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Abstract

One of the main goals of the Ambient Assisted Living field of research is to
extend the time of independent living for elderly people through the use of
sensors and computational systems. This thesis focuses on building a sys-
tem which models the power consumption of appliances to build a notion
of normality concerning user habits. Once the system learns this notion, it
can detect major divergences from it. It is important to detect these ma-
jor divergences because they can indicate issues in the life of the user. The
main research question examines whether autoencoder neural networks are
well-suited to detect anomalies in appliance-level power data. For this exam-
ination, several autoencoder models with different sets of hyperparameters
were trained on appliance-level power data coming from a real-world dataset.
Then, the trained models were tested on artificially generated anomalies to
evaluate their sensitivity to such data. Autoencoders were shown to per-
form well with most kinds of anomalies which were deemed relevant in this
context. Overall, this thesis analysed important aspects of autoencoders for
anomaly detection. Through this analysis, several strengths of the models
were found, as well as weaknesses. Moreover, improvements to the current
models were proposed to overcome the limitations which emerged from the
analysis.
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Chapter 1

Introduction

This chapter provides an introduction to the subject and context of this
thesis. First, Section 1.1 illustrates the context that motivated the present
research. Then, Section 1.2 provides examples of work that had the same
goal as the present research but employed different approaches and tools to
achieve it. Next, Section 1.3 presents the main research question of this thesis
and the relative sub-questions, followed by the initial hypotheses formulated
in Section 1.4. Finally, Section 1.5 outlines the structure of the rest of the
document.

1.1 Context

Modern medicine allowed humans around the globe to have a longer life
expectancy than ever before. At the same time, in most developed coun-
tries the number of newborn decreases year by year. These two concurrent
factors shift the past demographic equilibria, leading to an increasingly older
population. This shift is well encompassed by the indicator called elderly de-
pendency ratio. This indicator represents the ratio of people eligible to work
aged between 16 and 65 years old, to the people outside of this range, namely
children and elderly unsuitable for work. Figure 1.1 illustrates the elderly
dependency ratio in the European Union from 2006 to 2017 and the projec-
tion for the next decades. The data source is Eurostat, the statistical office
of the European Union [1, 2]. According to this projection, it appears that
we are now at the beginning of a sharp increase in the elderly dependency
ratio. This increase will lead in thirty years to a society in which the people
of working-age will sustain a body of non-working people half their size.

Elderly people need more medical assistance compared to people of working-
age, therefore an ageing population necessarily entails more medical and care
assistance. This trend will put under pressure national healthcare systems,
and a shortage of hospital beds and caregivers is expected. As an example of
this trend, in the UK more than one million elderly are already not receiv-
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Figure 1.1: Elderly dependency ratio of the European Union.

ing appropriate care [3]. In order to face these problems, and considering
most elderly’s resolution to retain as much independence as possible, the
field of Ambient Assisted Living (AAL) [4] received much attention. The
field of AAL has several distinct goals, well presented in the web page of
the European Active and Assisted Living programme. The first goal is par-
ticularly relevant for this research, and is defined as “extending the time
people can live in their preferred environment by increasing their autonomy,
self-confidence and mobility” [5]. This goal is pursued through the use of
information and communication technologies that monitor elderly people,
helping them and their caregivers by supplying services and information.
Studies in this context try to automate the task of monitoring elderly and
their actions around the house through the installation of dedicated sensors
[6]. Such sensors are expensive, as are their deployment and maintenance,
making widespread adoption infeasible. On top of the scalability problem,
these sensors gather particularly sensitive data, causing a privacy invasion
that not many people would accept without question.

On the other hand, smart plugs become increasingly more inexpensive,
easy to install and control remotely. On top of these advantages, Noury et
al. [7] found that electricity monitoring was considered unobtrusive by the
tenants. Moreover, Zhang et al. [8] showed that activities of daily living are
correlated with appliance usage patterns. Therefore, monitoring the usage
of selected appliances is considered feasible in terms of expense and privacy
perception. Considering the above, monitoring appliance-level power usage
is a good starting point to detect anomalies in the tenant’s activities. A sys-
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1 . Introduction

tem that has learned the habits of a tenant can serve as a first care solution.
Specifically, the system could alert healthcare professionals or family mem-
bers when it detects a major divergence from normal behaviour. Therefore,
this system would help to automate the monitoring task, allowing healthcare
systems to scale efficiently. Moreover, this system would give independent
elderly higher standards of living by allowing them to enjoy their homes for
a longer period of time than otherwise possible.

Crownstone, the company for which this research was done, produces
smart plugs and wishes to provide its users with smart services that improve
their quality of life. The goal of the present research is to find a way to
detect anomalies in appliance-level electrical data. What anomaly means in
this context is explained more in depth in Section 3.4, but a general definition
together with an introduction to the field of anomaly detection is given in
the section below.

1.2 Anomaly detection on appliance-level power data

Chandola et al. [9] give the following broad definition of anomalies: “patterns
in data that do not conform to a well-defined notion of normal behaviour”.
Logically, it follows that anomaly detection refers to the problem of finding
those patterns. It is a complex problem that can be tackled with different
kinds of techniques, for surveys on this problem see [9–11]. Novelty detection
is very much connected to anomaly and outlier detection, but more precisely
it is concerned with detecting previously unobserved patterns in the data.
For surveys on novelty detection see [12, 13].

In general, anomaly detection on electrical data can be done at different
levels of granularity. The current research is interested in appliance-level
data because this is the kind that smart plugs are able to record. A lot
of research has been done on electrical data coming from office buildings,
but the goals were mainly economical, such as, minimizing the electricity
consumption and not profiling the tenant’s habits. On the other hand, for
works that focus on detecting anomalies in the electricity usage patterns of
the tenants at household, or building-level see [14–16].

To the extent of my knowledge, only one team of researchers performed
anomaly detection on appliance-level electrical data with a focus on the
tenant’s habits. Their research encompasses Non-Intrusive Load Monitoring
(NILM) [17]–a process concerned with finding which appliances determine
the current power draw of a house and their respective energy consumption–
and anomaly detection on electrical data. The main contributor is José
Alcalá and the relevant papers [18–21] were published during his PhD.

In [18], the authors manually extract events from the data and then use
a Gaussian Mixture Model to model the normal power usage of an appli-
ance. In order to extract events from the raw power data, the authors set a
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power threshold for each appliance: every data point that goes beyond that
threshold is assigned the label On, and every data point below is assigned the
label Off. However, appliances like washing machines trespass the threshold
many times during their cycles. In these cases, only the first time that the
threshold is surpassed is considered as a “switch on” event. In the same way,
only the last time the values go below the threshold is considered as a “switch
off” event. Therefore, data points are ignored according to two conditions:
they overcome the threshold and their timestamp value is between the first
“switch on” event and the last “switch off” event. Due to this process, some
errors may appear but the authors had to consider the trade-off between
automatic labelling and accuracy.

In [19], the authors first extract events from the aggregate power data
using a NILM algorithm they created. Then, they use Cox Processes [22] to
model the normal power usage of a single appliance. In contrast with [18],
in this work the authors consider only one appliance likely to be used every
day, such as a kettle in a British household.

In [21], the authors use the NILM algorithm devised in [19] to extract
events and then use the Dempster-Shafer theory [23, 24] to model the normal
power usage. Again, the fact that the events are extracted automatically
from the raw data might create errors that impact the next step of the
analysis.

All the works reported above first extract events from the raw power data,
and then try to detect anomalies in this sequence of events. This approach
adds a layer of abstraction on top of the raw data, which is both useful and
detrimental. On one hand, it is useful because it allows the researchers to
frame the problem as an interaction between user and machine, represented
by a discrete sequence of events. On the other hand, extracting events from
several appliances is not trivial and introduces errors that will trickle down
in the anomaly detection task. A technique that is able to deal with raw
power data directly would save both a preprocessing step and the risk of
introducing errors. Therefore, autoencoders–a type of Neural Network (NN)–
were chosen for three main reasons: (1) the ability to deal with the type of
data considered, (2) their successful employment in anomaly detection tasks
[25–29], and (3) because thanks to recent advances in NN theory, the basic
model can be extended to improve its performance.

1.3 Research questions

The main goal of this research is to explore how suitable autoencoders are to
detect anomalies in appliance-level power data. The main hyperparameters
of the basic model are explored and tested to understand their effect on the
performance of the model. This research will serve as a stepping stone for
future work, in which the basic model can be extended with more recent
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1 . Introduction

innovations to improve the performance of the system. The main research
question is reported below, together with three more detailed sub-questions.

Main research question

“Are autoencoders well suited to detect anomalous days in appliance-level
electrical data?”
To answer this question, several autoencoder models with different archi-
tecture and hyperparameters were trained, and their results explored and
evaluated.

Sub-question 1

“What kinds of anomaly are the models able to recognize?”
Data can be anomalous in several ways, therefore it is possible that the
models might be performing better on one kind of anomaly, and worse in
another. Four kinds of anomalies are devised in Section 3.4, and the trained
models are tested against them.

Sub-question 2

“How does performance evolve when the size of the latent representation is
increasingly reduced?”
A smaller latent representation implies less flexibility in the reconstruction,
and therefore the model should be able to reconstruct only very common
patterns. How does this affect the anomaly detection task?

Sub-question 3

“Is there a clear performance improvement when a deep autoencoder is used
instead of a shallow autoencoder?”
Deep models store more weights and biases compared to their shallow coun-
terparts. Therefore, they are able to learn a more flexible representation of
the training data. How does this affect the anomaly detection task?

1.4 Preliminary hypotheses

For this thesis, three preliminary hypotheses regarding the behaviour of the
models were formulated. These hypotheses are based on the understanding
of autoencoders as obtained from the reviewed literature and were conceived
before the analysis of the results of the experiments. It is useful to report
them in order to understand the differences between what was expected and
what happened in reality.
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Hypothesis 1: the smaller the bottleneck layer, the higher the number of
anomalies found.

Hypothesis 2: the anomalies found by models with bigger latent repres-
entations are a subset of the anomalies found by a model
with a smaller latent representation.

