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Summary 

The principal predictor for deforestation of primary forests in the Amazon is distance to roads. Considering 

the increasing ecological importance of secondary forests (which cover from 30 to 50% of the deforested 

area), the present research analysed the influence of road presence in secondary forest regrowth in the 

Amazon. Using remote sensing, I studied the land use classification of 40 plots of 400 km2 in the States of 

Pará, Rondônia and Amazonas, during a 32 year period from 1984 to 2015. 

My results indicate that road presence influences secondary forest regrowth. Most of the land use change 

(deforestation) occurs in areas closer to the road (within 30 km) and with high road density, where the 

percentage of area covered by secondary forest remained at around 20% during the period studied. 

However, an area located further than 30 km from roads has three times this probability to remain as a 

secondary forest, at a distance farther 50 km this probability is four times, and areas with low road density 

have three to four times more secondary forests cover. While the influence of type of road pattern 

(Fishbone or Other) was not statistically significant. 
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IŶflueŶce of Road PreseŶce iŶ 

“ecoŶdary Forest Regroǁth iŶ the AŵazoŶ 

1. INTRODUCTION 

1.1. Background 

The Amazon basin represents 60% of the remaining tropical rainforest in the world (Fearnside 1999). 

It is one of the ǁoƌld͛s most biodiverse ecoregions with thousands of unique species of plants and 

animals (WWF 2015), and plays vital roles in the regulation of regional hydrology and climate (Ewers 

and Laurance 2006; Fearnside 1999; Fearnside 2008; Laurance et al. 2002; Yoshikawa and Sanga-

Ngoie 2011). At the same time, the Amazon represents one of the largest carbon storages in the 

world (Brienen et al. 2015; T. R. Feldpausch et al. 2012; Houghton et al. 2000), storing around 150 – 

200 Pg C in living biomass and soils (T. R. Feldpausch et al. 2012). 

In Brazil, it is located 69% of the Amazon biome (IBGE 2015a). The government recognizes an area 

of 5.1 million km2, 59% of Brazil´s territory, as the ͞Legal AŵazoŶ͟ (Federative Republic of Brazil 

1966; IBGE 2015b). However, 20% of the original area of the Brazilian Amazon tropical forests has 

already been deforested (Butler 2014; INPE 2015), for timber and conversion into agriculture, mainly 

for large - scale soybean production and cattle pastures (Colson et al. 2009; Davidson and Martinelli 

2009; Ewers and Laurance 2006; Yoshikawa and Sanga-Ngoie 2011). Once the land use changes from 

primary forest to agriculture, tropical soils do not remain productive for a long period of time 

(Chazdon 2003; Luizão et al. 2009), and they are abandoned, later forming secondary forests 

(Davidson and Martinelli 2009; Hirsch et al. 2004). 

The Brazilian government continually monitors deforestation (INPE 2015). However, once an area is 

deforested it is only considered either an agricultural or degraded area (IBGE 2015a; Yoshikawa and 

Sanga-Ngoie 2011), and the extension of secondary forests is not assessed in official statistics (Neeff 

et al. 2006). Nevertheless, it is estimated that 30 to 50% of cleared land is in some stage of secondary 

forest succession (Hirsch et al. 2004). This is more than 16 million ha which represents a fivefold 

increase from that area in 1978 (Neeff et al. 2006). 

Secondary succession is an important process in the Amazon with implications for the sustainable 

regional agricultural and pasture activities, (Fearnside 2005; Wright and Muller-Landau 2006). 

Secondary forests buffer the net loss of forest cover, are key sources of plant propagules and 

facilitate movements of animal species, many of them seed dispersers and pollinators (Chazdon 

2003; Groeneveld et al. 2009; Santos et al. 2014). Secondary forests play an increasingly important 

role as complementary conservation services, for example: reservoirs of genetic diversity, stocks of 

biomass, carbon and nutrients, and moderators of hydrologic cycles (Perz and Skole 2003b; Perz and 

Skole 2003a; Vieira et al. 2003). 

However, the dynamics of secondary forest regrowth have been poorly studied. Secondary forests 

biomass accumulates more slowly, and even 70-year-old secondary forests are still distinguishable 

from primary forests (Vieira et al. 2003). Secondary forests become far more vulnerable to wildfires 

(Cochrane and Laurance 2002), droughts (Vasconcelos et al. 2012), predatory logging (D. C. Nepstad 

et al. 1999), hunting (Peres 2001) and other degrading activities (Laurance et al. 2002). 

The primary determinant of land use change in the Amazon is access through roads (Laurance et al. 

2002; Soares-Filho et al. 2004). Roads open the forest to exploitative activities such as logging and 

hunting, leading to new land colonization (Barber et al. 2014; Ewers and Laurance 2006). It is 

estimated that 95% of deforestation in the Brazilian Amazon occurs within 5.5 km of a road (Barber 



2 

 

et al. 2014). As a consequence of deforestation and increase of roads in the Brazilian Amazon, the 

proportion of forest further than 1 km from the forest edge has decreased from 90% in 1970 to 75% 

(Haddad et al. 2015). Nearly 75,000 km of officially constructed roads intersect the Amazon 

rainforest (IBGE 2015a), with an additional 190,500 km of the unofficial road network, which are 

rapidly growing without any government oversight or incentives (Barber et al. 2014; Laurance and 

Balmford 2013). Construction of roads through rainforest is widely recognized as a primary cause of 

ecological degradation, affecting vegetation, animals, air and water quality, and even regional 

hydrology (Forman et al. 2003; Jaeger et al. 2005). Roads induce fragmentation, isolating endemic 

species, interfering with the genetic flow and reducing biodiversity (Epps et al. 2005; Haddad et al. 

2015), enhance the spread of invasive species (Forman et al. 2003; Gelbard and Belnap 2003), 

increase human access to pristine ecosystems (Jaeger et al. 2005), and increase fire risk (D. Nepstad 

et al. 2001; D. C. Nepstad et al. 1999). Also, roads promote edge-related loss of forest carbon up to 

150 million ton year-1 C, beyond that from deforestation alone (Laurance et al. 1997). 

Considering roads are the principal determinants of deforestation, and driver of land use dynamics 

in the Amazon, they should also exert a major effect in secondary forest regrowth. Because, they 

are susceptible to be deforested again interrupting the vegetation regrowth. Furthermore, it is 

considered secondary forest are in a four times greater risk of deforestation than an intact forest 

(Asner et al. 2006), because settlers in the Amazon tend to not considered them as natural forests 

(Diniz et al., 2013). 

The present thesis research has the objective to analyse whether there is an influence of roads in 

the remotely-sensed secondary forest regrowth dynamics. 

 

1.2. Problem Description 

Secondary forests have an increasing ecological importance in the Amazon considering the steady 

rates of deforestation. It is estimated that between 30 to 50% of the deforested area is covered by 

secondary forest (Hirsch et al. 2004). Distance to roads has been identified as the most important 

predictor of deforestation (Barber et al., 2014; Laurance et al., 2002). 

However, currently there are no studies on the influence of roads to secondary forests. This is 

important because secondary forest regrowth dynamics should be studied, so regrowth is 

encouraged to develop mature forests. Consequently secondary forest could fulfil better 

conservation services in the Amazon and this conservation efforts should be coordinated with the 

development of new road construction projects. 

 

1.3. State of the Art 

Ecological succession is defined as the process of change of species structure in an ecological 

community over time. Succession initiated by some form of disturbance on a community such as 

fire or deforestation, is called secondary succession. In the case of tropical forests, like the Amazon, 

succession following fire and deforestation has been studied for more than 30 years (Acevedo L 

1981; Fox 1976). 

Deforestation in the Amazon is mainly due to the farming system known as slash and burn. Which 

involves the cutting and burning of forests to create fields or pastures. Livestock production has 

been the dominant land use because requires little labour, generates decent profits, and grass grows 

easily in the poor Amazon soil (Davidson and Martinelli 2009; D. C. Nepstad et al. 1999). Once 
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productivity of pastures decline, settleƌs teŶd to leaǀe the aƌeas ͚ƌestiŶg͛ foƌ soŵe Ǉeaƌs, aiŵiŶg at 
natural soil recovery through organic matter and nutrient accumulation (Diniz et al. 2013; Ted R. 

Feldpausch et al. 2004). 

Settlers do not consider successional areas as forest, but rather as potential areas to be cropped in 

the future and, therefore, they are under high risk of deforestation (Diniz et al., 2013). The 

probability of logging secondary forests between 5 to 25 km away from roads is two to four times 

greater than that of an intact forest in the same area (Asner et al. 2006), and in some areas the re-

clearing of secondary forests occurs on average every 5 years (Neeff et al. 2006). These are 

considered the most important reasons for lack of large-statured, advanced secondary forests in the 

Amazon region (Davidson and Martinelli 2009). 

Nevertheless, there is an ongoing transitional process of recovery in the Amazon forest (Yoshikawa 

and Sanga-Ngoie 2011). Remotely sensed land cover maps have been developed for the Amazon 

(Barber et al. 2014; Yoshikawa and Sanga-Ngoie 2011), and provide consistent spatial data on the 

extent and age class distribution of tropical secondary forests (Carreiras et al. 2014; Diniz et al. 2013; 

Neeff et al. 2006; Vieira et al. 2003). 

Roads and their associated vehicular traffic have mainly adverse impacts to the natural environment 

(Forman and Alexander 1998; Forman et al. 2003). In the case of secondary forests, vegetation 

succession is affected by fragmentation and consequent edge effects (Laurance et al. 2011), which 

also are effects by roads (Forman et al. 2003). Forest fragmentation impairs key ecosystem functions 

by decreasing biomass and altering nutrient cycles (Haddad et al., 2015). The loss of area, increase 

in isolation, and greater exposure to human land uses along edges (edge-effect) initiate long-term 

changes to the structure and function of the remaining fragments (Lindenmayer and Fischer 2006). 

Fragmentation alters community composition, reducing biodiversity and richness of species 

(Haddad et al. 2015; Laurance et al. 1997). Roads also provide invasion corridors for seeds of invasive 

non-native species (Forman and Alexander 1998; Forman et al. 2003; Laurance, Goosem, and 

Laurance 2009, 200), Other edge effects include increased desiccation stress, windshear, and wind 

turbulence, increasing rates of tree mortality and damage (Laurance 2000; Laurance et al. 2001; D. 

Nepstad et al. 2001). 

The principal parameters to define the influence of roads on forests, are distance to roads, and their 

spatial configuration in terms of density and type of pattern formed by the roads (Forman et al. 

2003). However, there are no studies relating these parameters with secondary forests. 

The distance to which different edge effects affect into forest fragments varies widely, ranging from 

10 to 300 m in primary forests and considerably further (at least 2–3 km) in areas of the Amazon 

where edge-related fires are common (Cochrane and Laurance 2002; Laurance et al. 2011). 

Road density is the average total road length per unit area of landscape (kilometres of road per 

square kilometres). Road density strongly affects spatial effects on the ecosystem because it 

increases human access. Many ecological phenomena affecting wildlife and biodiversity have been 

related to road density (Forman and Alexander 1998; Forman et al. 2003). Road density is inversely 

related to ͞effeĐtiǀe ŵesh size͟ (Forman et al. 2003). ͞EffeĐtiǀe ŵesh size͟ measures ecosystem 

fragmentation, in terms of the likelihood that two randomly chosen points in a region may be 

connected, converted into the size of an area (Jaeger 2000; Moser et al. 2007). However, this metric 

has not been calculated for the Amazon or other tropical forests. 

Road networks may take an infinity variety of patterns, considering natural landscapes are 

heterogeneous and irregular that influence the construction of roads (Forman et al. 2003). However, 

the most common road pattern in the Amazon is the fishbone, which is defined as a straight principal 
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road (commonly a highway) from which perpendicular smaller roads originate. The design of these 

roads was made by the government. Other road patterns, like radial, dendritic or irregular, normally 

follow the topography of the region. Studies suggest that the fishbone pattern increases rainfall in 

a mesoscale of 100x100 km and promotes regeneration of the forest (Garcia-Carreras and Parker 

2011; Roy 2009). Therefore this pattern is considered less detrimental for primary forest, given that 

connectivity among the remnant forest patches is preserved (Filho and Metzger 2006). Other 

patterns may result in less fragmentation of the forests (Soler, Escada, and Verburg 2009). 

 

1.4. Research Aim and Research Questions 

The aim of my thesis research is to determine if an influence of roads in secondary forest regrowth 

dynamics in the Amazon exists. 

The central research question is: 

Does road presence influence secondary forest regrowth in the Amazon? 

The following sub questions represent the logical steps to answer the main question of this research: 

 Is secondary forest regrowth influenced by road presence in terms of: 

o SQ1. Distance to roads? 

o SQ2. Road density? 

o SQ3. Spatial configuration of the roads? 

The present research tests the hypothesis that road presence influences the dynamics of secondary 

forest regrowth of the Amazon. I expect that the probability of forest regrowth is inversely 

correlated with the 1) distance, 2) higher density and 3) other patterns than fishbone (dendritic, 

radial or rectangular) of roads. 

 

1.5. Relevance 

Even though the secondary forest play an important ecological role in the Amazon, the dynamics of 

secondary forest regrowth are still poorly understood. Although there have been studies that 

analyse area and characteristics of secondary forest regrowth, using field measurements and 

remote sensing methods, no study has analysed the influence of roads on secondary forests. 

The results of the present research will help the stakeholders in the decision making process for new 

road construction projects, considering their effect on secondary forests. 

 

  



5 

 

2. METHODS 

2.1. Study Area 

The study was carried out in the States of Pará, Rondônia and Amazonas, which are located in the 

͞BƌaziliaŶ Legal AŵazoŶ͟ (Figure 1). These states were selected because they all form part of the 

Amazon rainforest biome, have similar ecological characteristics, while having different levels of 

deforestation, population density and economic activities. According to statistical data, Rondônia is 

the state with higher levels of deforestation in the Legal Amazon (Butler 2014), Pará is the most 

populous state of the Northern Brazil, and Amazonas is the least populous state with lower 

deforestation levels (IBGE 2015a). The total area of these states covers more than 3 million km2 

(IBGE 2015b). This region includes several protected areas, agrarian colonization projects and urban 

areas. The region has a humid tropical climate, flat topography, predominantly lower than 400 m 

above sea level. The area is connected by highways, state and municipal roads, as well as a network 

of unofficial and illegal roads (IBGE 2015b; IBGE 2015b). 

 

Figure 1. Distribution of the study plots (red squares) in the study area (states of Pará, Rondônia 

and Amazonas), with respect to the Brazilian Legal Amazon 

 

2.2. Sampling design 

To study the effect of roads on secondary forest regrowth I established a set of 40 plots, using a 

stratified sampling strategy. The selection of the plots was done based on the images available in 

Google Earth by June 2015 (Google 2015), to posteriorly check the availability of suitable historic 

satellite images. 

I chose a plot size of 20 x 20 km because it was considered representative area of forest 

fragmentation in the Amazon. ͞EffeĐtiǀe ŵesh size͟, ǁhiĐh is the most common metric to measure 

ecosystem fragmentation, has not been measured for the Amazon. Therefore, this plot size was 

based on previous research where several studies (Baldi and Paruelo 2008; Jaeger 2000; Jaeger 

2007; Moser et al. 2007) suggested an effective mesh size of 400 km2. 
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Plots were assigned one of four categories, high and low road density and either fishbone or other 

road pattern (Figure 2). 

 

Figure 2. Characteristics of road presence that could affect secondary forest regrowth (Based on 

(Forman et al. 2003) 

Distance to roads has been identified as the principal predictor of deforestation in the Amazon, and 

95% of deforestation occurs in the first 5 km away from a road (Barber et al. 2014). Therefore to 

quantify the distance to roads I used the road network present in the Open Street Map 

crowdsourcing database (OpenStreetMap 2015). The Open Street Map database only includes the 

principal roads, mainly highways, as updated to their database by July 2015, and therefore does not 

allow testing the effects of unofficial and small roads on secondary forest. This choice was done 

because I could not get access to the map of unofficial network of roads, digitalized by Imazon using 

the methodology of (Brandão and Souza 2006), which used in the research of (Barber et al. 2014). I 

also chose not to use the global database of roads map (CIESIN and ITOS 2013), because the scale 

of this road dataset is not comparable to that of the satellite images, affecting its accuracy. The 

Open Street map road data set was clipped to the extent of my 40 plots and for each plot I used the 

͞EuĐlideaŶ distance͟ tool in ArcGIS (ESRI 2015), which gives the distance from each cell in the raster 

image to the closest road in the map (ESRI 2015). I also calculated the distance to cities, because 

cities include small municipal roads and also human settlements might influence land use change. 

Road density is defined as the average road length per unit area of landscape (Forman et al. 2003). 

In the present research I only used two extremes of low and high road density based on estimates 

according to the road network shown in the images of Google Earth currently available. This was 

done because to measure density it is necessary to have the complete road map to measure length 

of roads per area. Also, road density of the plots would change during the temporal analysis making 

the classification in categories more difficult. 

As detailed above, road patterns may have different effects on secondary forest regrowth. I 

considered two Road Pattern categories: fishbone and other (for example radial, rectangular, 

dendritic). 

I selected 40 plots distributed in the study area, according to their current relation to roads. I 

selected plots that: were not crossed by rivers or lakes, were uniform in their characteristics, had 

similar Euclidian distances to roads and cities, and were distributed across the study area (Figure 3). 

Plots were then chosen based on their density (high (HD) and low (LD)), and spatial configuration 

(fishbone pattern (FP) and other pattern (OP)), 10 plots in each case. A complete list of the 

geographic coordinates of the plots is present in Appendix 1. 
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Figure 3. Decision tree for the sampling of the plots 

 

2.3. Landsat Images 

I chose the Landsat satellite images for this study because Landsat program is the largest program 

for acquisition of imagery of Earth from space, having images from the Amazon since 1984. These 

satellite images have a have a spatial resolution of 30 m, and a temporal resolution (time between 

imagery collection periods)of 16 days. Landsat offers already processed images, available in the 

user-friendly database, that are freely available to the public (NASA Official 2015; USGS 2014a). 

Specifically I used Landsat Surface Reflectance images, which are generated by a specialized 

software of NASA to apply an atmospheric correction to the raw-data satellite images, taking into 

account water vapor, ozone, geopotential height, aerosol optical thickness, and digital elevation. 

Therefore, surface reflectance images are processed images that are better suitable for land surface 

change studies (USGS 2015b; USGS 2014a). 

The study plots are covered by 11 Landsat scenes. For each scene I downloaded surface reflectance 

data from the United States Geographical Survey website (http://earthexplorer.usgs.gov/) (USGS 

2015a), for the period between 1984 to 2015. Landsat scenes were clipped to the study plots and 

the following analysis refers to a total of 1280 individual images (40 plots over 32 years). 

I used annual images of between the years 1984 to 2011 from Landsat 5 thematic mapper (TM) and 

Landsat 7 enhanced thematic mapper (ETM+) and from 2013 to 2015 from Landsat 8 (operational 

land imager (OLI). In 2003 there was a failure in the Scan Line Corrector (SLC) of the Landsat 7, which 

since then traced a zig-zag pattern, generating images with an increased area and data gaps(USGS 

2013). I chose not to use these images and since these were the only available for 2012, this year 

was omitted. 

As far as possible, I tried to use images that were one year apart, to analyse the annual variation of 

the vegetation and keep the same climatic conditions. In general, I selected only images with less 

than 10% cloud cover, as clouds limit visibility. I chose images from the sunnier dry season (June to 

November), because during that period there is minimal cloud cover and there is increased forest 

productivity that enhances the difference between primary forest with other types of land use 
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(Huete et al. 2006; Martins et al. 2015). However, 34 images (plots per year) were not available, and 

these were omitted from this study. This represents only 5.8% of the images were not available for 

the study, not affecting the analysis of this research. The complete list of images used are presented 

in Table 1. 

Table 1. Landsat images (scenes per month), in respect to the plots. 

Type of image Landsat available: TM (normal format), ETM+ (bold), OLI (italics). 

