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Summary

The principal predictor for deforestation of primary forests in the Amazon is distance to roads. Considering
the increasing ecological importance of secondary forests (which cover from 30 to 50% of the deforested
area), the present research analysed the influence of road presence in secondary forest regrowth in the
Amazon. Using remote sensing, | studied the land use classification of 40 plots of 400 km? in the States of
Pard, Rondo6nia and Amazonas, during a 32 year period from 1984 to 2015.

My results indicate that road presence influences secondary forest regrowth. Most of the land use change
(deforestation) occurs in areas closer to the road (within 30 km) and with high road density, where the
percentage of area covered by secondary forest remained at around 20% during the period studied.
However, an area located further than 30 km from roads has three times this probability to remain as a
secondary forest, at a distance farther 50 km this probability is four times, and areas with low road density
have three to four times more secondary forests cover. While the influence of type of road pattern
(Fishbone or Other) was not statistically significant.
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Influence of Road Presence in
Secondary Forest Regrowth in the Amazon

1. INTRODUCTION

1.1. Background

The Amazon basin represents 60% of the remaining tropical rainforest in the world (Fearnside 1999).
It is one of the world’s most biodiverse ecoregions with thousands of unique species of plants and
animals (WWF 2015), and plays vital roles in the regulation of regional hydrology and climate (Ewers
and Laurance 2006; Fearnside 1999; Fearnside 2008; Laurance et al. 2002; Yoshikawa and Sanga-
Ngoie 2011). At the same time, the Amazon represents one of the largest carbon storages in the
world (Brienen et al. 2015; T. R. Feldpausch et al. 2012; Houghton et al. 2000), storing around 150 —
200 Pg C in living biomass and soils (T. R. Feldpausch et al. 2012).

In Brazil, it is located 69% of the Amazon biome (IBGE 2015a). The government recognizes an area
of 5.1 million km?, 59% of Brazil’s territory, as the “Legal Amazon” (Federative Republic of Brazil
1966; IBGE 2015b). However, 20% of the original area of the Brazilian Amazon tropical forests has
already been deforested (Butler 2014; INPE 2015), for timber and conversion into agriculture, mainly
for large - scale soybean production and cattle pastures (Colson et al. 2009; Davidson and Martinelli
2009; Ewers and Laurance 2006; Yoshikawa and Sanga-Ngoie 2011). Once the land use changes from
primary forest to agriculture, tropical soils do not remain productive for a long period of time
(Chazdon 2003; Luizdo et al. 2009), and they are abandoned, later forming secondary forests
(Davidson and Martinelli 2009; Hirsch et al. 2004).

The Brazilian government continually monitors deforestation (INPE 2015). However, once an area is
deforested it is only considered either an agricultural or degraded area (IBGE 2015a; Yoshikawa and
Sanga-Ngoie 2011), and the extension of secondary forests is not assessed in official statistics (Neeff
etal. 2006). Nevertheless, it is estimated that 30 to 50% of cleared land is in some stage of secondary
forest succession (Hirsch et al. 2004). This is more than 16 million ha which represents a fivefold
increase from that area in 1978 (Neeff et al. 2006).

Secondary succession is an important process in the Amazon with implications for the sustainable
regional agricultural and pasture activities, (Fearnside 2005; Wright and Muller-Landau 2006).
Secondary forests buffer the net loss of forest cover, are key sources of plant propagules and
facilitate movements of animal species, many of them seed dispersers and pollinators (Chazdon
2003; Groeneveld et al. 2009; Santos et al. 2014). Secondary forests play an increasingly important
role as complementary conservation services, for example: reservoirs of genetic diversity, stocks of
biomass, carbon and nutrients, and moderators of hydrologic cycles (Perz and Skole 2003b; Perz and
Skole 2003a; Vieira et al. 2003).

However, the dynamics of secondary forest regrowth have been poorly studied. Secondary forests
biomass accumulates more slowly, and even 70-year-old secondary forests are still distinguishable
from primary forests (Vieira et al. 2003). Secondary forests become far more vulnerable to wildfires
(Cochrane and Laurance 2002), droughts (Vasconcelos et al. 2012), predatory logging (D. C. Nepstad
et al. 1999), hunting (Peres 2001) and other degrading activities (Laurance et al. 2002).

The primary determinant of land use change in the Amazon is access through roads (Laurance et al.
2002; Soares-Filho et al. 2004). Roads open the forest to exploitative activities such as logging and
hunting, leading to new land colonization (Barber et al. 2014; Ewers and Laurance 2006). It is
estimated that 95% of deforestation in the Brazilian Amazon occurs within 5.5 km of a road (Barber
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et al. 2014). As a consequence of deforestation and increase of roads in the Brazilian Amazon, the
proportion of forest further than 1 km from the forest edge has decreased from 90% in 1970 to 75%
(Haddad et al. 2015). Nearly 75,000 km of officially constructed roads intersect the Amazon
rainforest (IBGE 2015a), with an additional 190,500 km of the unofficial road network, which are
rapidly growing without any government oversight or incentives (Barber et al. 2014; Laurance and
Balmford 2013). Construction of roads through rainforest is widely recognized as a primary cause of
ecological degradation, affecting vegetation, animals, air and water quality, and even regional
hydrology (Forman et al. 2003; Jaeger et al. 2005). Roads induce fragmentation, isolating endemic
species, interfering with the genetic flow and reducing biodiversity (Epps et al. 2005; Haddad et al.
2015), enhance the spread of invasive species (Forman et al. 2003; Gelbard and Belnap 2003),
increase human access to pristine ecosystems (Jaeger et al. 2005), and increase fire risk (D. Nepstad
et al. 2001; D. C. Nepstad et al. 1999). Also, roads promote edge-related loss of forest carbon up to
150 million ton year™ C, beyond that from deforestation alone (Laurance et al. 1997).

Considering roads are the principal determinants of deforestation, and driver of land use dynamics
in the Amazon, they should also exert a major effect in secondary forest regrowth. Because, they
are susceptible to be deforested again interrupting the vegetation regrowth. Furthermore, it is
considered secondary forest are in a four times greater risk of deforestation than an intact forest
(Asner et al. 2006), because settlers in the Amazon tend to not considered them as natural forests
(Diniz et al., 2013).

The present thesis research has the objective to analyse whether there is an influence of roads in
the remotely-sensed secondary forest regrowth dynamics.

1.2. Problem Description

Secondary forests have an increasing ecological importance in the Amazon considering the steady
rates of deforestation. It is estimated that between 30 to 50% of the deforested area is covered by
secondary forest (Hirsch et al. 2004). Distance to roads has been identified as the most important
predictor of deforestation (Barber et al., 2014; Laurance et al., 2002).

However, currently there are no studies on the influence of roads to secondary forests. This is
important because secondary forest regrowth dynamics should be studied, so regrowth is
encouraged to develop mature forests. Consequently secondary forest could fulfil better
conservation services in the Amazon and this conservation efforts should be coordinated with the
development of new road construction projects.

1.3. State of the Art

Ecological succession is defined as the process of change of species structure in an ecological
community over time. Succession initiated by some form of disturbance on a community such as
fire or deforestation, is called secondary succession. In the case of tropical forests, like the Amazon,
succession following fire and deforestation has been studied for more than 30 years (Acevedo L
1981; Fox 1976).

Deforestation in the Amazon is mainly due to the farming system known as slash and burn. Which
involves the cutting and burning of forests to create fields or pastures. Livestock production has
been the dominantland use because requires little labour, generates decent profits, and grass grows
easily in the poor Amazon soil (Davidson and Martinelli 2009; D. C. Nepstad et al. 1999). Once
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productivity of pastures decline, settlers tend to leave the areas ‘resting’ for some years, aiming at
natural soil recovery through organic matter and nutrient accumulation (Diniz et al. 2013; Ted R.
Feldpausch et al. 2004).

Settlers do not consider successional areas as forest, but rather as potential areas to be cropped in
the future and, therefore, they are under high risk of deforestation (Diniz et al., 2013). The
probability of logging secondary forests between 5 to 25 km away from roads is two to four times
greater than that of an intact forest in the same area (Asner et al. 2006), and in some areas the re-
clearing of secondary forests occurs on average every 5 years (Neeff et al. 2006). These are
considered the most important reasons for lack of large-statured, advanced secondary forests in the
Amazon region (Davidson and Martinelli 2009).

Nevertheless, there is an ongoing transitional process of recovery in the Amazon forest (Yoshikawa
and Sanga-Ngoie 2011). Remotely sensed land cover maps have been developed for the Amazon
(Barber et al. 2014; Yoshikawa and Sanga-Ngoie 2011), and provide consistent spatial data on the
extent and age class distribution of tropical secondary forests (Carreiras et al. 2014; Diniz et al. 2013;
Neeff et al. 2006; Vieira et al. 2003).

Roads and their associated vehicular traffic have mainly adverse impacts to the natural environment
(Forman and Alexander 1998; Forman et al. 2003). In the case of secondary forests, vegetation
succession is affected by fragmentation and consequent edge effects (Laurance et al. 2011), which
also are effects by roads (Forman et al. 2003). Forest fragmentation impairs key ecosystem functions
by decreasing biomass and altering nutrient cycles (Haddad et al., 2015). The loss of area, increase
in isolation, and greater exposure to human land uses along edges (edge-effect) initiate long-term
changes to the structure and function of the remaining fragments (Lindenmayer and Fischer 2006).
Fragmentation alters community composition, reducing biodiversity and richness of species
(Haddad et al. 2015; Laurance et al. 1997). Roads also provide invasion corridors for seeds of invasive
non-native species (Forman and Alexander 1998; Forman et al. 2003; Laurance, Goosem, and
Laurance 2009, 200), Other edge effects include increased desiccation stress, windshear, and wind
turbulence, increasing rates of tree mortality and damage (Laurance 2000; Laurance et al. 2001; D.
Nepstad et al. 2001).

The principal parameters to define the influence of roads on forests, are distance to roads, and their
spatial configuration in terms of density and type of pattern formed by the roads (Forman et al.
2003). However, there are no studies relating these parameters with secondary forests.

The distance to which different edge effects affect into forest fragments varies widely, ranging from
10 to 300 m in primary forests and considerably further (at least 2—3 km) in areas of the Amazon
where edge-related fires are common (Cochrane and Laurance 2002; Laurance et al. 2011).

Road density is the average total road length per unit area of landscape (kilometres of road per
square kilometres). Road density strongly affects spatial effects on the ecosystem because it
increases human access. Many ecological phenomena affecting wildlife and biodiversity have been
related to road density (Forman and Alexander 1998; Forman et al. 2003). Road density is inversely
related to “effective mesh size” (Forman et al. 2003). “Effective mesh size” measures ecosystem
fragmentation, in terms of the likelihood that two randomly chosen points in a region may be
connected, converted into the size of an area (Jaeger 2000; Moser et al. 2007). However, this metric
has not been calculated for the Amazon or other tropical forests.

Road networks may take an infinity variety of patterns, considering natural landscapes are
heterogeneous and irregular that influence the construction of roads (Forman et al. 2003). However,
the most common road pattern in the Amazon is the fishbone, which is defined as a straight principal
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road (commonly a highway) from which perpendicular smaller roads originate. The design of these
roads was made by the government. Other road patterns, like radial, dendritic or irregular, normally
follow the topography of the region. Studies suggest that the fishbone pattern increases rainfall in
a mesoscale of 100x100 km and promotes regeneration of the forest (Garcia-Carreras and Parker
2011; Roy 2009). Therefore this pattern is considered less detrimental for primary forest, given that
connectivity among the remnant forest patches is preserved (Filho and Metzger 2006). Other
patterns may result in less fragmentation of the forests (Soler, Escada, and Verburg 2009).

1.4. Research Aim and Research Questions

The aim of my thesis research is to determine if an influence of roads in secondary forest regrowth
dynamics in the Amazon exists.

The central research question is:
Does road presence influence secondary forest regrowth in the Amazon?
The following sub questions represent the logical steps to answer the main question of this research:

e Is secondary forest regrowth influenced by road presence in terms of:
o SQ1. Distance to roads?
o SQ2. Road density?
o SQ3. Spatial configuration of the roads?

