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Abstract	

The	aim	of	this	research	is	to	compare	the	effectiveness	of	several	visual	representations	of	statistical	

data	uncertainty	and	to	explore	the	influence	of	individual	differences	among	users.	A	large	body	of	

work	shows	that	providing	uncertainty	information	is	beneficial	for	decision-making.	However,	these	

advantages	of	showing	uncertainty	critically	depend	on	how	it	is	communicated.	This	large	online	user	

study	(n=245)	identifies	how	the	quality	of	probability	estimates	compares	across	six	visualizations	and	

across	users.	Participants	were	presented	six	visualization	types	that	each	encode	a	probability	

distribution	that	represents	a	possible	range	of	arrival	times,	predicted	by	a	car	navigation	system.	They	

were	asked	to	report	best	estimate	and	two	kinds	of	probability	estimates	(later	than	and	range).	

Probability	estimate	accuracy	and	precision	were	compared	across	visualizations,	question	type	and	user	

types	based	on	ten	characteristics,	among	which	both	cognitive	measures	and	personality	traits.	An	

ANOVA	showed	a	main	effect	of	visualization	type,	where	discrete	plots	with	few	outcomes	result	in	the	

most	accurate	and	precise	probability	estimates	and	prove	to	perform	best	across	all	user	classifications.	

Although	task	performance	differs	across	users	with	different	levels	of	cognitive	abilities	and	personality	

traits,	it	can	be	concluded	that	visualization	type	has	a	much	greater	impact	on	performance	than	

individual	differences	have.	This	suggests	that,	when	designing	an	interface	with	an	aim	for	high	

performance,	it	is	more	effective	to	focus	on	the	graphic	design	of	a	chart	than	on	personalization.	The	

acquired	knowledge	contributes	to	the	standardization	of	including	uncertainty	measures	into	

information	visualizations	and	to	the	development	of	user	adaptive	visualizations.			
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1.1	Information	visualization	

In	today’s	society,	digital	information	and	computer	interfaces	have	come	to	play	a	crucial	role	in	our	

lives.	Data	is	being	collected	for	a	lot	of	different	purposes	at	an	excessive	rate.	This	ever-growing	and	

sometimes	overwhelming	amount	of	digital	information	can	be	made	more	manageable	with	the	aid	of	

information	visualization.	Information-	or	data	visualization	(often	abbreviated	as	InfoVis	or	DataVis)	is	

the	use	of	images	to	represent	data	(Few	&	Edge,	2007).	The	terms	‘information’	and	‘data’	will	be	used	

interchangeably,	just	as	the	Cambridge	Dictionary	defines	data	as	a	synonym	of	information:	facts	or	

numbers	that	are	collected	and	examined	to	support	decision-making.	Data	visualization	is	used	to	

amplify	cognition	by	the	depiction	of	data,	or	to	aid	the	exploration	of	abstract	data	and	the	discovery	of	

new	insights	and	knowledge	(Chen,	2017).	Human	vision	a	powerful	tool	for	data	analysis	and	

interpretation,	as	it	is	highly	selective	regarding	different	sizes,	shapes,	colors,	and	spatial	positions.	In	

addition,	vision	enhances	memory	and	cognitive	capacity,	both	of	which	play	a	critical	role	in	the	way	

people	process	information	(Chen,	2017).	The	visualization	of	information	can	help	people	carry	out	

tasks	more	effectively,	as	it	provides	an	external	representation	that	replaces	cognition	with	perception	

(Munzner,	2015).	By	conserving	cognitive	resources,	it	enables	people	to	solve	problems	that	would	be	

hard,	if	not	impossible,	to	solve	if	the	data	was	expressed	in	other	forms,	like	reports	and	spreadsheets	

(Lohse,	1997).		

	 As	the	amount	of	data	grew	in	the	last	decades,	the	advantages	of	visualization	became	more	

clear	and	InfoVis	became	a	flourishing	topic	within	the	field	of	Human-Computer	Interaction	(HCI).	

Despite	the	increasing	interest	in	how	to	improve	the	effectiveness	of	visualizations,	InfoVis	neglected	

HCI’s	acknowledged	process	of	user	analysis	and	traditionally	followed	a	one-size-fits-all	principle.	

However,	in	recent	years	researchers	have	come	to	understand	that	user	differences	such	as	cognitive	

abilities,	personality	and	experience	have	a	significant	impact	on	the	effectiveness	of	visualizations.	In	

the	context	of	user-centered	design	of	information	systems,	user	differences	can	be	thought	of	as	any	

differences	in	the	resources	that	users	bring	to	the	table	during	information	tasks	(Allen,	2000).	In	the	

current	study,	visualization	effectiveness	is	defined	as	successful	in	enabling	the	quick	extraction	of	

accurate	information	(Kennedy,	Hill,	Allen	&	Kirk,	2016).	For	a	more	detailed	description	of	the	concept	

‘effectiveness’,	see	Appendix	A.	

	 Visualization	is	a	powerful	tool	as	it	converts	plain	data	into	a	graphical	display	that	presents	

large	amounts	of	data	in	a	small	amount	of	space,	while	expresses	the	information	in	a	more	intuitive,	

memorable	manner	(Chen,	2017;	Bonneau	et	al.,	2014).	But	as	the	amount	of	data	and	its	complexity	

grows,	it	gets	harder	to	effectively	and	accurately	convey	the	information	through	a	visualization.	Data	



3 

inevitably	comes	with	some	degree	of	uncertainty.	Data	uncertainty	is	a	broad	term	that	includes	

various	concepts	to	characterize	data.	It	applies	to	measurements	and	observations,	as	well	as	

predictions	and	it	can	involve	related	concepts	like	error,	accuracy,	precision,	validity,	quality,	variability,	

noise,	completeness,	confidence,	and	reliability	(Pang,	2001).	It	can	arise	in	every	phase	of	data	analysis,	

from	data	acquisition	to	data	visualization	(Bonneau	et	al.,	2014).	Often,	subsets	of	data	are	represented	

by	center	measures	like	the	mean	or	median,	but	the	uncertainty	associated	with	such	measures,	like	

confidence	intervals,	variability	and	model	biases,	can	be	as	important	as	the	difference	between	them	

(Correll	&	Gleicher,	2014).	If	visualization	is	used	as	a	means	to	assist	the	exploration	of	data	or	to	

communicate	information	to	others	as	a	base	for	decision-making,	measurements	of	uncertainty	must	

be	included	(Griethe	&	Schumann,	2006).	However,	due	to	the	lack	of	solid	visualization	techniques,	

uncertainty	visualization	often	remains	an	unsolved	problem	(Bonneau	et	al.,	2014).	

	 Every	day,	people	with	all	kinds	of	abilities	and	backgrounds	need	to	make	decisions	based	on	

digital	data	presented	by	interfaces.	It	is	unavoidable	that	people	make	mistakes,	but	optimizing	data	

visualization	techniques	and	human	interface	interaction	can	minimize	the	number	of	human	errors	due	

to	bad	design.	This	can	be	achieved	by	on	the	one	hand	thorough	user	analysis	and	user-centred	design,	

and	on	the	other	hand	by	displaying	all	facets	of	the	data,	including	its	uncertainty,	in	order	to	prevent	

misinterpretation.	The	current	study	pays	attention	to	both	components,	as	it	explores	the	effectiveness	

of	six	uncertainty	visualization	techniques	while	evaluating	the	potential	influence	of	a	wide	range	of	

user	characteristics.		

1.2	Data	uncertainty	

Definition,	sources	and	examples	

Considering	the	broadness	of	the	term	and	the	many	fields	the	concept	is	applicable	to,	it	is	not	

surprising	that	there	is	no	consensus	on	the	precise	definition	for	(data)	uncertainty	(Pang,	2001).	The	

implications	of	the	multifaceted	concept	will	be	illustrated	by	the	following.	The	sources	of	data	

uncertainty	can	be	divided	in	three	broad	classes:	uncertainty	measures	generated	by	models	or	

simulations,	uncertainty	observed	in	sampled	data,	and	uncertainty	introduced	in	the	phases	of	data	

processing	or	visualization	(Bonneau	et	al.,	2014).	It	all	starts	with	structural	uncertainty,	resulting	from	

the	given	that	no	model	can	fully	grasp	or	copy	the	natural	world,	as	it	is	too	complex	and	abstract	

(Greis,	Schuff,	Kleiner,	Henze	&	Schmidt,	2017).	The	resulting	omnipresence	of	data	uncertainty	makes	

that	everyone	has	to	deal	with	data	uncertainty	in	everyday	life,	without	always	being	aware	of	it.	

	 	People	make	decisions	based	on	the	bus	schedule,	the	weather	forecast	and	the	navigation	
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system	in	their	car,	even	though	such	information	are	estimates	and	will	always	be	partly	uncertain	due	

to	flawed	prediction	models,	incomplete	knowledge,	and	data	noise.	In	such	cases,	a	measurement-	or	

prediction	error	could	notify	a	user	about	the	amount	of	uncertainty	associated	with	the	situation.	

		 Likewise,	people	often	attach	great	value	to	election	polls,	while	these	predictions	are	based	on	

sampled	data:	a	set	of	observations	assumed	to	be	representative,	which	is	then	generalized	to	the	

entire	population.	And	as	reality	teaches,	the	results	and	statements	that	follow	from	these	

generalizations	must	be	accepted	with	caution,	since	the	true	responses	of	the	majority	of	the	

population	will	remain	unknown,	or	at	least	uncertain,	until	the	actual	election.	Providing	a	confidence	

interval	would	make	such	polls	more	trustworthy.	Another	form	of	sampled	data	is	the	simplification	of	

large	or	complex	datasets.	Although	all	data	is	known,	and	thence	‘certain’,	reducing	a	large	dataset	to	

center	measures	like	an	average	conveys	a	false	simplicity	and	hides	the	actual	complexity	and	depth	of	

the	data.	Including	the	standard	deviation	associated	with	the	mean	reduces	this	problem,	as	it	provides	

information	about	data	variability.	

	 Finally,	it	is	important	to	understand	how	data	uncertainty	spreads	or	even	multiplies	during	the	

process	of	data	visualization	and	how	visualization	influences	the	perception	and	interpretation	of	

uncertainty	(Pang,	Wittenbrink	&	Lodha,	1997,	Bonneau	et	al.,	2014;	Greis	et	al.,	2017).	To	gain	such	

insight,	there	must	be	understood	how	positive	and	negative	consequences	of	showing	uncertainty	

weigh	up,	how	perception	and	cognition	influence	the	interpretation	of	uncertainty	visualization,	and	

what	the	impact	is	of	differences	in	audience	abilities	and	backgrounds	(Bonneau	et	al.,	2014).	 	

How	do	positive	and	negative	consequences	of	showing	uncertainty	weigh	up?	

Clearly,	uncertainty	is	an	integral	part	of	data.	However,	uncertainty	measures	are	generally	treated	as	

additional	variables	of	multivariate	data,	instead	of	presented	together	with	the	underlying	data	(Pang,	

2001).	It	is	often	omitted	in	communication	to	the	general	public,	as	it	makes	it	more	complex	to	show	

the	value	in	a	visualization	(Hullman,	2016)	and	for	fear	it	will	be	misunderstood	and	misused	(Joslyn	&	

LeClerc,	2012).	Here,	the	general	public	refers	to	viewers	that	do	not	have	a	deep	statistical	background	

or	other	experience	with	the	concept	data	uncertainty.	

		 As	society’s	dependence	on	data	increases,	the	importance	of	information	visualizations	that	are	

truthful	and	complete,	while	still	accessible	to	the	general	public,	grows.	Fortunately,	many	studies	that	

have	been	conducted	in	the	past	decades	scientifically	endorsed	the	relevance	of	such	visualizations	and	

contributed	to	their	development.	Empirical	research	shows	that	people	prefer	information	that	

expresses	uncertainty	(Morss,	Demuth	&	Lazo,	2008)	and	that	the	representation	of	uncertainty	

information	even	enables	users	to	make	better	decisions	and	increases	their	trust	in	the	information	
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(Roulston,	Bolton,	Kleit	&	Sears-Collins,	2006;	Joslyn	&	LeCrerc,	2012;	Joslyn	&	LeClerc,	2013;	Kay,	2016).	

Displaying	uncertainty	can	reduce	anxiety,	as	it	avoids	false	precision	in	single	points	estimates	(Kay	et	

al.,	2016)	and	it	benefits	decisions	by	enabling	people	to	anticipate	on	both	the	range	of	possible	

outcomes	and	the	amount	of	uncertainty	associated	with	the	situation.	However,	these	advantages	of	

showing	uncertainty	critically	depend	on	how	it	is	communicated	(Joslyn	&	LeClerc,	2013).	

How	do	perception	and	cognition	influence	the	interpretation	of	uncertainty	visualization?	