Scene Plots 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

001/066 HD4, OP3, LD5 jul aug jul jul jul aug jul jul jul jul jul jul jul jul jul jul jul jul jul jul jul jul jul jul jul jul jul jul jul jul jul

227/063
FP7, FP8, LD3, 

LD4
aug aug nov oct jul aug aug jul jul may jul jul jul jul jun aug aug jul jul jul jul jul aug jul jul jul jul jul jul sep jul

227/065
HD5, FP10, 

OP6, LD9
jun aug jul jun jul aug aug jul jul aug jul jul jul jun jul jul jul jul jul jul jul jun jun jul jul jul jul jul aug sep jun

228/061
HD10, OP9, LD8

oct jul jul jul sep nov aug sep jul jul jul jun jul aug jul aug jul jul jul jul jul aug jul jul jul aug jul jul sepaug

228/063
HD9, FP9, OP5, 

LD10
jul jul aug jul jul sep aug jul jun jul aug jun oct jul jul jul augaugaug jul aug jul jun jun jul jul jul aug jul jun aug

230/062 HD2, HD3 jul aug aug sep sep aug aug jul sep oct aug oct jun aug sep augaug jul jul aug aug aug jul aug jul aug jul jun

231/062 HD1, FP6, LD1 aug jul aug jul aug aug aug aug jul jul jul sep aug jul jul jul jun augaug jul sep jul jul jul jul jul jul aug jul jul jul jul

231/065 FP1, OP1, LD2 jul jul jul jul jul jul jul jul jul aug jul aug jul jul jul jul jul jul jul jul jul jul jul jul jul jul jul jul jul aug jul jun

231/067 HD7, OP4, LD7 aug jul aug jul jul jul jun jul jun jul jul aug jul jul jul jul jul aug jun jul jul jul jul jul jul aug jun jul jul aug jul jul

232/067
HD6, HD8, FP4, 

OP10, OP2, 
jun jul jul jul jul jul apr jul jul jul jul jul jul jul jul jul jul jun aug jul aug aug jul jun jul jul aug jul jul jul jul jun

233/067
FP2, FP3, FP5, 

OP8, LD6

jul sep jul jul jul jul jul jul jul jul jul jul jul jul jul jul aug jul jul jul jul jul jul jul jul jul jul jul jun jun jun

Image with < 10% of cloud coverage not available in the USGS database

Only images with gaps (ETM+SLC-off data) available

 

 

2.4. Image Classification 

Secondary forest is defined as vegetation succession in the tropical forest of the Brazilian Amazon, 

in which forest has regenerated on land that has been previously used for agriculture or as cattle 

pasture (Neeff et al., 2006). 

It is widely recognized that remote sensing is among the best methods for consistently quantifying 

areas under different forest cover (Steininger, 2000). Land cover change can be analysed through 

time-series comparison of image classifications (Neeff et al. 2006). 

Landsat 5, 7 and 8 satellites collect spatial information over 7 spectral bands, with different 

wavelength (USGS 2014a). 

Table 2. Wavelengths according to bands of Landsat 5, 7 y 8 (USGS 2014b) 

Colour 
Landsat 5 & 7 

# Band 

Wavelength 

(µm) 

Landsat 8 

# Band 

Wavelength 

(µm) 

   1 0.43 – 0.45 

Blue (B) 1 0.45 – 0.52 2 0.45 – 0.51 

Green (G) 2 0.52 – 0.60 3 0.53 – 0.59 

Red (R) 3 0.63 – 0.69 4 0.64 – 0.67 

Near Infrared 4 0.77 – 0.90 5 0.85 – 0.88 

Short wave Infrared 1 5 1.55 – 1.75 6 1.57 – 1.65 

Short wave Infrared 2 7 2.09 – 2.35 7 2.11 – 2.29 
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I used the true colour and the colour infrared composites to identify and differentiate forests. The 

natural colour composite (RGB) serves for recognizing, and classifying most of the natural features. 

The colour infrared composite (CIR) is that where green wavelength is displayed in blue, red is 

displayed in green, and near infrared is displayed in red. Colour infrared composite serves to 

differentiate Secondary forest from Primary (mature) forest because secondary forest regrowth is 

recognizable in a brighter red colour, as suggested by (Carreiras et al. 2014; Neeff et al. 2006; Soler, 

Escada, and Verburg 2009) (Figure 4). 

a) b) 

 
Figure 4. Difference between Landsat satellite images a) true colour composite, and b) colour 

infrared composite 

There are several challenges in discriminating It must be noted that several studies carried out in 

the Amazon have acknowledged some issues in discriminating secondary and primary forest in the 

Amazon, especially when forest is older than 15 years. This is largely because of spectral similarities 

between different successional stages, considering that secondary forest is a transitional class 

between other vegetation (agriculture or pasture) and primary or mature forest (Carreiras et al. 

2014; Neeff et al. 2006). 

Other reason is because the specific characteristics of secondary forests like vegetation structure 

and species composition and its consequent accumulation of biomass, may vary across regions and 

are influenced by several factors like differences in edaphic and climatic conditions, history of land 

use, proximity to seed sources, and management practices such as the frequency of burning and 

grazing intensity (Davidson and Martinelli 2009; Rebel et al. 2001; Vieira et al. 2003). 

I classified Landsat satellite images using the Spatial Analysis tools in ArcGIS v.10.3 (ESRI 2014). I ran 

Supervised Image Classification, based on the maximum likelihood algorithms (ESRI 2015). 

Supervised image classification is a multistep process that follows the workflow presented in Figure 

5. 

 

Figure 5. Supervised image classification workflow (ESRI 2015) 

First I created a true colour composite, checked that all the bands have a normal distribution. This 

because the supervised image classification analysis is based on the assumption that the band data 

and the training sample data follow normal distribution in order that the range of values in each 
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band is considered equally. Thus if the value range of one band was too small (or too large) relative 

to the other bands I stretched the bands using the Spatial Analyst toolbox (ESRI 2015). 

Second, for every scene I collected representative training samples, which are specific areas that 

represent the different types of land use or forest cover to be analysed. In this case, I chose four 

classes: Primary Forest, Clear Cut (recently deforested), Other (pastures, agriculture, and all other 

land covers), and Secondary Forest. The change between these classes represents dynamics of land 

use in the Amazon (Figure 6). 

 

Figure 6. Dynamics of Land Use in the Amazon 

The selected training samples were evaluated to assess whether they would be representative (not 

intersect or overlap with other classes). For this, I used the histogram and dendogram tools. 

During the evaluation of the training samples, I noticed the presence of other land use classes that 

were intersecting and overlapping with the initial four classes. For example I considered urban areas 

(more reflective), clouds, shadows of clouds, and clouded areas which could still be recognized as 

belonging to a certain class (i.e. clouded primary forest). I also grouped areas that do not support 

foƌest ;ǁateƌ ďodiesͿ ǁith aƌeas of Đloud aŶd Đloud shadoǁ as ͚ ͚Ŷo data͛͛. Therefore it was necessary 

to add them for the image classification. 

The final classification had the land cover classes, which are summarized in Figure 7: 

1) Primary Forest (P.F.) comprises primary forest and clouded forest areas, 

2) Clear Cut (C.C.), recently deforested areas without vegetation or burned, 

3) Other (Oth.), comprises pasture, agricultural crops, urban areas, or other clouded areas, 

4) Secondary Forest (S.F.) secondary forest and clouded secondary forest, 

5) No Data (N.D.) areas covered by clouds, shadows or water and therefore not relevant for the land 

use and cover change dynamics. 
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Figure 7. Classes of land use for image classification of Landsat images 

I created a signature file for the selected training points (Figure 5), which was examined prior to 

being used. I then performed a classification using the Maximum Likelihood Classification tool, 

which assigns each pixel of the image to one of the different classes based on the means and 

variances of each signature (Ahmad 2012; Lu et al. 2012; Strahler 1980). The maximum likelihood 

classification is still an important method for providing reasonably good accuracy, because even 

though there are other classification algorithms available, they often require more time to achieve 

parametric optimization and require high spatial resolution images (Lu et al. 2012). 

The classification was improved by the post-classification processing, which filters isolated pixels 

and cleans boundaries. The final image classification presents areas with cleaner borders. I then 

calculated the area (in square kilometres) of the different classes of land use in the final 

classification. 

 

2.5. Data Quality Assessment 

I based the accuracy assessment of the time-series classification in the methodology of (Carreiras et 

al. 2014), Foody (2009), and (Vieira et al. 2003). For each individual scene of the Landsat images, 

test points were generated for each class, using the original true colour composite image. It is not 

possible to use the same points used as training points for the classification, because it will result in 

a sampling error for the assessment. 

An error matrix was derived by overlaying the test points on the classified image, and comparing 

the field observations with the classification for each test point. I calculated the omission and 

commission errors, which represent the percentage of false negative and false positive points, 

respectively (Gallego 2004). False negatives represent points that were not correctly classified with 

the right class and false positives represent points that were wrongly attributed a certain class. 

To further evaluate the quality of the classification, I used two indexes. First, I used the Overall 

Accuracy that quantifies the number of points correctly classified divided with the total of points 

used in the classification. Second, I used the Kappa coefficient, which quantifies the overall accuracy 

of the classification relative to that expected by chance (Czaplewski, 2000 in (Vieira et al. 2003); 

(Stehman 1996). According to the following equation: � = ݕܿܽݎݑܿܿܽ ݀݁ݒݎ݁ݏܾ݋ − ܿℎܽ݊ܿ݁ ܽ�1ݐ݊݁݉݁݁ݎ − ܿℎܽ݊ܿ݁ ܽ�ݐ݊݁݉݁݁ݎ = ሺ� ∑ ��� − ∑ ሺݔ�+ ∗ ��ሻ�+ݔ ሻሺ�2 − ∑ ሺݔ�+ ∗ �ሻ�+ݔ ሻ  

http://help.arcgis.com/en/arcgisdesktop/10.0/help/009z/009z000000pp000000.htm
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Where k = kappa, N = total number of pixels in all ground classes, ∑ ���� = the sum of the matrix 

diagonal classes, + = summation over the index, ݔ�+ = the sum of the ground truth pixels in that 

class, and ݔ+� = the sum of the classified pixels in that class (Congalton 1991; Congalton and Mead 

1983; Stehman 1996). This indicates the percentage of error avoided in comparison to what a 

completely random classification would generate (Vieira et al. 2003). 

Therefore, for further statistical analysis I decided not to take into account individual plots with 

more than 10% of cloud coverage. In total, these are 173 individual images (plot per year) from the 

different time series, besides the scenes omitted for lack of availability in the USGS database. The 

complete list of plots and years that were eliminated of the image classification because of presence 

of cloud coverage or shadows (no data) is presented in Appendix 2. 

 

2.6. Statistical Analysis 

I analysed the relation between the Euclidean distance map to the roads and cities in respect to 

plots, using the spatial analysis in ArcGIS to separate the different classes according to the image 

classification. The measures obtained are the total statistics (one measure): mean, minimum, and 

maximum distance. Later, I analysed the relation between type of plot (Low and High Density, and 

FishďoŶe aŶd Otheƌ patteƌŶͿ aŶd the distaŶĐe to ƌoads aŶd Đities, I used the ͞OŶe-Way Analysis of 

VaƌiaŶĐe͟ ;ANOVAͿ. This test compares the difference in mean scores between multiple groups 

(Rencher 2012). 

To further analyse the image classification in respect to distance, I classified all the time-series 

according to the distance to roads and cities in eight categories (< 5, 5 – 10, 10-20, 20-30, 30-40, 40-

50, 50-100 and > 100 km). I tested the hypothesis, that there is a statistically significant difference 

in S.F. between the different distances to roads and cities. The most adequate statistical analysis to 

analyse and compare this change in areas over the time-seƌies is ͞Multiǀaƌiate AŶalǇsis of VaƌiaŶĐe͟ 
(MANOVA) because the dependent variables (classes of land use) are correlated, therefore the 

change of one land use affects the distribution or others. MANOVA compares the difference in mean 

scores between multiple groups, using multiple variables (Rencher 2012). 

I analysed the change of percentage of land cover in the different plots the areas of the classes of 

land use (in km2). The response of dependent variable are the areas of different classes of land use 

(P.F., C.C., Oth., S.F. and N.D.). I tested the hypothesis, that there is a statistically significant 

difference in S.F. between the plots with different road densities (Low and High) and road pattern 

(Fishbone and Other), using MANOVA. 

I also used ͞ Multiǀaƌiate AŶalǇsis of CoǀaƌiaŶĐe͟ (MANCOVA) to consider if the influence of distance 

to roads and cities (in terms of mean, minimum and maximum distance) affects the independent 

variables (density and pattern). The purpose of this analysis is to 'factor out' the possible error 

introduced by these covariables in the analysis (Rencher 2012). 

ANOVA, MANOVA and MANCOVA analyses were ran in SPSS version 17 (SPSS Inc. 2008), considering 

a 95% of confidence for testing the hypothesis. The result statistics for both analysis are expressed 

in four different multivariate tests analysis: Pillai's Trace, Wilks' Lambda, Hotelling's Trace, and Roy's 

Largest Root, because each test has its own associated F ratio. In cases where their P values differ, 

Pillai͛s tƌaĐe is used ďeĐause it is ĐoŶsideƌed the ŵost poǁeƌful aŶd ƌoďust of the four (Carey 1998). 

A P value less than 0.05 indicates that the mean of the variables are different and therefore 

corroborate my original hypothesis (Carey 1998).  
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3. RESULTS 

3.1. Image Classification 

The results of the image classification show a difference between the plots with high/low density 

and the fishbone/other road pattern. Some examples of this classification are presented in Figure 

8. As can be seen in Figure 8, the types of plots have visually different characteristics, and their 

image classification follows the land use. In general, the results of the image classification are similar 

to the ones presented as example, but the final 1280 images (40 plots over 32 years) are not 

presented in this report because of space. 

 a) b) c) d) 

I 

    

II 

    

Figure 8. Different types of plots used in the image classification. I. Original satellite image,                

II. Images with image classification. Types of plots: a) Low Density (LD10 2014), b) High Density 

(HD9 2014), c) Fishbone Pattern (FP9 2014), d) Other Pattern (OP5 2015) 

In the Appendices, I present a complete report of the image classification resulted by the Supervised 

classification done in ArcGIS. The percentage distribution of the plots are in Appendix 3. 

On the bases of these image classifications, I obtained the areas (in square kilometres) of each land 

cover type in the plots: 1) Primary Forest (P.F.), 2) Clear Cut (C.C.), 3) Other (Oth.), 4) Secondary 

Forest (S.F.), and 5) No Data (N.D). The mean composition (in area percentage) of each land cover 

is presented in Figure 9. 
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a)

 

b)

 
c)

 

d)

 
Figure 9. Mean composition (in area percentage) of image classification of the time-series, 

Primary Forest (P.F.), Clear Cut (C.C.), Other (Oth.), Secondary Forest (S.F.), No Data (N.D.), 

according type of plot: a) Low Density, b) High Density, c) Fishbone Pattern, and d) Other Pattern 

Figure 9 shows that the percentage of P.F. are decreasing from 1984 to 2015. The mean percentage 

of P.F. all types, with exception to Low Density, at the end of the study is around 40%. The mean 

percentage of S.F. also increases reaching less than 20% for all types, being also lower for Low 

Density plots. 

In the appendices I present a complete report of the image classification reports, using the 

supeƌǀised ĐlassifiĐatioŶ iŶ AƌĐGI“. The figuƌes ǁith the peƌĐeŶtage distƌiďutioŶ of eaĐh plot͛s tiŵe-

series are presented in Appendix 3. The figures are similar to the ones presented in Figure 9, which 

are representative of their mean values. 

 

3.2. Accuracy Assessment 

In general, the accuracy indexes show lower results for the scenes with cloud coverage, and the 

accuracy varies for some years and scenes. Nevertheless, the mean value of overall accuracy is 0.92 

with a standard error of 0.05, while the Kappa coefficient is 0.85 with a standard error of 0.08. This 

result indicates that the image classifications are reliable for further analysis. 

The most common misclassifications in the research were secondary forests being misclassified as 

primary forests and pastures being misclassified as secondary forests. However, in general terms, 
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the accuracy values were lower in clouded plots, because cloudy areas with different consistency 

were classified as other classes and their shadows also affected the classification. 

The accuracy assessment of the image classification was done for all the scenes of the time-series, 

generating an error matrix for each of them. However, considering reasons of space (they are 1033 

tables), only the tables with the summary of the results, overall accuracy and Kappa coefficients of 

all the time series, are presented in Appendix 4. 

 

3.3. Distance to Roads and Cities 

First the Euclidian distance was measured between the plots in respect to roads and cities. These 

thematic maps are presented in Appendix 5. The measures of distances to roads and cities, in terms 

of mean, minimum, and maximum is presented in Appendix 6. 

The distance between plots in relation with roads and cities was analysed using an ANOVA, the 

complete results of this analysis are presented in Appendix 7. The ANOVA results show that the type 

of plot are significantly different in respect to the distance to roads (Sig < 0.05). The Low Density 

(LD) plots are located significantly further from the roads (mean 54.8 km), while Fishbone (FP), Other 

Pattern (OP) and High Density (HD) are statistically located at similar mean distance to roads (3.4 to 

6.2 km from roads). For cities, the difference in mean distance is significant between types of plot 

(Sig < 0.05). The Low Density plots are located significantly further from the roads (mean 90.9 km), 

Other and Fishbone Pattern are in a similar mean distance of 43.6 and 47.8 km, and High Density 

Plots are in a mean of 31.8 km (Figure 10). 

a)

 

b)

 

Figure 10. Boxplots of the mean distance from the plots of Fishbone Pattern (FP), Other Pattern 

(OP), Low Density (LD), and High Density (HD) in respect to a) Roads, and b) Cities 

In Figure 11, we can see that Primary Forest (P.F.) is located farther from the roads (between 10 000 

and 40 000 m) than the other land cover types, including Secondary Forest (S.F.). While distance to 

cities is more variable between land cover types. 
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a)

 

b)

 
Figure 11. Mean distance in meters from the land cover types, Primary Forest (P.F.), Clear Cut 

(C.C.), Other (Oth.), Secondary Forest (S.F.), No Data (N.D.), in relation to a) Roads, and b) Cities 

The MANOVA analysis shows that distance to roads and cities is statistically different for all the land 

cover types (F < 0.05). The results of the MANOVA are presented in the Appendix 8. The distribution 

of the land cover types according to the distance to roads and cities classification, in values and in 

percentages, is presented in Figure 12. 

Figure 12.I. shows that roads are a stronger indicator for land use change dynamics than cities, 

because land use change is concentrated in the first 30 km from roads (Ia), while land use change is 

distributed in all the categories from the distance to cities (Ib). 

Figure 12.II shows the different land use cover in percentage of the area correlated with the distance 

to roads and cities. For distances from roads greater than 30 km, more than 90% is primary forest. 

While, for cities, those categories farther than 30 km show more than 80% as primary forest. 

Figure 12.III shows the percentage omitting the primary forest category, in order to only analyse 

land use change once the land is deforested. The results show that the percentage distribution of 

secondary forest remains constant at a 20 % of the total land use within a distance < 30 km of roads, 

while the next category (30-40 km) shows a 60% of the land use as secondary forest, increasing until 

80% in those areas with a distance > 50 km. In the case of distance to roads, there is a similar effect 

of secondary forest remaining around 20% within 30 km from cities. However, the increase in 

secondary forest is not continuous, only increasing to 40% within 30 to 50 km, descending again for 

higher distances. 
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I 

a) 

 

b) 

 

II 

  

III 

  
Figure 12. Different land use types, Primary Forest (P.F.), Clear Cut (C.C.), Other (Oth.), 

Secondary Forest (S.F.), No Data (N.D.), in relation to the distance classification to 

a) Roads, b) Cities. I. Total values in area (km2), II. Total classification in percentage, III. 

Percentage excluding Primary Forest 

I also considered important to analyse the weight of each of these categories, according to distance 

to roads and cities. In consequence, the total area of the different classes of land cover, in terms of 

percentage, is presented in Figure 13. Which shows that the classification according to roads is 

clearer for the categories of distance to roads (Figure 13a) than to cities (Figure 13b), as was 
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previously pointed in Figure 12.I. A high percentage of the land use changes are in the first 5 km, 

and almost all of them are within the first 30 km to roads. In detailed values: Clear Cut (62.4% - 

<5km, 98.8% <30km), Other (62.6% - <5km, 98.2% <30 km) and Secondary Forest (61.8% < 5 km, 

97.2% < 30km). In the case of distance to cities, more than 80% of Clear Cut and Other are situated 

within the first 30 km. However, these percentage is lower (65%) for Secondary Forest. 

a) 

 

b) 

 
Figure 13. Percentage of different land cover classification of Clear Cut (C.C.), Other (Oth.), and 

Secondary Forest (S.F.), according to distance to a) Roads, and b) Cities 

 

3.4. Road Density 

The results of MANOVA and MANCOVA show a statistically difference between the Low and High 

Density plots for the time-series analysed. The complete statistical results and tables are present in 

the Appendix 9. Considering all the multivariate tests (Pillai's Trace, Wilks' Lambda, Hotelling's Trace, 

and Roy's Largest Root) show a significant statistically different (p<0.05) land use composition 

according to the density, I only present the Pillai's Trace value in Table 3, which is considered the 

most powerful and robust of the four tests (Carey 1998). 

