
Thesis Report

Aerosol Optical Depth and Cloud Parameters from
Ascension Island retrieved with a

UV-depolarisation Lidar
An outlook on the validation

Manon Schenkels
28th March 2018





Aerosol Optical Depth and Cloud Parameters from
Ascension Island retrieved with a UV-depolarisation Lidar

An outlook on the validation

Manon Schenkels
Student number: 6036996

Supervisors:
Martin de Graaf

Rupert Holzinger

A thesis submitted in partial fulfillment of the degree of Master of Science
at Utrecht University, Institute for Marine and Atmospheric Research, The Netherlands.

28th March 2018, Utrecht, The Netherlands





Abstract

Aerosol-Cloud Interactions (ACIs) are one of the least understood climate feed-
backs. Ground-based remote sensing has a large potential to study these interac-
tions. In this study a UV-depolarisation lidar has been set up on Ascension Island,
a remote island in the southeast Atlantic Ocean, for one month in summer 2016 and
one month in summer 2017, to study the aerosol, cloud microphysical properties,
and their interaction. In clear-sky (cloud-free) periods, the backscattered signal is
used to calculate the Aerosol Optical Depth (AOD). The AOD is a measure of the
attenuation of the lidar beam due to suspended particles, which can be estimated
in clear-sky, by integration of the extinction profile over the column and accounting
for the Rayleigh (molecular) attenuation. A UV-depolarisation lidar measures not
only the backscattered signal but also the depolarisation of the returned signal. De-
polarisation of the lidar beam can occur due to multiple-scattering inside liquid wa-
ter clouds. The multiple-scattering inside the cloud near the cloud-base was simu-
lated using a Monte Carlo (MC) model inside an idealised semi-adiabatic liquid wa-
ter cloud. Using lookup tables generated by the MC model, the cloud microphys-
ical properties such as the cloud droplet number concentration and the effective
radius were derived from the depolarisation ratio observed by the lidar. The aim
of the study was to validate these retrieval methods. The AOD product was com-
pared to AERONET data and data from hand-held sun-photometers. The multiple-
scattering (MS) based inversion method for the retrieval of the cloud droplet effect-
ive radius was compared to a method using radar observations on the island from
the US ARM mobile facility.

The lidar AOD retrievals show similar values in 2016 as the AERONET data. In
2017 the AOD lidar retrievals do not correlate well with the AERONET, Calitoo and
Microtops data. Misalignment has caused difficulties in the AOD retrieval in 2017.
The effective radius in clouds retrieved from the lidar data could not be compared
to the methods with radar data in 2016, because the radar was operating for only 9
days of our measurement period. In 2017 the lidar retrieved effective radius agrees
within the error bands with the radar retrieved effective radius. These results show
the UV-depolarisation lidar to be a potentially useful instrument to study the AOD
and the cloud droplet effective radius. With more research focusing on the valid-
ation of the methods to employ the lidar, the instrument could prove valuable for
Aerosol-Cloud Interaction monitoring.

Keywords: UV-depolarisation lidar, aerosol optical depth, multiple-scattering, cloud
effective radius, AERONET, Calitoo, Microtop, Cloud radar, Ascension Island
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1. Introduction

Aerosol-Cloud Interactions (ACIs) are one of the least understood climate feed-
backs, according to the Fifth Assessment Report of the Intergovernmental Panel on
Climate Change (IPCC, 2014). To gain more insight on these effects different types
of research are done. On the global scale, the aerosol effects on clouds are studied
using satellite remote sensing observations and by model studies, at smaller scales
studies are carried out using surface remote sensing or a combination of aircraft
in-situ data with surface remote sensing.

Aerosols can have various effects on clouds, which are explained extensively in
Lohmann and Feichter, 2005. In this research we focus on the first indirect effect,
the Twomey effect, (Twomey, 1977). The Twomey effect is related to the number
of available Cloud Condensation Nuclei (CCN), which is a subset of the aerosols
present. In low-level liquid stratocumulus clouds with a constant Liquid Water
Content (LWC), the cloud droplet number concentration (Nd) increases and the size
of the cloud droplets decreases with an increase of CCN. The increase of Nd and
decrease of the size of the cloud droplets increases the optical thickness and cloud
reflectivity. This is a secondary effect and is called the cloud albedo effect, directly
resulting from the Twomey effect (Allison McComiskey et al., 2009). Another result
of the Twomey effect is the delay of precipitation (Lohmann and Feichter, 2005).

Ascension Island is chosen as study area for its generally well defined stra-
tocumulus deck (Norris, 1998), its remote location and its high level of biomass
burning aerosols (Swap et al., 1996), released from the African continent from July
through October, because of the dry season. This makes the island a perfect loca-
tion for studying the ACIs. Ascension Island is midway the Atlantic Ocean between
Africa and America, just south of the equator, in a sub-tropical region. The aerosols
that are mostly observed at Ascension Island are dust particles from the Sahara or
smoke particles from biomass burning events south of the Sahara, besides marine
aerosols (Swap et al., 1996). The aerosol distribution across the ocean depends on
the wind speed and direction.

A UV-depolarisation lidar (LIght Detection And Ranging) is a remote sensing
laser instrument, which makes height resolved measurements of the aerosol and
cloud backscatter. The lidar is a promising instrument to examine the vertical pro-
files for clouds, aerosols and the ACI (Mamouri and Ansmann, 2016). Often used
parameters to represent ACI are the Aerosol Optical Depth (AOD) and Aerosol
Index (AI) for the aerosols1. And the effective radius (Reff), cloud droplet num-

1The AOD is the integrated aerosol extinction profile. The AI is a measure of how much the
wavelength dependence of the total backscatter (molecular and aerosol scattering and absorption)
differs from the wavelength dependence of the pure molecular backscatter (Rayleigh scattering, by
the molecules in the air only).
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ber concentration (Nd), liquid water path (LWP) and cloud optical depth for the
clouds2. The vertical extinction profile can be integrated over the whole column
on cloud-free periods to get the AOD, following the Klett inversion (Klett, 1981).
The cloud parameters are retrieved in this study from the lidar with a method de-
veloped by Donovan et al. (D. P. Donovan et al., 2015). The Multiple Scattering
(MS) based inversion method uses the polarisation of the lidar pulses due to mul-
tiple scattering in liquid water clouds.

Several studies have been performed in the past years, using ground-based re-
mote sensing instruments, studying the range of interactions that take place between
aerosols and clouds. Although the methods are similar the measured parameters
differ a lot. Generally, A. McComiskey and Feingold (2012) conclude that regard-
ing the differences in temporal and spatial scale, “the numerous process studies
that have attempted to assess the magnitude of these effects have generated con-
flicting answers, and even the sign of the cloud water response to changes in the
aerosol is in question”.

AOD measurements are widely done with lidars, the retrieval of microphysical
cloud properties not so much. The depolarisation lidar is an instrument with high
potential for the retrieval of cloud microphysical properties due to the simulation
of multiple scattering in the clouds and the depolarisation ratio. To check how the
depolarisation lidar is doing for the retrieval of the AOD and the cloud parameters
and to study the ACIs compared to other methods, in this thesis various methods
are compared, by checking whether the retrieved parameters agree within their
error bands.

The AOD data used for the intercomparison is from AERONET, Calitoo meas-
urements and Microtops measurements. The Calitoo Aerosol photometer and Mi-
crotops were used to measure AODs at clear-sky moments manually, the AEro-
sol ROotic NETwork (AERONET ) which has a station at Ascension Island with an
automated sunphotometer.

The Reff for intercomparison is retrieved with methods described by (Frisch,
Fairall et al., 1995) from radar reflectivity measurements gathered with cloud radars.
These cloud radars are operated by the Atmospheric Radiation Measurement Cli-
mate Research Facility (ARM) as part of a temporal site as Ascension Island. This
ARM site is the implementation of the Layered Atlantic Smoke Interactions with
Clouds (LASIC) campaign.

Our research was part of the UK measurement campaign CLouds and Aerosol
Radiative Impacts and Forcing (CLARIFY ). CLARIFY flew with Ascension as base
with an aircraft full of atmospheric in situ and remote sensing instruments. The in-
situ measurements from CLARIFY provide an excellent opportunity to verify the
retrieval method for the cloud parameters and the AOD retrieval. Although care

2The effective radius of cloud droplets is the area weighted mean radius of the cloud droplets,

Reff =
∫∞
0 R3n(R)dR∫∞
0 R2n(R)dR

, where n(R) is the cloud droplet particle size distribution. Nd is in cm−3 and

the LWP is the integrated liquid water content in a column in gm−3.
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should be taken for the spatial, horizontal and vertical difference and for the fact
that we only retrieve the cloud parameters for the cloud base.

Methods to evaluate the aerosol and cloud vertical profiles with a ground-
based depolarisation lidar is valuable for ACI and global warming related research.
Therefore, we focus on the evaluation of these methods for acquiring such data.

The objectives of this research are:

RQ1: How do the lidar products compare to other methods?: 1a) How does the
AOD retrieved from the lidar compare to the AOD gathered from AERONET, the
Calitoo and Microtops? and 1b) How does the Reff retrieved from the lidar com-
pare to the Reff retrieved from the radar data with Frischs methods?

RQ2: How do the two years of lidar measurements compare in terms of the AOD
and Reff?

RQ3: Is the accuracy of the retrievals from the lidar sufficient to say something
about the ACI above Ascension Island?
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2. Field Campaign

2.1. Study area

Ascension Island(7.9o S, 14.4o W) is an isolated volcanic island surrounded by the
South Atlantic Ocean, with an area of approximately 88 km2. The island has a
hot desert climate. The annual rainfall is low, although it is in the tropical zone
(Dorman and Bourke, 1981) with an average value of 142 mm/yr at Ascension
Island.

Figure 2.1: Map showing the location of the study area, Ascension Island.

The prevailing wind in the boundary layer on the island is from the (east-)
southeast, because of the dominating subtropical trade wind (Kim et al., 2003).
These trade winds are almost invariant. This means, as can be seen in figure 2.3,
that the wind flows over the highest point of the island first. Above the boundary
layer (1200 - 2000 m above sea level, depending on the diurnal cycle) the wind is
coming from the equatorial regions. These air masses have dominantly been last
in contact with the ground in tropical Africa (Greatwood et al., 2017). Swap et al.,
1996 found that air parcels take around 7 days to travel from Namibia to Ascension
Island between 900 hPa and 800 hPa when stability is sustained. With back traject-
ories the movement of air parcels is recalculated and the aerosols above Ascension
Island can be tracked back to their source.

2.2. Campaigns

In 2016 the lidar was operated at Ascension Island by KNMI. In 2017, the research
corroborated the UK measurement campaign CLoud-Aerosol-Radiation Interac-
tions and Forcing (CLARIFY). During CLARIFY an aircraft was operated with As-
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cension as base, full of atmospheric measurement instruments, in situ and remote
sensing. Airborne aerosol and cloud observations were in 2017 also performed dur-
ing a NASA campaign, ObseRvations of Aerosols above CLouds and their intErac-
tionS (ORACLES), having Sao Tome as a base. Their aircraft flew predominantly
north-east of Ascension Island. With Namibia as base, a french campaign, AErosol
RadiatiOn and CLOuds in Southern Africa (AEROCLO-SA), flew with the same in-
centive during the 2017 period. A large area of the South-East Atlantic was covered
with in-situ measurements during our 2017 measurement period, shown in figure
2.2. All studying the effect of aerosols on clouds, radiation and the climate.

Figure 2.2: Map showing the locations of the Aircraft Campaings in 2017, CLA-
RIFY on the left in rainbow colors, with Ascension as base. ORACLES in the north,
shown with the green lines, with Sao Tome as their base and AEROCLO-SA from
Africa, shown with the blue lines, with Namibia as their base.

2.3. Instrumentation

For this study, data was collected with a ground-based UV-depolarisation lidar.
The lidar was set-up in both years on the airport site, shown in figure 2.3. For both
measurement periods, the lidar was set up for a total duration of 26 days. In 2016
the lidar was non-operational due to power cuts and to computer malfunction from
the morning of the 24th of August until the evening of the 27th of August. In 2017
more computer malfunctioning appeared but for shorter duration, so no full days,
but only parts of days are missing in the data.

Radiosonde data, gathered by ARM, was used to calibrate the lidar for the
Rayleigh scattering. The radiosondes, released from the airport site, gather in situ
data for the vertical profiles of temperature, pressure and relative humidity. They
were launched 8 times a day in 2016 and 4 times a day in 2017. The radiosonde
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data was interpolated to the time and height resolution of the lidar. From this data
the molecular extinction and backscatter coefficients were calculated.

A Calitoo Aerosol photometer was used occasionally in 2017, when there was
clear sky, to measure the AOD. These measurements were performed from the air-
port site or from Georgetown, 5 km north from the airport site. AERONET has a site
at Ascension Island, from which we can use the AOD data. In 2017 the AOD was
also measured by the CLARIFY team, with Microtops, comparable aerosol pho-
tometers as the Calitoo, although not in accuracy. These products offer the AOD
products, with which we can validate our AOD retrievals. For the cloud product
comparison, data from the ARM site is used for both measurement periods. The
products we have used were measured with a Ceilometer, Cloud Radars and a Mi-
crowave Radiometer (MWR), all located at the main ARM site, situated 6 km east
from the airport site, at around 365 m above mean sea level. This location is also
shown in the map below.

Figure 2.3: Ascension Island layout of instrumentation.

As observational data, two periods of measurements were used, one month
from summer 2016 and one month from summer 2017. In these periods other at-
mospheric observations were done at or around Ascension Island which offer data
to compare the processed lidar data with. In the table below an overview of general
information and some meteorological parameters is shown for both of our meas-
urement periods.

12



Table 2.1: Table with general information for the two periods of measurements with
the UV-depolarisation lidar.