The present research tests the hypothesis that road presence influences the dynamics of secondary
forest regrowth of the Amazon. | expect that the probability of forest regrowth is inversely
correlated with the 1) distance, 2) higher density and 3) other patterns than fishbone (dendritic,
radial or rectangular) of roads.

1.5. Relevance

Even though the secondary forest play an important ecological role in the Amazon, the dynamics of
secondary forest regrowth are still poorly understood. Although there have been studies that
analyse area and characteristics of secondary forest regrowth, using field measurements and
remote sensing methods, no study has analysed the influence of roads on secondary forests.

The results of the present research will help the stakeholders in the decision making process for new
road construction projects, considering their effect on secondary forests.



2. METHODS
2.1. Study Area

The study was carried out in the States of Para, Rond6nia and Amazonas, which are located in the
“Brazilian Legal Amazon” (Figure 1). These states were selected because they all form part of the
Amazon rainforest biome, have similar ecological characteristics, while having different levels of
deforestation, population density and economic activities. According to statistical data, Rondonia is
the state with higher levels of deforestation in the Legal Amazon (Butler 2014), Para is the most
populous state of the Northern Brazil, and Amazonas is the least populous state with lower
deforestation levels (IBGE 2015a). The total area of these states covers more than 3 million km?
(IBGE 2015b). This region includes several protected areas, agrarian colonization projects and urban
areas. The region has a humid tropical climate, flat topography, predominantly lower than 400 m
above sea level. The area is connected by highways, state and municipal roads, as well as a network
of unofficial and illegal roads (IBGE 2015b; IBGE 2015b).
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Figure 1. Distribution of the study plots (red squares) in the study area (states of Para, Rondénia
and Amazonas), with respect to the Brazilian Legal Amazon

2.2. Sampling design

To study the effect of roads on secondary forest regrowth | established a set of 40 plots, using a
stratified sampling strategy. The selection of the plots was done based on the images available in
Google Earth by June 2015 (Google 2015), to posteriorly check the availability of suitable historic
satellite images.

| chose a plot size of 20 x 20 km because it was considered representative area of forest
fragmentation in the Amazon. “Effective mesh size”, which is the most common metric to measure
ecosystem fragmentation, has not been measured for the Amazon. Therefore, this plot size was
based on previous research where several studies (Baldi and Paruelo 2008; Jaeger 2000; Jaeger
2007; Moser et al. 2007) suggested an effective mesh size of 400 km?.



Plots were assigned one of four categories, high and low road density and either fishbone or other
road pattern (Figure 2).

_ Distance
D=Xkm to Roads Parameters
Fosd DenSity

( High Low ) (Fish bone other )

Figure 2. Characteristics of road presence that could affect secondary forest regrowth (Based on
(Forman et al. 2003)

Distance to roads has been identified as the principal predictor of deforestation in the Amazon, and
95% of deforestation occurs in the first 5 km away from a road (Barber et al. 2014). Therefore to
qguantify the distance to roads | used the road network present in the Open Street Map
crowdsourcing database (OpenStreetMap 2015). The Open Street Map database only includes the
principal roads, mainly highways, as updated to their database by July 2015, and therefore does not
allow testing the effects of unofficial and small roads on secondary forest. This choice was done
because | could not get access to the map of unofficial network of roads, digitalized by Imazon using
the methodology of (Brand&o and Souza 2006), which used in the research of (Barber et al. 2014). |
also chose not to use the global database of roads map (CIESIN and ITOS 2013), because the scale
of this road dataset is not comparable to that of the satellite images, affecting its accuracy. The
Open Street map road data set was clipped to the extent of my 40 plots and for each plot | used the
“Euclidean distance” tool in ArcGIS (ESRI 2015), which gives the distance from each cell in the raster
image to the closest road in the map (ESRI 2015). | also calculated the distance to cities, because
cities include small municipal roads and also human settlements might influence land use change.

Road density is defined as the average road length per unit area of landscape (Forman et al. 2003).
In the present research | only used two extremes of low and high road density based on estimates
according to the road network shown in the images of Google Earth currently available. This was
done because to measure density it is necessary to have the complete road map to measure length
of roads per area. Also, road density of the plots would change during the temporal analysis making
the classification in categories more difficult.

As detailed above, road patterns may have different effects on secondary forest regrowth. |
considered two Road Pattern categories: fishbone and other (for example radial, rectangular,
dendritic).

| selected 40 plots distributed in the study area, according to their current relation to roads. |
selected plots that: were not crossed by rivers or lakes, were uniform in their characteristics, had
similar Euclidian distances to roads and cities, and were distributed across the study area (Figure 3).
Plots were then chosen based on their density (high (HD) and low (LD)), and spatial configuration
(fishbone pattern (FP) and other pattern (OP)), 10 plots in each case. A complete list of the
geographic coordinates of the plots is present in Appendix 1.



Parameter of
Roads

» Low to null
presence of roads

» Vegetation mostly
formed by forests
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20x20
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Google Earth 2015

» High presence
(density) of roads

» Different land uses
including forests

» Not crossed by rivers or lakes

» Uniform characteristics in all
the area of the plot.

» Relatively similar distances
from roads (not too isolated)

» Equally distributed in the
Study Area (states of Para,
Amazonas, Rondonia)

» Perpendicular &
straight roads
(fishbone pattern)

» Different land uses
including forests

» Any other pattern
than fishbane
(radial, dendritic etc)

» Different land uses
including forests

Figure 3. Decision tree for the sampling of the plots

2.3. Landsat Images

| chose the Landsat satellite images for this study because Landsat program is the largest program
for acquisition of imagery of Earth from space, having images from the Amazon since 1984. These
satellite images have a have a spatial resolution of 30 m, and a temporal resolution (time between
imagery collection periods)of 16 days. Landsat offers already processed images, available in the
user-friendly database, that are freely available to the public (NASA Official 2015; USGS 2014a).

Specifically | used Landsat Surface Reflectance images, which are generated by a specialized
software of NASA to apply an atmospheric correction to the raw-data satellite images, taking into
account water vapor, ozone, geopotential height, aerosol optical thickness, and digital elevation.
Therefore, surface reflectance images are processed images that are better suitable for land surface
change studies (USGS 2015b; USGS 2014a).

The study plots are covered by 11 Landsat scenes. For each scene | downloaded surface reflectance
data from the United States Geographical Survey website (http://earthexplorer.usgs.gov/) (USGS
2015a), for the period between 1984 to 2015. Landsat scenes were clipped to the study plots and
the following analysis refers to a total of 1280 individual images (40 plots over 32 years).

| used annual images of between the years 1984 to 2011 from Landsat 5 thematic mapper (TM) and
Landsat 7 enhanced thematic mapper (ETM+) and from 2013 to 2015 from Landsat 8 (operational
land imager (OLI). In 2003 there was a failure in the Scan Line Corrector (SLC) of the Landsat 7, which
since then traced a zig-zag pattern, generating images with an increased area and data gaps(USGS
2013). | chose not to use these images and since these were the only available for 2012, this year
was omitted.

As far as possible, | tried to use images that were one year apart, to analyse the annual variation of
the vegetation and keep the same climatic conditions. In general, | selected only images with less
than 10% cloud cover, as clouds limit visibility. | chose images from the sunnier dry season (June to
November), because during that period there is minimal cloud cover and there is increased forest
productivity that enhances the difference between primary forest with other types of land use
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(Huete et al. 2006; Martins et al. 2015). However, 34 images (plots per year) were not available, and
these were omitted from this study. This represents only 5.8% of the images were not available for
the study, not affecting the analysis of this research. The complete list of images used are presented
in Table 1.

Table 1. Landsat images (scenes per month), in respect to the plots.
Type of image Landsat available: TM (normal format), ETM+ (bold), OLI (italics).

Scene|P|0ts 84185(86(87/88[89[90191(92]93|94(95[96|97[98[99[00(01]|02|03[04[05/06(07|08[09(10]11[12[13][14[15
001/066( HD4, OP3, LD5 | jul [aug| jul | jul | jul laug| jul | jul | jul | jul | jul | jul | jul | jul | jul Jjul |jul |jul Jjul | jul | jul | al | ol ] ol ful | ul ful fun fjun {jur {ju
FP7, FP8, LD3, ) . o] . R .
227/063 LD4 auglaug|nov]oct| jul Jauglaug| jul [ jul [may jul | jul | jul | jul |jun|auglaug] jul | jul | jul | jul | jul [aug]| jul | jul | jul | jul | jul |jul sep |jul
HD5, FP10,
227/065, junlaug| jul [jun] jul |auglaug| jul | jul |aug] jul | jul | jul [jun| jul Jjul jul [jul [ jul | jul | jul |jun|jun|jul | jul | jul | jul |jul faug sep |jun
OP6, LD9
228/061 oct| jul | jul | jul |sep|nov]aug|sep] jul | jul | jul | jun| jul |aug| jul |aug] jul [jul | jul [jul [jul pug|jul [jul |jul pug] jul |jul Eeplaug
HD10, OP9, LD8
HD9, FP9, OP5, | | . . ] . o ) oo .
228/063 LD10 jul | jul laug| jul | jul |seplaug] jul |jun] jul [aug|jun]oct| jul | jul | jul laughugpug| jul [aug] jul |jun|jun] jul | jul | jul |aug]jul jjun faug
230/062 HD2, HD3 jul Jaug|aug|sep|seplaugl|aug| jul |sep|oct|aug|oct|jun]aug|seplaugpugljul | jul |auglaug|aug jul Jaug jul pug|jul jun
231/062 HD1, FP6, LD1 |aug| jul [aug| jul [auglaug|aug|aug| jul | jul | jul [seplaug] jul | jul [ jul [jun|augpug] jul |sep| jul | jul | jul | jul | jul | jul Jaug|jul {jul |jul |jul
231/065( FP1, OP1, LD2 | jul [ jul [jul | jul [ jul | jul | jul | jul | jul Jaug| jul |aug] jul | jul | jul | jul | jul [jul [jul | ol | ol f ol {ul | ul f ol {un fun | un fjul pug [jur fun
231/067| HD7, OP4, LD7 [aug| jul [aug| jul | jul | jul |jun] jul | jun| jul | jul Jaug] jul | jul | jul | jul | jul |augliun| jul | jul | jul | jul |jul | jul faugjun| jul [jul faug [jul |jul
HD6, HD8, FP4,
232/067 jun] jul | jut | jut | jut | jul fapr] jul | jut | an | ut | jut | jul | jun ] jun ] jul ] jul | junfaug| jul lauglaug] jul |jun| jul | jul [aug] jul |jul |jul |jul fjun
OP10, OP2,
233/067 FP2, FP3, FPS, jul [sep] jul | jul | jul | jul | jul jul | jul | jul | jut ] jul | jul | ul | jul | jul Jaug|jul | jul | jul | jal | jul | gl | jul | jul | jal | jul fjul Jun fjun jjun
OP8, LD6

:llmage with <10% of cloud coverage not available in the USGS database
|:|Only images with gaps (ETM+SLC-off data) available

2.4. Image Classification

Secondary forest is defined as vegetation succession in the tropical forest of the Brazilian Amazon,
in which forest has regenerated on land that has been previously used for agriculture or as cattle
pasture (Neeff et al., 2006).

It is widely recognized that remote sensing is among the best methods for consistently quantifying
areas under different forest cover (Steininger, 2000). Land cover change can be analysed through
time-series comparison of image classifications (Neeff et al. 2006).

Landsat 5, 7 and 8 satellites collect spatial information over 7 spectral bands, with different
wavelength (USGS 2014a).