Hypothesis 3: the deep models are able to reach a more flexible learned
representation compared to the shallow models. Therefore,
the models identify as anomalies only the data points that
heavily deviate from the norm.

Hypothesis 1 is motivated by the fact that a small bottleneck layer–in this
research the smallest size used is 1/6 of the input size–would lead to a rigid
representation of the input data. Because of this rigidity, reconstruction
error values would be high on average. It follows that a high number of
data points would be identified as anomalous. Hypothesis 2 is motivated by
the fact that by shrinking the bottleneck layer size, the model would learn
only the increasingly more common features of the data. Therefore, models
with smaller bottleneck size will identify as anomalous more data points
than models with bigger bottleneck sizes. On the other hand, this means
that models with bigger bottleneck size adapts better to the data, while
still retaining the same information learned by the model with a smaller
bottleneck size. Hypothesis 3 is motivated by the fact that deep models
store more weights and biases compared to their shallow counterparts. This
gives them more options to replicate the training data. Given this flexibility,
most data points will have low reconstruction errors and few will be identified
as anomalies.

1.5 Thesis structure

The document is structured as follows. First, Chapter 2 formalizes the prob-
lem at hand and explains the mechanisms of autoencoders. Then, in Chapter
3 the data used for the experiments are described. Following this, Chapter
4 illustrates the choices made for training, testing, and evaluating the mod-
els. Next, Chapter 5 presents and comments on the results obtained by the
models. Chapter 6 compares the present research with the related literat-
ure, presenting its limitations, and using them as starting points for future
improvements. Finally, Chapter 7 brings the document to a close with a
concise conclusion.
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Chapter 2

Autoencoders

This chapter illustrates the concepts underlying the usage of autoencoders in
the research area of anomaly detection. These concepts will also be the basis
for the method proposed in this thesis, which will be introduced in Chapter 4.
Section 2.1 gives a more formal statement of the problem at hand compared
to how it was previously introduced. Section 2.2 introduces the concept of
one-class classification and the class of problems it faces, together with some
examples of systems published in literature. Finally, Section 2.3 describes
the original autoencoder and several variants developed in recent years.

2.1 Formalism

The problem which the present thesis faces can be formulated inside the
frame of reference of the field of anomaly detection. As suggested by other
works [18–21], monitoring the usage of several appliances in a household
allows to define the normal usage pattern of the appliances of the people
living there. Nordhal et al. [15] make the same case for electrical consumption
data at a household level. Once the normal usage pattern has been defined,
it can be used to detect anomalies as those anomalies might be connected to
health issues of the tenant.

The data at hand, described in depth in Chapter 3, have the structure
of a set of sequences, where each sequence represents a day and is composed
of a number of couples (timestamp, value). The problem is to determine,
based on the set of normal sequences, if a previously unseen sequence is to be
considered anomalous or not. Formally, given a set S1 composed of a finite
number of time series [x1, x2, . . . , xn], where each element x is composed of a
couple (timestamp, value). The time series contained in S1 describe what is
considered to be the usual behaviour of an appliance, and therefore delineate
the normal class. Additionally, given a set S2 composed of finite number of
time series with the same structure as the one contained in S1 of unknown
class, decide for each element of the set S2 if it belongs to set S1 based on
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a metric of similarity of choice. This problem clearly belongs to a class of
problems named one-class classification, which is explained more in detail in
the next section.

2.2 One-class classification

A way to define one-class classification is to compare it to the more intu-
itive concept of multi-class classification. Multi-class classification [30] is
concerned with assigning an input vector x to one of K discrete classes Ck

where k = 1, . . . ,K. On the other hand, one-class classification is concerned
with discriminating between an object of a known class and objects belonging
to other, unknown, classes [25, 31]. The main difference between them is that
to train a one-class classifier only examples from the known class are used,
while a multi-class classifier is trained on examples of all classes. Further-
more, as explained by Japkowicz [25], multi-class classifiers draw boundaries
in-between objects belonging to different classes in the feature space. Differ-
ently, one-class classifiers draw boundaries around the objects belonging to
the known class, with no knowledge about other classes.

Tax [31] proposes a taxonomy of one-class classification strategies, based
on the type of the underlying algorithm. Three groups of methods are iden-
tified: density estimation methods, boundary methods, and reconstruction
methods. Before examining these groups individually, there is an important
consideration to make: all these methods have two elements in common,
presented below.

1. A distance measure d(z) of an object z to the target class Xtrain,
represented by the training set.

2. A threshold θ on the distance measure d. A new object z is classified
as belonging to the target class only if d(z) < θd.

Density estimation methods like the one proposed by Tarassenko et al.
[32] estimate the density of the training data, assuming that the data be-
long to a certain distribution. Alcalá et al. [18] use a mixture of Gaussians,
but also a simple Gaussian or Poisson distributions can be used. Once the
distribution is chosen, then it is possible to test new data with several dis-
cordancy tests [33]. Tax [31] remarks how these methods work well when a
sufficiently high number of data points is available for training, and when a
flexible density model, like Parzen density estimation [34] is used.

Boundary estimation methods follow a principle brought forth by the
person responsible for the invention and development of Support Vector Ma-
chines (SVMs), Vladimir Vapnik. In his words [35]:

“If you possess a restricted amount of information for solving
some problem, try to solve the problem directly and never solve
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a more general problem as an intermediate step. It is possible
that the available information is sufficient for a direct solution but
is insufficient for solving a more general intermediate problem.”

The above quote suggests that calculating directly the boundary which con-
tains the normal class might be easier–i.e. less computationally demanding–
than estimating the density of the data only to calculate that boundary.
Therefore, these methods focus on optimizing a boundary around the target
class, and most of them have a strong bias towards a minimal volume solu-
tion. Methods like K-center, Nearest neighbour, and Support Vector Data
Description belong to this group [31].

Reconstruction methods build a compressed representation of the train-
ing data in which noise and redundancies are reduced, while the key in-
formation is maintained. For any data point is determined a reconstruction
error based on a metric of choice. If this reconstruction error goes beyond
a threshold, it means that the input wasn’t well represented in the training
data and therefore constitutes an outlier. Techniques belonging to this group
are Self-Organizing Map (SOM) [36], Principal Component Analysis (PCA)
[30], and autoencoders [25]. One advantage of this approach is that the
model can improve as new data arrives, updating itself to improve the fit
as new data points considered normal become available. The next section
analyses autoencoders and their usage in anomaly detection.

2.3 The autoencoder and its extensions

An autoencoder can be easily described as a NN that is trained to reconstruct
the data given as input. Being a special case of NN, they are trained with the
same techniques: typically gradient descent following gradients computed by
backpropagation [37]. The easiest example of an autoencoder is a three-layer
NN: the first is the input layer, the second is the hidden layer, and the third
is the output layer. In this NN, the hidden layer encodes the input x with
a function h = f(x), and the output layer decodes the encoded input with
a reconstruction function x̂ = g(h), where x̂ is the reconstructed input x.
The autoencoder minimises a loss function, in the case of Mean Squared
Error (MSE):

L(x, x̂) =
1

n

n∑
i=1

(x− x̂)2 (2.1)

This is the reason autoencoders were placed in the reconstruction methods
in the taxonomy presented in Section 2.2. Finding a function g(f(x)) = x
seems trivial, and here is where things get more interesting; autoencoders
are designed to be unable to copy their input perfectly [37].

Autoencoders are constrained in the sense that they are allowed to only
copy input similar to the training data. An explicit way to do so, and also
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the first to be used in literature [38], is to choose a number of nodes for the
hidden layer that is smaller than the number of nodes in the input layer. This
way, the autoencoder learns a compressed representation of the input data
and is only able to optimally reconstruct input which was seen frequently in
the training data. In other words, useful properties of the data are learned
because the model needs to minimize the reconstruction error while retaining
less information than the original data.

Rumelhart et al. [38] made the first explicit mention of an autoencoder
in 1985, and other important papers exploring the auto-association method
were written by Bourlard and Kamp [39], and Hinton and Zemel [40]. The
first and still one of the main uses today for autoencoders is dimensional-
ity reduction of data, also called lossy compression. Initially, there has been
some controversy around the claim that autoencoders could learn more inter-
esting properties of the data compared to PCA. For instance, it was claimed
by Bourlard and Kamp [39] that non-linear activations functions in the hid-
den layer were unnecessary because optimal weights for linear output units
could be derived with standard linear algebra. Furthermore, Cottrell and
Munro [41], together with Baldi and Hornik [42] claimed that autoencoders
produced a compression scheme equivalent to PCA. Instead, Japkowicz [43]
showed how non-linear autoencoders with one hidden layer are not equivalent
to PCA. More recently, Hilton and Salakhutdinov [44] showed the same for
autoencoders with more than one hidden layer. Witten et al. [45] also men-
tioned that an autoencoder with one hidden layer with a linear activation
function will find the same subspace as PCA, assuming a squared-error loss
function and normalizing the data using mean centering. This points to the
fact that approximation of PCA is just a special case for autoencoders and
that they are generally able to learn more flexible and useful transformations.

One of the advantages of autoencoders over other techniques is that an
autoencoder is, in fact, a NN. Therefore, autoencoders benefit from the
many technical advances made in the last years in the development of deep
NNs. A few of the improvements made over the last ten years are reported
below. Earlier in this section, it was mentioned how having a hidden layer
was a way of explicitly limiting the size of the data representation. Another
way to do so is to add a sparsity constraint on the activity of the hidden
nodes, imposing that fewer units are active at any given time. Therefore, the
autoencoder now minimises the loss function below, where Ω(h) is a penalty
term on the activation of the nodes in the hidden layer.