Dates 3 sept 2016 - 29 sept
2016

15 aug 2017 - 10 sept
2017

Location Airport site Airport site
Full days 21 16

Measured in total 537 hours 568 hours
Other campaigns ARM, ORACLES ARM, CLARIFY, OR-

ACLES, AEROCLO-
SA

Average Surface temperature 21.19 oC 22.78 oC
Average Atmospheric pressure 97.78 kPa 97.71 kPa

Average Relative humidity 90.39 % 82.31 %
Average Wind direction East-Southeast East-Southeast

Average Wind speed 7.72 m/s 7.12 m/s

2.3.1. UV-depolarisation lidar

A LIDAR (LIght Detection And Ranging) is a remote sensing laser instrument. It
has a laser on the transmission side and photomultipliers to detect the incoming
radiation on the receiver side. The linearly polarized light transmitted by the laser
travels through the air until it is absorbed or scattered by a molecule, aerosol or
cloud droplet. When the light is only scattered once and returns in the direction
of the lidar, is it termed single-scattering. When single-scattering occurs with a
spherical particle, like a liquid water cloud droplet, the light will return with the
same polarisation as it is transmitted by the laser, the light is parallelly polarized.
The light can become depolarised, when it is scattered by a non-spherical particle,
mostly ice or aerosol particles, or because of multiple scattering. Multiple scatter-
ing occurs when the light is scattered more than once by a particle. This multiple
scattering is accounted for with an inversion method in the MS based inversion
method.

Before the light is actually measured it goes through a filter, which will filter
out the diffuse sunlight, through a lens, to focus the light. And in the end the
return signal is split using a polarized beam-splitter into components whose plane
of polarization is parallel and perpendicular to the transmidded light polaization
plane. After the incoming light is split, it is detected by the photo-multiplier tubes
(PMTs).

At the receiver side of the lidar a certain percentage of incoming radiation is
lost during the detection, because of the filtering, the lenses and the splitting. These
factors are combined in the lidar calibration constant, Clid. The values used for the
lidar calibration constants are shown in table 2.2. This lidar constant differs for the
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two separate channels as it depends on the seperate PMTs. Cross-talk between the
channels can exist, due to the uncertainty of the beam-splitter and thus the pres-
ence of signal with orthogonal polarisation in each channel. This effect is a source
of uncertainty in the estimation of the depolarisation ratio. A polarisation cross-talk
parameter δC is defined to correct for this effect. To calibrate the parallel and per-
pendicular channels in relative sense, an inter-channel depolarisation calibration
constant, Cr, is defined, the value for this calibration coefficient is assumed a priori.
To make sure that the inversion algorithm does not depend on the absolute calib-
ration of the lidar, which is often not good, the attenuated backscatter normalised
by the maximum value of the parallel attenuated backscatter is used.

Figure 2.4: Leosphere ALS-450
UV-depolarisation lidar setup
during the field campaign. (7.97o

S, 14.35o W)

Figure 2.5: Calitoo Aerosol pho-
tometer used during the field
campaign.
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Table 2.2: Lidar calibration constants for the inversion process.

Constant Value in 2016 Value in 2017

Clid 9.5 ± 1.0 9.5 ± 1.0
δC 0.97 0.87
Cr 1/0.026 1/0.031

FOV interpolation factor 0.14 0.14

The lidar that was used is a commercial Leosphere ALS-450 operating at 355
nm, pointed vertically with a zenith angle of 3 degree (Leosphere, n.d.). It has a
tripled Nd-Yag laser with an energy of 16 mJ per pulse. The pulse duration is 5
ns and it fires with a frequency of 20 Hz. The lidar has a vertical resolution of 15
m and a 30 second time interval. So 600 pulses are averaged, to get the 30 second
time interval. The lidar was positioned 76 m above mean sea level. The laser beam
and receiver Field-Of-View (FOV) have an incomplete overlap in the lowest 200 m
above the lidar, the system measures the backscatter from 200 m above the lidar. In
2016 the data had a good signal-to-noise ratio up to 20 km, in 2017 this was only up
to 15 km, because of a misalignment.

2.3.2. Calitoo Aerosol photometer

The Calitoo is a hand-held sun photometer (Tenum, n.d.). It needs to be directed to
the sun manually. It measures the incoming radiation flux, which is a function of
radiation emitted by the sun and the effect of the atmosphere. From this incoming
radiation flux, the total extinction is derived. The effect of the atmosphere is the at-
mospheric absorption and scattering from the molecules in the air, calculated from
the measured pressure and temperature, and the extinction by the ozone column.
Climatology data is used for the ozone column, to subtract from the total extinction
in the profile. After correcting the total extinction for this molecular and ozone ab-
sorption and scattering, the AOD is calculated from the aerosol extinction (absorp-
tion and scattering) integrated over the column. The AOD is calculated for three
different wavelengths in the visible light spectrum: blue (465nm), green (540nm)
and red (615nm). The calculation of the AOD is done using the raw brightness
measurements, the calibration coefficients, the atmospheric pressure, date and the
GPS position.

The total AOD at wavelenght λ is derived following Beer-Lambert-Bouguer’s
law: Vλ = V0λD

−2 exp (−τλM), where Vλ is the signal measured by the instrument
at wavelength λ, V0λ is the extraterrestrial signal at wavelength λ, D is the earth-sun
distance in astronomical units at time of observation, τλ is the total optical thickness
at wavelength λ, consisting of the molecular, aerosol and ozone optical thickness
and M is the optical air mass (Ichoku et al., 2002). Beer’s law is only accurate when
multiple-scattering is not important, when there are no clouds.
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The Calitoo was operated from the airport site or from Georgetown, 5 km north
from the airport site, see figure 2.3. In total 15 values for the AOD were measured
during the period in 2017. The AOD measured for the blue wavelength is used
for the intercomparison as it is the closest to the wavelength of the lidar. The un-
certainty in the value for the AOD measured with the Calitoo is dominated by the
variation of the averaged measurements, gathered within 5 minutes.

2.3.3. AERONET

AERONET offers their AOD data processed on the website for various wavelengths,
the AOD measered at a wavelength of 340 nm is used for the intercomparison.
AERONET is a network of several ground-based sun-photometers distributed glob-
ally gathering direct sun measurements, to calculate the wavelength dependent
AOD (Holben et al., 1998). The instruments are automatic tracking sun and sky
scanning radiometers with a 1.2o field of view. They measure the direct sun meas-
urements every 15 minutes at 8 wavelengths. An ion-assisted deposition interfer-
ence filter with a band pass of 2 nm is positioned in front of the detector for the
340 nm measurement. The AERONET data we used in this study was quality- and
cloud-screened. The AERONET AOD data measured at the wavelength of 340 nm
has an uncertainty of 0.021. This is due to atmospheric pressure variation when as-
suming there is a 3 % maximum departure from mean surface pressure (Eck et al.,
1999).

2.3.4. Microtops

Microtops are also hand-held sun photometers. They work similar as the Calitoo.
With a moving filter wheel, the filters are changed inside the instrument, to meas-
ure the direct sunlight at five different wavelengths. The filters used in the channels
have a band pass of 10 nm for all channels. The AOD gathered with the Microtops
is calculated with the same equation as was stated for the Calitoo.

The data from the Microtops was shared by the CLARIFY team on Ascension Is-
land. They operated two instruments every time at the same moment. The average
of the AOD is calculated for the wavelength of 550 nm from the two instruments.
The instrument uncertainty of the Microtop is comparable to the uncertainty from
AERONET (Ichoku et al., 2002). At 550 nm, the uncertainty in the Microtops AOD
measurements is 0.03. We also calculate the variation in the measurements gathered
by the two instruments within 5 minutes.

2.3.5. ARM instruments for Cloud Parameter retrievals

The cloud parameters used for the intercomparison are calculated with the use of
reflectivity data gathered by the Cloud Radars from ARM and the LWP data meas-
ured by the Microwave Radiometer. Because there is no Cloud Radar at the air-
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port site, for both products the data from the main ARM site were used. In 2016
the W-band Scanning ARM Cloud Radar (WSACR) ((ARM), Instruments: WSACR
n.d.) was operating from the start of our measurement period up until the 11th of
september. In 2017 the Ka-band Scanning ARM Cloud Radar (KASACR) ((ARM),
Instruments: KASACR n.d.) has been operating for the full period. The radars oper-
ate with a field of view of 0.3 degrees for both radars and a frequency of 94 GHz and
35.3 GHz respectively for the WSACR and KASACR. Vertical pointing scans are
taken each hour, for a duration of 4 minutes. The products with a time-resolution
of 2 seconds and a vertical resolution of 30 m, are available online. For the LWP,
Microwave Radiometer (MWR) ((ARM), Instruments: MWR n.d.) data were used,
which was available online for the period in 2016, but not yet for the period in 2017.
The LWP is measured and processed once every 30 seconds.

Cloud Radars

A Cloud Radar is like a lidar an active remote sensing instrument but transmits
pulses in the radio-frequency instead of in the visible light or ultraviolet. Both the
radars include a Ka-band radar (2 kW peak power), the WSACR also has a second
radar, the W-band (1.7 kW peak power) ((ARM), Instruments: WSACR n.d.). The
ARM cloud radars are special because of their scanning strategies. For this research
the vertical-pointing mode is used, in which the radar is not scanning. From the
vertical pointing scans with the cloud radar, the 2D radar reflectivity factor, Z, is
used. This reflectivity is the backscattered radio frequency from cloud droplets or
precipitation. The radar has a transmitter in the center, the receiver is in a circle
around this trasmittor. The radiation trasmitted by the radar travels through the
air until it is reflected back by a cloud droplet or precipitation. The product we
collected from the ARM database is a height-time product of the reflectivity in the
vertical above the radar.

Microwave Radiometer

A microwave radiometer (MWR) is a radiometer measuring energy emitted by gas
or particles in the atmosphere in the microwave (millimetre-to-centimetre wavelengths)
range. The ARM MWR is a sensitive microwave receiver that detects the microwave
emissions of the water vapor and liquid water molecules in the atmosphere at two
frequencies: 23.8 and 31.4 GHz. ((ARM), Instruments: MWR n.d.). Water vapor has
its absorption line around 23 GHz, liquid water emission increases with frequency,
so the 31.4 GHz frequency is more sensitive to liquid water emission by hydromet-
eors. As the size of the hydrometeors increases, the frequency at which they emit
energy is increasing. For example, large rain drops and larger frozen hydrometeors,
having sizes of a few milimeters, emit energy at a frequency especially higher than
90 GHz so will not be detected by the MWR we used. Using a statistical retrieval
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algorithm, the integrated water vapor and liquid water path are derived from the
radiance measurements ((ARM), Instruments: MWR n.d.).

2.3.6. Overview of the instruments and products

An overview of all the products used in this study is given in the table below.

Table 2.3: Cloud and aerosol properties measured or derived, and used in this
study, from the observations at Ascension Island.

Measured quantity Definition Instrument(s)

Attenuated backscatter coefficient ATB (m−1 sr−1) Leosphere ALS-450
Pressure and Temperature profiles P (Pa), T (K) Radiosondes

Aerosol Optical Depth (AOD) τ Leosphere ALS-450
Cloud droplet effective radius Reff (µm) Leosphere ALS-450
Aerosol Optical Depth (AOD) τ AERONET, Calitoo

photometer, Micro-
tops

Radar reflectivity factor Z (dBZ or m6 m−3) WSACR/KASACR
Cloud liquid water path LWP (g m−2) MWR

Cloud droplet effective radius Reff (µm) WSACR/KASACR
+ MWR
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3. Methods

Lidar data was processed to retrieve the AOD product and the Reff as the cloud
parameter used for the intercomparison. AERONET, Calitoo and Microtops meas-
ured AOD data was used to compare the lidar retrieved AODs. The AOD measure-
ments from AERONET and the hand-held Calitoo and Microtops were performed
on randomly distributed moments during the periods, because of the requirement
of clear sky and direct sunlight. For the lidar measurements, the direct sunlight will
cause solar background noise during the day, so the aerosol signals were generally
more accurate during the night. In this study, selections in day and night time are
used for the AOD retrieval. The Reff is retrieved from the lidar using the MS based
inversion method, and compared to Reff calculated with Frischs methods using re-
flectivity data gathered with the Cloud Radars and LWP data gathered with the
MWR. For the retrieval of the cloud parameter, low level marine stratocumulus
clouds were selected. The cloud parameter results were only analyzed statistically,
because the clouds could not be selected case-by-case because of the 6 km distance
between the airport site from where we retrieved our product and the ARM site.

3.1. Lidar data processing

The lidar signal is detected as described in the previous chapter. The time after
which photons are detected is translated to range, z = ct

2 , where c is the speed of
light and t the time after which the photon is detected. The detected signal over a
vertical range can be analyzed with the three-component lidar equation (Measures,
1984, p. 237–243):

P (z) =
Clid
z2

(βm(z) + βa(z) + βc(z))e
−2

∫ z
0 (αm(z′)+αa(z′)+αc(z′))dz′ (3.1)

where P (z) is the received power as a function of range, Clid is the lidar cal-
ibration constant, as described in section 2.3.1, z is the range, β is the backscatter
coefficient divided into a molecular, aerosol and cloud component, denoted with
subscripts m, a, c respectively. α is the extinction coefficient, also divided into the
three components. The attenuated backscatter (ATB) is an atmospheric parameter,
independent of instrumental effects, ATB(z) = P (z)z2

Clid
, and β(z) = α(z)

S(z) , where S(z)

is the extinction-to-backscatter ratio, or the lidar ratio. This ratio depends on the
type of particle, composition, size or structure.

To examine the AOD, lidar measurements without cloud and precipitation, and
without full irradiance by the sun should be considered. For the cloud parameter
retrieval, low level homogeneous stratocumulus clouds are selected by eye. An
example for both of the selections is shown in figure 3.1.

19



Figure 3.1: The total ATB in the lower troposphere (0-5 km), for the 26th of August
2017. Visualisation of the selections for the analysis of the aerosol profile, A, and a
cloud, B.

There are six atmospheric unknowns in equation (3.1), the extinction coefficient
α for the molecular, aerosol and cloud component, and the backscatter coefficient
β for the molecular, aerosol and cloud component. These coefficients are discussed
in the following paragraphs. First αm and βm, the molecular extinction and backs-
catter coefficients from Rayleigh scattering. Followed by the aerosol extinction and
backscatter coefficients, αa and βa in the AOD retrieval section. The cloud extinc-
tion coefficient αc is retrieved in the MS based inversion method. For the cloud
parameter intercomparison Reff is the parameter used, instead of αc. The Reff is
directly dependent on αc and the LWC.

