derive antipodal matching for such space-times. These

conditions ensure that the conserved charge at I` (I´) can be found from the physical data at I`´
(I´` ).

We would thus like to calculate the conserved charge corresponding to a Killing vector ξa. Killing

vectors are is implicitly de�ned by Killing's equation

∇paξbq “ 0 , (57)

which entails that ∇aξb is antisymmetric. The role of the electromagnetic �eld strength tensor F ab

will be played by ∇aξb in the electromagnetic-gravitational analogy. Namely, the electric charge inside

a volume V is given by

QV “

ż

V

d ˚ F “
1

e2

ż

BV

˚F “

ż

BV

F abεabcddx
cdxd, (58)
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where Stokes' theorem was used in the second equality. The corresponding expression for a Killing

vector ξa is given by

Qξ “ ´
1

8π

ż

BV

∇aξbεabcddx
cdxd . (59)

If ξ is a constant time-like vector, Qξ is simply (proportional to) the Komar mass. We apply (59) to

(13), where we take S2 to be the sphere at I`´ and ξ to be a supertranslation, given by (35). That is,

we calculate

Qξ “ ´
1

8π

ż

I`
´

d2zγzz̄r
2∇ruξrs . (60)

Plugging equation (35) into (60) and using the fact that, to leading order in 1{r

∇ruξrs “ ´∇rξ
r ´∇uξ

u `∇rξ
u “ ´

2

r2
fmB ,

we �nd

Q`f “
1

4π

ż

I`
´

d2zγzz̄fmB ,

Q´g “
1

4π

ż

I`
´

d2zγzz̄fm
´
B , (61)

where the bottom equality is found by repeating the calculation at I´.

which are the supertranslation charges found in [34]. Using (50) and (51), we see that

Q`f “ Q´g . (62)

We will use (51) to parametrize supertranslations at I` and I´ by the same function f , keeping in mind

that these functions are related between I` and I´ by the antipodal map. Integrating by parts and

using the fact that mB

∣∣
I`
`

“ 0 “ m´B
∣∣
I´
´

and Nzz
∣∣
I`
`

“ 0 “ Nzz
∣∣
I´
´

for Christodoulou-Klainermann

spaces, we �nd [13]

21



Q`f “
1

4πG

ż

I`
dud2zγzz̄f

„

Tuu ´
1

4

`

D2
zN

zz `D2
z̄N

z̄z̄
˘



“

Q´f “
1

4πG

ż

I´
dvd2zγzz̄f

„

Tvv `
1

4

`

D2
zM

zz `D2
z̄M

z̄z̄
˘



. (63)

We see that, in the absence of gravitational waves, the conserved quantity is the energy �ux at I
modulated by some function f . In addition to the familiar term coming from the energy-momentum

tensor, we have a term which is linear in the Bondi news. We can rewrite this as the following limit

ż

I`
dud2zγzz̄f

`

D2
zN

zz `D2
z̄N

z̄z̄
˘

“ lim
ωÑ0

1

2

ż

I`
dud2zγzz̄

“`

eiωu ` e´iωu
˘ `

NzzD2
zf `N

z̄z̄D2
z̄f

˘‰

“ lim
ωÑ0

ż

I`
´

d2zγzz̄
`

CzzD2
zf ` C

z̄z̄D2
z̄f

˘

. (64)

We see that the term in (64) is the soft (ω Ñ 0) limit of a metric perturbation with a polarization

tensor „ D2
zf [13]. Let us consider a supertranslation given by f “ δ2pz ´ wq, which gives

ż

I`
duγww̄

„

Tuu ´
1

4

`

D2
wN

ww `D2
w̄N

w̄w̄
˘



“

ż

I´
dvγww̄

„

Tvv `
1

4

`

D2
wM

ww `D2
w̄M

w̄w̄
˘



. (65)

In the words of Strominger, the conserved charge is �energy [...] at every angle� (page 17 of [13]).

We see that, in the absence of gravitational waves, this is indeed the case. However, it seems a bit

imprecise to refer to the terms linear in the Bondi news as �energy�, hence we will refrain from doing

so and instead refer to Q˘f as supertranslation charge. Let us consider scattering events with non-zero

transversal momentum transfer, so that the sources of the energy-momentum tensors change direction.

For such cases, it is not at all intuitively clear that Q´f and Q`f should be antipodally matched. This is

where the soft graviton terms in (65) come into play. Note that the covariant derivatives kill the ` “ 0

- terms in the expansion of Nzz and Mzz in spherical waves, so that integrating them over the two-

sphere with constant f gives zero. However, they can have local non-zero contributions on S2 which

may be positive or negative. These soft terms ensure that (65) holds at all angles on S2. Strominger

and collaborators have shown that the Ward identity corresponding to supertranslation invariance is

equivalent to Weinberg's soft graviton theorem [14], which provides further physical underpinning for

the above analysis.

One can derive a similar set of in�nite conserved charges corresponding to the superrotations. Namely,

from (56), one can show that there is an in�nite number of antipodally matched superrotation charges

given by
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Q`Y “
1

8π

ż

I`
´

d2zγzz̄
`

Y zNz ` Y
z̄Nz̄

˘

“

Q´Y “
1

8π

ż

I´
`

d2zγzz̄
`

Y zNz ` Y
z̄Nz̄

˘

. (66)

It has recently been shown that theWard identities corresponding to antipodally matched superrotation

charge conservation are equivalent to a subleading soft graviton theorem [35] [36] [37], which indicates

that they have physical signi�cance. However, we saw that superrotations locally violate the BMS

fall-o� conditions, hence their precise interpretation is as of yet unclear.

To summarize, by considering the metric at I of asymptotically �at space-times, one can derive

an in�nite-dimensional extension of the Poincaré symmetries of Minkowski space, given by angle-

dependent translations of the advanced and retarded time coordinates. These transformations, known

as supertranslations, have a non-trivial e�ect on the physical data. This requires a matching condition

between I´ and I` for the combined transformation to be a symmetry of space-time. The appropri-

ate matching condition is found to be antipodal matching. From this, we �nd antipodally matched

supertranslation charge conservation. A similar analysis holds for localized versions of Lorentz trans-

formations, known as superrotations, for which the corresponding Ward identity is equivalent to a

subleading soft graviton theorem. However, as supertranslations locally violate the asymptotic fall-

o� conditions, their interpretation is less clear. The BMS-formalism is rather general, in particular,

it holds for a large class of physical situations, including situations where one has highly non-linear

e�ects including black hole formation and evaporation in the interior. In the following sections, we

will consider an examples of gravitational scattering and examine how they are acted on by BMS-like

transformations.
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2 The shock wave scattering matrix

Some of the most explicit examples of gravitational scattering events are provided by the shock wave

S-matrix due to 't Hooft. This S-matrix takes into account the longitudinal drag induced by the shock

wave of highly energetic particles while ignoring transverse momentum transfer. This approximation

is appropriate for scattering events where the transverse distance between particles is typically much

larger than their longitudinal wavelengths, as is the case at the event horizon of a black hole. We will

brie�y consider the construction of gravitational shock waves after which we treat the derivation of

the shock wave S-matrix in Minkowski space and at the event horizon of a Schwarzschild black hole.

2.1 Constructing gravitational shock waves

There are multiple methods for constructing shock waves in general relativity. In particular the �cut-

and-paste� approach due to Penrose [38] [39] and the boosted black hole construction due to Aichelburg

and Sexl [40], which were then generalized by Dray and 't Hooft to include backgrounds of non-constant

curvature [2]. We will focus here on the cut-and-paste method. We take a background space-time,

denoted by M, which we divide along a null hypersurface into two patches, denoted by M` and M´.

We then apply a `warp', given by a translation of one of the light-cone coordinates parametrized by

a function of the transversal coordinates, to one patch of the space-time, say M`. The two patches

are then glued back together, which introduces non-zero energy-momentum at the hyperplane. The

cut-and-paste method is illustrated in �gure 3. Let us consider this construction in Minkowski space.

We write the Minkowski metric in Cartesian light-cone coordinates as

ds2 “ ´dūdv̄ ` dζdζ̄ ,

where

v̄ “ t` z , ū “ t´ z , ζ “ x` iy .

We cover the two patches M` and M´ by coordinate charts given by pu, v, ζ, ζ̄q and pu1, v1, ζ 1, ζ̄ 1q,

respectively. Let us consider a situation where u1 “ u and ζ 1 “ ζ but v1 “ v ` F pζ, ζ̄q, where F pζ, ζ̄q

is known as the the warp function, which is equivalent to the shift function we will encounter in the

Dray-'t Hooft construction to be considered below. This function tells us how the advanced time

coordinate v is shifted as we go from M´ to M`. We place the boundary between M` and M´ at

u “ 0. The Penrose junction condition is the condition that the coordinates are continuous at the

boundary, which can be written as

pu “ 0, v, ζ, ζ̄qM´ “ pu “ 0, v ` F pζ, ζ̄q, ζ, ζ̄qM` . (67)
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The metric for the full space is then given by

ds2
0 “ ´dvdu´ duθpuq

`

BζFdζ ` Bζ̄Fdζ̄
˘

` dζdζ̄ . (68)

We perform the following coordinate transformation

v Ñ v ´ θpuqF ,

which gives

ds2 “ ds2
0 ´ δpuqFdu

2 . (69)

For the case of a single particle located at u “ 0 “ ζ, we have an energy-momentum tensor of the form

Tµν “ µδpuqδp2qpζqpBuqµpBuqν .

By using the fact that Einstein's equations are given by

∆hF “ 2BζBζ̄F “ 8πTuu , (70)

where ∆h is the Laplacian of the transversal part of the metric, as well as the fact that BζBζ̄ lnpζζ̄q “

4πδp2qpζq1, we �nd that the corresponding shift function is given by

F “ 2µ lnpζζ̄qδpuq . (71)

The resulting metric is know as the AichelBurg-Sexl metric [40]. Aichelburg and Sexl arrived at this

metric via a di�erent approach than the cut-and-paste method, namely, by boosting a black hole to

the speed of light (v Ñ 8) whilst simultaneously taking its mass to zero (mÑ 0) in such a way that

its energy with respect to a stationary observer, µ “ mp1 ´ v2q´1{2, is kept constant. We will not

consider this approach further since it does not lead to conceptual clari�cation for the purposes of this

thesis.