L(x, x̂) + Ω(h) (2.2)

Intuitively Ω(h) will be high when a lot of nodes are active and low when
very few nodes are active. This way a specific node will only activate for
a small fraction of the training examples, specializing in a specific kind of
input and reacting only to that. A common penalty term is Kullback-Leibler
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divergence between a Bernoulli random variable with mean ρ, the average
activation value desired, and a Bernoulli random variable with mean ρ̂j , the
average activation value of a generic hidden node j. This way it is possible
to build an autoencoder with a hidden layer bigger than the input layer
and still make it learn useful properties of the data. Early work on sparse
autoencoders can be found in Poultney et al. [46], and Boureau et al. [47],
while more recently a variant called k-sparse autoencoder was presented
by Makhzani and Frey [48]. In a k-sparse autoencoder, only the k highest
activations are kept and all the others are set to zero. Then, the error is back-
propagated only through the k active nodes in the hidden layer. This forces
the nodes to narrow down the amount of inputs they react to, becoming
more specialized.

A natural next step to the single-layer autoencoder is a multi-
layer autoencoder. A multi-layer autoencoder is still a symmet-
rical network, with an encoder on the left side, a bottleneck middle-
layer, and a decoder on the right side. The obvious difference is
that the encoder and the decoder have hidden layers of their own.
Figure 2.1 shows a generic autoencoder with three hidden layers.

Input
layer

Output
layer

...
...

...
...

x1

x2

x3

x4

xn

x̂1

x̂2

x̂3

x̂4

x̂n

Figure 2.1: Example of a multi-layer autoencoder.
However, the terminology surrounding multi-layer autoencoders is unclear.
In literature, it is possible to find references to deep autoencoders and stacked
autoencoders interchangeably, but there appears to be a difference. This
stance is also corroborated by Hugo Larochelle1, co-writer of the funda-
mental paper on denoising autoencoders [49]. Although the terminology is
evolving because the field itself is developing at a fast rate, here I stand by

1In the video available at the following address: https://www.youtube.com/watch?v=
z5ZYm_wJ37c the researcher explains the concept of deep autoencoder and specifies in the
comments the difference between the two architectures at hand.
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the statement that deep autoencoders and stacked autoencoders are differ-
ent architectures, and their description is as follows. Deep autoencoders are
trained as a single-layer autoencoder, while stacked autoencoders are trained
following a greedy, layer-wise approach. This second approach trains each
layer to reconstruct the output of the previous layer, and then fine-tunes the
whole network using the weights found in the pre-training as a starting point
[44, 50, 51]. This approach helps with the optimization of the training, by
initializing weights in a region near a good local minimum. Experimental
results show how multi-layer autoencoders are able to perform a much better
compression compared to single-layer autoencoders [44].

Another variant on the standard autoencoder is the denoising autoen-
coder [49]. While a standard autoencoder minimises a function L(x, x̂), a
denoising autoencoder minimises a function L(x̃, x̂) where x̃ is the input x
corrupted by some noise. Initially, the noise was generated by a Gaussian
process, but Bengio et al. [52] empirically proved how that need not be the
case. Therefore, denoising autoencoders pursue two different goals: encod-
ing the input to lower dimensional space and recovering data damaged by a
stochastic corruption process. The extra goal forces denoising autoencoders
to learn more robust features of the input data in order to be able to cor-
rectly reconstruct noisier data. Furthermore, regularized autoencoders such
as the denoising autoencoder have been shown to implicitly recover the data
generating density [53]. Additionally, stacked denoising autoencoders, which
are just denoising autoencoders with multiple hidden layers, were used to
improve the training of deep NN by learning better starting weights than
just random ones [50, 54].

In recent years, the number of NN architectures has expanded signi-
ficantly, which also means that a number of autoencoders based on such
architectures exist. It is not possible to survey all of these architectures,
but some references will be given in this paragraph. The main building
blocks of autoencoders have already been presented, and the works that will
be mentioned will only merge the fundamental concepts with a different,
or more specific, architecture. Some of these architectures are: variational
autoencoder [55], LSTM autoencoder [56], convolutional autoencoder [57],
contractive autoencoder [58].
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Chapter 3

Data

This chapter describes the data used to train the autoencoder models. First,
Section 3.1 describes the data Crownstone’s plugs are able to record. Next,
section 3.2 describes the structure of the data contained in available third-
party datasets. Then, Section 3.3 describes the preprocessing steps executed
to prepare the data for the models. Finally, Section 3.4 presents a description
of the anomalies that were used to test the models.

3.1 Crownstone

The main goal of this research project is to understand if it is possible to use
autoencoders to discriminate between normal and anomalous days, using
only data coming from appliances connected to a smart plug. The smart
plugs produced by the company Crownstone are called Crownstones.

The Crownstones are able to collect several kinds of data that can be
used for different tasks, but for the present research only two of these kinds
of data are useful. They are listed below.

1. Amount of watts drawn by the monitored appliance at a specific time.

2. “Switch on” and “switch off” events.

Regarding the first kind of data, Crownstones are able to record the Watts
drawn by the appliance connected to them at a specific time. Therefore,
this kind of data looks like a series of couples composed by a timestamp and
an amount of Watts. Regarding the second kind, through the Crownstone
application, it is possible to switch on or off the plug, respectively enabling or
disabling the appliance attached to it. These events imply an interaction with
the user and therefore constitute useful information about their activities.

During my internship at Crownstone, a system was devised to collect data
from four houses for a period of three months. Unfortunately, this system
was not reliable and the data gathered contained many gaps. Moreover, three
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months resulted to be too short of a time span for training an autoencoder
with the chosen feature, which presented in Section 3.3. Therefore, it was
decided to use available third-party datasets compatible with the data that
Crownstones collects. The datasets considered are presented in the next
section.

3.2 Third-party datasets

In recent years, several datasets were published to allow research in household
electric consumption at the appliance-level. Table 3.1 shows the features of
some of the datasets [59–62] suitable for the task at hand, where duration
denotes the length of the data gathering period, the sampling frequency
denotes the amount of time between two measurements, and the number of
houses involved in the data gathering process.

Name Duration Sampling frequency No. houses Extra Information
ECO up to 8 months 1 minute 6 physical presence
GREEND up to 1 year 1 second 9
HES up to 1 year 2 or 10 minutes 250
UK-Dale up to 3.5 years 6 seconds 5 events

Table 3.1: Comparative table of datasets.

The structure of the datasets containing interesting information for the task
at hand is displayed in Table 3.2. The displayed information is taken from
the UK-Dale dataset, but all the referenced datasets have the same structure.
The Timestamp column displays information about the time a measurement
was taken, represented as a Unix timestamp, and the Watts column displays
the amount of power drawn at that moment.

Timestamp Watts
1352744825 0
1352744831 339
1352744837 327

Table 3.2: Structure of the power datasets.

How can this type of data be represented in a graph? Figure 3.1 shows
the usage over time of two appliances: washing machine and kettle. The
Watt consumption is reported on the y-axis, and time is reported on the
x-axis. The blank spaces represent missing data.
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Figure 3.1: Power usage over time of a washing machine and a kettle.

From this simple graph it is already possible to understand a few things
about the data at hand:

1. Some data are missing.

2. At this level of granularity, the data look like less structured Poisson
distribution, rather than a classic time series like a stock price.

In figure 3.1, the power usage of the appliances looks like a spike. Zooming
in and taking a closer look, it is possible to see how each appliance has a
different usage of power over time. For instance, a kettle and a washing
machine have vastly different power consumptions over time, as it is possible
to see in Figure 3.2 and 3.3. The number 30 in the x-axis of both figures
represents the day, followed by the hour and minutes in which a measurement
was taken.

To the extent of my knowledge, no research has been done on anomaly
detection using directly this kind of data. For instance, the approach taken
in [18, 19] is to first extract events from raw power data, and then look for
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Figure 3.2: Typical power usage over time of a kettle.

Figure 3.3: Typical power usage over time of a washing machine.
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anomalies. The insight that underlies this strategy is that an event would
require human interaction; therefore, it reveals something about the activity
of the tenant. However, the electricity usage of different appliances can
vary wildly, and establishing a way to automatically extract events for every
appliance in the dataset is not a trivial matter.

The UK-Dale dataset provides event datasets, in addition to the power
datasets of the same appliance, in which “switch on” and “switch off” events
of the monitored appliance are recorded. The event datasets have a similar
structure to the raw power datasets, as shown in Table 3.3 where 0 stands
for “switch off” event and 1 stands for “switch on” event.

Timestamp Event
1364222303 1
1364222428 0
1364223029 1

Table 3.3: Structure of the event datasets.

The authors of the dataset state that “switch on” events should be a per-
fectly clean recording (i.e. the only possible reason for a “switch on” event
appearing in the data is that the user pressed the switch). Unfortunately,
“switch off” events may include false positives. But this does not mean that
when there is a spike in the power usage there is a “switch on” event, just
that when there is a “switch on” event there is also a spike. However, not all
appliances are reliably monitored for events: the washing machine dataset
and several other appliances miss substantial amounts of data. Figure 3.4
shows the comparison between raw power and event datasets, where a value
of 1 in the event graph denotes a “switch on” event, and a value of 0 denotes
a “switch off” event.

Because of these complications, and the fact that to the extent of my
knowledge no research has been done on anomaly detection using appliance-
level power data, it was decided that only the raw power datasets were going
to be used. The best dataset for this research is the UK-Dale dataset because
it has the longest data gathering process, a high sampling frequency, and a
high number of monitored appliances. Therefore, the UK-Dale dataset was
chosen for the training, evaluation, and testing of the models.

3.3 Preprocessing

When working with real-world datasets, gaps in the data and inconsistent
values are to be expected. To prepare the data for the models, several
choices were made regarding how to handle these complications and they
will be presented in this section.
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Figure 3.4: Comparison of raw power data and event datasets.

First of all, the choice regarding the level of granularity at which the data
should be examined had to be made. The data is spanning more than three
years, and at a sampling rate of 6 seconds that is a large amount of data to
be considered. Going back to the initial goal of this project, it became clear
that the most appropriate unit of time to classify as normal or anomalous
would be the day. A longer time unit would make it impossible to act on
a potential emergency in a useful time, a smaller time unit would make it
difficult to define what an anomaly is. Therefore, the decision was made
to select as features the sum of all the values collected for each hour in a
day. Aware of the fact that to obtain the average consumption in an hour
one should average the power values, the sum was chosen because it gives a
more immediate idea of the time in a day when it is more common for an
appliance to be used. In any case, the two measures are directly related.
Thus, a change to consider the average of the power values instead of the
sum can easily be made. Based on these choices, an input vector for the
model has the shape [x0, x1, x2, . . . , x23] where x0 contains the sum of the
power values of all data point measured in a specific date between midnight
and one in the morning, and so on for every hour in that day.