Table 2. Wavelengths according to bands of Landsat 5, 7 y 8 (USGS 2014b)

Colour Landsat5 & 7 | Wavelength | Landsat8 | Wavelength

# Band (um) # Band (um)
1 0.43-0.45
Blue (B) 1 0.45-0.52 2 0.45-0.51
Green (G) 2 0.52-0.60 3 0.53-0.59
Red (R) 3 0.63-0.69 4 0.64-0.67
Near Infrared 4 0.77-0.90 5 0.85-0.88
Short wave Infrared 1 5 1.55-1.75 6 1.57-1.65
Short wave Infrared 2 7 2.09-2.35 7 2.11-2.29




| used the true colour and the colour infrared composites to identify and differentiate forests. The
natural colour composite (RGB) serves for recognizing, and classifying most of the natural features.
The colour infrared composite (CIR) is that where green wavelength is displayed in blue, red is
displayed in green, and near infrared is displayed in red. Colour infrared composite serves to
differentiate Secondary forest from Primary (mature) forest because secondary forest regrowth is
recognizable in a brighter red colour, as suggested by (Carreiras et al. 2014; Neeff et al. 2006; Soler,
Escada, and Verburg 2009) (Figure 4).

a) b)

Figure 4. Difference between Landsat satellite images a) true colour composite, and b) colour
infrared composite

There are several challenges in discriminating It must be noted that several studies carried out in
the Amazon have acknowledged some issues in discriminating secondary and primary forest in the
Amazon, especially when forest is older than 15 years. This is largely because of spectral similarities
between different successional stages, considering that secondary forest is a transitional class
between other vegetation (agriculture or pasture) and primary or mature forest (Carreiras et al.
2014; Neeff et al. 2006).

Other reason is because the specific characteristics of secondary forests like vegetation structure
and species composition and its consequent accumulation of biomass, may vary across regions and
are influenced by several factors like differences in edaphic and climatic conditions, history of land
use, proximity to seed sources, and management practices such as the frequency of burning and
grazing intensity (Davidson and Martinelli 2009; Rebel et al. 2001; Vieira et al. 2003).

| classified Landsat satellite images using the Spatial Analysis tools in ArcGIS v.10.3 (ESRI 2014). | ran
Supervised Image Classification, based on the maximum likelihood algorithms (ESRI 2015).
Supervised image classification is a multistep process that follows the workflow presented in Figure

5.
Data Exploration & Training Samples Signature File Apply
Preprocessing Classification
Collecting TS

« Create multi-band « Evaluating TS « Examine SF

RGB image « Editing classes « Editing SF
* Check distribution » Create Signature Post-Classification
« Stretch bands File Processing

Figure 5. Supervised image classification workflow (ESRI 2015)

First | created a true colour composite, checked that all the bands have a normal distribution. This
because the supervised image classification analysis is based on the assumption that the band data
and the training sample data follow normal distribution in order that the range of values in each
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band is considered equally. Thus if the value range of one band was too small (or too large) relative
to the other bands | stretched the bands using the Spatial Analyst toolbox (ESRI 2015).

Second, for every scene | collected representative training samples, which are specific areas that
represent the different types of land use or forest cover to be analysed. In this case, | chose four
classes: Primary Forest, Clear Cut (recently deforested), Other (pastures, agriculture, and all other
land covers), and Secondary Forest. The change between these classes represents dynamics of land
use in the Amazon (Figure 6).

Agriculture, etc)

Other (Pndary
Forests

Figure 6. Dynamics of Land Use in the Amazon

The selected training samples were evaluated to assess whether they would be representative (not
intersect or overlap with other classes). For this, | used the histogram and dendogram tools.

During the evaluation of the training samples, | noticed the presence of other land use classes that
were intersecting and overlapping with the initial four classes. For example | considered urban areas
(more reflective), clouds, shadows of clouds, and clouded areas which could still be recognized as
belonging to a certain class (i.e. clouded primary forest). | also grouped areas that do not support
forest (water bodies) with areas of cloud and cloud shadow as “no data”. Therefore it was necessary
to add them for the image classification.

The final classification had the land cover classes, which are summarized in Figure 7:

1) Primary Forest (P.F.) comprises primary forest and clouded forest areas,

2) Clear Cut (C.C.), recently deforested areas without vegetation or burned,

3) Other (Oth.), comprises pasture, agricultural crops, urban areas, or other clouded areas,
4) Secondary Forest (S.F.) secondary forest and clouded secondary forest,

5) No Data (N.D.) areas covered by clouds, shadows or water and therefore not relevant for the land
use and cover change dynamics.
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Figure 7. Classes of land use for image classification of Landsat images

| created a signature file for the selected training points (Figure 5), which was examined prior to
being used. | then performed a classification using the Maximum Likelihood Classification tool,
which assigns each pixel of the image to one of the different classes based on the means and
variances of each signature (Ahmad 2012; Lu et al. 2012; Strahler 1980). The maximum likelihood
classification is still an important method for providing reasonably good accuracy, because even
though there are other classification algorithms available, they often require more time to achieve
parametric optimization and require high spatial resolution images (Lu et al. 2012).

The classification was improved by the post-classification processing, which filters isolated pixels
and cleans boundaries. The final image classification presents areas with cleaner borders. | then
calculated the area (in square kilometres) of the different classes of land use in the final
classification.

2.5. Data Quality Assessment

| based the accuracy assessment of the time-series classification in the methodology of (Carreiras et
al. 2014), Foody (2009), and (Vieira et al. 2003). For each individual scene of the Landsat images,
test points were generated for each class, using the original true colour composite image. It is not
possible to use the same points used as training points for the classification, because it will resultin
a sampling error for the assessment.

An error matrix was derived by overlaying the test points on the classified image, and comparing
the field observations with the classification for each test point. | calculated the omission and
commission errors, which represent the percentage of false negative and false positive points,
respectively (Gallego 2004). False negatives represent points that were not correctly classified with
the right class and false positives represent points that were wrongly attributed a certain class.

To further evaluate the quality of the classification, | used two indexes. First, | used the Overall
Accuracy that quantifies the number of points correctly classified divided with the total of points
used in the classification. Second, | used the Kappa coefficient, which quantifies the overall accuracy
of the classification relative to that expected by chance (Czaplewski, 2000 in (Vieira et al. 2003);
(Stehman 1996). According to the following equation:

__observed accuracy — chance agreement (N Xy X — Xpc(Xpeq * x1))

1 — chance agreement (N2 =Y Oy * X48))
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http://help.arcgis.com/en/arcgisdesktop/10.0/help/009z/009z000000pp000000.htm

Where k = kappa, N = total number of pixels in all ground classes, X.; Xy, = the sum of the matrix
diagonal classes, + = summation over the index, x;, = the sum of the ground truth pixels in that
class, and x, = the sum of the classified pixels in that class (Congalton 1991; Congalton and Mead
1983; Stehman 1996). This indicates the percentage of error avoided in comparison to what a
completely random classification would generate (Vieira et al. 2003).

Therefore, for further statistical analysis | decided not to take into account individual plots with
more than 10% of cloud coverage. In total, these are 173 individual images (plot per year) from the
different time series, besides the scenes omitted for lack of availability in the USGS database. The
complete list of plots and years that were eliminated of the image classification because of presence
of cloud coverage or shadows (no data) is presented in Appendix 2.

2.6. Statistical Analysis

| analysed the relation between the Euclidean distance map to the roads and cities in respect to
plots, using the spatial analysis in ArcGIS to separate the different classes according to the image
classification. The measures obtained are the total statistics (one measure): mean, minimum, and
maximum distance. Later, | analysed the relation between type of plot (Low and High Density, and
Fishbone and Other pattern) and the distance to roads and cities, | used the “One-Way Analysis of
Variance” (ANOVA). This test compares the difference in mean scores between multiple groups
(Rencher 2012).

To further analyse the image classification in respect to distance, | classified all the time-series
according to the distance to roads and cities in eight categories (<5, 5 — 10, 10-20, 20-30, 30-40, 40-
50, 50-100 and > 100 km). | tested the hypothesis, that there is a statistically significant difference
in S.F. between the different distances to roads and cities. The most adequate statistical analysis to
analyse and compare this change in areas over the time-series is “Multivariate Analysis of Variance”
(MANOVA) because the dependent variables (classes of land use) are correlated, therefore the
change of one land use affects the distribution or others. MANOVA compares the difference in mean
scores between multiple groups, using multiple variables (Rencher 2012).

| analysed the change of percentage of land cover in the different plots the areas of the classes of
land use (in km?). The response of dependent variable are the areas of different classes of land use
(P.F., C.C., Oth., S.F. and N.D.). | tested the hypothesis, that there is a statistically significant
difference in S.F. between the plots with different road densities (Low and High) and road pattern
(Fishbone and Other), using MANOVA.

| also used “Multivariate Analysis of Covariance” (MANCOVA) to consider if the influence of distance
to roads and cities (in terms of mean, minimum and maximum distance) affects the independent
variables (density and pattern). The purpose of this analysis is to 'factor out' the possible error
introduced by these covariables in the analysis (Rencher 2012).

ANOVA, MANOVA and MANCOVA analyses were ran in SPSS version 17 (SPSS Inc. 2008), considering
a 95% of confidence for testing the hypothesis. The result statistics for both analysis are expressed
in four different multivariate tests analysis: Pillai's Trace, Wilks' Lambda, Hotelling's Trace, and Roy's
Largest Root, because each test has its own associated F ratio. In cases where their P values differ,
Pillai’s trace is used because it is considered the most powerful and robust of the four (Carey 1998).

A P value less than 0.05 indicates that the mean of the variables are different and therefore
corroborate my original hypothesis (Carey 1998).

12



3. RESULTS
3.1. Image Classification

The results of the image classification show a difference between the plots with high/low density
and the fishbone/other road pattern. Some examples of this classification are presented in Figure
8. As can be seen in Figure 8, the types of plots have visually different characteristics, and their
image classification follows the land use. In general, the results of the image classification are similar
to the ones presented as example, but the final 1280 images (40 plots over 32 years) are not
presented in this report because of space.

a)

Figure 8. Different types of plots used in the image classification. I. Original satellite image,
Il. Images with image classification. Types of plots: a) Low Density (LD10 2014), b) High Density
(HD9 2014), c) Fishbone Pattern (FP9 2014), d) Other Pattern (OP5 2015)

Inthe Appendices, | present a complete report of the image classification resulted by the Supervised
classification done in ArcGIS. The percentage distribution of the plots are in Appendix 3.

On the bases of these image classifications, | obtained the areas (in square kilometres) of each land
cover type in the plots: 1) Primary Forest (P.F.), 2) Clear Cut (C.C.), 3) Other (Oth.), 4) Secondary
Forest (S.F.), and 5) No Data (N.D). The mean composition (in area percentage) of each land cover
is presented in Figure 9.
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Figure 9. Mean composition (in area percentage) of image classification of the time-series,
Primary Forest (P.F.), Clear Cut (C.C.), Other (Oth.), Secondary Forest (S.F.), No Data (N.D.),
according type of plot: a) Low Density, b) High Density, c) Fishbone Pattern, and d) Other Pattern

Figure 9 shows that the percentage of P.F. are decreasing from 1984 to 2015. The mean percentage
of P.F. all types, with exception to Low Density, at the end of the study is around 40%. The mean
percentage of S.F. also increases reaching less than 20% for all types, being also lower for Low
Density plots.

In the appendices | present a complete report of the image classification reports, using the
supervised classification in ArcGIS. The figures with the percentage distribution of each plot’s time-
series are presented in Appendix 3. The figures are similar to the ones presented in Figure 9, which
are representative of their mean values.

3.2. Accuracy Assessment

In general, the accuracy indexes show lower results for the scenes with cloud coverage, and the
accuracy varies for some years and scenes. Nevertheless, the mean value of overall accuracy is 0.92
with a standard error of 0.05, while the Kappa coefficient is 0.85 with a standard error of 0.08. This
result indicates that the image classifications are reliable for further analysis.

The most common misclassifications in the research were secondary forests being misclassified as
primary forests and pastures being misclassified as secondary forests. However, in general terms,
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the accuracy values were lower in clouded plots, because cloudy areas with different consistency
were classified as other classes and their shadows also affected the classification.

The accuracy assessment of the image classification was done for all the scenes of the time-series,
generating an error matrix for each of them. However, considering reasons of space (they are 1033
tables), only the tables with the summary of the results, overall accuracy and Kappa coefficients of
all the time series, are presented in Appendix 4.

3.3. Distance to Roads and Cities

First the Euclidian distance was measured between the plots in respect to roads and cities. These
thematic maps are presented in Appendix 5. The measures of distances to roads and cities, in terms
of mean, minimum, and maximum is presented in Appendix 6.