3.1.1. Rayleigh scattering

The wavelength of the transmitted light λ, is 355 nm. Rayleigh scattering is strongly
wavelength dependent, the particles diameter is only a fraction of the wavelength.
At 355 nm, Rayleigh scattering, from the molecules in the air, is of big import-
ance. The known molecular scattering is used to calibrate the lidar. With the
data from radiosondes, the molecular particle density of the atmosphere, ρatm,
is calculated with ρatm = P

T×ρair
kg m−3 where P is the measured pressure in

Pa, T the measured temperature in K and ρair is the gas density of dry air, 287
J kg−1 K−1. By multiplying the molecular Rayleigh backscattering cross section,

σR(λ) = 5.45
[

550
λ(nm)

]4
× 10−32 m2 sr−1, (Measures, 1984, p. 42) with the molecular

particle density divided by the molecular mass, the molecular backscattering coef-
ficient, βm, is calculated, βm = ρatm

M ×σ
R m−1 sr−1. With the Rayleigh extinction-to-

backscatter ratio of 8π
3 sr (Guzzi, 2008, p. 231), the molecular extinction coefficient

αm can be calculated.
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3.1.2. AOD retrieval

After selecting correct profiles to retrieve the AOD, a time average atmospheric
extinction profile, αatm, is retrieved with the lidar and then inverted to an aerosol
extinction profile and AOD following the Klett inversion (Klett, 1981), a boundary-
value problem, as described below. When there is no cloud, the lidar equation,
(3.1), is only dependent on the aerosol and molecular components. We can define
the total, atmospheric extinction coefficient as αatm(z) = αa(z) + αm(z)

A normalisation height was set where the aerosol extinction is zero, αa(z0) = 0.
In our case, z0 = 7 km. The atmospheric extinction at this normalisation height,
αatm(z0) is then given by αatm(z0) = αm(z0) = S(z0)βm(z0). The normalisation
height should be defined carefully, so that there is still a good value of Signal-to-
Noise-Ratio (SNR) but that there can be stated with high certainty that it is a height
free of aerosols.

In our calculations for the AOD, following the Klett procedure, the value for
S is defined to be height dependent. From literature (Wandinger, Ulla et al., 2016;
Greatwood et al., 2017) and from the observations on the island, it is concluded
that marine aerosols are always present in the lower boundary layer, up until 1200
m. Smarine is set to be 25 sr, a good approximation for marine aerosols (Wandinger,
Ulla et al., 2016; Cattrall et al., 2005; Müller et al., 2007). (Aged) Smoke and dust
is often, almost always, present above the boundary layer, in the layer from 1200
m to 5000 m, sometimes it can be mixed in the boundary layer. Sdark is defined
to be the value used for the aerosol-to-extinction coefficient in this layer. This is
just a definition in this study for the coefficient used where smoke and dust are the
most likely aerosols. Sdark is set to 50 sr, which is an appropriate value for dust and
aged biomass burning aerosols (Wandinger, Ulla et al., 2016). Above 5000 m, the
air was mostly clean and clear of aerosols, the lidar ratio is set to be the molecular
extinction-to-backscatter ratio, Smol = 8π

3 sr (Guzzi, 2008, p. 231). The marine
particle and aerosol extinction-to-backscatter ratios can be different than assumed
and can therefore cause an error, this error will act as a bias error, and is evaluated
in the next chapter, by varying Smarine and Sdark around the values of 25 and 50 sr.
To check if the correct values are chosen, also in situ data about the type of aerosols
can be used.

The lidar equation, (3.1), is rewritten to a two-component lidar equation for
cloud-free situations. In this two-lidar equation, the signal is first corrected for the
molecular transmission, and the lidar-ratio is included from the equation β(z) =
α(z)
S(z) . Transformed variables are introduced: P ′(z) = S(z)P (z)e2

∫ z
0 (αm(z′)−S(z′)βm(z′))dz′

and α′(z) = (S(z)βm(z) + αa(z)), which results in:

P ′(z) =
Clid
z2

α′(z)e−2
∫ z
0 α
′(z′)dz′ (3.2)

P ′(z) and α′ are the transformed variables for the rewritten lidar signal equation in
height z. Clid is the lidar calibration constant. With the definition τ ′ =

∫ z0
0 α′(z′)dz′
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the transformed lidar equation is rewritten and differentiated which gives:

α′(z) =
dτ ′

dz
(z) =

[
P ′(z)z2

Clid − 2
∫ z
0 P

′(z′)z′2dz′

]
(3.3)

This is transformed into a boundary value problem:

α′(z0) =

[
P ′(z0)z

2
0

Clid − 2
∫ z
0 P

′(z′)z′2dz′

]
(3.4)

with P ′(z0) the transformed lidar signal at the normalisation height, α′(z0) the
transformed extinction at the normalisation height, which is a known value: α′(z0) =

(S(z0)βm(z0) + αa(z0)) because the assumption is that αa(z0) = 0 at the normalisa-
tion height and S(z0) and βm(z0) are both known values. At z = z0, S(z0) = Smol =
8π
3 sr and βm(z0) is calculated from the Rayleigh scattering. Equation (3.4) solved

forClid and filled in in equation (3.3) gives the solution for the transformed variable
α′(z):

α′(z) =

 P ′(z)z2

P ′(z0)z20
α′(z0)

+ 2
∫ z0
z P ′(z′)z′2dz′

 (3.5)

From the transformed variable α′ the aerosol extinction is derived to be αa(z) =

α′(z) − S(z)βm(z). The aerosol backscatter coefficient is now derived by divid-
ing the aerosol extinction by the height dependent lidar ratio. To calculate the
AOD, the aerosol extinction coefficient is integrated over the vertical column, τ =∫ zmax
0 αa(z)dz, where zmax is a chosen value for the maximum height to integrate

the extinction over. This maximum height is in our study 1000 m above the norm-
alisation height, and thus 8 km.

3.1.3. Cloud parameters retrieval

Four out of the six atmospheric unknowns in equation (3.1) have now been treated.
For the derivation of the cloud extinction and backscatter coefficient, a different
approach is necessary because the lidar equation only applies when no multiple-
scattering is accounted for. Multiple-scattering is taken into account in the Monte
Carlo (MC) optimal estimation method.

With this method, and most already existing cloud parameter retrieval meth-
ods, cloud parameters can be derived only for a liquid water cloud, with a (quasi-)
linear liquid water content (LWC) and a (quasi-) constant cloud droplet number
concentration (Nd). The cloud droplet size distribution used in this method, is
defined as a single-mode modified-gamma distribution (Miles et al., 2000):

n(R) =
Nd

Rm

1

(γ − 1)!

(
R

Rm

)γ−1
exp

(
R

Rm

)
, (3.6)
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where Nd is the cloud droplet concentration, defined to be constant with height, R
is the droplet radius, Rm is the so-called mode radius and γ is the shape parameter
of the distribution.

The method is based on multiple scattering by the liquid water cloud droplets.
The returning light from the cloud will be partially depolarised due to multiple
scattering (Liou and Schotland, 1971). This multiple scattering on the liquid water
clouds defined by the cloud model is simulated by Monte Carlo (MC) modelling.
The MC model used is the Earth Clouds and Aerosol Radiation Explorer (Earth-
CARE) simulator (ECSIM) lidar-specific MC forward model. The ECSIM lidar MC
model is a modular multi-sensor simulation framework, which in our case can cal-
culate the spectral-polarisation state of the lidar signal. The ECSIM lidar MC model
is shortly described in appendix B.1. An in depth explanation about the MC model
and the method in general can be found in D. P. Donovan et al. (2015).

The constraints on the LWC and Nd as given before, are met in the simple cloud
representation described by Roode and Los (2008). With this cloud model, the para-
meters to describe the cloud are reduced to two, the cloud effective radius (Reff) and
the cloud extinction (αc). A linear liquid water content defines a constant liquid

Figure 3.2: A step in the MS based
inversion method. The measured
data is shown by the lines, the dots
show the fitted profiles, used in the
method. Black for the parallel ATB,
red for the perpendicular ATB and
magenta for the depolarisation ratio.

water lapse rate, Γl. When the liquid wa-
ter content increases with height and the
number density remains constant, Reff will
increase with height. The cloud extinction
coefficient, αc, also increases with height.
Be aware that the clouds in the MS based
inversion method are represented by semi-
infinite clouds, with a cloud top at infinity
because the lidar can only penetrate a few
hundred meters into the cloud, no inform-
ation is known about the upper part of the
cloud. This leads to the prediction that the
depolarisation ratio is generally increasing
throughout the cloud, while observations
show that the depolarisation ratio may ex-
hibit a peak (Sassen and Petrilla, 1986).

These parameters are calculated for a
reference height. The lidar signal will not
penetrate further into the cloud than 100-
300 m, so the retrieved parameters are only
applicable to the cloud-base region. For
the reference height, in this research, 100 m
above cloud-base is used. The parameters
used in this research are therefore R100

eff , Reff

at reference height, and α100
c , αc at reference
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height.

The MC simulations were performed for various values of the cloud-base height,
the lidar field-of-view (FOV), R100

eff and Γl. The exact values can be found in Table
1 in D. P. Donovan et al. (2015) and in table B.1. Look-up tables (LUTs) were gener-
ated from the simulations and predefined input parameters, the lidar constants and
initial values for R100

eff and α100
c . These LUTs contain information on the simulated

parallel and perpendicular ATB and therefore the depolarisation ratio.

The Cloud Base Height (CBH) is difficult to define from real observation due
to the presence of sub-cloud drizzle and the presence of growing aerosol particles.
The need to accurately identifying the CBH directly from observations is avoided
by using the peak of the observed parallel lidar ATB as a reference instead of the
CBH in the fitting procedure. The CBH is produced as a product of the fitting pro-
cedure determined by the optimal fit to the observations, which is used to define
Reff 100 m above the CBH. The observed ATB and depolarisation ratio are com-
pared to the LUTs, by an iterative process, to find the best matching values for
R100

eff and α100
c . After the simulated profiles, which are normalised by the maximum

value of the observed parallel ATB, the best fit out of the simulations can be found
by minimizing a cost-function as given in (Rodgers, 2000, p. 238). In this proced-
ure the best fit for a distinct pair of the R100

eff and α100
c with the observed profiles

is found in the LUTs. An estimate of the cloud-base height is a by-product of the
fitting procedure determined by the optimal fit to the observations. In figure 3.2,
the observed and fitted ATBs and depolarisation ratio profiles from the LUTs are
shown, for a cloud selection on the 26th of August, shown in figure 3.1. The scat-
ter plots correspond to the fitted values from the LUTs, with the parallel ATB in
black, the perpendicular ATB in red and the depolarisation ratio in magenta. The
observed value for the parallel ATB is shown by the black line, the perpendicular
ATB by the red line and the depolarisation ratio by the magenta colored line.

Because multiple-scattering is occurring in a cloud, the LUTs, the shape of the
ATB profiles and the depolarisation ratio are all well-defined functions of the LWC
and effective radius profile. For single-scattering the parallel ATB profile will not
depend on the effective radius profile.

To summarize, the inversion scheme to define the values for the cloud paramet-
ers from the observed parallel and perpendicular ATB and the depolarisation ratio,
is based on finding the best fit for the normalised ATBs by finding a global min-
imum in the cost-function, regarding the simulated LUTs. Care should be taken;
local minima in the cost function can exist, errors in the depolarisation calibration
(e.g. Cr and δC) need to be taken into account, and because normalised ATB is
used, the error in the normalisation should also be accounted for. The calibration
constants are defined a priori for the methods, with different values in both years
after analyzing the lidar depolarisation in cases of only Rayleigh scattering.
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3.2. Cloud parameters from other instrumentation

The instruments we used from the ARM site to retrieve cloud products for our
intercomparison were the cloud radar and the microwave radiometer. To retrieve
the same product as retrieved with the lidar, R100

eff , 2D reflectivity data and the LWP
from the cloud radar and the MWR, respectively, were used. In figure 3.3 a time-
height cross section of the radar reflectivity from the KASACR is shown for a cloud
selection. The reflectivity factor from the ARM dataset is given in decibel, dBZ.
dBZ = 10 log(Z) + 180 to translate it to the reflectivity factor Z in m6 m−3.

Figure 3.3: A step in the cloud parameter retrieval following Frisch’s method with
the cloud radar data (Frisch, Shupe et al., 2002). The reflectivity factor, as a contour
plot, with the measured cloud base from the ceilometer plotted with the triangles,
the green line represents the interpolated cloud base height to the radar time resol-
ution.

To retrieve the R100
eff from the ARM instrumentation, two methods described

by Frisch (Frisch, Fairall et al., 1995; Frisch, Shupe et al., 2002) were used. One
where a constant cloud droplet number concentration (Nd) throughout the cloud is
set, which gives a relationship for theR100

eff only depending on the reflectivity factor.
The second method uses the LWP as additional input, which makes the assumption
for Nd unnecessary. This second method gives a relationship between the LWP,
reflectivity factor and Reff, and is for example used by Sarna and Russchenberg
(2016) in a new approach to study ACIs. Both methods are fully described in Frisch,
Shupe et al. (2002).

In both methods, a lognormal model of the cloud droplet size distribution is
used. The mean value and the spread of the lognormal distribution needs to be
assumed a priori. For our retrievals the droplet spread is set on an assumed value
of 0.34, to be a good assumption for the spread in marine, low-level stratocumulus
clouds, taken from literature (Fairall et al., 1990; Frisch, Fairall et al., 1995; Miles et
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al., 2000). This lognormal spread for the cloud droplet size distribution, is varied to
analyze the uncertainty from this parameter on Reff. The lognormal cloud droplet
size distribution used in the retrieval is given by:

n(R) =
Nd√

2πRσx
exp

[
−(ln (R)− ln (R0))

2

2σ2x

]
, (3.7)

where Nd is the cloud droplet concentration, defined to be constant with height, R
is the droplet radius, R0 is the median radius, and σx is the logarithmic spread of
the distribution. In a lognormal droplet size distribution Reff is related to the me-
dian radius by Reff = R0 exp (52σ

2
x) and the radar reflectivity factor for a lognormal

cloud droplet size distribution is Z = 26NdR
6
0 exp (18σ2x). Solved for Reff, this gives

retrieval method 1:

Reff =
1

2

(
Z

Nd

)1/6

exp (−0.5σ2x). (3.8)

From equation (3.8), it is clear that relatively large changes in the cloud droplet
concentration Nd or in the logarithmic spread σx, will only produce small changes
in Reff. This is why, if we have an estimate of Nd and σx, Reff can be retrieved from
Z.

