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Abstract

The global increase in biofuel demand is projected to be met at the expansion of bioenergy crops into natural
vegetation areas. These land-use changes generate GHG emissions, which need to be factored in when as-
sessing the bioenergy potential under sustainability targets. This study proposes the use of emission factors
(EF) as the ratio of land-use change based emissions and the corresponding bioenergy potential, and emission
factor supply curves (EFSC) which display the cumulative bioenenrgy potential at given EFs. Spatially spe-
cific global and regional EFs were derived for different EU RED emission reduction targets (ERT). Overall,
bioenergy potential at current EU sustainability target (35% ERT) vary between 517EJ/yr and 182EJ/yr
among the analyzed cases, with South America and Asia accounting for largest regional potentials. The
associated EFSCs display generally steep slope suggesting that the marginal bioenergy potential decreases
quickly to reach maximum potential, at the expense of the EFs. The main finding of this assessment is that
bioenergy land-use EFs (EFland−use) are highly spatially dependent, with baseline C stocks, soil C loss and
bioenergy potentials, accounting as main contributor in its variability.
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1 Introduction

In 2012 energy related CO2 emissions summed up to 32Gt CO2, representing over 60% of global CO2 emis-
sions (IEA, 2014). It has been argued that part of these emissions can be mitigated in the future by expanding
biomass use for bioenergy (Calvin et al., 2013; Daioglou et al., 2014; Rose et al., 2014). But bioenergy supply
expansion triggers emissions of its own stemming from land use change (LUC) and intensified agricultural
practices (Aalde et al., 2006). Much of the environmental stress of increased bioenergy in the global energy
mix is related to agricultural land dynamics and the associated greenhouse gas (GHG) emissions (Searchinger
et al., 2008; Fargione et al., 2008; Barona et al., 2010; Fritsche et al., 2010; Lapola et al., 2010; Popp et al.,
2011; van der Hilst et al., 2014).

Increased bioenergy demand will put more pressure on food supply in competition for land. This can
lead to an expansion of bienergy crops in areas deemed suitable on climatic and soil characteristics, with
most pervasive examples involving the expansion into pasture land and forest. These market dynamics are
argued to trigger land-use shifts which bare environmental concerns such as: GHG emissions (Kim et al.,
2009; Hoefnagels et al., 2010), water cycles alterations (Berndes et al., 2003; Gerbens-Leenes et al., 2009),
biodiversity disruptions (Sala et al., 2009; Wiens et al., 2011) and indirect land-use change (Fargione et al.,
2008; Searchinger et al., 2008). Such issues render questinable the sustainability of bioenergy, and fueled a
range of discussions in the academic community (Wicke et al., 2012; Milazzo et al., 2013), all leaning towards
the conclusion that if not managed properly bioenergy cannot be competitive with fossil fuels in terms of its
emissions.

The EU Renewable Energy Directive (RED)(European Commission, 2009) has established a set of bioen-
ergy sustainability criteria under which emission reduction targets (ERT) are set in place. These ERTs are
bioenergy GHG emissions savings targets, parallel to their fossil fuel alternatives. The current target is set at
35% emissions savings that bioenergy needs to deliver as compared to a counterfactual fossil fuel. This target
is projected to increase to 50% in 2017, and 60% in 2018. This puts more pressure on full GHG emission
inventories of bioenergy.

GHG emission accounting efforts of bioenergy (such as LCAs) are acknowledged to be faced with limita-
tions brought about by the oversimplification of the applied methodologies, which lack sensitivity to a wide
range of socio-economic drivers (Wicke et al., 2012). A number of socioeconomic and scientific modeling
efforts, commonly referred to as integrated assessment models (IAM), have been able to accommodate the
wide range of socio-economic interactions to assess different policy options (scenarios) for climate change
mitigation. In this context, IAMs have been able to map LUC drivers and integrate them into spatially
specific land-use outputs, yet there is little if any academic insight into how this plays out in determining
spatially specific LUC driven bioenergy emissions.

Modeling efforts (Clarke et al., 2007; Popp et al., 2011; Klein et al., 2013; Stehfest et al., 2014) have facili-
tated the generation of spatially specific GHG fluxes in response to bioenergy demand, and related bioenergy
potentials. Despite these IAMs returning spatially specific results, their outputs are mostly aggregated to
global or macro-economic level (Nassar et al., 2011; Popp et al., 2014). There is little if any academic insight
into how the spatially specificity of the data plays out in micro-trend analysis, relating the bioenergy poten-
tials to their GHG emissions (temporal and spatial). These type of results can be further analyzed to gain
insight into how bioenergy potential is related to GHG emissions and improve bioenergy crop allocation at
different scales.

This assessment aims to compute spatially specific LUC driven CO2 emissions of bioenergy and relate this
spatially specific to bioenergy potential, in an attempt to offer a display of sustainable bioenergy potential at
global level. The spatial aspect of the proposed methodology highlights the societal relevance of the research.
Bioenergy has been under the scrutiny of sustainability criteria (Wicke et al., 2012; Milazzo et al., 2013)
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because of the insufficient CO2 emissions accounting. A vast part of the un-accounted CO2 emissions are
argued to stem from land-use changes associated with spatial allocation of the bioenergy crops (Fargione et
al., 2008; Searchinger et al., 2008). As such, it is relevant to display and analyze the bioenergy potential and
associated land-use emissions spatially specific.

The proposed assessment methodology makes use of spatially specific carbon stock, land-use and biomass
potential maps, resulted from IMAGE 3.0 scenario runs. The carbon stocks are generated in 7 pools for
two different bioenergy supply cases, which when compared to a baseline case without bioenergy, yield the
corresponding CO2 emissions. The concepts used by this methodology for mapping the emissions effect of
bioenergy from land-use are the bioenergy emission factor (EF) and the bioenergy emission factor supply
curve (EFSC). The concept of bioenergy emission factor (EF) is defined here as, the ratio of CO2 emissions
generated per unit of energetic value created [CO2eq./GJprimarybiomass]. Ranking the mean annual cumula-
tive bioenergy potential at given EFs generates the emission factor supply curve (EFSC).

Making use of the above stated concepts, this thesis aims to assess the spatially specific bioenergy LUC
EFs and highlight the relationship between increased bioenergy supply and marginal land-use GHG emissions.
Such an assessment is able to provide insights into the following intermediate aspects:

• From which biophysical processes do LUC emissions arise, and how do baseline assumptions affect
them?

• What are the spatially specific primary EFs, and how do they vary across time steps?

• How do assumptions concerning time-span of bioenergy use affect the EF, under EU bioenergy sustain-
ability criteria?

• How do marginal bioenergy EFSCs behave over time at global level, under the EU bioenergy sustain-
ability criteria?

• Which regions and biomes are the most attractive for bioenergy production?

The following section provides and introspection into the existing studies surrounding this assessment,
and highlights the research gap this assessment is proposing to address. The method and data input section,
set-up the assessment’s system boundary and describe the approach followed to answer the proposed research
question. Ultimately, the description of the results alongside the discussion on data inputs, underlying as-
sumptions and generated results, lead to the extraction of the thesis’s conclusions.
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2 Literature Review

A cornucopia of research has been devoted to assess, map and interpret the effects of land-use in relation to
bioenergy production and consequent emissions (Kim et al., 2009; Verburg et al., 2009; Lapola et al., 2010;
Popp et al., 2011; van der Hilst et al., 2013). Initial bioenergy studies focused on the assessment of bioenergy
potential at different geographic scales, ranging from regional (van Dam et al., 2009) to global (Berndes et al.,
2003; Hoogwijk et al., 2005; Smeets et al., 2007, Dornburg et al., 2010; Beringer et al., 2011). A critique to
these studies is that they treated biomass potential at aggregate spatial scales, thus lacking sensitivity to the
spatial distribution of the bioenergy potential. Despite the coarse resolution of the bioenergy assessments,
these studies were quick to prompt concerns about the environmental impacts of increased bioenergy supplies
(Berndes et al., 2003; Sala et al., 2009; Gerbens-Leenes et al., 2009; Kim et al., 2009; Hoefnagels et al., 2010).
They identified that an increase in bioenergy potential is reckoned to trigger environmental perturbation,
among which biodiversity loss, soil quality and water availability are the more worrisome.

Acknowledging these scientific handicaps triggered further scientific efforts into quantifying the environ-
mental impacts associated with bioenergy potentials, while at the same time improving the spatial resolution
of the bioenergy potential inventories. Biodiversity studies (Groom et al., 2008; Sala et al., 2009; Wiens et
al., 2011) argue that a prevalent threat to biodiversity in relation to bioenergy expansion sets-off a domino
effect which starts with land conversion, and continues with increased pollution, reduced perennial vegetation
diversity and ends in biodiversity loss. Water availability (Berndes et al., 2003) and the water footprint of
certain bioenergy forms (Gerbens-Leenes et al., 2009) adds to the list of environmental concerns rendering
ever more questionable the sustainability bio-ethanol and bio-diesel. Alongside biodiversity loss and decrease
in water availability, soil quality is one of the most pervasive environmental concerns (Kim et al., 2009;
Hoefnagels et al., 2010).