Table 3. Results of the Pillai’s Trace ŵultiǀariate test of the aŶalysis MANOVA aŶd MANCOVA 
according to road density 

Effect (Year * Density) Value F Hypothesis df Error df Sig. (p) 

Pillai's Trace MANOVA 0.399 1.274 150.000 2205.000 0.016 

MANCOVA (roads & 

cities as covariables) 
0.577 1.896 150.000 2180.000 0.000 

According to Table 3, in MANOVA there was a statistically significant difference in the land use 

classification between High and Low road density, F (150±2.2) = 1.274, p < 0.05 (0.016); Pillai͛s TƌaĐe 
= 0.399. Considering the covariables (MANCOVA), the land use classification between High and Low 

Density is also statistically different, p < 0.05. 

Table 4 presents only the results of MANOVA. This shows that the different land cover types are 

statistically (p<0.05) different for High and Low Density, with the only exception of Other (p=0.840) 

and No Data (p=0.783). Primary Forest is the only land cover type that has higher mean in the Low 

Density Plot. 
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Table 4. MANOVA statistics for land cover type according to High and Low Density 

Source Dependent Variable F Sig. (p) 
Road 

Density 
Mean Std. Error 

Year * Density 

Primary Forest 2.150 0.001 
Low 399.440 4.642 

High 251.555 4.764 

Clear Cut 1.911 0.003 
Low 0.050 1.692 

High 22.650 1.737 

Other 0.741 0.840 
Low 0.462 3.282 

High 94.150 3.368 

Secondary Forest 2.750 0.000 
Low 1.180 1.549 

High 28.558 1.590 

No Data 0.846 0.703 
Low 1.856 0.417 

High 4.687 0.428 

In Figure 14 I present the estimated mean area result from the MANOVA and MANCOVA analysis 

for Primary and Secondary Forest, considering these are the principal land-use changes analysed in 

this research. It can be seen that using the distances to roads and cities as covariables for the analysis 

improves the results of the graphs, especially the temporal decrease of Primary Forest in High 

Density plots. It must be noted that both primary and secondary forest remain almost constant 

during the analysed period for the Low Density plots. 

I 

a) 

 

b) 

 

II 

  
Figure 14. Estimated means according to Road Density of a) Primary Forest, and b) Secondary 

Forest. For I. MANOVA of the density analysis alone, II. MANCOVA including distance to roads 

and cities as covariables 



20 

 

The distribution of the land cover types according to the road density, in percentages, is presented 

in Figure 15. 

Figure 15.I. shows that Low Density plots are principally composed by Primary Forests for all the 

time-series (Ia). For High Density the composition of Primary Forest reduces from 80 % in 1984 to 

40% in 2015 (Ib). 

Figure 15.II shows the percentage composition of the different land use types omitting the primary 

forest. For Low Density (IIa), even though the total percentage of land use affected (deforested) is 

lower in total terms, the percentage that becomes Secondary Forest is constantly higher than 20% 

reaching 80%. Secondary Forest area shows higher rates of regrowth even after being re-logged 

during all the time-series. Secondary Forest for High Density (IIb), shows a level of around 20%, and 

a slower rate of regrowth. 

Figure 15.III shows the total percentage of land cover, again omitting Primary Forest, to better 

compare the dynamics of land use change. For Low Density a 69.4% of the total land cover is 

Secondary Forest, while for High Density it is only 19.6%. 

I 

a)

 

b)

 

II 
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III 

  
Figure 15. Different land use types, Primary Forest (P.F.), Clear Cut (C.C.), Other (Oth.), 

Secondary Forest (S.F.), No Data (N.D.), in relation to Road Density a) Low, b) High. I. Total 

values in area (in percentage), II. Classification of the time-series in percentage excluding P.F., III. 

Total percentage composition excluding P.F. 

 

3.5. Road Pattern 

The results of the MANOVA for the Road Pattern do not show a statistically difference between the 

Fishbone and Other plots for the time-series analysed. All the statistical results of P are higher than 

0.05 (Appendix 10). Meaning that for the time-series none of the land use classes are significantly 

different based in their road pattern, even using roads and cities as covariables. 
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4. DISCUSSION 

4.1. Distance to Roads and Cities 

I found that secondary forest regrowth is influenced by distance to roads. My results show that 

primary forest is located further from roads (20 km) than secondary forest (<10 km), with an 

increasing trend getting further from the roads in recent years (Figure 11). More than 60% of 

secondary forest occurs within the first 5 km from a road, and more than 97% within 30 km from 

roads (Figure 12.I and Figure 14). Within this 30 km, the percentage of secondary forest keeps at a 

constant of 20% of the total affected (deforested) area. However, for areas located further than 30 

km are three times more likely (60%) to develop secondary forest regrowth than one located within 

30 km. In distances higher than 50 km this probability increases to even four times (80%) (Figure 

12.III). 

The percentage of secondary forest found in this research is coherent to Hirsch et al. (2004), which 

reported that 30 to 50% of the deforested area was covered by secondary forests, and Carreiras et 

al. (2014) that found values between 40 to 55% in separated studies of small regions of the Legal 

Amazon. 

This influence of secondary forest regrowth to the proximity to the principal roads is coherent to 

the relation found between distance to roads and deforestation by earlier studies. (Alves 2002) 

reported 90% of deforestation within 100 km, (D. Nepstad et al. 2001) indicated that two thirds of 

deforestation occurred within 50 km to major paved highways. However, the threshold distance 

found in this research (30 km) is closer than that presented in these studies that used only principal 

roads and highway. This higher influence might be because the increase of deforestation levels in 

the last 15 years since these studies were elaborated. This is similar to what was found by (Asner et 

al. 2006), which was focused on selective logging, that found that nearly 80% of deforestation was 

within 5 km from roads, and the probability of clearing a secondary forest was two to four times 

higher than primary forest in the area within 5 to 25 km. 

In the other hand, the more recent study of (Barber et al. 2014), which linked 95% of deforestation 

to the first 5.5 km from roads. However, this study digitalized a map roads present in the Amazon 

up to 2007, including small and unofficial roads. Therefore, I would expect that the relation between 

secondary forests to roads would be lower (closer) in case of using a more complete road network 

of the Amazon. 

Also, it would be interesting to analyse a temporal model of the development of roads. This 

considering the construction of new roads since the seventies and the improvements realized to 

them, from unpaved small roads to highways. This considering that temporally, (Barber et al. 2014) 

used only the 2006 land cover and 2007 road maps to assess the relation of past deforestation with 

roads. Also that (D. Nepstad et al. 2001) found that deforestation of forests within 50 km of paved 

roads is of 29±58%, compared to 0±9% along the same distance of unpaved roads. Therefore, using 

a temporal map including the construction and changes to the roads related to the complete time-

series of the Amazon land cover, would give a clearer vision of the land use and land cover change 

dynamics of the Amazon, being able to predict future behaviour. 

Finding this clear correlation between secondary forest regrowth and distance to roads is a first step 

towards new studies. The distance of 30 km to principal roads as a threshold that could predict a 

three times higher probability of regrowth of secondary forests (Figure 12.III) could help 

stakeholders to put more resources to protect abandoned pastures and areas with initial 

successional vegetation situated further than this distance. It must be noted that previous studies 
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that focused in secondary forests in the Amazon region (Carreiras et al. 2014; Soler, Escada, and 

Verburg 2009) do not take into account road presence. 

Finally, indicate that distance to roads is a stronger indicator than distance to cities for the land use 

change dynamics. This because, mean distance from cities to primary forest is 50 km, and secondary 

forest is around 20 km. However, the land use changes are more distributed along the distance to 

cities, although secondary forest regrowth is double between 30 and 50 km than that within the 

first 30 km. Therefore, in case of counting with a more complete map of the road network analysing 

the relationship to distance with roads might not be as relevant. This might be because the primary 

determinant of the spatial distribution and land use change in the Amazon is access through roads 

and not urban settlement (Laurance et al. 2002; Soares-Filho et al. 2004). 

 

4.2. Road Density 

I found that secondary forest regrowth is influenced by road density. My results show that high 

density plots have lower percentage of primary forest, with a steady decrease during the time-

series, and secondary forest show an increase in the time-series, peaking since 1992. Low density 

plots have higher percentage of primary forest, with a composition that remains stable during the 

time-series, while secondary forest remains low. (Figure 14). This is because low density plots also 

have lower deforestation rates, therefore secondary forest is higher (in general terms) in high 

density plots only because these are the ones more affected for land use changes. 

Nevertheless, the area affected by deforestation in low density plots was three to four times more 

likely to develop secondary forest regrowth than one located in high road density plots. Even though 

it shows some increases in the time series (regrowth), the percentage of secondary forest in high 

road density remains relatively constant about 20%, while it is around 70% for low density (Figure 

15.II and Figure 15.III). This ratio (3.5:1) between secondary forest in Low Density compared with 

High Density is similar to the one found for distance to roads in this same research. This is a ratio of 

3:1 of secondary forests for distances further than 30 km from roads, and 4:1 for distances further 

than 50 km (Figure 12.III). This might be related to the fact that mean distance to roads from Low 

Density Plots is 54.8 km (Figure 10). However, the ratio of secondary forest is slightly higher for 

density than distance, suggesting that road density is a factor more important. 

These results are similar to those of (Forman et al. 2003), who indicates that higher road density 

increases fragmentation and edge-effects of forests. Therefore, a higher road density would 

negatively affect secondary forest regrowth. Also, the higher percentage of secondary forest 

regrowth in Low Road Density might be a consequence to their proximity to Primary Forests. 

Proximity to primary forests is mentioned as a source of seeds and nutrients for vegetation 

succession (Davidson and Martinelli 2009; Myster 2008; Vasconcelos et al. 2012). However, it must 

be noted that there are no specific studies that analyse the direct influence of road density to 

secondary forests in the Amazon. 

However, it has to be mentioned that, by the sampling design of my research, I only selected plots 

with low (near to zero) road densities according to the 2015 data of Google Earth (Figure 3). 

Therefore, the levels of anthropogenic disturbance in the area since 1984 are minimal and therefore 

the land use change analysed in these plots is limited. 

It would be interesting to use different categories of road density for future studies. This analysis 

can be done with a complete road network to properly calculate road density in length per square 
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kilometre. This measure will allow to further knowledge of the dynamics of land cover change in the 

Amazon. 

 

4.3. Road Pattern 

I found that secondary forest regrowth is not influenced by spatial configuration of roads (road 

pattern). My results show that Fishbone and Other Pattern have not a statistically different land use 

classification for the Amazon. 

This result might be a consequence of the selection of the plots, existing the probability that the 

plots were not significantly different in their spatial configuration along the time-series. This 

considering the plots were chosen based only in their final road configuration (in 2015), and during 

the time-series analysis I saw different development stages in the spatial configuration of the roads. 

This factor (development along time) should be taken into consideration for future studies. Also, 

the ĐategoƌǇ ͞otheƌ patteƌŶ͟ aggƌegates seǀeƌal tǇpes of ĐoŶfiguƌatioŶ: deŶdƌitiĐ, ƌeĐtaŶgulaƌ, aŶd 
radial, thus it is harder to make a clear categorization to analyse the difference between them. 

Another reason that might have influenced these results are the processes behind the land cover 

dynamics. It is indicated that fishbone pattern increases rainfall thus promoting the regeneration of 

the forest (Garcia-Carreras and Parker 2011; Roy 2009), while dendritic or radial patterns result in 

less fragmentation of the forests (Soler, Escada, and Verburg 2009), which can also help with the 

dispersion of seeds. Therefore, both processes might help the secondary forest regrowth via positive 

feedback processes. 

 

4.4. Accuracy Assessment 

Previous studies carried out in the Amazon have already acknowledged some issues in 

discriminating Secondary from Primary Forest (Carreiras et al. 2014; Caviglia-Harris et al. 2014; Neeff 

et al. 2006). This issue in differentiating primary and secondary forest was noticeable in the later 

years of the time-series, where the secondary forest were older. In these cases I had to try several 

training points before having a successful classification. However, the general accuracy of the time-

series classification was of 85±8%. This level of quality is good, considering it is very difficult to 

exceed 85% of accuracy using only Landsat images (Gallego 2004). 

Even though Gallego (2004) indicates that methods that do not use ground field measurements are 

deemed insufficient for the needs of national administrations. (Lu et al. 2012) consider maximum 

likelihood classification using training locations a good method of classification for remote sensing 

data. For future analysis it should be considered complement the results of this research using 

ground field measurements or Very High Resolution images for the accuracy assessment. 
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5. CONCLUSIONS 

Land cover change should be understood as a dynamic process not a simple change from primary 

forest to secondary forest, because by definition secondary forest regrowth grows in an area that 

was previously affected by anthropogenic activities. Thus any analysis should also include the 

process of deforestation (clear cut areas) and agricultural or rural areas (other land uses). In this 

sense, it is undeniable that the presence of roads affect the land use and land cover change 

dynamics of the Amazon. During this research I analysed the influence that roads have, in terms of 

distance, road density (High and Low), and road pattern (Fishbone and Other), to land use 

classification, that included both primary and secondary forest. This using 40 study plots distributed 

in the Legal Amazon during a 32 year period. 

The results of this research show that if a primary forest is closer to roads and has a higher road 

density, that area is more susceptible to be deforested and consequently suffer a land use change, 

while road pattern does not show a significant effect. Considering the land use dynamics of the 

Amazon, a percentage of this area will be abandoned after its period of productivity has ended and 

consequently will develop a secondary forest regrowth, which is highly susceptible to be re-

deforested in the future. 

However, the key findings of my research are that if the area affected by deforestation and land use 

change is further than 30 km from the principal roads it has at three times more probability to 

remain as a secondary forest, in terms of percentage of area. If this distance to further than 50 km 

the probability increases to a 4:1 ratio. The same is applicable to road density, where I found that in 

Low Density plots, areas affected by land use change have three to four times more percentage of 

secondary forest than those of High Density plots. Meanwhile, areas within 30 km from a road and 

with high density plots remained with a relatively constant 20% of secondary forests coverage. 

Considering the scope of this research and that the level of accuracy reached with the method of 

image classification (85±8%), these results can provide a guideline for the government and 

stakeholders. These results indicate that, for conservation efforts to promote the regrowth of 

secondary forest to reach a mature state, areas with low road density located further than 30 km 

from roads should be prioritized. Also, development of new road construction projects should not 

be considered in these areas. 

The results of this research also provide the opportunity for further research in the topic, which can 

be validated at a bigger scale (for example the whole Brazilian Amazon), it would be interesting to 

very high resolution (VHR) imagery, and in situ assessment of secondary forest to have a higher level 

of accuracy. 

  



26 

 

Acknowledgements 

I would like to thank my supervisors Dr. Maria João Ferreira Dos Santos and Dr. Karin Rebel for all 

the collaboration, continuous support and feedback they gave me during this research. Thanks for 

making me see the bigger picture and not get lost in the details. 

To Dr. William Laurance, Dr. Barber without whose previous research this project would have never 

been possible. Thanks for always answering my emails and give me valuable information. 

To the United States Geographical Services and Open Street Maps, my total support for these 

organizations that offer free and accessible availability of data for the scientific community. This 

research would not be possible without these satellite images and maps of road network and cities. 

To my family and friends who supported me no matter the distance and to Geert who always was 

there for me. Thanks for everything. 

  



27 

 

REFERENCES 

AĐeǀedo L, Miguel F. ϭϵϴϭ. ͞OŶ HoƌŶ͛s MaƌkoǀiaŶ Model of Foƌest DǇŶaŵiĐs ǁith PaƌtiĐulaƌ 
‘efeƌeŶĐe to TƌopiĐal Foƌests.͟ Theoretical Population Biology 19 (2): 230–50. doi:10.1016/0040-

5809(81)90019-8. 

Ahŵad, Asŵala. ϮϬϭϮ. ͞AŶalǇsis of Maǆiŵuŵ Likelihood ClassifiĐatioŶ oŶ MultispeĐtƌal Data.͟ 
Applied Mathematical Sciences 6 (129): 6425–36. 

Alǀes, D. “. ϮϬϬϮ. ͞“paĐe-Tiŵe DǇŶaŵiĐs of DefoƌestatioŶ iŶ BƌaziliaŶ AŵazôŶia.͟ International 

Journal of Remote Sensing 23 (14): 2903–8. doi:10.1080/01431160110096791. 

Asner, Gregory P., Eben N. Broadbent, Paulo J. C. Oliveira, Michael Keller, David E. Knapp, and José 

N. M. “ilǀa. ϮϬϬϲ. ͞CoŶditioŶ aŶd Fate of Logged Foƌests iŶ the BƌaziliaŶ AŵazoŶ.͟ Proceedings of 

the National Academy of Sciences 103 (34): 12947–50. doi:10.1073/pnas.0604093103. 

Baldi, GeƌŵáŶ, aŶd José M. Paƌuelo. ϮϬϬϴ. ͞LaŶd-Use and Land Cover Dynamics in South American 

Teŵpeƌate GƌasslaŶds.͟ Ecology and Society 13 (2): 6. 

Barber, Christopher P., Mark A. Cochrane, Carlos M. Souza, and William F. Laurance. ϮϬϭϰ. ͞‘oads, 
DefoƌestatioŶ, aŶd the MitigatiŶg EffeĐt of PƌoteĐted Aƌeas iŶ the AŵazoŶ.͟ Biological Conservation 

177 (September): 203–9. doi:10.1016/j.biocon.2014.07.004. 

BƌaŶdão, A. O., aŶd C. M. “ouza. ϮϬϬϲ. ͞MappiŶg UŶoffiĐial ‘oads ǁith LaŶdsat Iŵages: A New Tool 

to Iŵpƌoǀe the MoŶitoƌiŶg of the BƌaziliaŶ AŵazoŶ ‘aiŶfoƌest.͟ International Journal of Remote 

Sensing 27 (1): 177–89. doi:10.1080/01431160500353841. 

Brienen, R. J. W., O. L. Phillips, T. R. Feldpausch, E. Gloor, T. R. Baker, J. Lloyd, G. Lopez-Gonzalez, et 

al. ϮϬϭϱ. ͞LoŶg-Teƌŵ DeĐliŶe of the AŵazoŶ CaƌďoŶ “iŶk.͟ Nature 519 (7543): 344–48. 

doi:10.1038/nature14283. 

Butleƌ, ‘hett A. ϮϬϭϰ. ͞CalĐulatiŶg DefoƌestatioŶ iŶ the AŵazoŶ. “ouƌĐed fƌoŵ INPE aŶd FAO 
Figuƌes.͟ Mongabay.com. 

http://rainforests.mongabay.com/amazon/deforestation_calculations.html. 

CaƌeǇ, GƌegoƌǇ. ϭϵϵϴ. ͞Multiǀaƌiate “tatistiĐs: MANOVA HaŶdouts.͟ University of Colorado. 

http://psych.colorado.edu/~carey/Courses/PSYC7291/index.html. 

Carreiras, João M. B., Joshua Jones, Richard M. LuĐas, aŶd CƌistiŶa Gaďƌiel. ϮϬϭϰ. ͞ LaŶd Use aŶd LaŶd 
Cover Change Dynamics across the Brazilian Amazon: Insights from Extensive Time-Series Analysis 

of ‘eŵote “eŶsiŶg Data.͟ PLoS ONE 9 (8): e104144. doi:10.1371/journal.pone.0104144. 

Caviglia-Harris, Jill L., Michael Toomey, Daniel W. Harris, Katrina Mullan, Andrew Reid Bell, Erin O. 

“ills, aŶd Daƌ A. ‘oďeƌts. ϮϬϭϰ. ͞DeteĐtiŶg aŶd IŶteƌpƌetiŶg “eĐoŶdaƌǇ Foƌest oŶ aŶ Old AŵazoŶiaŶ 
FƌoŶtieƌ.͟ Journal of Land Use Science 0 (0): 1–24. doi:10.1080/1747423X.2014.940614. 

ChazdoŶ, ‘oďiŶ L. ϮϬϬϯ. ͞TƌopiĐal Foƌest ‘eĐoǀeƌǇ: LegaĐies of HuŵaŶ IŵpaĐt aŶd Natuƌal 
DistuƌďaŶĐes.͟ Perspectives in Plant Ecology, Evolution and Systematics 6 (1–2): 51–71. 

doi:10.1078/1433-8319-00042. 

CIE“IN, aŶd ITO“. ϮϬϭϯ. ͞Gloďal ‘oads OpeŶ Access Data Set (gROADS), v1: Global Roads | SEDAC. 