The radar retrievals were executed in two ways, with different assumptions
for Nd. One were a constant value of 100 cm−3 was set, which was taken from
literature for low-level marine stratocumulus clouds (Davidson et al., 1984; Martin
et al., 1994). The other implementation was with a daily varying value for the
a priori definition of Nd, gathered from the lidar retrievals. Besides Reff, the MS
based inversion method also has Nd as a product. This product was daily averaged
and these values were used as input for the assumption on Nd in Frischs method 1.
This first method is executed to retrieve the effective radius data for the 2016 and
2017 measurement periods.

For the 2016 retrievals, LWP data is available online, so the second method was
also performed. The derivation of equation (3.9), for Reff as a function of height,
can be found in Frisch, Shupe et al. (2002).

Reff(h) =
Z1/6(h)

2LWP1/3

(πρ
6

)1/3(i=m∑
i=1

Z1/2(hi)∆h

)1/3

exp (−2σ2x) (3.9)

Nd and σx are again constrained to be constant in height, hi is the height in the
cloud, i = 1 is the radar range gate at cloud base, derived from ceilometer data on
the main ARM site. i = m represents the radar range gate at cloud top. The radar
range gate at cloud top is found to be the highest range gate where the reflectivity
factor is higher than -44 dBZ, which seemed appropriate for our retrievals. ∆h is
the radar range gate thickness, 30 m in our case, ρ is the water density, 106 g m−3.
The LWP is the microwave radiometer-derived integrated liquid water content in
g m−2. This second method eliminates the assumption on Nd.
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The WSACR was only operating until the 12th of September in 2016. As the
LWP has an uncertainty of 15 g m−2 calculated from the MWR (Turner et al., 2007),
the values below 30 g m−2 are disregarded. In marine stratocumulus clouds, drizzle
can appear from 90 g m−2 (Rémillard et al., 2012), so the values above 90 g m−2 are
also excluded from the retrievals. Only the values between 30 and 90 g m−2 are
used for the retrieval with Frischs method 2.

The uncertainties in the retrieval from the assumptions and measurement errors
in both methods are described in Frisch, Shupe et al. (2002). In the first method,
where Reff is only depending on the assumptions for Nd, σx and the measurements
of the reflectivity factor, the error inReff can be calculated with equation 7 in Frisch,
Shupe et al. (2002). In method 2, the method with the LWP data points, there is no
longer an error due to Nd, but there is an error due to the measurement error of the
LWP, which is assumed to be 20% (Westwater et al., 2001). The final retrieval error
in Reff is calculated with equation 9 in Frisch, Shupe et al. (2002).
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4. Results

4.1. Lidar data processing

To retrieve the AOD and the cloud parameters from the lidar data, the measured at-
tenuated backscatter (ATB) was analyzed with the Klett inversion method and the
MS based inversion method respectively. With the results that are shown and de-
scribed, the uncertainties were also evaluated. The results are analyzed in compar-
ison with the retrieved products from other instruments and from other methods,
as described in the previous chapter. This provides an outlook on the validation of
our retrievals.

Correction for misalignment in 2017

The lidar itself causes uncertainties in the measurements, instrument errors. In 2017
the laser beam was slightly misaligned, therefore less power was detected by the
receiver, the SNR was lower and larger uncertainties arise due to the uncertainties
in the calibration coefficients, Cr and δC. The calibration coefficients need to be
defined a priori, and were in 2017 corrected for this misalignment, the used values
in both measurement periods are shown in table 2.2. In the estimation of the cal-
ibration coefficients for 2017, the uncertainty is large because of an assumption for
the effect of the misalignment. After the corrections in the calibration coefficients,
the consistency in the lidar operation over the two measurement periods was eval-
uated by analyzing the depolarisation ratio in both years at moments of no clouds,
and altitudes without aerosols. These selections were made by a visual inspection
of the raw data, and are generally of a height bin of 1 km thick and above a height
of 5 km. The results of the averaged depolarisation ratio in these boxes for both
measurement periods are shown in A.1. The average depolarisation ratio over the
two measurement periods differs slightly but not significantly to expect the lidar
to operate differently, after the correction. We do see that the standard deviations
in the values for the depolarisation ratio differ by a significant factor, this is due
to lower SNR in 2017 and therefore larger variation in the signal. From the res-
ults it seems that the instrument calibration, after the correction in the calibration
coefficients for 2017, is consistent over both measurement periods.

In the aerosol retrievals and AOD calculations, the misalignment will be no-
ticeable because of the lower SNR, and therefore larger standard deviations when
averaging. In the cloud product retrieval, the correction for the misalignment in the
calibration coefficients was of importance, in addition to the low SNR. And also, a
correction was made on the look-up tables (LUTs) for the misalignment because
this misalignment mostly affected the multiple-scattering (MS) and therefore the
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fitting procedure of the LUTs with the observed depolarisation ratio. This correc-
tion is only mentioned here, no further consequences are taken into account.

4.2. AOD

The lidar retrieved AODs are analyzed for both periods taking into account the
systematic error arising from the definition of the extinction-to-backscatter ratios
and the random error due to the definition of the normalisation height. The results
are shown in figure 4.2(a) and 4.3(a). The retrieval errors due to the extinction-
to-backscatter ratio S(z) and the normalisation height z0 are evaluated in the next
paragraphs and shown in the figures 4.2(b), 4.2(c) and 4.3(b), 4.3(c). The results
are compared to the AOD data from AERONET, the Microtops and the Calitoo.
The intercomparisons are shown in figure 4.2(d) and 4.3(d). Striking cases after
this intercomparison were evaluated and an interpretation for the aerosol vertical
distribution is made.

4.2.1. AOD retrieval from lidar data

Uncertainty due to the assumption for S(z)

The standard assumed values for the retrieval of the AODs were described in the
previous chapter to be Smarine = 25 sr, Sdark = 50 sr, Smol = 8π

3 sr, z0 = 7000 m and
zmax = 8000 m. The results of the AOD retrieval for both years with these standard
values is shown in figures 4.2(a) and 4.3(a). To define the possible bias error from
the uncertainty in S(z), the values for Smarine and Sdark were varied and the AODs
were calculated. The marine particle extinction-to-backscatter ratio, Smarine (for the
0 m to 1200 m altitude domain) was varied in the range 20-30 sr and the ’dark’ aero-
sol extinction-to-backscatter ratio, Sdark (for the 1200 m to 5000 m altitude domain)
was varied in the range 40-60 sr. The uncertainties resulting from varying the ra-
tios are shown in figures 4.2(b) and 4.3(b). The shaded area represents the results
from varying over the ranges for Smarine and Sdark. The lower boundary represents
the AODs calculated for the combination with the lowest values of S(z), Smarine =

20 sr and Sdark = 40 sr. The upper boundary represents the AODs calculated for
the combination with the highest values of S(z), Smarine = 30 sr and Sdark = 60 sr.
The exact averaged values for the AODs over the measurement periods, with nine
combinations for the varying of the ratios, are shown in appendix A.2.

The average AOD in 2016 calculated for the standard values for the retrieval
was 0.26±0.116 as we saw in figure 4.2(a). The average AOD is 0.236±0.11 for the
combination of S with the lowest values and 0.281±0.121 with the combination of
S with the highest values. In 2016 a change of 20 % in the initial values of the
extinction-to-backscatter ratios gives a change of 8.7 % in the average AOD value.
For 2017 the average AOD for the standard extinction-to-backscatter ratios was
0.27±0.132, as we saw in figure 4.3(a). The average AOD varies to 0.247±0.126
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and 0.288±0.136 for a change in the values for the extinction-to-backscatter ratios
to the lowest or highest combination respectively. So a change of 20 % in the initial
values of S gives a change of 7.6 % in the final average AOD value in 2017. Despite
the lower SNR and larger standard deviations in 2017, the uncertainty due to the
estimation of S is slightly larger in 2016.

Uncertainty due to the assumption for z0

Another uncertainty in the AOD retrieval is the definition of the normalisation
height z0. To analyze this uncertainty, z0 is varied to 6500 m and 7500 m in the
Klett inversion method. The results for both years, with the standard values for the
extinction-to-backscatter ratios and the varying normalisation height, is shown in
figures 4.2(c) and 4.3(c). In the Klett inversion method the total lidar backscatter is
defined for this normalisation height to solve the boundary value problem. For the
total lidar backscatter at this normalisation height the average of 5 range gates (75
meters) of the lidar is calculated. So we look at the effect of varying the altitude for
the normalisation height on the value for the total lidar backscatter which is used
for the boundary value problem and which is influenced by the height-resolved sig-
nal, the assumption of the aerosol free altitude and the noise. The maximum height
for the integration of the extinction profile, to calculate the AOD, varies with the
same absolute value as the variation in the normalisation height.

The average AOD in 2016 calculated for the standard values for the retrieval
was 0.26±0.116 as we again saw in figure 4.2(a). The average AOD in 2016 is
0.25±0.117 for z0=6500 m and 0.262±0.129 for z0=7500 m. A variation in norm-
alisation height of 500 m, 7 %, and therefore a change in the value for the signal
assumed to be at the aerosol free altitude, gives an average change of 2.3 % in the
final averaged AOD value in 2016. For 2017 the average AOD for the standard nor-
malisation height of 7000 m was 0.27±0.132, as we saw in figure 4.3(a). The average
AOD varies to 0.287±0.18 and 0.239±0.19 for z0=6500 m and z0=7500 m respect-
ively. A variation in normalisation height of 500 m, 7 %, and thus a change in the
signal assumed to be at aerosol free altitude, gives a change of 8.9 % in the final
averaged AOD value in 2017. The uncertainty due to the estimation of the norm-
alisation height, and therefore the estimation of the signal at aerosol free altitude
used in the boundary value problem, is larger in 2017, due to the lower SNR.

Total uncertainty

The AODs are more sensitive to the definition of the normalisation height then to
the definition of the values for the extinction-to-backscatter ratios. And as we see
from figures 4.2(b) and 4.3(b), varying S(z) gives a systematic uncertainty, while
varying z0 gives a random uncertainty, which we can see in figures 4.2(c) and 4.3(c).
The retrieval (instrument) error due to the uncertainties in S(z) and z0 is 11 % in
2016 and 16.5 % in 2017. Next to the retrieval error, random uncorrelated errors in
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the signal are taken into account, the standard deviation in the selections, which
were shown with the error bars in figures 4.2(a) and 4.3(a). This standard deviation
is 7.5 % on average in 2016 and 10.4 % on average in 2017. So the total uncertainty
of the AOD, random plus systematic, averaged over the measurement periods is
18.5 % in 2016 and 26.9 % in 2017.

4.2.2. Study cases AOD calculation

The clear sky selection for which the dependency on the normalisation height is the
largest, is now examined in detail. This selection is on the 25th of August 2017, as
can be seen in figure 4.3(c). This is due to the low SNR, which can be seen in figure
4.1(a). To see the difference in 2017, the averaged ATB for a case on the 26th of
August 2017 is shown in figure 4.1(b). The ATB has a larger SNR than the selection
on the day before, and therefore the AOD is not as sensitive to the definition of z0.
The different time in the days for the selections can be the cause of this difference in
SNR, because from around 8 AM, direct sunlight will lower the SNR. The averaged
ATB for one selection in 2016, on the 14th of September, is shown in figure 4.1(c).
The averaged ATB has an even smaller standard deviation and thus the calculated
AOD is less dependent on the definition of z0, which we could also conclude from
figure 4.2(c) is the case for 2016 on average.

(a) (b) (c)

Figure 4.1: The averaged ATB for three selections. One on the 25th of August 2017
(a), one on the 26th of August 2017 (b) and one on the 14th of September 2016
(c). The shading is the standard deviation. The black line shows z0 = 7000 m, the
standard value. The dashed lines show z0 = 6500 m and z0 = 7500 m.
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(a)

(b)

(c)

(d)

Figure 4.2: In (a) The AODs for the clear sky selections in the 2016 measurement
period are shown. With the error bars, the standard deviation of the AOD is shown.
The errors calculated for the AOD come from the integrated random uncorrelated
errors in the extinction profile. The shaded area shows the retrieval error, 11 %. The
average AOD during the measurement period is shown by the green dashed line,
the shading around this line is the variation around this mean value, the standard
deviation. In (b) the AODs for varying values of S(z), the aerosol extinction-to-
backscatter ratio is shown. The dots are the AOD calculated with the standard
values for S(z), Smarine = 25 sr and Sdark = 50 sr. The lower boundary represents
the AOD for Smarine = 20 sr and Sdark = 40 sr. The upper boundary represents the
AOD for Smarine = 30 sr and Sdark = 60 sr. In (c) the AODs for varying values of z0,
the normalisation height, is shown. The black line represents the AODs calculated
with the standard values for S(z) and z0. The red line shows the results for z0 =

6500 m and the green line shows the results for z0 = 7500 m. (d) shows the AODs
retrieved with the lidar and the AODs from AERONET. The black error bars show
the standard deviation of the lidar retrieved AODs. The shaded areas show the
retrieval errors, 0.021 for the AERONET data and 11 % for the lidar data.
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(a)

(b)

(c)

(d)

Figure 4.3: In (a) The AODs for the clear sky selections in the 2017 measurement
period are shown. With the error bars, the standard deviation of the AOD is shown.
The errors calculated for the AOD come from the integrated random uncorrelated
errors in the extinction profile. The shaded area shows the retrieval error, 16.5 %.
The average AOD during the measurement period is shown by the green dashed
line, the shading around this line is the variation around this mean value, the stand-
ard deviation. In (b) the AODs for varying values of S(z), the aerosol extinction-
to-backscatter ratio is shown. The dots are the AOD calculated with the standard
values for S(z), Smarine = 25 sr and Sdark = 50 sr. The lower boundary represents
the AOD for Smarine = 20 sr and Sdark = 40 sr. The upper boundary represents the
AOD for Smarine = 30 sr and Sdark = 60 sr. In (c) the AODs for varying values of
z0, the normalisation height, is shown. The black line represents the AODs calcu-
lated with the standard values for S(z) and z0. The red line shows the results for
z0 = 6500 m and the green line shows the results for z0 = 7500 m. (d) shows the
AODs retrieved with the lidar and the AODs from AERONET, the Calitoo Aero-
sol photometer and the Microtops. The error bars show the standard deviation of
the retrieved AOD. The shaded areas show the retrieval errors, 0.03 for the Micro-
tops, 0.021 for the AERONET data and 16.5 % for the lidar data. For the Calitoo no
retrieval error is indicated. 33



To check whether the uncertainty due to the definition of the normalisation
height can be decreased, a larger altitude domain is chosen to average over for
the normalisation height. In figure 4.4(b) the results of the Klett inversion method
are shown for the 2017 measurement period, when for the normalisation height an
altitude domain from 6000 to 7000 m is used. The assumption is that the altitudes
above 6000 m are free of aerosols, which was the case in 2017. By averaging over
such a large amount of range gates, we see that the standard deviations in the se-
lections decrease, the average standard deviation for the selections is 3.5 % instead
of the 10.4 % which was the case for the results with the normalisation height aver-
aged over 5 range gates, as used as standard amount in the Klett inversion method.
To use this altitude domain instead of the standard normalisation height averaged
over only 5 range gates, the modification should first be studied in more detail.