Although	the	importance	of	integrating	uncertainty	into	a	data	visualization	is	increasingly	recognized,	it	

remains	a	challenge	to	get	it	right.	Data	and	its	associated	uncertainty,	like	sample	mean	and	error,	are	

traditionally	represented	by	a	bar	chart	with	error	bars,	especially	in	the	scientific	world.	However	

recently,	error	bars	received	a	lot	of	critique	due	to	their	severe	shortcomings,	among	which	several	

perceptual	biases	(Correll	&	Gleicher,	2014).	The	drawbacks	associated	with	error	bars	and	the	

evaluation	of	alternative	encodings	for	uncertain	information	that	are	proposed	in	literature	are	

discussed	in	Appendix	B.	The	perceptual	properties	like	color,	size,	and		location	(in	InfoVis	literature	

often	referred	to	as	retinal	variables)	that	influence	the	interpretation	and	effectiveness	of	an	encoding	

will	there	be	compared	by	using	Mackinlay’s	(1986)	ranking	of	effective	visual	encodings.	Also,	a	

distinction	is	made	between	intrinsic	and	extrinsic	annotations	of	uncertainty.	Error	bars	are	an	example	

of	an	extrinsic	annotation	of	uncertainty,	meaning	that	the	underlying	data	and	the	corresponding	

uncertainty	are	not	integrated	into	the	same	encoding.	According	to	the	heuristics	that	are	employed	in	

making	judgements		under	uncertainty,	the	separation	increases	the	risk	of	the	extrinsic	uncertainty	

representation	being	perceived	as	peripheral,	and	of	later	being	discounted	when	making	judgements	

(Tversky	&	Kahneman,	1974).	An	intrinsic	annotation	of	uncertainty	on	the	other	hand	integrates	

uncertainty	values	into	the	underlying	data,	which	avoids	ambiguity	and	simplifies	interpretation	(Kay,	

2016).	Kay	(2016)	argues	that	to	encourage	viewers	not	to	undervalue	probability	information,	

uncertainty	should	be	intrinsic	to	the	representation	of	the	underlying	data.	But	visualization	

effectiveness	does	not	only	depend	on	the	visualization	itself,	it	depends	on	the	cognitive	goal	of	the	

user	as	well;	on	the	information	that	a	user	is	trying	to	extract	from	the	visualization	(Ibrekk	&	Morgan,	

1987).	

What	is	the	impact	of	differences	in	audience	abilities	and	backgrounds?	

Essential	to	creating	an	effective	uncertainty	visualization	is	understanding	that	goal;	understanding	why	

uncertainty	needs	to	be	visualized	and	in	what	way	the	uncertainty	visualization	needs	to	help	the	user.	

Following	this	user-centered	approach	might	mean	that	the	same	data	should	be	visualized	differently	
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for	different	audiences	(Lapinski,	2009).	Before	getting	deeper	into	the	impact	of	user	differences	on	

visualization	effectiveness	and	the	importance	of	user-centered	design,	the	following	section	will	

evaluate	different	types	of		uncertainty	and	different	techniques	for	visually	representing	it.	

1.2.1	Techniques	for	visualizing	statistical	uncertainty	

Types	of	data	uncertainty	

Different	types	of	uncertainty	require	different	types	of	visualization	techniques,	as	a	recent	

experimental	study	showed	that	effectiveness	also	depends	on	the	type	of	uncertainty	represented	

(Gschwandtner,	Bögl,	Federico	&	Miksch,	2016).	Olson	&	Mackinlay	(2002)	distinguish	two	types	of	

uncertainty:	statistical	uncertainty	and	bounded	uncertainty.	In	case	of	statistical	uncertainty,	the	

probabilities	of	values	within	an	potentially	infinite	distribution	depend	on	a	statistical	model	that	

includes	assumptions	about	the	most	likely	point	of	estimate.	Whereas	with	bounded	uncertainty,	not	

one	value	has	the	highest	probability.	Instead,	all	values	that	lie	inside	a	bounded	range,	defined	by	

precise	lower	and	upper	bounds,	are	equally	likely	(Olson	&	Mackinlay,	2002).	

Use	case	based	on	statistical	uncertainty	

The	use	case	that	will	be	adopted	in	the	current	study	simulates	a	car	navigation	system	that	

recommends	a	potential	route	with	a	corresponding	estimated	time	of	arrival.	However,	providing	a	

fixed	point	estimate	time	of	arrival	without	presenting	the	associated	range	of	uncertainty	(prediction	

error)	will	often	convey	a	false	precision.	Providing	a	probability	estimate	can	support	users	in	

understanding	that	there	is	a	chance	that	they	will	arrive	earlier	or	later	than	the	point	estimate	and	can	

help	them	assess	schedule	opportunities	(Kay,	Kola,	Hullman	&	Munson,	2016).	The	estimated	time	of	

arrival	by	a	navigation	system	is	prone	to	uncertainty,	due	to	potential	obstacles	or	thanks	to	potential	

windfalls	down	the	road.	The	goal	is	to	find	a	visualization	that	effectively	communicates	this	

uncertainty.	The	current	study	will	focus	solely	on	the	visualization	of	statistical	uncertainty.	Given	the	

fixed	departure	time,	travel	distance,	prescribed	speed	limits	and	the	possibility	to	take	these	potential	

influential	events	into	account,	statistical	assumptions	can	be	made	about	a	best	point	of	estimate	and	

its	corresponding	uncertainty.	The	range	of	possible	arrival	times	is	not	absolute	or	bounded;	in	the	

worst	case	scenario,	the	driver	will	never	arrive	at	his/her	destination.	Meeting	the	requirements	for	

statistical	uncertainty	mentioned	above,	the	uncertainty	associated	with	navigation	arrival	time	can	be	

considered	statistical	uncertainty,	following	a	normal	distribution.	The	distribution	can	slightly	shift	as	a	

result	of	traffic	lights	and	can	be	skewed	as	a	result	of	events	with	more	heavy	consequences,	like	a	

traffic	jam.	
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Selecting	visual	encodings	of	statistical	uncertainty	

Table	1	gives	an	overview	of	different	ways	to	visually	encode	uncertain	statistical	information	that	were	

found	in	the	literature.	Here,	all	visualization	types	are	adjusted	to	a	horizontal	layout,	to	resemble	a	

timeline.	The	criteria	are	based	on	the	literature	and	the	requirements	associated	with	the	chosen	use	

case.	Based	on	literature,	an	intrinsic	annotation	of	uncertainty	is	desirable	and	makes	summary	

statistics	superfluous.	For	this	study,	visualizations	were	selected	that	could	effectively	encode	

probability	in	relatively	small	spaces.	If	the	visualization	would	actually	be	implemented	in	a	car	

navigation	system,	the	encoding	should	be	able	to	convey	its	information	on	a	small	screen.	Therefore,	

visual	clutter	risks	must	be	avoided.	Finally,	the	visualization	should	be	able	to	effectively	and	intuitively	

communicate	a	probability	distribution	to	the	general	public,	without	the	need	for	prior	knowledge.	
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Table	1.		

An	overview	of	criteria	for	the	visual	encodings	of	probability	that	were	considered	for	the	study.	

	

The	six	visualization	techniques	that	were	selected	for	the	current	study	will	be	mentioned	shortly	in	the	

following	section.	For	more	detailed	descriptions	and	literary	backgrounds	of	all	the	visualization	

techniques	that	were	considered	and	selected,	consult	Appendix	B.	
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Error	bars	

Error	bars	are	frequently	used,	cap-tipped	lines	that	serve	as	an	external,	graphical	enhancement	to	

display	the	uncertainty	of	the	plotted	data	(Figure	1).	They	can	be	applied	to	scatter	plots,	dot	plots,	line	

graphs,	and	bar	graphs.	The	lines	span	95%	of	the	associated	probability	distribution,	which	follow	the	

theoretical	idea	that	values	closer	to	the	upper	and	lower	boundaries	are	less	likely	than	values	to	the	

reported	point	estimate	(middle).		

	 	

Figure	1.	Error	bars	plot		 	 	 	

Density	plot	

A	density	plot	is	a	function	graph	of	a	probability	distribution	function	and	encodes	the	density	as	

distance	from	the	x-axis	(Figure	2)	(Kay,	2016).	The	resulting	curve	(or	area)	provides	a	simple	summary	

of	the	distributions	shape	and	enables	quick	visual	interference	about	the	distribution	of	the	data.	To	

convey	the	probability	density,	the	density	plot	relies	on	the	width	of	an	area.	

	

Figure	2.	Density	plot	

Dot	plot	

A	dot	plot	shows	discrete	quantiles	on	a	continuous	scale	using	a	dot	or	other	symbol	(Figure	3)	

(Wilkinson,	1999).	By	stacking	the	dots,	the	plot	shows	the	distribution	of	the	data,	but	does	not	include	

any	graphical	description	of	summaries	(Benjamini,	1988).	However,	the	possibility	to	manipulate	the	

amount	of	dots	used	to	represent	the	data,	makes	summary	statistics	unnecessary.

	 	 		 	

Figure	3.	Dot	plot	(Dot-20)	 	 	 	 	
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Stripe	plot	

The	stripe	plot	is	a	variation	on	the	strip	plot;	a	one-dimensional	scatter	plot	representing	individual	

observations	or	probabilities	using	a	dot,	or	in	case	of	the	stripe	plot	a	stripe	(Figure	4).	Probability	

density	is	thus	encoded	by	the	density	of	vertical	stripes	in	a	region	(Kay,	2016).	

		 	

Figure	4.	Stripe	plots	(left:	Stripe-20,	right:	Stripe-50)	

Gradient	plot	

A	gradient	plot	is	a	shaded	horizontal	bar	glyph	of	fixed	height	and	width,	in	which	the	probability	

density	of	the	quantity	at	a	point	is	encoded	by	opacity	(Figure	5).	The	darker	the	shade,	the	higher	the	

probability	of	the	given	estimate	(Jackson,	2008).		

	

Figure	5.	Gradient	plot	

1.3	User	characteristics	

Despite	the	large	body	of	work	on	uncertainty	visualization,	knowing	when	to	use	which	visualization	

remains	an	unresolved	issue	as	most	studies	are	very	context-specific	(Greis,	Joshi,	Singer,	Schmidt	&	

Machulla,	2018).	The	current	study	contributes	to	the	body	of	knowledge	by	providing	insight	into	the	

influence	of	the	factor	which	is	present	is	every	context;	the	influence	of	the	viewer	on	visualization	

effectiveness.	Design	serves	as	the	communication	between	object	and	user.	User-centered	design,	a	

design	process	that	focuses	on	the	users’	needs	and	requirements	(Norman,	1988),	is	therefore	a	

relevant	and	important	concept	in	developing	information	visualizations	with	the	purpose	of	clear	

communication.	In	the	past	decades,	researchers	have	come	to	understand	that	the	effectiveness	of	

information	visualizations	not	only	depends	on	the	visualization	itself	but	is	influenced	by	the	

characteristics	of	a	user	as	well.	The	idea	that	effectiveness	can	be	boosted	through	personalization	

motivated	researchers	to	explore	which	user	features	are	worth	adapting	to.	The	individual	differences	

that	might	impact	the	interaction	between	user	and	visualization	include	cognitive	abilities,	personality,	

and	chart	expertise	(Toker,	Steichen,	Gingerich,	Conati,	&	Carenini,	2014)	and	will	be	discussed	in	the	
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next	section.	Most	of	these	findings,	however,	are	based	on	studies	that	use	visualizations	without	any	

notion	of	uncertainty.	At	the	same	time,	earlier	work	that	focuses	on	the	effectiveness	of	uncertainty	

visualizations	often	ignores	user	variation.	The	few	studies	that	include	both	uncertainty	in	their	stimuli	

and	the	impact	of	user	characteristics	in	evaluating	the	effectiveness	of	data	visualizations	address	the	

user	features	numeracy,	level	of	education	and	chart	expertise.	As	the	literature	will	be	discussed	in	the	

following	section,	it	will	become	clear	that	the	current	study	is	a	valuable	addition	to	prior	work.	

Table	2.	

An	overview	of	the	user	characteristics	that	will	be	assessed	in	the	current	study.	

User	characteristic	 Definition	

Perceptual	speed	 A	measure	of	speed	when	carrying	out	all	sorts	of	simple	tasks	involving	visual	

perception	(Conati	&	Maclaren,	2008).	

Visual		working	

memory	

The	part	of	the	working	memory	responsible	for	temporary	storage	and	

manipulation	of	visual	and	spatial	content	(Logie,	1995).	

Verbal	working	

memory	

The	part	of	the	working	memory	responsible	for	temporary	storage	and	

manipulation	of	verbal	information	(Baddeley,	1986)	

Numeracy	 The	ability	to	process,	communicate	and	interpret	numerical	information	in	a	

range	of	contexts	and	to	solve	a	variety	of	problems.	(Askew,	Rhodes,	Brown,	

William,	Johnson,1997)	

Conscientiousness	 A	personality	trait	defined	as	the	propensity	to	follow	socially	prescribed	

norms	for	impulse	control,	to	be	goal	directed,	to	plan,	and	to	be	able	to	delay	

gratification.	(Roberts,	Jackson,	Fayard,	Edmonds	&	Meints,	2009).	

Extraversion	 A	personality	trait	that	represents	the	degree	to	which	a	person	is	open-

minded,	action-oriented	and	seeks	the	society	of	others.	(Green	&	Fisher,	

2010)	
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Neuroticism	 A	personality	trait	distinguished	by	negativity	and	a	propensity	to	be	moody.	