As seen in Figure 3.1, data points are missing throughout the whole data
gathering period. A threshold was set to 60 minutes of consecutive missing
data to determine whether a day should be kept as a valid input or not.
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Monitoring an appliance to infer the habits of the tenant relies on the as-
sumption that the monitored appliance is used with some continuity. There-
fore, only appliances that are most of the times used at least once a day can
be considered useful for this kind of monitoring. Of course, it is possible
that a person will not use an appliance for some time. However, more than
two consecutive days during which no usage was recorded are considered a
vacation. Thus, they are removed from the dataset.

Another extra step to clean the data was to remove the electrical noise
picked up by the monitoring device. When an appliance is in standby or
even turned off (for the task at hand there is no difference between these two
situations because both imply that there was not an interaction with the
user) the power value of every data point should be zero. On the contrary,
because of electrical noise, some of the data points that were supposed to have
value zero had low but positive values. In the UK-Dale dataset metadata,
most appliances’ descriptions report a power value below which the appliance
is considered to be turned off. Every value in each appliance’s dataset below
that value was then turned to zero. The values above that threshold were
not modified because, even if affected by the same electrical noise, on average
each data point should be affected in the same way. Therefore, this would
not create any problem for the task at hand.

In order to be fed to the model, the input data needed to be split in
training, validation and test sets. The respective percentages of the whole
dataset are 70%, 15%, and 15%. At the time of splitting, the input vectors
are shuffled in order to avoid any temporal interference. If they were not
shuffled, the test set would be composed only by the most recent data points.
However, if there was a shift in the habits of the user in the period captured
by the test set, that could impact the final results and considerations on the
model. This is because the training data would be capturing older habits
which are not relevant anymore.

3.4 Anomalies definition

The data used in the experiments are described in the previous sections of
this chapter. Building on that, this section defines the anomalies that are
relevant in this context.

Considering again the wide definition of anomalies given by Chandola
et al. [9]: “patterns in data that do not conform to a well-defined notion of
normal behaviour”, it is possible to highlight two characteristics of this kind
of data:

1. Anomalies are context dependent.

2. Anomalous data are defined in contrast to normal data.
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The first point indicates that in any different context there might be a dif-
ferent definition for anomaly. The second point suggests that the first step
towards the definition of anomaly for a given context is the definition of
what data is normal. In the context of the present research, normal means
frequent, and anomalous means rare. To clarify, if the data shows that in the
vast majority of days there is a high electricity consumption from a specific
appliance between 7 and 8 PM, and a very low consumption between 4 and
5 AM, then a high consumption between 4 and 5 AM on a specific day may
be regarded as anomalous for that appliance.

The data coming from a TV is now taken as an example to illustrate the
anomalies. Figure 3.5 shows the average TV consumption over all the days in
the UK-Dale dataset. It is clear that the data shown have the approximate
shape of a Gaussian distribution with mean around 20. Again, anomalies

Figure 3.5: Average daily distribution of TV’s power consumption.

are dependent on the context and for this research four kinds of anomalies
have been devised, trying to cover most of the possible cases. More kinds of
anomalies can, of course, be devised but as a starting point the four reported
below should suffice. The anomalies were generated by:

1. Shifting the time of the power consumption by a number of hours x,
such that 1 ≤ x ≤ 23.

2. Scaling all data points by different factors.

3. Combining point 1 and 2.
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4. Flattening consumption to specified values.

The anomalies defined in point one cover all cases in which the routine of
the resident shifts in time. Some of these shifts could be dangerous, such as
an increased power consumption in late evenings and night. This behaviour
could be a symptom of sundowning, often associated with Alzheimer’s disease
and dementia [63]. An anomaly of this kind is presented in figure 3.6, where
the same values presented in figure 3.5 are shifted by 8 positions to the right.
The anomalies defined in point two consider the cases in which the habits of

Figure 3.6: Average daily distribution of TV’s power consumption shifted by 8
positions.

the tenant remain the same from the time perspective, but vary in intensity.
The scaling factor chosen for this type of anomaly are 0.5, 0.75, 1.25, 1.5, 2.
The meaning of these anomalies depends on the appliance being monitored:
for instance, in the case of a cooking stove, if there is half the usual amount of
power drawn for several consecutive days, it may mean that the eating habits
are changing. The anomalies defined in point three combine a shift in time
to a scaling factor. The anomalies defined in point four describe situations
in which an appliance is left active and continuously draws a certain amount
of power. In the case of a TV being always on, it may mean that the tenant
is having a more secluded and sedentary lifestyle. Specifically, the values
chosen for each day are the minimum, the maximum, and the mean for that
day.
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Chapter 4

Method

This chapter describes how the final model is chosen, trained, and evalu-
ated. First, Section 4.1 illustrates the steps taken in order to answer every
research sub-question initially presented in Section 1.3. Then, Section 4.2
discusses the network architecture and its hyperparameters. Finally, Section
4.3 presents the choices made for the evaluation of the models.

4.1 Experimental steps

In order to answer each research sub-question specified in Section 1.3, several
experimental steps were taken and are reported below.

To answer sub-question 1, “What kinds of anomaly are the models able
to recognize?”, a trained autoencoder is tested on the anomalies generated
according to Section 3.4. The specific autoencoder selected for the task was
the result of the answers to sub-questions 1 and 2, and is described in Section
4.2.

To answer sub-question 2, “How does performance evolve when the size
of the latent representation is increasingly reduced?”, several models with
increasingly smaller latent representations are trained and tested with the
anomalies devised in Section 3.4. Results are then analysed to understand
the performance changes.

To answer sub-question 3, “Is there a clear performance improvement
when a deep autoencoder is used instead of a shallow autoencoder?”, a seven-
layer autoencoder is built and tested against its shallow counterpart to in-
vestigate the different performance on the anomalies.

4.2 The network and its hyperparameters

In the context of machine learning, the term hyperparameter refers to those
parameters that are set before, and not influenced by, the process of learning.
In the case of a NN for instance, the hyperparameters define the architecture,
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the number of nodes per layer, batch size, learning rate and many other
aspects of the model. Unfortunately, there is no reliable method to select
the best values for the hyperparameters. The most common approach is
training a model with different values and testing it, to find the set of values
that best suit the uniqueness of the dataset and the desired result [45].

Hyperparameter tuning is one of the tasks mainly responsible for the
success of a machine learning model. It is a process that can take a long
time and a lot of resources, so much so that state-of-the-art models are
able to perform so well because of the huge amount of computational power
that is available to the researchers and/or the company supporting them.
Because of the limited resources available for this research, only a few of
these hyperparameters have been explored, and are reported in Table 4.1.
The main hardware and software components used to run the experiments
are illustrated in Appendix A.

Hyperparameter Shallow autoencoder Deep autoencoder

Layer size
[24, 12]
[24, 8]
[24, 4]

[24, 20, 16, 12]
[24, 18, 12, 8]
[24, 17, 10, 4]

Layer activation
[relu, relu]

[relu, linear]
[relu, relu, relu, . . . , relu]

[relu, relu, relu, . . . , linear]

Feature scaler
Standard scaler
MinMax scaler

None

Loss
Mean Squared Error
Mean Absolute Error

Root Mean Squared Error

Table 4.1: Model hyperparameters.

The autoencoder is symmetrical, thus the layer sizes are reported for half
of the autoencoder imagining it going from left to right as in Figure 2.1. The
size of the bottleneck layer is initially set to half of the size of the original
input, which is generally considered a good place to start for dimensionality
reduction. Then, the size of the bottleneck layer is increasingly shrunk to
see the evolution of performance on the anomalies. In the deep autoencoder,
the size of the bottleneck layer is the same as in the shallow autoencoder,
with the layers decreasing in size by approximately the same amount in each
layer. Regarding the activation functions, REctified Linear Units (RELUs)
[64] are extremely popular in deep learning and also very appropriate for the
data at hand, which have always positive values. The linear activation in
the output layer is included because deep networks can suffer from the dy-
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ing RELU problem. The dying RELU problem is well explained by Andrej
Karpathy in the Stanford CS231n course notes [65]. A linear activation in
the output layer can help the gradient flow better and avoid that problem.
In the current research features are always in similar scales. This is because
they are sums of positive values representing hourly usage of an appliance.
Therefore, scaling could theoretically be avoided. On the other hand, scal-
ing can help the neural network converge faster and find better local optima.
Thus, two scalers are selected for the hyperparameter search: the Standard
scaler standardize features by removing the mean and scaling to unit vari-
ance, while the MinMax scaler transforms the data by scaling each feature
to the range [0, 1].

The loss functions define how the error between the output of the net-
work and the desired value should be calculated; this is the function that is
being minimized during training. In general Mean Absolute Error (MAE)
is the easiest to comprehend because it expresses values in the same unit of
measure of the data. Therefore, it was chosen as the metric to compare the
performance of different models. Interestingly, minimizing the MSE almost
always generates lower MAE values compared to when the network is minim-
izing MAE directly. For reference, formulae for MAE and MSE are reported
in Equation 4.1 and 2.1, respectively. It is clear that in the case of an out-
lier, its MSE value will be much larger than its MAE value. This is because
an outlier is characterized by a large reconstruction error, and squaring it
would make it even larger. Therefore, MAE is considered a metric that is
robust to outliers, while MSE is considered a metric sensitive to outliers.
Because of this sensitivity, the MSE loss function will adjust the models to
incorporate the outlier values, possibly at the cost of degrading performance
for data points with smaller reconstruction errors. During backpropagation
with MSE loss, minimizing the reconstruction error of outliers is a fast way to
decrease the overall MSE value. This is because the value of the metric can
be decreased significantly by modifying the reconstruction of a small number
of data points. Depending on the number of outliers and their values, it is
possible that incorporating them in the model to some degree will also affect
the MAE value that is used to evaluate the model after training, thus making
it smaller than when minimizing the reconstruction error directly with MAE
loss.