Earlier academic discussions about the (un)sustainability of bioenergy crops such as palm oil or soy, point
towards land-use change as the main driver. This occurs by converting carbon stock rich areas such as natural
rainforest and peat swamp forest into pasture and agricultural land. The cumulative CO2 emissions released
from clearing natural vegetation via combustion and decomposition, as a reaction to land conversion, are
commonly referred as the carbon debt of land use change (Fargione et al., 2007; Lamers and Juninger, 2013).
The conversion of carbon stocks into CO2 emissions is triggered by changes in both the above- and below-
ground biomass. For perennial plants, the stocks are ephemeral which entails that the decay is balanced by
re-growth “making the overall net carbon stock in biomass rather stable in the long term” (Aalde et al., 2006,
p. 11). For trees and other woody materials, which over time accumulate carbon, it is relevant to account
for the C fluxes which generate changes in the biomass pools (carbon reservoirs). The re-growth of woody
biomass is challenged when dealing with the period of time it takes to accumulate the emitted carbon, as
different woody biomass for bioenergy re-pays their carbon debt over different time spans.

The bioenergy sustainability criteria at aggregate levels have thus been challenged on environmental
impacts and GHG emission accounting (Popp et al., 2011), all drawing to the same bleak conclusion that
life-cycle assessment studies do not fully account for land-use driven GHG emission in relation to bioenergy
production (Popp et al., 2011; Millazzo et al., 2013). It is argued that “biodiesels sustainability [for example]
is usually compromised in case of land-use changes” (Millazzo et al., 2013) because the displacement of prior
crop production most often leads to GHG balance shifts. This debate was adjoined by an earlier discussion
about the induced indirect land-use effects of land-use displacement (Fargione et al., 2008; Searchinger et
al., 2008). These issues emphasize on the need to include the corresponding emissions in the GHG balance
calculations while at the same time improve the spatial resolution and extent of the study area (Fritsche et
al., 2010; Wicke et al., 2012). The ILUC impacts on bioenergy added a new level of complexity to the GHG
emission accounting methods which spurred a number of conspicuous unaccounted issues. Among the most
notable ones are propagation effects of land displacement over time and space, but also spatially specific data
characterization.
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The complex land-use dynamics triggered related propagation effects of land displacement. Land-use
change in a specific area, more than often, triggers changes elsewhere (within and/or outside boundaries).
Spatially specific land-use displacements occur between different land classes, forcing for example agriculture
to displace pasture while pasture advancing into forest to compensate for the takeover. One such study was
performed by Barona et al. (2010) in the Brazilian Amazon finding that soy cultivations replace “previously
deforested land and/or land previously under pasture” (p. 9) thus rendering deforestation merely a conse-
quence of pasture expansion.

The uncertainties and inconsistencies among LUC GHG emission studies call for a more consistent con-
ceptual frameworks. Several review studies have pointed out that despite applying similar methodologies to
LUC GHG emission inventories, the results display wide ranges (Cherubini and Strmman, 2011; Vestegen et
al., 2012; Wicke et al., 2012; DeCicco, 2013; Ahgren and DiLucia, 2014). Some of the bioenergy products dis-
playing such large variations in GHG emissions are rapeseed biodiesel, soy biodiesel, corn ethanol and sugar
cane ethanol. One of the most striking example in the series is that of corn-ethanol which evaluated across
several studies ranged in emissions between 5-105 gCO2 eq./MJ (Wicke et al., 2012). These uncertainties
can arguably be sourced in methodological inconsistencies, ambiguities across definitions and different inter-
pretations of the carbon payback period across land-use. The inconsistencies related to the methodological
pathways such as temporal dynamics, can have different implications based on functional choices. Using a
default 20 year carbon payback (IPCC, 2006) as compared to biomass specific carbon payback periods, can
lead to disparities in the LUC GHG emissions, driven by endogenous land-use allocation priorities.

The LUC GHG emission inventories can arguably be deemed too simplistic in assumptions, drivers and
spatial resolution, to generate robust estimates. The complexity of the interactions between different bioen-
ergy drivers require an integrated approach to account for all the market feedbacks into the energy, economy,
climate and land-use modules. A way to address the increasing size of complexity is through the use of com-
putable general equilibrium (CGE) models which “provide a complete representation of national economies,
including generation of factor income and expenditures” (Wicke et al., 2012, p. 88). This means that they
use an elasticity factor to convert between land, labor and capital markets. The main advantage of using
CGE to determine spatially specific LUC and associated GHG emissions is that they endogenously model
land-use intensification and LUC.

A number of integrated assessment models (IAM) have been developed to spatially map the impact of
large scale bioenergy crop production onto the emissions from land-use change. Among these IAMs, GCAM
(Clarke et al., 2007), IMAGE (Stehfest et al., 2014) and ReMIND/MAgPIE (Popp et al., 2011; Klein et al.,
2013) are the most cohesive in assumptions and method, and are thus relevant to refer to. The models are
similar in their general approach to quantify the GHG emissions related to LUC in consequence to increased
biomass supply, specifically, they all “contain both a dedicated energy system and land use module that
interact with each other” (Popp et al., 2014, p. 496), thus covering for a wide range of drivers.

Apart from the general framework being similar across models, there are also notable differences among
them. The main differences rest in the way they model biogeochemical and socio-economic processes, along-
side the specificity of coverage and detail (ibid.). Specifically for the land-use module, an integrated part of
the assessment, these models differ in the way they describe: (i) economic decisions associated with bioenergy
supply, (ii) agricultural yield and how change is incorporated either endogenously (ReMIND) or exogenously
(GCAM and IMAGE), (iii) land use based mitigation options, and (iv) carbon pools. These differences are
strongly reflected in the results the models return. For example the cumulative global emissions from LUC
through 2100 range considerably across models, from 11 to 89 Gt CO2 eq..

Despite these IAMs returning spatially specific results, their outputs are mostly aggregated to global or
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macro-level (Nassar et al., 2013; Popp et al., 2014). There is little if any academic insight into how the
spatially specificity of the data plays out in micro-trend analysis relating the bioenergy potentials to their
GHG emissions (temporal and spatial). This thesis aims to address the lack of spatially specific derived CO2

emissions, and generate spatially specific EFs, and thus be able to map the relationship between bioenergy
supply and marginal land use GHG emissions.
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3 Method

This assessment seeks to explore biomass emission factors from land use change (EFland−use) and how these
may vary spatially and temporally. To estimate the spatio-temporal EFland−use from a set of baseline datasets
requires the undertaking of a series of 3 intermediate steps: (a) carbon accounting, (b) emission accounting,
and the (c) construction of emission factors. The assessment uses ArcGIS to display the maps, and Python
to run the geo-processing of the data and plot all relevant results. The input maps are retrieved from the
IMAGE model (Stehfest et al., 2014) and are described in the Data input section. The outputs of the study
consist of (i) spatially explicit emission factor maps, (ii) emission supply curves. The maps and curves are
capped at maximum EFland−use levels such that bioenergy can fulfill EU sustainability targets. Processed
maps are generated at 10 year time steps, and 0.5x0.5 degrees grid cell resolution.

Bioenergy production from second-generation biomass has proven to offer energetic, environmental and
economic advantages over first-generation sources (Hill, 2006; Melillo et al., 2009; Schmer et al, 2008; Dunn
et al., 2013). Lignocellulosic biomass from perennial plants require few agricultural inputs, can be har-
vested multiple times per year and are less dependent on agricultural soil characteristics, thus returning
lower CO2 emissions as compared to fossil fuels (Melillo et al., 2009; Dunn et al., 2013). Such arguments aid
the sustainability argument around bioenergy, and enforce the choice of lignocellulosic (grassy) biomass for
this assessment. These include short-rotation tree plantations, switchgrass (Panicus virgatum), temperate
short-rotation coppice trees (such as willow), tropical short-rotation coppice trees (such as eucalyptus) and
Mischanthus (Mischantus giganteus) (Beringer et al., 2011).

The general aim of the proposed assessment methodology is to emphasize spatial and temporal change
of lignocellulosic bioenergy EFland−use. These EFs depend on a number of variables: (i) the carbon stock
of the vegetation displaced, (ii) the baseline (also referred to as “counterfactual”) changes of this carbon
stock (i.e. forest carbon up-take or loss), and (iii) the energy content of the biomass growth. Thus, the
analysis compares maps of carbon stocks under baseline and bioenergy cases. By carbon stocks, this study
understands biomasss pools (reservoirs) which have the capacity to accumulate or release carbon over time.
The carbon content maps in IMAGE are broken-down in 7 carbon pools corresponding to stems, branches,
leaves, roots, soil litter, soil charcoal and soil hummus.

This assessment is based on the construction of three cases, one baseline case and two bioenergy cases.
The baseline case, hereby referred to as the Natural Vegetation case (NVC), considers a potential regrowth of
natural vegetation across all biomes taking into account the temporal consequences of climate change assum-
ing no mitigation measures are taken throughout the projection period. The carbon stocks indicate a shift in
biomes over time in line with most influential climate change natural impact studies available (Parmesan &
Yohe, 2003; Bonan, 2008). Thus all results are relative to a situation where natural vegetation would prevail
including areas that are considered agricultural lands.