Following Dray and 't Hooft [2], the cut-and-paste method can be generalized to background metrics

with non-constant curvature. Starting from the following metric ansatz

1To show that BζBζ̄ lnpζζ̄q “ 4πδp2qpζq, we revert back to Cartesian coordinates by writing ζ “ x` iy and integrate

over d2ζ. The left hand side gives
ş

d2ζB ln
`

ζζ̄
˘

“
ű xdy´ydx

x2`y2
, where we used Stokes' theorem. De�ning reiθ “ x ` iy,

the left hand side reduces to
ş

dθ “ 4π. Dividing this expression by two and taking the positive root of the argument of

the logarithm so that it remains real-valued, we �nd that BζBζ̄ lnpζζ̄q “ 4πδp2qpζq.
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Figure 3: In the cut-and-paste method of constructing shock waves, the space-time M is divided into
two patches M´ and M` along a null hypersurface. One then applies a warp to one of the two
patches, after which the patches are glued back together. This induces a non-zero energy-momentum
distribution on the null hypersurface along which the cut was made. Image adapted from [41].

ds2
0 “ 2Apu, vqdudv ` 2gpu, vqhpζ, ζ̄qdζdζ̄ , (72)

and following analogous steps to those outlined above, we arrive at

ds2 “ ds2
0 ´Apu, vqF pζ, ζ̄qδpũqdu

2 , (73)

where ũ is the retarded time coordinate of the null hypersurface along which the space-time was cut,

which is where the source of the shock wave is located. The metric components and the shift function

are required to satisfy

δpũq

ˆ

A

g
∆h ´

BuBvg

g

˙

F “ 8πTuu , BvA
∣∣∣
u“ũ

“ 0 “ Bvg
∣∣∣
u“ũ

, (74)

where ∆h is again the transversal Laplacian, now no longer necessarily Cartesian. For the case of

a shock wave on a Schwarzschild black hole background, the last equality forces the shock wave to

propagate along the event horizon. We will return to this point in due time. For the case of Minkowski

space, we have

A “ ´
1

2
, g “ 1 ,

so that we recover the shift function of the Aichelburg-Sexl metric (70).
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2.2 Derivation of the shock wave S-matrix

We now consider the e�ect a of a shock wave on massless geodesics and use it to derive a gravitational

S-matrix [4]. Labelling the two transversal coordinates by ΘA P pζ, ζ̄q, the massless geodesics of the

Aichelburg-Sexl metric in (69) and (70), are given by

vpuq “ v0 ` θpuq pF ` uBuΘApuqBAF q

ΘApuq “ Θ0
A ´

1

2
uθpuqBAF . (75)

We would like to consider gravitational scattering for which the transverse distance between inter-

acting particles, which is known as the impact parameter, is very large compared to the longitudinal

wavelengths of interacting particles. In the example of an Aichelburg-Sexl metric sourced by a particle

at ζ “ 0, the impact parameter is given by b :“
a

ζζ̄. For situations where, in natural units, µb ! 1,

we can ignore terms in (75) proportional to BAF „ 1
b . That is, we only take into account the shift

that the shock wave induces on other massless particles.

We now consider a gravitational scattering process given by some in-state |in0y, a scattering matrix S,

and an out-state given by |out0y “ S |in0y. The amplitude is written as

N “ xin0|out0y , (76)

where N is some numerical factor of which the absolute value is �xed by requiring unitarity but which

has a phase that is in principle arbitrarty. We restrict to situations where the Hilbert space is spanned

by the momentum distributions, so that we can write |in0y “ |pin0
y and |out0y “ |pout0y. We now use

the Aichelburg-Sexl metric to express the e�ect of momentum perturbations around our previous in-

and out-states. Namely, if we add a particle with some null-like longitudinal four-momentum δpin at

some transverse distance ζ, the position of outgoing particles in our space-time are shifted as

δuoutpζ
1q “ F pζ ´ ζ 1qδpinpζq . (77)

The e�ect on the out-state is then given by

S |pin0
` δpiny “ exp ripoutδvs |pout0y . (78)

If we now consider adding momenta given by a distribution in the form of pinpζq to |in0y, the e�ect on

the scattering process is [4]
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xout|S|iny “ xout0|S|in0y exp

„

4i

ż

d2ζ 1poutpζ
1q ln|ζ 1 ´ ζ| pin pζq



(79)

Since we assume that the Hilbert space is completely spanned by the momentum distributions pin pζq

and pout pζq, we can write a unitary scattering matrix as

@

pout
`

ζ 1
˘
ˇ

ˇS
ˇ

ˇpin pζq
D

“ N exp

„

4i

ż

d2ζ 1pout
`

ζ 1
˘

ln|ζ 1 ´ ζ|pin pζq


. (80)

uin and uout are the positions canonically conjugate to pin and pout, respectively. We set these to zero

prior to the insertion of in- and out-momenta i.e. u0
in
“ 0 “ u0

out
. uin and uout are then given in terms

of pout and pin by

uout pζq “ ´4

ż

d2ζ 1pin
`

ζ 1
˘

ln|ζ ´ ζ 1|

uin pζq “ 4

ż

d2ζ 1pout
`

ζ 1
˘

ln|ζ ´ ζ 1| . (81)

From the canonical commutation relations, given by

“

uinpζq, pinpζ
1q
‰

“ iδp2qpζ ´ ζ 1q “
“

uoutpζq, poutpζ
1q
‰

,

we �nd that the shift e�ect induced by the shock wave gives rise to additional non-trivial commutation

relations, given by

“

uinpζq, uoutpζ
1q
‰

“ ´4i ln|ζ ´ ζ 1| ,
“

pinpζq, poutpζ
1q
‰

“ ´
i

8π
BζBζ̄δ

p2qpζ ´ ζ 1q . (82)

For notational convenience, we write uin “ x` and uout “ x´. The in- and out-momenta are then

given in terms of in- and out-going energy-momentum tensors as

pinpζq “

ż

T``px
`, x´, ζqdx`

∣∣∣
x´“0

,

poutpζq “ ´

ż

T´´px
`, x´, ζqdx´

∣∣∣
x`“0

. (83)

Using the fact that the shock wave metric in (73) is in Kerr-Schild form, Aichelburg and Balasin [42]

[43] have shown that pin and pout are the Bondi momenta of the �at space shock wave, the future and
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past limits of which are equal to the supertranslation charge at I´ and I`, respectively. We review

the Kerr-Schild decomposition and the computation of the Bondi momentum of the Aichelburg-Sexl

shock wave in appendix A.

Let us now consider the metric of the Schwarzschild black hole, which, in tortoise coordinates is given

by

ds2 “

ˆ

1´
2M

r

˙

`

´dt2 ` pdr˚q2
˘

r2
`

dθ2 ` sin2 θdϕ2
˘

, (84)

where

r˚ :“ r ` 2M ln
´ r

2M
´ 1

¯

.

The equation of motion of a massless scalar �eld φ is given in these coordinates by

B2
t φ “

„

1

4M
pBr˚q

2 `
2M

r2
Br˚ `

1

r2

ˆ

1´
2M

r

˙

`p`` 1q



φ . (85)

We thus see that the term coming from angular momentum goes to zero as we approach the event

horizon at r “ 2M . We thus get a separation between longitudinal and transversal length scales as

we approach the horizon, so that we can ignore angular momentum as we approach the horizon and

instead focus on the longitudinal shift that is induced by the shock waves of highly energetic particles,

as we did for the case of Minkowski space. We now go to Kruskal coordinates, which are de�ned as

V :“ epr
˚
`tq{4M ,

U :“ ´epr
˚
´tq{4M . (86)

r and t are implicitly given in terms of U and V by

UV “ ´
´ r

2M
´ 1

¯

er{2M

V {U “ et{2M (87)

The Schwarzschild metric is given in these coordinates by

ds2 “ ´
32M3

r
e´r{2MdV dU ` r2

`

dθ2 ` sin2 θdϕ2
˘

, (88)

i.e. A “ ´ 16M3

r e´r{2M and g “ r2 in metric ansatz (74). From the �rst equality of (87) we see that
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BV r “ ´
4M2Ue´r{2M

r
“
U

V
BUr ,

so that BV r 9 U and BUr 9 V . From the last equality of (74), we have

BV g “ 2rBV r “ ´8M2Ue´r{2M , (89)

which is required to equal zero at the U -coordinate of the shock wave. We thus see that a shock wave

travelling along the V -direction is required to lie at U “ 0, the converse holds for a shock wave travelling

along the U -direction. The future (past) event horizon of the Schwarzschild black hole is located at

U “ 0 (V “ 0), so that the shock wave travels along the horizon. As opposed to the Aichelburg-Sexl

metric, one therefore cannot take a meaningful limit to I, which complicates comparison with the

BMS-formalism. We compute

BUBV g “ ´8M2

ˆ

1´
U

2M
BUr

˙

e´r{2M “ ´
16M3

r
e´r{2M “ A ,

where we used the �rst equality in (87). From the �rst equality of (74), the shift function is then

required to satisfy

`

D2 ´ 1
˘

F
`

Ω,Ω1
˘

“ 32πP pgAq
ˇ

ˇ

ˇ

U“0
δpd´2q

`

Ω,Ω1
˘

“: ´κ̃δpd´2q
`

Ω,Ω1
˘

, κ̃ :“ 210πe´1M4P , (90)

where we use spherical coordinates Ω “ pθ, ϕq and with corresponding Laplacian ∆Ω “ D2. We then

de�ne

U` :“ αRV , U´ :“ βRU ,

P` :“ γ
Pout
R3

, P´ :“ δ
Pin
R3

. (91)

Here, α, β, γ, δ P t`,´u, so that these coordinates cover both patches of our maximally extended

spacetime, indicated in �gure 4. Namely, for positive α and negative β, U˘ cover region I, while, for

inverted signs, U˘ cover region II. As quantum operators, the positions and momenta satisfy

“

U˘pΩq, P¯pΩ1q
‰

“ iδp2qpΩ´ Ω1q , (92)

where U˘ and P˘ are to be interpreted as their corresponding operators henceforth. De�ning
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F̃ pΩ,Ω1q “
FpΩ,Ω1q

κ̃ and writing the Schwarzschild radius as RM , the e�ect of the shift is given

by [4]

V pΩq “ ´8πR2

ż

dd´2Ω1F̃
`

Ω,Ω1
˘

Pout
`

Ω1
˘

,

U pΩq “ 8πR2

ż

dd´2Ω1F̃
`

Ω,Ω1
˘

Pin
`

Ω1
˘

, (93)

where we distinguish between particles going into and coming out of the event horizon, with corre-

sponding momenta Pin and Pout, respectively. As in the case of Minkowski space, the fact that the

insertion of momenta induces a shift in the positions leads to an additional set of commutation relations

“

U`pΩq, U´pΩ1q
‰

“ iF̃ pΩ´ Ω1q . (94)

We expand U˘ and P˘ in spherical harmonics:

U˘ pΩq “
ÿ

`,m

U˘`mY`m pΩq , P˘ pΩq “
ÿ

`,m

P˘`mY`m pΩq . (95)

The coe�cients in the above expansion satisfy

”

U˘`,m, P
¯
`1,m1

ı

“ iδ``1δmm1 , (96)

which follows immediately plugging (95) into (94). Expanding both sides of (93) and using (90) gives

`

D2 ´ 1
˘

ÿ

`,m

U˘`mY`m pΩq “ ˘8πR´2

ż

dd´2Ω1δ
`

Ω,Ω1
˘

ÿ

`1,m1

P˘`1m1Y`1m1
`

Ω1
˘

´
ÿ

`,m

`

`2 ` `` 1
˘

U˘`mY`m pΩq “ ˘8πR´2
ÿ

`1,m1

P˘`1m1Y`1m1 pΩq

We thus arrive at a very elegant expression relating U˘ to P˘ [17]

U˘`m “ ¯
8π

R2 p`2 ` `` 1q
P˘`m “: ¯λP˘`m (97)

The additional commutation relations can then be succinctly expressed as
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”

U``,m, U
´
`1,m1

ı

“ iλδ``1δmm1 ,

”

P``,m, P
´
`1,m1

ı

“ ´
i

λ
δ``1δmm1 . (98)

We see that the di�erent ` - and m - modes completely decouple. We now consider a single p`,mq-pair

and drop the subscripts on U˘ and P˘ for notational convenience. From (98), we see that we can

write the position operators as U˘ “ ˘iλBU¯ . Accordingly, the inner products of the eigenstates of

U˘ and P˘ are given by

@

U˘
ˇ

ˇP¯
D

“
1
?