A choice that has not been tested through the hyperparameter optimiza-
tion is the one for the optimizer. For an overview on the available optimizers
see [66]. The optimizer Adam [67] was selected because it is generally re-
garded as the best initial choice [66], also pointed out by Andrej Karpathy
in the Stanford CS231n course notes [65]. For this research, the parameters
of the optimizer are kept to the default values as suggested in the original
paper [67].

For training the deep autoencoder, two methods are investigated: stand-
ard whole-network training, and greedy layer-wise training. Greedy layer-
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wise training [50] consists first in training each layer to the left side of
the bottleneck layer as if it was the hidden layer of a single-layer autoen-
coder, saving its weights and biases. Once the bottleneck layer is reached,
all weights and biases for all layers have already been calculated because
the network is symmetrical. These weights and biases will be the starting
weights and biases for the whole-network fine tuning. This method is more
computationally expensive but was able to obtain reconstruction errors that
were on average 15% smaller compared to the standard method. Therefore,
the greedy layer-wise method was chosen to train the deep autoencoders in
the experiments.

In order to define which values for the hyperparameters to use in the
experiments, a grid search is performed on the hyperparameters previously
mentioned. Then, the best performing model for each bottleneck layer size
is selected. The selection of the best model was based on the reconstruction
error obtained on the validation set. The validation set is also used to stop
the training of the network. Specifically, the training is stopped when the
network produces no improvement on the reconstruction error of the valid-
ation set for 10 consecutive epochs. Interestingly, a single hyperparameters’
configuration performed best for most of the cases. Namely, no scaling, only
RELU activations, and MSE loss. Only the deep autoencoders with bottle-
neck layer of size 8 and 4 were able to best perform with a MAE loss. It
needs to be pointed out that most of the runs that used Root MSE as a loss
function were inconclusive because they suffered from the exploding gradient
problem [37]. The grid search was performed on the TV dataset, the average
day of which is represented in Figure 3.5.

4.3 Evaluation choices

Contrary to supervised learning, the performance of an unsupervised or
semi–supervised learning model is not as straightforwardly evaluated. While
supervised learning already has an answer and therefore one can compute
metrics like precision and recall, with unsupervised learning one can only
explore the results of the model and try to understand which cases are cor-
rectly recognized as anomalies and which cases are missed. This research
uses the anomalies as defined in Section 3.4.

As previously done by Martinelli et al. [27], the present research uses
thresholds on two different metrics to determine whether a day is anomalous.
First, the MAE over all the features is reported in Equation 4.1, where y
is one feature vector, ŷ is the feature vector reconstructed by the model,
and i refers to one of its features. MAE is chosen as a metric, instead of
MSE for instance, because the error is expressed in the same unit of measure
as the data, and therefore more intuitively evaluated. The MAE is useful
to identify as anomalies data points in which the majority of features are
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reconstructed poorly.

MAEy =
1

n

n∑
i=1

|yi − ŷi| (4.1)

Second, the Mean Absolute Deviation of the Errors (MADE) of all the fea-
tures from their mean is reported in Equation 4.2, where y is one feature
vector, ŷ is the feature vector reconstructed by the model, and i refers to
one of its features. Certain features might be more sensitive to anomalies
than others. Therefore, the MADE metric is useful to identify as anom-
alies data points that have MAE values below the anomaly threshold, but in
which a small subset of features generated most of the reconstruction error.

MADEy =
1

n

n∑
i=1

∣∣∣|yi − ŷi| −MAEy

∣∣∣ (4.2)

The two metrics identify different kinds of reconstruction error. Therefore,
if any of these two values exceeds its threshold, the day is considered an
anomaly.

Once the metrics are chosen, a threshold value for each of them must be
defined. If a threshold is overcome, then that data point is considered an
anomaly. As discussed in Section 6.1, most of the literature investigating
the use of autoencoders for anomaly detection is not clear about how the
thresholds should be chosen. Dau et al. [68], choose as a threshold the
maximum reconstruction error obtained on the training set. This seems
like a sensible choice if the training dataset does not contain any anomaly or
outlier. Unfortunately, with the chosen dataset there is no absolute certainty
that the training data completely belongs to the normal class. It will belong
to the normal class in the vast majority of the cases but not necessarily in
all of them. Therefore, when setting the threshold on the metrics this must
be taken into consideration. This is why the anomaly threshold selected
is the 95th percentile of the MAE values of the training set, instead of the
maximum value. The choice of that value is arbitrary but motivated by data
exploration. Figure 4.1 presents a histogram of the frequencies of the MAE
values of the TV’s training set and its anomaly threshold. The values were
obtained with the shallow autoencoder with a bottleneck layer size of twelve.

As it can be seen, the big majority of the values are low (i.e. below
500), which makes sense given that most of the data points have low recon-
struction errors. Because of this imbalance in the distribution of the data,
choosing a threshold based on the standard deviation from the mean is not
a good option. Figure 4.2 shows the sorted MAE values and the threshold
anomaly for the training set of the TV dataset, obtained with the shallow
autoencoder with a bottleneck layer size of twelve. As illustrated, the 95th

percentile chosen as anomaly threshold is placed at the beginning of the steep
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Figure 4.1: Histogram illustrating the frequencies of the MAE values of the TV’s
training set.

Figure 4.2: Sorted MAE values of the TV’s dataset.
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exponential curve. This allows for some higher values to be still considered
normal, but not the extremes. Because the data distribution is very similar,
the same choice is made for the MADEs; the 95th percentile is chosen as the
anomaly threshold.

As a concluding remark on the methodology, it is important to clarify
that the final system is composed of two main parts: the trained network
and the threshold. The present research focused more on the network as a
component but, as highlighted in Section 5 and 6, a good threshold is para-
mount to the anomaly detection capabilities of the system. More research
needs to be done in order to obtain some guidelines to select an appropriate
threshold that is not only based on the exploration of the dataset at hand.
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Chapter 5

Results

This chapter presents the results obtained by the models specified in Chapter
4. First, Section 5.1 presents the results obtained on the TV dataset. Then,
Section 5.2 the results obtained on the microwave dataset. Finally, in Section
5.3 some considerations on the performance of the models are presented.

There are several reasons why the datasets of TV and microwave have
been chosen. Upon inspection, the average daily consumption of an appli-
ance generally has a shape which approximates a Gaussian distribution or a
mixture of Gaussian distributions. Therefore, TV and microwave have been
selected as examples of these two average shapes. Moreover, they are appli-
ances with a low rate of interruptions in the data, which means more data
to train the models. Finally, the rate of empty days after the preprocessing
was 4.2% for the TV and 5.1% for the microwave. This means that the
appliances were used almost every day, which is ideal for the scenario this
research is focusing on.

In order to avoid redundancy while reporting the results, each model
will be given a code name based on its architecture–shallow or deep–and
the size of the bottleneck layer: 4, 8, or 12. To clarify, the shallow model
with bottleneck layer size of 8 will be referred to as shallow8. Moreover, all
the results and figures will be referring to the TV dataset, unless explicitly
stated otherwise.

5.1 TV dataset

This section is dedicated to the analysis of the performance of several mod-
els on the TV dataset. To reiterate, performance in this context is not a
straightforward concept. The comparison between models is made by ex-
ploring the data that each model deemed anomalous, and by considering
their differences. Moreover, because NN models appear as a black box, it
is impossible to know for each instance the reason the model performed in
the way it did. On a general level it is trying to minimize the reconstruction
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error, but for specific examples we can only suppose that the patterns that
caused the high reconstruction error were not adequately represented in the
training data. The average usage of this appliance is reported in Figure 3.5.
This specific appliance was chosen because of its average usage shape–almost
a Gaussian distribution–but it does not mean that the all of the input vectors
actually have a resembling shape.

5.1.1 Test set results

This section presents a performance comparison between shallow and deep
models with shrinking bottleneck layers trained on the TV dataset. Before
going into the specifics of each comparison, there are a few general consid-
erations worth pointing out. First, no model is able to properly reconstruct
consumption that happens between midnight and six in the morning. As il-
lustrated in Figure 3.5, few data points have high values in that hour range,
which explains the poor reconstruction by all models. Second, the smaller
the size of the bottleneck layer, the smaller the size of the latent represent-
ation. Therefore, the poorer the reconstruction on examples that are rarely
seen in the training data. Because of how the anomaly thresholds are com-
puted, this also leads to a higher threshold for anomalies in models with
smaller latent representations, as it can be seen in Figure 5.1.

Figure 5.1: Anomaly threshold values per bottleneck layer sizes.
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Moving on to the comparison of the shallow models with shrinking bot-
tleneck layers, the first comparison will be between shallow8 and shallow12,
starting with the days recognized as anomalies in the test set. First, consider
the anomalies detected by shallow12 but not by shallow8. One reason that
causes some days to be anomalous for shallow12 but not for shallow8, is that
anomaly thresholds are higher in shallow8, as seen in Figure 5.1. So even
if the reconstruction of the two models was similar, the stricter thresholds
in shallow12 triggered the anomaly. An example of this behaviour is repor-
ted in Figure 5.2. For this example, the behaviour of shallow12 is correct
because both reconstructions completely missed the early morning consump-
tion, shown in Figure 5.6. Thus, the day should be considered anomalous.
In few occasions, days were not detected by shallow8 because this model was
better than shallow12 at reconstructing high values around midnight. This
behaviour was unexpected, and not in line with Hypothesis 2. An example
of this behaviour is reported in Figure 5.3. The value that the models were
trying to reconstruct in the first hour of the day was 31415, and shallow8
does a better job. On the other hand, shallow8 is consistently unable to
reconstruct well values in the hours ranging from 13 to 16. Therefore, it
triggers more alarms compared to shallow12 at that time of the day. An ex-
ample of this behaviour is shown in Figure 5.4. With shallow4 the situation
gets even more extreme. It reconstructs badly inputs that shallow12 is able
to reconstruct very well. As with shallow8, the time range 13–16 is very
poorly reconstructed, and on top of this also the time range 17–19 has big
troubles. In general, it fails to properly reconstruct days that have a high
consumption distant from the evening hours. A fairly unusual day like the
one reported in Figure 5.5 is very badly reconstructed, highlighting the fact
that only the values around 20–21 are reconstructed relatively well.