(a)

(b)

Figure 4.4: In (a) The AODs for the clear sky selections in the 2017 measurement
period are shown, with the standard value of z0 = 7000 m. And the average of
5 range gates around that altitude. These results are the same as shown in 4.3(a).
In (b) the AODs for the clear sky selections in the 2017 measurement period are
shown with the normalisation height chosen to be the altitude domain from 6000
up to 7000 m. This means 66 range gates are averaged over for the power at the
normalisation height. In both figures: with the error bars, the standard deviation
of the AOD is shown. The errors calculated for the AOD come from the integrated
random uncorrelated errors in the extinction profile. The shaded areas show the
retrieval error, 16.5 %. The average AOD during the measurement period is shown
by the green dashed line, the shading around this line is the variation around this
mean value, the standard deviation.
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We see two data points with large standard deviations in the results from the
Klett inversion method with the averaging for the normalisation height over an
altitude domain of 1 km. The selection with the largest standard deviation, on the
4th of September 2017, I now look at in further detail. The averaged ATB for the
selection is shown in figure 4.5(a). With the gray band, the normalisation height
domain is indicated. The standard deviation for the extinction profile is large prob-
ably because of liquid water present in the boundary layer, which we can see from
the averaged ATB profile and we will check with the quicklook of the raw data in
figure 4.5(b). Indeed high signals for the total lidar backscatter are seen at the start
of the averaging interval. This points out that clear-sky selections should be defined
with care, which was not the case for the two selections in the 2016 measurement
period as we saw now. The other selections are well defined clear-sky selections
and therefore we can overall trust the selections. By using the altitude domain of 1
km for the normalisation height, the standard deviation overall decreases, because
noise is averaged out better. In the cases were the standard deviation increases,
noise is not the cause of the large variation, so probably liquid water is present in
the vertical profile which causes large uncertainties. This averaging over a larger
altitude domain was only done to see the consequences, further research needs to
be done to verify whether this change can be made for the Klett inversion method
to give better accuracy. The use of an altitude domain of 1 km for the normalisation
height could be used to better select the cloud-free periods.

(a)
(b)

Figure 4.5: One clear-sky selection on the 4th of September 2017. The averaged ATB
from the lidar signal in (a). The shading is the standard deviation. The black lines
show the limits of the normalisation altitude domain, 6000 and 7000 m. The total
lidar backscatter, raw data, for the selection is visualized in (b).
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4.2.3. AOD intercomparison

AERONET data was used to compare our lidar retrievals with for the 2016 meas-
urement period. In 2017 the AOD was also measured with the Calitoo and with
the Microtops from the CLARIFY campaign. So for the 2017 measurement period
our lidar retrieved AODs were compared to the AERONET, Calitoo and Microtops
data. The results are shown in figures 4.2(d) and 4.3(d).

The AERONET data has an instrument uncertainty of 0.021 at 340 nm. The
Microtops have an accuracy of 0.03 for the 550 nm measurements. In addition to
the instrument uncertainty, the Microtops data was averaged over measurements
gathered within 5 minutes, which gives a standard deviation of 0.0033 on aver-
age. This averaging was also done for the Calitoo measurements, which gives an
average uncertainty of 0.0063. The instrument uncertainties are shown with the
shadings in figures 4.2(d) and 4.3(d), the variation in the measurements within 5
minutes is shown with the error bars.

The AODs were measured at different moments in time for the different instru-
ments. Cloud-free periods selected for the lidar data do not mean that AERONET
data is measured at that specific moment because clouds can be present above the
main ARM site where the AERONET sun-photometer was positioned. All of the
AOD measurements are done within a spatial range of 5 km from the lidar, this
is close enough to assume that the aerosol distribution will be comparable for the
measurements within this spatial range (Carlson and Prospero, 1972; Zuluaga et
al., 2012), if the time separation of the measurements is no more than a day. As the
aerosol distribution will be quite stable over a time range of a day, averaging over
a day gives results which can be compared. That is why in figures 4.6 and 4.7 the
average values per day, for all the instruments, are compared.

The square of the correlation coefficients, r-squared, is given in the legends. For
2016, the daily averaged AODs we retrieved with the lidar agree within the uncer-
tainty with the daily averages from AERONET, with an r-squared of 0.76. But there
is an offset between the two of about 36 %, the AERONET data increases relative
to the lidar data with increasing AOD values. In 2017, there is more variation and
uncertainty in the lidar retrieved AODs as we saw already in figure 4.3(a). A small
correlation, r-squared is 0.29, between the lidar retrieved AODs and the data from
AERONET is found. This small correlation is influenced much by the three data-
points in the upper left of figure 4.6(b). The cause of the significant deviation of
such a data-point is shown later.

As we can see in figure 4.7, the Microtops measured AOD values correlate well
with the Calitoo measured AODs (4.7(a)) and the Calitoo measured AODs correlate
well with the AERONET AODs (4.7(b)). Although there is an offset between the
AERONET data and the Calitoo data of around 40 %. As can be seen in figure
4.7(c), with a value of 0.53 for the r-squared, the lidar retrieved AODs correlate
well with the Calitoo measured AODs.
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(a) (b)

Figure 4.6: For both measurement periods the daily averaged AOD values retrieved
with the lidar are compared to the daily averaged AOD values from AERONET.
The black error bars show the variation around the calculated mean value per day.
The red error bars show the retrieval error, 0.021 for the AERONET data, 11 % for
the lidar data in 2016 and 16.5 % for the lidar data in 2017.

(a) (b) (c)

Figure 4.7: The daily averaged AOD values for the 2017 measurement period re-
trieved with the lidar, from the Microtops, the Calitoo and AERONET are com-
pared. In (a) the data gathered with the Microtops is compared to the Calitoo, in
(b) the AERONET data is compared to the Calitoo and in (c) the Calitoo is com-
pared to our lidar retrieved values for the AOD. The black error bars show the
variation around the calculated mean value per day. The red error bars show the
retrieval error, 0.03 for the Microtops, 0.021 for the AERONET data, 11 % for the
lidar data in 2016 and 16.5 % for the lidar data in 2017. For the Calitoo no retrieval
error is indicated.
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Different days are taken into account for the Calitoo-Lidar intercomparison than
for the Calitoo-AERONET intercomparison, because only the days where both in-
struments gathered data for the AOD are included, for both intercomparisons sep-
arated. That is why it happens that the AERONET data correlates well with the
Calitoo data and the Calitoo correlates well with the lidar data, but according to
figure 4.6(b) the lidar data does not correlate well with the AERONET data. More
days are included in the intercomparison shown in figure 4.6(b).

Because the statistical analysis is done with daily averaged values, it is not a
robust correlation study. To look into some details, I point out one striking case. In
figure 4.6(b) one of the three data-points is notable because of its low value for the
lidar retrieved daily averaged AOD and its quite large value for the daily averaged
value for the AOD from AERONET (at ∼ 0.07,0.4). We see no variation in the data-
point, the averaged values come from only one AOD retrieval from the lidar and
one AOD measurement from AERONET in that day, the 23th of August 2017. The
AERONET measurement is from 13:01, the lidar selection is from 15:42 to 16:00.

In the figure below the quicklook of the raw data is shown for the 23th of Au-
gust 2017. The moment of the AERONET measurement is indicated in figure 4.8,
although this measurement is not done at this location, this is just to point out the
time-difference of the two measurements. The clear-sky selection for the AOD re-
trieval with the lidar data is shown with the black vertical lines in figure 4.8. A Total
Sky Image, shown in figure 4.9(b), is shown for the moment of the lidar retrieval,
but from the main ARM site.

Figure 4.8: The total lidar backscatter in the lower troposphere (0-5 km), for the 23th
of August 2017. Where the AERONET arrow is, is the time at which the AERONET
AOD is measured, from the main ARM site, 5 km to the east. So this indication
is just to point out the time difference. The selection for the lidar AOD retrieval is
shown with the arrow and the black vertical lines.

As we see from figure 4.8, clouds are present and visible above the airport site at
the moment of the AERONET measurement and as we see from figure 4.9(b) clouds
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were present above the main ARM site, where the AERONET sun-photometer was
positioned at the moment of the lidar retrieval. From these figures it can clearly be
seen that not the same moments for both locations, for the lidar and the AERONET
sun-photometer, can be used for the AOD retrievals, as clear-sky periods need to
be selected. Therefore averaging over the days or parts of the days is necessary to
intercompare.

The AERONET measurement is from 13:01 and has a value of 0.397. With our
method we did not retrieve an AOD value for this moment, because clouds were
present above the lidar. The averaged ATB for the lidar retrieval is shown in fig-
ure 4.9(a). The integrated aerosol extinction coefficient, the AOD is 0.07, with the
standard value of the normalisation height of 7000 m. Which is highly unlikely the
true value. If we change the normalisation height to 6500 m, the output from the
Klett inversion method for the AOD is 0.31, which deviates a lot from the value
found with the standard used normalisation height of 7000 m, and compared to
the average AOD value in the 2017 measurement period is a better estimation of
the true value. So again, the uncertainty by the estimation of the normalisation
height is large and highly important for the intercomparisons.

Also at the moment of our retrieval, from 15:42 until 16:00, a low-level thin
cloud was present above our lidar, which we see from the little bump around 750
m in the averaged ATB profle, figure 4.9(a). So the retrievals for this day are highly
uncertain because of the presence of clouds and the large uncertainty in the lidar
AOD retrieval due to the estimation of the normalisation height.

When instead of all the daily averages, only the measurements that are within
an hour from each other from the AERONET data and the lidar selections are used,
the correlation coefficient turned out to be 0.003, significantly smaller than the cor-
relation coefficient when all the daily averages were taken into account. Only 5
lidar measurements were taken into account in this analysis. Because of this small
amount of data-points, an incorrect lidar retrieval has a large effect at the correla-
tion analysis. Unfortunately no more measurements from AERONET and the lidar
were gathered within an hour from each other. So reducing the time-intervals for
averaging does not increase the correlation of the lidar AOD retrievals with the
AERONET data.
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(a)
(b)

Figure 4.9: In (a) the averaged ATB for one selection on the 23th of August 2017
is shown, the selection is shown with the black lines in figure 4.8. The shading is
the standard deviation. The black line shows z0 = 7000 m, the standard value. The
dashed lines show z0 = 6500 m and z0 = 7500 m. In (b) a Total Sky Image is shown
from 15:50, so during the lidar selection but taken at the main ARM site, 5 km to
the east. Clouds were present above the main ARM site while a clear-sky selection
is made for that moment above the lidar.
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4.2.4. Aerosol vertical distribution 2017

(a)

(b)

Figure 4.10: The subdivision of the measurement period in 2017 regarding the aer-
osol vertical distribution is shown in (a). The CLARIFY scientist made this subdivi-
sion after analyzing the preliminary results for aerosol number density concentra-
tions, scattering coefficients and the data gathered with mass spectrometers. The
gray diagonal stripes indicate smoke/dust aerosols. Thicker stripes for more aer-
osol. In (b) the AODs for the clear sky selections in the 2017 measurement period
are shown. The total AOD, the same as in figure 4.3(a), is shown in gray. The in-
tegrated aerosol extinction in the BL is shown in green and the integrated aerosol
extinction in the troposphere is shown in red.

In addition to the calculation of the AOD, the vertical distribution of the aerosols
can be analyzed from the lidar signal. The results are shown below, in comparison
with a subdivision of regimes for the measurement period in 2017, regarding the
vertical distribution of the aerosols, made by CLARIFY scientists. Aerosols in the
form of smoke or dust were always present during the period in 2017, the altitude
at which they were present varied during the period. The CLARIFY team made a
subdivision of the measurement period in 2017 (‘personal communication, 2017’),
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regarding where the smoke was present based on in situ data and model data, in
the boundary layer, above, both or non. This subdivision is visualized in figure
4.10(a).

With the lidar retrievals, we tried to see if we could study the same thing, the
vertical distribution of the aerosols. To check whether the aerosols detected are
present in the boundary layer (BL), or above, in the free troposphere, the aerosol
extinction coefficient is integrated separately for the two layers (from 200 to 2200
m for the boundary layer and from 2200 to 8000 m for the free troposphere). The
results are shown in figure 4.10(b).

A trend can be seen in figure 4.10(b). The AOD in the BL is at the start of the
period larger than the free tropospheric AOD. From 21 Augustus onward a clear
shift is visible in the lidar results for the AOD, the free tropospheric AOD is larger
than the BL AOD. From 27 Augustus until the end of the period the total AOD,
shown with the gray dots in figure 4.10(b) is larger than in the first half of the
period, and in the end the BL AOD is larger than the free tropospheric AOD, which
again corresponds to the division of the regimes, as was visualized in figure 4.10(a).
The vertical distribution can be analyzed from the lidar retrieved aerosol extinction
profiles.