2π
exp

`

iU˘P˘
˘

,

@

U`
ˇ

ˇU´
D

“
1

?
2πλ

exp

ˆ

iU`U´

λ

˙

,

@

P`
ˇ

ˇP´
D

“

c

λ

2π
exp

`

iλP`P´
˘

. (99)

From the second of the above equalities, we �nd, for an arbitrary state |ψy

@

U´
ˇ

ˇψ
D

“ ψout
`

U´
˘

“

ż 8

´8

dU`
“@

U´
ˇ

ˇU`
D @

U`
ˇ

ˇψ
D‰

“

ż 8

´8

dU`
?

2πλ
exp

`

´iU`U´{λ
˘

ψin
`

U`
˘

,

(100)

Where the `in' and `out' superscripts for ψ indicate that the in- and outgoing states are de�ned in

terms of U` and U´, respectively. We thus see from (100) that the in- and outgoing wavefunctions

are related by a simple Fourier transformation. From the fact that the map between ψout and ψin is

a Fourier transformation, which is an invertible operation, it follows that the scattering matrix that

relates ψout to ψin is unitary. We now derive a more explicit form of the scattering matrix to further

clarify this point. To do so, we introduce tortoise coordinates ρ˘ as

U` “: αeρ
`

, U´ “: βeρ
´

, (101)

so that ρ˘ is given by

ρ˘ “
1

4M
pr˚ ˘ tq ` lnp2Mq . (102)

Demanding that ψ pU`q is normalized to unity gives
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1 “

ż 8

´8

ˇ

ˇψ
`

U`
˘
ˇ

ˇ

2
dU` “

ż 0

´8

ˇ

ˇψ
`

U`
˘
ˇ

ˇ

2
dU` `

ż 8

0

ˇ

ˇψ
`

U`
˘
ˇ

ˇ

2
dU`

“
ÿ

αPt`,´u

ż 8

´8

ˇ

ˇ

ˇ
ψ
´

αeρ
`
¯
ˇ

ˇ

ˇ

2

eρ
`

dρ` . (103)

The same result holds for ψpU´q i.e. we simply replace U`, ρ`, and α in (103) by U´, ρ´, and β. We

then de�ne convenient new �eld variables as

φpα, ρ`q “ eρ
`
{2ψpαeρ

`

q , φpβ, ρ´q “ eρ
´
{2ψpαeρ

´

q . (104)

Plugging this into (100) gives

φoutpβ, ρ´q “
1

?
2πλ

ż 8

´8

dU`e
ρ``ρ´

2 exp
`

´iU`U´{λ
˘

φinpα, ρ`q ,

“
ÿ

αPt`,´u

ż 8

´8

dx
?

2π
exp

´x

2
´ iαβex

¯

φinpα, x` log λ´ ρ´q , x :“ ρ` ` ρ´ ´ log λ .

Hence

˜

φoutp`, ρ´q

φoutp´, ρ´q

¸

“

ż 8

´8

dx

˜

A`pxq A´pxq

A´pxq A`pxq

¸˜

φinp`, ρ`q

φinp´, ρ`q

¸

, A˘pxq :“
1
?

2π
exp

´x

2
¯ iex

¯

.

(105)

We now go to momentum space by writing

φinp˘, ρ`q “

ż 8

´8

dk
?

2π
φ̃inp˘, kqe´ikρ

`

,

φoutp˘, ρ´q “

ż 8

´8

dk
?

2π
φ̃outp˘, kqe´ikρ

´

. (106)

De�ning X :“ ex and using the fact that

ż 8

0

dXX´p
1
2`ikqe˘iX “ Γ

ˆ

1

2
´ ik

˙

e˘
π
4 p2k`1q , (107)

we �nd that the S-matrix in momentum space for a single p`,mq-pair is given by [17]
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˜

φ̃outp`, kq

φ̃outp´, kq

¸

“
e´iπ{4
?

2π
Γ

ˆ

1

2
´ ik

˙ˆ

8π

R2p`2 ` `` 1q

˙´ik
˜

e´
1
2πk ie

1
2πk

ie
1
2πk e´

1
2πk

¸

loooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooon

“:S

˜

φ̃inp`, kq

φ̃outp´, kq

¸

. (108)

By using

∣∣∣Γˆ

1

2
´ ik

˙ ∣∣∣2 “ π

coshπk
,

we see that

S:S “ 1 , (109)

that is, the S-matrix is manifestly unitary. Note that both signs of α and β contribute to the S-matrix.

That is, the S-matrix in (108) has o�-diagonal elements which map between external regions I and

II in �gure 4, even though regions I and II are not in causal contact. Hence, a unitary scattering

requires demands that we have access to physical data in both external regions. One way to do so is

to identify regions I and II [5]; we will consider this point in the next section.

Before we consider the identi�cation of regions I and II, let us look at the symmetries of the black

hole S-matrix. These include, of course, the ten Poincaré symmetries. If we �x the center of mass

position of the black hole, the only remaining Poincaré symmetries are global rotations and time

translations, the latter of which are given by boosts in the radial coordinate. Rotation and time

translation symmetry give rise to the conservation of mass and angular momentum, respectively. The

statement that classical black holes are, in the absence of electromagnetism, fully characterized by their

mass and angular momentum is famously known as the no-hair theorem. The black hole S-matrix,

however, has an in�nite symmetry group. Namely, for every pair of angular quantum numbers p`,mq,

we can freely perform the following transformation

U``,m Ñ a`,mU
`
`,m ,

U´`,m Ñ
1

a`,m
U´`,m , a`,m P R , (110)

which, in tortoise coordinates, corresponds to

ρ``,m Ñ ρ``,m ` lnpa`,mq ,

ρ´`,m Ñ ρ´`,m ´ lnpa`,mq . (111)
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Figure 4: The maximally extended conformal (Penrose) diagram of the Schwarzschild black hole, with
regions I and II and I˘ indicated. As the direction of time is reversed between regions I and II, one
could justi�ably invert I´ and I` in region II; we choose them as such to simplify comparison with
Minkowski space. Additionally illustrated is the shift induced by the shock wave of a highly energetic
particle close to the horizon, given by the black arrow. We see that outgoing (Hawking) particles,
indiciated by colored arrows, are dragged in the direction of the energetic ingoing particle. Particles
which enter region I close to the horizon, such as the blue particle above, can be dragged across the
horizon and enter region II. This is the physical interpretation of the fact that the black hole S-matrix
transfers signals between ragions I and II. Image adapted from [5].

By looking at (105), we immediately see that the transformation in (111) leaves the S-matrix invariant.

In momentum space, this corresponds to

P``,m Ñ
1

pa`,mq
P``,m ,

P´`,m Ñ pa`,mqP
´
`,m . (112)

The on-shell condition for the momentum reads [4]

2P``,mP
´
`,m “ P̃ 2

`,m , (113)

where P̃`,m is the transversal momentum corresponding to p`,mq. We thus see that P̃`,m is conserved

under the symmetry transformation (112).
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2.3 Antipodal identi�cation and particle dragging

As can be seen from equations (105) and (108), the shock wave S-matrix takes particles from region I

to II (and back), hence we need to understand the meaning of region II in order to interpret shock

wave scattering on Schwarzschild black holes. If we assume that we can scatter shock waves from a

Schwarzschild black hole unitarily, then all the physical data should, in principle, be accessible to us.

We are thus led to identify regions I and II with a single copy of the external space-time of a black hole.

Let us consider the requirements such an identi�cation would need to satisfy. First of all, the metric

should be left invariant under this identi�cation, and the identi�cation itself should to be invariant

under Lorentz transformation and CPT-inversions. Further, we demand that this identi�cation has no

�xed points i.e. no points that are mapped to themselves. This requirement follows from the fact that

if we quotient a manifold by an equivalence relation which has a �xed point, the resulting quotient

manifold has (naked) conical singularities [44], which would violate the cosmic censorship conjecture

[45]. Lastly, the identi�cation has to be an involution, which means that the square of this map has

to equal the identity map. The full group of transformations which leaves the Schwarzschild metric

invariant is Op1, 3q, the (1+3)-dimensional Lorentz group, which has four connected components. We

can then apply a famous result due to Brouwer, which states that every map on an even-dimensional

sphere that has no �xed points is homotopy equivalent to the antipodal map [44]. We thus see that

the action of the identi�cation on the bifurcation sphere has to be the antipodal map, which is given

by

pθ, ϕq „ pπ ´ θ, π ` ϕq . (114)

Spherical symmetry precludes any identi�cation that is related to the antipodal map by some non-

trivial continuous map. That is, if we were to identify pθ, ϕq „ pπ´ θ, ϕ`π`αq with α P R, α ‰ 2πn,

n P Z, we would break spherical symmetry along the azimuthal angle. The bifurcation sphere is located

at U` “ 0 “ U´; for �nite values of U˘, the requirement that the identi�cation is an involution and

that it is invariant under Lorentz transformations leads us to identify U˘ „ ´U˘, so that the full

identi�cation is given by [5]

pU`, U´, θ, ϕq „ p´U`,´U´, π ´ θ, π ` ϕq . (115)

In terms of the canonically conjugate momenta, this gives

P˘pθ, ϕq “ ´P˘pπ ´ θ, π ` ϕq . (116)

We noted in equation (52) that

Y`,mpπ ´ θ, π ` ϕq “ p´1q`Y`,mpθ, ϕq ,
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we see that only the odd `-modes contribute to expansions of U˘`,m and P˘`,m in spherical harmonics

[5]. This entails that the symmetries in (110) and (112) have to antipodally matched as well. This

gives rise to a very similar picture to that of the supertranslations at I. Namely, we have an in�nite

number of symmetries at the event horizon given by independent translations of each p`,mq-pair of the

Kruskal coordinates as in (110). The event horizon of the Schwarzschild black hole is the light-cone

of the bifurcation sphere, where the transformations in (111) have to be antipodally matched for the

combined transformation to be a symmetry of the S-matrix. This entails that the physical data is

continuous along the null generators of the event horizon even as they pas through the bifurcation

sphere. Similarly, at I, we can independently translate each p`,mq-pair of advanced and retarded time

coordinates. I is the light-cone of i0; it is at i0 that the translations of advanced and retarded time

coordinates have to be antipodally matched for the combined transformation to be a di�eomorphism.