Now the deep autoencoder models will be considered. Generally speak-
ing, there is nothing to add to the behaviour of the shallow models. The
differences between deep12 and deep8 are the same as the differences between
shallow12 and shallow8. Namely, high consumption in the time range 13–16
triggers deep8 but not deep12. The parallel continues with deep4: in ad-
dition to shallow8 limitations, also peaks of consumption in the time range
16–18 are very poorly reconstructed. As for shallow4, when deep4 is not
triggered by days that triggered models with bigger latent representations it
is because its thresholds are higher.

From this analysis of the results, it appears that the models with latent
representations of size four and eight nodes are too rigid. On the other hand,
the models with latent representation of twelve nodes are more balanced.
Therefore, they are chosen for the comparison between shallow and deep
models. Deep12 is able to reconstruct better than shallow12 consumption
in the morning. While shallow12 is not able to reconstruct it almost at all,
deep12 is able to reconstruct it to a certain degree, as shown in Figure 5.6. In
this case, even an isolated peak in the morning is reconstructed well enough
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Figure 5.2: An example of similar reconstructions performed by shallow models
with bottleneck layer size of twelve and eight nodes, respectively.

Figure 5.3: An example of different reconstructions around midnight performed by
shallow models with bottleneck layer size of twelve and eight nodes, respectively.
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Figure 5.4: An example of poor reconstruction of the 13–16 time range performed
by the shallow model with bottleneck layer size of eight.

Figure 5.5: An example of the fact that the shallow model with bottleneck layer
size of four is exclusively able to reconstruct the time range 20–21.
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Figure 5.6: An example of early morning reconstruction poorly performed by shal-
low12. Deep12 performed well enough not to overcome the anomaly thresholds.

by deep12 not to overcome the anomaly thresholds. On the other hand,
in a few cases vanilla12 was able to better reconstruct peaks in the range
11–15, as shown in Figure 5.7. This behaviour was unexpected, and not in
line with hypothesis 3. The expectation was that deeper models would learn
a more flexible representation of the data, and therefore would be able to
reconstruct the input better than shallow models. However, in this case the
behaviour of shallow12 is more appropriate because it is much more likely
to see TV consumption around lunchtime than it is to see it at six in the
morning, at least in this dataset. Considering the above result, it appears
that overall shallow12 is able to find a better degree of flexibility compared
to deep12.

5.1.2 Anomalies results

This subsection focuses on the analysis of the models’ results on the anom-
alies artificially generated according to Section 3.4.

The anomalies in which the time of the day is shifted by increasing val-
ues, as illustrated in Figure 3.6, will be referred to as the rolled anomalies.
First, a comparison of the models’ shallow12 and deep12 performance on
the rolled anomalies is provided. Figure 5.8 shows a box plot of the average
MAEs values for each of the 23 shifts in this category of anomalies. Position
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Figure 5.7: An example of the reconstruction of the time range 11–15 performed
well by shallow12 but not by deep12.

Figure 5.8: Box plots of the average reconstruction error per shift in the rolled
datasets, obtained by deep and shallow models with bottleneck layer size of twelve.
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0 reports MAE values for the original test set. The notches around the me-
dian represent the 95% confidence intervals obtained by bootstrapping the
median 5000 times. As usual, the box contains the values ranging from the
first to the third quartile. The lower whisker goes from the value zero to the
first quartile, and the higher whisker goes from the third quartile to the 95th

percentile. As it is possible to see from Figure 5.8, the anomaly detection
threshold coincides with the end of the upper whiskers in the original test
set, which is in position 0. There is not much difference in these two graphs
between the shallow and deep models, except that the 95th percentile seems
to be closer to the third quartile in the range 7–11 for the deep model. An-
other small difference is that the boxes are relatively more distant from the
anomaly threshold in the shallow model. No clear distinction in the per-
formance between the models shallow12 and deep12 was found. Therefore,
from this point forward only the shallow model will be considered, given
that is easier and faster to train. Intuitively, the shape of the box plots
makes sense because the average error values increase with the size of the
shift until it reaches a maximum. In the case of the shallow model it is a
shift of seven positions. Then, because the data distribution is similar to
a Gaussian, the average errors decrease because the peak of the Gaussian
is approaching again its original position. For the TV dataset, it is clear
that a positive shift of two hours in the user’s habits already causes a steep
increase in the average errors, and results start to get similar to the original
test set only after 22 shifts. Therefore, this means that a shift of two hours in
any direction already increases a lot the probability that a day is considered
anomalous. Specifically, anomalous days in the normal test set constitutes
7.6% of the total, while anomalous days in the test set shifted of two hours
constitutes the 36.2%. Figure 5.9, shows the number of anomalies detected
for each shift. It is interesting to see how the number of anomalies starts
increasing sharply after the first one-hour shift. Then, it flattens out around
200 from a shift of four hours to a shift of sixteen hours. Finally, it decreases
almost as sharply as it increased in the beginning. This happens because,
out of 210 days in each shift, 7 are perfectly empty and a few others have
very low consumptions. This means that their reconstruction errors are very
low and therefore they are not considered as anomalies. In a few cases, an-
omalies are missed for another reason. As it is possible to see in Figure 5.10,
the reconstruction is suboptimal. However, at the same time, the relatively
low consumption allows the reconstruction error of the peak to be spread
over all the other features and not be considered anomalous. For cases such
as this, it could be useful to introduce alarms for very high deviations in
single features instead of averaging over all features, as per the Formula 4.2.

Now the scaled anomalies will be considered. As explained in Section 3.4,
in this kind of anomaly every vector in the test has been scaled by several
different factors. Then, each vector is tested to see if it is identified as an
anomaly. Analysing the results, it turns out that an almost exact linear
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Figure 5.9: Number of anomalies detected per shift in the rolled datasets by the
shallow model with bottleneck layer size of twelve.

Figure 5.10: An example of a poorly reconstructed day which is not considered an
anomaly.
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relationship exists between the errors of the test set and the errors of the
scaled test sets. This is evident in Figure 5.11, which shows the relationship
between the sorted MAE values of the test set and the respective MAE values
of the test set scaled by a 0.5 factor. This relationship holds for MADEs as

Figure 5.11: Relationship between the MAEs of the test set and the MAEs of the
test set scaled by a 0.5 factor.

well, and for every scaling factor. Intuitively, this makes sense because the
lower the values to reconstruct, the lower are also the errors. This is the
case when trying to reconstruct days that are empty or that have a very low
consumption. But this relationship makes it true for high values as well, so
if one scales an input by a factor 2, its errors value will be two times larger
than the original. It follows that the lower the scaling factor, the more
points below the anomaly threshold there will be. Vice versa, the higher
the scaling factor, the more points above the anomaly threshold there will
be. The relationship between scaling factor and the number of data points
recognised as anomalies is not clear. As it can be seen in Table 5.1, the
scaling factors smaller than 1 maintain approximately a linear relationship,
while the scaling factors bigger than 1 do not.

The combination of the previous two types of anomalies did not bring
forth anything additional to the single analyses. The linear relationship
between the MAEs of the test set and the MAEs of the scaled sets is evident
also in Figure 5.12 because the average error values of the scaled test sets
are the original error values multiplied by the respective scaling factor. In
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Scaling factor Number of anomalies

0.5 9
0.75 11
1 16

1.25 17
1.5 20
2 23

Table 5.1: Number of anomalies detected in the scaled test sets.

Figure 5.12: Average MAE values per shift in the rolled anomalies and per different
scaling factors.
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this figure every curve is the simplified version of Figure 5.8, in which every
point is the average MAE for that shift. The scales are the one reported in
Table 5.1, and the orange points represent position 0 of the plot of a scaling
factor. As for the simply scaled anomalies, the lower the scaling factor, the
more points below the anomaly threshold there are.

Finally, the last type of anomaly is considered. This type of anomaly
consists of selecting a single value from a specific day and substituting all
other values with that one. This way, every value in a day is the same. For
each day, three values are selected: the minimum, the maximum, and the
mean of that day. The analysis of this type of anomalies does not add any-
thing significant to the information gathered from the previous analyses. The
days flattened at the maximum value are always recognised as anomalous,
as long as the original values are not all zero or extremely low. This makes
sense because the average shape is similar to a Gaussian, while this type of
anomalies has high values at every hour. Similarly to the days flattened at
the maximum value, the days flattened at the mean values are always recog-
nized as anomalous, except days in which the value is low or zero. Every
day containing values smaller than 2000 per hour is considered not anomal-
ous. On the other hand, the days flattened at the minimum value are never
recognized as anomalies because the minimum values are almost always zero
or very low. Therefore, the network produces very little reconstruction error
and the anomaly thresholds are not overcome.

5.2 Microwave dataset

The shape of the microwave’s dataset average daily power consumption is
different compared to the TV’s dataset. The microwave dataset approxim-
ates a mixture of three Gaussians, instead of a single Gaussian, as illustrated
in Figure 5.13. This will affect the performance of the models, therefore the
results of shallow12 are reported here. During the analysis of the TV data-
set results, shallow12 appeared as the more balanced model, therefore it was
chosen for this analysis as well.

Shallow12 detects 13 anomalies in the test set, corresponding to 6.3%.
Upon inspection, two recurring characteristics of these anomalies appear
clear and are reported as follows. The model is not able to reconstruct well
peaks in the night and in the early morning, as shown in 5.14. Moreover,
consumption in the range 21–22 is poorly reconstructed, as illustrated in
Figure 5.15.

Regarding the scaled sets, there is nothing more to add to what has
been said about the TV dataset. Moreover, the model maintains a linear
relationship between input scale and error reconstruction values.

Regarding the rolled anomalies, Figure 5.16 shows the box plot picturing
the average MAE values per shift. The parameters of these box plots are
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Figure 5.13: Average daily distribution of microwave’s power consumption.