The full bioenergy case, also referred to as the bioenergy growth case (BGC), assumes that bioenergy
has the potential to be grown on all biophysically suitable grid cells. Consequently it ignores land-use for
food production, which would lead to loss of carbon due to indirect land-use effects. In order to see how
these results may change if agriculture is accounted for, a case where agriculture and bioenergy are both
represented is constructed. This case is generically called the agriculture-bioenergy growth case (ABGC). It
assumes that grassy biomass can be grown only after the food and fodder demand from agricultural land, as
projected by IMAGE, is allocated.

An overview of the methodological flow is presented in figure 1.
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Figure 1: Methodological flow describing the three main steps for deriving the emission factors: (a) carbon
accounting, (b) emission accounting and (c) construction of emission factor maps and curves
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3.1 Carbon accounting

The carbon accounting step in the methodological flow consists of aggregating the IMAGE carbon pools to
a set of 4 carbon pools for each of the cases. These pools are: above ground, below ground, soil litter and
soil carbon Table 2. For the NVC, the spatially specific carbon pool data is available as an input from IMAGE.

Table 1: Carbon pool aggregation from the input dataset for the NVC
Carbon pool input dataset Carbon pool output dataset

1. Stems Above-ground
2. Branches
3. Leaves
4. Roots Below-ground
5. Soil litter Soil litter
7. Soil charcoal
6. Soil humus Soil carbon

For the bioenergy growth cases (BGC and ABGC) the carbon pools are derived using (i) spatially specific
yield potentials for grassy biomass, (ii) below-to-above ground biomass ratio for different biomes, (iii) annual
soil carbon loss estimates and (iv) grassy biomass specific parameters (moisture content, carbon content
herbaceous crops). The parametrization and data is provided from IPCC guidelines and other sources, and
detailed in the data input section.

3.1.1 Above ground pool

The aboveground pool [tC] is derived from the yield potential of the grassy crops in dry weight of carbon
material as describe by eq.(1). The spatially specific computation is performed at each time step in the
projection period. The change in land-use causes a change in the carbon pools, of which the above ground
pool is subject to quickest shifts (Dunn et al., 2013). Because of the variation in the overall carbon stock, the
change in land-use can lead either to a release or sequestration of carbon. This is especially relevant when
converting high carbon stocks area, such as forests, into low carbon stock areas, such as agriculture.

Above ground carbon poolBGC or ABGCt
= NWY Pt ∗

ha

km2
∗ (1−mc) ∗ CContent [tC] (1)

NWYP = Non Woody Biomass Yield Potential [t-biomass/ha]
mc = moisture content (10%)
C Content = carbon content of herbaceous crops [tC/t-biomass (dry)] (0.47)
t = time step

3.1.2 Below ground pool

The computation of the belowground pool eq.(2) is based on the aboveground pool calculation with the
addition of the below-to-above ground (BtA) biomass ratio. The BtA biomass ratio is used to generate
BtA biomass ratio maps which display the BtA biomass ratio corresponding to land-cover class, using IPCC
guideline values (table 4). In the calculation of the belowground biomass, the carbon content (C Content) is
assumed to be the same as that of the aboveground pool.
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Below ground carbon poolBGC or ABGCt
= Above ground carbon poolBGC or ABGCt

∗BtAt [tC] (2)

BtA = Below-to-Above ground biomass ratio [kg-below/kg-above]

3.1.3 Soil Carbon pool

The decision to plant grassy biomass at a certain year (tscen) influences the value of the soil carbon pool
as “land use and management have an [...] impact on organic carbon stocks” (IPCC Vol. 4, Chapter 2, p.
28). Land use change types, such as forest to cropland and grassland require the undertaking of a series of
land management practices with strong impact on the soil organic carbon. IPCC reckons that these practices
impact “plant production [...], direct additions of C in organic amendments, and the amount of carbon left
after biomass removal, such as crop harvest” (p. 28). In addition, these changes in soil organic carbon levels
can impact “erosion rates and subsequent loss of carbon from a site” (ibid).

For the years prior the plantation of grassy biomass, the value of the soil carbon pool is assumed the
same as the soil carbon pool in NVC. For the 20 years period after the plantation of grassy biomass, the
soil carbon pool undergoes both a loss and an accumulation. The linear loss rate is based on climate zone
specific annual soil losses, subsequent to land-use conversion. The values used for annual carbon soil loss
after land-use conversion are extracted from IPCC guidelines (Verchot et al., 2006), and are climate zone
specific (Table 5). The sequestration is computed by means of land use, input and land management factors
(Table 6) derived from IPCC guidelines. After the 20 years transition period, it is assumed that the soil loss
soil carbon content remains constant whilst the carbon sequestration continues.

Soil Carbon poolBGC or ABGCt
=



Soil Carbon poolNVCt
[tC], for t ≤ tscen

(Soil Carbon poolNVCt
)− (CarbonSoilLosst)∗

FtextitLU ∗ FMG ∗ Fl [tC], for tscen < t < tscen+20

(Soil Carbon poolBGC or ABGC tscen+20
)∗

FLU ∗ FMG ∗ Fl [tC], for t ≥ tscen+20

tscen = year of biomass planting
FLU = Land-use factor
FMG = Land management factor
FI = Input factor

3.1.4 Soil Litter pool

The soil litter carbon pool accounts for the dead organic matter present for each vegetation type and land
cover category. When converting a land cover to grassland, the IPCC indicates to account for a linear decline
in soil litter over the coming 19 years after vegetation is cleared. There is a distinction to be made among
land types when accounting for the soil litter pool. Not all land cover types accommodate a generous soil
litter pool before conversion, and as such in the land use transition the IPCC proposes that this pool to be
assumed zero (IPCC, 2006, p. 6.31). Other land cover types such as forest, agro-forest and wetlands have
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significant soil litter pools which need to be accounted for in transition period after vegetation clearance
(ibid.) according to eq.3, 4, 5.

Soil litter poolBGC or ABGCt
= Soil litterNV Ctscen/(tscen+20 − tscen) [tC] (3)

Soil litter poolBGC or ABGCtscen+10
= Soil litterNV Ctscen

/
1

2
(tscen+20 − tscen) [tC] (4)

Soil litter poolBGC or ABGCtscen+20
= 0 (5)

SoillitterNV Ctscen = Carbon pool under the old landuse category [tC]

In a larger context, the accumulated carbon debt of bioenergy can be repaid over time. To take such
aspects into account and for conservative reasons, this analysis assumes that biomass is to stay planted on
the same plots for number of years, commonly referred to as biomass transition period. In the case of this
assessment the transition period of biomass is assumed to be 20 years in line with the proposed IPCC guide-
lines for inventory methodologies (Aalde et al., 2006). After 20 years from the clearing of natural vegetation
for grassy biomass planting, the bioenergy crops remain in place. The 20 year transition period is chosen
“based on soil carbon pools typical time to equilibrium after land-use conversion” (p. 3.13). Figure 2 displays
the change in carbon content across the three cases (NVC, BGC and ABGC).

3.2 Emission accounting

During land-use conversion from one type to another in the scope of growing biomass for bioenergy, CO2 is
emitted into the atmosphere. While these emissions are the aggregate of the carbon lost when vegetation is
cleared, carbon stocks of natural vegetation may also change over time depending on biomass growth or loss.
During land-use conversion, most of the CO2 emissions happen instantaneously with the release of carbon
from the above and belowground carbon pools. The remaining carbon accumulated in litter and soil carbon
is released gradually over time “as soil carbon stocks [...] adjust to new equilibria” (Wise et al., 2015). Fur-
thermore, carbon stock changes in the counterfactual should also be accounted for as forgone sequestration
or emission.

The scope of the emission accounting step in the methodological flow is to generate spatially specific
CO2 emissions associated with land-use change. In line with the IPCC guidelines (Verchot et al., 2006), this
assessment methodology takes into account 2 types of emissions: Emissions type 1 and Emissions type 2,
once biomass is planted in tscen and undergoes a 20 year transition period.

• Emissions type 1 - The instantaneous emissions released in the atmosphere once natural vegetation
is cleared, for grassy biomass plantation, are referred to as emissions type 1. They are based on the
loss of carbon content of the present vegetation (above-ground, below-ground) in tscen eq. (6).
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Figure 2: Land based C stocks by pool in the three cases. Parallel graphs of the carbon pool by content
in the NVC (left), BGC (middle) and ABGC (right). Graphs are generated from input data under the
above described assumptions. (left) The NVC displays a decrease in the above ground and soil carbon pools
after 2040 linked to the impacts of climate change across natural systems. (middle) The BGC marginally
accumulates carbon in the above and below ground pools till 2100, though these are lower than in the NVC.
The soil carbon pool decreases rapidly in the transition period because of rapid soil erosion associated with
land conversion, but faces a meager increase as a consequence of C accumulation in the soil horizon. (right)
The change in C stock is emulated in the ABGC, but at lower C stock levels because agricultural lands are
exempted form the analysis.

Emissions type 1t = (Above groundNV Ct
+ Below groundNVCt

∗ 44

12
[kg CO2] (6)

• Emissions type 2 - Over the coming tscen -1 years from grassy biomass planting, emissions will con-
tinue to be diffused into the atmosphere emanating from the belowground, soil litter and soil carbon
polls which diffuse their carbon content at a slower pace. Changes in the carbon content (emission or
sequestration) over the coming tscen -1 years, in the baseline, are also accounted for. These emissions
are referred to as emissions type 2, and represent the baseline changes in carbon content between the
NVC and the BGC/ABGC eg. (7-13).