(Green	&	Fisher,	2010)	

Locus	of	Control	(LOC)	 The	degree	to	which	individuals	attribute	life	events	and	outcomes	as	either	a	

result	of	their	own	behavior,	or	of	forces	that	are	external	to	themselves.	

(Green	&	Fisher,	2010)	

Need	for	Cognition	 An	individual's	tendency	to	engage	in	and	enjoy	effortful	cognitive	activities.	

(Wu,	Parker	&	De	Jong,	2014)		

Self-esteem		 The	extent	to	which	one	prizes,	values,	approves,	or	likes	oneself	(Blascovich	

&	Tomaka,	1991)	

Chart	expertise	 Expertise	refers	to	the	level	of	experience	a	person	has	in	a	craft	and	the	use	

of	a	given	set	of	technologies	(Green,	Jeong	&	Fisher,	2010)	Chart	expertise	is	

expertise	in	a	specific	visualization	or	chart	type.	

	

Cognitive	measures	

The	comprehension	of	information	visualizations	involves	information	processing	and	reasoning.	

Cognitive	abilities	shape	the	way	we	think	and	how	we	carry	out	all	sorts	of	tasks,	ranging	from	simple	to	

complex.	Hence,	task	performance	is	likely	to	depend	on	it.	

	 An	important	cognitive	measure	when	it	comes	down	to	visual	perception	is	perceptual	speed.	

Earlier	work	shows	that	it	is	possible	to	predict	which	visualization	will	be	most	effective	for	a	person,	

based	on	their	level	of	perceptual	speed	(Allen,	2000;	Conati	&	Maclaren,	2008).	Other	literature	shows	

that	users	with	high	perceptual	speed	are	faster	in	completing	visualization	tasks	than	users	with	low	

perceptual	speed	(Toker	et	al.,	2012;	Conati,	Carenini,	Hoque,	Steichen	&	Toker,	2014;	Carenini	et	al.,	

2014).	

	 The	visual	working	memory	is	a	part	of	the	perceptual	and	cognitive	processing	system	where	

external	visual	information	that	enters	is	briefly	stored	(Patterson	et	al.,	2014).	Hence,	a	user’s	visual	

working	memory	capacity	is	involved	in	the	ability	to	process	visualizations.	In	visualization	tasks,	visual	

working	memory	positively	correlates	with	task	accuracy	and	negatively	correlates	with	completion	time	



13 

(Velez	et	al.,	2005;	Toker	&	Conati,	2014).	Other	studies	show	that	users	with	different	levels	of	visual	

working	memory	benefit	from	different	forms	of	spatial	layout	in	terms	of	task	performance	(Conati	et	

al.,	2014)	and	that	it	affects	visualization	preference	(Toker	et	al.,	2012).	

	 Information	visualization	often	include	both	graphs	and	text,	intended	to	complement	each	

other.	Therefore,	the	influence	of	verbal	working	memory	capacity	is	studied	as	well.	Eye	tracking	

studies	show	that	users	with	high	verbal	working	memory	consult	the	textual	areas	of	visualizations	less	

frequent	and	more	quickly	than	users	with	low	verbal	working,	who	need	more	time	processing	text	in	

the	task	questions	as	well	(Steichen	et	al.,	2013;	Toker	&	Conati,	2014)	

	 An	interesting	overarching	result	on	the	three	cognitive	measures	perceptual	speed,	visual	

working	memory,	and	verbal	working	memory	shows	that	these	measures	have	no	significant	impact	on	

task	performance	during	simple	tasks,	while	for	complex	tasks,	participant	with	high	scores	on	these	

measures	performed	significantly	better.	This	suggests	that	user	performance	depends	on	cognitive	

abilities	more	heavily	as	task	complexity	increases	(Carenini	et	al.,	2014).	

A	recent	study	that	focused	on	the	perception	of	visual	uncertainty	representations	showed	that	a	

person’s	numeracy	affects	the	way	an	uncertainty	range	is	interpreted	(Tak,	Toet	&	van	Erp,	2014).	Their	

results	show	an	interaction	between	the	degree	of	uncertainty	and	numeracy	on	perceived	probability,	

where	participants	with	relatively	high	numeracy	have	a	slightly	more	extreme	interpretation	than	those	

with	lower	numeracy.	

Personality	

Besides	cognitive	abilities,	every	user	has	its	own	unique	personality	that	he	or	she	brings	to	the	

interface.	Personality	factors	are	inherent	individual	differences,	and	some	have	shown	to	influence	

information	visualization	effectiveness	

	 The	Big	Five	factors	of	personality	have	been	broadly	accepted	within	psychology	literature	for	

decades.	Green	&	Fisher	(2010)	report	that	users	with	higher	levels	of	extraversion	were	faster	in	finding	

target	information	than	users	with	lower	levels	of	this	personality	factor.	The	same	study	shows	that	

users	with	a	lower	level	of	extraversion	reported	more	insights,	a	measure	of	how	many	new	things	

were	learned	during	the	task.	Similar	results	were	found	for	the	Big-Five	personality	trait	neuroticism.	As	

for	extraversion;	higher	levels	of	neuroticism	resulted	in	faster	task	completion	times	and	lower	levels	of	

neuroticism	led	to	the	report	of	more	insights	(Green	&	Fisher,	2010).	In	a	preliminary	study,	

extraversion	was	positively	correlated	with	task	performance	in	a	simple	visualization	task	(Venrooij,	

2018).	Remarkable	is	that	researchers	do	not	often	motivate	why	some	user	traits	are	included	in	
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studies	and	some	excluded	for	that	matter,	while	especially	personality	traits	sometimes	seem	far-

fetched	in	perceptual	and	cognitive	research.	The	Big	Five	factor	of	personality	Conscientiousness	has	

not	yet	been	included	in	InfoVis	research,	but	could	possibly	affect	the	way	in	which	people	read	charts	

and	estimate	probabilities,	since	is	has	to	do	with	being	exact	and	dutiful.	Therefor,	it	is	included	in	the	

current	study.	

	 In	InfoVis	literature,	the	personality	trait	Locus	of	Control	(LOC)	is	often	considered.	People	with	

a	more	internal	LOC	hold	an	inherent	belief	that	events	and	outcomes	are	under	a	person’s	control,	and	

thus,	success	or	failure	depends	largely	on	personal	behavior	and	attitudes.	The	inherent	belief	that	

events	and	outcomes	are	influenced	by	external	factors	is	associated	with	a	more	external	LOC	(Green	&	

Fisher,	2010).	Several	visualization	studies	showed	significant	effects	of	LOC	on	task	performance,	while	

an	explanation	for	the	effects	remained	elusive	(Green	&	Fisher,	2010).	Ziemkiewicz	et	al.	(2011)	argued	

that	it	seems	unreasonable	that	a	personality	trait	without	any	known	connection	to	visual	or	spatial	

ability	should	have	any	constant	impact	over	such	a	complex	relationship.	The	researchers	showed	that	

the	known	effects	of	LOC	can	still	be	found	when	restricting	visualization	differences	to	layout	factors.	

This	indicates	that	LOC	relates	to	the	way	a	user	approaches	the	external	representation	rather	than	to	

how	a	user	visually	processes	the	visualization.	They	suggest	that	LOC	influences	the	way	people	use	

various	visualization	types	by	affecting	a	user’s	willingness	to	adapt	to	new	externalization	of	

information.	Likewise,	LOC	might	influence	task	performance	in	visualization	tasks	including	uncertainty.	

Since	uncertainty	is	often	omitted	in	information	visualizations,	people	are	rarely	exposed	to	it.	The	

inclusion	of	uncertainty	in	the	current	study	might	therefore	demand	the	user	to	adapt	to	a	new	

externalization	of	information.	Hence,	a	user’s	willingness	to	adapt	to	new	visual	encodings,	associated	

with	a	user’s	LOC,	might	influence	task	performance	in	the	current	study.	

	 The	personality	trait	Need	for	Cognition	refers	to	an	individual’s	tendency	to	engage	in	effortful	

cognitive	activities.	Hence,	it	might	influence	task	performance	in	the	cognitive	graph	task	in	the	current	

study.	Conati	&	Maclaren	(2008)	found	that	Need	for	Cognition	is	a	positive	predictor	of	user	accuracy	in	

a	visual	sorting	task.	Lastly,	Self-esteem	is	a	measure	of	self-evaluation	of	one’s	social	identity,	worth	

and	value	(Blascovich	&	Tomaka,	1991)	and	is	included	as	a	standard	variable	in	social	construct	studies.		

Chart	expertise	

Besides	cognitive	abilities	and	personality,	individual	differences	also	arise	from	different	levels	of	

experience.	Earlier	work	shows	that	higher	expertise	with	a	specific	visualization	type	or	task	is	positively	

correlated	with	visualization	task	accuracy	(Lewandowsky	&	Spence,	1989).	Expertise	has	also	shown	to	
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be	a	predictor	for	visualization	preference;	the	higher	the	expertise	with	radar	graphs,	the	higher	the	

preference	(Toker	et	al.,	2012).	Moreover,	users	with	high	expertise	are	faster	compared	to	users	with	

low	and	average	expertise	when	completing	a	complex	sort	task	(Conati	et	al.,	2014).	

User	variation	in	uncertainty	studies	

Except	for	the	study	on	the	effects	of	numeracy,	all	of	the	results	mentioned	above	are	based	on	

visualization	tasks	without	data	uncertainty.	Only	a	few	studies	look	at	the	potential	effects	of	user	

variation	when	evaluating	visualizations	with	uncertainty.	In	contrast	to	the	findings	mentioned	above,	

studies	that	evaluate	the	effect	of	expertise	on	the	perception	of	uncertainty	in	various	visualizations	

find	no	significant	difference	in	performance	when	comparing	novice	to	experts	(Evans,	1997;	

Blenkinsop,	Fisher,	Bastin,	&	Wood,	2000;	Aerts,	Clarke,	&	Keuper,	2003).	Ibrekk	&	Morgan	(1987)	found	

that	an	active	knowledge	of	statistics,	associated	with	experience	in	uncertainty	visualizations,	mitigated	

the	most	obvious	misinterpretations	when	using	an	uncertainty	visualization,	but	did	not	necessarily	

result	in	a	higher	task	performance.	

	 Other	studies	especially	focus	on	whether	or	not	providing	uncertainty	information	can	benefit	

the	decision-making	of	non-experts	at	all,	without	examining	the	effects	of	level	of	expertise	on	

decision-making	(Roulston,	Bolton,	Kleit	&	Sears-Collins,	2006;	Joslyn	&	LeCrerc,	2012;	Joslyn	&	LeClerc,	

2013).	Similarly,	a	health	care	study	from	2001	studied	how	receptive	patients	are	for	uncertain,	

probabilistic	information	and	found	that	the	education	level	of	a	patient	may	influence	both	the	

understanding	of,	and	the	receptivity	for,	uncertainty	(Schapira,	Nattinger	&	McHorney).	A	group	of	

women	was	presented	visual	depictions	of	a	points	estimate	with	a	confidence	interval	associated	with	

the	risk	reduction	of	breast	cancer	mortality.	The	more	educated	women	(with	at	least	a	4-year	college	

degree)	were	accepting	of	ambiguity,	and	most	of	them	felt	that	the	CI	should	be	presented,	whereas	

the	less	educated	women	perceived	the	information	as	less	trustworthy	and	generally	desired	the	

information	to	be	conveyed	in	a	simpler	format.	

Thanks	to	the	growing	awareness	that	uncertainty	is	relevant	and	can	benefit	decision	making,	efforts	

are	being	made	to	make	uncertainty	accessible	to	the	wider	public.	As	an	illustration,	a	group	of	

researchers	developed	a	toolkit	meant	to	make	trustworthy	national	metrics	data	available	to	policy	

makers,	journalists,	the	well	informed	public,	and	ultimately	students	at	every	educational	level	(Daken,	

Dogruel,	Grimes,	Lam	&	Lotze,	2008).	In	order	to	do	this	right,	the	developers	emphasize	that	user	

evaluation	is	crucial.	However,	the	influence	of	user	characteristics	is	one	of	the	critical	areas	missing	

from	the	literature	reviewed	on	visualizing	uncertainty,	they	argue.	Gherson	(1998)	states	in	his	piece	
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‘Visualization	of	an	Imperfect	World’	that	user	variation	is	one	the	things	that	makes	visualization	

challenging.	Since	no	two	users	are	alike,	methods	must	be	developed	that	allow	visualization	to	be	

personalized.	

The	current	study	contributes	to	the	search	towards	effective	visualizations	of	uncertainty	and	combines	

this	with	elaborating	on	the	findings	that	visualization	effectiveness	depends	on	user	characteristics.	