The distance between plots in relation with roads and cities was analysed using an ANOVA, the
complete results of this analysis are presented in Appendix 7. The ANOVA results show that the type
of plot are significantly different in respect to the distance to roads (Sig < 0.05). The Low Density
(LD) plots are located significantly further from the roads (mean 54.8 km), while Fishbone (FP), Other
Pattern (OP) and High Density (HD) are statistically located at similar mean distance to roads (3.4 to
6.2 km from roads). For cities, the difference in mean distance is significant between types of plot
(Sig < 0.05). The Low Density plots are located significantly further from the roads (mean 90.9 km),
Other and Fishbone Pattern are in a similar mean distance of 43.6 and 47.8 km, and High Density
Plots are in a mean of 31.8 km (Figure 10).

a) b)
o e 160000 e
o

e —_— o e
£ £ 140000
D R s 2
g —1 & 1200007
=] (3] *
L e RS R R £ 100000+
b= @ e
@ o
=] [l el et S B G I
£ gopg e RN« £
z 8 5000
a =
£ 40000 3 T
g = 40000
=

20000 - T [ AROAGT _1r l—_l_—‘ """"

o — *
0 T T T T
L —— £.I . . FP op LD HD
FP oP LD HD Plot Characteristics

Plot Characteristics
Figure 10. Boxplots of the mean distance from the plots of Fishbone Pattern (FP), Other Pattern
(OP), Low Density (LD), and High Density (HD) in respect to a) Roads, and b) Cities

In Figure 11, we can see that Primary Forest (P.F.) is located farther from the roads (between 10 000
and 40 000 m) than the other land cover types, including Secondary Forest (S.F.). While distance to
cities is more variable between land cover types.
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Figure 11. Mean distance in meters from the land cover types, Primary Forest (P.F.), Clear Cut
(C.C.), Other (Oth.), Secondary Forest (S.F.), No Data (N.D.), in relation to a) Roads, and b) Cities

The MANOVA analysis shows that distance to roads and cities is statistically different for all the land
cover types (F < 0.05). The results of the MANOVA are presented in the Appendix 8. The distribution
of the land cover types according to the distance to roads and cities classification, in values and in
percentages, is presented in Figure 12.

Figure 12.1. shows that roads are a stronger indicator for land use change dynamics than cities,
because land use change is concentrated in the first 30 km from roads (la), while land use change is
distributed in all the categories from the distance to cities (Ib).

Figure 12.1l shows the different land use cover in percentage of the area correlated with the distance
to roads and cities. For distances from roads greater than 30 km, more than 90% is primary forest.
While, for cities, those categories farther than 30 km show more than 80% as primary forest.

Figure 12.1ll shows the percentage omitting the primary forest category, in order to only analyse
land use change once the land is deforested. The results show that the percentage distribution of
secondary forest remains constant at a 20 % of the total land use within a distance < 30 km of roads,
while the next category (30-40 km) shows a 60% of the land use as secondary forest, increasing until
80% in those areas with a distance > 50 km. In the case of distance to roads, there is a similar effect
of secondary forest remaining around 20% within 30 km from cities. However, the increase in
secondary forest is not continuous, only increasing to 40% within 30 to 50 km, descending again for
higher distances.
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Figure 12. Different land use types, Primary Forest (P.F.), Clear Cut (C.C.), Other (Oth.),
Secondary Forest (S.F.), No Data (N.D.), in relation to the distance classification to
a) Roads, b) Cities. I. Total values in area (km?), Il. Total classification in percentage, lIl.
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| also considered important to analyse the weight of each of these categories, according to distance
to roads and cities. In consequence, the total area of the different classes of land cover, in terms of
percentage, is presented in Figure 13. Which shows that the classification according to roads is
clearer for the categories of distance to roads (Figure 13a) than to cities (Figure 13b), as was
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previously pointed in Figure 12.I. A high percentage of the land use changes are in the first 5 km,
and almost all of them are within the first 30 km to roads. In detailed values: Clear Cut (62.4% -
<5km, 98.8% <30km), Other (62.6% - <5km, 98.2% <30 km) and Secondary Forest (61.8% < 5 km,
97.2% < 30km). In the case of distance to cities, more than 80% of Clear Cut and Other are situated
within the first 30 km. However, these percentage is lower (65%) for Secondary Forest.
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Figure 13. Percentage of different land cover classification of Clear Cut (C.C.), Other (Oth.), and
Secondary Forest (S.F.), according to distance to a) Roads, and b) Cities

3.4. Road Density

The results of MANOVA and MANCOVA show a statistically difference between the Low and High
Density plots for the time-series analysed. The complete statistical results and tables are present in
the Appendix 9. Considering all the multivariate tests (Pillai's Trace, Wilks' Lambda, Hotelling's Trace,
and Roy's Largest Root) show a significant statistically different (p<0.05) land use composition
according to the density, | only present the Pillai's Trace value in Table 3, which is considered the
most powerful and robust of the four tests (Carey 1998).

Table 3. Results of the Pillai’s Trace multivariate test of the analysis MANOVA and MANCOVA
according to road density

Effect (Year * Density) Value F Hypothesis df | Error df Sig. (p)

Pillai's Trace MANOVA 0.399 1.274 150.000 2205.000 0.016
MANCOVA ds &

o (roads& | .07 | 1.806 150.000 | 2180.000 | 0.000
cities as covariables)

According to Table 3, in MANOVA there was a statistically significant difference in the land use
classification between High and Low road density, F (150+2.2) = 1.274, p < 0.05 (0.016); Pillai’s Trace
=0.399. Considering the covariables (MANCOVA), the land use classification between High and Low
Density is also statistically different, p < 0.05.

Table 4 presents only the results of MANOVA. This shows that the different land cover types are
statistically (p<0.05) different for High and Low Density, with the only exception of Other (p=0.840)
and No Data (p=0.783). Primary Forest is the only land cover type that has higher mean in the Low
Density Plot.
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Table 4. MANOVA statistics for land cover type according to High and Low Density

. . Road
Source Dependent Variable F Sig. (p) Density Mean | Std. Error
Low 399.440 4.642
Primary Forest 2.150 | 0.001 -
High 251.555 | 4.764
Low 0.050 1.692
Clear Cut 1.911 | 0.003
High 22.650 1.737
Low 0.462 3.282
Year * Density |Other 0.741 | 0.840 -
High 94.150 3.368
Low 1.180 1.549
Secondary Forest 2.750 | 0.000 -
High 28.558 1.590
Low 1.856 0.417
No Data 0.846 | 0.703
High 4.687 0.428

In Figure 14 | present the estimated mean area result from the MANOVA and MANCOVA analysis
for Primary and Secondary Forest, considering these are the principal land-use changes analysed in
this research. It can be seen that using the distances to roads and cities as covariables for the analysis
improves the results of the graphs, especially the temporal decrease of Primary Forest in High
Density plots. It must be noted that both primary and secondary forest remain almost constant
during the analysed period for the Low Density plots.
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Figure 14. Estimated means according to Road Density of a) Primary Forest, and b) Secondary
Forest. For I. MANOVA of the density analysis alone, Il. MANCOVA including distance to roads
and cities as covariables
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The distribution of the land cover types according to the road density, in percentages, is presented
in Figure 15.

Figure 15.1. shows that Low Density plots are principally composed by Primary Forests for all the
time-series (la). For High Density the composition of Primary Forest reduces from 80 % in 1984 to
40% in 2015 (Ib).

Figure 15.11 shows the percentage composition of the different land use types omitting the primary
forest. For Low Density (lla), even though the total percentage of land use affected (deforested) is
lower in total terms, the percentage that becomes Secondary Forest is constantly higher than 20%
reaching 80%. Secondary Forest area shows higher rates of regrowth even after being re-logged
during all the time-series. Secondary Forest for High Density (llb), shows a level of around 20%, and
a slower rate of regrowth.

Figure 15.11l shows the total percentage of land cover, again omitting Primary Forest, to better
compare the dynamics of land use change. For Low Density a 69.4% of the total land cover is
Secondary Forest, while for High Density it is only 19.6%.
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Figure 15. Different land use types, Primary Forest (P.F.), Clear Cut (C.C.), Other (Oth.),
Secondary Forest (S.F.), No Data (N.D.), in relation to Road Density a) Low, b) High. I. Total
values in area (in percentage), Il. Classification of the time-series in percentage excluding P.F., Ill.
Total percentage composition excluding P.F.

3.5. Road Pattern

The results of the MANOVA for the Road Pattern do not show a statistically difference between the
Fishbone and Other plots for the time-series analysed. All the statistical results of P are higher than
0.05 (Appendix 10). Meaning that for the time-series none of the land use classes are significantly
different based in their road pattern, even using roads and cities as covariables.
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4. DISCUSSION

4.1. Distance to Roads and Cities

| found that secondary forest regrowth is influenced by distance to roads. My results show that
primary forest is located further from roads (20 km) than secondary forest (<10 km), with an
increasing trend getting further from the roads in recent years (Figure 11). More than 60% of
secondary forest occurs within the first 5 km from a road, and more than 97% within 30 km from
roads (Figure 12.1 and Figure 14). Within this 30 km, the percentage of secondary forest keeps at a
constant of 20% of the total affected (deforested) area. However, for areas located further than 30
km are three times more likely (60%) to develop secondary forest regrowth than one located within
30 km. In distances higher than 50 km this probability increases to even four times (80%) (Figure
12.11).

The percentage of secondary forest found in this research is coherent to Hirsch et al. (2004), which
reported that 30 to 50% of the deforested area was covered by secondary forests, and Carreiras et
al. (2014) that found values between 40 to 55% in separated studies of small regions of the Legal
Amazon.

This influence of secondary forest regrowth to the proximity to the principal roads is coherent to
the relation found between distance to roads and deforestation by earlier studies. (Alves 2002)
reported 90% of deforestation within 100 km, (D. Nepstad et al. 2001) indicated that two thirds of
deforestation occurred within 50 km to major paved highways. However, the threshold distance
found in this research (30 km) is closer than that presented in these studies that used only principal
roads and highway. This higher influence might be because the increase of deforestation levels in
the last 15 years since these studies were elaborated. This is similar to what was found by (Asner et
al. 2006), which was focused on selective logging, that found that nearly 80% of deforestation was
within 5 km from roads, and the probability of clearing a secondary forest was two to four times
higher than primary forest in the area within 5 to 25 km.

In the other hand, the more recent study of (Barber et al. 2014), which linked 95% of deforestation
to the first 5.5 km from roads. However, this study digitalized a map roads present in the Amazon
up to 2007, including small and unofficial roads. Therefore, | would expect that the relation between
secondary forests to roads would be lower (closer) in case of using a more complete road network
of the Amazon.

Also, it would be interesting to analyse a temporal model of the development of roads. This
considering the construction of new roads since the seventies and the improvements realized to
them, from unpaved small roads to highways. This considering that temporally, (Barber et al. 2014)
used only the 2006 land cover and 2007 road maps to assess the relation of past deforestation with
roads. Also that (D. Nepstad et al. 2001) found that deforestation of forests within 50 km of paved
roads is of 29158%, compared to 0+9% along the same distance of unpaved roads. Therefore, using
a temporal map including the construction and changes to the roads related to the complete time-
series of the Amazon land cover, would give a clearer vision of the land use and land cover change
dynamics of the Amazon, being able to predict future behaviour.

Finding this clear correlation between secondary forest regrowth and distance to roads is a first step
towards new studies. The distance of 30 km to principal roads as a threshold that could predict a
three times higher probability of regrowth of secondary forests (Figure 12.1lI) could help
stakeholders to put more resources to protect abandoned pastures and areas with initial
successional vegetation situated further than this distance. It must be noted that previous studies
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that focused in secondary forests in the Amazon region (Carreiras et al. 2014; Soler, Escada, and
Verburg 2009) do not take into account road presence.

Finally, indicate that distance to roads is a stronger indicator than distance to cities for the land use
change dynamics. This because, mean distance from cities to primary forest is 50 km, and secondary
forest is around 20 km. However, the land use changes are more distributed along the distance to
cities, although secondary forest regrowth is double between 30 and 50 km than that within the
first 30 km. Therefore, in case of counting with a more complete map of the road network analysing
the relationship to distance with roads might not be as relevant. This might be because the primary
determinant of the spatial distribution and land use change in the Amazon is access through roads
and not urban settlement (Laurance et al. 2002; Soares-Filho et al. 2004).