To study the causes for the aerosols to be in the boundary layer or in the upper
atmosphere, two cases are studied in further detail. One selection, on the 16th of
August 2017, in the first regime, where aerosols were mostly present in the lower
atmosphere, the boundary layer. And one selection, on the 24th of August 2017, in
the second regime, where aerosols were mostly present in the upper atmosphere,
the free troposphere. Both selections are around 7 AM. The raw data for the total
lidar backscatter and the lidar depolarisation ratio for both selections is shown in
figures 4.11(a,b,d,e).

In figure 4.11 we see that the total lidar backscatter and the lidar depolarisation
ratio for the selection on the 16th of August are relatively larger in the boundary
layer compared to the total lidar backscatter and the lidar depolarisation ratio for
the selection on the 24th of August. In this selection on the 24th of August, the
boundary layer is clean, and the aerosols are higher up in the atmosphere, in the
free troposphere. This vertical distribution can also be seen in the aerosol extinction
profiles shown in figures 4.11(c,f), calculated from the Klett inversion method. The
profile for the 24th of August has larger values for the aerosol extinction up to 5 km,
where the values for the aerosol extinction on the 16th of August are significantly
smaller from 2 km in altitude upwards. The AOD calculated from the integration
of these profiles are 0.269 for the selection on the 16th of August and 0.304 for the
selection on the 24th of August. So the aerosol extinction has overall larger values
for the selection on the 24th of August.
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(a) (b) (c)

(d) (e) (f)

Figure 4.11: The total lidar backscatter, lidar depolarisation ratio and averaged aer-
osol extinction profiles for two selections, one on the 16th and one on the 24th of
August 2017. In (a) and (d) the total lidar backscatter in the lower troposphere (0-
5km) for a selection on the 16th (a) and the 24th (d) of August is shown. In (b) and
(e) the lidar depolarisation ratio in the lower troposphere for the two selections is
shown. In (c) and (f) the averaged aerosol extinction profiles for the 16th (c) and
the 24th (f) of August are shown. The aerosol extinction vertical profile is averaged
over the selection in time. And is averaged in the vertical over 5 range gates to
smooth the profile.

The difference in the aerosol vertical distribution is caused by for example, a
different wind speed, wind direction, temperature vertical profile, humidity or a
different source of the aerosols (Szabó-Takács, 2011). We studied a few of these
effects for the two selections as were given above, for the 16th of August 2017 and
the 24th of August 2017. For the wind, temperature and humidity data, general
meteorological data measured at the surface from the main ARM site is used.

In the measured relative humidity at ground-level a significant difference is
found between the two selections. 76 % on average for the selection on the 16th of
August and 95 % on average for the selection on the 24th of August. This high rel-
ative humidity for the selection on the 24th of August can cause the aerosols to be
high in extinction and therefore cause the larger value for the total AOD (Xu et al.,
2015). We know from observations and the notes we kept up during the measure-
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ment period that in the second regime, 22th until the 26th of August, more precipit-
ation events happened than in the first week of the 2017 measurement period. This
could have influenced the relative cleaner boundary layer in the second regime.

Also, another wind speed and direction are measured at the surface during
the two different selections. 6.3 m/s from the EESE for the selection on the 16th
of August and 5.7 m/s from the SE for the selection on the 24th of August. This
means that the air we measured on the 16th of August has blown over the island
east to west before we detected the vertical profile with the lidar at the airport site.
For the selection on the 24th of August we measured air that came straight from the
ocean blowing over the island from the SE. To be able to say something about the
vertical distribution, the type of aerosol and to link this to the dynamical processes,
the sources of the aerosol should be tracked-back.

The type of aerosol affects the amount of depolarisation the lidar will meas-
ure, as described in the previous chapter. Spherical particles will cause the lidar
to detect backscattered light pulses with a parallel plane of polarization in refer-
ence to the emitted light pulses, while non-spherical particles will depolarize the
light. Dust and smoke are typically non-spherical particles and will therefore de-
polarize the light. To study which aerosols we detected at what altitude during
these two cases, HYSPLIT back-trajectories are made using the NOAA HYSPLIT
Trajectory Model (Stein et al., 2015). For three altitude levels, the air is tracked
back for 10 days, 240 hours. In figure 4.12(a) the back-trajectory ending on the
16th of August 7 AM is shown. On the 16th of August we detected non-spherical
particles in the boundary layer as the depolarisation ratio is larger than zero. From
the back-trajectories we learn that the air in the boundary layer on Ascension Is-
land at the 16th of August 7 AM, is originating from above western Africa, which
indeed means biomass burning aerosol could be in the air. In figure 4.12(b) we see
that the air reaching Ascension Island on the 24th of August 7 AM, in the boundary
layer, is coming more from the south and has blown for at least the last five days
through the boundary layer over the Atlantic ocean, which means that the air is
clean of biomass burning smoke or dust, because less biomass burning events hap-
pen in the south of Africa and due to turbulent mixing and precipitation events that
clean the boundary layer. The air above, at 2000 m and 4000 m in altitude for this
selection, does originate from western Africa, which means that the chance is large
that dust or biomass burning aerosol is present in this air, which causes the larger
depolarisation ratios measured in the altitude domain 2000 m-5000 m for the selec-
tion on the 24th of August compared to the case on the 16th of August. This second
case, on the 24th of August, is a typical situation where thus the boundary layer air
is clean of smoke and dust, only contains marine aerosol and the layers above do
contain smoke from the biomass burning events in Africa or Saharan dust. To really
define the cause in the difference in vertical distribution, further research needs to
be done, especially by taking into account the characteristics of the aerosols and the
dynamical processes.
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(a) (b)

Figure 4.12: HYSPLIT Backtrajectories for two selections in 2017, for 240 hours and
3 altitude levels. In (a) the back-trajectories ending on the 16th of August 2017, 7
AM are shown. In (b) the back-trajectories ending on the 24th of August 2017, 7
AM are shown. With the red line, the air which reaches Ascension Island at 500
m altitude is shown. With the blue line, the air which reaches Ascension Island
at 2000 m altitude is shown. With the green line, the air which reaches Ascension
Island at 4000 m is shown. In the plots on the bottom of the figures, the altitude
of the parcels reaching Ascension Island at the specific altitudes, is shown over the
days. With on the left the moment we are interested in and to the right the ten days
the parcel has travelled.
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4.3. Cloud parameters

For both measurement periods, in 2016 and 2017, the cloud parameter R100
eff is cal-

culated from the lidar data with the MS based inversion method and compared to
R100

eff retrieved from the radar data with Frisch’s methods. But first the reference
height in the cloud of 100 m abouve cloud base height is validated, whether the
same is used in both methods. For the lidar retrievals, the cloud selections were
made by a visual inspection of the raw data, the total lidar backscatter, selecting
homogeneous stratocumulus clouds with a thickness of at least 100 m and a cloud
base height of at least 1000 m. These selections were used to calculate the effective
radius and cloud extinction profiles, with the MS based inversion method. From
this, we use the effective radius at the reference height in the cloud to compare our
retrievals with the ones we retrieved from the ARM Cloud Radars. The effective
radius at 100 m above cloud base height, retrieved from the lidar data with the MS
based inversion method, is shown for both periods in figure 4.16(a) and 4.17 (a).

Importance of the Cloud Base Height

Figure 4.13: The CBH for the cloud
selections in the 2017 measurement
period, retrieved with the ARM Ceilo-
meter and the lidar, both at the airport
site. With the error bars the standard
deviation in the cloud, the variation
around the mean is shown.

For the cloud parameter retrieval a refer-
ence height of 100 m above cloud base
height (CBH) is used. It is of big import-
ance that the parameters with which we
want to compare our results with are the
parameters at this same relative height in
the cloud, as the effective radius has a large
dependency on the height in the cloud
(Zhang et al., 2011). The CBH in the lidar
retrievals is a product of the MS based in-
version method and not a real direct meas-
ured quantity, as described in the previous
chapter. This produced CBH from the lidar
retrieval needs to agree with the CBH used
in the radar method, to make sure the same
reference height above these CBHs is used
for the R100

eff intercomparison. The radar
data is gathered from the main ARM site,
therefore the CBH can not be compared
directly with the one we retrieved from
the lidar data, at the airport site, because
they are at 5 km spatial distance from each
other. For the CBH in the radar retrieval
method, at the ARM site, we used the CBH
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measured by a Ceilometer. An identical instrument is operated by the ARM at the
airport site, so the CBH we retrieved from the lidar data for the cloud selections,
is compared to the CBH measured by the Ceilometer at the airport site at those
moments, shown in figure 4.13 and 4.14. This CBH from both instruments is cor-
rected for the altitude above mean sea level of the instrument so the CBHs in the
figures are the CBHs above mean sea level. Assuming that the Ceilometer at the
airport site and the Ceilometer at the ARM site are similar, we can conclude that
the CBH we use in the lidar retrieval and in the radar retrieval are similar and thus
the reference height in the cloud correspond well and the intercomparison of the
parameters at this reference height can be done.

Figure 4.14: The CBH both measured with the lidar and the ARM Ceilometer at the
airport site, for the R100

eff retrieval selections. With the red dots the CBH retrieved
from the lidar data, from the aiport site, is shown. With the green crosses the CBH
detected by the Ceilometer operated by the ARM at the airport site, for the same
time-selections, is shown. With the error bars, the standard deviation in the cloud,
the variation around the mean is shown.

However, a new study, performed by Y. Blanchard (‘personal communication,
2018’), during our 2017 measurement period, has shown that there is a higher cloud
fraction above the main ARM site than above the airport site. So not all CBHs and
cloud fraction are similar above the airport site and the main ARM site. To show
this, the CBHs measured by the Ceilometer at the airport site and the CBH meas-
ured by the Ceilometer at the main ARM site are shown in figure 4.15 for one day,
the 26th of August 2017. Again, the CBH is corrected for the altitude above mean
sea level of the instrument, so the CBHs are given in altitude above mean sea level.
As can be seen, more low-level clouds are detected above the main ARM site. So
overall the cloud fraction and CBH can not be assumed to be similar over the air-
port site and main ARM site. Because the main difference is in the low-level clouds,
with a CBH below 1000 m in height, this does not affect our intercomparison, be-
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cause for our retrievals we select clouds on the constraint that the CBH is at least
1000 m.

So for the intercomparison of R100
eff , we conclude from figure 4.13 that the refer-

ence height in the cloud 100 m above the CBH can be used to compare the Reff but
we do need to take into account for further analysis that the cloud characteristics
can be different at the different locations.

Figure 4.15: The CBH from the Ceilometer at the Airport site compared to the CBH
from the Ceilometer at the main ARM site for one day, the 26th of August 2017.
With the red circles the CBH detected above the main ARM site is shown. With the
green crosses the CBH detected above the airport site is shown. Both are measured
with similar Ceilometers operated by the ARM.

4.3.1. Cloud parameters retrieval from lidar data

The uncertainties in the retrieval for the cloud parameters with the lidar data and
the MS based inversion method arise from the estimation of the instrument cal-
ibration coefficients, the measurement errors and the uncertainty in the method.
A priori estimates are assigned to the calibration coefficients, as was described
earlier. The uncertainties in the calibration coefficients and the uncertainties in the
MS based inversion method together give the retrieval error, 19.8 % on average for
2016 and 39.1 % on average for 2017. This retrieval error is significantly larger in
2017 due to the large uncertainties in the estimation of the calibration coefficients,
for the misalignment. The results for the retrieval of R100

eff , from the MS based in-
version method, for both measurement periods are shown in figures 4.16(a) and
4.17(a). The black error bars show the variation around the mean value for a cloud
selection, the standard deviation. The retrieval error is shown with the gray shad-
ing.

48



(a)

(b)

(c)

Figure 4.16: In (a) the lidar retrieved R100
eff for the clouds selected in the 2016 meas-

urement period is shown. The y-axis has another range than in (b) and (c). The
error bars show the standard deviation in the cloud. The shaded area shows the re-
trieval error, 19.8 %. The mean R100

eff during the 2016 measurement period is shown
by the green dashed line, the shading around this dashed line is the standard devi-
ation. In (b) the R100

eff results are shown for the radar retrievals, for Nd = 100 cm−3

in red and for the variable daily averages retrieved from the lidar as input for Nd in
black. σx = 0.34 in both retrievals. The error bars show the standard deviation in
the cloud. The shaded areas show the retrieval errors, 12 % when Nd = 100 cm−3

and 5.7 % for the variable daily averages as input for Nd. The mean R100
eff during

the 2016 measurement period is shown by the dashed lines and in the legend. In
(c) the R100

eff results retrieved with the lidar and with the radar are shown, for the
variable daily averages as input for Nd and with σx = 0.34. The error bars show
the standard deviation in the cloud. The shaded areas show the retrieval errors, 5.7
% for the radar retrieval and 19.8 % on average for the lidar retrieval. The mean
R100

eff for the radar and the lidar retrievals, during the 2016 measurement period, are
shown by the dashed lines and in the legend.
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(a)

(b)

(c)

Figure 4.17: In (a) the lidar retrieved R100
eff for the clouds selected in the 2017 meas-

urement period is shown. The y-axis has another range than in (b) and (c). The
error bars show the standard deviation in the cloud. The shaded area shows the re-
trieval error, 39.1 %. The mean R100

eff during the 2017 measurement period is shown
by the green dashed line, the shading around this dashed line is the standard devi-
ation. In (b) the R100

eff results are shown for the radar retrievals, for Nd = 100 cm−3

in red and for the variable daily averages retrieved from the lidar as input for Nd in
black. σx = 0.34 in both retrievals. The error bars show the standard deviation in
the cloud. The shaded areas show the retrieval errors, 12 % when Nd = 100 cm−3

and 5.6 % for the variable daily averages as input for Nd. The mean R100
eff during

the 2017 measurement period is shown by the dashed lines and in the legend. In
(c) the R100

eff results retrieved with the lidar and with the radar are shown, for the
variable daily averages as input for Nd and with σx = 0.34. The error bars show
the standard deviation in the cloud. The shaded areas show the retrieval errors, 5.6
% for the radar retrieval and 39.1 % on average for the lidar retrieval. The mean
R100

eff for the radar and the lidar retrievals, during the 2017 measurement period, are
shown by the dashed lines and in the legend.
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4.3.2. Cloud parameters intercomparison

Frisch’s method 1 is applied to selections from the Cloud Radar data for the 2016
and 2017 measurement periods, the results are shown in figure 4.16 (b) and 4.17 (b),
both for the standard value of 100 cm−3 for the Nd and for the daily averaged Nd

values from the lidar retrieval as input for the a-priori defined Nd.
The uncertainties from the method are calculated, first for the 2016 data. We

used σx = 0.34 ± 0.09, Nd = 100 ± 70 cm−3 and Nd = 466.1 ± 127 cm−3 for the
standard value of 100 cm−3 and the variable daily averages as input respectively,
and an expected uncertainty in the measurement of±3 dBZ in the reflectivity factor.
In 2017 Nd = 540.4± 142 cm−3 is used for the variable daily averages as input, for
the other parameters the same values as in 2016 are used. The error for the Reff

retrieval, for method 1, is calculated to be 12 % in 2016 and 2017 for the standard
value of Nd = 100 cm−3 as input. 5.7 % in 2016 and 5.6 % in 2017 for the variable
daily averages as input for Nd.