This	study	evaluates	task	performance	on	a	task	that	requires	not	only	low-level	visual	processing	but	

also	high-level	cognitive	treatment	of	the	visual	information	and	measures	the	accuracy	of	probability	

estimates	with	six	visualizations	of	statistical	uncertainty	and	considers	user	variation	in	a	broad	sense,	

including	the	influence	of	perceptual	speed,	visual	working	memory,	verbal	working	memory,	numeracy,	

extraversion,	neuroticism,	locus	of	control,	chart	familiarity	and	education.	The	current	study	uses	chart	

familiarity	instead	of	chart	expertise,	since	the	presented	visualizations	of	uncertainty	are	rather	new	

and	unknown.	Chart	familiarity	will	be	evaluated	as	a	subjective	measure,	together	with	visual	appeal	

and	ease-of-use,	since	it	is	self-reported	and	not	objectively	measured.	By	comparing	six	visualizations	

that	represents	statistical	data	uncertainty,	the	goal	of	this	study	is	to	identify	the	one(s)	that	are	best	

suited	for	conveying	probability	information	to	the	general	public,	while	also	exploring	if	uncertainty	

visualization	effectiveness	might	differ	across	user	types,	based	on	several	cognitive-	and	personality	

characteristics.	This	will	be	investigated	through	an	online	user	study.	In	which	participants	will	be	

shown	visual	representations	of	an	estimated	time	of	arrival	within	a	range	of	associated	uncertainty,	

which	is,	according	to	the	use-case,	provided	by	a	car	navigation	system.	For	each	case,	there	are	three	

task	types:	judge	the	best	estimate	time	of	arrival,	estimate	the	chance	that	arrival	time	will	be	later	

than	a	given	point	in	time,	and	estimate	the	chance	that	arrival	time	will	fall	in	between	a	certain	time	

range.		

1.4	Research	questions	&	Hypothesis	

Research	questions	

RQ1:	How	do	accuracy	and	precision	in	probability	estimates	compare	across	six	visualizations	that	

represent	statistical	data	uncertainty	?	

RQ2:	Is	visualization	effectiveness	influenced	by	user	characteristics?	Are	some	visualizations	better	

suited	for	specific	user	types?	

RQ3:	How	is	task	performance	(measured	in	percentage	correct)	related	to	subjective	measures	like	

chart	familiarity	and	ratings	of	visual	appeal	and	ease-of-use?	
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Hypothesis	

Uncertainty	visualization	effectiveness	depends	on	task	type.	As	Ibrekk	&	Morgan	(1987)	found,	

performance	depends	upon	the	information	that	a	subject	is	trying	to	extract	from	a	visualization.	

Visualizations	that	explicitly	contain	the	information	that	people	need	result	in	the	best	performance.	

Probability	estimates	that	are	based	on	the	visualization	Errorbars	are	significantly	less	accurate	than	

with	the	other	visualizations,	because	the	finer	details	about	the	probability	distribution	are	hidden	in	

error	bars	(Cairo,	2016).	

Probability	estimates	that	are	based	on	the	visualizations	with	discrete	outcome	plots	with	few	enough	

outcomes	to	benefit	from	subitizing,	like	the	Dot-20	and	Stripe-20,	are	significantly	more	accurate	than	

the	other	visualizations	(Kay	et	al.,	2016).	

Users	with	high	perceptual	speed	perform	better	across	all	visualizations	(Carenini	et	al.,	2014)	

Users	with	high	scores	on	the	cognitive	measures	PC,	visual	WM	and	verbal	WM	perform	significantly	

better	on	Q2	and	Q3	than	users	with	lower	scores.	There	is	no	difference	in	performance	for	Q1.	

Carenini	et	al.	(2014)	suggests	that	user	performance	depends	on	cognitive	abilities	more	heavily	as	task	

complexity	increases.	

Users	with	higher	scores	on	numeracy	exhibit	more	pronounced	estimating	behavior	than	users	with	

lower	scores	on	numeracy,	i.e.	overstating	high	probabilities,	while	understating	low	probabilities.	(Tak,	

Toet	&	van	Erp,	2015).	

Users	with	a	more	external	locus	of	control	perform	better	with	these	relatively	unknown	visualizations	

including	uncertainty.	According	to	earlier	work,	they	will	have	a	higher	willingness	to	adapt	to	new	

externalization	of	information	(Ziemkiewicz	et	al.	2011).	

Users	with	high	scores	on	extraversion	perform	better	than	users	with	low	scores	on	extraversion	

(Green	&	Fisher,	2010;	Venrooij,	2018)	and	users	with	high	scores	on	neuroticism	perform	better	than	

users	with	low	scores	on	neuroticism	(Green	&	Fisher,	2010).	

Familiarity	with	a	visualization	is	not	related	to	task	performance	(Evans,	1997;	Blenkinsop,	Fisher,	

Bastin,	&	Wood,	2000;	Aerts,	Clarke,	&	Keuper,	2003).	

Users	with	higher	familiarity	with	a	certain	visualization	rate	that	specific	visualization	higher	in	visual	

appeal	than	users	with	low	familiarity.	In	other	words,	familiarity	with	a	visualization	type	positively	
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correlates	with	that	visualizations	rating	on	visual	appeal.	This	hypothesis	is	formulated	to	test	the	

suggestion	of	Kay	et	al.	(2016)	that	Dot-20	might	be	rated	lower	in	visual	appeal	than	the	density	plot	

due	its	relative	unfamiliarity,	while	it	showed	to	be	~1.15	times	more	precise	than	the	density	plot	and	

yielded	higher	confidence.	
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2.	Method	

To	answer	the	research	questions,	an	online	user	study	was	conducted.	In	the	following,	the	

experimental	design,	task,	stimuli,	and	the	procedure	for	the	experiment	is	presented.	

2.1	Experimental	design,	stimuli	and	task	

Design	

A	10	x	6	x	3	within-subject	design	was	used	with	3	independent	variables:	visualization	type	(with	the	six	

levels	Density,	Dot-20,	Gradient,	Stripe-50,	Stripe-20	and	Errorbars),	task/question	type	(with	the	three	

levels	best	estimate,	later	than	probability	and	range	probability),	and	user	characteristics	(with	the	ten	

levels	perceptual	speed,	visual	working	memory,	verbal	working	memory,	numeracy,	conscientiousness,	

extraversion,	neuroticism,	need	for	cognition,	locus	of	control),	and	the	dependent	variable:	percentage	

correct	in	probability	estimates.	

Stimuli:	Visualizations	and	questions	

The	six	types	of	visual	representation	of	a	probability	distribution	that	are	evaluated	in	the	current	study	

are	depicted	in	Figure	6.	The	set	consists	of	three	continuous	visualization	types	(Density,	Gradient	and	

Errorbars)	and	three	discrete	ones	(Dot-20,	Stripe-20	and	Stripe-50).	The	horizontal	error	bar	is	inspired	

by	the	study	of	Ibrekk	&	Morgan	(1987).	Three	encodings	are	adopted	from	the	study	of	Kay	et	al.	(2016)	

that	aimed	to	identify	effective	visual	encodings	to	convey	the	uncertainty	associated	with	bus	arrival	

times	to	users.	Since	the	current	study	shares	this	goal	and	considers	a	similar	traffic	use	case,	the	

following	visual	encodings	are	adopted:	the	density	plot,	the	dot	plot	(20)	and	the	stripe	plot	(50).	The	

gradient	plot	in	timeline	format	is	adopted	from	the	study	of	Gschwandtner	et	al.	(2016).	Finally,	the	

Stripe-20	is	introduced.	All	visualization	are	made	with	D3.js.	 	
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Figure	6.	The	six	types	of	visualizations	selected	for	evaluation	(mean	0,	std.dev.	1).	1a.	Density;	1b.	Dot-

20;	1c.	Gradient;	1d.	Stripe-50;	1e.	Stripe-20,	1f.	Errorbars	

To	assess	people’s	ability	to	judge	probability	from	the	visualizations,	a	similar	approach	to	that	of	the	

study	of	Ibrekk	and	Morgan	(1987)	was	used.	They	showed	various	representations	of	uncertainty	for	

weather	forecasts	and	participants	were	asked	to	report	the	best	estimate	and	two	kinds	of	probabilities	

(e.g.,	snowfall	>2	inches,	or	between	2	and	12	inches).	Hence,	the	current	task	consisted	of	the	following	

three	questions:	

● Q1:	What	is	the	most	likely	time	of	arrival?	

● Q2:	What	is	the	probability	(in	%)	that	arrival	time	will	be	later	than	the	marked	point	in	

time	(black	line)?	

● Q3:	What	is	the	probability	(in	%)	that	arrival	time	will	fall	within	the	range	indicated	by	

the	marked	points	in	time	(black	lines)?	

Participants	were	asked	to	answer	the	first	question	by	selecting	a	time	on	a	visual	scale	slider	and	the	

second	question	by	entering	a	percentage	(Figure	7).	
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Figure	7.	Example	screenshots	of	the	experiment	(From	the	top	down:	Q1	with	Dot-20;	Q2	with	Density	

plot;	Q3	with	Gradient)	

For	each	question,	there	were	48	items;	eight	variations	of	a	normal	standard	distribution,	displayed	by	

six	visualizations.	For	the	sake	of	divers	responses,	the	variations	are	adapted	to	the	nature	of	the	

question	(i.e.	Q1	depends	on	the	mean,	Q2	and	Q3	depend	on	the	distribution	form	determined	by	the	

standard	deviation).	For	question	1	there	were	8	combinations	of	mean	-1,	-0.5,	0,	1	with	standard	
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deviations	of	0.5	and	1.	For	questions	2	and	3	there	were	8	combinations	of	mean	0	and	1	with	standard	

deviations	of	0.4,	0.6,	0.8	and	1.	

User	characteristics	

The	tests	that	were	used	to	administer	all	user	characteristics	can	be	found	in	Table	3.	

Table	3.		

8	psychometric	measures	were	administered	

Psychometric	measure	 Test	

Perceptual	speed	 The	Number	Comparison	test	(P-3)	to	assess	perceptual	speed	from	

Ekstrom	(1976)	was	digitized	for	the	current	study	

Visual	working	memory	 Fukuda	&	Vogel’s	colored	squares	test	(Fukuda	&	Vogel,	2009)	

Verbal	working	memory	 Operation-word	span	test	(OSPAN)	(Turner,	1989)	

Numeracy	 An	abbreviated	Numeracy	scale	(Weller	et	al.,	2013)	

Extraversion	 the	IPIP	10-item	Big	Five	Extraversion	Scale	(Donnellan	et	al.	2006)	

Neuroticism	 the	IPIP	10-item	Big	Five	Neuroticism	Scale	(Donnellan	et	al.	2006)	

Conscientiousness	 the	IPIP	10-item	Big	Five	Conscientiousness	Scale	(Donnellan	et	al.	2006)	

Locus	of	Control	 the	IPIP	10-item	Locus	of	Control	scale:	Internality	(Levenson,	1981)	

Need	for	Cognition	 The	10-item	Need	for	Cognition	Scale	(Cacioppo	&	Petty,	1982)	

Self-esteem	 The	10-item	Rosenberg	self-esteem	scale	(RSE)	(Rosenberg,	1965)	
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Information	about	a	participants	highest	level	of	education	completed	is	included	in	their	Prolific	

account	(seven	categories:	1	=	primary	education/no	education;	2	=	lower	vocational	education;	3	=	

lower	secondary	education;	4	=	higher	secondary	education;	5	=	BSc;	6	=	MSc;	7	=	PhD).	

Task	

The	online	study	was	divided	into	three	components:	(1)	administration	of	the	user	characteristics,	(2)	

the	main	experiment	and	(3)	a	post-questionnaire.	Further	information	about	part	1	can	be	found	in	

Table	3.		

At	the	start	of	the	main	task,	a	brief	explanation	about	the	purpose	of	the	visualizations	was	given.	The	

instruction	was	the	following:	

“Imagine	you	are	in	a	car.	Your	navigation	system	recommends	a	route	to	your	destination.	Instead	of	a	

fixed	estimated	time	of	arrival,	a	visualization	is	presented.	The	visualization	represent	the	probability	of	

arriving	at	a	certain	point	in	time,	on	top	of	a	timeline.	During	the	task,	you	will	see	six	different	

visualizations.	For	each	visualization,	you	are	asked	several	questions.	A	brief	explanation	of	the	six	

visualization	follows.”	

Then,	the	images	of	Figure	6	and	8	were	presented	with	the	following	brief	instruction	on	each	

visualization:	

“In	a	normal	distribution,	values	closer	to	the	upper	and	lower	boundaries	are	less	likely	than	values	to	

the	reported	point	estimate.	The	image	below	(Figure	8)	shows	how	probability	is	distributed.	In	

visualization	a,	the	cap-tipped	lines	span	95%	of	all	values	and	the	arrow	represents	the	point	of	50%.	In	

visualization	b,	probability	is	depicted	by	the	height	of	the	curve,	as	shown	in	Figure	8.	In	visualization	c,	

probability	is	represented	by	the	amount	of	dots.	It	consists	of	20	dots,	meaning	that	every	dot	

represents	5%.	Visualization	d	communicates	probability	by	the	density	of	vertical	stripes	in	a	region.	It	

consists	of	50	stripes,	meaning	that	every	stripe	represents	2%.	Visualization	e	communicates	probability	

by	the	density	of	vertical	stripes	in	a	region.	It	consists	of	20	stripes,	meaning	that	every	stripe	represents	

5%.	Visualization	f	conveys	probability	by	opacity;	the	darker	the	shade,	the	higher	the	probability	of	the	

given	estimate.”	
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Figure	8.	The	probability	distribution	of	a	normal	distribution	depicted	by	a	density	plot,	or	bell	curve.	