Center for International Earth Science Information Network (CIESIN) - Columbia University and 

Information Technology Outreach Services (ITOS) - UŶiǀeƌsitǇ of Geoƌgia.͟ 
http://sedac.ciesin.columbia.edu/data/set/groads-global-roads-open-access-v1/metadata. 



28 

 

CoĐhƌaŶe, Maƌk A., aŶd Williaŵ F. LauƌaŶĐe. ϮϬϬϮ. ͞Fiƌe as a Laƌge-Scale Edge Effect in Amazonian 

Foƌests.͟ Journal of Tropical Ecology 18 (3): 311–25. 

Colson, Filip, Jan Bogaert, Arnaldo Carneiro Filho, Bruce Nelson, Ekena Rangel Pinagé, and Reinhart 

CeuleŵaŶs. ϮϬϬϵ. ͞The IŶflueŶĐe of Foƌest DefiŶitioŶ oŶ LaŶdsĐape FƌagŵeŶtatioŶ AssessŵeŶt iŶ 
‘oŶdôŶia, Bƌazil.͟ Ecological Indicators 9 (6): 1163–68. doi:10.1016/j.ecolind.2009.02.001. 

Congalton, Russell G. 19ϵϭ. ͞A ‘eǀieǁ of AssessiŶg the AĐĐuƌaĐǇ of ClassifiĐatioŶs of ‘eŵotelǇ 
“eŶsed Data.͟ Remote Sensing of Environment 37 (1): 35–46. doi:10.1016/0034-4257(91)90048-B. 

CoŶgaltoŶ, ‘ussell G., aŶd ‘. A. Mead. ϭϵϴϯ. ͞A QuaŶtitatiǀe Method to Test foƌ CoŶsisteŶĐǇ and 

CoƌƌeĐtŶess iŶ PhotoiŶteƌpƌetatioŶ.͟ Photogrammetric Engineering & Remote Sensing 49 (1): 69–
74. 

DaǀidsoŶ, EƌiĐ A., aŶd Luiz A. MaƌtiŶelli. ϮϬϬϵ. ͞NutƌieŶt LiŵitatioŶs to “eĐoŶdaƌǇ Foƌest ‘egƌoǁth.͟ 
In Amazonia and Global Change, edited by Michael Keller, Michael Bustamante, John Gash, and 

Pedro Silva Dias, 299–309. American Geophysical Union. 

http://onlinelibrary.wiley.com.proxy.library.uu.nl/doi/10.1029/2009GM000905/summary. 

Diniz, F.H., K. Kok, M.C. Hott, M.A. Hoogstra-Klein, and B. Arts. 2013. ͞Fƌoŵ Space and from the 

GƌouŶd: DeteƌŵiŶiŶg Foƌest DǇŶaŵiĐs iŶ “ettleŵeŶt PƌojeĐts iŶ the BƌaziliaŶ AŵazoŶ.͟ International 

Forestry Review 15 (4): 442–55. doi:10.1505/146554813809025658. 

Epps, Clinton W., Per J. Palsbøll, John D. Wehausen, George K. Roderick, Rob R. Ramey, and Dale R. 

MĐCullough. ϮϬϬϱ. ͞HighǁaǇs BloĐk GeŶe Floǁ aŶd Cause a ‘apid DeĐliŶe iŶ GeŶetiĐ DiǀeƌsitǇ of 
Deseƌt BighoƌŶ “heep.͟ Ecology Letters 8 (10): 1029–38. doi:10.1111/j.1461-0248.2005.00804.x. 

ESRI. 2014. ArcGIS v10 (version 10.x). Environmental Systems Research Institute Inc. 

http://desktop.arcgis.com/en/. 

———. ϮϬϭϱ. ͞Help AƌĐGI“ Desktop.͟ 
http://help.arcgis.com/en/arcgisdesktop/10.0/help/index.html#//00nv00000002000000.htm. 

Eǁeƌs, ‘oďeƌt M., aŶd Williaŵ F. LauƌaŶĐe. ϮϬϬϲ. ͞“Đale-Dependent Patterns of Deforestation in the 

BƌaziliaŶ AŵazoŶ.͟ Environmental Conservation null (03): 203–11. 

doi:10.1017/S0376892906003250. 

FeaƌŶside, Philip M. ϭϵϵϵ. ͞BiodiǀeƌsitǇ as aŶ EŶǀiƌoŶŵeŶtal “eƌǀiĐe iŶ Bƌazil͛s AŵazoŶiaŶ Foƌests: 
Risks, Value and ConseƌǀatioŶ.͟ Environmental Conservation null (04): 305–21. doi:null. 

———. ϮϬϬϱ. ͞DefoƌestatioŶ iŶ BƌaziliaŶ AŵazoŶia: HistoƌǇ, ‘ates, aŶd CoŶseƋueŶĐes.͟ 
Conservation Biology 19 (3): 680–88. 

———. ϮϬϬϴ. ͞Will UƌďaŶizatioŶ Cause Defoƌested Aƌeas to Be AďaŶdoŶed iŶ BƌaziliaŶ AŵazoŶia?͟ 
Environmental Conservation 35 (03): 197–99. doi:10.1017/S0376892908004906. 

Federative Republic of Brazil. 1966. Law N 5.173. 

Feldpausch, Ted R., Marco A. Rondon, Erick CM Fernandes, Susan J. Riha, and Elisa Wandelli. 2004. 

͞CaƌďoŶ aŶd NutƌieŶt AĐĐuŵulatioŶ iŶ “eĐoŶdaƌǇ Foƌests ‘egeŶeƌatiŶg oŶ Pastuƌes iŶ CeŶtƌal 
AŵazoŶia.͟ Ecological Applications 14 (sp4): 164–76. 

Feldpausch, T. R., J. Lloyd, S. L. Lewis, R. J. W. Brienen, M. Gloor, A. Monteagudo Mendoza, G. Lopez-

GoŶzalez, et al. ϮϬϭϮ. ͞Tƌee Height IŶtegƌated iŶto PaŶtƌopiĐal Foƌest Bioŵass Estiŵates.͟ 
Biogeosciences 9 (8): 3381–3403. doi:10.5194/bg-9-3381-2012. 



29 

 

Filho, Francisco José Barbosa Oliveira de, and Jean Paul Metzger. ϮϬϬϲ. ͞Thƌesholds iŶ LaŶdsĐape 
Structure foƌ Thƌee CoŵŵoŶ DefoƌestatioŶ PatteƌŶs iŶ the BƌaziliaŶ AŵazoŶ.͟ Landscape Ecology 

21 (7): 1061–73. doi:10.1007/s10980-006-6913-0. 

FoƌŵaŶ, ‘iĐhaƌd T. T., aŶd LauƌeŶ E. AleǆaŶdeƌ. ϭϵϵϴ. ͞‘oads aŶd Theiƌ Majoƌ EĐologiĐal EffeĐts.͟ 
Annual Review of Ecology and Systematics 29 (1): 207–31. doi:10.1146/annurev.ecolsys.29.1.207. 

Forman, Richard T. T., Daniel Sperling, John A. Bissonette, Anthony P. Clevenger, Carol D. Cutshall, 

Virginia H. Dale, Lenore Fahrig, et al. 2003. Road Ecology: Science and Solutions. 2nd edition. 

Washington, DC: Island Press. 

Foǆ, J. E. D. ϭϵϳϲ. ͞CoŶstƌaiŶts oŶ the Natuƌal ‘egeŶeƌatioŶ of TƌopiĐal Moist Foƌest.͟ Forest Ecology 

and Management 1: 37–65. doi:10.1016/0378-1127(76)90006-2. 

Gallego, F. J. ϮϬϬϰ. ͞‘eŵote “eŶsiŶg aŶd LaŶd Coǀeƌ Aƌea EstiŵatioŶ.͟ International Journal of 

Remote Sensing 25 (15): 3019–47. doi:10.1080/01431160310001619607. 

Garcia-Caƌƌeƌas, L., aŶd D. J. Paƌkeƌ. ϮϬϭϭ. ͞Hoǁ Does LoĐal TƌopiĐal DefoƌestatioŶ AffeĐt ‘aiŶfall?͟ 
Geophysical Research Letters 38 (19): L19802. doi:10.1029/2011GL049099. 

Gelďaƌd, JoŶathaŶ L., aŶd JaǇŶe BelŶap. ϮϬϬϯ. ͞‘oads as CoŶduits foƌ EǆotiĐ PlaŶt IŶǀasioŶs iŶ a 
“eŵiaƌid LaŶdsĐape.͟ Conservation Biology 17 (2): 420–32. doi:10.1046/j.1523-1739.2003.01408.x. 

Google. ϮϬϭϱ. ͞Google Eaƌth.͟ https://www.google.com/earth/explore/products/. 

Groeneveld, J., L. F. Alves, L. C. Bernacci, E. L. M. Catharino, C. Knogge, J. P. Metzger, S. Pütz, and A. 

Huth. ϮϬϬϵ. ͞The IŵpaĐt of FƌagŵeŶtatioŶ aŶd DeŶsitǇ ‘egulatioŶ oŶ Foƌest “uĐĐessioŶ iŶ the 
Atlantic Rain Foƌest.͟ Ecological Modelling 220 (19): 2450–59. 

doi:10.1016/j.ecolmodel.2009.06.015. 

Haddad, N. M., L. A. Brudvig, J. Clobert, K. F. Davies, A. Gonzalez, R. D. Holt, T. E. Lovejoy, et al. 2015. 

͞Haďitat FƌagŵeŶtatioŶ aŶd Its LastiŶg IŵpaĐt oŶ Eaƌth͛s EĐosǇsteŵs.͟ Science Advances 1 (2): 

e1500052–e1500052. doi:10.1126/sciadv.1500052. 

Hirsch, Adam I., William S. Little, Richard A. Houghton, Neal A. Scott, and Joseph D. White. 2004. 

͞The Net CaƌďoŶ Fluǆ due to DefoƌestatioŶ aŶd Foƌest ‘e-Growth in the Brazilian Amazon: Analysis 

Using a Process-Based Model.͟ Global Change Biology 10 (5): 908–24. doi:10.1111/j.1529-

8817.2003.00765.x. 

Houghton, R. A., D. L. Skole, Carlos A. Nobre, J. L. Hackler, K. T. Lawrence, and W. H. Chomentowski. 

ϮϬϬϬ. ͞AŶŶual Fluǆes of CaƌďoŶ fƌoŵ DefoƌestatioŶ aŶd ‘egƌoǁth iŶ the BƌaziliaŶ AŵazoŶ.͟ Nature 

403 (6767): 301–4. doi:10.1038/35002062. 

Huete, Alfredo R., Kamel Didan, Yosio E. Shimabukuro, Piyachat Ratana, Scott R. Saleska, Lucy R. 

Hutyra, Wenze Yang, ‘aŵakƌishŶa ‘. NeŵaŶi, aŶd ‘aŶga MǇŶeŶi. ϮϬϬϲ. ͞AŵazoŶ ‘aiŶfoƌests 
Green-up ǁith “uŶlight iŶ DƌǇ “easoŶ.͟ Geophysical Research Letters 33 (6): L06405. 

doi:10.1029/2005GL025583. 

IBGE. ϮϬϭϱa. ͞IBGE :: IŶstituto Bƌasileiƌo de Geogƌafia E EstatístiĐa.͟ 
http://www.ibge.gov.br/home/. 

———. ϮϬϭϱď. ͞IBGE :: IŶstituto Bƌasileiƌo de Geogƌafia E EstatístiĐa. Legal AŵazoŶ.͟ 
http://www.ibge.gov.br/english/geociencias/geografia/amazonialegal.shtm?c=2. 

INPE. ϮϬϭϱ. ͞INPE - NatioŶal IŶstitute Foƌ “paĐe ‘eseaƌĐh.͟ http://ǁǁǁ.inpe.br/ingles/. 



30 

 

Jaegeƌ, JoĐheŶ A. G. ϮϬϬϬ. ͞LaŶdsĐape DiǀisioŶ, “plittiŶg IŶdeǆ, aŶd EffeĐtiǀe Mesh “ize: Neǁ 
Measuƌes of LaŶdsĐape FƌagŵeŶtatioŶ.͟ Landscape Ecology 15 (2): 115–30. 

doi:10.1023/A:1008129329289. 

———. ϮϬϬϳ. ͞EffeĐts of the CoŶfiguƌatioŶ of ‘oad Netǁoƌks oŶ LaŶdsĐape CoŶŶeĐtiǀitǇ.͟ Road 

Ecology Center, May. http://escholarship.org/uc/item/10d5q9nj. 

Jaeger, Jochen A. G., Jeff Bowman, Julie Brennan, Lenore Fahrig, Dan Bert, Julie Bouchard, Neil 

Charbonneau, Karin Frank, Bernd Gruber, and KathariŶa Tluk ǀoŶ TosĐhaŶoǁitz. ϮϬϬϱ. ͞PƌediĐtiŶg 
When Animal Populations Are at Risk from Roads: An Interactive Model of Road Avoidance 

Behaǀioƌ.͟ Ecological Modelling 185 (2–4): 329–48. doi:10.1016/j.ecolmodel.2004.12.015. 

LauƌaŶĐe, Williaŵ F. ϮϬϬϬ. ͞Mega-Development Trends in the Amazon: Implications for Global 

ChaŶge.͟ Environmental Monitoring and Assessment 61 (1): 113–22. 

doi:10.1023/A:1006374320085. 

Laurance, William F., Ana K. M. Albernaz, Götz Schroth, Philip M. Fearnside, Scott Bergen, Eduardo 

M. VentiĐiŶƋue, aŶd Caƌlos Da Costa. ϮϬϬϮ. ͞PƌediĐtoƌs of DefoƌestatioŶ iŶ the BƌaziliaŶ AŵazoŶ.͟ 
Journal of Biogeography 29 (5-6): 737–48. doi:10.1046/j.1365-2699.2002.00721.x. 

LauƌaŶĐe, Williaŵ F., aŶd AŶdƌeǁ Balŵfoƌd. ϮϬϭϯ. ͞LaŶd Use: A Gloďal Map foƌ ‘oad BuildiŶg.͟ 
Nature 495 (7441): 308–9. 

Laurance, William F., José L. C. Camargo, Regina C. C. Luizão, Susan G. Laurance, Stuart L. Pimm, 

Eŵilio M. BƌuŶa, Philip C. “touffeƌ, et al. ϮϬϭϭ. ͞The Fate of AŵazoŶiaŶ Foƌest FƌagŵeŶts: A ϯϮ-Year 

IŶǀestigatioŶ.͟ Biological Conservation 144 (1): 56–67. doi:10.1016/j.biocon.2010.09.021. 

Laurance, William F., Mark A. Cochrane, Scott Bergen, Philip M. Fearnside, Patricia Delamônica, 

Chƌistopheƌ Baƌďeƌ, “aŵŵǇa D͛AŶgelo, aŶd Tito FeƌŶaŶdes. ϮϬϬϭ. ͞The Futuƌe of the BƌaziliaŶ 
AmazoŶ.͟ Science 291 (5503): 438–39. doi:10.1126/science.291.5503.438. 

LauƌaŶĐe, Williaŵ F., Miƌiaŵ Gooseŵ, aŶd “usaŶ G.W. LauƌaŶĐe. ϮϬϬϵ. ͞ IŵpaĐts of ‘oads aŶd LiŶeaƌ 
CleaƌiŶgs oŶ TƌopiĐal Foƌests.͟ Trends in Ecology & Evolution 24 (12): 659–69. 

doi:10.1016/j.tree.2009.06.009. 

Laurance, William F., Susan G. Laurance, Leandro V. Ferreira, Judy M. Rankin-de Merona, Claude 

GasĐoŶ, aŶd Thoŵas E. LoǀejoǇ. ϭϵϵϳ. ͞Bioŵass Collapse iŶ AŵazoŶiaŶ Foƌest FƌagŵeŶts.͟ Science 

278 (5340): 1117–18. doi:10.1126/science.278.5340.1117. 

Lindenmayer, David B., and Joern Fischer. 2006. Habitat Fragmentation and Landscape Change: An 

Ecological and Conservation Synthesis. Island Press. 

Lu, Dengsheng, Mateus Batistella, Guiying Li, Emilio Moran, Scott Hetrick, Corina da Costa Freitas, 

LuĐiaŶo Vieiƌa Dutƌa, aŶd “idŶei João “iƋueiƌa “aŶt͛AŶŶa. ϮϬϭϮ. ͞LaŶd Use/Đoǀeƌ ClassifiĐatioŶ iŶ 
the BƌaziliaŶ AŵazoŶ UsiŶg “atellite Iŵages.͟ Pesquisa Agropecuária Brasileira 47 (9): 1185–1208. 

doi:10.1590/S0100-204X2012000900004. 

Luizão, Flávio J., Philip M. Fearnside, Carlos E. P. Cerri, and Johannes Lehmann. ϮϬϬϵ. ͞The 
MaiŶteŶaŶĐe of “oil FeƌtilitǇ iŶ AŵazoŶiaŶ MaŶaged “Ǉsteŵs.͟ IŶ Amazonia and Global Change, 

edited by Michael Keller, Michael Bustamante, John Gash, and Pedro Silva Dias, 311–36. American 

Geophysical Union. 

http://onlinelibrary.wiley.com.proxy.library.uu.nl/doi/10.1029/2008GM000732/summary. 



31 

 

MaƌtiŶs, G., C. ǀoŶ ‘aŶdoǁ, G. “aŵpaio, aŶd A. J. DolŵaŶ. ϮϬϭϱ. ͞PƌeĐipitatioŶ iŶ the AŵazoŶ aŶd 
Its Relationship with Moisture Transport and Tropical Pacific and Atlantic SST from the CMIP5 

“iŵulatioŶ.͟ Hydrol. Earth Syst. Sci. Discuss. 12 (1): 671–704. doi:10.5194/hessd-12-671-2015. 

Moser, Brigitte, Jochen A. G. Jaeger, Ulrike Tappeiner, Erich Tasser, and Beatrice Eiselt. 2007. 

͞ModifiĐatioŶ of the EffeĐtiǀe Mesh “ize foƌ MeasuƌiŶg LaŶdsĐape FƌagŵeŶtatioŶ to “olǀe the 
BouŶdaƌǇ Pƌoďleŵ.͟ Landscape Ecology 22 (3): 447–59. doi:10.1007/s10980-006-9023-0. 

MǇsteƌ, ‘aŶdall W. ϮϬϬϴ. ͞ NeotƌopiĐ Post-Dispeƌsal “eed PƌedatioŶ.͟ IŶ Post-Agricultural Succession 

in the Neotropics, 216–20. Springer New York. 

http://link.springer.com.proxy.library.uu.nl/chapter/10.1007/978-0-387-33642-8_9. 

NA“A OffiĐial. ϮϬϭϱ. ͞TeĐhŶiĐal Details « LaŶdsat “ĐieŶĐe.͟ 
http://landsat.gsfc.nasa.gov/?page_id=2290. 

Neeff, Till, Richard M. Lucas, João Roberto dos Santos, Eduardo S. Brondizio, and Corina C. Freitas. 

ϮϬϬϲ. ͞ Aƌea aŶd Age of “eĐoŶdaƌǇ Foƌests iŶ BƌaziliaŶ AŵazoŶia ϭϵϳϴ–ϮϬϬϮ: AŶ EŵpiƌiĐal Estiŵate.͟ 
Ecosystems 9 (4): 609–23. doi:10.1007/s10021-006-0001-9. 

Nepstad, Daniel, Georgia Carvalho, Ana Cristina Barros, Ane Alencar, João Paulo Capobianco, Josh 

Bishop, Paulo MoutiŶho, Paul Lefeďǀƌe, UƌďaŶo Lopes “ilǀa Jƌ., aŶd ElaiŶe PƌiŶs. ϮϬϬϭ. ͞ ‘oad PaǀiŶg, 
Fiƌe ‘egiŵe FeedďaĐks, aŶd the Futuƌe of AŵazoŶ Foƌests.͟ Forest Ecology and Management, New 

Directions in Tropical Forest Research, 154 (3): 395–407. doi:10.1016/S0378-1127(01)00511-4. 

Nepstad, Daniel C., Adalberto Verssimo, Ane Alencar, Carlos Nobre, Eirivelthon Lima, Paul Lefebvre, 

Peter Schlesinger, et al. 1999. ͞Laƌge-Scale Impoverishment of Amazonian Forests by Logging and 

Fiƌe.͟ Nature 398 (6727): 505–8. doi:10.1038/19066. 

OpeŶ“tƌeetMap. ϮϬϭϱ. ͞OpeŶ“tƌeetMap.͟ https://ǁǁǁ.opeŶstƌeetŵap.oƌg/#ŵap=ϭϭ/-23.1782/-

53.7156. 