This is equivalent to the fact that the physical data is continuous along the generators of I even as they

pass through i0. However, these situations are not completely analogous, as the antipodal matching

at the event horizon is between Ua ą 0 and Ua ă 0, a P t`,´u. Nonetheless, this similarity warrants

further comparison between the two formalisms, which is the purpose of the remainder of this thesis.

It is interesting to note here that the degrees of freedom of the black hole S-Matrix can be represented

by an in�nite number of inverted harmonic oscillators, one for each partial wave [46]. This gives a map

from the boosts at in�nity to a unique Hamiltonian for the dilatation operator on the null-horizon.

One might wonder whether all the asymptotic symmetries, in particular BMS-symmetries, have such

a near-horizon map, as this would provide a very direct link between the two formalisms.

To summarize, we considered the gravitational scattering of massless particles whose longitudinal

wavelengths are much smaller than their mutual impact parameter, such as is typically the case close

to the event horizon of a black hole. By considering the longitudinal shift induced by the shock wave

of an ingoing particle on the positions of outgoing particles, we follow 't Hooft and derive a unitary

gravitational S-matrix. In the case of an eternal black hole, the S-matrix has non-zero elements

which map between between external regions I and II. Assuming that the physical data in a single

external region of a black hole provides a unitary description thus leads us to identify regions I and

II. By demanding that this identi�cation leaves the metric invariant, that it is an involution with no

�xed points, and that it is invariant under Lorentz- and CPT-transformations, we arrive at antipodal

identi�cation of regions I and II.
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3 Relating the two formalisms

We �nished chapter 1 by noting that the BMS-formalism is very general, as it describes a large class

of cases including those where one has highly non-linear e�ects, such as black hole formation and

evaporation, in the interior. The price one pays for this is that the description is limited to the

boundary of space-time, where gravity is weakly coupled and well-behaved. It is, in general, unclear

how to extend the action of BMS-transformations from null in�nity into the interior. We would like to

see how BMS-transformations act on explicit examples of gravitational scattering, in particular, the

shock wave S-matrix described in the previous chapter. The reasons for applying the BMS-formalism

to shock wave scattering go beyond the fact that this provides an explicit example, as there are many

similarities between the two formalisms. Indeed, in the process of writing this thesis, we found that

several allusions to analogies between the two formalisms had previously appeared in the literature.

For example, Arcioni and Dappiaggi stated on the BMS-formalism that �The �nal picture one gets is

quite similar to the scenario proposed by 't Hooft [...] in the context of black holes� (page 36 of [15]),

citing in particular the fact that the relevant degrees of freedom reside on the boundary of space-time.

In another paper, Arcioni points out a similarity between the small angle behaviour of the membrane

paradigm Green's function and the shift function at the boundary of a black hole [16]. More recently,

Penna has shown that the conserved charges of the membrane paradigm are the same as those arising

from BMS-invariance [47], hence Arcioni pointed out another analogy between the BMS-formalism and

the shock wave S-matrix, albeit likely unknowingly. Similarly, 't Hooft mentions the apparent close

relation between the BMS approach and the black hole S-matrix [17]. Lastly, Hawking, Perry, and

Strominger (HPS) point out in a footnote of one of their papers [6] the similarity between expressions

appearing in the shock wave scattering formalism and the (electromagnetic) BMS-formalism, where

they cite discussions on the matter with Polchinski. They state that �Perhaps future work will relate

these e�ects� (footnote 9 of [6]); this is the aim of the remainder of this thesis.

Using an alternative derivation due to the Verlindes [18], we will �nd that the shock wave S-matrix in

Minkowski space is invariant under translations of the asymptotic time coordinate that are allowed to

depend on transversal coordinates. This will lead to antipodal matching of in- and outgoing momentum

�ux between I` and I´, which, in the absence of gravitational wave, corresponds to antipodally

matched supertranslation charge. Shock wave scattering in Minkowski space thus provides an an

explicit example of recent �ndings by Strominger and collaborators, which had thus far gone unnoticed

in the literature. We then consider the case of an eternal black hole, where there are clear similarities

but the overall analogy is much less apparent, in particular since the BMS-formalism is still under

development here. We consider the e�ect of a linearized supertranslation induced by a shock wave as

derived by HPS [7] and show that the resulting shift of the event horizon satis�es the same expression as

the Dray-'t Hooft shock wave [2]. We then brie�y review the derivation of BMS-like symmetries acting

on the event horizon of a black hole [19] [20]. We show that the Dray-'t Hooft shock wave in tortoise

coordinates satis�es the required fall-o� conditions and that it implants a non-zero superrotation charge

at the horizon. However, as the black hole S-matrix is based on the shock wave in Kruskal coordinates,
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this result is as yet of limited relevance to the S-matrix formalism. We consider how these results could

provide a description of shock wave scattering o� black holes in terms of BMS-charges and, conversely,

what the S-matrix formalism could tell us about the BMS-matching condition in the context of black

holes.

3.1 Lagrangian approach to shock wave scattering

One can derive the shock wave scattering matrix in Minkowski space using a Lagrangian approach,

which is better suited to comparison with the BMS group at null in�nity. Due to the fact that the

�nal result is the same as that of section 2.2, we do not repeat all steps of the derivation here; more

details can be found in [18]. We again consider a situation with a hierarchy between longitudinal and

transversal scales. If the coordinates are kept dimensionless, the dimension of the metric is plengthq2.

For a system with typical length scale L, the corresponding metric scales as

Gµν “ L2Ĝµν , (117)

where Ĝµν is dimensionless. The dimensionality of the Einstein-Hilbert action SEH rGs “
ş
?
GR is

also given by plengthq2, so that it satis�es

SEH rGs “ SEH rL
2Ĝs “ L2SEH rĜs . (118)

Although, in quantum gravity, we need to integrate over all metrics, the main contribution arises from

metrics with a typical size that is comparable to the size of the system. It is therefore natural to expect

that ĝµν “ Op1q, so that the coupling constant multiplying SEH is

gpLq “
`Pl
L

, (119)

where `Pl is the Planck length. This line of reasoning is often used to argue that, when L „ `Pl, the

system becomes strongly coupled. Consider now a situation where particles with Planckian energies

scatter at impact parameters much larges than Planck length. This situation is thus characterized by

a longitudinal length scale {̀{ „ `Pl and a transversal length scale `K " `Pl. We write longitudinal

coordinates as xα “: pt, xq, the transversal coordinates are written as x̃i “ py, zq. Following [18], we

then make the following gauge choice

Gµν “

˜

gαβ 0

0 hij

¸

. (120)

Following the previous discussion, we extract the typical length scales from gαβ and hij as follows
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gαβ “ `2{{ ĝαβ

hij “ `2Kĥij . (121)

A straightforward calculation, done in the appendix of [18], reveals that the Einstein-Hilbert action

splits up into a longitudinal and a transversal part, i.e. SEH rGs “ S{{rg, hs ` SKrg, hs, in the following

manner

SEH rGs “

ż

d2x
a

gh

ˆ

Rh `
1

4
hijBigαβBjgγδε

αγεβδ
˙

looooooooooooooooooooooooooomooooooooooooooooooooooooooon

“:S{{

`

ż

d2y
a

gh

ˆ

Rg `
1

4
gαβBαhijBβhklε

ikεjl
˙

looooooooooooooooooooooooooomooooooooooooooooooooooooooon

“:SK

.

(122)

Here, Rg and Rh are the Ricci scalars corresponding to gαβ and hij , respectively, and the Levi-Civita

symbols εαβ and εij include appropriate factors of metric determinants so that they transform as

tensors. The components of the action are referred to as longitudinal and transversal from their

dependence on the corresponding length scales, which is given by

S{{

”

`2{{ ĝ, `
2
Kĥ

ı

“ `2{{S{{

”

ĝ, ĥ
ı

SK

”

`2{{ ĝ, `
2
Kĥ

ı

“ `2KSK

”

ĝ, ĥ
ı

. (123)

After dividing the action by `2
Pl
, we see that this scattering regime is characterized by two distinct

coupling constants

g{{ :“
`Pl

{̀{

„ 1

gK :“
`Pl
`K
! 1 . (124)

From the fact that gK ! 1, we see that SK is very weakly coupled, so that we can limit ourselves to

consider only con�gurations with

SK “ 0 . (125)

We write the metric in a convenient parametrization given by
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gαβ “ eφpX,Y qηabBαX
aBβX

b

hij “ eχpX,Y qδpqBiY
pBjY

q . (126)

Xa can thus be seen as maps of the two-dimensional xα - plane which are allowed to vary in the

y-direction; a similar interpretation holds for Y p. Demanding that equation (125) is satis�ed leads to

Bαhij “ 0

Rg “ 0 . (127)

The metric which satis�es these conditions is of the form

hij “ hijpx̃q

gαβ “ ηabBαX
aBβX

b . (128)

We see from Bαhij “ 0 that there are no gravitational waves, as these are time-dependent �uctuations of

the transverse traceless part of the metric. The authors of [18] then apply this formalism to Minkowski

space, which we denote by M. They thus consider the scattering of Aichelburg-Sexl shock waves, as

we considered at the start of section 2.2. One can then show that S{{ is equal to a total derivative, so

that it reduces to an action at the boundary of M, which we denote by BM. For the case of Minkowski

space, BM “ I. We write the boundary values of Xa as

X̄a :“ Xa
∣∣∣
BM

. (129)

The boundary action is then given by

SBM
“

X̄
‰

“

ż

dxα
ż

?
hεab

`

BiX̄
aBαB

iX̄b `RhX̄
aBαX̄

b
˘

. (130)

The authors of [18] then introduce a `time' variable τ to parametrize xαpτq, which are given by advanced

and retarded time at I´ and I`, respectively. The boundary action is then given by

SBM
“

X̄
‰

“

ż

dτ

ż

?
hεabBτ X̄

ap∆h ´RhqX̄
b , (131)

so that the canonically conjugate momentum of X̄a is
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εabPb :“ p∆h ´RhqBτ X̄
a . (132)

Canonical quantization then to the following commutation relation

“

X̄apx̃q, X̄bpx̃1q
‰

“ iεabF px̃´ x̃1q , (133)

where

p∆h ´RhqF px̃´ x̃
1q “ δp2qpx̃´ x̃1q . (134)

By comparing with equation (74) and (81), we see that these results are the same as those derived

previously by 't Hooft [3] [4]. Note that the boundary action is invariant under the transformation

X̄apx̃, τq Ñ X̄apx̃, τq ` fpx̃q , (135)

where fpx̃q is an arbitrary function of the transversal coordinates. The fact that this is a symmetry

of the theory could already be seen from the fact that it leaves gαβ in (128) invariant. Note that the

symmetry transformation given in (135) is very similar to a supertranslation, as it is a translation of

the time coordinate parametrized by a function which is allowed to depend on transversal coordinates.