Figure 5.14: An example of poor reconstruction in the time range 4–5 in the mi-
crowave dataset.
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Figure 5.15: An example of poor reconstruction in time range 21–22 in the mi-
crowave dataset.

Figure 5.16: Box plots of the average reconstruction error per shift in the rolled
datasets, obtained by the shallow model with bottleneck layer size of twelve.
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the same as the ones for the box plots reported in Figure 5.8. It is possible
to see that the overall shape of this plot remains similar to the TV plot
in Figure 5.8, but with much lower MAE values. Overall, only the average
MAEs of three shifts are completely below the anomaly threshold, compared
with the almost six of the TV dataset. This can intuitively be explained by
the fact that a mixture of three Gaussians, contrarily to a single one, allows
on average more data points to not be exceedingly out of place. Therefore,
the reconstruction errors are generally lower. From the box plots, it appears
even more clearly how the interquartile ranges of the MAE values are closer
to the anomaly threshold compared with the TV dataset. Looking into the
shift with higher average MAE value, in position 10, approximately 26%
of the days are not recognized as anomalies. The days not recognized as
anomalous have very low values. This means that even if the reconstruction
is actually pretty poor, spreading the errors over all the features allows the
anomaly threshold not to be overcome. In any case, 26% is more than the
6.6% of the TV dataset for the shift with higher average MAE value. The
amount of empty days in the two datasets is very close. Therefore, one
can conclude that with a dataset–in which the average daily distribution
of the power consumption approximates a mixture of Gaussians–the model
is less sensitive to rolled anomalies; compared to a dataset in which the
average daily distribution approximates a single Gaussian. This complicates
detecting conditions like sundowning, or time shifts in the habits of the user.
For this reason, it might be useful to investigate the adoption of another
feature to train the model when the average daily distribution of the power
consumption approximates a mixture of Gaussians.

Combining the rolled and scaled anomalies does not bring forth anything
new compared to the analysis made for the TV dataset. Regarding the
flattened anomalies, the behaviour of the models is exactly the same as with
the TV dataset; therefore, there is nothing to add.

5.3 Considerations post-analysis

In the first part of this section, the hypotheses presented in Section 1.4 are
discussed with respect to the new information gathered from the analysis of
the results. Then, some of the limitations which emerged from the analysis
of the models are listed.

Hypothesis 1: “The smaller the bottleneck layer, the higher the number
of anomalies found”. With the current settings, this statement is not always
true. For the original test set this statement holds: shallow12, shallow8,
and shallow4 detect 16, 47, and 143 anomalies respectively. On the other
hand, Figure 5.17 shows the number of anomalies detected in each shift of
the rolled anomalies for all the shallow models. Previously, Figure 5.9 has
illustrated the same data of one of these models, therefore all the comments
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regarding it also apply to Figure 5.17. The values are connected by a line
to highlight the trend. As it can be seen, the number of anomalies detected
by models with smaller latent representations is generally smaller than the
number of anomalies detected by models with bigger latent representations.
This counter-intuitive result is caused by the fact that models with smal-
ler latent representation have higher thresholds for anomalies, as shown in
Figure 5.1. Therefore, lowering those thresholds causes the number of an-
omalies to increase sharply, as it can be seen from the line labelled mixed
in the graph. That line represents the number of anomalies that shallow4
would detect if it had the same anomaly thresholds that shallow12 has.

Figure 5.17: Number of anomalies detected per shift in the rolled datasets by each
the shallow models.

Hypothesis 2: “The anomalies found by models with bigger latent rep-
resentations are a subset of the anomalies found by a model with a smaller
latent representation”. This is not true for the models trained during this
research. As mentioned in the previous paragraph, sometimes models with
smaller latent representations have a lower number of anomalies detected.
Even if the thresholds were adjusted to counteract the increasing recon-
struction error values, there is no guarantee that the anomalies of a model
with smaller latent representation would be a perfect subset of the anom-
alies of a model with bigger latent representation. An example to support
this hypothesis is shown in Figure 5.3, in which a model with smaller lat-
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ent representation reconstructs an unusual input better than a model with
a bigger latent representation. In general, depending on the rigidity of the
model, a different notion of normality is learned. NNs weights are usually
initialized with random values close to zero, drawn from a normal or uniform
probability distribution. New methods that outperform this basic technique
in specific contexts have been published, see for instance He et al. [69] for
the RELU case. Nonetheless, an element of randomness is maintained in the
weight initialization. Because of this intrinsic randomness in the initializa-
tion of the network, two models with identical hyperparameters might reach
slightly different notions of normality. Therefore, models with similar but
not identical hyperparameters do not necessarily reach notions of normality
easily comparable. Hence, there is no reason according to which the an-
omalies of a model with smaller latent representation need to be a perfect
subset of the anomalies of a model with bigger latent representation.

Hypothesis 3: “the deep models are able to reach a more flexible learned
representation compared to the shallow models. Therefore, the models identify
as anomalies only the data points that heavily deviate from the norm”. This
statement is partially true. No substantial difference was found between the
performance of the deep and shallow models. The representation learned
by the deep model with bottleneck size of twelve was marginally more flex-
ible than the representation learned by its shallow counterpart. Therefore,
the deep model was able to reconstruct consumption in the night or early
morning better, slightly decreasing the number of anomalies detected. Over-
all, the difference in performance between shallow and deep models was not
meaningful.

During the analysis of the results, several limitations of the current model
and approach have emerged and are reported below. Then, Section 6.2
proposes methods to overcome these limitations.

1. By shuffling the dataset before training the models, habits are con-
sidered as monolithic immutable entities. Therefore, the models do
not exploit their temporal and mutable nature.

2. Days with zero or low consumption have low reconstruction errors.
Therefore, they are never flagged as anomalies.

3. Choosing the 95th percentile of the training reconstruction error as
fixed anomaly threshold cause models with small latent representation
to not perform as expected.

4. The reconstruction error of solitary peaks in unusual times of the day
is spread over all features. Therefore, it is not flagged as anomalous,
especially in days with medium to low consumption.
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5. Datasets in which the average daily distribution of power consump-
tion approximates a mixture of Gaussian are less sensitive to rolled
anomalies.
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Chapter 6

Discussion

This chapter puts this research in the context of related literature, describing
commonalities and differences with other works. First, Section 6.1 discusses
the related literature. Then, Section 6.2 focuses on the limitations of the
present research, highlighting future steps to take in order to improve the
performance of the models.

6.1 Related work

Several researchers used autoencoders in anomaly detection contexts pre-
viously, and this research uses their ideas as a starting point. First, the
main works in this area are presented on their own merits. Then, they are
discussed and their approach is compared to the present research.

Japkowicz’s PhD thesis focuses on outlier detection with autoencoders
[25]. The author uses autoencoders to model the normal class. Then, defines
a threshold in the reconstruction error to classify an object as anomalous.
Japkowicz’s work is based on the assumption that if the network is not
able to properly reconstruct the input–i.e. the reconstruction error is large–
then the input is not part of a common pattern in the data and can be
considered an outlier. The autoencoder used has a hidden layer with fewer
nodes compared to the input layer, and the threshold is set at a value that
minimises both false positive and false negative classifications. Japkowicz
tests the performance of her model on real-world datasets and compares
them with a Multilayer Perceptron (MLP) trained on examples of both the
known class and unknown classes.

Hawkins et al. [26] used a Replicator Neural Network, which is closely
related to an autoencoder. The main difference is the activation function:
instead of using a classic activation function such as sigmoid or hyperbolic
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tangent, they use the formula reported in Equation 6.1.

S(θ) =
1

2
+

1

2(k − 1)

N−1∑
j=1

tanh[α(θ − j

N
)] (6.1)

Where N is the number of steps of the staircase, α controls how steep is
the transition between different levels, k is the number of the layer, and θ
is the weighted sum of the inputs to the unit. For k = 3 and α = 100, the
function has been plotted in figure 6.1. The staircase activation function is
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Figure 6.1: Staircase activation function.

important because it partitions continuously distributed data points into a
number of discrete-valued vectors, allowing the network to naturally cluster
data. In order to decide if a data point is an outlier, the authors define the
Outlier Factor as the MSE over all the features. The authors do not define
a threshold, and instead only rank the data points according to the Outlier
Factor. Another paper written by the same authors [70] presents a com-
parison of the performance of their system with other commonly employed
anomaly detection methods on publicly available datasets. Dau et al. [68]
build on top of this paper employing a three-layer Replicator NN, opposed to
a five-layer one. Dau et al. demonstrate that for the application at hand the
three-layer Replicator NN performed as well and in some cases better than
the original system. Additionally, the three-layer NN is faster to train. The
authors chose the maximum reconstruction error obtained on the training
set as the anomaly threshold.

Martinelli et al. [27] use autoencoders to detect anomalies in signals com-
ing from substations of an electric power system. They use a sliding window
to calculate two metrics that define if the current values are to be considered
outliers. These two metrics are (1) the average reconstruction error over all
the features and in all the time steps of the sliding window, and (2) the av-
erage of the absolute deviation of the features from their mean. A threshold
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for each measure is defined and, if overcome, an alarm is raised. The authors
do not specify how the thresholds for the metrics were chosen.

Along the same lines, Sohn et al. [28] define a novelty index measuring
the reconstruction error in terms of Euclidean distance. The data used in
this work come from a simplified numerical model of a computer hard disk.
Thompson et al. [29] use a very similar system, using as input data the
average CPU utility over a period of 15 minutes in a network server. Both
works do not explicitly define a threshold on the chosen metrics.

As it is possible to understand, all the works reported above, as well as
the present research, work in the same way. They use autoencoders to create
a compressed representation of the input data, they determine one or more
metrics to judge the reconstruction of the input, and set thresholds on those
metrics to classify data points as anomalous. The process of selecting the
right threshold for the metrics is central, but most of the reported works
either do not describe it or they bypass the need for it by ranking the data
points. This process should be the subject of an investigation in its own
right, in order to establish some guidelines for similar researches. Moreover,
all of the aforementioned studies were not conducted recently. Therefore,
they could not have taken into consideration later advancements in the field
of NN such as denoising or variational autoencoders, or autoencoders based
on recurrent NNs. The present thesis focused on understanding the ba-
sic building blocks of anomaly detection on appliance-level electrical data.
Starting from these understandings several more sophisticated and more up-
to-date solutions can be investigated. Some of these solutions are presented
in Section 6.2.