For example in the NVC, the above-ground carbon pool may have sequestered carbon over time if it
were to continue being planted. As the natural vegetation is cleared, the avoided carbon sequestration
of the natural vegetation growth needs to be accounted for as an emission against the BGC /ABGC
eq.(7-13).
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One of the assumptions involved in the calculation of emissions type 2 is that the above ground biomass
in the BGC/ABGC is harvested annually to be used as bioenergy, hence the carbon accumulated over
the year is burned quickly. This leaves only the belowground, soil litter and the soil carbon pools
sequestering carbon over time.

Carbon stocksBGC or ABGCt
=

(Below groundBGC or ABGCt
+ Soil CarbonBGC or ABGCt + Soil litterBGC or ABGCt) (7)

Carbon stocksBGC or ABGCt-10 =

(Below groundBGC or ABGCt-10
+ Soil CarbonBGC or ABGCt-10

+ Soil litterBGC or ABGCt-10
) (8)

Carbon stocksNVCt
=

(Above groundNVCt
+BelowgroundNVCt

+ Soil CarbonNVCt + Soil litterNVCt) (9)

Carbon stocksNVCt-10 =

(Above groundNVCt-10
+BelowgroundNVCt-10

+ Soil CarbonNVCt-10
+ Soil litterNVCt-10

) (10)

4Carbon stocksNVC = Carbon stocksNVCt
− Carbon stocksNVCt-10

(11)

4Carbon stocksBGC or ABGC = Carbon stocksBGC or ABGCt
− Carbon stocksBGC or ABGCt-10

(12)

Emissions type 2t = (4Carbon stocksNV Ct
−4Carbon stocksBGC or ABGCt

) ∗ 44

12
[kg CO2] (13)

The typical pattern of emissions from land-cover change due to growth of biomass displays as an initial
pulse from net change in carbon balance (type 1) followed by a long tail of lagged changes in pools such as
soil carbon and baseline vegetation changes (type 2).

The integral of the emissions over the transition period display the cumulative CO2 emissions associated
with the land use conversion for bioenergy eq.(14). The cumulative emissions are computed for the two cases
(BGC and ABGC), and displayed spatially specific (in a map format).

Cumulative emissions(CE)tscen+20
=

∫ tscen

tscen+20

(Emissions type 1 + Emissions type 2) [kg CO2] (14)

The grassy bioenergy emissions are linked to the bioenergy potential, which is why it is relevant to com-
pute the potential both spatially specific and aggregate potentials, until tscen+20. The cumulative biomass
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production, assessed in GJprimary per grid cell, is a function of potential grassy biomass yield and HHV for
non-woody energy crops eq. (15) . The value of the HHV for non-woody energy crops used in this assessment
is 16.5 MJ/kg, and is extracted from the ECN-Phyllis database, corresponding to switchgrass and Miscanthus.

Cumulative grassy biomass production (CEP)tscen+20
=∫ tscen+20

tscen

(Biomass yield ∗HHVnon−woodyenergycrops ∗
ha

km2
∗Area) (15)

[
GJprimary biomass

grid cell

]
= [

103kg

ha

]
∗

[
MJ

kg

]
∗

[
ha

km2

]
∗

[
km2

grid cell

]

3.3 Emission factors

Carbon balance of bioenergy is often expressed as the ratio of CO2 emissions generated per unit of energetic
value, commonly referred to as the emission factor (EF) of bioenergy (Lamers and Juninger, 2013). These
EFs can be put into perspective globally by means of emission factor maps. This spatially specific approach,
emphasizing the trade-offs between temporal LUC emissions incidental to bioenergy potential, is necessary for
two reasons. First makes it possible for land-cover change and the consequent CO2 emissions from bioenergy
to be fully accounted at grid cell level over time. As such, this assessment overcomes averaging limitations
and regional isolation of emission impacts. Second, at regional levels, EF maps can provide categorical dif-
ferences between analyzed cases (BGC and ABGC).

The emission factor of biomass planted at tscen for a transition period of 20 years is calculated according
to eq. (16) and represents the land-use EF of bioenergy (EFlanduse). This type of analysis has an implication
on the choice of tscen and the transition period of bioenergy.

Emission Factor(EF20) =
CEtscen+20

CBPtscen+20

[kgCO2
]

GJ
(16)

The relevance of computing EFlanduse is threefold. First, by performing a spatially specific assessment the
results provide information of the performance of each individual grid cell, giving the possibility to extract
EF information about specific regions and biomes. Second, the methodology allows to assess the performance
of spatially specific and aggregate EFlanduse at different biomass planting years. For example, the base set of
results are constructed on the assumption that biomass is planted in 2020, but this can be adjusted to 2010
or 2030. Third, the bioenergy transition period is assumed 20 years but this default transition period can be
exercised on shorter and longer intervals. One interesting alternative is 30 year stationary effect, prevalent
in US based studies (Schmer et al., 2007; Dunn et al., 2013).

The spatially specific EFland−use alongside the bioenergy potential can be used to generate emission
factor supply curves (EFSC) which display the cumulative mean annual bioenergy potential within a given
EFland−use. The EFSC are computed for both the BGC and the ABGC. The difference between the two
cases consists in the fact that the ABGC will have far less grid cells available for bioenergy, meaning that
the ABGC EFSC has a lower cumulative bioenergy potential. This does not need to hold true across all
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world regions. Filters for specific regions and biomes around the globe can indicate at specific EFland−use

threshold levels, the cumulative suitability for bioenergy growth. Spatially specific, this type of information
can point to clusters of bioenergy suitable grid cells.

This analysis considers as base case the situation of 2020 as tscen and 20 years transition period. Varia-
tions of tscen and transition period, in the construction of the EFSC, are performed for analysis.

3.4 Thresholds for sustainable bioenergy land-use EFs

Under the EU Renewable Energy Directive (RED)(EU Commission, 2009) the renewable energy targets re-
quire that in order for biofuels to displace sustainably fossil fuels, they need to provide GHG emission savings,
compared to the their fossil fuel alternatives. The current target is set at 35% GHG emissions saving, but
this is to increase to 50% in 2017, and 60% in 2018 (ibid.).

The purpose of this step of the analysis is to assess what are the thresholds for EFland−use of bioenergy,
such that bioenergy can fulfill the EU Renewable Energy Directive sustainability criteria (Table x in the data
input section). A first step is to include the EFs of the other processes (EFbioenergy porcesses) involved in the
bioenergy production such as cultivation, transport and processing, from the JRC inventory (Edwards et al.,
2014). As gasoline and bioethanol can substitute each other in the transportation sector, gasoline is reckoned
to be, in this second step, the fossil fuel alternative. The LCA EF of gasoline used in this assessment is 87.1
kgCO2eq/GJfuel (ibid.). In a third step, the EU RED sustainability EF (EFsustainability target) are calculated,
added to the EFbioenergy porcesses, and subtracted from the EFgasoline. The resulting estimates represent
the upper thresholds for EFland−use for EU biofuel sustainability standards. To round-up the analysis, the
spatially specific EFland−use are capped (table x), in the EF maps and the EFSCs, to contextualize the
results in the EU RED sustainability guidelines. The capped EF maps indicate the spatial distribution of
the sustainable bioenergy, while the EFSC provide an indication of the order of magnitude of the sustainable
bioenergy potential.

Table 2: Maximum EFland−use in line with EU RED sustainability targets
EU RED sustainability targeta 35% 50% 60%

Maximum EFland−use (primary biomass) [kgCO2eq/GJprimary] 85 52 30
aexpressed as % of the GHG emission savings compared to the their fossil fuel alternatives
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4 Data input

This assessment is constructed on the inputs listed in table 3, and mostly sourced from IMAGE and the
IPCC guidelines.

Table 3: List of assessment inputs
Input Type Unit
IMAGE inputs
Land use maps natural vegetationa Land-cover raster Land use classes
Land use maps bioenergy growth cases Land-cover raster Land use classes
C content maps Raster tC/km2

Grassy crops yield potential map Raster t(wetbased)/ha
Area map Raster Km2

Region mapb Raster regions
IPCC inputs
Below-to-Aboveground Ratio ratio tCbelowground/tCaboveground

Soil Loss ratio [tC/ha/year]
Input factors factor -
OTHER inputs
Herbaceous crops moisture contentc value Mass water/mass biomass
Carbon contentd value tC/t-biomass (dry)
EF bienergy processese values kgCO2eq/GJEtOH

aAppendix 1
bAppendix 2
cValue wet to dry grassy biomass of 0.1 (ECN Phyllis, 2014)
dValue 0.47 tC/t-biomass (dry) extracted from the IPCC guidelines for herbaceous crops (Verchot et al., 2006)
eEU Joint Research Center (JRC), Well-to-wheel analysis (Edwards et al., 2014)

4.1 IMAGE inputs

IMAGE is an IAM of the global environmental change which takes into account the interactions between the
human and the Earth system. IMAGE is built on a number of exogenous assumptions (drivers) which shape
the direction and rate of change in key variables and results. These drivers are: natural resource availability,
technological development, economy, demographics, policy and governance, and culture and lifestyle. The
spatial projections of the IMAGE 3.0 model assess the biophysical limits of scenario expansion (Stehfest et
al., 2014). Within the scope of this assessment, the most relevant spatially specific outputs are: (i) land
use - natural vegetation map, (ii) land-use bioenergy growth case, (iii) carbon content maps, and (iv) yield
potential maps for grassy crops.