To make this analogy more precise, we consider the conserved charge corresponding to this symmetry.

By plugging (135) into (131) and using (132), we �nd [18]

ż

dτd2x̃fpx̃qPapτ, x̃q “ 0 . (136)

By choosing fpx̃q to be proportional to δp2qpx̃0q for some x̃0, this gives

ż

dτP in

a pτ, x̃0q “ ´

ż

dτP out

a pτ, x̃0q . (137)

We now look at how equation (137) gives antipodal matching of supertranslation charge as in (62).

The limits t Ñ `8 and t Ñ ´8 take us to I` and I´, respectively. We write x˘ “ t ˘ x, where

x is the Cartesian coordinate, as below (120). Then, for a particular value x´0 “ constant, the limits

to I` and I´ correspond to x Ñ `8 and x Ñ ´8, respectively. Choosing our coordinate system

such that x “ r cos θ, x̃ “ 0 corresponds to θ “ π for x ă 0 and to θ “ 0 for x ą 0. Hence,
ş

dτP in
a pτ, x̃ “ 0q “ ´

ş

dτP out
a pτ, x̃ “ 0q for a “ ` gives antipodal matching of ingoing momentum

�ux at θ “ π and outgoing momentum �ux at θ “ π, the converse is found for a “ ´. As there are no

gravitational waves generated by shock wave scattering in Minkowski space, as we noted below equation

(128), it seems from equations (63) and (83) that the conserved charge in (136) is the supertranslation
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Figure 5: The type of scattering considered above concerns the map between in- and outgoing momen-
tum distributions P in

˘ and P out
˘ . From time-independent reparametrization invariance of the boundary

coordinates X̄a, it follows that
ş

dτP in
a pτ, x̃q “

ş

dτP out
a pτ, x̃q, @ x̃, a P t`,´u. Image taken from [18].

charge of the Aichelburg-Sexl shock waves which we scatter here. Aichelburg and Balasin have shown

that this is indeed the case [42] [43]. This calculation, which is somewhat non-trivial due to the

distribution-valued and plane-fronted nature of the Aichelburg-Sexl shock wave, is summarized in

appendix B.

To summarize, we have shown that the antipodal supertranslation charge conservation, found recently

by Strominger and collaborators [13] [14], is explicitly realized in the older work of 't Hooft [2] [4],

as is evident in later work by the Verlindes [18]. As far as we are aware, this fact has thus far gone

unnoticed in the literature.

3.2 BMS analysis of Schwarzschild metrics

We would like to extend the above analysis to the case of Schwarzschild black holes. As stated at

the start of this chapter, the BMS-formalism is much less understood in this context than in the

case of Minkowski space. The main reason for this is that supertranslations act at null in�nity; it is

generally very complicated to extend their non-linear action into the interior of space-time. Indeed, as

emphasised before, the reason for considering the symmetries at null in�nity is that gravity becomes

weakly coupled here, so that non-linear e�ects can be ignored. Further, the antipodal matching of BMS-

transformations has been shown for Christodoulou-Klainermann spaces which, from the requirement

that the Bondi mass aspect goes to zero at past and future time-like in�nity (47), do not include

Schwarzschild black holes. Indeed, as classical massless particles entering space-time at I´ will simply

disappear into the black hole without leaving a trace at I`, it is not clear how supertranslations should
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be matched between I´ and I` in the presence of an eternal black hole.

We therefore consider a linearized treatment of BMS-transformations on a Schwarzschild black hole

due to Hawking, Perry, and Strominger (HPS) [7]. We will see how a shock wave with a non-trivial

spherical pro�le induces a supertranslation and compare its e�ect on the event horizon to that of a

Dray-'t Hooft shock wave. The Schwarzschild metric is written in advanced Bondi coordinates as

ds2 “ ´V dv2 ` 2dvdr ` 2r2γABdΘAdΘB , V :“ 1´
2M

r
. (138)

HPS assume that the Bondi news falls as 1
|v|3{2 or faster, so that CAB remains �nite at the future and

past boundaries of I´ and I`, respectively. They then assume antipodal matching as in equation (50),

which would lead to antipodal matching of supertranslations as well. However, no further physical for

this antipodal matching is given by HPS, nor, as far as we are aware, anywhere else in the literature.

We return to this point at the end of this section. Let us consider an in�netesimal supertranslation

parametrized by a vector �eld ξ which preserves Bondi gauge. This result was derived in section 1.2

and is repeated here for convenience

ξ “ ξµBµ “ fBv `
1

r
DAfBA ´

1

2
D2fBr , f “ fpΘq . (139)

The linearized action of this supertranslation on the metric components is given by

Lξgvv “
MD2f

r2
,

LξgvA “ ´
1

2
DA

`

2V f `D2f
˘

,

LξgAB “ r
`

2DADBf ´ γABD
2f
˘

, (140)

so that the supertranslated Schwarzschild metric is

ds2 ` Lξds2 “´

ˆ

V ´
MD2f

r2

˙

dv2 ` 2dvdr ´ p2V f `D2fqdvdΘA`

` pr2γAB ` 2rDADBf ´ rγABD
2fqdΘAdΘB . (141)

After a supertranslation, the event horizon of a Schwarzschild black hole is thus located at

R` LξR “ 2M `
1

2
D2f . (142)

Note that a supertranslation does not implant linearized supertranslation charge on a Schwarzschild
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black hole, as we still have mB “ M in (140). This is similar to the fact that a regular translation

or does not impart momentum on a black hole. However, by comparing with (13), we see that the

angular momentum aspect of a supertranslated Schwarzschild black hole is

LfNA “ ´3MBAf , (143)

so that its linearized superrotation charge, given by expression (66), is [7]

Q´Y “ ´
3

8π

ż

I´
`

d2Θ
?
γMY ABAf . (144)

Therefore, supertranslations implant superrotation charges on a Schwarzschild background. Following

HPS [7], we show that a Schwarzschild black hole can be supertranslated by sending in a shock wave

with a non-trivial spherical pro�le. As we saw in the review of the cut-and-paste method, a shock

wave can be seen as a hyperplane along which geodesics undergo an instantaneous supertranslation,

namely, geodesics are instantaneously shifted along a function of the transversal coordinates. Let us

see what the form is of a supertranslation induced by a linearized shock wave on a Schwarzschild black

hole background. We consider a shock wave of the following form

Tvv “
µ` T̂ pΘq

4πr2
δpv ´ v0q . (145)

In order to satisfy ∇aTab “ 0, we require 1{r-corrections to the energy momentum tensor as

Tvv “
1

4πr2

ˆ

µ` T̂ `
1

r
T̂ p1q

˙

δpv ´ v0q

TvA “
T̂A

4πr2
δpv ´ v0q . (146)

We assume that T̂ only has ` ě 2 - components in the expansion in spherical waves, so that its

momentum is equal to zero. The ` “ 0 - term is of course given by µ. T̂ p1q and T̂A are then determined

by

pD2 ` 2qT̂ p1q “ ´6MT̂ , DAT̂A “ T̂ p1q .

We introduce a Green's function implicitly de�ned as

1

4
D2pD2 ` 2qGpΘ; Θ̃q “

1
?
γ
δp2qp∆Θq , (147)
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where ∆Θ is the angle between ΘA and Θ̃A. This is solved by

GpΘ; Θ̃q “
1

π
sin2 ∆Θ

2
ln sin2 ∆Θ

2
. (148)

We then de�ne a function ĈpΘq as

ĈpΘq :“

ż

dΘ̃GpΘ; Θ̃qT̂ pΘq , (149)

in which the components of the energy momentum tensor are expressed as

T̂ “
1

4
D2pD2 ` 2qĈ ,

T̂ p1q “ ´
3M

2
D2Ĉ ,

T̂
p1q
A “ ´

3M

2
BAĈ , (150)

so that the �nal result is given by

Tvv “
1

4πr2

„

µ`
1

4
D2pD2 ` 2qĈ



δpv ´ v0q ´
3M

8πr3
D2Ĉδpv ´ v0q

TvA “ ´
3M

8πr2
DAĈδpv ´ v0q . (151)

By evaluating Tvv at r “ 2M , we �nd

Tvv

∣∣∣
r“2M

“
1

16πM2

„

µ`
1

4
D2pD2 ´ 1qĈ



δpv ´ v0q,

which has a similar form to the de�ning function of the shift equation of the Dray - 't Hooft shock

wave in (90). We will further consider this point below. Solving Einstein's equations at I´ then gives,

to leading order in 1{r

Bvm “
1

4
DADBN

AB ` pµ` T̂ pΘqqδpv ´ v0q , (152)

which is the result found in (43). HPS assume that BAm “ 0 at all times. They then integrate (152)

over S2 to �nd

m “M ` µθpv ´ v0q . (153)
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We thus have to solve

DADBC
AB “ ´4T̂ pΘAqθpv ´ v0q “ ´D

2pD2 ` 2qĈθpv ´ v0q . (154)

We use the fact that covariant derivatives on the unit sphere act as

“

DB , DA

‰

VB “ VA , (155)

for general vector VB on S2. The solution is then given by

CAB “ ´2θpv ´ v0q

ˆ

DADBĈ ´
1

2
γABD

2Ĉ

˙

.