4.2, Road Density

| found that secondary forest regrowth is influenced by road density. My results show that high
density plots have lower percentage of primary forest, with a steady decrease during the time-
series, and secondary forest show an increase in the time-series, peaking since 1992. Low density
plots have higher percentage of primary forest, with a composition that remains stable during the
time-series, while secondary forest remains low. (Figure 14). This is because low density plots also
have lower deforestation rates, therefore secondary forest is higher (in general terms) in high
density plots only because these are the ones more affected for land use changes.

Nevertheless, the area affected by deforestation in low density plots was three to four times more
likely to develop secondary forest regrowth than one located in high road density plots. Even though
it shows some increases in the time series (regrowth), the percentage of secondary forest in high
road density remains relatively constant about 20%, while it is around 70% for low density (Figure
15.11 and Figure 15.111). This ratio (3.5:1) between secondary forest in Low Density compared with
High Density is similar to the one found for distance to roads in this same research. This is a ratio of
3:1 of secondary forests for distances further than 30 km from roads, and 4:1 for distances further
than 50 km (Figure 12.111). This might be related to the fact that mean distance to roads from Low
Density Plots is 54.8 km (Figure 10). However, the ratio of secondary forest is slightly higher for
density than distance, suggesting that road density is a factor more important.

These results are similar to those of (Forman et al. 2003), who indicates that higher road density
increases fragmentation and edge-effects of forests. Therefore, a higher road density would
negatively affect secondary forest regrowth. Also, the higher percentage of secondary forest
regrowth in Low Road Density might be a consequence to their proximity to Primary Forests.
Proximity to primary forests is mentioned as a source of seeds and nutrients for vegetation
succession (Davidson and Martinelli 2009; Myster 2008; Vasconcelos et al. 2012). However, it must
be noted that there are no specific studies that analyse the direct influence of road density to
secondary forests in the Amazon.

However, it has to be mentioned that, by the sampling design of my research, | only selected plots
with low (near to zero) road densities according to the 2015 data of Google Earth (Figure 3).
Therefore, the levels of anthropogenic disturbance in the area since 1984 are minimal and therefore
the land use change analysed in these plots is limited.

It would be interesting to use different categories of road density for future studies. This analysis
can be done with a complete road network to properly calculate road density in length per square
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kilometre. This measure will allow to further knowledge of the dynamics of land cover change in the
Amazon.

4.3. Road Pattern

| found that secondary forest regrowth is not influenced by spatial configuration of roads (road
pattern). My results show that Fishbone and Other Pattern have not a statistically different land use
classification for the Amazon.

This result might be a consequence of the selection of the plots, existing the probability that the
plots were not significantly different in their spatial configuration along the time-series. This
considering the plots were chosen based only in their final road configuration (in 2015), and during
the time-series analysis | saw different development stages in the spatial configuration of the roads.
This factor (development along time) should be taken into consideration for future studies. Also,
the category “other pattern” aggregates several types of configuration: dendritic, rectangular, and
radial, thus it is harder to make a clear categorization to analyse the difference between them.

Another reason that might have influenced these results are the processes behind the land cover
dynamics. It is indicated that fishbone pattern increases rainfall thus promoting the regeneration of
the forest (Garcia-Carreras and Parker 2011; Roy 2009), while dendritic or radial patterns result in
less fragmentation of the forests (Soler, Escada, and Verburg 2009), which can also help with the
dispersion of seeds. Therefore, both processes might help the secondary forest regrowth via positive
feedback processes.

4.4, Accuracy Assessment

Previous studies carried out in the Amazon have already acknowledged some issues in
discriminating Secondary from Primary Forest (Carreiras et al. 2014; Caviglia-Harris et al. 2014; Neeff
et al. 2006). This issue in differentiating primary and secondary forest was noticeable in the later
years of the time-series, where the secondary forest were older. In these cases | had to try several
training points before having a successful classification. However, the general accuracy of the time-
series classification was of 85£8%. This level of quality is good, considering it is very difficult to
exceed 85% of accuracy using only Landsat images (Gallego 2004).

Even though Gallego (2004) indicates that methods that do not use ground field measurements are
deemed insufficient for the needs of national administrations. (Lu et al. 2012) consider maximum
likelihood classification using training locations a good method of classification for remote sensing
data. For future analysis it should be considered complement the results of this research using
ground field measurements or Very High Resolution images for the accuracy assessment.
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5. CONCLUSIONS

Land cover change should be understood as a dynamic process not a simple change from primary
forest to secondary forest, because by definition secondary forest regrowth grows in an area that
was previously affected by anthropogenic activities. Thus any analysis should also include the
process of deforestation (clear cut areas) and agricultural or rural areas (other land uses). In this
sense, it is undeniable that the presence of roads affect the land use and land cover change
dynamics of the Amazon. During this research | analysed the influence that roads have, in terms of
distance, road density (High and Low), and road pattern (Fishbone and Other), to land use
classification, that included both primary and secondary forest. This using 40 study plots distributed
in the Legal Amazon during a 32 year period.

The results of this research show that if a primary forest is closer to roads and has a higher road
density, that area is more susceptible to be deforested and consequently suffer a land use change,
while road pattern does not show a significant effect. Considering the land use dynamics of the
Amazon, a percentage of this area will be abandoned after its period of productivity has ended and
consequently will develop a secondary forest regrowth, which is highly susceptible to be re-
deforested in the future.

However, the key findings of my research are that if the area affected by deforestation and land use
change is further than 30 km from the principal roads it has at three times more probability to
remain as a secondary forest, in terms of percentage of area. If this distance to further than 50 km
the probability increases to a 4:1 ratio. The same is applicable to road density, where | found thatin
Low Density plots, areas affected by land use change have three to four times more percentage of
secondary forest than those of High Density plots. Meanwhile, areas within 30 km from a road and
with high density plots remained with a relatively constant 20% of secondary forests coverage.

Considering the scope of this research and that the level of accuracy reached with the method of
image classification (85+8%), these results can provide a guideline for the government and
stakeholders. These results indicate that, for conservation efforts to promote the regrowth of
secondary forest to reach a mature state, areas with low road density located further than 30 km
from roads should be prioritized. Also, development of new road construction projects should not
be considered in these areas.

The results of this research also provide the opportunity for further research in the topic, which can
be validated at a bigger scale (for example the whole Brazilian Amazon), it would be interesting to
very high resolution (VHR) imagery, and in situ assessment of secondary forest to have a higher level
of accuracy.
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Appendix 1. Coordinates of the Study Plots
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Appendix 2. Time — series used in the research. Including clouded and not available plots
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Appendix 2. Image classification of the complete plots in percentage in respect to total area (400 km?)

Primary Forest (P.F.), Clear Cut (C.C.), Other (Oth.), Secondary Forest (S.F.), No Data (N.D.). Low Density Plots
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Appendix 4. Matrix of the accuracy assessment of the different scenes, according to year

1. Overall Accuracy
a) With clouded plots

Legend: -No Landsat image available

-Clouded images, with lower accuracy
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2. Kappa Index of Accuracy

a) With clouded plots

Legend: -No Landsat image available

-Clouded images, with lower accuracy
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ndix 5. Distribution of the plots in relation to their Euclldean distance to a) Roads, and b) Cities
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Appendix 6. Values of distance to roads and cities in relation to plots

Plots Distance to roads (m) Distance to cities (m)

Code Mean Min Max Std Mean Min Max Std
HD1 3612.1 0 8491.4 3314.7 47693.92 | 37780.95 53129.65 3315.41
HD2 0.0 0 0.0 0.0 32050.08 | 19284.19 44582.06 5805.829
HD3 3709.8 0 8491.4 3205.0 | 29699.22 | 15565.35 42055.68 5785.727
HD4 2501.8 0 6004.3 2960.2 | 110682.9 | 99132.64 120694 5602.639
HD5 600.4 0 6004.3 1801.3 | 6925.099 0 15000 2851.492
HD6 14332.1 | 6004.339 | 21649.0 4787.6 20788.53 10200 31754.69 5526.545
HD7 4063.6 0 12008.7 3877.2 15752.6 | 3231.099 22593.8 4120.847
HDS8 3209.4 0 8491.4 3275.7 | 16938.41 9600 23736.05 2915.923
HD9 667.1 0 6004.3 1887.0 | 20388.16 | 9138.928 30857.74 4810.208

HD10 1501.1 0 6004.3 2600.0 | 16908.23 6000 27911.29 5465.904
LD1 33023.9 | 24017.36 | 42030.4 6713.1 35933 24600 47823.43 5677.951
LD2 60557.8 | 51301.1 | 70022.0 5299.9 | 158731.3 | 148819.4 169902.8 5471.725
LD3 48937.8 | 42030.38 | 55357.3 4884.6 66425.3 53261.62 79338.52 5746.44
LD4 112917.8 | 104861.3 | 120835.0 4901.0 120751 107003.7 134196.3 5746.471
LD5 92653.1 | 81667.84 | 103302.6 | 6152.7 | 118282.1 | 105097.7 131230 5837.356
LD6 13152.7 | 8491.418 | 18013.0 2695.8 | 19961.06 | 6029.925 32890.73 5823.765
LD7 32863.0 | 24017.36 | 42457.1 6134.8 | 76356.65 64702.7 83505.69 4195.063
LDS8 46882.2 | 36522.97 | 56962.2 6579.8 | 112267.3 102000 122953.2 5880.021
LD9 63169.3 | 55357.27 | 70279.0 4610.3 100760.6 | 87665.73 113465.1 5900.147
LD10 42357.2 | 30616.24 | 53704.4 6672.8 95881.09 | 87831.88 105246.6 3978.074
OP1 2668.6 0 6004.3 2983.6 145706.5 133032.3 155446.3 5227.911
OP2 3335.7 0 6004.3 2983.6 13057.57 1200 24490 5385.159
OP3 2944.9 0 8491.4 3369.9 88968.75 | 76124.38 101699.6 5772.402
OP4 3688.3 0 8491.4 3344.0 15652.15 3000 27840.26 5557.882
OP5 11037.3 0 21649.0 5786.2 29157.15 15035.96 42260.62 5803.441
OP6 2668.6 0 6004.3 2983.6 41213.25 | 27475.81 54629.66 5844.57
OP7 6990.9 0 13426.1 3348.8 19703.67 9600 27736.62 4601.711
OP8 3709.8 0 12008.7 4035.0 23744.82 12600 33988.82 5651.377
OP9 18730.6 | 12008.68 | 25474.3 4324.2 51620.25 | 41260.64 62954.27 5596.185

OP10 6004.3 0 12008.7 4902.5 8353.027 0 16810.71 3625.869
FP1 7105.3 0 13426.1 4649.6 142311.8 | 133805.4 154498.5 4993.625
FP2 4503.3 0 12008.7 3573.3 13522.18 600 25582.81 5480.027
FP3 2501.8 0 6004.3 2960.2 61650.18 | 49335.18 70320.41 5262.609
FP4 12133.4 | 6004.339 | 16982.8 3001.1 57777.63 | 48614.81 64135.48 3935.621
FP5 6004.3 0 12008.7 4902.5 13860.36 1200 25462.91 5550.425
FP6 0.0 0 0.0 0.0 33322.44 24600 44545.71 4560.627
FP7 6004.3 0 12008.7 4902.5 45712.91 | 33065.39 57961.37 5797.829
FP8 3335.7 0 6004.3 2983.6 19077.87 7800 30340.07 5621.632
FP9 3202.3 0 12008.7 3712.1 31663.71 21000 42907.34 5627.454
FP10 1656.5 0 8491.4 2919.3 59678.4 47642.42 71922.46 5809.704
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Appendix 7. ANOVA of the distance to roads and cities in respect to plot type