The temporal resolution of the maps is 10 year time steps in the interval 2000 to 2100, and the spatial
resolution of the maps is 0.5x0.5 degrees. This means that for each of the cases, the bioenergy and GHG
emission maps are generated at every 10 year time intervals and return maps consisting of over 60.000 grid
cells.

(i) Land use - natural vegetation and (ii) Land use bioenergy growth case - a set of raster
files generated by IMAGE which pin down the type of potential vegetation at each grid cell. In IMAGE 3.0
(Stehfest et al., 2014) land use allocation causes LUC and subsequently triggers a set of GHG fluxes between
the land cover, soil and atmosphere. In order to map these “complex dynamics of the terrestrial biosphere”
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(p. 175) IMAGE uses the LPJmL model (Lund-Potsdam-Jena model with managed land) (Sitch et al., 2003).
The LPJmL is one of the most extensively evaluated dynamic global vegetation models (ibid.) which in the
scope of this assessment uses the carbon dynamics outputs in the form of a global map with 0.5x0.5 degrees
resolution accounting at each grid cell for the content of the different carbon pools (ibid.).

IMAGE applies a number of rules in the land-use allocation, which assess where the different classes will
be located. These rules iterated on a yearly basis and are driven by a suitability assessment. The suitability
function factors in potential yield and terrain slope index. The suitability function is thus concerned with
the individual cell productivity rather than emission dynamics (Stehfest et al., 2014).

(iii) Carbon content maps - for different carbon pools are a set of raster files generated by IMAGE
and accounting for the carbon content at 7 different biomass pools figure 3.

Figure 3: Aggregate carbon pools - natural vegetation

(iv) Potential yield of non-woody (grassy) crops represents a set of raster maps which indicate the
potential yield (wet based) in t/ha at grid cell level. IMAGE assumes an average autonomous yield increase
of 1%/year, differentiated by region (Stehfest et al., 2014, p. 189).
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Figure 4: Yield potential for non woody biomass in 2020

4.2 IPCC inputs

A number of specific parameters used to derive the C content of the C pools in the bioenergy case, based on
he IPCC guidelines. They are: below-to-aboveground ratio (table 4), the annual soil C loss (table 5) and the
bioenergy input factors (table 6).
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Table 4: The below-to-above ground biomass ratio, for the major grassland ecosystems of the world (IPCC,
2006, vol. 4, ch. 6, table 6.1)

Vegetation Type Approximate climate zone Below-to-Above ground Ratio
Steppe/tundra/prairie grassland Boreal - dry and wet 4.0

Cold Temperate wet
Warm Temperate - wet

Semi-arid grassland Cold Temperate dry 2.8
Warm Temperate dry

Tropical - dry
Sub-tropical/tropical grassland Tropical Moist and wet 1.6

Woodland/savannah Savannah 0.5
Shrubland Shrubland 2.8

Other vegetation types* 2.0
*own estimate for remaining vegetation types

Table 5: Annual soil carbon loss as a result to land-use change for biomass planting (IPCC, 2006, vol. 4, ch.
6, table 6.3)

IPCC climatic zone Soil loss [tC/ha per year]
Boreal /Cold Temperate 0.25

Warm Temperate 2.5
Tropical/Subtropical 5.0

Table 6: Input factors for land-use conversion (IPCC,2006, vol. 4, ch. 5, table 5.5)
Climatic zone Input factor (FI) Land-use factor (FLU ) Management factor (FMG)
Temperate dry 12 0.93 1.10
Temperate wet 12 0.82 1.15

Tropical dry 12 0.93 1.17
Tropical wet 12 0.82 1.22

Tropical mountain 12 0.88 1.16

4.3 Other inputs

Table 7 provides the inputs for the derivation of the EFland−use.
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Table 7: Input data for the EFland−use calculation
Parameter Unit Value Source
EFbioenergy porcesses

a Cultivationb kgCO2eq/GJEtOH 6.3 Edwards et al.
(2014
- Appendix 4)

Processingc kgCO2eq/GJEtOH 14.0
Transportd kgCO2eq/GJEtOH 2.5
Combustion kgCO2eq/GJEtOH 74.1
of which renewable kgCO2eq/GJEtOH -74.1
Total 22.8

EFsustainability target
e 2010 - (-35% target) kgCO2eq/GJEtOH 30.5 EU Commission

(2009)
2015 - (-50% target) kgCO2eq/GJEtOH 43.6
2020 - (-60% target) kgCO2eq/GJEtOH 52.3

Upper
EFland−use(ethanol) current - (-35%) kgCO2eq/GJEtOH 33.8 Own

calculationsf

2017 - (-50%) kgCO2eq/GJEtOH 20.7
2018 - (-60%) kgCO2eq/GJEtOH 12.0

Conversion efficiency (η) 40% g

Upper EFland−use

(primary biomass) current - (-35%) kgCO2eq/GJprimary 84.5 Own
calculations h

2017 - (-50%) kgCO2eq/GJprimary 51.8
2018 - (-60%) kgCO2eq/GJprimary 30.0

*EF - Emission factor
athe emission factor of the bioenergy processes correspond to waste wood to ethanol production.

It is assumed that the emission factors of waste wood for ethanol production are the closest in the LCA to those of

second generation lignocellulosic crops for bioenergy production.
bthe cultivation includes fertilization, diesel based agricultural management inputs and storage of primary bioenergy.
cprocessing refers to the conversion from primary biomass to ethanol with diesel inputs. The JRC inventory

(Edwards et al., 2014) assumes 34% conversion efficiency for this process, and accounts for credit for surplus electricity

based on biomass fuelled power station at 32% conversion efficiency.
dtransportation includes three transport segments: (i) primary biomass transport from source to conversion facility

(average 150km). (ii) ethanol transport to distribution center (average 150km), (iii) ethanol transport to retail sites
ethis study assumes that the energetic conversion between ethanol and gasoline is 1:1
fthe maximum EF land-use - ethanol is calculated as:

EFlanduse−ethanol[kgCO2eq/GJ ] =

EFfossil fuel alternative[kgCO2eq/GJ ]-EFbioenergy porcesses[kgCO2eq/GJ ]-EFsustainability target[kgCO2eq/GJ ];

with energetic conversion between ethanol to gasoline as 1:1
gbecause the spatially specific results are generated in primary energy, there is a need to convert from

kgCO2eq/GJEtOH to kgCO2eq/GJprimary . Assumed conversion efficiency = 40%. The biochemical feedstock to fuel

conversion efficiency ranges in practice from 37% (EPA, 2010) to 44% (Bain, 2007) for second generation biofuels from

lignocellulosic.
hthe maximum EF land-use primary biomass is calculated as:

EFlanduse−primary [kgCO2eq/GJ ] = EFlanduse−ethanol[kgCO2eq/GJ ]/η
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5 Results

5.1 Base case

5.1.1 CO2 emissions

The land use change CO2 emissions for bioenergy growth are presented in figure 5. The type 1 emissions
resulting from the clearance of natural vegetation for planting bioenergy crops, for both analyzed cases,
return the same pattern. On the time profile, the emissions spike in the year the switch is made from natural
vegetation to grassy crops as the vegetative C stocks are cleared. Once the instantaneous emissions are
released, the type 2 emissions, resulting from the gradual release of CO2 as a consequence remainder organic
material decay, as well as baseline changes in carbon stocks, are diffused gradually over the transition period.

Figure 5: Time path of land-use change driven CO2 emissions in the BGC and the ABGC

5.1.2 Emission factors

The EFland−use, constructed from the CO2 emission data and the bioenergy potential, is mostly relevant in
a spatially specific analysis (figure 6). In line with the EU RED biofuels sustainability criteria, the upper
EFland−use are displayed globally according to the pre-calculated thresholds.
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Figure 6: Global spatial distribution of EFland−use
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In the BGC, the global distribution of the EFland−use is concentrated in areas of high agricultural pro-
ductivity across all continents. Under the 85 kgCO2eq/GJprimary (35% emission reduction target), the global
potential is rather vast across all major global regions with the exception of Europe. At 60% emission reduc-
tion target (30 kgCO2eq/GJprimary), the low EFland−use are distributed mostly in coastal areas across Asia
and North America, specifically in the Yellow River Basin and the Southern Seaboard.

At regional level, low EFland−use of the BGC are correlated with high productivity areas such as agricul-
tural lands (figure 7 and figure 8). In North America, under the 35% ERT a generous part of the south-east
of the US is suited for sustainable bioenergy growth. This potential decreases gradually with the increase of
the sustainability target, leaving only parts of the Mississippi portal and the Southern Seaboard available for
sustainable bioenergy growth under the 60% ERT. The same pattern is displayed also across the Yellow River
Basin, which alongside the Gange River delta and the Indonesian archipelago display the highest number of
cells under the 60% ERT. In Africa and South America, the sustainable bioenergy production is vastly below
the 50% ERT with potential being clustered in the Niger Delta and the Pampean region.