From the tracelessness of CAB , we easily see that

1

8
NABN

AB “
1

2

ˆ

DADBĈ ´
1

2
γABD

2Ĉ

˙ˆ

DADBĈ ´
1

2
γABD2Ĉ

˙

pδpv ´ v0qq
2 ,

“
1

2

´

pDADBĈqpD
ADBĈq

¯

pδpv ´ v0qq
2 . (156)

Hence the square of the Bondi news gives a square of δpv ´ v0q, which is not well-de�ned even in a

distributional sense. Interestingly, δ2-terms also appear in the calculation of the shock wave metric by

Dray and 't Hooft [2], where one can show by replacing them with the limit of a Gaussian function

that their e�ect on the metric is trivial. This point is not considered by HPS, we will not consider it

here either but defer it to future work. We write the linearized metric variations as δgab “ hab. For

(151), the solutions of the linearized Einstein equations give

hvv “ θpv ´ v0q

˜

2µ

r
´
MD2Ĉ

r2

¸

,

hvA “ θpv ´ v0qBA

ˆ

1´
2M

r
`

1

2
D2

˙

Ĉ ,

hAB “ ´2rθpv ´ v0q

ˆ

DADBĈ ´
1

2
γABD

2Ĉ

˙

, (157)

we consider the general treatment of linearized Einstein equations for linearized perturbations below,

but let us �rst consider the form of these particular solutions. Namely, by comparing (157) with the

supertranslated Schwarzschild metric, given by equation (140), HPS show that the e�ect of a linearized

shock wave in (151) is a change of the black hole mass by µ and a supertranslation parametrized by a

function f “ ´Ĉ. That is, send in a spherical shock wave given by
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Tvv “
µδpv ´ v0q

4πr2
,

which brings the Schwarzschild metric to a metric of the following form

ds2 “ ´

ˆ

1´
2M ` θpv ´ v0qµ

r

˙

dv2 ` 2dvdr ` 2r2γABdΘAdΘB . (158)

We act on this space with a linearized supertranslation, of which the radial component is given by

´ 1
2D

2f , hence a supertranslation radially translates the event horizon, as well as the shock wave

pro�le, by said term. Note that D2 projects out the ` “ 0 - components of the expansion of f in

spherical harmonics. As before, we assume that f has no ` “ 1 - component. Plugging in the solution

for the action of a supertranslation on the Schwarzschild metric, given by equation (140), but now

with total mass M ` µ, we see that the �nal result is the same as (157). That is, the e�ect of (151)

on the Schwarzchild metric can be be succinctly expressed as

hab “ θpv ´ v0q

ˆ

Lf“´Ĉ `
2µ

r
δvaδ

v
b

˙

. (159)

HPS then derive the presymplectic form corresponding to the supertranslation charge by �xing the

residual gauge transformations which preserve the Bondi gauge. For the case of constructing the

presymplectic form of the supertranslation charge, the energy momentum tensors on the right hand

side of Einstein's equations can be set to zero, as is done by HPS. We will instead include these terms

and the shift they induce on the event horizon further below. The linearized Einstein tensor is given

by

l hab ` 2Racbdh
cd ´ 2Rcpah

c
bq ´∇a∇bh

c
b ´∇b∇ch

c
a `∇a∇bh “ 0 . (160)

This leads to the following constraint equations

1

2M

ˆ

Bv ´
1

4M
D2

˙

hvv `
1

4M2

ˆ

Bv ´
1

4M

˙

DAhAv “ 8πTMvv ,

1

2
DABrhvv `

ˆ

1

4M
´

1

2
Bv

˙

DAhvr `

ˆ

1

2M
Bv ´ BvBr ´

1

4M2
pD2 ` 1q

˙

hvA “ 8πTMvA . (161)

HPS additionally demand that Bvhab

∣∣∣
v“˘8

“ 0, so that the linearized metric perturbations at the

boundaries of the event horizon, given by H`˘, are independent of advanced time. The Dray-'t Hooft

shock wave is exactly located at the past boundary of the future event horizon, so that this may seem

like an important di�erence. However, HPS impose this restriction by hand to simplify calculations,

and state that this can be relaxed. By plugging Bvhab

∣∣∣
v“˘8

“ 0 into (161), we �nd that
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„

1

2M
DAhvA `D

2hvv



∣∣∣∣∣
H`
˘

“ 0 ,

„

BrDAhvv `
1

2M
DAhvr `

1

4M2
pD2 ` 1qhvA `

1

4M2
DAD

BhvB



∣∣∣∣∣
H`
˘

“ 0 . (162)

HPS then consider the most general di�eomorphism which leaves the Schwarschild metric in Bondi

coordinates invariant, which is given by

ζ “ XBv ´
1

2

`

rDAX
A `D2X

˘

Br `X
ABA `

1

r
DAXBA , X “ Xpv,Θq , XA “ XApv,Θq . (163)

Note that X and XA are allowed to depend on advanced time, as we do not impose fall-o� conditions

at I. The e�ect on the linearized variations of the metric is then

Lζhvv “
M

r2
D2X ´ p2V `D2qBvX `

ˆ

M

r
´ r

˙

DAX
A ,

Lζhvr “ BvX ´
1

2
DAX

A ,

LζhvA “ prBv ´ V qBAX ´
1

2
DAD

2X ` r2BvXA ´
r

2
DADBX

B ,

LζhAB “ r
`

2DADBX ´ γABD
2X

˘

` r2
`

DpAXBq ´ γABDCX
C
˘

. (164)

We then use the residual di�eomorphisms to set to zero the following combinations of linearized metric

variations

2p1`MBrqhvv ` hvr “ 0 “ hvA ` 2MDAhvv. (165)

This �xes all di�eomorphisms in (163) except for those with BvX “ 0 “ BvX
A, that is, the di�eo-

morphisms which satisfy the asymptotic fall-o� conditions. Plugging (165) into (161), the linearized

constraints reduce to [7]

´
1

2M

`

D2 ´ 1
˘

Bvhvv “ 8πTMvv ,

Bv

ˆ

MDABrhvv ´
1

2
BrhvA `

1

8M2
DBhAB

˙

“ 8πTMvA (166)

The �rst equation in (166) is very reminiscent of the de�ning equation of the shift function in Kruskal
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coordinates, given by (90); we previously noted such a similarity below equation (151). Let us further

consider this for the case of a shock wave impinging on the event horizon. We plug hvv from (157)

into the left hand side of the �rst equation of (166) and evaluate the resulting expression at the event

horizon to �nd

`

D2 ´ 1
˘

Bvhvv “ ´
µ

M
´

1

4M

`

D2 ´ 1
˘

D2Ĉδpv ´ v0q . (167)

Comparing with (151), we see that the ` “ 0 - term drops out. Let us therefore focus on ` ě 2 -

components, given by the second term on the right hand side of (167). We saw that the e�ect of a

supertranslation parametrized by some function f is to translate the radial coordinate as r Ñ r´ 1
2D

2f .

The shock wave in (151) induces a supertranslation given by f “ ´Ĉ. The corresponding shift in r is

therefore given by

δrpΘq “
1

2
D2Ĉ . (168)

We plug this into (166) and (167) to �nd

δpv ´ v0q

4M2
pD2 ´ 1qδr

∣∣∣
r“2M

“ 8πTMvv ´
µ

2M2
. (169)

Let us compare this with the Dray-'t Hooft shock wave in Kruskal coordinates U “ ´e´u{4M , V “

ev{4M , located now at V “ 0. Using the fact that

UV “ ´
´ r

2M
´ 1

¯

er{2M ,

we have

BUr “ ´
4M2V e´r{2M

r
,

so that

δr “ δUBUr “ ´
4M2V e´r{2M

r
F . (170)

Inverting the above expression gives F “ ´ rer{2M

4M2V δr. We evaluate this expression at the event horizon

of the unperturbed black hole at r “ R “ 2M and plug it into the constraint equation (74), now for a

shock wave at V “ 0 rather than U “ 0, to �nd

1

MU
δpV q

`

D2 ´ 1
˘

δr
∣∣∣
r“2M

“ 8πTMV V , (171)
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where the energy-momentum tensor has been given a superscript `M ' as it consists only of matter

contributions. We transform this expression to Bondi coordinates. We have δpV q “ 4Mδpṽq
V , where ṽ is

again the v-coordinate of the shock wave, in this case given by taking v to minus in�nity. This slightly

obfuscates the interpretation in these coordinates, but it seems to be simply a coordinate artefact. In

(171), we do not evaluate BvV “ ´p4Mq
´1V at v “ ṽ since we only get a non-zero contribution at ṽ

due to the presence of δpṽq. Simple tensor transformation gives TMV V “
16M2

V 2 TMvv , which we plug in to

�nd

1

MV

4M

V
δpṽq

`

D2 ´ 1
˘

δr
∣∣∣
r“2M

“ 8π
16M2

V 2
TMvv ,

We rewrite this to give

1

4M2
δpṽq

`

D2 ´ 1
˘

δr
∣∣∣
r“2M

“ 8πTMvv . (172)

We thus see that the dependence of the shift of the event horizon on the ` ě 2 - components of the

energy-momentum tensor is the same in HPS [7] as it is for the older formalism of 't Hooft [3] [4] based

on the Dray-'t Hooft shock wave [2].

The same expression can be shown to hold for the Dray-'t Hooft shock wave in tortoise coordinates,

in which the Schwarzschild metric is written as

ds2 “ ´

ˆ

1´
2M

r

˙

dudv ` r2γABdΘAdΘB , (173)

which also satis�es the metric ansatz in (72). Denoting the shift function in this coordinate system by

f̃ and using

1

2
pv ´ uq “ r ` 2M ln

´ r

2M
´ 1

¯

,

we �nd that the radial coordinate is shifted as

δrpΘq “
Br

Bu
δu “

1

2

ˆ

1´
2M

r

˙

f̃ . (174)

Using the fact that metric component A “ ´ 1
2

`

1´ 2M
r

˘

in metric ansatz (72), we have

f̃ “
δr

A
.

Pluggin this into constraint equation (74) gives
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1

4M2
δpṽq

`

D2 ´ 1
˘

δr
∣∣∣
r“2M

“ 8πTMvv . (175)

By comparing with (167) and (168), we see that the shift of the radial coordinate at the event horizon

satis�es the same constraint equation relating it to the energy-momentum tensor impinging on the

black hole. However, from (174), we see that f̃ blows up for any non-zero δr. This is related to the

fact that, in tortoise coordinates, the event horizon is located at in�nite coordinate distance, so that

one has to shift geodesics by an in�nite amount in order to drag them across the event horizon. This

point obfuscates the interpretation of the shock wave in tortoise coordinates, which is why Kruskal

coordinates are more convenient for this purpose. However, the fact that the shift of the event horizon

calculated by HPS satis�es the same equation as the one found by Dray and 't Hooft in both Kruskal

and tortoise coordinates suggests that this is not merely a coincidence. The fact that the shifts of the

event horizon satisfy the same equation in HPS [7] as in the black hole S-matrix formalism [3] [4] based

on the Dray-'t Hooft shock wave [2] was not pointed out by HPS, nor by other authors.

HPS have thus found the shift of the event horizon of a black hole due to a supertranslation induced

by a shock wave with a non-trivial spherical pro�le. We �nd that this shift satis�es the same relation

to the energy-momentum tensor at the event horizon as the Dray-'t Hooft shock wave [2] used by 't

Hooft to derive a unitary black hole S-matrix [3] [4]. This suggests that one might be able to describe

the black hole S-matrix in terms of BMS charges at I. In particular, we saw in equation (144) that a

supertranslation implants superrotation charge on the black hole, so that the scattering of shock waves

from Schwarzschild black hole may be described in terms of the superrotation charges implanted by

these shock waves. We leave further exploration of this point to future work, as it is beyond the scope

of this thesis.