Peƌes, Caƌlos A. ϮϬϬϭ. ͞“ǇŶeƌgistiĐ EffeĐts of Subsistence Hunting and Habitat Fragmentation on 

AŵazoŶiaŶ Foƌest Veƌteďƌates.͟ Conservation Biology 15 (6): 1490–1505. doi:10.1046/j.1523-

1739.2001.01089.x. 

Peƌz, “tepheŶ G, aŶd Daǀid L “kole. ϮϬϬϯa. ͞ “oĐial DeteƌŵiŶaŶts of “eĐoŶdaƌǇ Foƌests iŶ the Brazilian 

AŵazoŶ.͟ Social Science Research 32 (1): 25–60. doi:10.1016/S0049-089X(02)00012-1. 

Peƌz, “tepheŶ G., aŶd Daǀid L “kole. ϮϬϬϯď. ͞“eĐoŶdaƌǇ Foƌest EǆpaŶsioŶ iŶ the BƌaziliaŶ AŵazoŶ 
aŶd the ‘efiŶeŵeŶt of Foƌest TƌaŶsitioŶ TheoƌǇ.͟ Society & Natural Resources 16 (4): 277–94. 

doi:10.1080/08941920390178856. 

‘eďel, K. T., “. J. ‘iha, M. A. ‘oŶdoŶ, T. ‘. FeldpausĐh, aŶd E. C. FeƌŶaŶdes. ϮϬϬϭ. ͞“patial “iŵulatioŶ 
of the Dynamics of Establishment of Secondary Forest in Abandoned Pasture in the Central 

AmazoŶ.͟ AGU Spring Meeting Abstracts. http://adsabs.harvard.edu/abs/2001AGUSM...B32A22R. 

Rencher, Alvin C. 2012. Methods of Multivariate Analysis. 3 edition. Hoboken, New Jersey: Wiley. 

‘oǇ, “oŵŶath BaidǇa. ϮϬϬϵ. ͞MesosĐale VegetatioŶ-Atmosphere Feedbacks in AŵazoŶia.͟ Journal 

of Geophysical Research: Atmospheres 114 (D20): D20111. doi:10.1029/2009JD012001. 

Santos, João R., Camila V. d. J. Silva, Lênio S. Galvão, Robert Treuhaft, José C. Mura, Soren Madsen, 

Fáďio G. GoŶçalǀes, aŶd MiĐhael M. Kelleƌ. ϮϬϭϰ. ͞Determining Aboveground Biomass of the Forest 

Successional Chronosequence in a Test-Site of Brazilian Amazon through X- and L-Band Data 

AŶalǇsis.͟ IŶ Proc. SPIE 9229, Second International Conference on Remote Sensing and 



32 

 

Geoinformation of the Environment (RSCy2014), 9229:92291E – 92291E – 10. 

doi:10.1117/12.2066031. 

Soares-Filho, Britaldo, Ane Alencar, Daniel Nepstad, Gustavo Cerqueira, Maria del Carmen Vera Diaz, 

Sérgio Rivero, Luis Solórzano, and Eliane Voll. 2004. ͞“iŵulatiŶg the ‘espoŶse of LaŶd-Cover 

Changes to Road Paving and Governance along a Major Amazon Highway: The Santarém–Cuiabá 

Coƌƌidoƌ.͟ Global Change Biology 10 (5): 745–64. doi:10.1111/j.1529-8817.2003.00769.x. 

Soler, Luciana de Souza, Maria Isabel S. Escada, and Peter H. Verburg. ϮϬϬϵ. ͞QuaŶtifǇing 

Deforestation and Secondary Forest Determinants for Different Spatial Extents in an Amazonian 

ColoŶizatioŶ FƌoŶtieƌ ;‘oŶdoŶiaͿ.͟ Applied Geography 29 (2): 182–93. 

doi:10.1016/j.apgeog.2008.09.005. 

SPSS Inc. 2008. SPSS v.17 (version 17). Windows. http://www-01.ibm.com/software/analytics/spss. 

“tehŵaŶ, “tepheŶ V. ϭϵϵϲ. ͞EstiŵatiŶg the Kappa CoeffiĐieŶt aŶd Its VaƌiaŶĐe uŶdeƌ “tƌatified  
‘aŶdoŵ “aŵpliŶg.͟ Photogrammetric Engineering & Remote Sensing 62 (4): 401–2. 

“tƌahleƌ, AlaŶ H. ϭϵϴϬ. ͞The Use of Pƌioƌ Probabilities in Maximum Likelihood Classification of 

‘eŵotelǇ “eŶsed Data.͟ Remote Sensing of Environment 10 (2): 135–63. doi:10.1016/0034-

4257(80)90011-5. 

U“G“. ϮϬϭϯ. ͞“LC-off PƌoduĐts: BaĐkgƌouŶd.͟ 
http://landsat.usgs.gov/products_slcoffbackground.php. 

———. ϮϬϭϰa. ͞LaŶdsat FAQ.͟ http://laŶdsat.usgs.goǀ/ďaŶd_desigŶatioŶs_laŶdsat_satellites.php. 

———. ϮϬϭϰď. ͞What Aƌe the BaŶd DesigŶatioŶs foƌ the LaŶdsat “atellites?. 
Http://laŶdsat.usgs.goǀ/ďaŶd_desigŶatioŶs_laŶdsat_satellites.php.͟ 
http://landsat.usgs.gov/band_designations_landsat_satellites.php. 

———. ϮϬϭϱa. ͞EaƌthEǆploƌeƌ.͟ Earth Explorer USGS. http://earthexplorer.usgs.gov/. 

———. ϮϬϭϱď. ͞PƌoduĐt Guide. LaŶdsat Cliŵate Data ‘eĐoƌd ;CD‘Ϳ “uƌfaĐe ‘efleĐtaŶĐe.͟ 
http://landsat.usgs.gov/documents/cdr_sr_product_guide.pdf. 

Vasconcelos, Steel Silva, Daniel Jacob Zarin, Maristela Machado Araújo, and Izildinha de Souza 

Miranda. ϮϬϭϮ. ͞AďoǀegƌouŶd Net PƌiŵaƌǇ PƌoduĐtiǀitǇ iŶ TƌopiĐal Foƌest ‘egƌoǁth IŶĐƌeases 
Following Wetter Dry-“easoŶs.͟ Forest Ecology and Management 276 (July): 82–87. 

doi:10.1016/j.foreco.2012.03.034. 

Vieira, Ima Célia G, Arlete Silva de Almeida, Eric A Davidson, Thomas A Stone, Cláudio J Reis de 

Carvalho, aŶd José BeŶito Gueƌƌeƌo. ϮϬϬϯ. ͞ClassifǇiŶg “uĐĐessioŶal Foƌests UsiŶg LaŶdsat “peĐtƌal 
Pƌopeƌties aŶd EĐologiĐal ChaƌaĐteƌistiĐs iŶ EasteƌŶ AŵazôŶia.͟ Remote Sensing of Environment, 

Large Scale Biosphere Atmosphere Experiment in Amazonia, 87 (4): 470–81. 

doi:10.1016/j.rse.2002.09.002. 

Wright, S. Joseph, and Helene C. Muller-LaŶdau. ϮϬϬϲ. ͞The Futuƌe of TƌopiĐal Foƌest “peĐiesϭ.͟ 
Biotropica 38 (3): 287–301. doi:10.1111/j.1744-7429.2006.00154.x. 

WWF. ϮϬϭϱ. ͞AŵazoŶ | PlaĐes | Woƌld Wildlife FuŶd.͟ 
http://www.worldwildlife.org/places/amazon. 

Yoshikawa, S., and K. Sanga-Ngoie. ϮϬϭϭ. ͞DefoƌestatioŶ DǇŶaŵiĐs iŶ Mato Gƌosso iŶ the “outheƌŶ 
BƌaziliaŶ AŵazoŶ UsiŶg GI“ aŶd NOAA/AVH‘‘ Data.͟ International Journal of Remote Sensing 32 

(2): 523–44. doi:10.1080/01431160903475225. 



33 

 

APPENDICES



i 
 

Table of Appendices 

Appendix 1. Coordinates of the Study Plots .............................................................................................................. i 

Appendix 2. Time – series used in the research. Including clouded and not available plots ....................................... iii 

Appendix 3. Image classification of the complete plots in percentage in respect to total area (400 km2) .................. iv 

Appendix 4. Matrix of the accuracy assessment of the different scenes, according to year ...................................... ix 

1. Overall Accuracy......................................................................................................................................... ix 

2. Kappa Index of Accuracy .............................................................................................................................. x 

Appendix 5. Distribution of the plots in relation to their Euclidean distance to a) Roads, and b) Cities...................... xi 

Appendix 6. Values of distance to roads and cities in relation to plots .................................................................... xii 

Appendix 7. ANOVA of the distance to roads and cities in respect to plot type ...................................................... xiii 

1. Distance to roads ..................................................................................................................................... xiii 

2. Distance to cities ...................................................................................................................................... xiv 

Appendix 8. MANOVA distribution land cover types in respect to categories distance to roads and cities ............... xv 

1. Distance to roads ...................................................................................................................................... xv 

2. Distance to cities ..................................................................................................................................... xvii 

Appendix 9. Distribution land cover types in respect to density ............................................................................. xix 

1. MANOVA (no covariables) ........................................................................................................................ xix 

2. MANCOVA (using distance to roads and cities as covariables) .................................................................. xxii 

Appendix 10. Distribution land cover types in respect to Pattern .......................................................................... xxv 

1. MANOVA (no covariables) ....................................................................................................................... xxv 

2. MANCOVA (using distance to roads and cities as covariables) ................................................................ xxviii 

 

 

 



i 
 

Appendix 1. Coordinates of the Study Plots 

N Parameter Category Province Code Latitude Longitud 

1 Density Low Amazon LD1 
1°51'15.23"S 58°58'6.00"W 

2° 2'10.00"S 58°47'19.00"W 

2 Density Low Amazon LD2 
7°19'48.22"S 61°29'28.59"W 

7° 9'0.84"S 61°18'40.60"W 

3 Density Low Pará LD3 
4°55'53.70"S 55°30'15.33"W 

4°45'2.80"S 55°19'23.36"W 

4 Density Low Pará LD4 
5° 4'24.35"S 54°22'33.80"W 
4°53'39.47"S 54°11'49.52"W 

5 Density Low Amazon LD5 
8°16'14.39"S 66° 8'5.13"W 

8° 5'24.44"S 65°57'9.94"W 

6 Density Low Rondônia LD6 
10°36'44.60"S 64°58'11.49"W 

10°25'48.21"S 64°47'14.28"W 

7 Density Low Amazon LD7 
2°34'36.47"S 58°57'10.51"W 

2°23'50.10"S 58°46'24.79"W 

8 Density Low Pará LD8 
0°51'2.75"S 55°54'12.64"W 

0°40'12.04"S 55°43'23.40"W 

9 Density Low Pará LD9 
6°52'27.31"S 54°38'38.78"W 

6°41'32.33"S 54°27'48.54"W 

10 Density Low Pará LD10 
0°16'44.00"S 57°53'5.00"W 

0°27'38.00"S 57°42'20.00"W 

11 Density High Amazon HD1 
1°57'58.00"S 59°55'32"W 

2° 8'50.00"S 60° 6'17.00"W 

12 Density High Amazon HD2 
2°43'0.00"S 59°30'58.00"W 

2°43'0.00"S 59°20'12.00"W 

13 Density High Amazon HD3 
3°27'4.00"S 59°52'12.00"W 

3°37'54.00"S 59°41'23.00"W 

14 Density High Amazon HD4 
8°46'19.83"S 66°51'57.85"W 

8°35'24.55"S 66°41'4.45"W 

15 Density High Amazon HD5 
7°12'46.73"S 59°58'4.36"W 

7° 1'59.47"S 59°47'13.33"W 

16 Density High Rondônia HD6 
9°37'55.08"S 63°25'24.22"W 

9°27'10.50"S 63°14'33.51"W 

17 Density High Pará HD7 
4°29'49.95"S 55°54'53.99"W 

4°18'55.97"S 55°44'12.82"W 

18 Density High Rondônia HD8 
9°49'8.39"S 63°12'21.17"W 

9°38'14.57"S 63° 1'23.40"W 

19 Density High Pará HD9 
5° 1'2.84"S 50°38'27.96"W 

4°50'8.81"S 50°27'37.50"W 

20 Density High Pará HD10 
1°50'54.98"S 55°35'45.02"W 

1°40'2.85"S 55°25'0.04"W 

21 Spatial Pattern Fishbone Amazon FP1 
7°54'7.00"S 61°24'41.00"W 

7°43'15.00"S 61°35'33.00"W 

22 Spatial Pattern Fishbone Rondônia FP2 
10°24'26.75"S 64°58'14.58"W 

10°13'32.98"S 64°47'17.94"W 

23 Spatial Pattern Fishbone Rondônia 
 

FP3 
9°52'11.82"S 64°41'46.56"W 

9°41'22.14"S 64°30'50.85"W 

24 Spatial Pattern Fishbone Rondônia FP4 
10°23'19.55"S 64°27'19.09"W 

10°12'28.25"S 64°16'20.66"W 



ii 
 

N Parameter Category Province Code Latitude Longitud 

25 Spatial Pattern Fishbone Rondônia FP5 
10°11'56.00"S 65°17'21.73"W 

10° 1'6.40"S 65° 6'29.02"W 

26 Spatial Pattern Fishbone Amazon FP6 
2°52'57.72"S 60° 5'14.10"W 

2°42'5.91"S 59°54'27.44"W 

27 Spatial Pattern Fishbone Pará FP7 
3°48'42.34"S 54°51'6.22"W 

3°37'51.85"S 54°40'20.42"W 

28 Spatial Pattern Fishbone Pará FP8 
3°59'5.79"S 54°27'49.83"W 

3°48'16.97"S 54°17'4.14"W 

29 Spatial Pattern Fishbone Pará FP9 
4°18'16.08"S 55°38'7.92"W 

4° 7'19.25"S 55°27'23.27"W 

30 Spatial Pattern Fishbone Pará FP10 
6°36'45.28"S 55°39'0.90"W 

6°25'51.41"S 55°28'10.38"W 

31 Spatial Pattern Other Amazon OP1 
7°55'1.53"S 61°24'41.00"W 

8° 5'57.00"S 61°35'33.00"W 

32 Spatial Pattern Other Rondonia OP2 
9°37'21.00"S 64° 5'11.00"W 

9°26'28.00"S 63°54'18.00"W 

33 Spatial Pattern Other Amazon OP3 
8°41'12.14"S 64°13'58.87"W 

8°30'21.64"S 64° 3'6.94"W 

34 Spatial Pattern Other Rondônia OP4 
9°35'48.86"S 62°11'25.55"W 

9°24'55.57"S 62° 0'32.76"W 

35 Spatial Pattern Other Pará OP5 
4° 8'40.15"S 56°13'49.64"W 

3°57'48.39"S 56° 3'2.47"W 

36 Spatial Pattern Other Pará OP6 
7°26'47.75"S 55°10'27.67"W 

7°15'53.47"S 54°59'35.97"W 

37 Spatial Pattern Other Rondônia OP7 
10°10'13.01"S 63° 9'40.13"W 

9°59'18.60"S 62°58'43.34"W 

38 Spatial Pattern Other Rondônia OP8 
10°49'45.15"S 65°13'4.35"W 

10°38'48.59"S 65° 2'10.29"W 

39 Spatial Pattern Other Pará OP9 
1°31'17.80"S 55°35'48.31"W 

1°20'25.95"S 55°25'2.12"W 

40 Spatial Pattern Other Rondônia OP10 
10°42'2.35"S 63°42'34.78"W 

10°31'19.87"S 63°31'47.52"W 
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Appendix 2. Time – series used in the research. Including clouded and not available plots 

TOTAL: finished classification Cloudy Only ETM+slc off available no image available

Total planned samples % % %

Scene Plots 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

HD4 c aug jul jul c aug jul jul jul jul jul jul jul jul jul jul jul jul jul jul jul jul jul jul jul jul jul jul e jul jul jul

OP3 jul aug c jul jul c jul jul jul c jul jul jul c c jul jul jul jul jul jul jul jul jul jul jul jul jul e jul c jul

LD5 c aug c jul c aug jul c jul jul jul jul jul jul jul jul c jul jul jul jul jul jul jul jul jul jul jul e jul jul jul

PF7 aug c c c jul aug c jul jul may c jul jul jul jun augaug jul c jul jul jul aug c jul jul jul jul e sep jul c

PF8 aug c nov c jul aug c jul jul may c jul jul jul jun aug c jul c jul jul jul aug jul jul jul jul c e c c jul

LD3 c c nov c jul aug c c jul may jul c jul c jun augaug jul jul jul c jul aug c jul jul jul jul e c c jul

LD4 c c c c jul aug c jul jul may jul jul c jul jun augaug jul jul jul jul jul aug jul c jul jul c e c jul jul

HD5 jun c jul jun jul aug c c jul aug jul jul c jun jul jul c jul n jul jul jul jun jun jul jul c jul e aug sep jun

PF10 jun c jul jun jul augaug jul jul aug jul jul jul jun jul jul c jul n jul jul jul jun jun c jul jul jul e aug sep jun

OP6 jun c jul jun jul augaug jul jul aug jul jul jul jun jul jul jul jul n jul jul jul jun jun jul jul jul jul e aug sep jun

LD9 jun c jul jun jul augaug jul jul aug jul jul jul jun jul jul jul jul n jul jul jul jun jun jul jul jul jul e aug sep jun

HD10 n oct jul jul jul sep novaugsep jul jul jul jun jul c jul aug jul jul jul c jul aug jul jul jul c jul e n aug c

OP9 n oct jul jul jul sep novaugsep jul jul jul jun jul aug jul aug jul jul jul jul jul aug jul jul jul c jul e n aug c

LD8 n oct c jul jul sep c augsep c jul jul c jul aug jul aug jul jul c jul jul c jul jul jul c jul e n aug c

HD9 jul jul aug jul c sep aug c jun jul aug jun oct c jul jul c aug aug jul aug jul c jun jul jul jul c e c aug n

PF9 jul c aug jul jul sep aug jul c jul c jun oct jul jul jul c aug c jul aug jul c jun jul jul jul aug e c aug n

OP5 jul jul aug jul jul sep aug jul jun jul c jun oct jul jul jul aug aug aug jul aug jul jun jun jul jul jul aug e jun aug n

LD10 jul jul aug jul c sep aug jul jun jul c jun oct jul jul jul aug aug aug jul aug jul jun jun jul jul jul aug e jun aug n

HD2 n c augaug n c augaug jul sep oct aug oct jun augsep aug aug c c augaugaug n jul aug n jul e jul n jun

HD3 n c aug c n sep augaug jul sep c c oct c c sep c aug c c augaugaug n jul c n jul e c n jun

LD7 n jul augaug n sep augaug jul sep oct aug oct jun augsep aug aug jul jul augaugaug n jul aug n jul e jul n jun

HD1 c jul aug jul augaugaugaug jul jul c c aug c jul jul c aug aug jul sep jul jul jul c jul jul aug e c jul c

PF6 aug jul aug jul augaugaugaug jul jul c sep c jul jul jul jun aug c jul sep jul jul jul c jul jul aug e jul jul c

LD1 c jul aug jul augaugaugaug jul c jul sep c c c jul c aug c jul sep jul jul jul jul jul jul aug e jul c c

PF1 jul jul jul jul jul jul jul jul jul c c aug jul c c jul jul jul c jul jul jul jul jul jul jul jul jul e aug jul jun

OP1 jul jul c jul jul jul jul jul jul c c aug jul jul c jul jul jul jul jul jul jul jul jul jul jul jul jul e aug c jun

LD2 jul jul jul jul jul jul jul jul jul c c aug jul jul c jul c jul jul jul jul jul jul jul jul jul jul jul e aug jul jun

HD7 aug jul aug jul jul c c jul jun jul jul aug jul jul jul jul jul aug jun jul c c jul jul jul aug jun jul e aug jul jul

OP4 aug jul aug jul jul jul jun jul jun jul jul aug jul jul jul jul jul aug jun jul jul jul jul jul jul aug jun jul e aug jul jul

HD6 jun jul jul jul jul jul apr jul jul jul jul jul jul jul jul jul jul jun aug jul aug c jul jun jul jul aug jul e jul jul jun

HD8 jun jul jul jul jul c c jul jul jul jul jul jul jul jul jul jul jun aug jul c c jul jun jul jul aug jul e jul jul jun

PF4 jun c jul jul jul c c jul jul jul jul jul jul jul jul jul jul jun aug jul aug c jul jun jul jul c jul e jul jul jun

OP10 jun c jul c jul c c jul jul jul jul jul jul jul jul c c jun c jul augaug jul jun jul jul aug jul e jul jul jun

OP2 jun jul jul jul jul jul c jul jul jul jul jul jul jul jul jul jul jun aug jul aug c jul jun jul jul aug jul e jul jul jun

OP7 jun jul jul jul jul jul apr jul jul jul jul jul jul jul jul jul jul jun aug jul aug c jul jun jul jul aug jul e jul jul jun

PF2 jul sep jul c jul jul jul n jul jul jul jul jul jul jul jul jul aug jul jul jul jul jul jul jul jul jul jul e jun jun jun

PF3 jul sep jul jul jul jul c n jul jul jul jul jul jul jul jul jul aug jul jul jul jul jul jul jul c jul jul e jun jun jun

PF5 jul sep jul jul jul jul jul n jul jul jul jul jul jul jul jul jul aug jul jul jul jul jul jul jul jul jul jul e jun jun jun

OP8 jul sep jul c jul jul jul n jul jul jul jul jul jul jul jul jul aug jul jul jul jul jul jul jul c jul jul e jun jun jun

LD6 jul sep jul c jul jul jul n jul jul jul jul jul jul jul jul jul aug jul jul jul jul jul jul jul jul jul jul e jun jun jun

230/062

231/062

231/065

231/067

232/067

233/067

001/066

227/063

227/065

228/061

228/063

1033 173 40 34

1280 13.5 3.1 2.7
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Appendix 2. Image classification of the complete plots in percentage in respect to total area (400 km2) 

Primary Forest (P.F.), Clear Cut (C.C.), Other (Oth.), Secondary Forest (S.F.), No Data (N.D.). Low Density Plots 

  
1. Image classification (%) of plot LD1 2. Image classification (%) of plot LD2 

  
3. Image classification (%) of plot LD3 4. Image classification (%) of plot LD4 

  
5. Image classification (%) of plot LD5 6. Image classification (%) of plot LD6 

  
7. Image classification (%) of plot LD7 8. Image classification (%) of plot LD8 

P.F. P.F. 