In the ABGC, the low EFland−use become scattered across the continents, and are pushed towards the
boundary of major agricultural areas in South America, North America and central Africa (figure 8). Under
the 35% emission reduction target (ERT), the highest concentration of grid cells is located in Australia, Asia
and the North America, yet when the ERT is raised to 60%, the concentration becomes patchy in areas of
Africa, Australia and South East Asia. In Africa and South America, the low EFland−use are vastly dispersed,
with only a few notable aggregates in Zimbabwe and south-west Pampas. Asia remains the region with the
highest grid cells suited for sustainable bioenergy growth, particularly in Sumatra and the Australian east
coast.

In both the BGC and the ABGC, a number of grid cells in the EF maps, display a negative EFland−use.
The negative EFs are credited to C sequestration, and are concentrated in temperate and tropical forest
biomes. The most noticeable ones are located in central Africa, Europe and in the Americas Great Lakes
area. This indicates that for these grid cells, it is more beneficial to have bioenergy planted, as compared to
resting natural vegetation as the C sequestration rate of the bioenergy is higher than the C sequestration rate
of the natural vegetation. There are two non-mutually exclusive dynamics which can lead to C sequestration:
negative net C fluxes of the natural vegetation and/or the net C fluxes of bioenergy being higher than the net
C fluxes of natural vegetation. Both of these dynamics is supported by literature. First, the climate change
impact studies on mature boreal and tropical forest biomes (Parmesan & Yohe, 2003; Betts et al., 2004;
Bonan, 2008), reckon that due to climate change induced biome sifts, mature forests are likely to lose C over
time, rather than accumulate it. Bonan (2008) argues that “Siberian forests may collapse in some areas and
become evergreen [forests] towards the north” (p. 1447), while evergreen forests may “lose some of the ever-
green trees and shift towards deciduous [forest]” (ibid.). In the case of tropical forest, biome shifts are likely to
“initiate positive climate feedbacks, leading to [net C] loss” (ibid.). Second, degraded lands where perennial
crops are cultivated improve soil fertility and reduce soil erosion, dispersion and leaching (Lal, 2001; Lal, 2004;
Lal, 2009) thus, are prone to accumulate C and return a positive net C flux as compared to natural vegetation.
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Figure 7: EFland-use regions map-BGC
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Figure 8: EFland-use regions map-ABGC
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5.1.3 Emission factors supply curves

The land-use based EFSC are an aggregate way of viewing the spatially specific EFs (figure 9 left), at global,
regional and biome level. At each spatial level, the EFs are relevant within the EU ERT as displayed in figure
9 - (right), and inventoried in table 8. The bioenergy potentials between the two cases are comparable in
terms of their order of magnitude, and correlate with the spatially specific results. The curves (figure 9 -
left) indicate that there are significant areas with very high EFs returning low potentials. EFs are a function
CO2 emissions and bioenergy potentials. As bioenergy potentials are computed from biomass yields, which
do not vary considerably over time, it can be argued that the high EFs are due to CO2 emissions. These
emissions are more likely type 2 and stem from either baseline C stock changes or LUC significant C stock
losses. These areas deliver a marginal increase in mean annual bioenergy potential lower than the EFland−use

increase, which means that their added potential is negligible.

Under the 35% ERT threshold (figure 9 - right), the bioenergy potential of the two cases is assessed to
be considerable, with potentials decreasing by a factor of 4 (BGC) and 2 (ABGC) towards the 60% ERT
threshold (table 8). It is interesting to note that the BGC and the ABGC EFSCs cross each other below the
60% ERT threshold, which is peculiar because there should have always been agricultural lands to mark the
difference between the cases.

Figure 9: Global EFSC displaying the mean annual cumulative bioenergy potential within given EFs. (left)
EFSC display the global potential for the BGC and the ABGC; (right) EFSC under the ERTs for the BGC
and the ABGC
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Table 8: Inventory of annual mean cummulative bioenergy potential at global level(BGC and ABGC) under
EU RED ERTs (35%, 50% and 60%)

35% ERT 50% ERT 60% ERT
BGC [EJ/yr] 517 354 130

ABGC [EJ/yr] 182 139 108
*ERT= emission reduction target

Broken down into regions, the EFSCs surface the regional variability in potential bioenergy supply. The
spatial variability displayed in figure 11 is graphed to emphasize the aggregate potential of the BGC and
the ABGC at given EFland−use (table 9). The EFSC of Europe and North America display the steepest
slopes amongst regions, indicating that at different EFland−use the potential increase in bioenergy potential
is meager. The main causes, for this low bioenergy potential vis-a-vis EFland−use, is induced by high CO2

emissions coming from either the displacement of rich C stock vegetation in the baseline, or considerable
C stock loss as a consequence of LUC. Determining the exact source of these CO2 emissions is a spatially
specific exercise. One example are forested areas in the Northern latitudes, which because of their rich C
stock, generate a carbon debt unable to be recovered within less than a decade (Wise et al., 2015) if they
were displaced for bioenenrgy crop growth. Another example is bioenergy crop growth in areas prone to
erosion, such as the European plains.

The EFSCs of South America, Asia and Africa, the regions with the highest number of grid cells under
the assigned biofuel sustainability thresholds, display smoother curves. These curves intersect each other at
different bioenergy potentials, named here trade points, which indicate the EFland−use level at which a one
region substitutes each other in terms of EFland−use. This can be interpreted as the bioenergy potential of
Asia above the 40 kgCO2eq/GJprimary is less sustainable as compared to that of South America above this EF.

Under the scrutiny of sustainability criteria, bioenergy EFs should not exceed the fossil fuel EF threshold.
In the ABGC as compared to the BGC, the lesser land availability for bioenergy production is reflected in
the overall potentials which are 40-80% lower between ERTs (Table 9). This returns an overall bioenergy
potential of 517EJ/year in the BGC and 182EJ/year in the ABGC, in below the 35% ERT. These potentials
are slashed by a factor between 2 to 3, when the ERT is increased to 60%. The overall ranking of the
regions in term of their potentials is closely paralleled between the BGC and the ABGC, with South America
delivering highest potentials under the 35% ERT and the 50% ERT, when it is taken over by Asia in the
BGC, for the 60% ERT. Despite this being the case in the BGC, this ranking does not hold for the ABGC,
where South America delivers best potentials overall.
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Table 9: Inventory of annual mean cumulative bioenergy potentials at regional level (BGC and ABGC);
expressed in [EJ/yr]

Bioenergy potential
under the 35% ERT
[EJ/yr]

Bioenergy potential
under the 50% ERT
[EJ/yr]

Bioenergy potential
under the 60% ERT
[EJ/yr]

(BGC) (ABGC) (BGC) (ABGC) (BGC) (ABGC)
S America 198 53 136 43 36 41
SE Asia 120 62 92 48 54 36
Africa 109 39 59 30 17 21
N America 41 19 26 13 7 8
Europe 2 6 1 2 1 1
Other 47 3 4 3 15 1
TOTAL 517 182 354 139 130 107
*ERT= emission reduction target

Figure 10: Regional EFSCs; (left) Aggregate EFSCs with full potential display. The full lines indicate the
BGC and the dotted lines indicate the ABGC; (right) regional EFSC indicating the emission reduction targets
(ERT) thresholds under the biofuel sustainability criteria of EU RED for the BGC and the ABGC.
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Broken down into the most representative biomes, the EFSCs can highlight which vegetation type is best
suited for land-use conversion, under the assumptions of this assessment. The spatial variability displayed
in figure 11 is graphed and inventoried to emphasize the aggregate potential of the BGC and the ABGC at
given EFland−use thresholds. The main observation which stems from figure 11, and the associated inven-
tory (table 10), is that in both analyzed cases, grassland remains the dominant biome preferred for land-use
conversion for bioenergy growth, at most ERT EF thresholds. The potential from grassland conversion is
reduced to half in the BGC when the ERTs are applied, from 146EJ/year (35% ERT) to 68EJ/year (60%
ERT). The trade point between the grassland and temperate forests, at EF=76 kgCO2eq/GJprimary, which
can is attributed to the IPCC soil loss inputs in sub-tropical areas, where grasslands are modeled to incur
high rates of C loss due to soil erosion. In the ABGC the grassland mean annual bioenergy potential varies
little among the ERTs, between 61EJ/yr (35% ERT) and 53EJ/yr (60% ERT).

Amongst forest biomes, temperate forests return high potentials as compared to tropical and boreal
forests. Temperate forests have the lowest C stock accumulations in both the above and below ground pools
(Malhi et al., 1999), which is why the C debt repayment is quickest for this forest type. Alongside this, the
yield potentials for the areas where temperate forests are located is generous, which is why this biome type
provides rather high potentials. Under strict ERTs (60% ERT), temperate forest are modeled to be able to
deliver at most 18EJ/year. Tropical areas are, under soil and climatic conditions, best suited for growth of
biomass. Despite tropical forests being rich C stocks, the high bioenergy yield potential of the associated
areas where they are planted, makes their EFland−use and associated bioenergy potentials better than the
ones of boreal forests. Boreal forests, despite having low C stock in the vegetative part, they store the highest
amount of C in the below ground C pools, which is why the CO2 emissions from boreal forest clearance for
bioenergy growth would be highest among biomes. Correlated with very low yields in high latitudes, this
biome type is the least suited for LUC for bioenergy growth.

Although modeled, shrublands return no bioenergy potential in the results of this analysis. As biome
type, shrublands are deemed to be preferred for land-use conversion for bioenergy growth after grasslands,
because their C stocks content (Mellilo et al., 2009). The poor bioenergy potential of shrublands in this
analysis is sourced in the IMAGE input data. A parallel between the land-use map and yield potential maps
indicate that shrublands have very low if any yield potential.