Prior	to	the	actual	task,	participants	got	18	practice	trials	(6	visualization	types	x	3	questions)	that	

allowed	them	the	opportunity	to	get	familiar	with	the	questions	and	visualization	types,	while	also	

stabilizing	a	potential	practice	effect.	The	actual	experiment	consisted	of	three	question	‘rounds’.	Within	

each	round,	the	48	stimuli	per	question	were	presented	to	the	participants	in	random	order,	resulting	in	

an	144	item	task	in	total.	Each	participant	answered	all	questions	for	all	types	of	visual	encodings.	

Afterwards	in	a	post-questionnaire,	chart	familiarity	was	self-reported	by	the	participants	by	expressing	

their	agreement	with	the	following	statement	for	each	visualization	type:	"I	am	familiar	with	the	density	

plot"	on	a	Likert-scale	from	1	to	5.	Lastly,	participants	were	asked	to	rate	the	ease-of	use	and	visual	

appeal	for	each	visualization	on	a	Likert-scale	from	1	to	5.	

2.6	Participants	

In	total,	245	subjects,	participated	(101	male,	144	female,	age	18-62	years	with	a	mean	of	36,2).	

Participants	were	recruited	via	the	online	academic	database	Prolific.	All	participants	were	native	English	

speakers.	Education	level	frequencies	are	reported	by	figure	9	.	Initially	323	subjects	participated,	but	48	

subjects	were	eliminated	based	on	their	response	patterns	(e.g.	repetitive	answers	over	longer	period	of	

time	and	unreliably	fast	reaction	times),	another	4	subjects	scored	lower	than	10%	correct	on	the	graph	

task	and	1	subject	was	eliminated	because	he/she	took	over	4	hours	to	complete	the	task.	Moreover,	

two	questions	that	were	added	to	the	personality	questionnaires	to	see	if	people	were	paying	attention	

(“are	you	paying	attention?	Please	answer	“Strongly	agree”	to	this	question”)	were	incorrectly	answered	

by	10	people,	whom	were	consequently	eliminated.	Lastly,	15	subjects	were	eliminated	based	on	their	

performance	on	the	cognitive	tasks.	Their	scores	were	that	low	that	it	is	thought	to	be	safe	to	assume	

that	they	were	not	making	a	serious	attempt	while	performing	the	tasks.	This	results	in	245	participants.	
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Figure	9.	Frequency	distribution	of	subjects	their	education	levels,	total	n=245.	

Payment	

Participants	performed	the	study	online	and	were	paid	a	base	rate	of	£6	for	their	work.	They	were	told	

that	a	bonus	payment	of	£1.00	would	be	given	for	effortful	responses.	245	participants	ultimately	

received	this	bonus.		

2.7	Statistical	analysis	

For	the	analysis	of	the	data	obtained	during	the	graph	task,	the	response	of	the	participant	will	be	

referred	to	as	the	estimated	p	and	will	be	compared	to	the	true	p,	which	is	calculated	from	the	

underlying	probability	distribution	of	the	visualization.	For	more	detailed	explanations	on	the	outcome	

measures,	consult	Appendix	A.		

To	evaluate	the	effect	of	visualization	type,	a	repeated	measures	ANOVA	will	be	performed	to	compare	

the	average	performance	(in	percentage	correct)	for	each	visual	encoding	and	to	see	which	visual	

encoding	scored	best.	Bivariate	correlation	coefficients	will	be	calculated	to	assess	the	size	and	direction	

of	the	relationships	between	task	performance	in	general,	task	performance	per	visualization	type	and	

user	characteristics	scores.	A	regression	will	be	performed	to	analyze	if	variation	in	task	performance	

can	be	attributed	to	variation	in	user	characteristics	scores.	
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3.	Results	

In	analyzing	the	results	of	the	graph	task,	true	p	is	subtracted	from	estimated	p	to	calculate	error	size.	

Error	size	is	a	measure	of	the	accuracy	of	the	responses.	A	response	is	considered	‘correct’	when	error	

size	is	equal	to	or	less	than	one;	correctness	is	a	binary	scale.	Then,	the	error	size	distribution	has	been	

used	to	evaluate	the	precision	per	visualization	type.	A	more	detailed	overview	of	these	concepts	can	be	

found	in	Appendix	A.		

Task	type	

As	shown	in	Figure	10,	question	1	(What	is	the	most	likely	time	of	arrival?)	shows	a	different	pattern	

than	questions	2	and	3	(What	is	the	probability	that	arrival	time	will	-	be	later	than	the	marked	point	in	

time?	/	~	fall	within	the	marked	points	in	time?).	Probability	estimates	elicit	a	different	response	pattern	

than	judging	the	best	estimate.	Looking	at	Table	4,	average	reaction	time	seems	to	be	determined	more	

by	question	type	than	by	visualization	type.		As	hypothesized,	performance	depends	task	type;	upon	the	

information	that	a	subject	is	trying	to	extract	from	a	visualization.			

For	further	analysis	of	the	effect	of	visualization	type	and	the	influence	of	user	characteristics,	question	

1	will	be	left	out	of	consideration	since	there	is	too	little	variation	as	almost	every	visualization	yielded	

responses	near	100%	correct.	The	result	patterns	of	question	2	and	3	have	proved	to	be	robust	through	

all	pilots	and	will	be	considered	for	further	analysis.	



27 

Figure	10.	Percentages	correct	on	the	graph	task	per	visualization	per	question	type	(n=245).	For	left	to	

right	Q1,	Q2,	and	Q3.	

Table	4.	

Average	reaction	times	per	visualization	per	question	in	seconds.
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Visualization	type	

Comparing	visualization	types	based	on	accuracy	

The	data	of	questions	2	and	3	were	further	analyzed	using	a	repeated	measures	analysis	of	variance	

(ANOVA)	with	the	within-subjects	factor	visualization	type	with	six	levels	(Density,	Dot-20,	Gradient,	

Stripe-50,	Stripe-20,	and	Errorbars).	Statistical	significance	is	reported	at	the	0.05	level,	as	well	as	partial	

eta	squared	(ηp²)	for	effect	size,	where	.01	is	a	small	effect,	.09	is	a	medium	effect,	and	.25	is	a	large	

effect	(Toker	et	al.,	2012).	

	 Shapiro-Wilk	statistics	indicated	that	the	assumption	of	normality	was	violated	(sig	<	.001).	Fmax	

=	8.132	demonstrates	homogeneity	of	variances.	Mauchly’s	test	indicated	that	the	assumption	of	

sphericity	had	been	violated	(χ2(2)	=	501.925,	p<	.001),	therefore	degrees	of	freedom	were	corrected	

using	Greenhouse-Geisser	estimates	of	sphericity	(ε=	0.481).	

	 The	ANOVA	results	shows	that	there	is	a	main	effect	of	visualization	type	on	percentage	correct,	

F(2.41,	586,96)	=	492,04,	p	<	.001,	ηp2=	.668.	A	Bonferroni	corrected	post	hoc	test	further	revealed	that	

the	Dot-20	results	in	the	highest	percentage	correct	with	a	significantly	higher	average	than	all	other	

visualizations	(p	<	.001)	(Figure	11).	The	descriptives	per	visualization	can	be	found	in	Table	5.	Following	

up	is	the	Stripe-20,	which	significantly	differs	from	all	visualizations,	including	the	dotplot	(p	<	.001).	

Stripe-50	also	differs	significantly	from	all	other	visualization	(p	<	.001).	The	bottom	three	visualizations;	

Density,	Gradient	and	Errorbars	do	not	differ	significantly	from	one	another.	

Table	5.		

Descriptives	of	the	percentages	correct	per	visualization	type.	

		 M	 SD	

Dot-20	 74.3	 31.7	

Stripe-20	 57.8	 30.3	

Stripe-50	 29.5	 19.8	

Density	 16.9	 12.7	

Gradient	 14.6	 11.1	

Errorbars	 14.1	 11.6	
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Figure	11.	Average	percentages	correct	on	questions	2	and	3	per	visualization	type.	Depicted	by	a	Dot-

20	visualization,	meaning	that	one	dot	represents	the	performance	level	of	5%	of	the	participants.	The	

vertical	stripes	indicate	the	average	percentage	correct	of	all	participants	for	that	visualization	type.	

Comparing	visualization	types	based	on	precision	

To	evaluate	precision,	a	log	transformation	was	performed	on	the	estimated	p’s	and	the	true	p’s.	Then,	

error	sizes	were	calculated	by	subtracting	logit(true	p)	of	logit(estimated	p).	The	s-shaped	function	logit	
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transforms	probabilities	into	log-odds,	which	simplifies	the	analysis	of	probabilities	(Kay	et	al.,	2016).		

Figure	12	demonstrates	the	densities	of	those	error	sizes	per	visualization	type,	which	gives	insight	in	

how	precise	people	were	in	estimating	probabilities.	Error	size	densities	from	before	the	log	

transformation	can	be	found	in	Appendix	C.	The	dashed	line	indicates	where	error	size	is	equal	to	zero.	

The	order	of	visualizations		in	the	graph	(top	down)	is	determined	by	their	ranking	on	correctness.	The	

narrower	the	frequency	distribution,	the	lower	the	variance,	the	more	precise	participants	were	at	

estimating	probabilities	(Kay	et	al.,	2016).	The	narrow,	peaked	distribution	of	Dot-20	indicates	that	

participants’	estimates	were	the	most	precise	in	that	condition.	The	bottom	four	visualizations	have	

wider	and	more	diffuse	distributions	that	indicate	more	variance	and	less	precise	estimations.	
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Figure	12.	Precision	(error	size	variability)	per	visualization	type.		

User	characteristics	

Correlating	general	task	performance	(Q2	&	Q3)	with	user	characteristics	

To	assess	the	size	and	direction	of	the	relationship	between	task	performance	on	the	graph	task	

(measured	in	percentage	correct	on	question	2	and	3)	and	scores	on	the	set	of	psychometric	measures	
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that	measure	user	characteristics,	bivariate	correlation	coefficients	were	calculated.	Statistical	

significance	is	reported	at	the	0.05	level.	Prior	to	calculating	these	coefficients,	normality,	linearity	and	

homoscedasticity	were	assessed,	and	found	to	be	largely	unsupported.	

The	assumption	of	normality	is	tested	by	Shapiro-Wilk	statistic,	which	indicates	that	the	data	is	not	

normally	distributed	when	significance	is	below	.05.	Here,	only	Conscientiousness	(W	is	.990,	Sig	=	.104)	

and	Neuroticism	(W	is	.990,	Sig	=	.104)	do	not	violate	the	normality	assumption.	A	visual	inspection	of	

the	normal	Q-Q	and	detrended	Q-Q	plots	for	each	variable	as	an	alternative	to	evaluate	normality	shows	

that	Extraversion	and	Expertise	do	not	violate	the	normality	assumption	either.	All	other	variables	

suggest	that	the	assumption	of	normality	is	violated.	In	that	case,	Spearman’s	Rho	or	Kendall’s	Tau-B	are	

considered	instead	of	Pearson’s	product-moment.	Similarly,	visually	inspecting	the	scatterplots	of	all	

user	characteristics	against	percentage	correct	on	question	2	and	question	3	in	the	graph	task	shows	

that	the	relationship	between	these	variables	was	not	linear	or	heteroscedastic.	Therefore,	Spearman’s	

Rho	is	used.	

The	bivariate	Spearman’s	rho	correlations	between	the	user	characteristics	scores	and	accuracy	on	Q2	

and	Q3	are	reported	in	Table	6.		

Table	6.		

Spearman’s	Rho	correlations	between	user	characteristics	and	general	task	performance	on	question	2	

and	3	(column	1).	The	numbers	in	the	columns	correspond	to	the	numbered	characteristics	in	the	rows.

	

The	first	column	shows	that	the	personality	trait	Need	for	Cognition	and	the	cognitive	measures	

Perceptual	Speed,	Visual	Working	Memory	and	Numeracy	prove	to	have	a	significant	relation	with	task	
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performance	throughout	all	visualizations	types.	The	rest	of	table	shows	that	personality	traits	and	

cognitive	measures	show	mutual	significant	correlations.		

Correlating	task	performance	per	visualization	type	with	user	characteristics	

Bivariate	correlation	coefficients	were	also	calculated	to	assess	the	size	and	direction	of	the	

relationships	between	task	performance	on	the	graph	task	for	each	visualization	type	apart	(measured	

in	percentage	correct	for	question	2	and	3)	and	scores	on	the	set	of	psychometric	measures	that	

measure	user	characteristics.	Because	of	the	violated	assumptions	as	described	above,	again,	

Spearman’s	Rho	is	used.	Significant	correlation	coefficients	are	reported	in	Table	7.		

Table	7.		

Significant	Spearman’s	Rho	correlations	between	user	characteristics	and	task	performance	on	Q2	and	

Q3	per	visualization	type.	Only	significant	correlation	coefficients	are	reported.	