1. Distance to roads

ANOVA Table
Sum of Squares df Mean Square F Sig.
Mean Distance to Between Groups (Combined) 5.834E11 3 1.945E11 | 944.407 .000
EE:?:C:;:‘S’;CS Within Groups 258211 | 1254 |  2.059E8
Total 8.416E11 1257
Multiple Comparisons
Dependent Variable:Mean Distance to Roads
(1) Plot ) Plot Mean 95% Confidence Interval
Characteristics ~ Characteristics Difference (I-J) [Std. Error Sig. Lower Bound |Upper Bound
Bonferroni Fishbone Pattern Other Pattern -1533.2100 1134.43678 |1.000 |-4530.9030 |(1464.4830
Low Density -50147.2288"  |1145.43320 |.000 |-53173.9793 |(-47120.4784
High Density 1224.9500 1143.54887 (1.000 |-1796.8212 |4246.7212
Other Pattern Fishbone Pattern |1533.2100 1134.43678 |1.000 |-1464.4830 |[4530.9030
Low Density -48614.0188" 1145.43320 |.000 |-51640.7693 |-45587.2684
High Density 2758.1600 1143.54887 |.096 |-263.6112 5779.9312
Low Density Fishbone Pattern |50147.2288" 1145.43320 |.000 (47120.4784 |[53173.9793
Other Pattern 48614.0188" 1145.43320 |.000 ([45587.2684 [51640.7693
High Density 51372.1788" 1154.45849 |.000 |[48321.5795 |54422.7782
High Density Fishbone Pattern |-1224.9500 1143.54887 |1.000 (-4246.7212 1796.8212
Other Pattern -2758.1600 1143.54887 |.096 [-5779.9312 |263.6112
Low Density -51372.1788" 1154.45849 |.000 [-54422.7782 |-48321.5795
Based on observed means.
The error term is Mean Square(Error) = 205911490.395.
*. The mean difference is significant at the .05 level.
Mean Distance to Roads
Subset
Plot Characteristics N 1 2
Tukey B High Density 310 3419.7400
Fishbone Pattern 320 4644.6900
Other Pattern 320 6177.9000
Low Density 308 54791.9188

Means for groups in homogeneous subsets are displayed. Based on observed
means. The error term is Mean Square(Error) = 205911490.395.

a. Uses Harmonic Mean Sample Size = 314.402.

b. The group sizes are unequal. The harmonic mean of the group sizes is used.
Type | error levels are not guaranteed. c. Alpha = .05.
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2. Distance to cities

ANOVA Table®

Sum of Squares | df | Mean Square F Sig.
Mean Distance to Cities * Between Groups (Combined) 6.182E11 3 2.061E11 |153.816| .000
Plot Characteristics Within Groups 1.680E12 |1254| 1.340E9
Total 2.298E12 1257

a. The grouping variable Plot Characteristics is a string, so the test for linearity cannot be computed.

Dependent Variable:Mean Distance to Cities

Multiple Comparisons

(1) Plot ) Plot Mean 95% Confidence Interval
Characteristics Characteristics Difference (I-J) |Std. Error Sig. |Lower Bound [Upper Bound
Bonferroni Fishbone Other Pattern 4182.2374 2893.63873 |.892 |-3464.0595 [11828.5343
Pattern Low Density -43047.5926" [2921.68758 |.000 |-50768.0072 |-35327.1780
High Density 16075.0331" [2916.88118 [.000 [8367.3192 23782.7470
Other Pattern  Fishbone Pattern |-4182.2374 2893.63873 |.892 |-11828.5343 |3464.0595
Low Density -47229.8300" |2921.68758 |.000 |-54950.2446 |-39509.4154
High Density 11892.7957" [2916.88118 |.000 [4185.0817 19600.5096
Low Density Fishbone Pattern }43047.5926" [2921.68758 [.000 |35327.1780 |50768.0072
Other Pattern 47229.8300° (2921.68758 (.000 [39509.4154 |54950.2446
High Density 59122.6257" |2944.70865 |.000 |51341.3791 |66903.8724
High Density Fishbone Pattern |-16075.0331" [2916.88118 [.000 |-23782.7470 |-8367.3192
Other Pattern -11892.7957" |2916.88118 [.000 |-19600.5096 |-4185.0817
Low Density -59122.6257" |2944.70865 [.000 |-66903.8724 |-51341.3791
Based on observed means. The error term is Mean Square(Error) = 1339703216.688.
*. The mean difference is significant at the .05 level.
Mean Distance to Cities
Subset
Plot Characteristics N 1 2 3
Tukey B2 High Density 310 31782.7149
Other Pattern 320 43675.5106
Fishbone Pattern 320 47857.7480
Low Density 308 90905.3406

Means for groups in homogeneous subsets are displayed.
Based on observed means.
The error term is Mean Square(Error) = 1339703216.688.

a. Uses Harmonic Mean Sample Size = 314.402.

b. The group sizes are unequal. The harmonic mean of the group sizes is used. Type | error levels

are not guaranteed. c. Alpha = .05.
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Appendix 8. MANOVA distribution land cover types in respect to categories distance to roads and

cities

1. Distance to roads

Multivariate Tests®

Effect Value F Hypothesis df Error df Sig.
Intercept Pillai's Trace .303 20.337° 5.000 234.000 .000
Wilks' Lambda .697 20.337° 5.000 234.000 .000
Hotelling's Trace 435 20.337° 5.000 234.000 .000
Roy's Largest Root .435 20.337° 5.000 234.000 .000
Year Pillai's Trace .304 20.476° 5.000 234.000 .000
Wilks' Lambda .696 20.476° 5.000 234.000 .000
Hotelling's Trace 438 20.476° 5.000 234.000 .000
Roy's Largest Root 438 20.476° 5.000 234.000 .000
Distance_Road Pillai's Trace 1.295 11.887 35.000 1190.000 .000
Wilks' Lambda .008 59.578 35.000 986.779 .000
Hotelling's Trace 83.522 554.585 35.000 1162.000 .000
Roy's Largest Root 83.132 2826.485° 7.000 238.000 .000
a. Exact statistic
b. The statistic is an upper bound on F that yields a lower bound on the significance level.
c. Design: Intercept + Year + Distance_Road
Tests of Between-Subjects Effects
Dependent Type Ill Sum of
Source Variable Squares df Mean Square |F Sig.
Corrected Model  Primary Forest 3.607E14 8 4.509E13 297.339 .000
Clear Cut 3.532E12 8 4.415E11 50.683 .000
Other 5.926E13 8 7.408E12 271911 .000
Secondary Forest |7.086E12 8 8.858E11 62.539 .000
No Data (Clouds, |1.677E11 8 2.096E10 33.475 .000
Shadow, Water)
Intercept Primary Forest 1.241E13 1 1.241E13 81.831 .000
Clear Cut 5.253E11 1 5.253E11 60.309 .000
Other 2.377E12 1 2.377E12 87.256 .000
Secondary Forest |1.028E12 1 1.028E12 72.579 .000
No Data (Clouds, [2.913E9 1 2.913E9 4.653 .032
Shadow, Water)
Year Primary Forest 1.166E13 1 1.166E13 76.869 .000
Clear Cut 5.322E11 1 5.322E11 61.101 .000
Other 2.442E12 1 2.442E12 89.626 .000
Secondary Forest |1.042E12 1 1.042E12 73.571 .000
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Tests of Between-Subjects Effects

Dependent Type lll Sum of

Source Variable Squares df Mean Square |F Sig.
No Data (Clouds, |3.102E9 1 3.102E9 4,955 .027
Shadow, Water)

Distance_Road Primary Forest 3.482E14 7 4.975E13 328.074 .000
Clear Cut 3.010E12 7 4.300E11 49.365 .000
Other 5.692E13 7 8.131E12 298.458 .000
Secondary Forest |6.065E12 7 8.665E11 61.176 .000
No Data (Clouds, [1.648E11 7 2.355E10 37.604 .000
Shadow, Water)

Error Primary Forest 3.609E13 238 1.516E11
Clear Cut 2.073E12 238 8.711E9
Other 6.484E12 238 2.724E10
Secondary Forest |3.371E12 238 1.416E10
No Data (Clouds, [1.490E11 238 6.261E8
Shadow, Water)

Total Primary Forest 9.727E14 247
Clear Cut 6.707E12 247
Other 8.692E13 247
Secondary Forest |1.279E13 247
No Data (Clouds, [4.624E11 247
Shadow, Water)

Corrected Total Primary Forest 3.968E14 246
Clear Cut 5.605E12 246
Other 6.575E13 246
Secondary Forest |1.046E13 246
No Data (Clouds, ]3.167E11 246
Shadow, Water)

a. R Squared =.909 (Adjusted R Squared = .906)
b. R Squared =.630 (Adjusted R Squared = .618)
c. R Squared =.901 (Adjusted R Squared = .898)
d. R Squared = .678 (Adjusted R Squared = .667)
e. R Squared =.529 (Adjusted R Squared =.514)
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2. Distance to cities

Multivariate Tests®

Effect Value F Hypothesis df Error df Sig.
Intercept Pillai's Trace 513 49.587° 5.000 235.000 .000
Wilks' Lambda 487 49.587° 5.000 235.000 .000
Hotelling's Trace 1.055 49.587° 5.000 235.000 .000
Roy's Largest Root 1.055 49.5872 5.000 235.000 .000
Year Pillai's Trace .509 48.777° 5.000 235.000 .000
Wilks' Lambda 491 48.777° 5.000 235.000 .000
Hotelling's Trace 1.038 48.777° 5.000 235.000 .000
Roy's Largest Root 1.038 48.777° 5.000 235.000 .000
Distance_Cities Pillai's Trace 1.792 19.064 35.000 1195.000 .000
Wilks' Lambda .029 37.323 35.000 990.985 .000
Hotelling's Trace 8.987 59.932 35.000 1167.000 .000
Roy's Largest Root 5.019 171.351° 7.000 239.000 .000
a. Exact statistic
b. The statistic is an upper bound on F that yields a lower bound on the significance level.
c. Design: Intercept + Year + Distance_Cities
Tests of Between-Subjects Effects
Type Ill Sum of
Source Dependent Variable [Squares df [Mean Square |F Sig.
Corrected Model  Primary Forest 1.991E14 8 2.489E13 141.793 .000
Clear Cut 1.882E12 8 2.353E11 30.398 .000
Other 2.297E13 8 2.871E12 82.389 .000
Secondary Forest 1.844E12 8 2.305E11 21.297 .000
No Data (Clouds, 4.066E10 8 5.082E9 5.787 .000
Shadow, Water)
Intercept Primary Forest 1.214E13 1 1.214E13 69.137 .000
Clear Cut 5.945E11 1 5.945E11 76.802 .000
Other 2.220E12 1 2.220E12 63.713 .000
Secondary Forest 1.016E12 1 1.016E12 93.877 .000
No Data (Clouds, 5.110E9 1 5.110E9 5.819 .017
Shadow, Water)
Year Primary Forest 1.139E13 1 1.139E13 64.892 .000
Clear Cut 6.022E11 1 6.022E11 77.801 .000
Other 2.283E12 1 2.283E12 65.522 .000
Secondary Forest 1.030E12 1 1.030E12 95.182 .000
No Data (Clouds, 5.363E9 1 5.363E9 6.107 .014
Shadow, Water)
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Tests of Between-Subjects Effects

Type Il Sum of
Source Dependent Variable |Squares df [MeanSquare |[F Sig.
Distance_Cities Primary Forest 1.877E14 7 2.682E13 152.778 .000
Clear Cut 1.280E12 7 1.829E11 23.626 .000
Other 2.068E13 7 2.955E12 84.798 .000
Secondary Forest 8.137E11 7 1.162E11 10.742 .000
No Data (Clouds, 3.529E10 7 5.042E9 5.742 .000
Shadow, Water)
Error Primary Forest 4.196E13 239 |1.755E11
Clear Cut 1.850E12 239 |7.741E9
Other 8.327E12 239 [3.484E10
Secondary Forest 2.586E12 239 |[1.082E10
No Data (Clouds, 2.099E11 239 |8.782E8
Shadow, Water)
Total Primary Forest 8.110E14 248
Clear Cut 4.935E12 248
Other 5.257E13 248
Secondary Forest 6.775E12 248
No Data (Clouds, 3.970E11 248
Shadow, Water)
Corrected Total Primary Forest 2.411E14 247
Clear Cut 3.732E12 247
Other 3.129E13 247
Secondary Forest 4.430E12 247
No Data (Clouds, 2.505E11 247
Shadow, Water)
a. R Squared = .826 (Adjusted R Squared = .820)
b. R Squared =.504 (Adjusted R Squared = .488)
c. R Squared =.734 (Adjusted R Squared = .725)
d. R Squared = .416 (Adjusted R Squared =.397)
e. R Squared =.162 (Adjusted R Squared =.134)
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Appendix 9. Distribution land cover types in respect to density
1. MANOVA (no covariables)