Table 10: Inventory of annual mean cumulative bioenergy potentials at biome level (BGC and ABGC);
expressed in [EJ/yr]

Bioenergy potential
under the 35% ERT
[EJ/yr]

Bioenergy potential
under the 50% ERT
[EJ/yr]

Bioenergy potential
under the 60% ERT
[EJ/yr]

(BGC) (ABGC) (BGC) (ABGC) (BGC) (ABGC)
Grassland 146 61 125 56 68 53
Shrubland 0 0 0 0 0 0
Temperate forest 155 47 104 31 34 18
Tropical forest 64 26 16 12 5 4
Boreal forest 1 1 1 1 1 1
Other 151 47 108 39 22 31
TOTAL 517 182 354 139 130 107
*ERT= emission reduction target

The results of the base case offer an overview of the aggregate bioenergy potentials at given EFs, how this
is broken down among regions and biomes. These results are generated under the assumption that the land
conversion for biomass growth takes place in 2020, with a bioenergy transition period of 20 years. Both the
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Figure 11: Biome EFSCs; (upper) biome EFSC indicating the emission reduction targets (ERT) thresholds
under the biofuel sustainability criteria of EU RED for the BGC; (lower) biome EFSC indicating the emission
reduction targets (ERT) thresholds under the biofuel sustainability criteria of EU RED for the ABGC.

transition period and the planting year can alter the spatial distribution of EFland−use and shift the EFSCs.

5.2 Transition period variation

The EFland−use of bioenergy is strongly influenced by the number of years the bioenergy crops are cultivated
on the same plot of land. The base case shows results for a 20 year transition period (20EF), yet a 10 or
30 year transition period (10/30 EF) show shifts in the EFSCs. In both the BGC and the ABGC, the 30
EF delivers a higher potential as compared to the 20 EF, while the 10 EF delivers a lower potentials (figure
12 upper left, lower left). For both the shorter and the lower transition periods, type 1 emissions have the
strongest effect on the EFSC. For the shorter transition periods, the cumulative production of biomass is
lower and thus generates higher EFland−use. Adversely, for the long transition periods the dynamics works
opposite. Analyzed under the EU RED ERTs, the BGC 30 EF delivers a bioenergy potential of about
600EJ/yr under the 35% ERT, but shrinks by a factor of 3 when the ERT is increased to 60% (figure 12
- upper right). For the ABGC, the bioenergy potential reaches nearly 300EJ/yr under the 35% ERT, and
lowers down to about half under the 60% ERT (figure 12 lower right).

It is worth noting that in the BGC the spread between the 10 EF and the 20EF curves is about 20%
lower than the base case (at the 35% ERT); while the spread between EF20 and the 30EF curve is about 5%
higher (at the 35% ERT), than the base case which mean that the 10EF has a stronger impact than the 30EF.
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Figure 12: EFSC for the 10-20-30 EF. (upper left) Aggregate EFSC with full potential display for the BGC,
displayed in log scale; (upper right) EFSC under the ERTs for BGC; (lower left) Aggregate EFSC with full
potential display for the ABGC, displayed in log scale; (lower right) EFSC under the ERTs for ABGC

5.3 Planting year variation

In both assessed cases, postponing the plantation of bioenergy delivers higher EFland−use, thus planning
in 2010 is better than planting in 2030. The reason for these results is attributed to baseline input data,
specifically C stocks. As global C stocks decrease over time as a consequence of biome shifts, they impact
positively the EFs. The decrease in C stocks of natural vegetation over time determines the type 2 emissions
to increase, which in turn raise the EFland−use. Over time, this effect propagates to a large number of cells,
most of which are located in sensitive climate hotspots such as ecotones, and specifically ecoclines. A number
of influential ecological sensitivity studies (Bergengren et al., 2011; Hirota et al., 2011) reckon that vegetation
cover is projected to undergo shifts in areas such as equatorial Africa, Madagascar, Himalayan and Tibetan
Plateau, North Americas Great Lakes and in the Northern Hemisphere high latitude, particularly boreal
forests (taiga) ecotones, which correlate well with the results of this study.

Opposite to the biome shift argument, yields improvements in the future can counteract the increase of the
EFland−use. As yields improve they lead to higher bioenenrgy potential which can lead to a decrease in the
EFs. Because yields improve, on average, by 1%/yr, this leads to a 1% improvement in bioenenrgy potential
on a yearly basis. Global C stocks decrease at a faster rate that the yield increase, thus counteracting the
yield improvements effect on EFs.

Analyzed under the EU RED ERTs, for the BGC, planting in 2010 delivers bioenergy potential of about
615EJ/yr under the 35% ERT, but shrinks by a factor of 5 when the ERT is increased to 60% (figure 13
- upper right). For the ABGC, the bioenergy potential reaches nearly 217EJ/yr under the 35% ERT, and
lowers down to about half under the 60% ERT (figure 13 lower right).
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Figure 13: EFSC for the planting year variation 2010-2020-2030. (upper left) Aggregate EFSC with full
potential display for the BGC, displayed in log scale; (upper right) EFSC under the ERTs for BGC; (lower
left) Aggregate EFSC with full potential display for the ABGC, displayed in log scale; (lower right) EFSC
under the ERTs for ABGC

The variation in planting year surfaces an increased number of grid cells sequestering C in the North
Americas Great Lakes, Europe and particularly in the Congo River basin. This indicates that in these areas
it is ever more beneficial to have bioenergy planted because the C sequestration rate of the bioenergy is
higher than the C sequestration rate in the natural vegetation. This can be the case for degraded lands
where perennial crop cultivation improves soil fertility and reduce other soil degradation processes such as
soil erosion, dispersion and leaching (Lal, 2001; Lal, 2004; Lal, 2009).
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6 Discussion

Under climate with no mitigation measures taken throughout the projection period, IMAGE display a strong
northwards biome shift, which generates across time, a decrease in the above and soil carbon pools of the
natural vegetation case. Such an outcome is in line with more recent ecological sensitivity studies which
argue that forest and other rich C stocks are projected to decrease in biome boundary areas due to climate
change inertial effects (Bergengren et al., 2011; Hirota et al., 2011). Alongside this aspect of the input data,
IMAGE generates the yield potentials for the second generation bioenergy crops as a suitability average of
the pre-allocated crops indexed globally with on average 1% per year (Stehfest et al., 2014). This later on
factored into the computation of the bioenergy potential. The yield increase relies on regional differentiation
such that areas like USA, which already benefit from high yields, would not result in future inflated poten-
tials. These two aspects, the integration of climate change effects and the regional differentiation of yield
improvements distinguish IMAGE from other IAMs, for the better.

In the carbon accounting for the bioenergy cases, this assessment makes use of IMAGE derived land-use
data and IPCC below-to-above ground ratio to generate the C stocks of the grassy crops. These two datasets
are both rather coarse, with IMAGE accounting for 20 land-use types and the below-to-above ground ratio
provided in the IPCC guidelines accounting for only 5 vegetation types. As the below-to-above ground ratio
can be susceptible to agro-ecological conditions it is safe to mention that the computed C stock value could be
over or underestimated. Assessments of the below-to-above ground ratio for grassy crops are acknowledged to
vary not just among grass types, but also for the same grass type at different climate zones (Kwabiah et al.,
2002; Dohleman et al., 2012; Kuyah et al., 2012). Alongside the below-to-above ground ratio this assessment
uses IPCC guidelines specifically in the carbon accounting step in the form of input factors as an additional
factor in C stock computation for the bioenergy cases. In the IPCC guidelines these factors rely on a rather
rudimentary description which can render questionable the choices of land management factors (land use,
input and land management). Moreover, these factors are not region specific to account for the variability of
climatic, soil, and other region specific parameters. As biomass C stock changes are a major contributor to the
GHG balance of bioenergy is it relevant to emphasize that any degree of specificity improves the EF estimates.

As the 20 land-use types provided by IMAGE are deemed coarse, it is fair to mention, that this is still
state-of-the-art data amongst IAMs. In comparison, a recent study on the assessment of C payback times for
different bioenergy crops was constructed on 2 land-use types (Elshout et al., 2015). More detailed land-use
classes would improve the results, and contribute to the refinement of the study.

Land-use cover is a major component of the C stock estimates in this assessment. With respect to the
IMAGE land-use specific inputs, it is relevant to mention that this study does not filter out urban areas,
protected areas, and other land cover types which through their destination are not relevant to be accounted
in the bioenergy crop growth potential. To increase the accuracy of this assessment these land-use types
need to be discarded from the land-use. Alongside this, increasing the number of land use classes in the
input maps and increasing the spatial resolution of the maps can deliver finer results to the assessment by
making it sensitive to land-use plots smaller than the 0.5x0.5 degree cell. It is to be acknowledged that finer
resolution needs to be supplemented by data quality, to add value to the overall results.