Other works done in the general context of anomaly detection using au-
toencoders were considered, but since different approaches were adopted they
are seen as not directly comparable with the present research. Erfani et al.
[71] focus on high dimensional data and chose a hybrid approach: one-class
SVM and Deep Belief Network. This NN is similar to an autoencoder, but
not the same. Moreover, with 24 features the context of this thesis can be
considered relatively low dimensional. Nicolau et al. [72] also use a hybrid
approach, first training an autoencoder to reduce dimensionality and then
analysing densities in the hidden layer, where a low density would indic-
ate an anomaly. Their approach is similar to the one adopted in the thesis
but the main difference is the choice of the datasets. The authors chose
datasets in which the normal class is separated from the anomalous class, ef-
fectively framing the problem as a supervised learning problem. Sakurada et
al. [73] compare the performance of autoencoders to linear PCA and kernel
PCA, confirming that autoencoders generally perform better or require less
computation than their counterpart. The authors used the aforementioned
techniques to detect anomalies in both artificial and real data, but unfortu-
nately not much detail is provided to assess the anomalies. Yan et al. [74]
use stacked denoising autoencoders but just as an initial step to learn the
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most important features of the data. These learned features are then used as
input for another classifier which is responsible for detecting the anomalies.

6.2 Future work

This section takes as a starting point the limitations of the current models
listed in Section 5.3 and presents some ideas on how those limitations can
be overcome, paving the way for future work. In addition, some other ideas
to be investigated in the future are listed as well.

“By shuffling the dataset before training the models, habits are considered
as monolithic immutable entities. Therefore, the models do not exploit their
temporal and mutable nature.” The current models do not take into consid-
eration the sequential temporality of the data, but that is a key component
of the dataset at hand. In future experiments, models that take into consid-
eration this aspect should be examined. Autoencoders based on recurrent
NNs are suited for this kind of task, and especially Long Short-Term Memory
networks [75] should be analysed for the task at hand.

“Days with zero or low consumption have low reconstruction errors. There-
fore, they are never flagged as anomalies.” This is a problem, especially if
the underlying assumption is that the monitored appliances should be used
almost every day. In the scenario at hand, zero or low consumption could
mean that something happened to the tenant, making it unable to use the
appliance. Because of the relationship between low input values and the
reconstruction errors mentioned in Section 5.1.1, this behaviour’s correction
is challenging. One solution could be to enforce a threshold on the number
of consecutive days with no consumption allowed, but this is a very rigid
option. A better version of this solution would be to learn a good value for
this threshold from the training data, once anomalies and vacation days are
removed from it. Another solution entails transforming the skewed distri-
bution of the reconstruction errors (see Section 4.3), bringing it closer to a
normal distribution. This can be done simply by taking the logarithm of the
values or using a more complex technique such as the Box-Cox transforma-
tion [76]. Once the data distribution is closer to a normal, lower and upper
thresholds can be set. In this case, the lower threshold would be useful to
identify as anomalies the data points that are empty or with extremely low
values.

“Choosing the 95th percentile of the training reconstruction error as fixed
anomaly threshold cause models with small latent representation to not per-
form as expected.” Analysing the results of the current models, it appeared
that the smaller the size of the bottleneck layer, the bigger are the recon-
struction errors, and therefore the bigger the values of the 95th percentile
of the reconstruction errors of the training set. This is not an ideal beha-
viour, thus another method to determine the threshold for shrinking latent
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representations should be devised. Ideally, the thresholds are determined
dynamically according to the size of the bottleneck layer to account for a
bigger average error reconstruction.

“The reconstruction error of solitary peaks in unusual times of the day is
spread over all features. Therefore, it is not flagged as anomalous, especially
in days with medium to low consumption.” This happens because, when
calculating the MADEs, the deviation of each feature’s reconstruction error
from the mean is averaged over all features. Therefore, to identify days in
which the reconstruction error of only one feature is extremely high and of
the others is low, one should add another metric that does not average their
values.

“Datasets in which the average daily distribution of power consumption
approximates a mixture of Gaussian are less sensitive to rolled anomalies.”
This makes it more difficult to detect potentially dangerous shifts in the
habits of the tenant. This problem is intrinsic to the kind of usage a person
does of the appliance and is not easily solved. Stricter anomaly thresholds
might help, as might also a model with a stronger notion of temporality.

Another option that could improve performance is to consider other fea-
tures to learn. The sum of the power values per hour seemed a sensible and
straightforward feature, but some other feature can possibly be investigated.
One of the deep learning advantages over more traditional machine learning
techniques is its ability to autonomously select good features from raw data.
Therefore, another investigation direction is to use directly the raw power
data as input to the models. This might translate into more preprocessing
work on the dataset to make sure that all data points needed are in place
for all considered appliances. However, it might improve the performance of
the model overall.

Finally, something that can definitely improve the performance of the
models is a bigger hyperparameter search space. Together with all the vari-
ables typically considered in this search, different optimizers and parameters
per optimizer should be tested.
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Chapter 7

Conclusion

This thesis discusses how an autoencoder can be trained to identify anomalies
in usage patterns of appliance-level power data. Furthermore, it explores
the impact of important hyperparameters such as the architecture of the
NN, different node activation functions, and loss functions on the resulting
models. Several choices were made, both for the definition of anomalies in
the context at hand, and their evaluation. Chapters 5 and 6 highlight the
limitations of the current models and propose improvements to overcome
them. The answers to the research questions are reported below.

Sub-question 1

“What kinds of anomaly are the models able to recognize?”
If the average daily usage of an appliance approximated a single Gaussian
distribution, the trained autoencoders were very sensitive to rolled anomalies.
On the other hand, if the average daily usage of an appliance approximated
a mixture of Gaussians, the model showed less sensitivity. Furthermore,
because of the linear relationship existing between the input scale and the
reconstruction errors, scaling factors have to be consistently bigger than 1
for the model to effectively recognize the input as anomalous. This fact
also explains why inputs with exclusively low values are never recognized as
anomalies. The models are also very sensitive to the flattened anomalies, as
long as the flattened value is not very low.

Sub-question 2

“How does performance evolve when the size of the latent representation is
increasingly reduced?”
As expected, smaller latent representations lead to more rigid models which
learn only increasingly common usage patterns. On the other hand, what was
not expected was the large role that the selection of the anomaly thresholds
plays. Thresholds should be defined dynamically taking into account the
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rigidity of the model, simply choosing the 95% percentile of the training
errors does not suffice.

Sub-question 3

“Is there a clear performance improvement when a deep autoencoder is used
instead of a shallow autoencoder?”
Compared to their shallow counterparts, deeper autoencoders learn a more
flexible representation of the training data and are able to adapt better to
it. The difference in reconstruction error between a deeper autoencoder and
their shallow counterparts is not huge, but the former performs better. This
is not necessarily a good sign for anomaly detection, because to detect anom-
alies the right amount of rigidity is needed. Because of this, and because the
deeper version takes substantially longer to train than the shallow version,
deeper autoencoders are deemed less appropriate for the current task and
the current data.

As previously mentioned, the first goal of AAL is defined as “extending
the time people can live in their preferred environment by increasing their
autonomy, self-confidence and mobility”. In this context, the present re-
search investigated the use of autoencoders as anomaly detection tools for
appliance-level electrical data. As long as the average power consumption
approximates a normal distribution, autoencoders are sensitive to most of
the anomalies described in Section 3.4. The issue of empty or low valued
input vectors can be improved as suggested in Section 6.2. It follows that, for
this kind of input, a system based on autoencoders could serve as first care
solution to detect a major divergence from normal behaviour. The models
trained in this research were intended to investigate the general capabilit-
ies of autoencoders to detect anomalies. Therefore, a system deployed on
premises may need to adopt more sophisticated solutions. For instance, the
current models take as input a vector which represents the consumption of
a day starting from midnight. This choice is arbitrary; depending on the
context, a smaller time frame or a different hour interval might be needed.
Aside from practical details, the underlying autoencoder technique might be
successfully used for anomaly detection of power consumption.

To conclude, the basic autoencoder model is able to detect anomalies
in usage patterns of appliance-level power data. Its effectiveness depends
mostly on the type of anomalies and the average distribution of the input
data. The model has several limitations, listed in Section 5.3, but extending
its capabilities as proposed in Section 6.2 will no doubt improve its perform-
ance. Overall, this work analysed important aspects of the basic autoencoder
model for anomaly detection; several strengths of the model were found, as
well as weaknesses. Building on this knowledge, if the proposed improve-
ments are implemented, better performance will be achieved .
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Appendix A

Implementation details

The system is implemented with the Python programming language because
of its scientific computation libraries and user-friendliness. Keras1 has been
chosen as the NN API because of its focus on enabling fast experimenta-
tion. Moreover, Keras can be used as a front-end for other NN APIs such
as TensorFlow and Theano, masking their complexity and speeding up the
development process. All data manipulation and plots generation was per-
formed using Python libraries as well. The code of the thesis project is
publicly hosted on BitBucket2. The development process was executed on
an Apple MacBook Pro and its main hardware components can be found in
Table A.1a, while the main software and libraries used are listed in Table
A.1b.

Component Specification

CPU Intel Core i5-4278U
RAM 8GB, 1600 MHz, DDR3L

Hard Drive APPLE SSD SM0256F

(a) Hardware components

Software Version

Mac OS X 10.11.6
Python 3.6.4
Keras 2.1.4

Tensorflow 1.5.0
Numpy 1.14.0
Pandas 0.22.0

Matplotlib 2.1.2

(b) Software used

Table A.1: Hardware and software specifications

1https://keras.io
2https://bitbucket.org/RiccB/thesis_project
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