In spite of clear similarities, there are obvious and important di�erences between the two approaches

as well. First and foremost, the calculations by HPS and Dray & 't Hooft are done in di�erent

gauges. Further, there is no mass change in the black hole S-matrix, whereas the black hole mass in

[7] changes by µ in the expressions derived by HPS. However, as we saw from equation (159) and the

expressions that followed, the e�ect of the shock wave `splits up' into a mass change and an induced

supertranslation, so that we could consider them separately and �nd that the action of the induced

shift in r at the event horizon is the same in the two formalisms. There are no gravitational waves in

the black hole S-matrix, as it describes the longitudinal shift induced by a shock wave while ignoring

transverse momentum transfer, whereas the fact that NAB ‰ 0 in the calculation by HPS signals the

presence of gravitational waves. Lastly, HPS assume that the time dependence of the metric variations

goes to zero at the boundaries of the event horizon, while the Dray-'t Hooft shock wave is required to

propagate along the horizon. However, this last point seems to be merely a simplifying assumption on

the part of HPS rather than a true physical di�erence between the two formalisms.

As noted previously, HPS assume antipodal matching to hold in a single external region in the context

of a black hole, but no justi�cation for this is given in their work [7], nor, as far as we are aware, is

this justi�ed elsewhere in the literature, for example by a soft theorem in the context of a black hole.
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Radially propagating classical particles entering space-time at I´ simply disappear into the black hole

without leaving a trace at I`, so there seems to be no reason why we would not be allowed to act

on I´ with a supertranslation without acting at I` with an antipodally matched supertranslation

as well. However, the black hole S-matrix tells us that this classical picture is not correct, as the

information of infalling particles can be retrieved if one has access to both external regions of the

maximally extended Schwarzschild black hole. We therefore suspect that the S-matrix can clarify the

matching of BMS-transformations in the context of black holes, which we hope to further explore in

future work.

3.3 BMS transformations at the event horizon

It has recently been shown that a structure similar to the BMS group at I can be found at the event

horizon of a p1 ` 3q-dimensional black hole [19][20]. We brie�y review this here and show that the

Dray-'t Hooft shock wave in tortoise coordinates satis�es the gauge and fall-o� conditions and generates

a non-zero horizon superrotation charge. On the event horizon of a black hole, tortoise coordinates

satisfy

gµνBµvBνv “ 0 ,

where, for a Schwarzschild black hole, v “ t` r˚ “ t` r` 2M ln
`

r
2M ´ 1

˘

, as we will consider below.

From the fact that the product of the tangent and normal spaces of the two-sphere looks locally like

R3, one can always choose a vector Bρ that is normal to the event horizon. The spherical coordinates

ΘA are chosen such that they are constant along ρ, i.e. [20]

gαβBαvBβΘA “ 0 . (176)

This gives the following gauge conditions on the metric components

gvρ “ 1 , gρρ “ 0 “ gvv

gvρ “ 1 , gρρ “ 0 “ gρA . (177)

Setting the horizon at ρ “ 0 and assuming it is non-expanding, the other metric components are given

by [48]

gvv “ ´2κρ`Opρ2q

gvA “ ρθA `Opρ2q

gAB “ ΩAB ` ρλAB `Opρ2q , (178)
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where κ is the surface gravity which is at this point, allowed to depend on v and ΘA, as are θA, ΩAB ,

and λAB . The class of near-horizon metrics to be considered can thus be written as [19]

ds2 “ ´2κρdv2 ` 2dρdv ` 2θAρdvdΘA ` pΩAB ` ρλABqdΘAdΘB `Opρ2q . (179)

Note that the metric for a linearized shock wave on a Schwarzschild black hole derived by HPS, written

in (157), does not respect these fall-o� conditions. In particular, gvA contains an Op1q - term, whereas

gvA in (179) has to be Opρq. A map between the BMS-formalisms has, as far as we are aware, not

appeared in the literature, and Donnay herself stated some months ago that it is not known to her (if

and) how the two are related [49].

We would like to �nd vector �elds χ “ χµBµ along which (177) and (178) are preserved. One then

�nds the following fall-o� conditions for χ [20]

χv “ fpv,ΘAq ,

χρ “ ´ρBvf ` ρ
2 1

2
ΩABΘABBf `Opρ3q ,

χA “ Y ApΘBq ` ρΩACBCf `
1

2
ρ2ΩADΩBCλDBBCf `Opρ3q . (180)

Assuming that δχκ “ 0 “ Biκ, i P tv,Au, i.e. that κ is constant both along the horizon as well as

along χ, we �nd

κBvf ` B
2
vf “ 0 , (181)

so that f is of the form

fpΘA, vq “ T pΘAq ` e´κvSpΘAq , (182)

so that any dependence of f on v decays exponentially. One can then construct the charge variation

at the horizon [50] [51], which, for constant κ and BvΩAB “ 0, can be integrated to �nd [19] [20]

Qf,Y “
1

16π

ż

d2ΘΩAB
`

2κT ´ Y CθC
˘

, (183)

where we leave out an integration constant.

The Schwarzschild metric, of course, satis�es the conditions in (178). In particular, v is simply given

by
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v “ t` r˚ .

For convenience, we repeat here the Schwarzschild metric in tortoise coordinates

ds2 “ ´

ˆ

1´
2M

r

˙

dv2 ` 2dvdr ` r2γzz̄dzdz̄ . (184)

Rewriting κ “ 1
4M and performing the following coordinate change

r “
1

2κ
p1` 2κρq , (185)

we �nd that

ds2 “ ´2κρdv2 ` 2dρdv `

ˆ

1

4κ2
`
ρ

κ

˙

γzz̄dzdz̄ `Opρ2q . (186)

One easily sees that this metric belongs to the class given by (178) with

Θz “ 0 , Ωzz̄ “
γzz̄
4κ2

, Ωzz “ 0

λzz̄ “
1

κ
, λzz “ 0 . (187)

Let us consider the Dray-'t Hooft shock wave (73) (74) in tortoise coordinates. We start from the

shock wave metric given by

ds2 “ 2Âdu
´

dv̂ ´ δpuqf̃du
¯

` ĝγABdΘAdΘB , (188)

where

v “ t` r˚ , u “ t´ r˚ .

In (188), v̂, Â, and ĝ are de�ned as

v̂ “ v ` θpũqf̃ , Â “ Apu, v̂q , ĝ “ gpu, v̂q , (189)

where ũ is given by the limit of u to ´8, which is the location of the event horizon. We have
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Apu, vq “ ´
1

2

ˆ

1´
2M

r

˙

“ ´
1

2Brr˚

We now transform to coordinates pu, r,ΘAq. We use

Buv̂ “ 1` δpũqf , Buu “ 1 ,

Brv̂ “ Brv “ ´A
´1 , Bru “ 0 ,

BAv̂ “ θpũqBAf̃ , BAu “ 0 . (190)

as well as

Â “
´1

Brv̂
“
´1

Brv
“ A , ĝ “ pr ` θpũqδrq2 “ pr ´ θpũqAf̃q2 “ r2 ´ θpũq2Arf̃ ´ θpũqpAf̃q2 .

This gives

grr “ 0 “ grA ,

gru “ ´1 ,

guu “ 2Buv̂A´ 2Af̃δ “ 2A “ ´

ˆ

1´
2M

r

˙

,

guA “ AθpũqBAf̃ “ ´
1

2

ˆ

1´
2M

r

˙

θpũqBAf̃ ,

gAB “ ĝγAB “ pr ´ θpũqAf̃q
2 “

´

r2 ´ θpũq2Arf̃ ´ θpũqpAf̃q2
¯

γAB . (191)

Plugging in (185), this gives

gρρ “ 0 “ gρA ,

gρu “ ´1 ,

guu “ ´
ρ

2M
`Opρ2q ,

guA “ ´
ρ

4M
θpũqBAf̃ `Opρ2q ,

gAB “ 4M2 ` p4M ` θpũqf̃qρ`Opρ2q . (192)

Using κ “ 1
4M , we see that (191) belongs to the class of metrics given by (179). Further, we see from

guA that
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θA “ ´
1

4M
θpũqBAf̃ . (193)

By comparing with (183), we thus �nd that the Dray-'t Hooft shock wave gives rise to a non-zero

superrotation charge, given by

QY “
θpũq

64πM

ż

d2ΘΩABY
CBC f̃ . (194)

When transforming to coordinates pv, r,ΘAq, using

Bru “ ´2

ˆ

1´
2M

r

˙´1

“ A´1 , BAv̂ “ θpuqBAf̃ ,

we have

grA “ BruBAv̂A “ θBAf̃ , (195)

so that the gauge condition that grA “ 0 is violated in coordinate system pv, r,ΘAq. Similarly, if we

consider the Dray-'t Hooft shock wave (74) in Kruskal coordinates, we have

V̂ “ V ` θpUqF pΘq “ epu`2r˚q{4M ` θ pUqF pΘq ,

so that, in coordinates pu, r,ΘAq

guA “ BuUBAV̂

ˆ

´
16M3

r
e´r{2M

˙

“ ´
4M2

r
e´pu`2rq{4MθpUqBAF . (196)

We see that (196) is �nite at r “ 2M , so that the Dray-'t Hooft shock wave in Kruskal coordinates

violates the fall-o� conditions for horizon-BMS. The same can easily be shown for gvA in coordinates

pv, r,ΘAq.

We thus �nd that the Dray-'t Hooft shock wave in tortoise coordinates implants a non-zero horizon-

BMS charge in the form of (194). However, the S-matrix is derived from Dray-'t Hooft shock wave in

Kruskal coordinates, which does not respect the fall-o� conditions. Further, no map between horizon-

BMS and BMS at I currently exists in the literature. It would be interesting to see if horizon-BMS

can be applied to the gravitational S-matrix, in particular, to see if shock waves leave a `footprint' at

the horizon in the form of superrotation charges. We hope to further explore this in future work.
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Conclusion

In this thesis, we compared the BMS- and the shock wave scattering formalisms. We �rst reviewed

BMS-symmetries, which are an in�nite-dimensional extension of the Poincaré group acting at the

null in�nities of asymptotically �at space-times. We focused on angle-dependent time-translations

at I known as supertranslations, as these are relatively well understood. Following Strominger and

collaborators, we saw that supertranslations have to be antipodally matched between I´ and I`. I
is the light-cone of i0, from which we see that antipodal matching is equivalent to the continuity of

physical data along the null generators of I even as they pass through i0. In the absence of gravitational

waves, antipodal matching of supertranslations corresponds to antipodal matching of in- and outgoing

energy �ux between I´ and I`. We then reviewed the construction of gravitational shock waves

and their unitary scattering as described by the shock wave S-matrix. We saw that the longitudinal

shift induced by a shock wave in the vicinity of an event horizon can transfer signals between the two

external regions of the maximally extended Schwarzschild black hole. By demanding unitary scattering

in a single `universe', that is, a single external region of the maximally extended Schewarzschild black

hole, we are led to identify the two external regions via antipodal identi�cation at the event horizon.