P.F. P.F. 

P.F. P.F. 

P.F. P.F. 
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9. Image classification (%) of plot LD9 10. Image classification (%) of plot LD10 

High Density Plots 

  
11. Image classification (%) of plot HD1 12. Image classification (%) of plot HD2 

  
13. Image classification (%) of plot HD3 14. Image classification (%) of plot HD4 

  
15. Image classification (%) of plot HD5 16. Image classification (%) of plot HD6 

P.F. P.F. 

P.F. P.F. 

P.F. P.F. 

P.F. P.F. 
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17. Image classification (%) of plot HD7 18. Image classification (%) of plot HD8 

  
19. Image classification (%) of plot HD9 20. Image classification (%) of plot HD10 

Fishbone Pattern Plots 

  
21. Image classification (%) of plot FP1 22. Image classification (%) of plot FP2 

  
23. Image classification (%) of plot FP3 24. Image classification (%) of plot FP4 

P.F. P.F. 

P.F. P.F. 

P.F. P.F. 

P.F. P.F. 
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25. Image classification (%) of plot FP5 26. Image classification (%) of plot FP6 

  
27. Image classification (%) of plot FP7 28. Image classification (%) of plot FP8 

  
29. Image classification (%) of plot FP9 30. Image classification (%) of plot FP10 

Other Pattern Plots 

  
31. Image classification (%) of plot OP1 32. Image classification (%) of plot OP2 

P.F. P.F. 

P.F. P.F. 

P.F. P.F. 

P.F. P.F. 
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33. Image classification (%) of plot OP3 34. Image classification (%) of plot OP4 

  
35. Image classification (%) of plot OP5 36. Image classification (%) of plot OP6 

  
37. Image classification (%) of plot OP7 38. Image classification (%) of plot OP8 

  
39. Image classification (%) of plot OP9 40. Image classification (%) of plot OP10 

P.F. P.F. 

P.F. 
P.F. 

P.F. P.F. 

P.F. P.F. 
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Appendix 4. Matrix of the accuracy assessment of the different scenes, according to year 

1. Overall Accuracy 

a) With clouded plots Legend: No Landsat image available Clouded images, with lower accuracy

Scene 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 Mean STD

1/066 0.75 0.99 0.26 0.94 0.67 0.81 0.99 0.74 0.95 0.84 0.96 0.98 0.99 0.80 0.86 0.97 0.89 0.99 0.96 0.67 0.98 0.99 0.98 0.92 0.98 0.94 0.91 0.89 0.93 0.81 0.87 0.88 0.15

227/063 0.74 0.65 0.61 0.67 0.96 0.82 0.59 0.62 0.96 0.94 0.61 0.51 0.60 0.90 0.84 0.94 0.79 0.91 0.71 0.86 0.71 0.97 0.95 0.59 0.88 0.96 0.79 0.46 0.44 0.72 0.80 0.76 0.16

227/065 0.82 0.61 0.83 0.97 0.94 0.86 0.70 0.61 0.95 0.84 0.93 0.88 0.79 0.97 0.90 0.98 0.60 0.93 0.79 0.91 0.97 0.92 0.92 0.60 0.87 0.82 0.83 0.91 0.90 0.88 0.85 0.12

228/061 0.98 0.34 0.90 0.97 0.87 0.87 0.98 0.97 0.81 0.93 0.93 0.78 0.94 0.81 0.94 0.89 0.95 0.93 0.68 0.82 0.94 0.87 0.96 0.93 0.89 0.71 0.89 0.95 0.67 0.87 0.13

228/063 0.94 0.37 0.96 0.96 0.92 0.99 0.52 0.62 0.84 0.72 0.98 0.97 0.72 0.85 0.97 0.80 0.97 0.53 0.92 0.94 0.98 0.89 0.89 0.88 0.91 0.89 0.72 0.72 0.91 0.84 0.16

230/062 0.78 0.91 0.40 0.66 0.96 0.88 0.96 0.96 0.79 0.79 0.94 0.64 0.81 0.97 0.79 0.96 0.81 0.63 0.94 0.93 0.94 0.96 0.80 0.87 0.64 0.95 0.83 0.14

231/062 0.76 0.97 0.79 0.96 0.94 0.87 0.93 0.91 0.96 0.78 0.73 0.82 0.75 0.73 0.83 0.97 0.83 0.91 0.75 0.95 0.95 0.97 0.97 0.79 0.64 0.91 0.92 0.81 0.83 0.79 0.83 0.86 0.09

231/065 0.89 0.99 0.31 0.94 0.95 0.87 0.99 0.87 0.95 0.76 0.86 0.92 0.97 0.80 0.85 0.95 0.78 0.94 0.78 0.83 0.98 0.97 0.98 0.82 0.95 0.94 0.91 0.86 0.91 0.82 0.93 0.88 0.13

231/067 0.89 0.96 0.79 0.96 0.93 0.81 0.80 0.89 0.97 0.84 0.97 0.96 0.95 0.87 0.90 0.98 0.92 0.99 0.91 0.89 0.80 0.79 0.91 0.94 0.91 0.93 0.86 0.84 0.94 0.95 0.81 0.90 0.06

232/067 0.91 0.81 0.79 0.89 0.84 0.79 0.86 0.89 0.95 0.88 0.86 0.90 0.98 0.85 0.91 0.83 0.81 0.99 0.72 0.83 0.79 0.73 0.99 0.87 0.96 0.96 0.79 0.87 0.89 0.91 0.95 0.87 0.07

233/067 0.94 0.94 0.86 0.64 0.95 0.87 0.79 0.95 0.95 0.96 0.88 0.99 0.80 0.92 0.97 0.88 0.97 0.96 0.83 0.90 0.93 0.98 0.88 0.98 0.69 0.91 0.89 0.93 0.93 0.93 0.90 0.08

Mean 0.85 0.82 0.68 0.84 0.91 0.83 0.86 0.79 0.93 0.86 0.85 0.87 0.88 0.82 0.86 0.95 0.82 0.96 0.81 0.81 0.88 0.92 0.94 0.86 0.88 0.89 0.85 0.81 0.81 0.87 0.86

STD 0.08 0.19 0.25 0.18 0.09 0.07 0.12 0.15 0.10 0.06 0.11 0.13 0.13 0.09 0.04 0.04 0.08 0.03 0.13 0.10 0.08 0.08 0.04 0.10 0.13 0.08 0.07 0.12 0.16 0.07 0.08

b) Ommiting clouded plots

Scene 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 Mean STD

1/066 0.99 0.94 0.99 0.95 0.96 0.98 0.99 0.97 0.99 0.96 0.67 0.98 0.99 0.98 0.92 0.98 0.94 0.91 0.89 0.93 0.87 0.94 0.07

227/063 0.96 0.82 0.96 0.94 0.90 0.84 0.94 0.91 0.86 0.97 0.95 0.88 0.96 0.79 0.91 0.06

227/065 0.82 0.83 0.97 0.94 0.86 0.95 0.84 0.93 0.88 0.97 0.90 0.98 0.93 0.79 0.91 0.97 0.92 0.92 0.87 0.83 0.91 0.90 0.88 0.90 0.05

228/061 0.98 0.90 0.97 0.87 0.98 0.97 0.93 0.93 0.94 0.94 0.89 0.95 0.93 0.94 0.96 0.93 0.89 0.89 0.95 0.93 0.03

228/063 0.94 0.96 0.96 0.92 0.99 0.84 0.98 0.97 0.85 0.97 0.97 0.92 0.94 0.98 0.89 0.88 0.91 0.89 0.91 0.93 0.05

230/062 0.91 0.96 0.88 0.96 0.96 0.94 0.97 0.96 0.94 0.93 0.94 0.96 0.87 0.95 0.94 0.03

231/062 0.97 0.79 0.96 0.94 0.87 0.93 0.91 0.96 0.97 0.91 0.95 0.95 0.97 0.97 0.79 0.91 0.92 0.81 0.92 0.06

231/065 0.89 0.99 0.94 0.95 0.87 0.99 0.87 0.95 0.92 0.97 0.95 0.94 0.83 0.98 0.97 0.98 0.82 0.95 0.94 0.91 0.86 0.91 0.93 0.93 0.05

231/067 0.89 0.96 0.79 0.96 0.93 0.89 0.97 0.84 0.97 0.96 0.95 0.87 0.90 0.98 0.92 0.99 0.91 0.89 0.91 0.94 0.91 0.93 0.86 0.84 0.94 0.95 0.81 0.91 0.05

232/067 0.91 0.79 0.84 0.89 0.95 0.88 0.86 0.90 0.98 0.85 0.91 0.99 0.83 0.99 0.87 0.96 0.96 0.87 0.89 0.91 0.95 0.90 0.06

233/067 0.94 0.94 0.86 0.95 0.87 0.95 0.95 0.96 0.88 0.99 0.80 0.92 0.97 0.88 0.97 0.96 0.83 0.90 0.93 0.98 0.88 0.98 0.91 0.89 0.93 0.93 0.93 0.92 0.05

Mean 0.90 0.97 0.85 0.95 0.93 0.87 0.97 0.90 0.96 0.89 0.93 0.93 0.97 0.89 0.89 0.96 0.90 0.96 0.94 0.84 0.94 0.96 0.96 0.89 0.94 0.92 0.88 0.86 0.92 0.93 0.90

STD 0.04 0.02 0.06 0.02 0.04 0.03 0.03 0.04 0.01 0.05 0.04 0.04 0.02 0.06 0.03 0.01 0.02 0.03 0.02 0.08 0.03 0.02 0.03 0.05 0.04 0.03 0.04 0.03 0.02 0.02 0.05

0.86 0.13

0.92 0.05
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2. Kappa Index of Accuracy 

a) With clouded plots Legend: No Landsat image available Clouded images, with lower accuracy

Scene 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 Mean STD

1/066 0.58 0.98 0.18 0.74 0.49 0.64 0.94 0.37 0.81 0.74 0.94 0.97 0.97 0.62 0.61 0.89 0.77 0.97 0.93 0.49 0.97 0.92 0.77 0.84 0.97 0.89 0.84 0.86 0.88 0.75 0.83 0.78 0.20

227/063 0.60 0.55 0.45 0.40 0.79 0.70 0.48 0.51 0.93 0.87 0.41 0.38 0.41 0.84 0.71 0.86 0.56 0.83 0.60 0.81 0.63 0.91 0.79 0.52 0.81 0.93 0.72 0.36 0.32 0.65 0.76 0.65 0.19

227/065 0.71 0.48 0.76 0.91 0.89 0.74 0.47 0.45 0.92 0.79 0.90 0.81 0.64 0.94 0.82 0.95 0.46 0.88 0.72 0.87 0.90 0.75 0.90 0.48 0.80 0.61 0.78 0.85 0.85 0.86 0.76 0.16

228/061 0.97 0.25 0.78 0.95 0.75 0.77 0.93 0.91 0.70 0.90 0.90 0.62 0.87 0.68 0.89 0.82 0.91 0.88 0.56 0.69 0.85 0.74 0.94 0.90 0.84 0.65 0.86 0.91 0.63 0.79 0.15

228/063 0.83 0.25 0.92 0.85 0.85 0.94 0.42 0.47 0.73 0.57 0.97 0.92 0.54 0.68 0.91 0.65 0.92 0.40 0.86 0.91 0.90 0.72 0.81 0.85 0.84 0.80 0.67 0.61 0.85 0.75 0.19

230/062 0.64 0.82 0.27 0.49 0.89 0.81 0.94 0.94 0.70 0.72 0.89 0.46 0.72 0.94 0.67 0.92 0.71 0.48 0.92 0.86 0.91 0.95 0.68 0.82 0.56 0.71 0.75 0.18

231/062 0.61 0.94 0.71 0.86 0.90 0.78 0.81 0.77 0.91 0.67 0.67 0.73 0.49 0.49 0.68 0.88 0.70 0.79 0.65 0.93 0.93 0.92 0.84 0.68 0.51 0.83 0.84 0.75 0.62 0.73 0.62 0.75 0.13

231/065 0.74 0.98 0.21 0.74 0.90 0.75 0.96 0.82 0.86 0.66 0.79 0.88 0.91 0.62 0.61 0.87 0.60 0.86 0.68 0.70 0.97 0.88 0.75 0.66 0.93 0.91 0.84 0.81 0.84 0.75 0.75 0.78 0.15

231/067 0.81 0.93 0.67 0.87 0.89 0.67 0.59 0.78 0.92 0.75 0.95 0.93 0.87 0.75 0.84 0.94 0.84 0.98 0.86 0.84 0.73 0.65 0.70 0.90 0.87 0.87 0.74 0.79 0.88 0.91 0.78 0.82 0.10

232/067 0.82 0.70 0.66 0.54 0.75 0.61 0.74 0.77 0.90 0.81 0.76 0.83 0.95 0.72 0.81 0.59 0.62 0.98 0.60 0.70 0.66 0.60 0.81 0.74 0.94 0.90 0.66 0.81 0.80 0.83 0.73 0.75 0.11

233/067 0.86 0.87 0.80 0.39 0.93 0.74 0.53 0.86 0.91 0.94 0.82 0.98 0.62 0.79 0.89 0.72 0.94 0.93 0.71 0.85 0.81 0.79 0.78 0.97 0.56 0.79 0.86 0.78 0.86 0.74 0.80 0.14

Mean 0.73 0.75 0.58 0.67 0.83 0.70 0.74 0.66 0.86 0.78 0.78 0.81 0.79 0.68 0.72 0.87 0.67 0.91 0.72 0.71 0.83 0.84 0.78 0.78 0.83 0.82 0.75 0.76 0.72 0.81 0.74

STD 0.10 0.24 0.25 0.22 0.13 0.09 0.18 0.19 0.13 0.09 0.17 0.16 0.20 0.15 0.08 0.10 0.11 0.06 0.17 0.14 0.12 0.10 0.06 0.12 0.17 0.11 0.08 0.14 0.18 0.08 0.07

b) Ommiting Clouded Plots

Scene 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 Mean STD

1/066 0.98 0.74 0.94 0.81 0.94 0.97 0.97 0.89 0.97 0.93 0.49 0.97 0.92 0.77 0.84 0.97 0.89 0.84 0.86 0.88 0.83 0.88 0.11

227/063 0.79 0.70 0.93 0.87 0.84 0.71 0.86 0.83 0.81 0.91 0.79 0.81 0.93 0.72 0.82 0.08

227/065 0.71 0.76 0.91 0.89 0.74 0.92 0.79 0.90 0.81 0.94 0.82 0.95 0.88 0.72 0.87 0.90 0.75 0.90 0.80 0.78 0.85 0.85 0.86 0.84 0.07

228/061 0.97 0.78 0.95 0.75 0.93 0.91 0.90 0.90 0.87 0.89 0.82 0.91 0.88 0.85 0.94 0.90 0.84 0.86 0.91 0.88 0.06

228/063 0.83 0.92 0.85 0.85 0.94 0.73 0.97 0.92 0.68 0.91 0.92 0.86 0.91 0.90 0.81 0.85 0.84 0.80 0.85 0.86 0.07

230/062 0.82 0.89 0.81 0.94 0.94 0.89 0.94 0.92 0.92 0.86 0.91 0.95 0.82 0.71 0.88 0.07

231/062 0.94 0.71 0.86 0.90 0.78 0.81 0.77 0.91 0.88 0.79 0.93 0.93 0.92 0.84 0.68 0.83 0.84 0.75 0.84 0.08

231/065 0.74 0.98 0.74 0.90 0.75 0.96 0.82 0.86 0.88 0.91 0.87 0.86 0.70 0.97 0.88 0.75 0.66 0.93 0.91 0.84 0.81 0.84 0.75 0.84 0.09

231/067 0.81 0.93 0.67 0.87 0.89 0.78 0.92 0.75 0.95 0.93 0.87 0.75 0.84 0.94 0.84 0.98 0.86 0.84 0.70 0.90 0.87 0.87 0.74 0.79 0.88 0.91 0.78 0.85 0.08

232/067 0.82 0.66 0.75 0.77 0.90 0.81 0.76 0.83 0.95 0.72 0.81 0.98 0.70 0.81 0.74 0.94 0.90 0.81 0.80 0.83 0.73 0.81 0.09

233/067 0.86 0.87 0.80 0.93 0.74 0.86 0.91 0.94 0.82 0.98 0.62 0.79 0.89 0.72 0.94 0.93 0.71 0.85 0.81 0.79 0.78 0.97 0.79 0.86 0.78 0.86 0.74 0.83 0.09

Mean 0.79 0.94 0.76 0.82 0.87 0.76 0.91 0.81 0.89 0.83 0.90 0.89 0.93 0.79 0.77 0.90 0.79 0.91 0.90 0.75 0.92 0.88 0.79 0.80 0.91 0.87 0.80 0.82 0.84 0.87 0.77

STD 0.05 0.04 0.08 0.06 0.06 0.04 0.05 0.06 0.04 0.07 0.07 0.06 0.04 0.11 0.06 0.03 0.05 0.06 0.03 0.12 0.04 0.03 0.06 0.09 0.05 0.04 0.05 0.04 0.04 0.03 0.05

0.76 0.16

0.85 0.08
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Appendix 5. Distribution of the plots in relation to their Euclidean distance to a) Roads, and b) Cities 

a)  

b)  
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Appendix 6. Values of distance to roads and cities in relation to plots 

Plots Distance to roads (m) Distance to cities (m) 

Code Mean Min Max Std Mean Min Max Std 

HD1 3612.1 0 8491.4 3314.7 47693.92 37780.95 53129.65 3315.41 

HD2 0.0 0 0.0 0.0 32050.08 19284.19 44582.06 5805.829 

HD3 3709.8 0 8491.4 3205.0 29699.22 15565.35 42055.68 5785.727 

HD4 2501.8 0 6004.3 2960.2 110682.9 99132.64 120694 5602.639 

HD5 600.4 0 6004.3 1801.3 6925.099 0 15000 2851.492 

HD6 14332.1 6004.339 21649.0 4787.6 20788.53 10200 31754.69 5526.545 

HD7 4063.6 0 12008.7 3877.2 15752.6 3231.099 22593.8 4120.847 

HD8 3209.4 0 8491.4 3275.7 16938.41 9600 23736.05 2915.923 

HD9 667.1 0 6004.3 1887.0 20388.16 9138.928 30857.74 4810.208 

HD10 1501.1 0 6004.3 2600.0 16908.23 6000 27911.29 5465.904 

LD1 33023.9 24017.36 42030.4 6713.1 35933 24600 47823.43 5677.951 

LD2 60557.8 51301.1 70022.0 5299.9 158731.3 148819.4 169902.8 5471.725 
LD3 48937.8 42030.38 55357.3 4884.6 66425.3 53261.62 79338.52 5746.44 

LD4 112917.8 104861.3 120835.0 4901.0 120751 107003.7 134196.3 5746.471 

LD5 92653.1 81667.84 103302.6 6152.7 118282.1 105097.7 131230 5837.356 

LD6 13152.7 8491.418 18013.0 2695.8 19961.06 6029.925 32890.73 5823.765 

LD7 32863.0 24017.36 42457.1 6134.8 76356.65 64702.7 83505.69 4195.063 

LD8 46882.2 36522.97 56962.2 6579.8 112267.3 102000 122953.2 5880.021 

LD9 63169.3 55357.27 70279.0 4610.3 100760.6 87665.73 113465.1 5900.147 

LD10 42357.2 30616.24 53704.4 6672.8 95881.09 87831.88 105246.6 3978.074 

OP1 2668.6 0 6004.3 2983.6 145706.5 133032.3 155446.3 5227.911 

OP2 3335.7 0 6004.3 2983.6 13057.57 1200 24490 5385.159 

OP3 2944.9 0 8491.4 3369.9 88968.75 76124.38 101699.6 5772.402 

OP4 3688.3 0 8491.4 3344.0 15652.15 3000 27840.26 5557.882 

OP5 11037.3 0 21649.0 5786.2 29157.15 15035.96 42260.62 5803.441 

OP6 2668.6 0 6004.3 2983.6 41213.25 27475.81 54629.66 5844.57 

OP7 6990.9 0 13426.1 3348.8 19703.67 9600 27736.62 4601.711 

OP8 3709.8 0 12008.7 4035.0 23744.82 12600 33988.82 5651.377 

OP9 18730.6 12008.68 25474.3 4324.2 51620.25 41260.64 62954.27 5596.185 

OP10 6004.3 0 12008.7 4902.5 8353.027 0 16810.71 3625.869 

FP1 7105.3 0 13426.1 4649.6 142311.8 133805.4 154498.5 4993.625 
FP2 4503.3 0 12008.7 3573.3 13522.18 600 25582.81 5480.027 

FP3 2501.8 0 6004.3 2960.2 61650.18 49335.18 70320.41 5262.609 

FP4 12133.4 6004.339 16982.8 3001.1 57777.63 48614.81 64135.48 3935.621 

FP5 6004.3 0 12008.7 4902.5 13860.36 1200 25462.91 5550.425 

FP6 0.0 0 0.0 0.0 33322.44 24600 44545.71 4560.627 

FP7 6004.3 0 12008.7 4902.5 45712.91 33065.39 57961.37 5797.829 

FP8 3335.7 0 6004.3 2983.6 19077.87 7800 30340.07 5621.632 

FP9 3202.3 0 12008.7 3712.1 31663.71 21000 42907.34 5627.454 

FP10 1656.5 0 8491.4 2919.3 59678.4 47642.42 71922.46 5809.704 
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Appendix 7. ANOVA of the distance to roads and cities in respect to plot type 

1. Distance to roads 

ANOVA Table 

 Sum of Squares df Mean Square F Sig. 