Dependency on Droplet Size Distribution in Radar Method

The lognormal cloud droplet size distribution used in the radar method, was de-
scribed in equation 3.7. The effect of the pre-defined estimation for the lognormal
cloud droplet spread on the cloud droplet size distribution and therefore the re-
trieved R100

eff is studied here.
This dependency on σx is studied only for the 2017 measurement period. ForNd

the average cloud droplet number concentration as retrieved from the lidar for 2017
was used, 540.4 cm−3. R0 is the median radius, we used the average R100

eff retrieved
from the radar with Frisch’s method 1 for 2017, 4.33 µm. To define the possible bias
error from the uncertainty in σx, the values for σx were varied and the R100

eff for the
cloud selections and the average were calculated. The values for σx used in the

Figure 4.18: The cloud droplet size distri-
butions for the radar method, with Nd =

540.4 cm−3,R0 = 4.33 µm and for varying
values of the lognormal spread, σx.

evaluation are 0.1, 0.2, 0.3, 0.4, 0.5 and
0.6. The resulting droplet size distri-
butions are shown in figure 4.18. The
retrieval errors change slightly from
a change in σx. The uncertainty in
Frisch’s method 1 withNd = 540.4±142

cm−3 and Z = −30 ± 3 decibel, is 4.8
% for σx = 0.1 ± 0.09 and 7.1 % for
σx = 0.6 ± 0.09. The average value for
R100

eff in 2017 calculated for the standard
value for σx, 0.34, and with the vary-
ing value for Nd with the calculated
daily average Nd from the lidar as in-
put, was 4.33±1.01 µm as we saw in fig-
ure 4.17(b). The average value for R100

eff
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is 4.57±1.06 µm for σx = 0.1 and 3.83±0.89 µm for σx = 0.6. The change inR100
eff res-

ulting from the variation in σx is shown in figure 4.19. The exact averaged values
for R100

eff over the measurement period are shown in the legend.

Figure 4.19: R100
eff for the clouds selected in the 2017 measurement period, retrieved

with Frisch’s method 1 with the variable daily averages as input for Nd. Shown for
varying values of the assumed lognormal spread of the cloud droplet size distribu-
tion.

The retrievedR100
eff from the lidar is compared to the retrievedR100

eff with Frisch’s
method 1 from the radar data. The results are shown in figure 4.16 (c) and 4.17 (c).
The shaded areas in the figures are the retrieval errors, the error bars visualize the
standard deviations in the cloud.

It is difficult to say something about the intercomparison in 2016 because the
WSACR was only operating for 9 days during our measurement period which res-
ulted in 13 useful cloud selections. In 2017 the KASACR was working for the full
measurement period, which resulted in 36 useful cloud selections. In 2017 we can
see that the lidar retrieved R100

eff corresponds with the radar retrieved R100
eff within

the uncertainty band. Around the 23th/24th of August in 2017, the radar results
show significantly higher values than average, this is due to drizzle. The radar
method is highly sensitive to the presence of drizzle (Frisch, Fairall et al., 1995)
because the reflectivity is proportional to the diameter of the droplet to the sixth
power. Filtering for drizzle is done, but as this might have not been done properly,
this results in significantly larger values for the retrieval of R100

eff for rainy periods,
where drizzle-free selections were difficult to define. Cloudnet data, for example, is
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filtered for drizzle (Illingworth et al., 2007), using this might improve the retrieval.
Taking into account the uncertainty in the radar retrievals due to the large sens-

itivity to drizzle, the measurement errors and the uncertainty in the method, and
the uncertainties in the lidar retrievals due to the estimation of the calibration coef-
ficients, the measurement errors and the uncertainties in the method, the results for
the R100

eff from the lidar retrievals and the radar retrievals show a significant correl-
ation for the 2017 measurement period. Therefore the retrieval of the R100

eff from the
lidar data with the MS based inversion method seems promising.

Frisch’s Method 2

In addition to the method described above, Frisch’s method 1, also Frisch’s method
2 is used to calculate the R100

eff in the 2016 measurement period. This method uses
measurements for the LWP by the MWR. No assumption forNd is needed now. The
used LWP data points for Frisch’s method 2 for 2016 are shown in figure 4.21(b).
The uncertainties in Frisch’s method 2 are dependent on the errors in Z and σx,
and the instrument error for the LWP. With the same values for Z and σx as was
used for method 1, and with an assumed error in the LWP measurement of 20 %,
the error in method 2 for the 2016 data is calculated to be 14 %. The results for the
R100

eff retrieved with Frisch’s method 2 for 2016 are shown in figure 4.21(c). As the
results have large uncertainties and because we have only 7 data points in 2016, the
data is not used for the intercomparison with the lidar retrievals. We only looked
at the methods in comparison to each other. The results differ a lot when we look
at the retrievals from Frisch’s method 1 and Frisch’s method 2, the intercomparison
is shown in figure 4.20.

Figure 4.20: R100
eff for the

clouds selected in the 2016
measurement period and re-
trieved with Frisch’s method
1 and method 2. The black
error bars show the standard
deviation in the cloud, the
variation around the mean.
The red error bars show
the retrieval error, 5.7 %
for method 1 and 14 % for
method 2.
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(a)

(b)

(c)

Figure 4.21: In (a) the lidar retrieved R100
eff for the clouds selected in the 2016 meas-

urement period is shown. The y-axis has another range than in (c). The error bars
show the standard deviation in the cloud. The shaded area shows the retrieval er-
ror, 19.8 %. The mean R100

eff during the 2016 measurement period is shown by the
green dashed line, the shading around this dashed line is the standard deviation.
In (b) the LWP from the MWR during the cloud selections in the 2016 measure-
ment period is shown, averaged per cloud selection. The black error bars show
the standard deviation in the cloud. The red error bars show the 20 % error in the
measurement of the LWP. In (c) the R100

eff at reference height for the clouds selected
in the 2016 measurement period, retrieved with Frisch’s method 2 are shown, for
σx = 0.34. The y-axis has another range than in (a). The black error bars show the
standard deviation in the cloud. The red error bars show the 14 % uncertainty. The
mean R100

eff retrieved with Frisch’s method 2 during the 2016 measurement period
is shown in (c) by the gray dashed line and in the legend.
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4.4. Deriving Aerosol-Cloud Interactions

For both measurement periods the daily averages for the cloud droplet number
concentration and the effective radius at reference height are calculated and plotted
against the daily averaged AOD. The results are shown in figures 4.22 and 4.23.
The retrieval errors are taken into account for the effective radius and shown by
the red error bars in 4.22(c) and 4.22(d). For Nd the retrieval errors are not shown,
they are significantly smaller than the retrieval errors inR100

eff and than the standard
deviations for Nd per day. The gray error bars show the standard deviations from
the averaging over the day. So on the left, in (a) and (c) the results for the 2016
measurement period are shown, a slight increase of the Nd is observed with an
increase of the AOD. And a slight decrease in the R100

eff is observed with an increase
of the AOD. This is as expected, as written before. The correlation coefficients are
small, so no firm conclusions can be made from this analysis, but it looks promising.
In 2017 the correlation coefficients are even smaller and these relationships cannot
be concluded, because of the low SNR and therefore the large uncertainties. To
refine the analysis for the ACIs a classification for the days is defined.

A classification is made for the days per measurement period, to select if the
day was a clean, mixed or separated case. In appendix A.3 lists are shown of which
days fell into what category for both measurement periods. The classification was
made by a visual inspection of the raw data, the total lidar backscatter. A clean day
was a day without smoke or dust present. A mixed day was a day where an aerosol
layer was mixed in with the cloud layer. A separated day means that an aerosol
layer was detected, vertically separated from the cloud layer. A layer of clean air
separates the cloud layer and the aerosol layer. Per category, the average R100

eff and
Nd are calculated and shown in the figures below.

In 2016 the clean days have on average a cloud droplet number concentration of
413.7 cm−3, where the mixed days have an average of 489.9 cm−3 for Nd. The aver-
aged R100

eff is 3.9 µm for clean days and 3.5 µm for mixed days in 2016. An increase of
Nd and decrease of R100

eff from the average over the clean days to the average over
the mixed days, this is as expected and as was concluded also above. When aerosols
are present in the cloud layer, more aerosol will act as CCN, and therefore the cloud
droplet number concentration increases. And, as the hypothesis was, the effective
radius decreases.

In 2017 such a difference is not found. There is no increase in cloud droplet
number concentration or decrease in effective radius perceived with this classifica-
tion. The selections for the classification can be made finer or better and not all the
days have to be included. When only the extreme cases for the three categories are
taken into account, the effects could be studied in more detail.
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(a) (b)

(c) (d)

Figure 4.22: The daily averaged R100
eff , Nd and AOD for the selections retrieved with

the lidar in the 2016 and 2017 measurement period. The red error bars show the
retrieval errors, 19.75 % and 39.05 % for the lidar R100

eff retrieval in 2016 and 2017 re-
spectively. For the number density and the AOD, the retrieval errors are significant
smaller than the standard deviations from the averaging. So these retrieval errors
are not shown in the figures. The gray error bars show the standard deviation in
the day, the variation around the mean.
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(a) (b)

(c) (d)

Figure 4.23: The R100
eff and the Nd averaged per category. The categories are clean,

mixed and separated, as explained in the text.
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5. Discussion

AOD

The AOD results are retrieved from clear-sky selections made by a visual inspection
using the raw data, the total lidar backscatter. The uncertainty from the predefined
extinction-to-backscatter ratios Smarine and Sdark was calculated to be 8 % on aver-
age, 8.7 % in 2016 and 7.6 % in 2017, for the AOD when the predefined values for
Smarine and Sdark were varied with 20 % from the standard value. The variation in
z0, and therefore a change in the value of the signal used in the boundary value
problem assumed to be at the aerosol free altitude, has a bigger impact on the AOD
results, a 7 % variation in the normalisation height, and thus the value of the signal
used in the boundary value problem, results in a change in the average calculated
AOD of 7 % on average, 2.3 % in 2016 and 8.9 % in 2017. The uncertainty due to z0,
and the value of the signal used in the boundary value problem, is larger in 2017
due to the low SNR.

The total retrieval error due to the estimation of the extinction-to-backscatter ra-
tios and the normalisation height, and thus the signal used in the boundary value
problem assumed to be at the aerosol free altitude, is 15 % on average over both
years, 11 % in 2016 and 16.5 % in 2017. Random measurement errors arise from
the noise in the aerosol extinction profiles, which is 9 % on average for the two
measurement periods, 7.5 % in 2016 and 10.4 % in 2017. The total uncertainty for
the AOD, retrieval plus measurement uncertainty, is 22.7 % on average for both
measurement periods, 18.5 % in 2016 and 26.9 % in 2017. In 2017 this uncertainty
is larger than in 2016 due to the low SNR caused by the misalignment. This uncer-
tainty needs to be taken into account. To optimize the Klett inversion method, per
selection a normalisation height could be estimated where the extinction is at its
minimum, or the use of an altitude domain of 1 km at aerosol free altitude for the
normalisation height can be further analyzed.

The AOD product for intercomparison is gathered from AERONET, the Calitoo
and the Microtops. As the measurements by the different instruments are not done
at the same moments, daily averages are compared. In 2016 a correlation between
the AERONET data and our lidar retrievals exist. In 2017 this correlation is weak,
this has to do with the low SNR and large uncertainties in 2017.

The vertical distribution of the aerosols can be studied with the lidar data by
for example calculating the AODs for separated vertical layers. This can be used
to study for example whether the aerosols are mostly in the boundary layer or in
the free troposphere. The vertical distribution is dependent on the wind direction,
wind speed, temperature vertical profile, humidity and the source of the aerosols.
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HYSPLIT back-trajectories can be used to define the source of the aerosols as was
shown. To study the vertical distribution of the aerosols, the characteristics of the
aerosol and the dynamical processes should be studied further.

Cloud parameter

The main ARM site, where the measurements with the Cloud Radar were done,
was situated 5 km to the east on Ascension Island, 300 m higher in altitude than
our lidar. Because cloud characteristics can change significant over such a distance
(Grabowski, 2000), this could make the intercomparison uncertain. And as was
studied by Y. Blanchard, the cloud fraction above the main ARM site is not the same
as the cloud fraction above the airport site, as we saw in figure 4.15. But because the
main difference is in the low-level clouds, with a CBH below 1000 m, which are not
included in the selections for the retrievals this difference in cloud characteristics is
not of direct importance in our intercomparison, but should be taken into account
in further analysis. The reference height used for the selections in the lidar method
corresponds with the reference height used in the radar method. So the products
at this reference height can be used for the intercomparison.

The retrieval of the cloud parameters with the MS based inversion method and
the lidar data is done for both years, also after cloud selections have been made
by a visual inspection using the raw data, the total lidar backscatter. The retrieval
error in 2016 was 19.75 % and in 2017 39.05 %, due to the calibration, retrieval and
measurement errors. In 2016 the lidar was just been serviced by Leosphere which
made that the alignment was better than in 2017 and thus the SNR was higher in
2016 than in 2017.