	

To	understand	how	these	correlations	manifest,	the	data	was	divided	per	user	characteristic	into	‘high’	

and	‘low’	groups	by	performing	a	median	split.	The	average	percentages	correct	per	split-group	can	be	
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found	in	the	median	split	table	in	Appendix	D.	After	performing	a	median	split,	Dot-20	remains	the	best	

scoring	visualization	across	all	classifications.		

Subjective	measures	

To	evaluate	how	task	performance	(measured	by	correctness)	is	related	to	subjective	measures,	average	

rating	were	compared	and	correlation	coefficients	were	calculated	per	visualization	type.	Figure	13	

shows	the	average	scores	of	the	obtained	ratings	on	a	5-point	Likert	scale	in	the	post-questionnaire.	

Figure	13.	Average	ratings	on	the	subjective	measures	chart	familiarity,	ease-of-use,	and	visual	appeal	

that	were	assessed	in	the	post-questionnaire	per	visualization	type.	

The	correlations	that	proved	to	be	significant	are	reported	in	Table	8.	
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Table	8.		

Correlation	coefficients	of	the	subjective	measures	(Kendall’s	tau	b)	

	

The	results	will	be	further	interpreted	in	the	following	Discussion.	
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4.	Discussion	

Summary		

The	goal	of	this	study	was	to	identify	a	visualization	type	best	suited	for	conveying	probability	

information	to	the	general	public,	while	also	exploring	if	uncertainty	visualization	effectiveness	might	

differ	across	user	types,	based	on	several	cognitive-	and	personality	characteristics.	Six	visualization	

types	were	selected	and	implemented	in	an	online	study	with	a	car	navigation	system	use-case.	

Participants	were	asked	to	judge	best	estimate	of	arrival	time	and	to	report	two	types	of	probability	

estimates	(later	than	and	within	a	range)	based	on	a	visualization	that	resembled	a	timeline.	Several	

filter	criteria	caused	78	of	323	participants	to	be	filtered	out	of	the	dataset,	resulting	in	a	sample	size	of	

245	participants.	The	first	research	question	focused	on	how	accuracy	and	precision	in	probability	

estimates	compared	across	six	visual	representations	of	statistical	uncertainty.	Results	of	the	online	

graph	task	showed	a	significant	main	effect	of	visualization	type,	which	indicates	that	the	ability	to	

estimate	probabilities	based	on	a	visualization	is	influenced	by	the	way	the	probability	distribution	is	

visually	represented.	The	visualization	type	Dot-20	resulted	in	responses	that	were	both	high	in	accuracy	

and	precision,	followed	up	by	Stripe-20	in	both	measures.	Stripe-50	came	in	third	and	resulted	in	a	

significantly	higher	percentage	of	correct	scores	than	the	continuous	types	Density,	Gradient	and	

Errorbars,	but	showed	precision	patterns	that	were	no	better	than	those	bottom	three	visualizations.	In	

addition	to	comparing	different	types	of	visualizations,	the	influence	of	several	user	characteristics	on	

task	performance	was	investigated.	Especially	cognitive	measures	proved	to	be	significantly	related	to	

task	performance.	The	research	questions	and	corresponding	results	will	be	addressed	in	more	detail	in	

the	following.		

Research	questions	

RQ1	How	do	accuracy	and	precision	in	probability	estimates	compare	across	six	visual	representations	of	

statistical	uncertainty?	

The	findings	of	the	current	study	are	in	line	with	the	expectancy	that	probability	estimates	are	the	most	

accurate	and	correct	when	based	on	discrete	outcome	plots	with	few	enough	outcomes	to	benefit	from	

subitizing.	The	visualization	type	Dot-20	that	was	adopted	from	the	study	of	Kay	et	al.	(2016)	proved	its	

excellence	in	the	current	study.	Followed	up	by	the	newly	introduced	Stripe-20	and	the	from	Kay	et	al.	

(2016)	adopted	Stripe-50.	Dot-20	and	Stripe-20	resulted	in	probability	estimates	that	were	both	high	in	

accuracy	and	precision.	Although	significantly	more	people	manage	to	be	correct	with	Stripe-50	than	
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with	Density,	Gradient	and	Errorbars,	when	looking	at	precision,	Stripe-50	shows	the	same	error	size	

patterns	as	the	three	continuous	encodings.	It	seems	that	some	people	take	the	effort	of	counting	the	

stripes,	which	results	in	being	correct,	whereas	other	people	handle	Stripe-50	as	if	it	were	a	continuous	

visualization,	which	results	in	a	greater	variety	of	error	sizes.		As	expected,	probability	estimates	that	are	

based	on	the	visualization	Errorbars	are	significantly	less	often	correct	than	with	the	other	visualizations.	

In	line	with	literature,	Errorbars	do	perform	poorly.	

RQ2:	Is	visualization	effectiveness	influenced	by	user	characteristics?	Are	some	visualizations	better	

suited	for	specific	user	types?	

To	analyze	if	variation	in	task	performance	can	be	attributed	to	variation	in	user	characteristics	scores,	it	

was	planned	to	perform	a	regression	analysis.	However,	since	the	majority	of	the	statistical	assumptions	

were	violated,	a	regression	analysis	would	not	be	able	to	draw	accurate	conclusion	about	the	current	

dataset.	Instead,	parametric	correlation	coefficients	were	calculated	to	see	how	user	characteristic	

scores	are	related	to	task	performance	in	general	and	for	visualization	types	specific.	

Cognitive	measures	

In	line	with	literature,	cognitive	measures	proved	to	be	significantly	related	to	task	performance.	As	

hypothesized,	users	with	high	perceptual	speed	perform	better	across	all	visualizations.	Visual	Working	

Memory	and	Numeracy	also	proved	to	be	significantly	correlated	with	overall	task	performance.	These	

correlations	between	user	characteristics	scores	and	estimation	accuracy	across	all	visualizations	

indicate	which	characteristics	are	related	to	the	general	ability	to	estimate	probability.	Given	the	

superior	effectiveness	of	visualization	type	Dot-20,	which	will	be	furtherly	discussed	in	the	following,	the	

correlations	with	task	performance	on	Dot-20	will	be	highlighted.	Perceptual	Speed,	Visual	working	

memory,	Verbal	working	memory	and	Numeracy	are	significantly	positively	correlated	with	the	

performance	with	Dot-20.	This	indicates	that	the	lower	the	levels	of	these	cognitive	measures,	the	

worse	users	are	estimating	probabilities	based	on	Dot-20.	Implications	of	these	results	will	be	discussed	

later	this	section.		

Personality	

The	personality	trait	Need	for	Cognition	is	significantly	correlated	with	overall	task	performance,	which	

can	be	seen	as	a	representation	of	the	general	ability	of	estimating	probabilities.	The	personality	trait	

Need	for	Cognition	refers	to	an	individual’s	tendency	to	engage	in	effortful	cognitive	activities.	Since	the	

experiment	was	quite	demanding	in	size	and	length,	the	correlation	might	arise	from	a	participant’s	
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inherent	willingness	or	even	enjoyment	to	persist	in	an	effortful	cognitive	task.	

	 In	contrast	to	earlier	research,	no	other	significant	correlations	or	differences	based	on	

personality	traits	were	found.	A	possible	explanation	is	the	lack	of	time-pressure	in	the	current	

experiment.	It	is	suggested	in	literature	that	the	impact	of	individual	differences	might	be	more	

pronounced	in	time-based	tasks	(Toker	et	al.,	2012).	In	a	preliminary	study,	participants	were	asked	to	

respond	as	fast	as	possible	during	the	online	visualization	task		and	results	showed	strong	effects	of	the	

personality	trait	extraversion	on	task	performance	(Venrooij,	2018).	For	follow-up	research,	time	

pressure	could	be	added	to	the	experiment.	

Personalizing	visualization	type	

The	visualization	type	Dot-20	resulted	in	probability	estimates	that	were	significantly	more	accurate	

than	all	other	visualizations	and	the	most	precise,	hence	the	most	effective.	The	excellence	of	Dot-20	

even	proved	to	be	robust	across	all	user	classifications.	The	divisions	into	‘low’	and	‘high’	level	groups	

per	characteristic	(Appendix	D)	showed	that,	even	though	differences	in	task	performance	between	

user-groups	and	visualization	types	exist,	Dot-20	remains	by	far	the	best	scoring	visualization	for	every	

user	type.	Thus,	adaptation	or	personalization	in	terms	of	visualization	type	based	on	user	

characteristics	would	be	irrelevant.		

	 Even	when	looking	at	an	individual	level,	taken	together	the	probability	estimates	for	question	2	

and	3,	78.4%	of	all	participants	achieved	their	best	results	in	terms	of	percentages	correct	when	using	

the	Dot-20.	This	means	that	21.6%	of	all	participants	benefited	more	from	other	visualizations.	If	

everyone	would	be	given	the	Dot-20	only,	73.7%	of	all	questions	would	be	estimated	correctly	on	

average.	If	personalization	would	be	provided	in	terms	of	visualization	type	and	on	an	individual	level,	in	

other	words,	if	each	person	would	be	given	the	visualization	type	that	served	him/her	best,	the	average	

percentage	correct	would	increase	with	5.1%	compared	to	the	average	percentage	correct	that	would	

be	yielded	if	every	person	would	work	with	the	visualization	Dot-20	only.	

	 Given	the	superiority	of	the	Dot-20	across	all	classifications	based	on	user	characteristics,	

together	with	the	finding	that	personalization	in	terms	of	visualization	type	on	individual	level	would	

only	yield	a	5.1%	increment	in	percentages	correct	and	the	intended	purpose	of	this	study	to	identify	a	

widely	supported	and	effective	visual	representation	of	data	uncertainty,	this	study	suggests	that	Dot-20	

would	be	the	best	suited	visualization	for	every	audience.		

RQ3:	How	is	task	performance	(measured	in	percentage	correct)	related	to	subjective	measures	like	chart	

familiarity	and	ratings	of	visual	appeal	and	ease-of-use?	
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For	Dot-20,	Stripe-20	and	Errorbars,	task	performance	(measured	in	percentage	correct	responses)	was	

significantly	correlated	with	the	subjective	measure	ease-of-use.	The	correlation	coefficients	of	the	two	

former	visualizations	were	positive,	which	confirms	that	these	two	top	performing	visualizations	were	

indeed	easy	to	use	accurately.	In	contrast,	the	correlation	coefficient	for	Errorbar	on	performance	and	

ease-of-use	was	negative,	but	nonetheless	in	line	with	literature,	where	error	bars	are	often	associated	

with	misinterpretation.	This	correlation	suggests	that	people	feel	like	it	is	ease	to	use,	while	they	are	

actually	interpreting	it	wrongly	and	performing	poorly.	

	 As	hypothesized,	chart	familiarity	appears	to	be	unrelated	to	task	performance	for	five	out	of	six	

visualizations.	Except	for	a	negative	correlation	for	the	visualization	type	Gradient,	no	significant	

correlations	were	found	between	self-reported	familiarity	and	task	performance	with	that	specific	

visualization	type.	The	single	correlation	suggests	that	users	who	reported	that	they	had	seen	or	used	

the	visualization	type	Gradient	before,	did	not	perform	well	when	using	it	and	vice	versa.	There	is	no	

obvious	explanation	for	this	effect,	but	it	does	indicate	that	this	poorly	performing	visualization	type	is	

not	well	understood.		

	 Significant	correlations	between	chart	familiarity	and	visual	appeal	were	found	for	the	

visualization	types	Density,	Dot-20,	Stripe-20	and	Errorbars.	Thus,	for	four	out	of	six	visualization	types,	

the	hypothesis	that	users	with	higher	familiarity	with	a	certain	visualization	rate	that	specific	

visualization	higher	in	visual	appeal	than	users	with	low	familiarity	is	confirmed.	This	effect	could	be	

explained	by	the	mere	exposure	effect;	a	psychological	phenomenon	that	suggests	that	repeated	

exposure	increases	familiarity	and	that	people	tend	to	develop	a	preference	for	things	or	people	that	

are	more	familiar	to	them	than	others	(Falkenbach,	Schaab,	Pfau,	Ryfa	&	Birkan,	2013).		

	 A	positive	correlation	between	visual	appeal	and	ease-of-use	was	found	for	Stripe-50	and	

Gradient.	As	shown	in	Figure	13	(p.34),	Stripe-50	was	rated	the	lowest	of	all	visualizations	on	both	

measures.	Although	Stripe-50	performs	significantly	better	than	Density,	Gradient	and	Errorbar	in	terms	

of	accuracy,	it	is	not	preferred	in	terms	of	ease-of-use	and	visual	appeal.	As	shown	in	Table	4	(p.27),	the	

average	reaction	times	associated	with	Stripe-50	responses	are	slower	than	the	average	reaction	times	

of	other	visualizations.	The	average	reaction	time	of	Stripe-50	is	2,1	seconds	slower	than	the	question	

average	of	Q2	and	2,5	seconds	slower	than	the	question	average	of	Q3.	A	plausible	explanation	is	that	

people	take	their	time	to	count	the	stripes,	regardless	of	the	relative	many	discrete	outcomes,	to	then	

calculate	the	associated	probability.	This	results	in	a	reasonable	percentage	correct,	but	might	be	

perceived	as	an	inefficient	hassle.	This	suggestion	endorses	the	recommendation	of	Kay	et	al.	(2016)	to	

use	discrete	outcome	plots	with	few	enough	outcomes	to	benefit	from	subitizing.	Stripe-50	may	perform	
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reasonably	well	thanks	to	its	discrete	nature,	but	has	too	many	outcomes	to	truly	benefit	from	

subitizing.	Again,	adding	time	pressure	to	a	follow-up	experiment	could	put	Stripe-50	to	the	test	and	

possibly	undermine	its	success.	