Density 1 Low 258
2 High 245
Effect Value F Hypothesis df  |Error df Sig.
Year Pillai's Trace 406 1.298 150.000 2205.000 .011
Wilks' Lambda .637 1.381 150.000 2166.046  [.002
Hotelling's Trace .507 1.473 150.000 2177.000 .000
Roy's Largest Root .358 5.267° 30.000 441.000 .000
Density Pillai's Trace .613 138.676° 5.000 437.000 .000
Wilks' Lambda .387 138.676° 5.000 437.000 .000
Hotelling's Trace 1.587 138.676° 5.000 437.000 .000
Roy's Largest Root 1.587 138.676° 5.000 437.000 .000
Year * Density  Pillai's Trace .399 1.274 150.000 2205.000 .016
Wilks' Lambda .645 1.340 150.000 2166.046  [.005
Hotelling's Trace .486 1.412 150.000 2177.000 [.001
Roy's Largest Root .323 4.747° 30.000 441.000 .000
a. Exact statistic
b. The statistic is an upper bound on F that yields a lower bound on the significance level.
c. Design: Intercept + Year + Density + Year * Density
Tests of Between-Subjects Effects
Type Il Sum of Noncent. Observed
Source Dependent Variable |Squares df |Mean Square |F Sig. Parameter |Power®
Corrected Primary_Forest 3.380E6 61 [55411.728 11.346 .000 692.129 1.000
Model Clear_Cut 139414.516°¢ 61 |[2285.484 3.417 .000 208.430 1.000
Other 1.229E6 61 (20148.174 7.017 .000 428.023 1.000
Secondary_Forest |183053.708¢ 61 [3000.880 5.977 .000 364.582 1.000
No_Data 3003.013f 61 [49.230 1.059 .365 64.577 .990
Intercept  Primary_Forest 5.170E7 1 5.170E7 10586.916 |.000 10586.916 |1.000
Clear_Cut 64577.947 1 64577.947 96.546 .000 96.546 1.000
Other 1106074.115 1 1106074.115 |385.199 .000 385.199 1.000
Secondary_Forest ]105186.498 1 105186.498 [209.496 .000 209.496 1.000
No_Data 5092.537 1 5092.537 109.511 .000 109.511 1.000
Year Primary_Forest 325289.134 30 (10842.971 2.220 .000 66.608 1.000
Clear_Cut 38520.927 30 (1284.031 1.920 .003 57.590 .998
Other 64233.082 30 (2141.103 .746 .835 22.370 .720
Secondary_Forest |48465.213 30 (1615.507 3.218 .000 96.527 1.000
No_Data 804.720 30 (26.824 .577 .966 17.305 .568
Density Primary_Forest 2689784.917 1 2689784.917 [550.773 .000 550.773 1.000
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Tests of Between-Subjects Effects

Type Il Sum of Noncent. Observed
Source Dependent Variable |Squares df |Mean Square [F Sig. Parameter |Power®
Clear_Cut 64016.861 64016.861 95.707 .000 95.707 1.000
Other 1084458.436 1084458.436 (377.672 .000 377.672 1.000
Secondary_Forest |89662.546 89662.546 178.578 .000 178.578 1.000
No_Data 939.918 939.918 20.212 .000 20.212 .994
Year * Primary_Forest 314937.080 30 |10497.903 2.150 .001 64.488 .999
Density  clear_cut 38354.164 30 [1278.472 1.911 .003 57.341 .998
Other 63852.838 30 (2128.428 741 .840 22.237 716
Secondary_Forest |41424.275 30 (1380.809 2.750 .000 82.503 1.000
No_Data 1180.042 30 [39.335 .846 .703 25.376 .792
Error Primary_Forest 2153690.896 441 |4883.653
Clear_Cut 294976.283 441 1668.880
Other 1266301.634 441 |2871.432
Secondary_Forest ]221422.607 441 (502.092
No_Data 20507.650 441 146.503
a. RSquared =.611 (Adjusted R Squared = .557)
b. Computed using alpha = .05
c. R Squared =.321 (Adjusted R Squared = .227)
d. R Squared = .493 (Adjusted R Squared = .422)
e. R Squared = .453 (Adjusted R Squared =.377)
f. R Squared =.128 (Adjusted R Squared =.007)
Density of Roads
Density of 95% Confidence Interval
Dependent Variable Roads Mean Std. Error  [Lower Bound |Upper Bound
Primary_Forest Low 399.440 4.642 390.320 408.561
High 251.555 |4.764 242.195 260.914
Clear_Cut Low .050 1.692 -3.275 3.375
High 22.650 1.737 19.238 26.063
Other Low 462 3.282 -5.986 6.910
High 94.150 3.368 87.533 100.767
Secondary_Forest Low 1.180 1.549 -1.864 4.224
High 28.558 1.590 25.434 31.681
No_Data Low 1.856 417 1.036 2.676
High 4.687 428 3.846 5.529
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2. MANCOVA (using distance to roads and cities as covariables)

Multivariate Tests®

Effect Value F Hypothesis df Error df Sig.
Intercept Pillai's Trace .993 13194.780? 5.000 432.000 .000
Wilks' Lambda .007 13194.780? 5.000 432.000 .000
Hotelling's Trace 152.717 13194.780° 5.000 432.000 .000
Roy's Largest Root 152.717 13194.780? 5.000 432.000 .000
City_Mean Pillai's Trace .259 30.161° 5.000 432.000 .000
Wilks' Lambda 741 30.161° 5.000 432.000 .000
Hotelling's Trace .349 30.161° 5.000 432.000 .000
Roy's Largest Root .349 30.161° 5.000 432.000 .000
City_max Pillai's Trace .239 27.175° 5.000 432.000 .000
Wilks' Lambda .761 27.175° 5.000 432.000 .000
Hotelling's Trace .315 27.175° 5.000 432.000 .000
Roy's Largest Root .315 27.175° 5.000 432.000 .000
Road_mean Pillai's Trace .495 84.599° 5.000 432.000 .000
Wilks' Lambda .505 84.599° 5.000 432.000 .000
Hotelling's Trace .979 84.599° 5.000 432.000 .000
Roy's Largest Root .979 84.599° 5.000 432.000 .000
Road_min Pillai's Trace 414 61.080° 5.000 432.000 .000
Wilks' Lambda .586 61.080° 5.000 432.000 .000
Hotelling's Trace .707 61.080° 5.000 432.000 .000
Roy's Largest Root .707 61.080° 5.000 432.000 .000
Road_max Pillai's Trace .517 92.499° 5.000 432.000 .000
Wilks' Lambda 483 92.499° 5.000 432.000 .000
Hotelling's Trace 1.071 92.499° 5.000 432.000 .000
Roy's Largest Root 1.071 92.499° 5.000 432.000 .000
Density Pillai's Trace .520 93.431° 5.000 432.000 .000
Wilks' Lambda 480 93.431° 5.000 432.000 .000
Hotelling's Trace 1.081 93.431° 5.000 432.000 .000
Roy's Largest Root 1.081 93.431° 5.000 432.000 .000
Year Pillai's Trace .587 1.934 150.000 2180.000 .000
Wilks' Lambda .485 2.246 150.000 2141.321 .000
Hotelling's Trace 918 2.633 150.000 2152.000 .000
Roy's Largest Root .750 10.901° 30.000 436.000 .000
Density * Year  Pillai's Trace .577 1.896 150.000 2180.000 .000
Wilks' Lambda 499 2.154 150.000 2141.321 .000
Hotelling's Trace .859 2.465 150.000 2152.000 .000
Roy's Largest Root .673 9.781° 30.000 436.000 .000

a. Exact statistic
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b. The statistic is an upper bound on F that yields a lower bound on the significance level.

c. Design: Intercept + City_Mean + City_max + Road_mean + Road_min + Road_max + Density + Year + Density

* Year
Tests of Between-Subjects Effects
Type lll Sum of
Source Dependent Variable Squares df Mean Square F Sig.
Corrected Model  Primary_Forest 4.551E6 66 68961.529 30.608 .000
Clear_Cut 196894.483° 66 2983.250 5.477 .000
Other 1.732E6 66 26248.843 15.001 .000
Secondary_Forest 228407.816¢ 66 3460.724 8.570 .000
No_Data 3348.952¢ 66 50.742 1.097 292
Intercept Primary_Forest 1253229.944 1 1253229.944 556.228 .000
Clear_Cut 4.765 1 4.765 .009 .926
Other 8335.617 1 8335.617 4.764 .030
Secondary_Forest 12175.269 1 12175.269 30.150 .000
No_Data 2.651 1 2.651 .057 .811
City_Mean Primary_Forest 53580.219 1 53580.219 23.781 .000
Clear_Cut 689.883 1 689.883 1.267 .261
Other 9644.996 1 9644.996 5.512 .019
Secondary_Forest 26615.493 1 26615.493 65.908 .000
No_Data 103.149 1 103.149 2.231 .136
City_max Primary_Forest 43035.894 1 43035.894 19.101 .000
Clear_Cut 900.419 1 900.419 1.653 .199
Other 6740.620 1 6740.620 3.852 .050
Secondary_Forest 25300.205 1 25300.205 62.651 .000
No_Data 90.333 1 90.333 1.953 .163
Road_mean Primary_Forest 612768.538 1 612768.538 271.969 .000
Clear_Cut 19036.113 1 19036.113 34.947 .000
Other 236784.371 1 236784.371 135.320 .000
Secondary_Forest 26072.165 1 26072.165 64.563 .000
No_Data .000 1 .000 .000 .998
Road_min Primary_Forest 395824.273 1 395824.273 175.681 .000
Clear_Cut 11453.357 1 11453.357 21.026 .000
Other 153411.540 1 153411.540 87.673 .000
Secondary_Forest 19320.779 1 19320.779 47.844 .000
No_Data 114 1 114 .002 .960
Road_max Primary_Forest 713605.322 1 713605.322 316.724 .000
Clear_Cut 23534.705 1 23534.705 43.205 .000
Other 277182.691 1 277182.691 158.407 .000
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Tests of Between-Subjects Effects

Type lll Sum of
Source Dependent Variable Squares df Mean Square F Sig.
Secondary_Forest 26705.414 1 26705.414 66.131 .000
No_Data .030 1 .030 .001 .980
Density Primary_Forest 730106.245 1 730106.245 324.047 .000
Clear_Cut 17728.406 1 17728.406 32.546 .000
Other 285089.551 1 285089.551 162.926 .000
Secondary_Forest 22939.219 1 22939.219 56.805 .000
No_Data 407.738 1 407.738 8.817 .003
Year Primary_Forest 343165.483 30 11438.849 5.077 .000
Clear_Cut 39247.567 30 1308.252 2.402 .000
Other 67720.225 30 2257.341 1.290 .143
Secondary_Forest 49593.724 30 1653.124 4.094 .000
No_Data 787.660 30 26.255 .568 .970
Density * Year Primary_Forest 315622.834 30 10520.761 4.669 .000
Clear_Cut 37070.940 30 1235.698 2.269 .000
Other 67392.911 30 2246.430 1.284 .148
Secondary_Forest 41807.523 30 1393.584 3.451 .000
No_Data 1203.933 30 40.131 .868 .670
Error Primary_Forest 982345.426 436 2253.086
Clear_Cut 237496.316 436 544.716
Other 762916.629 436 1749.809
Secondary_Forest 176068.498 436 403.827
No_Data 20161.711 436 46.242
Total Primary_Forest 5.945E7 503
Clear_Cut 495897.895 503
Other 3564096.867 503
Secondary_Forest 510454.321 503
No_Data 28775.092 503
Corrected Total Primary_Forest 5533806.308 502
Clear_Cut 434390.799 502
Other 2495340.271 502
Secondary_Forest 404476.315 502
No_Data 23510.663 502

a. R Squared = .822 (Adjusted R Squared =.796), b. R Squared = .453 (Adjusted R Squared = .371), c. R Squared =
.694 (Adjusted R Squared = .648), d. R Squared = .565 (Adjusted R Squared =.499), e. R Squared =.142 (Adjusted R