Mean Distance to 
Roads * Plot 
Characteristics 

Between Groups (Combined) 5.834E11 3 1.945E11 944.407 .000 

Within Groups 2.582E11 1254 2.059E8   

Total 8.416E11 1257    

Multiple Comparisons 

Dependent Variable:Mean Distance to Roads 

 
(I) Plot 
Characteristics 

(J) Plot 
Characteristics 

Mean 
Difference (I-J) Std. Error Sig. 

95% Confidence Interval 

 Lower Bound Upper Bound 

Bonferroni Fishbone Pattern Other Pattern -1533.2100 1134.43678 1.000 -4530.9030 1464.4830 

Low Density -50147.2288* 1145.43320 .000 -53173.9793 -47120.4784 

High Density 1224.9500 1143.54887 1.000 -1796.8212 4246.7212 

Other Pattern Fishbone Pattern 1533.2100 1134.43678 1.000 -1464.4830 4530.9030 

Low Density -48614.0188* 1145.43320 .000 -51640.7693 -45587.2684 

High Density 2758.1600 1143.54887 .096 -263.6112 5779.9312 

Low Density Fishbone Pattern 50147.2288* 1145.43320 .000 47120.4784 53173.9793 

Other Pattern 48614.0188* 1145.43320 .000 45587.2684 51640.7693 

High Density 51372.1788* 1154.45849 .000 48321.5795 54422.7782 

High Density Fishbone Pattern -1224.9500 1143.54887 1.000 -4246.7212 1796.8212 

Other Pattern -2758.1600 1143.54887 .096 -5779.9312 263.6112 

Low Density -51372.1788* 1154.45849 .000 -54422.7782 -48321.5795 

Based on observed means. 
 The error term is Mean Square(Error) = 205911490.395. 

*. The mean difference is significant at the .05 level. 

Mean Distance to Roads 

 

Plot Characteristics N 

Subset 

 1 2 

Tukey Ba,,b,,c High Density 310 3419.7400  

Fishbone Pattern 320 4644.6900  

Other Pattern 320 6177.9000  

Low Density 308  54791.9188 

Means for groups in homogeneous subsets are displayed.  Based on observed 
means.  The error term is Mean Square(Error) = 205911490.395. 

a. Uses Harmonic Mean Sample Size = 314.402. 

b. The group sizes are unequal. The harmonic mean of the group sizes is used. 
Type I error levels are not guaranteed. c. Alpha = .05. 
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2. Distance to cities 

ANOVA Tablea 

 Sum of Squares df Mean Square F Sig. 

Mean Distance to Cities * 
Plot Characteristics 

Between Groups (Combined) 6.182E11 3 2.061E11 153.816 .000 

Within Groups 1.680E12 1254 1.340E9   

Total 2.298E12 1257    

a. The grouping variable Plot Characteristics is a string, so the test for linearity cannot be computed. 

Multiple Comparisons 

Dependent Variable:Mean Distance to Cities 

 
(I) Plot 
Characteristics 

(J) Plot 
Characteristics 

Mean 
Difference (I-J) Std. Error Sig. 

95% Confidence Interval 

 Lower Bound Upper Bound 

Bonferroni Fishbone 
Pattern 

Other Pattern 4182.2374 2893.63873 .892 -3464.0595 11828.5343 

Low Density -43047.5926* 2921.68758 .000 -50768.0072 -35327.1780 

High Density 16075.0331* 2916.88118 .000 8367.3192 23782.7470 

Other Pattern Fishbone Pattern -4182.2374 2893.63873 .892 -11828.5343 3464.0595 

Low Density -47229.8300* 2921.68758 .000 -54950.2446 -39509.4154 

High Density 11892.7957* 2916.88118 .000 4185.0817 19600.5096 

Low Density Fishbone Pattern 43047.5926* 2921.68758 .000 35327.1780 50768.0072 

Other Pattern 47229.8300* 2921.68758 .000 39509.4154 54950.2446 

High Density 59122.6257* 2944.70865 .000 51341.3791 66903.8724 

High Density Fishbone Pattern -16075.0331* 2916.88118 .000 -23782.7470 -8367.3192 

Other Pattern -11892.7957* 2916.88118 .000 -19600.5096 -4185.0817 

Low Density -59122.6257* 2944.70865 .000 -66903.8724 -51341.3791 

Based on observed means. The error term is Mean Square(Error) = 1339703216.688. 

*. The mean difference is significant at the .05 level. 

Mean Distance to Cities 

 

Plot Characteristics N 

Subset 

 1 2 3 

Tukey Ba,,b,,c High Density 310 31782.7149   

Other Pattern 320  43675.5106  

Fishbone Pattern 320  47857.7480  

Low Density 308   90905.3406 

Means for groups in homogeneous subsets are displayed. 
 Based on observed means. 
 The error term is Mean Square(Error) = 1339703216.688. 

a. Uses Harmonic Mean Sample Size = 314.402. 

b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels 

are not guaranteed. c. Alpha = .05. 
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Appendix 8. MANOVA distribution land cover types in respect to categories distance to roads and 

cities 

1. Distance to roads 

Multivariate Testsc 

Effect Value F Hypothesis df Error df Sig. 

Intercept Pillai's Trace .303 20.337a 5.000 234.000 .000 

Wilks' Lambda .697 20.337a 5.000 234.000 .000 

Hotelling's Trace .435 20.337a 5.000 234.000 .000 

Roy's Largest Root .435 20.337a 5.000 234.000 .000 

Year Pillai's Trace .304 20.476a 5.000 234.000 .000 

Wilks' Lambda .696 20.476a 5.000 234.000 .000 

Hotelling's Trace .438 20.476a 5.000 234.000 .000 

Roy's Largest Root .438 20.476a 5.000 234.000 .000 

Distance_Road Pillai's Trace 1.295 11.887 35.000 1190.000 .000 

Wilks' Lambda .008 59.578 35.000 986.779 .000 

Hotelling's Trace 83.522 554.585 35.000 1162.000 .000 

Roy's Largest Root 83.132 2826.485b 7.000 238.000 .000 

a. Exact statistic 

b. The statistic is an upper bound on F that yields a lower bound on the significance level. 

c. Design: Intercept + Year + Distance_Road 

 
Tests of Between-Subjects Effects 

Source 
Dependent 
Variable 

Type III Sum of 
Squares df Mean Square F Sig. 

Corrected Model Primary Forest 3.607E14 8 4.509E13 297.339 .000 

Clear Cut 3.532E12 8 4.415E11 50.683 .000 

Other 5.926E13 8 7.408E12 271.911 .000 

Secondary Forest 7.086E12 8 8.858E11 62.539 .000 

No Data (Clouds, 
Shadow, Water) 

1.677E11 8 2.096E10 33.475 .000 

Intercept Primary Forest 1.241E13 1 1.241E13 81.831 .000 

Clear Cut 5.253E11 1 5.253E11 60.309 .000 

Other 2.377E12 1 2.377E12 87.256 .000 

Secondary Forest 1.028E12 1 1.028E12 72.579 .000 

No Data (Clouds, 
Shadow, Water) 

2.913E9 1 2.913E9 4.653 .032 

Year Primary Forest 1.166E13 1 1.166E13 76.869 .000 

Clear Cut 5.322E11 1 5.322E11 61.101 .000 

Other 2.442E12 1 2.442E12 89.626 .000 

Secondary Forest 1.042E12 1 1.042E12 73.571 .000 
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Tests of Between-Subjects Effects 

Source 
Dependent 
Variable 

Type III Sum of 
Squares df Mean Square F Sig. 

No Data (Clouds, 
Shadow, Water) 

3.102E9 1 3.102E9 4.955 .027 

Distance_Road Primary Forest 3.482E14 7 4.975E13 328.074 .000 

Clear Cut 3.010E12 7 4.300E11 49.365 .000 

Other 5.692E13 7 8.131E12 298.458 .000 

Secondary Forest 6.065E12 7 8.665E11 61.176 .000 

No Data (Clouds, 
Shadow, Water) 

1.648E11 7 2.355E10 37.604 .000 

Error Primary Forest 3.609E13 238 1.516E11   

Clear Cut 2.073E12 238 8.711E9   

Other 6.484E12 238 2.724E10   

Secondary Forest 3.371E12 238 1.416E10   

No Data (Clouds, 
Shadow, Water) 

1.490E11 238 6.261E8 
  

Total Primary Forest 9.727E14 247    

Clear Cut 6.707E12 247    

Other 8.692E13 247    

Secondary Forest 1.279E13 247    

No Data (Clouds, 
Shadow, Water) 

4.624E11 247 
   

Corrected Total Primary Forest 3.968E14 246    

Clear Cut 5.605E12 246    

Other 6.575E13 246    

Secondary Forest 1.046E13 246    

No Data (Clouds, 
Shadow, Water) 

3.167E11 246 
   

a. R Squared = .909 (Adjusted R Squared = .906) 

b. R Squared = .630 (Adjusted R Squared = .618) 

c. R Squared = .901 (Adjusted R Squared = .898) 

d. R Squared = .678 (Adjusted R Squared = .667) 

e. R Squared = .529 (Adjusted R Squared = .514) 
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2. Distance to cities 

Multivariate Testsc 

Effect Value F Hypothesis df Error df Sig. 

Intercept Pillai's Trace .513 49.587a 5.000 235.000 .000 

Wilks' Lambda .487 49.587a 5.000 235.000 .000 

Hotelling's Trace 1.055 49.587a 5.000 235.000 .000 

Roy's Largest Root 1.055 49.587a 5.000 235.000 .000 

Year Pillai's Trace .509 48.777a 5.000 235.000 .000 

Wilks' Lambda .491 48.777a 5.000 235.000 .000 

Hotelling's Trace 1.038 48.777a 5.000 235.000 .000 

Roy's Largest Root 1.038 48.777a 5.000 235.000 .000 

Distance_Cities Pillai's Trace 1.792 19.064 35.000 1195.000 .000 

Wilks' Lambda .029 37.323 35.000 990.985 .000 

Hotelling's Trace 8.987 59.932 35.000 1167.000 .000 

Roy's Largest Root 5.019 171.351b 7.000 239.000 .000 

a. Exact statistic 

b. The statistic is an upper bound on F that yields a lower bound on the significance level. 

c. Design: Intercept + Year + Distance_Cities 

 

Tests of Between-Subjects Effects 

Source Dependent Variable 
Type III Sum of 
Squares df Mean Square F Sig. 

Corrected Model Primary Forest 1.991E14 8 2.489E13 141.793 .000 

Clear Cut 1.882E12 8 2.353E11 30.398 .000 

Other 2.297E13 8 2.871E12 82.389 .000 

Secondary Forest 1.844E12 8 2.305E11 21.297 .000 

No Data (Clouds, 
Shadow, Water) 

4.066E10 8 5.082E9 5.787 .000 

Intercept Primary Forest 1.214E13 1 1.214E13 69.137 .000 

Clear Cut 5.945E11 1 5.945E11 76.802 .000 

Other 2.220E12 1 2.220E12 63.713 .000 

Secondary Forest 1.016E12 1 1.016E12 93.877 .000 

No Data (Clouds, 
Shadow, Water) 

5.110E9 1 5.110E9 5.819 .017 

Year Primary Forest 1.139E13 1 1.139E13 64.892 .000 

Clear Cut 6.022E11 1 6.022E11 77.801 .000 

Other 2.283E12 1 2.283E12 65.522 .000 

Secondary Forest 1.030E12 1 1.030E12 95.182 .000 

No Data (Clouds, 
Shadow, Water) 

5.363E9 1 5.363E9 6.107 .014 
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Tests of Between-Subjects Effects 

Source Dependent Variable 
Type III Sum of 
Squares df Mean Square F Sig. 

Distance_Cities Primary Forest 1.877E14 7 2.682E13 152.778 .000 

Clear Cut 1.280E12 7 1.829E11 23.626 .000 

Other 2.068E13 7 2.955E12 84.798 .000 

Secondary Forest 8.137E11 7 1.162E11 10.742 .000 

No Data (Clouds, 
Shadow, Water) 

3.529E10 7 5.042E9 5.742 .000 

Error Primary Forest 4.196E13 239 1.755E11   

Clear Cut 1.850E12 239 7.741E9   

Other 8.327E12 239 3.484E10   

Secondary Forest 2.586E12 239 1.082E10   

No Data (Clouds, 
Shadow, Water) 

2.099E11 239 8.782E8 
  

Total Primary Forest 8.110E14 248    

Clear Cut 4.935E12 248    

Other 5.257E13 248    

Secondary Forest 6.775E12 248    

No Data (Clouds, 
Shadow, Water) 

3.970E11 248 
   

Corrected Total Primary Forest 2.411E14 247    

Clear Cut 3.732E12 247    

Other 3.129E13 247    

Secondary Forest 4.430E12 247    

No Data (Clouds, 
Shadow, Water) 

2.505E11 247 
   

a. R Squared = .826 (Adjusted R Squared = .820) 

b. R Squared = .504 (Adjusted R Squared = .488) 

c. R Squared = .734 (Adjusted R Squared = .725) 

d. R Squared = .416 (Adjusted R Squared = .397) 

e. R Squared = .162 (Adjusted R Squared = .134) 
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Appendix 9. Distribution land cover types in respect to density 

1. MANOVA (no covariables) 

Density 1 Low 258 

2 High 245 

 

Effect Value F Hypothesis df Error df Sig. 

Ýear Pillai's Trace .406 1.298 150.000 2205.000 .011 

Wilks' Lambda .637 1.381 150.000 2166.046 .002 

Hotelling's Trace .507 1.473 150.000 2177.000 .000 

Roy's Largest Root .358 5.267b 30.000 441.000 .000 

Density Pillai's Trace .613 138.676a 5.000 437.000 .000 

Wilks' Lambda .387 138.676a 5.000 437.000 .000 

Hotelling's Trace 1.587 138.676a 5.000 437.000 .000 

Roy's Largest Root 1.587 138.676a 5.000 437.000 .000 

Ýear * Density Pillai's Trace .399 1.274 150.000 2205.000 .016 

Wilks' Lambda .645 1.340 150.000 2166.046 .005 

Hotelling's Trace .486 1.412 150.000 2177.000 .001 

Roy's Largest Root .323 4.747b 30.000 441.000 .000 

a. Exact statistic 

b. The statistic is an upper bound on F that yields a lower bound on the significance level. 

c. Design: Intercept + Ýear + Density + Ýear * Density 

 

Tests of Between-Subjects Effects 

Source Dependent Variable 
Type III Sum of 
Squares df Mean Square F Sig. 

Noncent. 
Parameter 

Observed 
Powerb 

Corrected 
Model 

Primary_Forest 3.380E6 61 55411.728 11.346 .000 692.129 1.000 

Clear_Cut 139414.516c 61 2285.484 3.417 .000 208.430 1.000 

Other 1.229E6 61 20148.174 7.017 .000 428.023 1.000 

Secondary_Forest 183053.708e 61 3000.880 5.977 .000 364.582 1.000 

No_Data 3003.013f 61 49.230 1.059 .365 64.577 .990 

Intercept Primary_Forest 5.170E7 1 5.170E7 10586.916 .000 10586.916 1.000 

Clear_Cut 64577.947 1 64577.947 96.546 .000 96.546 1.000 

Other 1106074.115 1 1106074.115 385.199 .000 385.199 1.000 

Secondary_Forest 105186.498 1 105186.498 209.496 .000 209.496 1.000 

No_Data 5092.537 1 5092.537 109.511 .000 109.511 1.000 

Ýear Primary_Forest 325289.134 30 10842.971 2.220 .000 66.608 1.000 

Clear_Cut 38520.927 30 1284.031 1.920 .003 57.590 .998 

Other 64233.082 30 2141.103 .746 .835 22.370 .720 

Secondary_Forest 48465.213 30 1615.507 3.218 .000 96.527 1.000 

No_Data 804.720 30 26.824 .577 .966 17.305 .568 

Density Primary_Forest 2689784.917 1 2689784.917 550.773 .000 550.773 1.000 
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Tests of Between-Subjects Effects 

Source Dependent Variable 
Type III Sum of 
Squares df Mean Square F Sig. 

Noncent. 
Parameter 

Observed 
Powerb 

Clear_Cut 64016.861 1 64016.861 95.707 .000 95.707 1.000 

Other 1084458.436 1 1084458.436 377.672 .000 377.672 1.000 

Secondary_Forest 89662.546 1 89662.546 178.578 .000 178.578 1.000 

No_Data 939.918 1 939.918 20.212 .000 20.212 .994 

Ýear * 
Density 

Primary_Forest 314937.080 30 10497.903 2.150 .001 64.488 .999 

Clear_Cut 38354.164 30 1278.472 1.911 .003 57.341 .998 

Other 63852.838 30 2128.428 .741 .840 22.237 .716 

Secondary_Forest 41424.275 30 1380.809 2.750 .000 82.503 1.000 

No_Data 1180.042 30 39.335 .846 .703 25.376 .792 

Error Primary_Forest 2153690.896 441 4883.653     

Clear_Cut 294976.283 441 668.880     
Other 1266301.634 441 2871.432     
Secondary_Forest 221422.607 441 502.092     
No_Data 20507.650 441 46.503     

a. R Squared = .611 (Adjusted R Squared = .557) 

b. Computed using alpha = .05 

c. R Squared = .321 (Adjusted R Squared = .227) 

d. R Squared = .493 (Adjusted R Squared = .422) 

e. R Squared = .453 (Adjusted R Squared = .377) 

f. R Squared = .128 (Adjusted R Squared = .007) 

 

Density of Roads 

Dependent Variable 
Density of 
Roads Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

Primary_Forest Low 399.440 4.642 390.320 408.561 

High 251.555 4.764 242.195 260.914 

Clear_Cut Low .050 1.692 -3.275 3.375 

High 22.650 1.737 19.238 26.063 

Other Low .462 3.282 -5.986 6.910 

High 94.150 3.368 87.533 100.767 

Secondary_Forest Low 1.180 1.549 -1.864 4.224 

High 28.558 1.590 25.434 31.681 

No_Data Low 1.856 .417 1.036 2.676 

High 4.687 .428 3.846 5.529 
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1. Mean Values of Primary Forest according to 

their difference of density 
2. Mean Values of Clear Cut according to their 

difference of density 

  
3. Mean Values of Other (Land Cover) according 

to their difference of density 
4. Mean Values of Secondary Forest according 

to their difference of density 

 

 

5. Mean Values of No Data  according to their 
difference of density 
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2. MANCOVA (using distance to roads and cities as covariables) 

Multivariate Testsc 

Effect Value F Hypothesis df Error df Sig. 