Besides the spatial resolution, the 10 year time steps temporal resolution is subject to scrutiny as it is
limited in accounting for yearly dynamics in land use shifts. Currently, the assessment assumes 10 year time
steps in the analysis, but yearly time steps can more accurately represent land-use conversions, and thus
better account for the C stock changes and EF estimates. An example of a sensitive transition is the conver-
sion from natural vegetation, in the baseline case, to the second generation bioenergy crops, in the planting
year. This transition can assume biomass being planted in 2020. The first year, 2021, can be classified as
cropland because of the necessary land management activities such as plowing and tillage which prepare land
for cropping. It is from 2022, the first year post the transition that the land-use can be classified as bioenergy
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crops, and stay in this class for the next 19 years. Additionally, yearly resolution can make it easier to map
also LUC during the transition period, as currently the assessment assumes that grid cells stay in the same
land-use category for 10 years, between the time steps. Solving for the 10 year time steps limitation would
yield twofold improvements in the assessment, first mapping land-use conversion for bioenergy analysis, and
second, by improving the spatial resolution of land use dynamics.

This assessment provides the framework for deriving land-use driven CO2 emissions of bioenergy, but
CO2 is not the only GHG emission associated with the bioenergy production. On the one hand, agricultural
inputs release emissions such as nitrous oxide (N2O) and methane (CH4) stemming from nitrification and
de-nitrification processes in the soil. These emissions are a consequence of “mineral fertilization, organic
amendment and organic residues” (van der Hilst et al., 2014). These processes added to the GHG emission
inventory increase the EF balance of bioenergy. On the other hand, only by adding the chain GHG emission
associated with the primary biomass conversion can make the life cycle bioenergy EF complete. The com-
parison with life-cycle inventory fossil fuel EFs puts into perspective the results at aggregate levels.

The results of this assessment generate a number of discussion points. The CO2 emission profile con-
structed in this assessment is similar to that of other studies (IPCC, 2006; Wise et al., 2015). This profile
signals that the main source of emissions is linked to transition from one land cover to another. The emis-
sion calculation relies on C stock changes in the baseline input data, which have the strongest effect on the
EFs. An example of this occurrence is surfaced in the EFSC of biomes of the base case analysis. Here, the
temperate forests ranked second in terms of EFs, after grassland as their C stocks are lowest among forests,
while the agro-ecological and climatic conditions offer a good suitability for yield potentials. In this example,
both the C stock input data and the yield potentials influence the outcome of the resulting EFland−use.

With respect to the assessment, a number of positive aspects need to be highlighted. First is the spatial
specificity of the analysis, relying on raster inputs and performing the processing in a geo-spatial environment.
Second, unlike the vast majority of the bioenergy scientific literature which looks at first generation bioenen-
rgy crops, this assessment looks at the bioenergy production potential from second-generation biomass, which
has proven to offer energetic, environmental and economic advantages over first-generation sources (Hill et
al., 2006; Melillo et al., 2009; Schmer et al, 2009; Dunn et al., 2013). A third added value of this assessment
methodology is that the analysis is performed at global level, thus offering global spatially specific EFland−use.
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7 Conclusions

The sustainability of bioenergy has been severely scrutinized in academia, policy and the corporate arena for
the past half a decade. The main criticism brought to bioenerg hinges on the LUC emissions. Because of
their strong spatial specificity and the wide range of socio-economic interactions, require extensive mapping
efforts and have high data input requirements. Direct and indirect LUC effects of the bioenergy system are
genuinely cross boundary dynamics, which can only be fully mapped at global level. Alongside this, high
computation power, global coverage data and access to available and reliable C stock data act as limiting
factors in an effort to fully map the LUC GHG emissions at a global level. This study addressed this gap
by developing and applying a methodological framework to spatially specific derive the LUC induced EFs of
bioenergy.

The main finding of this assessment is that bioenergy land-use EFland use are highly spatially dependent,
with baseline C stocks, soil C loss and bioenergy potentials, accounting as main contributor in its variability.
Between the bioenergy potential and the EF there is an inverse relation, as for example the effect of yield
improvements which drive down EFs. The magnitude of C stocks fluxes depends on the type of vegetation
displaced as well as the C stock, loss or accumulation, over time. Although generally low, soil C loss can
increase the EF in areas with high erodible soils.

The biophysical processes involved in the C stock changes relate to climatic effects and soil carbon loss,
the latter being mostly caused by erosion. Climate effects trigger biome shifts in ecotones where natural
vegetation C uptake rates are projected to decrease. The C stock uptake rate influence the C fluxes, leading
to increased CO2 emissions when natural vegetation is cleared for bioenergy crop growth. The soil C loss
is triggered by land-cover removal, and it is increased through agricultural management practices such as
tillage. This is can be enhanced by soil characteristics and topography. Some of these risks are mitigated
through the plantation of lingnocellulosic perennial crops which improve soil C accumulation.

The global EFland use maps provide a comprehensive view of the bioenergy potential and associated
CO2 emissions. In the BGC, the vastly available potential spreads over vast areas in the Cerrado region
(South America), the Mississippi portal and Southern Seaboard (North America), the Congo River Basin
and Madagascar (Africa) and the Yellow River Basin (Asia). For this analyzed case, the sustainable potential
under the current ERTs (-35% emission reductions) can reach as high as 517EJ/yr, with the highest potential
being recorded in South America (198EJ/yr) and Asia (120EJ/yr). Putting these figures into perspective,
the IEA indicates that the total global primary energy supply in 2014 was 550EJ/yr (IEA, 2014). Part of this
supply can be sustainably supplied in a sustainable manner from lignocellulosic bioenergy. Under the same
sustainability criteria, these potentials are tempered down in the ABGC, which displays a maximum global
bioenergy potential of 182EJ/yr. The regional potentials are also reduced, to 62 EJ /yr in Asia and 53EJ/yr
in Asia. The reduction of the global cumulative potential means also a shrinkage in the number of grid
cells available for bioenenrgy production, which becomes concentrated in Southern Seaboard (North Amer-
ica), La Pampa (South America), Eastern African coast and the coastal area of the Yellow River Basin (Asia).

Through both analyzed cases, grassland remains the dominant biome preferred for land-use conversion for
bioenergy growth, at most ERT EF thresholds. The potential from grassland conversion is reduced to half in
the BGC when the ERTs are applied, from 146EJ/year (35% ERT) to 68EJ/year (60% ERT). Amongst forest
biomes, temperate forests return high potentials as compared to tropical and boreal forests. This potential
is due to the low C stocks of temperate forests as compared to other forest types, and the land suitability
reflected in the yield potential of the areas where temperate forest is stationary.

The two alterations tested in the base case worked with transition period variation and planting year vari-
ation. The choice of bioenegy transition period has an impact on the EFland−use, as the EFs are driven by
the type 1 emissions. For a shorter transition period, the cumulative production of biomass is lower than that
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of the base case, and thus generates higher EFland−use. Adversely, for the long transition periods the effect
on the EFland−use is opposite. The plantation year variation results indicate that postponing the plantation
of bioenergy delivers higher EFland−use, hence planting now delivers better potentials. The explanation for
these results is attributed to baseline input data, specifically C stocks. As global C stocks decrease over
time as a consequence of biome shifts, they impact positively the EFs. The decrease in C stocks of natural
vegetation over time determines the type 2 emissions to increase, which in turn raise the EFland−use.

There are a number of aspects on which further research can be conducted:

• Filters for other parameters such as biodiversity, water stress and risk of erosion. Despite high potential
being widely distributed across a number of regions in North America, South America, Africa and South-
East Asia, these regions could be under biodiversity or water stress. Such areas could be re-evaluated
under filters for biodiversity, water stress and protected areas.

• Climate change scenarios. This assessment is build-on a climate change scenario which assumed no
mitigation measures will be taken to address climate change. In the same line or reasoning, further
research could be carried out for different climate change scenarios/levels, in order to better understands
the on what conditions EFs deliver higher or lower values, and what does it mean for bioenergy policy.

• EF reduction methods. Bioenergy EFland−use can potentially be reduced through either lower emis-
sions and/or improved bioenergy potential. For emissions management, soil carbon retention and
accumulation methods can be investigated to assess how they perform relative to the EF. For bioe-
nenrgy potential improvement methods, agricultural practices aimed at yield improvements could be
conducted to assess their effect on the EF. The yield increase methods include planting of high yield-
ing varieties and complete harvesting, while soil carbon retention and accumulation practices include
addition of nutrients, salinity reduction practices and no tillage for soil erosion avoidance.

• Complete the land use change GHG emissions inventory. Besides CO2 emissions associated with
biomass clearing, environmental assessment studies also could account for other GHG emission such as
N2O. Closely linked to primary biomass productivity are nitrogen emissions, which stem from primary
biomass intensification and use of fertilizers. N2O forms during soil processes such as nitrification and
denitrification, from where they are emitted into the atmosphere (van der Hilst et al., 2013). It is
relevant to point out that N2O emissions are amendable to “local conditions such as agricultural land
use, soil type and N-origin” (p. 397), and thus require spatial specific mapping.
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9 Appendices

Appendix 1 - Land-use classes in the natural vegetation case

Table 11: Land-use classes in the natural vegetation case
Class number Class name

1 Ice
2 Tundra
3 Boreal forest
4 Cool conifer forest
5 Temperate mixed forest
6 Temperate deciduous forest
7 Warm mixed forest
8 Grassland/steppe
9 Hot desert
10 Shrubland
11 Savanna
12 Tropical woodland
13 Tropical forest
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Appendix 2 - IMAGE regions map

Figure 14: IMAGE regions map
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