Considerations	

Consideration	implementation:	Discrete	outcomes	&	data	loss	

As	noted	earlier,	the	findings	of	the	current	study	are	in	line	with	the	study	of	Kay	et	al.	(2016),	who	

recommended	discrete	outcome	plots	with	few	enough	outcomes	to	benefit	from	subitizing,	like	their	

Dot-20	that	was	adopted	in	the	current	study.	The	top	performance	of	Dot-20,	Stripe-20	and	Stripe-50	

confirms	that	converting	the	continuous	probability	range	into	a	discrete	visualization	appears	to	benefit	

the	ability	to	estimate	probability	as	it	enables	quick	and	accurate	information	processing.	However,	the	

cost	of	the	summarizing	nature	of	these	visualizations	is	data	loss.	Given	the	robust	and	positive	effect	

of	the	few-outcome,	discrete	visualization	types;	data	reduction	seems	to	be	beneficial.	Still,	it	should	be	

kept	in	mind	that	in	some	contexts	data	reduction	equals	costly	data	loss.	The	context	of	the	

implementation,	the	goal	of	the	visualization,	and	the	goal	of	the	user	should	be	evaluated	in	order	to	

decide	if	the	Dot-20	or	Stripe-20	are	suitable	for	the	specific	situation.	

Consideration	further	research:	What	explains	performance	in	more	challenging	conditions?	

By	comparing	six	visualizations	that	represents	statistical	data	uncertainty,	the	goal	of	this	study	was	to	

identify	the	one(s)	that	are	best	suited	for	conveying	probability	information	to	the	general	public,	while	

also	exploring	if	uncertainty	visualization	effectiveness	might	differ	across	user	types,	based	on	several	

cognitive-	and	personality	characteristics.	With	this	intended	goal,	analysis	focused	on	the	best	

performing	visualizations	that	yielded	high	accuracy	and	correctness.	The	visualizations	Dot-20	and	

Stripe-20	have	proved	to	be	relatively	easy	to	use	and	suited	for	a	broad	audience.	Therefore	it	might	be	

less	meaningful	to	know	what	kind	of	people	excel	when	using	these	visualizations,	since	almost	

everybody	can	achieve	high	performance.	The	wheat	is	separated	from	the	chaff	when	using	the	

apparent	harder	to	use	visualizations,	like	the	Gradient	and	Errorbar.	Working	with	these	visualizations	

appears	to	be	more	challenging,	since	significantly	less	people	are	able	to	estimate	probabilities	

correctly	when	based	on	those	visualizations.	Research	from	Carenini	et	al.	(2014)	suggests	that	task	

performance	depends	on	cognitive	abilities	more	heavily	as	task	complexity	increases.	Since	less	people	

are	able	to	extract	accurate	information	from	those	representations,	it	could	be	interesting	to	formulate	
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a	research	questions	that	focuses	on	what	user	characteristics	explain	for	high	performance	in	hard	

conditions.		

Limitation:	Unknown	test	context	

Using	an	online	research	platform	makes	testing	with	a	large	sample	in	a	short	period	of	time	possible.	

However,	it	should	be	noted	that	the	context	in	which	participants	respond	to	the	task	request	is	for	the	

most	part	unknown.	Here,	context	includes	the	physical	and	mental	state	the	participants	are	in,	

possible	distractions	they	face	and	the	quality	of	their	technological	equipment.	As	an	example,	varying	

display	types	and	different	lighting	conditions	may	influence	the	functionality	of	the	gradient	

visualization,	possibly	making	it	less	desirable	(Tak,	Toet	&	van	Erp,	2014).	Likewise,	it	remains	unknown	

why	some	subjects	perform	poorly	in	a	study.	The	goal	of	the	task	might	have	been	unclear	and	

misinterpreted	or	underperformance	could	have	been	caused	by	a	misunderstood	question	or	a	failure	

of	the	visualization	(Hullman,	2016).	Unknown	test	circumstances	makes	it	difficult	to	know	if	everyone	

is	making	a	serious	attempt	.	In	order	to	motivate	participants	to	take	the	task	seriously,	a	bonus	was	

provided	based	on	responses.	To	check	for	the	level	of	attention	payed	to	the	personality	

questionnaires,	trick	questions	were	built	in.	Participants	that	responded	incorrectly	to	those	trick	

questions,	or	showed	repetitive	answer	patterns	during	the	graph	task,	extreme	reaction	times	or	

unreliably	low	scores	on	either	the	graph	task	or	cognitive	tasks	were	removed	from	the	dataset	and	did	

not	receive	the	bonus.	Providing	an	incentive	has	shown	to	contribute	to	the	reliability	of	data	acquired	

in	online	studies	and	is	especially	appropriate	for	perception	and	cognition	studies	with	responses	that	

can	easily	be	checked	against	a	ground	truth	(Kosara	&	Ziemkiewicz,	2010).	Filtering	the	data	as	

described	above	was	the	final	component	of	cleaning	the	data.	In	an	online	study,	it	is	hard	to	guarantee	

the	quality	of	the	data	as	it	tricky	to	decide	what	is	right	and	what	is	wrong.	Presumably,	making	a	

serious	attempt	is	related	to	task	performance	in	both	the	cognitive	tasks	as	the	graph	task.	To	avoid	

invalid	correlations	that	solely	originate	from	the	level	of	motivation	a	participant	shows,	filters	were	

applied	to	all	components	of	the	experiment.	In	future	work,	it	could	be	considered	to	shorten	the	

experiment.	On	average,	participants	spent	56.8	minutes	completing	the	whole	experiment.	It	is	

plausible	that	a	shorter	task	is	less	demanding	and	will	cause	a	smaller	variation	in	persistence	and	thus	

performance,	which	may	benefit	the	validity	and	reliability	of	the	data.	
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Limitation:	validity	of	‘effectiveness’	

In	the	current	study,	visualization	effectiveness	is	defined	as	successful	in	enabling	the	quick	extraction	

of	accurate	information	(Kennedy,	Hill,	Allen	&	Kirk,	2016).	Although	this	definition	does	not	include	the	

term	intuitive,	intuitiveness	is	a	concept	that	is	often	associated	with	information	visualization	

effectiveness	in	literature	(Friedman,	2008;	Chen,	2017).	According	to	the	dictionary,	intuition	is	the	

ability	to	acquire	knowledge	without	proof,	evidence,	or	conscious	reasoning,	or	without	understanding	

how	the	knowledge	was	acquired.	In	the	current	study,	participants	are	instructed	with	the	notion	that	

the	discrete	visualizations	(Dot-20,	Stripe-20	and	Stripe-50)	have	a	certain	amount	of	symbols	and	that	

hence	every	symbol	represents	a	fixed	amount	of	probability.	Unsurprisingly,	the	discrete	visualizations	

perform	well.	Although	the	possibility	to	simply	count	is	their	strength,	it	is	not	‘without	conscious	

reasoning’.	The	deviating	average	reaction	time	of	Stripe-50	from	the	other	visualizations	for	Q2	and	Q3	

suggests	that	people	do	take	the	time	to	count.	It	raises	the	question	if	the	visualization	is	only	

‘effective’	in	the	current	task	according	to	our	current	definition	and	standards.	Although	Dot-20	yields	

accurate,	correct	and	fast	responses	and	gets	rated	the	highest	on	average	on	both	ease-of-use	and	

visual	appeal,	the	limitation	above	could	be	considered	for	future	research.	In	future	work,	the	explicit	

instruction	could	be	left	out	or	used	as	a	manipulation	to	measure	the	effect	of	instructing.	In	addition,	

time	pressure	could	be	added	to	the	experiment,	to	encourage	people	to	interpret	the	visualization	in	a	

glance,	as	they	would	do	when	dealing	with	an	actual	car	navigation	system.		

Implementations	

The	acquired	knowledge	about	data	visualizations	can	guide	interface	designers	in	how	to	divide	their	

attention	and	budget	to	where	the	most	profit	in	performance	can	be	yielded.	The	found	effect	of	

visualization	type	on	performance	suggests	that	the	design	of	a	chart	is	a	fruitful	focus.	When	there	is	

room	for	personalization,	this	study	suggests	that	a	low-level	audience	in	terms	of	cognitive	abilities	

would	perform	significantly	worse	when	dealing	with	statistical	uncertainty	and	can	presumably	benefit	

from	some	extra	guidance	to	help	them	get	to	the	desired	or	acceptable	level	of	performance.	If	one	

knows	that	the	target	group	of	the	interface	consists	of	mostly	people	with	high	levels	of	numeracy	and	

perceptual	speed,	performance	would	be	more	stable,	even	across	visualization	types,	hence	some	costs	

can	then	be	spared.	

	 These	findings	can	also	contribute	to	the	development	of	real-time	user-adaptive	systems.	

Evidence	from	a	large	body	of	research	shows	that	user	characteristics	can	significantly	influence	

performance	when	interacting	with	information	visualizations	and	that	information	about	a	user’s	
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cognitive	abilities,	personality	and	chart	expertise	can	even	be	used	to	predict	visualization	

effectiveness.	At	a	growing	rate,	people	with	all	kinds	of	abilities	and	backgrounds	need	to	make	

decisions	based	on	digital	data.	The	growing	demand	for	personalization	in	addition	to	the	evidence	that	

visualization	effectiveness	can	depend	on	individual	user	differences	triggers	the	need	for	user-adaptive	

visualizations	(Toker	et	al.,	2016).	User	adaptive	visualizations	are	“visualizations	that	can	customize	the	

interaction	to	support	users	according	to	their	individual	needs.”	(Toker	et	al.,	2016,	p.17).	The	goal	is	to	

develop	design	requirements	for	expert	systems	and	to	eventually	design	user	adaptive	visualization	

systems	that	are	able	to	adapt	to	their	unique	user	in	realtime	(Green	&	Fisher,	2010;	Toker,	Conati,	

Carenini	&	Haraty,	2012).	Studies	show	that	it	is	possible	to	infer	user	differences	from	a	user’s	eye	gaze	

behaviour	during	the	interaction	with	information	visualizations	(Steichen,	Carenini	&	Conati,	2013;	

Toker,	Conati,	Steichen	&	Carenini,	2013;	Toker	&	Conati,	2014;	Conati	&	Gingerich,	2015).	By	doing	so,	

user	characteristics	can	be	predicted	from	eye	tracking	data	that	is	obtained	while	users	perform	simple	

visualization	tasks.	User	characteristics	data	and	associated	eye	tracking	data	is	used	to	train	and	

evaluate	machine	learning	models	that	can	reliably	predict	relevant	user	characteristics	and	classify	user	

types	in	order	to	adapt	in	real-time	(Toker,	2016).	

	 Although	this	body	of	research	is	promising,	the	visualizations	used	in	these	studies	do	not	

include	representations	of	data	uncertainty	(mostly	vertical	bar	graphs	without	error	bars).	As	it	was	

argued	in	the	beginning	of	this	study,	providing	information	about	uncertainty	enables	users	to	make	

better,	more	nuanced	decisions	and	it	increases	their	trust	in	the	data.	The	current	study	complements	

the	existing	body	of	knowledge	as	it	was	able	to	reproduce	some	of	the	findings	on	the	relation	of	user	

characteristics	with	task	performance,	while	offering	a	new	visualization	type	that	is	able	to	effectively	

convey	statistical	data	uncertainty.	Earlier	work	focuses	on	two	possible	forms	of	adaptation:	selecting	

different	visualizations	for	different	users,	and	providing	only	some	users	with	additional	automatic	

support,	to	benefit	their	performance	when	inspecting	a	given	visualization	(Toker	et	al.,	2012).	Based	

on	the	findings	of	the	current	study,	personalizing	visualization	type	would	not	be	beneficial	since	Dot-

20	performs	best	across	all	user	types.	However,	while	given	the	Dot-20	type,	the	user	may	receive	

guidance	or	clarifications	from	the	system	if	the	system	identifies	this	user	as	low	on	a	trait	or	ability	

that	has	proven	to	be	a	predictor	for	success	in	using	the	current	visualization	to	ensure	effective	

visualization	processing.		
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Conclusion	

As	the	size	and	the	complexity	of	datasets	and	the	use	of	data	visualizations	continues	to	grow,	it	is	

crucial	to	strive	for	standard	inclusion	of	uncertainty	measures	in	visual	representations.	Earlier	work	

has	shown	that	providing	uncertainty	information	can	improve	decision-making,	although	the	

advantages	of	including	uncertainty	critically	depend	on	how	it	is	communicated.	The	findings	of	this	

study	suggest	that	probability	distributions	can	best	be	conveyed	by	discrete	visualizations	with	few	

enough	outcomes	to	benefit	from	subitizing,	as	it	proves	to	result	in	significantly	more	accurate	and	

more	precise	probability	estimations.	Task	performance	differs	across	users	with	different	levels	of	

cognitive	abilities	and	personality	traits,	but	it	can	be	concluded	that	visualization	type	has	a	much	

greater	impact	on	performance	than	individual	differences	have.	This	suggests	that,	when	designing	an	

interface	with	an	aim	for	high	performance,	it	is	more	effective	to	focus	on	the	graphic	design	of	a	chart	

than	to	put	effort	in	personalization.	In	situations	where	personalization	is	wanted,	the	results	of	the	

current	study	suggest	that	providing	extra	guidance	to	users	with	low	levels	of	perceptual	speed,	

numeracy,	visual-	and	verbal	working	memory	capacity	would	be	the	most	beneficial,	given	their	

considerable	potential	to	gain	in	performance	level.		 	
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Appendix	A:	Terminology	explained	

	
Figure	14.	Terminology	explained	in	a	figure.	Figure	is	adopted	from	ISO	5725-1	(1994)	and	adjusted	to	
the	terminology	of	the	current	study.	
	