Squared =.013)
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Appendix 10. Distribution land cover types in respect to Pattern

1. MANOVA (no covariables)

Type of Pattern 1 Fishbone 267
2 Other 278
Multivariate Tests®
Hypothesis Noncent. | Observed
Effect Value F df Error df | Sig. | Parameter Power®
Year Pillai's Trace .838 3.239 150.000| 2415.000( .000 485.919 1.000
Wilks' Lambda .328 3.999 150.000| 2373.732( .000 592.522 1.000
Hotelling's Trace 1.585 5.045 150.000| 2387.000( .000 756.719 1.000
Roy's Largest Root 1.281 20.617¢ 30.000] 483.000( .000 618.522 1.000
Pattern  Pillai's Trace .196 23.3732 5.000[ 479.000| .000 116.865 1.000
Wilks' Lambda .804 23.3732 5.000[ 479.000| .000 116.865 1.000
Hotelling's Trace 244 23.3732 5.000[ 479.000| .000 116.865 1.000
Roy's Largest Root 244 23.3732 5.000[ 479.000| .000 116.865 1.000
Year * Pillai's Trace .220 742 150.000| 2415.000 111.286 .999
Pattern  \wilks' Lambda 795 .750|  150.000| 2373.732 111.186 1999
Hotelling's Trace .238 .758 150.000| 2387.000 113.671 .999
Roy's Largest Root 125 2.005° 30.000, 483.000| .001 60.143 .999
a. Exact statistic
b. Computed using alpha = .05
c. The statistic is an upper bound on F that yields a lower bound on the significance level.
d. Design: Intercept + Year + Pattern + Year * Pattern
Tests of Between-Subjects Effects
Type Il Sum Noncent. |Observed]
Source Dependent Variable | of Squares | df | Mean Square F Sig. | Parameter | Power®
Year Primary_Forest 1980266.023| 30 66008.867 14.765| .000 442.945 1.000
Clear_Cut 68178.121| 30 2272.604 6.362| .000 190.857 1.000
Other 636526.369| 30 21217.546 7.097| .000 212.913 1.000
Secondary_Forest 199687.204| 30 6656.240 10.380| .000 311.397 1.000
No_Data 1927.394[ 30 64.246 1.377[ .091 41.321 .972
Pattern Primary_Forest 52391.503 1 52391.503 11.719] .001 11.719 .927]
Clear_Cut 10307.109 1 10307.109] 28.854 .000 28.854 1.000
Other 50696.043 1 50696.043 16.957| .000 16.957 .984
Secondary_Forest 2636.135 1 2636.135 4111 .043 4111 .525
No_Data 177.519 1 177.519 3.806| .052 3.806 .495
Year * Primary_Forest 40077.344|] 30 1335.911 .299 8.964 .276
Pattern  Clear_cut 10365.926| 30 345.531 967 29.018 862
Other 60684.206| 30 2022.807 677 20.298 .664]
Secondary_Forest 9957.847| 30 331.928 518 15.528 .509
No_Data 1364.832| 30 45.494 975 29.260 .866
Error Primary_Forest 2159339.454| 483 4470.682
Clear_Cut 172537.580| 483 357.221
Other 1443981.431| 483 2989.610
Secondary_Forest 309729.951| 483 641.263
No_Data 22529.497| 483 46.645

a. R Squared = .490 (Adjusted R Squared = .425)
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b. Computed using alpha = .05

c. R Squared = .344 (Adjusted R Squared = .261)
d. R Squared = .340 (Adjusted R Squared = .257)
e. R Squared = .408 (Adjusted R Squared = .334)
f. R Squared = .136 (Adjusted R Squared = .027)

Type of Pattern

Type of 95% Confidence Interval
Dependent Variable Pattern Mean Std. Error | Lower Bound | Upper Bound
Primary_Forest Fishbone 299.152 5.367 288.610 309.695
Other 279.230 5.260 268.898 289.561
Clear_Cut Fishbone 8.079 1.318 5.491 10.668
Other 17.122 1.292 14.585 19.659
Other Fishbone 58.469 3.838 50.931 66.008
Other 78.340 3.761 70.952 85.727
Secondary_Forest Fishbone 28.785 1.894 25.064 32.507
Other 23.944 1.857 20.297 27.591
No_Data Fishbone 3.689 422 2.859 4.518
Other 2.416 414 1.603 3.229
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Estimated Marginal Means of Other
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2. MANCOVA (using distance to roads and cities as covariables)

Multivariate Tests®

Effect Value F Hypothesis df Error df Sig.
Intercept Pillai's Trace .997 30603.7682 5.000 474.000 .000
Wilks' Lambda .003 30603.768? 5.000 474.000 .000
Hotelling's Trace 322.825 30603.768? 5.000 474.000 .000
Roy's Largest Root 322.825 30603.768? 5.000 474.000 .000
City_Mean Pillai's Trace 131 14.3192 5.000 474.000 .000
Wilks' Lambda .869 14.3192 5.000 474.000 .000
Hotelling's Trace 151 14.319°2 5.000 474.000 .000
Roy's Largest Root 151 14.3192 5.000 474.000 .000
City_max Pillai's Trace 142 15.7102 5.000 474.000 .000
Wilks' Lambda .858 15.7102 5.000 474.000 .000
Hotelling's Trace .166 15.7102 5.000 474.000 .000
Roy's Largest Root .166 15.7102 5.000 474.000 .000
Road_mean Pillai's Trace .092 9.6302 5.000 474.000 .000
Wilks' Lambda .908 9.6302 5.000 474.000 .000
Hotelling's Trace 102 9.6302 5.000 474.000 .000
Roy's Largest Root 102 9.6302 5.000 474.000 .000
Road_min Pillai's Trace .046 4.5352 5.000 474.000 .000
Wilks' Lambda .954 4.5352 5.000 474.000 .000
Hotelling's Trace .048 4.5352 5.000 474.000 .000
Roy's Largest Root .048 4.5352 5.000 474.000 .000
Road_max Pillai's Trace 169 19.2292 5.000 474.000 .000
Wilks' Lambda .831 19.2292 5.000 474.000 .000
Hotelling's Trace .203 19.2292 5.000 474.000 .000
Roy's Largest Root .203 19.2292 5.000 474.000 .000
Pattern Pillai's Trace .298 40.2182 5.000 474.000 .000
Wilks' Lambda .702 40.2182 5.000 474.000 .000
Hotelling's Trace 424 40.2182 5.000 474.000 .000
Roy's Largest Root 424 40.2182 5.000 474.000 .000
Year Pillai's Trace .952 3.750 150.000 2390.000 .000
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Multivariate Tests®

Effect Value F Hypothesis df Error df Sig.
Wilks' Lambda .249 5.078 150.000 2349.008 .000
Hotelling's Trace 2.274 7.161 150.000 2362.000 .000
Roy's Largest Root 1.950 31.076° 30.000 478.000 .000
Pattern * Year  Pillai's Trace .256 .859 150.000 2390.000 .888
Wilks' Lambda .766 .867 150.000 2349.008 .872
Hotelling's Trace .278 .876 150.000 2362.000 .854
Roy's Largest Root 139 2.223b 30.000 478.000 .000

a. Exact statistic

b. The statistic is an upper bound on F that yields a lower bound on the significance level.

c. Design: Intercept + City_Mean + City_max + Road_mean + Road_min + Road_max + Pattern + Year + Pattern

* Year
Tests of Between-Subjects Effects
Type Ill Sum of

Source Dependent Variable |Squares df Mean Square F Sig.

Corrected Model  Primary_Forest 3.007E6 66 45561.643 17.807 .000
Clear_Cut 103464.076° 66 1567.638 4.698 .000
Other 1.204E6 66 18248.503 8.861 .000
Secondary_Forest 261897.603¢ 66 3968.145 7.250 .000
No_Data 4002.791°¢ 66 60.648 1.313 .059

Intercept Primary_Forest 479950.757 1 479950.757 187.584 .000
Clear_Cut 7178.040 1 7178.040 21.513 .000
Other 340116.943 1 340116.943 165.146 .000
Secondary_Forest 262.967 1 262.967 480 .489
No_Data 7.943 1 7.943 172 .679

City_Mean Primary_Forest 124699.507 1 124699.507 48.738 .000
Clear_Cut 3028.373 1 3028.373 9.076 .003
Other 135443.281 1 135443.281 65.766 .000
Secondary_Forest 3365.844 1 3365.844 6.149 .013
No_Data 223.736 1 223.736 4.846 .028

City_max Primary_Forest 142504.796 1 142504.796 55.697 .000
Clear_Cut 3062.873 1 3062.873 9.180 .003
Other 148628.636 1 148628.636 72.168 .000
Secondary_Forest 2891.346 1 2891.346 5.282 .022
No_Data 218.256 1 218.256 4.727 .030
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Tests of Between-Subjects Effects

Type Il Sum of
Source Dependent Variable |Squares df Mean Square |F Sig.
Road_mean Primary_Forest 109517.476 1 109517.476 42.804 .000
Clear_Cut 4650.103 1 4650.103 13.937 .000
Other 47571.411 1 47571.411 23.099 .000
Secondary_Forest 3101.401 1 3101.401 5.666 .018
No_Data 86.634 1 86.634 1.876 171
Road_min Primary_Forest 21771.716 1 21771.716 8.509 .004
Clear_Cut 4.289 1 4.289 .013 .910
Other 7010.412 1 7010.412 3.404 .066
Secondary_Forest 1916.918 1 1916.918 3.502 .062
No_Data 163.190 1 163.190 3.534 .061
Road_max Primary_Forest 213822.778 1 213822.778 83.571 .000
Clear_Cut 5446.981 1 5446.981 16.325 .000
Other 83293.216 1 83293.216 40.444 .000
Secondary_Forest 9425.915 1 9425.915 17.221 .000
No_Data 48.007 1 48.007 1.040 .308
Pattern Primary_Forest 53854.650 1 53854.650 21.049 .000
Clear_Cut 12582.696 1 12582.696 37.711 .000
Other 57225.482 1 57225.482 27.786 .000
Secondary_Forest 4119.209 1 4119.209 7.526 .006
No_Data 225.303 1 225.303 4.880 .028
Year Primary_Forest 1949500.910 30 64983.364 25.398 .000
Clear_Cut 66745.658 30 2224.855 6.668 .000
Other 625463.809 30 20848.794 10.123 .000
Secondary_Forest 199899.576 30 6663.319 12.174 .000
No_Data 1888.799 30 62.960 1.364 .098
Pattern * Year Primary_Forest 53114.036 30 1770.468 .692 .891
Clear_Cut 9909.258 30 330.309 .990 484
Other 77048.625 30 2568.287 1.247 .175
Secondary_Forest 9412.516 30 313.751 .573 .968
No_Data 1365.630 30 45.521 .986 .490
Error Primary_Forest 1223006.141 478 2558.590
Clear_Cut 159490.593 478 333.662
Other 984435.394 478 2059.488
Secondary_Forest 261638.788 478 547.361
No_Data 22070.824 478 46.173
Total Primary_Forest 4.975E7 545
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Tests of Between-Subjects Effects

Type Il Sum of
Source Dependent Variable |Squares df Mean Square |F Sig.
Clear_Cut 350746.248 545
Other 4753962.121 545
Secondary_Forest 900952.568 545
No_Data 31108.281 545
Corrected Total Primary_Forest 4230074.568 544
Clear_Cut 262954.669 544
Other 2188836.607 544
Secondary_Forest 523536.390 544
No_Data 26073.615 544

a. R Squared =.711 (Adjusted R Squared = .671)
b. R Squared = .393 (Adjusted R Squared =.310)
c. R Squared = .550 (Adjusted R Squared = .488)

d. R Squared =.500

(
e. R Squared =.154 (

Adjusted R Squared =
Adjusted R Squared =

431)
.037)
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