Intercept Pillai's Trace .993 13194.780a 5.000 432.000 .000 

Wilks' Lambda .007 13194.780a 5.000 432.000 .000 

Hotelling's Trace 152.717 13194.780a 5.000 432.000 .000 

Roy's Largest Root 152.717 13194.780a 5.000 432.000 .000 

City_Mean Pillai's Trace .259 30.161a 5.000 432.000 .000 

Wilks' Lambda .741 30.161a 5.000 432.000 .000 

Hotelling's Trace .349 30.161a 5.000 432.000 .000 

Roy's Largest Root .349 30.161a 5.000 432.000 .000 

City_max Pillai's Trace .239 27.175a 5.000 432.000 .000 

Wilks' Lambda .761 27.175a 5.000 432.000 .000 

Hotelling's Trace .315 27.175a 5.000 432.000 .000 

Roy's Largest Root .315 27.175a 5.000 432.000 .000 

Road_mean Pillai's Trace .495 84.599a 5.000 432.000 .000 

Wilks' Lambda .505 84.599a 5.000 432.000 .000 

Hotelling's Trace .979 84.599a 5.000 432.000 .000 

Roy's Largest Root .979 84.599a 5.000 432.000 .000 

Road_min Pillai's Trace .414 61.080a 5.000 432.000 .000 

Wilks' Lambda .586 61.080a 5.000 432.000 .000 

Hotelling's Trace .707 61.080a 5.000 432.000 .000 

Roy's Largest Root .707 61.080a 5.000 432.000 .000 

Road_max Pillai's Trace .517 92.499a 5.000 432.000 .000 

Wilks' Lambda .483 92.499a 5.000 432.000 .000 

Hotelling's Trace 1.071 92.499a 5.000 432.000 .000 

Roy's Largest Root 1.071 92.499a 5.000 432.000 .000 

Density Pillai's Trace .520 93.431a 5.000 432.000 .000 

Wilks' Lambda .480 93.431a 5.000 432.000 .000 

Hotelling's Trace 1.081 93.431a 5.000 432.000 .000 

Roy's Largest Root 1.081 93.431a 5.000 432.000 .000 

Ýear Pillai's Trace .587 1.934 150.000 2180.000 .000 

Wilks' Lambda .485 2.246 150.000 2141.321 .000 

Hotelling's Trace .918 2.633 150.000 2152.000 .000 

Roy's Largest Root .750 10.901b 30.000 436.000 .000 

Density * Ýear Pillai's Trace .577 1.896 150.000 2180.000 .000 

Wilks' Lambda .499 2.154 150.000 2141.321 .000 

Hotelling's Trace .859 2.465 150.000 2152.000 .000 

Roy's Largest Root .673 9.781b 30.000 436.000 .000 

a. Exact statistic 
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b. The statistic is an upper bound on F that yields a lower bound on the significance level. 

c. Design: Intercept + City_Mean + City_max + Road_mean + Road_min + Road_max + Density + Ýear + Density 
* Ýear 

 
Tests of Between-Subjects Effects 

Source Dependent Variable 
Type III Sum of 

Squares df Mean Square F Sig. 

Corrected Model Primary_Forest 4.551E6 66 68961.529 30.608 .000 

Clear_Cut 196894.483b 66 2983.250 5.477 .000 

Other 1.732E6 66 26248.843 15.001 .000 

Secondary_Forest 228407.816d 66 3460.724 8.570 .000 

No_Data 3348.952e 66 50.742 1.097 .292 

Intercept Primary_Forest 1253229.944 1 1253229.944 556.228 .000 

Clear_Cut 4.765 1 4.765 .009 .926 

Other 8335.617 1 8335.617 4.764 .030 

Secondary_Forest 12175.269 1 12175.269 30.150 .000 

No_Data 2.651 1 2.651 .057 .811 

City_Mean Primary_Forest 53580.219 1 53580.219 23.781 .000 

Clear_Cut 689.883 1 689.883 1.267 .261 

Other 9644.996 1 9644.996 5.512 .019 

Secondary_Forest 26615.493 1 26615.493 65.908 .000 

No_Data 103.149 1 103.149 2.231 .136 

City_max Primary_Forest 43035.894 1 43035.894 19.101 .000 

Clear_Cut 900.419 1 900.419 1.653 .199 

Other 6740.620 1 6740.620 3.852 .050 

Secondary_Forest 25300.205 1 25300.205 62.651 .000 

No_Data 90.333 1 90.333 1.953 .163 

Road_mean Primary_Forest 612768.538 1 612768.538 271.969 .000 

Clear_Cut 19036.113 1 19036.113 34.947 .000 

Other 236784.371 1 236784.371 135.320 .000 

Secondary_Forest 26072.165 1 26072.165 64.563 .000 

No_Data .000 1 .000 .000 .998 

Road_min Primary_Forest 395824.273 1 395824.273 175.681 .000 

Clear_Cut 11453.357 1 11453.357 21.026 .000 

Other 153411.540 1 153411.540 87.673 .000 

Secondary_Forest 19320.779 1 19320.779 47.844 .000 

No_Data .114 1 .114 .002 .960 

Road_max Primary_Forest 713605.322 1 713605.322 316.724 .000 

Clear_Cut 23534.705 1 23534.705 43.205 .000 

Other 277182.691 1 277182.691 158.407 .000 
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Tests of Between-Subjects Effects 

Source Dependent Variable 
Type III Sum of 

Squares df Mean Square F Sig. 

Secondary_Forest 26705.414 1 26705.414 66.131 .000 

No_Data .030 1 .030 .001 .980 

Density Primary_Forest 730106.245 1 730106.245 324.047 .000 

Clear_Cut 17728.406 1 17728.406 32.546 .000 

Other 285089.551 1 285089.551 162.926 .000 

Secondary_Forest 22939.219 1 22939.219 56.805 .000 

No_Data 407.738 1 407.738 8.817 .003 

Ýear Primary_Forest 343165.483 30 11438.849 5.077 .000 

Clear_Cut 39247.567 30 1308.252 2.402 .000 

Other 67720.225 30 2257.341 1.290 .143 

Secondary_Forest 49593.724 30 1653.124 4.094 .000 

No_Data 787.660 30 26.255 .568 .970 

Density * Ýear Primary_Forest 315622.834 30 10520.761 4.669 .000 

Clear_Cut 37070.940 30 1235.698 2.269 .000 

Other 67392.911 30 2246.430 1.284 .148 

Secondary_Forest 41807.523 30 1393.584 3.451 .000 

No_Data 1203.933 30 40.131 .868 .670 

Error Primary_Forest 982345.426 436 2253.086   

Clear_Cut 237496.316 436 544.716   

Other 762916.629 436 1749.809   

Secondary_Forest 176068.498 436 403.827   

No_Data 20161.711 436 46.242   

Total Primary_Forest 5.945E7 503    

Clear_Cut 495897.895 503    

Other 3564096.867 503    

Secondary_Forest 510454.321 503    

No_Data 28775.092 503    

Corrected Total Primary_Forest 5533806.308 502    

Clear_Cut 434390.799 502    

Other 2495340.271 502    

Secondary_Forest 404476.315 502    

No_Data 23510.663 502    

a. R Squared = .822 (Adjusted R Squared = .796), b. R Squared = .453 (Adjusted R Squared = .371), c. R Squared = 
.694 (Adjusted R Squared = .648), d. R Squared = .565 (Adjusted R Squared = .499), e. R Squared = .142 (Adjusted R 
Squared = .013) 
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Appendix 10. Distribution land cover types in respect to Pattern 

1. MANOVA (no covariables) 

Type of Pattern 1 Fishbone 267 

2 Other 278 

Multivariate Testsd 

Effect Value F 
Hypothesis 

df Error df Sig. 
Noncent. 

Parameter 
Observed 

Powerb 

Ýear Pillai's Trace .838 3.239 150.000 2415.000 .000 485.919 1.000 

Wilks' Lambda .328 3.999 150.000 2373.732 .000 592.522 1.000 
Hotelling's Trace 1.585 5.045 150.000 2387.000 .000 756.719 1.000 
Roy's Largest Root 1.281 20.617c 30.000 483.000 .000 618.522 1.000 

Pattern Pillai's Trace .196 23.373a 5.000 479.000 .000 116.865 1.000 

Wilks' Lambda .804 23.373a 5.000 479.000 .000 116.865 1.000 
Hotelling's Trace .244 23.373a 5.000 479.000 .000 116.865 1.000 
Roy's Largest Root .244 23.373a 5.000 479.000 .000 116.865 1.000 

Ýear * 
Pattern 

Pillai's Trace .220 .742 150.000 2415.000 .991 111.286 .999 

Wilks' Lambda .795 .750 150.000 2373.732 .989 111.186 .999 
Hotelling's Trace .238 .758 150.000 2387.000 .986 113.671 .999 
Roy's Largest Root .125 2.005c 30.000 483.000 .001 60.143 .999 

a. Exact statistic 

b. Computed using alpha = .05 

c. The statistic is an upper bound on F that yields a lower bound on the significance level. 

d. Design: Intercept + Ýear + Pattern + Ýear * Pattern 

Tests of Between-Subjects Effects 

Source Dependent Variable 
Type III Sum 
of Squares df Mean Square F Sig. 

Noncent. 
Parameter 

Observed 
Powerb 

Ýear Primary_Forest 1980266.023 30 66008.867 14.765 .000 442.945 1.000 

Clear_Cut 68178.121 30 2272.604 6.362 .000 190.857 1.000 
Other 636526.369 30 21217.546 7.097 .000 212.913 1.000 
Secondary_Forest 199687.204 30 6656.240 10.380 .000 311.397 1.000 
No_Data 1927.394 30 64.246 1.377 .091 41.321 .972 

Pattern Primary_Forest 52391.503 1 52391.503 11.719 .001 11.719 .927 

Clear_Cut 10307.109 1 10307.109 28.854 .000 28.854 1.000 
Other 50696.043 1 50696.043 16.957 .000 16.957 .984 
Secondary_Forest 2636.135 1 2636.135 4.111 .043 4.111 .525 
No_Data 177.519 1 177.519 3.806 .052 3.806 .495 

Ýear * 
Pattern 

Primary_Forest 40077.344 30 1335.911 .299 1.000 8.964 .276 

Clear_Cut 10365.926 30 345.531 .967 .518 29.018 .862 
Other 60684.206 30 2022.807 .677 .904 20.298 .664 
Secondary_Forest 9957.847 30 331.928 .518 .985 15.528 .509 
No_Data 1364.832 30 45.494 .975 .506 29.260 .866 

Error Primary_Forest 2159339.454 483 4470.682     
Clear_Cut 172537.580 483 357.221     
Other 1443981.431 483 2989.610     
Secondary_Forest 309729.951 483 641.263     
No_Data 22529.497 483 46.645     

a. R Squared = .490 (Adjusted R Squared = .425) 
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b. Computed using alpha = .05 

c. R Squared = .344 (Adjusted R Squared = .261) 

d. R Squared = .340 (Adjusted R Squared = .257) 

e. R Squared = .408 (Adjusted R Squared = .334) 

f. R Squared = .136 (Adjusted R Squared = .027) 
 

 
Type of Pattern 

Dependent Variable 
Type of 
Pattern Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

Primary_Forest Fishbone 299.152 5.367 288.610 309.695 

Other 279.230 5.260 268.898 289.561 

Clear_Cut Fishbone 8.079 1.318 5.491 10.668 

Other 17.122 1.292 14.585 19.659 

Other Fishbone 58.469 3.838 50.931 66.008 

Other 78.340 3.761 70.952 85.727 

Secondary_Forest Fishbone 28.785 1.894 25.064 32.507 

Other 23.944 1.857 20.297 27.591 

No_Data Fishbone 3.689 .422 2.859 4.518 

Other 2.416 .414 1.603 3.229 

 
 

  
1. Mean Values of Primary Forest according to 

their difference in pattern 
2. Mean Values of Clear Cut according to their 

difference in pattern 
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3. Mean Values of Other (Land Cover) according 

to their difference in pattern 
4. Mean Values of Secondary Forest according 

to their difference in pattern 

 

 

5. Mean Values of No Data  according to their 
difference in pattern 
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2. MANCOVA (using distance to roads and cities as covariables) 

Multivariate Testsc 

Effect Value F Hypothesis df Error df Sig. 

Intercept Pillai's Trace .997 30603.768a 5.000 474.000 .000 

Wilks' Lambda .003 30603.768a 5.000 474.000 .000 

Hotelling's Trace 322.825 30603.768a 5.000 474.000 .000 

Roy's Largest Root 322.825 30603.768a 5.000 474.000 .000 

City_Mean Pillai's Trace .131 14.319a 5.000 474.000 .000 

Wilks' Lambda .869 14.319a 5.000 474.000 .000 

Hotelling's Trace .151 14.319a 5.000 474.000 .000 

Roy's Largest Root .151 14.319a 5.000 474.000 .000 

City_max Pillai's Trace .142 15.710a 5.000 474.000 .000 

Wilks' Lambda .858 15.710a 5.000 474.000 .000 

Hotelling's Trace .166 15.710a 5.000 474.000 .000 

Roy's Largest Root .166 15.710a 5.000 474.000 .000 

Road_mean Pillai's Trace .092 9.630a 5.000 474.000 .000 

Wilks' Lambda .908 9.630a 5.000 474.000 .000 

Hotelling's Trace .102 9.630a 5.000 474.000 .000 

Roy's Largest Root .102 9.630a 5.000 474.000 .000 

Road_min Pillai's Trace .046 4.535a 5.000 474.000 .000 

Wilks' Lambda .954 4.535a 5.000 474.000 .000 

Hotelling's Trace .048 4.535a 5.000 474.000 .000 

Roy's Largest Root .048 4.535a 5.000 474.000 .000 

Road_max Pillai's Trace .169 19.229a 5.000 474.000 .000 

Wilks' Lambda .831 19.229a 5.000 474.000 .000 

Hotelling's Trace .203 19.229a 5.000 474.000 .000 

Roy's Largest Root .203 19.229a 5.000 474.000 .000 

Pattern Pillai's Trace .298 40.218a 5.000 474.000 .000 

Wilks' Lambda .702 40.218a 5.000 474.000 .000 

Hotelling's Trace .424 40.218a 5.000 474.000 .000 

Roy's Largest Root .424 40.218a 5.000 474.000 .000 

Ýear Pillai's Trace .952 3.750 150.000 2390.000 .000 
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Multivariate Testsc 

Effect Value F Hypothesis df Error df Sig. 

Wilks' Lambda .249 5.078 150.000 2349.008 .000 

Hotelling's Trace 2.274 7.161 150.000 2362.000 .000 

Roy's Largest Root 1.950 31.076b 30.000 478.000 .000 

Pattern * Ýear Pillai's Trace .256 .859 150.000 2390.000 .888 

Wilks' Lambda .766 .867 150.000 2349.008 .872 

Hotelling's Trace .278 .876 150.000 2362.000 .854 

Roy's Largest Root .139 2.223b 30.000 478.000 .000 

a. Exact statistic 

b. The statistic is an upper bound on F that yields a lower bound on the significance level. 

c. Design: Intercept + City_Mean + City_max + Road_mean + Road_min + Road_max + Pattern + Ýear + Pattern 

* Ýear 

 
Tests of Between-Subjects Effects 

Source Dependent Variable 
Type III Sum of 
Squares df Mean Square F Sig. 

Corrected Model Primary_Forest 3.007E6 66 45561.643 17.807 .000 

Clear_Cut 103464.076b 66 1567.638 4.698 .000 

Other 1.204E6 66 18248.503 8.861 .000 

Secondary_Forest 261897.603d 66 3968.145 7.250 .000 

No_Data 4002.791e 66 60.648 1.313 .059 

Intercept Primary_Forest 479950.757 1 479950.757 187.584 .000 

Clear_Cut 7178.040 1 7178.040 21.513 .000 

Other 340116.943 1 340116.943 165.146 .000 

Secondary_Forest 262.967 1 262.967 .480 .489 

No_Data 7.943 1 7.943 .172 .679 

City_Mean Primary_Forest 124699.507 1 124699.507 48.738 .000 

Clear_Cut 3028.373 1 3028.373 9.076 .003 

Other 135443.281 1 135443.281 65.766 .000 

Secondary_Forest 3365.844 1 3365.844 6.149 .013 

No_Data 223.736 1 223.736 4.846 .028 

City_max Primary_Forest 142504.796 1 142504.796 55.697 .000 

Clear_Cut 3062.873 1 3062.873 9.180 .003 

Other 148628.636 1 148628.636 72.168 .000 

Secondary_Forest 2891.346 1 2891.346 5.282 .022 

No_Data 218.256 1 218.256 4.727 .030 
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Tests of Between-Subjects Effects 

Source Dependent Variable 
Type III Sum of 
Squares df Mean Square F Sig. 

Road_mean Primary_Forest 109517.476 1 109517.476 42.804 .000 

Clear_Cut 4650.103 1 4650.103 13.937 .000 

Other 47571.411 1 47571.411 23.099 .000 

Secondary_Forest 3101.401 1 3101.401 5.666 .018 

No_Data 86.634 1 86.634 1.876 .171 

Road_min Primary_Forest 21771.716 1 21771.716 8.509 .004 

Clear_Cut 4.289 1 4.289 .013 .910 

Other 7010.412 1 7010.412 3.404 .066 

Secondary_Forest 1916.918 1 1916.918 3.502 .062 

No_Data 163.190 1 163.190 3.534 .061 

Road_max Primary_Forest 213822.778 1 213822.778 83.571 .000 

Clear_Cut 5446.981 1 5446.981 16.325 .000 

Other 83293.216 1 83293.216 40.444 .000 

Secondary_Forest 9425.915 1 9425.915 17.221 .000 

No_Data 48.007 1 48.007 1.040 .308 

Pattern Primary_Forest 53854.650 1 53854.650 21.049 .000 

Clear_Cut 12582.696 1 12582.696 37.711 .000 

Other 57225.482 1 57225.482 27.786 .000 

Secondary_Forest 4119.209 1 4119.209 7.526 .006 

No_Data 225.303 1 225.303 4.880 .028 

Ýear Primary_Forest 1949500.910 30 64983.364 25.398 .000 

Clear_Cut 66745.658 30 2224.855 6.668 .000 

Other 625463.809 30 20848.794 10.123 .000 

Secondary_Forest 199899.576 30 6663.319 12.174 .000 

No_Data 1888.799 30 62.960 1.364 .098 

Pattern * Ýear Primary_Forest 53114.036 30 1770.468 .692 .891 

Clear_Cut 9909.258 30 330.309 .990 .484 

Other 77048.625 30 2568.287 1.247 .175 

Secondary_Forest 9412.516 30 313.751 .573 .968 

No_Data 1365.630 30 45.521 .986 .490 

Error Primary_Forest 1223006.141 478 2558.590   

Clear_Cut 159490.593 478 333.662   

Other 984435.394 478 2059.488   

Secondary_Forest 261638.788 478 547.361   

No_Data 22070.824 478 46.173   

Total Primary_Forest 4.975E7 545    
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Tests of Between-Subjects Effects 

Source Dependent Variable 
Type III Sum of 
Squares df Mean Square F Sig. 

Clear_Cut 350746.248 545    

Other 4753962.121 545    

Secondary_Forest 900952.568 545    

No_Data 31108.281 545    

Corrected Total Primary_Forest 4230074.568 544    

Clear_Cut 262954.669 544    

Other 2188836.607 544    

Secondary_Forest 523536.390 544    

No_Data 26073.615 544    

a. R Squared = .711 (Adjusted R Squared = .671) 

b. R Squared = .393 (Adjusted R Squared = .310) 

c. R Squared = .550 (Adjusted R Squared = .488) 

d. R Squared = .500 (Adjusted R Squared = .431) 

e. R Squared = .154 (Adjusted R Squared = .037) 

 