The black hole S-matrix is characterized by an in�nite number of symmetries at the event horizon,

given by independent boosts for each spherical wave in the expansion of Kruskal coordinates, which

then have to be antipodally matched at the bifurcation sphere. As the event horizon is the light-cone

of the bifurcation sphere, we see that this picture is very reminiscent of supertranslations at I. In

particular, physical data is continuous along the generators of the horizon as they pass through the

bifurcation sphere, as was the case for physical data along the null generators of I as they pass through

i0.

Further comparison of the two formalisms in the context of black holes is complicated by the fact that

the BMS-formalism here is still under development. We are thus led to compare the two formalisms

in Minkowski space. By employing a Lagrangian approach, we saw that the S-matrix in Minkowski

space is invariant under translations of the time coordinate that are allowed to depend non-trivially on

transversal coordinates, which is very reminiscent of supertranslation invariance. The corresponding

conserved charge equals the supertranslation charge of the scattering shock waves. We thus �nd

that the antipodally matched supertranslation charge conservation found recently by Strominger and

collaborators is explicitly realized for the shock wave S-matrix in Minkowski space which appeared in

the literature more than twenty-�ve years earlier. As far as we are aware, this fact has not previously

been pointed out in the literature. We then considered the action of BMS-transformations on black

hole space-times, where the analogy is decidedly less clear. Following Hawking, Perry, and Strominger,

we considered the action of a linearized supertranslation on a Schwarzschild black hole and show that

it can be induced by a linearized shock wave with a non-trivial spherical pro�le. By comparing with

the de�ning equation of the Dray-'t Hooft shock wave, we see that the relation of the shift of the

event horizon to the energy-momentum tensor impinging on the black hole is the same in the two

formalisms. This suggests that one might be able to describe the black hole S-matrix in terms of
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BMS-charges at I. However, di�erent gauge choices and the absence of mass change and gravitational

waves in the S-matrix formalism complicates this relation, so that we cannot but defer its further

exploration to future work. Hawking, Perry, and Strominger tacitly assume that BMS-transformations

are antipodally matched even for Schwarzschild space-times as long as the Bondi news falls o� fast

enough, although antipodal matching has only been shown to hold for Christodoulou-Klainermann

spaces, which do not include Schwarzschild black holes. We suggest that the S-matrix formalism may

be used to further clarify the matching conditions for BMS-transformations on black hole space-times.

We then brie�y review the recent derivation of BMS-like transformations acting on the event horizon

of a black hole. We see that the Dray-'t Hooft shock wave in tortoise coordinates respects the gauge

and fall-o� conditions of horizon-BMS and that it generates a non-zero superrotation charge. However,

the S-matrix is based on the Dray-'t Hooft shock wave in Kruskal coordinates, and no map between

the BMS-structures at I and the event horizon currently exists, so that we do not explore this point

much further. We have thus identi�ed a number of results relating the two formalisms in the context

of black holes, which we hope will add to their mutual extension and clari�cation.
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Appendices

A BMS analysis in Kerr-Schild decomposition

We now calculate the Bondi four-momentum of the Aichelburg-Sexl (AS) metric, of which the past

(future) limit at I` (I´) equals the supertranslation charge. We follow the analysis by Aichelburg and

Balasin in [42], [43]. The authors make use of the Kerr-Schild metric decomposition [52], where the

metric is decomposed into a �at part and a part that is proportional to the square of a null geodesic

vector �eld. Explicitly, this is written as

gab “ ηab ` Skakb , (197)

where S is a scalar function. ka “ ηabkb is a null vector with respect to ηab, such that it is null with

respect to gab as well, that is

gabk
akb “ 0 “ ηabk

akb .

By demanding that gacg
cb “ δbc, we easily see that that the inverse metric is given by

gab “ ηab ´ Skakb . (198)

We choose ka to be a�nely parametrised, which gives

ka∇ak
b “ 0 “ kaBak

b . (199)

The Christo�el connection is then given by

Γabc “
1

2
gad pBbgcd ` Bcgbd ´ Bdgbcq

“
1

2
pBbpSk

akcq ` BcpSk
akbq ´ B

apSkbkcq ` Sk
apk ¨ BqpSkbkcqq , (200)

where the last term arises from gab ´ ηab “ ´Skakb. For a vector ξb, we then have

∇paξbq “ Bpaξbq ` 1

2

`

pξ ¨ BqpSkakbq ´ Spk ¨ BqSpξ ¨ kqkakb
˘

. (201)

If the right hand side of (201) is (asymptotically) zero, ξb is a(n asymptotic) Killing vector. In the

absence of gravitational waves, the conserved charge corresponding to a Killing vector �eld ξ is given
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by the Komar expression

Qξ “ ´
1

4π

ż

I
∇aξbεabcddx

cdxd “ ´
1

4π

ż

I
∇aξbεabABdΘAdΘB , (202)

where ΘA and ΘB are the spherical coordinates parametrizing the two-sphere at I. Due to the anti-

symmetry of the Levi-Civita tensor, we see that the lower case indices a, b necessarily label longitudinal

coordinates, namely, t, r and functions thereof. Labeling longitudinal coordinates by α, β, the condition

for ξ to be an asymptotic Killing vector is therefore

∇pαξβq “ Bpαξβq ` 1

2

`

pξ ¨ BqpSkαkβq ´ Spk ¨ BqSpξ ¨ kqkαkβ
˘

“ Op1{r2q . (203)

Hence, the longitudinal components of ξ are only allowed to depend on transversal coordinates, as we

found in the BMS analysis at I which we treated in section 1.2, in particular expression (29).
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B Supertranslation charges for (boosted) Schwarzschild black

hole

We now calculate the BMS-charges for the Schwarzschild black hole and the Aichelburg-Sexl metric.

For a Schwarzschild black hole of mass M , we have

ds2 “ ´

ˆ

1´
2M

r

˙

dt2 `

ˆ

1´
2M

r

˙´1

dr2 ` r2dΩ2
p2q . (204)

We then go to coordinates pt̄, r, θ, φq, where

t̄ :“ t´ 2M lnpr ´ 2Mq , (205)

so that

ds2 “ ´dt̄2 ` dr2 ` r2dΩ2
p2q `

2M

r
pdt̄´ drq2 . (206)

The Schwarzschild metric is now expressed in Kerr-Schild decomposition, given by equation (197),

with

S “
2M

r
, ka “ p1, eirq . (207)

where eir is the unit radial vector with respect to ηab. Let us calculate the Komar integral for an

asymptotic Killing vector ξ, which is necessarily independent of t and r. That is, we calculate

Qξ “ ´
1

8π

ż

S2

d2zγzz̄r
2∇rtξrs , (208)

where we take S2 to be a sphere at I`, not necessarily located at I`´ . We use the fact that

∇rtξrs “ ´
`

Γrtµξ
µ ` Γtrµξ

µ
˘

,

as well as the fact that the only non-zero Christo�el connections are given by

Γtrt “
M

r2
“ Γrtt , Γtrr “

2M

r2
, (209)

where we only write the �rst term in the 1{r - expansion. We then �nd that
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Qξ “ ´
1

8π

ż

S2

d2zγzz̄r
2∇rtξrs “ ´ 1

8π

ż

S2

d2zγzz̄p´2Mqpξt ` ξrq “Mξt , (210)

where we used the fact that the term ξr integrates to zero. We see that, if we choose S2 to lie at the

past (future) limit of I` (I´), (210) gives the supertranslation charge of a Schwarzschild black hole

found by replacing mB ÑM in (63).

Let us now consider the Aichelburg-Sexl metrix, given by (69) and (71), which corresponds to a

Schwarzschild black hole boosted to its light-like limit whilst keeping its total energy constant. As

opposed to the Schwarzschild black hole, the energy of an Aichelburg-Sexl shock wave exits space-time

after �nite retarded time. The Bondi momentum will therefore have some non-trivial time dependence.

The Bondi momentum at I` at some retarded time u0 is given by the top equality of (63) with lower

integral bound at u0. We write the Aichelburg-Sexl metric in Cartesian coordinates

ds2 “ ´p1´ Fδpt´ x3qqdt
2 ` p1` Fδpt´ x3qqdx

2
3 ` 2Fδpt´ x3qdtdx3 ` dx

2
1 ` dx

2
2

“ pηµν ` h̄µνqdx
µdxν , F “ ´4pin lnpx2

1 ` x
2
2q. (211)

We see that this metric is in Kerr-Schild form, namely

gµν “ ηµν ` Skµkν , kµ “ pBtq
µ ` pB3q

µ , S “ Fδpt´ x3q , (212)

where we write vectors as their corresponding partial derivatives. We use light-cone coordinates v “

t` r and u “ t´ r as well as spherical coordinates pθ, φq, we have

F “ ´4pinδpt´ zq ln

ˆ

b

x2
1 ` x

2
2

˙

“ µδ

ˆ

t´
v ´ u

2
cos θ

˙

ln

ˆ

v ´ u

2
sin θ

˙

.

As a distribution, the Dirac delta `function' satis�es

xBxδpxq “ ´δpxq .

From (200), we �nd that, for a general Kerr-Schild metric

∇raξbs “ pk ¨ ξqBraSkbs . (213)

Combining these expressions gives, for the Komar expression of the Bondi momentum PBondi

ξ puq [42]
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PBondi

ξ puq “ lim
vÑ8

´
1

8π

ż

S2

∇raξbsεabcd

“ pk ¨ ξq lim
vÑ8

ż

pinδpup1` cos θq ` vp1´ cos θqqpv ´ uq sin θdθdφ . (214)

From the fact that

lim
vÑ8

δpup1` cos θq ` vp1´ cos θqqpv ´ uq sin θ “ lim
vÑ8

δpvp1´ cos θqqv sin θ “ δpθq ,

we �nd

PBondi

ξ puq “ pinθp´uqpaξ
a . (215)

In terms of the expression (63) for the charge of a supertranslation, now parametrized by a function

fpθ, ϕq, we �nd for an Aichelburg-Sexl shock wave at θ “ 0 that

Qf “ pinfpθ “ 0, ϕq . (216)

Note that the ADM-momentum is given by [53] [42]

PADM “ lim
rÑ8

1

8π

ż

S2

∇raξbsεabcd

“ pk ¨ ξq lim
rÑ8

ż

µδpt´ r cos θqrssinθdθdφ

“ ´pinkaξ
a , (217)

so that we see that the Bondi momentum equals the ADM momentum up until the retarded time at

which the energy exits space-time, in accordance with the �ndings of [54] and [55]. However, we also

see that the momentum is null-like, seemingly violating a result due to Ashtekar and Horowitz which

states that neither the ADM nor the Bondi four-momentum of an asymptotically �at system can be

null-like [56]. However, Ashtekar and Horowitz assume that the physical data is non-singular, which

is not the case for the Aichelburg-Sexl metric.
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