The R100
eff retrieved with Frisch’s method 1 for the Radar data, used for the in-

tercomparison are calculated with the variable daily averages calculated from the
lidar retrieval as input for Nd. The uncertainties are calculated for Frisch’s retrieval
method 1, 5.7 % in 2016 and 5.6 % in 2017. Important is that drizzle cases are
not included in the retrievals, as the reflectivity is highly sensitive to the size of
the hydrometeors, and thus to drizzle. This gives an uncertainty from selecting
drizzle-free periods for the selections for the retrieval.

The value for the lognormal spread of the cloud droplet size distribution used in
the Radar retrieval is estimated on σx = 0.34±0.09. The sensitivity on the calculated
R100

eff due to the assumption on σx is analyzed. when σx is varied to 0.1 and 0.6, an
average of 8.5 % change in R100

eff is found. These are extreme values for σx, which
would be unusual for a cloud droplet size distribution in marine stratocumulus
clouds (Miles et al., 2000). So the values in between are potential values for σx,
which results in a relatively small uncertainty in the R100

eff retrieval.
In 2016 the Cloud Radar was only operating for 9 days of our measurement

period, no intercomparison can be done. The intercomparison between our lidar
retrievals and the radar retrievals for R100

eff in 2017 correlate well. We see some
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outliers in the radar method in the second week of the 2017 measurement period,
this is caused by long periods of rain and therefore difficulties to make drizzle-free
selections for the retrieval.

Frisch’s method 2 is highly uncertain, the LWP measurements and the method
itself have large uncertainties. The fact that the retrieved values for R100

eff are on
average a factor 3 larger than the retrieved values from Frisch’s method 1, is not
evaluated yet and therefore we only take into account the R100

eff retrieval by Frisch’s
method 1 for the intercomparsion and further analysis.

Deriving Aerosol-Cloud interactions

In 2016 a clear relationship between the daily averaged R100
eff and Nd with the daily

averaged AOD is found. This was as expected, and gives evidence for the Twomey
effect. This was also the conclusion from the analysis with the classification of the
days for 2016. For 2017, these relationships were not found, because of the lower
SNR and larger uncertainties in 2017.

The averaging over the days was necessary because measurements were not
done at the same moments. But this averaging could have also been done over half
days or quarter days, this can be done in further research. In the classification of the
days all the days are included and assigned to a category. This can be improved,
only the days that fit 100 % in a category could be included in the classification or
parts of days can be used for the classification.

To be able to study the Twomey effect, one restriction on the situation is that
the LWP should be constant. With the same amount of water available, increased
aerosol will result in more droplets, and smaller Reff, due to the increased com-
petition of water by droplets. When water supply is sufficient, a positive relation-
ship between the AOD and Reff will appear owing to the collision-coalescence of
droplets (Qiu et al., 2017). No LWP measurements were taken into account in the
ACIs study yet. But the fact that the cloud selections in 2017 differed in the LWP
(figure 4.21(b)) could also be an explanation for not finding the expected relation-
ships between the R100

eff , Nd and the AOD in 2017. The LWP data-sets should be
included in further research to cope with the LWP constraint for the Twomey ef-
fect.

Qiu et al. (2017) also say that the dependence of Reff on the aerosol is largest
at heights near cloud base, therefore the reference height of 100 m for the cloud
parameter Reff will not be a limitation in studying ACIs.

Limitations in the ACI study next to the constraint on the LWP, are the relative
small data sets, the spatial distance between measurements and the uncorrelated
moments of measuring. Direct conclusions for the ACIs are highly uncertain. But
an indication by using the daily averages for the AOD, R100

eff and Nd and the cat-
egorization seems to provide evidence for the Twomey effect in 2016.
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Validation of the retrievals

In the future, the alignment should be checked to increase the SNR. This would
improve the results and decrease the uncertainty for the lidar retrieved AOD and
cloud parameters.

To improve the validation method, measurements should be done at exactly the
same moments in time at the same locations. Uncertainties will decrease a lot and
direct intercomparisons case-by-case can be done. This could for example be done
with a sun-photometer operating constantly situated next to the lidar to measure
the AOD or with aircrafts, UAV’s or drones to take in-situ measurements for the
cloud parameters above the lidar.

The best opportunity for the validation of the lidar retrieval methods will be
to compare them with airborne in-situ data. As the lidar operating on Ascension
Island was part of the CLARIFY campaign, this was the plan beforehand. But be-
cause the in-situ aircraft data was not available yet during this research, and the
ARM data was, the decision was made to start by comparing these products.

To further validate the AOD retrieval method and the cloud parameter retrieval
method for the lidar data, the datasets from the CLARIFY campaign can be used.
And other in-situ measurements can provide help full data to validate the methods.
The spatial and temporal resolution will decrease, and uncertainties due to these
effects will decrease. After validating the methods the data can be used to study
the aerosol vertical profiles, the cloud parameters, the evolution of these and the
interactions. HYSPLIT back-trajectories are necessary to study the sources of the
aerosols, general meteorological data is useful to study the dynamical processes, to
study the causes for the vertical distribution of the aerosols. Then the effect of this
vertical distribution can be studied in relationship to the cloud parameters. The
LWP constraint needs to be included in the end to study the ACIs.
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6. Conclusions

In this research we compared the AOD and cloud parameter products retrieved
from the UV-depolarisation lidar with the same products retrieved from other in-
struments and methods. We gathered a temporally dense dataset of lidar data over
the two measurement periods. For the AOD we were able to compare our product
in 2017 with AERONET, Calitoo and Microtops data, in 2016 only the AERONET
data was available. For the cloud parameter intercomparison in both measurement
periods, one similar retrieved product is used for the intercomparison, the cloud
parameter R100

eff calculated from radar reflectivity. We are now able to answer the
three research questions, stated in the introduction.

The AOD retrievals from the lidar for the 2016 measurement period correspond
well with the AOD values from AERONET. In 2017, the daily averaged lidar re-
trieved AODs correlate too little with the values from AERONET to draw conclu-
sions. In 2017, the lidar was operating with larger retrieval errors because of a
smaller SNR. Therefore the results in 2017 are overall less accurate.

For the cloud parameter intercomparison, not enough data points were avail-
able for 2016. In 2017, the R100

eff retrieved from the lidar corresponds well within the
uncertainty range with the radar retrieved R100

eff . For Frisch’s methods, the same as
for the lidar MS based inversion method, assumptions are of big importance for the
results, so the radar method is not naturally better than our lidar method, but be-
cause their results overlap within the uncertainty, confidence in our retrievals has
increased.

The average calculated AOD retrieved from the lidar in 2016 and 2017 is sim-
ilar, more fluctuation in the AOD seems to be present in 2017. Also the averageR100

eff
over 2016 and 2017 is of similar value. For the aerosol and cloud conditions, when
only taken into account the lidar results, the situation seems similar over the two
measurement periods. Further analysis with meteorological conditions and taken
into account the sources of the aerosol is required to prove the climatic comparab-
ility in the measurement periods.

At this moment of writing, the lidar is being realigned, the uncertainty in the
calibration will decrease and a larger SNR would decrease the retrieval error. To
decrease the uncertainty in the AOD retrieval, the Klett inversion method could
be optimized, by defining a normalisation height per averaged selection, where
the extinction is at its minimum or by using an altitude domain at aerosol free
altitude. To further validate the cloud parameter retrieval from the lidar with high
certainty, direct in-situ measurements at the same location as the lidar would be the
best opportunity to verify the retrieval method. More data points corresponding in
spatial location and temporally scale will improve the validation of our retrieved
AOD and cloud products, and the ACI study. LWP data and binned data by the
LWP value should be included in the ACIs analysis to study the Twomey effect.

The UV-depolarisation lidar and the retrieval methods described in this re-
search can contribute to the ACI study and be used to improve climate models.
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A. AOD retrieval

A.1. Lidar Calibration

(a)

(b)

Figure A.1: The depolarisation ratio for clear sky selected height-time boxes for
2016 (a) and 2017 (b), without aerosols or clouds. To check the calibration of the
lidar. With the gray error bar, the variation around the mean, the standard devi-
ation, in the selected height-time box is shown. The total mean depolarisation ratio
during the 2016 and 2017 measurement period separately is shown by the green
dashed line, the shading around this line is the variation around this mean value,
the standard deviation. The standard deviations for the selections is 0.18 on aver-
age for 2016 with outliers of 0.6, while in 2017 the average standard deviation is
0.54 with outliers up to 30.
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A.2. Averaged AOD values from the uncertainty evaluation

Table A.1: Overview of the dependence on the calculated AOD from the predefined
values for S and z0. For the 2016 measurement period.

Smarine Saerosol AOD, z0=7000 AOD, z0=6500 AOD, z0=7500
20 40 0.236 ± 0.11
20 50 0.247 ± 0.114
20 60 0.257 ± 0.118
25 40 0.25 ± 0.113
25 50 0.26 ± 0.116 0.25 ± 0.117 0.262 ± 0.129
25 60 0.269 ± 0.119
30 40 0.263 ± 0.115
30 50 0.272 ± 0.118
30 60 0.281 ± 0.121

Table A.2: Overview of the dependence on the calculated AOD from the predefined
values for S and z0. For the 2017 measurement period.

Smarine Saerosol AOD, z0=7000 AOD, z0=6500 AOD, z0=7500
20 40 0.247 ± 0.126
20 50 0.26 ± 0.13
20 60 0.272 ± 0.133
25 40 0.258 ± 0.128
25 50 0.27 ± 0.132 0.287 ± 0.18 0.239 ± 0.19
25 60 0.281 ± 0.135
30 40 0.267 ± 0.13
30 50 0.278 ± 0.133
30 60 0.288 ± 0.136
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A.3. Classification of days

Table A.3: The days of the 2016 measurement period divided in the categories clean,
mixed or separated, as described in the text.

Clean Mixed Separated
03-09-2016 04-09-2016 10-09-2016
07-09-2016 05-09-2016 11-09-2016
08-09-2016 06-09-2016 14-09-2016
09-09-2016 12-09-2016 15-09-2016
17-09-2016 13-09-2016 16-09-2016
24-09-2016 18-09-2016 19-09-2016
29-09-2016 19-09-2016 27-09-2016

20-09-2016
21-09-2016
22-09-2016
23-09-2016
28-09-2016

Table A.4: The days of the 2017 measurement period divided in the categories clean,
mixed or separated, as described in the text.

Clean Mixed Separated
15-08-2017 20-08-2017 18-08-2017
16-08-2017 21-08-2017 19-08-2017
17-08-2017 22-08-2017 26-08-2017
15-08-2017 24-08-2017 27-08-2017
23-08-2017 25-08-2017 30-08-2017
28-08-2017 29-08-2017 31-08-2017

04-09-2017 01-09-2017
05-09-2017 02-09-2017
07-09-2017 03-09-2017
08-09-2017 06-09-2017

09-09-2017
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B. Cloud parameters retrieval

B.1. Summary of the ECSIM MS based inversion method

MC approaches are always based on stochastic behaviour. In the ECSIM MC model
the propagation of the laser photons is modeled in a stochastic manner. The photons
are launched from the laser with an initial vector. The distance travelled by the
photon before interacting with a scatterer or absorber is determined stochastic-
ally. The type and size of the particle that acts as scatterer or absorber is determ-
ined stochastically and if the photon is absorbed or scattered is then also determ-
ined stochastically according to the single-scatter albedo of the interacting particle.
When the photon is scattered, the direction of the photon is changed according to
its phase function.

The ECSIM MC model, unlike other MC models, is modified to increase com-
putational efficiency. In usual MC models, photons are tracked until they are ab-
sorbed, detected or exit the simulation area. As any photon has a very small chance
of being scattered back to the lidar receiver, the model is corrected for a certain
amount of energy loss, by the absorption or the photon exiting the simulation area,
in order to only evaluate the back scattered photons.

Table B.1: Range of parameters used in the MC calculations.

Parameter Values

CBH [km] 0.5, 1.0, 2.0, 4.0
FOV [mrad] 0.5, 1.0, 2.0, 4.0
R100

eff [µm] 2.0, 2.6, 3.3, 4.3, 5.6, 7.2, 9.3, 12.0
Γl [g m−3 km−1] 0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0
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C. Abbreviations and Symbols

C.1. List of abbreviations

AOD Aerosol Optical Depth
ACIs Aerosol-Cloud Interactions
CCN Cloud Condensation Nuclei
LWC Liquid Water Content
LIDAR LIght Detection And Ranging
AI Aerosol Index
LWP Liquid Water Path [g m−2]
AERONET AErosol ROotic NETwork
ARM Atmospheric Radiation Measurement Climate Research Facility
LASIC Layered Atlantic Smoke Interactions with Clouds
CLARIFY CLouds and Aerosol Radiative Impacts and Forcing
ORACLES ObseRvations of Aerosols above CLouds and their intEractionS
AEROCLO-SA AErosol RadiatiOn and CLOuds in Southern Africa
MWR MicroWave Radiometer
MS Multiple-Scattering
MC Monte-Carlo
PMT Photo-Multiplier Tubes
FOV Field-Of-View
WSACR W-band Scanning ARM Cloud Radar
KASACR Ka-band Scanning ARM Cloud Radar
ATB Attenuated Backscatter [m−1 sr−1]
SNR Signal-to-Noise Ratio
Earth-CARE Earth Clouds and Aerosol Radiation Explorer
ECSIM Earth Clouds and Aerosol Radiation Explorer simulator
LUT Look-Up Table
CBH Cloud Base Height
BL Boundary Layer
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C.2. List of symbols

Nd Cloud droplet number concentration [cm−3]
Reff Cloud droplet effective radius [µm]
Clid Lidar calibration constant
δC Polarisation cross-talk parameter
Cr Inter-channel depolarisation calibration constant
CN Normalisation factor
P Pressure [Pa]
T Temperature [K]
τ Aerosol Optical Depth
Z Reflectivity factor [dB or m6 m−3]
z Range [m]
c Speed of light [m s−1]
t Time [s]
P Lidar power
β Backscatter coefficient [m−1 sr−1]
α Exctinction coefficient [m−1]
S Lidar ratio/Exctinction-to-backscatter ratio [sr]
ρ Particle/Gas density [kg m−3]
λ Wavelength [nm]
σR Molecular Rayleigh backscattering cross section [m2 sr−1]
M Molecular mass [kg]
z0 Normalisation height
Γl Liquid water lapse rate
n Cloud droplet distribution
R Cloud droplet radius
σx Logarithmic spread of the distribution
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