Table	9.	

The	term	and	concept	‘accuracy‘	explained.	

Concept	 Accuracy	

Definition	 The	proximity	of	a	measurement	to	the	true	value	(ISO	5725-1,	1994)	

Operationalization	 The	difference	between	the	probability	estimate	given	by	the	participant	

(estimated	p)	and	the	true	value	(true	p).	This	ground	truth	is	based	on	the	

underlying	probability	distribution	of	the	visualization.	

Metric	 Error	size,	the	resulting	value	of	estimated	p	-	true	p	

Scale	 Error	size	can	range	from	-100	to	100.	Probability	estimates	range	from	0%	

to	100%,	so	the	maximum	absolute	error	size	is	100.	When	error	size	is	

negative,	one	has	underestimated	the	true	value	and	when	error	size	is	

positive,	one	has	overestimated	the	true	value.	

Interpretation	 The	closer	error	size	is	to	0,	the	higher	the	accuracy,	the	better	the	

performance.	
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Table	10.	

The	term	and	concept	‘correctness‘	explained.	

Concept	 Correctness	

Definition	 The	quality	or	state	of	being	free	from	error	(Oxford	Dictionary,	2018).	

Being	accurate.	

Operationalization	 A	response	is	considered	correct	when	error	size	≤	1	and	incorrect	when	

error	size	>	1.	Correct	if	estimated	p	is	equal	to	true	p	or	1	point	off	true	p.	

(estimated	p	=	true	p;	estimated	p	=	(true	p	-	1);	estimated	p	=	(true	p	+	1)).	

Metric	 Error	size		

Scale	 Binary	scale:	correct	or	incorrect.	

Interpretation	 Correctness	is	a	binary	form	of	accuracy	used	to	compare	average	accuracy.	

For	interpretation	often	transformed	into	percentage	(%)	correct	(i.e.	per	

participant,	task	type,	visualization	type	etc.).	The	higher	the	correctness	/	

percentage	correct,	the	better	the	performance.	

	

Table	11.	

The	term	and	concept	‘precision’	explained.	

Concept	 Precision	

Definition	 The	closeness	of	agreement	among	a	set	of	results	(ISO,	2012).	

Operationalization	 The	variability	of	the	estimated	p’s	

Metric	 Error	size	distribution:	the	distribution	of	all	resulting	values	of	estimated	p	-	

true	p.	

Scale	 Error	size	can	range	from	-100	to	100,	hence	this	is	the	range	of	the	

distribution.To	plot	and	evaluate	precision,	a	log	transformation	was	

performed	on	the	estimated	p’s	and	the	true	p’s.	Then,	error	sizes	were	
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calculated	by	subtracting	logit(true	p)	of	logit(estimated	p).	The	s-shaped	

function	logit	transforms	probabilities	into	log-odds,	which	simplifies	the	

analysis	of	probabilities	(Kay	et	al.,	2016).	The	resulting	error	size	distribution	

ranges	from	log	odds	-1,5	to	1,5.		

Interpretation	 The	narrower	the	error	size	distribution,	the	lower	the	variance,	the	more	

precise	the	estimates,	the	better	the	performance.			

	

Table	12.	

The	term	and	concept	‘effectiveness‘	explained.	

Concept	 Effectiveness	

Definition	 Successful	in	enabling	the	quick	extraction	of	accurate	information	(Kennedy	

et	al.,	2016).	Effectiveness	is	used	as	an	overarching	term	to	characterize	the	

general	quality	of	a	visualization	type.	

Operationalization	 	A	visualization	type	is	considered	effective	if	the	responses	(the	estimated	

p’s)	based	on	that	visualization	type	are	high	in	accuracy,	precision	and	

correctness.		

Metric	 Accuracy,	precision	and	correctness	

Scale	 See	Table	9,	10	and	11.	

Interpretation	 There	is	no	absolute	interpretation	for	effectiveness.	Rather	it	is	used	to	judge	

relative	effectiveness	among	the	various	visualization	types.	
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Appendix	B:	Description	of	non-selected	encoding	
	

	
Figure	15.	Overview	of	the	visual	encodings	that	were	considered	for	the	study	(based	on	literature).	
	
Selected	encodings	

Error	bars	

Error	bars	are	frequently	used,	cap-tipped	lines	that	serve	as	a	graphical	enhancement	to	display	the	

uncertainty	of	the	plotted	data.	They	can	be	applied	to	scatter	plots,	dot	plots,	line	graphs,	and	bar	

graphs.	Despite	their	popularity,	error	bars	received	a	lot	of	critique	due	to	their	severe	shortcomings	

(Correll	&	Gleicher,	2014).	Correll	&	Gleicher	(2014)	investigated	the	drawbacks	of	the	standard	

encoding	of	mean	and	error	and	evaluated	alternatives.	They	concluded	that	bar	graphs	with	error	bars	

suffer	from	two	major	biases:	the	within-the-bar	bias,	meaning	that	values	within	the	bar	are	judged	as	

likelier	than	values	outside	the	bar,	because	the	glyph	of	a	bar	provides	a	false	metaphor	of	

containment.	Further,	they	suffer	from	binary	interpretation;	values	are	within	the	margins	of	error,	or	

they	are	not	(Correll	&	Gleicher,	2014).	Cairo	(2016)	also	argues	that	this	all-or-nothing	quality	of	error	

bars	is	the	most	obvious	shortcoming	of	the	encoding.	Since	error	bars	often	represent	a	confidence	



54 

interval,	they	work	as	a	probability	distribution	following	the	theoretical	idea	that	values	closer	to	the	

upper	and	lower	boundaries	are	less	likely	than	values	to	the	reported	point	estimate.	These	finer	

details	about	the	probability	distribution	are	hidden	in	error	bars	(Cairo,	2016).	An	empirical	study	with	

473	respondents	suggests	that	many	prominent	researchers	have	a	poor	understanding	of	how	error	

bars	relate	to	statistical	significance	(Belia,	Fidler,	Williams	&	Cumming,	2005).	Moreover,	the	chosen	

significance	cutoff	value	that	indicates	the	size	of	the	confidence	interval	is	often	arbitrary	(Krusz,	2013).	

That	is,	if	error	bars	are	used	to	represent	a	confidence	interval,	which	is	not	always	the	case.	Dragicevic	

(2016)	argues	that	researchers	need	to	become	more	consistent	and	more	clearly	in	indicating	what	

error	bars	refer	to.	Error	bars	are	ambiguous,	since	they	are	used	to	encode	confidence	intervals	

(ranging	from	80%	to	95%),	standard	deviation,	and	standard	error	(Kay,	2016).	This	lack	of	

standardization	makes	it	even	for	trained	scientists	hard	to	interpret	the	data,	which	can	lead	to	

incorrect	conclusions	(Dragicevic,	2016).	To	mitigate	some	of	the	problems	associated	with	error	bars,	

Correll	&	Gleicher	(2014)	proposed	alternative	encodings	that	are	visually	symmetric	and	visually	

continuous.	Violin	and	gradient	plots	are	example	solutions.	Error	bars	are	included	in	the	current	study	

to	check	for	the	drawbacks	described	in	earlier	work.	

Density	plot	

A	density	plot	is	a	function	graph	of	a	probability	distribution	function	and	encodes	the	density	as	

distance	from	the	x-axis	(Kay,	2016).	The	resulting	curve	(or	area)	provides	a	simple	summary	of	the	

distributions	shape	and	enables	quick	visual	interference	about	the	distribution	of	the	data.	To	convey	

the	probability	density,	the	density	plot	relies	on	the	width	of	an	area.	According	to	Mackinlay’s	(1986)	

ranking	of	effective	visual	encodings,	the	size	of	an	area	is	considered	to	be	quicker	and	more	easily	

perceived	than	other	retinal	variables	such	as	opacity,	color,	or	texture.	It	enables	the	viewer	to	detect	

clusters	or	bumps	within	a	distribution	at	first	glance.	The	plot	does	not	show	precise	numbers,	nor	does	

it	show	a	measure	of	center	(Few,	2015).	The	probability	distribution	and	the	mode	(visually	encoded	by	

the	maximum	of	the	density)	are	intrinsic	to	each	other	in	a	density	plot,	making	an	explicit	measure	of	

center	otiose.	

	 Results	of	Greis,	Ohler,	Henze	&	Schmidt	(2015)	show	that	a	density	plot	is	the	best	way	to	

communicate	uncertain	information	to	non-experts.	In	the	study	of	Kay	et	al.	(2016),	the	density	plot	

results	in	accurate	probability	judgements	and	is	also	highly	rated	in	terms	of	visual	appeal.	The	violin	

plot,	which	is	suggested	as	a	superior	alternative	to	error	bars	by	Correll	&	Gleicher	(2014),	is	based	on	

the	density	plot	and	relies	on	the	same	principles	to	convey	the	shape	of	the	distribution.	Although	the	



55 

density	plot	lacks	the	recommended	visual	symmetry	of	the	violin	plot,	it	still	mitigates	error-bar	issues	

by	being	visually	continuous.	In	addition,	the	unilateral	appearance	of	the	density	plot	reduces	issues	

with	visual	clutter	in	comparison	to	bilateral	encodings	such	as	the	violin	and	bean	plot.	The	density	plot	

is	included	in	the	current	study,	because	of	its	known	effectiveness	for	communicating	uncertainty	and	

its	visual	simplicity	compared	to	the	violin	and	bean	plot.	

Dot	plot	

A	dot	plot	shows	discrete	quantiles	on	a	continuous	scale	using	a	dot	or	other	symbol	(Wilkinson,	1999).	

By	stacking	the	dots,	the	plot	shows	the	distribution	of	the	data,	but	does	not	include	any	graphical	

description	of	summaries	(Benjamini,	1988).	However,	the	possibility	to	manipulate	the	amount	of	dots	

used	to	represent	the	data,	can	make	summary	statistics	unnecessary.	In	a	low-density	dot	plot	of	20	

dots	(referred	to	as	Dot-20),	every	dots	represents	5%	of	the	observations,	while	a	dot	in	a	high-density	

dot	plot	of	100	dots	(Dot-100)	represents	1%	of	the	observations.	Kay	(2016)	shows	that	both	encodings	

have	their	own	advantages.	He	finds	that	a	Dot-20	allows	the	viewer	to	count	the	dots	in	the	tails	and	

body	of	the	distribution,	enabling	quick,	accurate	judgements	without	any	summary	statistics.	In	Dot-

100,	counting	is	irrelevant;	however,	density	is	very	well-resolved.	

	 In	the	study	of	Kay	et	al.	(2016),	Dot-20	resulted	in	the	most	precise	probability	estimates	and	

performed	best	across	all	conditions.	Dot-100	performed	very	similarly	to	the	density	plot.	Because	of	its	

superior	performance	in	the	study	of	Kay	et	al.	(2016),	the	dot	plot	with	20	dots	is	included	in	the	

current	study.	In	the	interest	of	selecting	six	encodings	that	represent	a	wide	range	of	possible	trade-

offs	in	visualization	properties,	the	Dot-100	is	dropped.	

Stripe	plot	

The	stripe	plot	is	a	variation	on	the	strip	plot;	a	one-dimensional	scatter	plot	representing	individual	

observations	or	probabilities	using	a	dot,	or	in	case	of	the	stripe	plot	a	stripe.	Probability	density	is	thus	

encoded	by	the	density	of	vertical	stripes	in	a	region	(Kay,	2016).	They	are	especially	useful	for	small	

batches	of	data	and	for	comparing	multiple	distributions	at	once	(Few,	2012).	However,	for	large	sets,	a	

strip	plot	can	easily	suffer	from	overplotting:	multiple	points	in	the	same	location.	This	can	either	be	

solved	by	stacking	the	symbols	that	overlap,	resulting	in	a	dot	plot	or	by	adjusting	the	opacity	of	the	

symbol	to	its	corresponding	probability	density,	resulting	in	a	gradient	plot.	When	there	are	(too)	many	

outcomes,	a	discrete	plot	like	the	stripe	plot	converges	into	a	continuous	encoding.	Like	dotplots	are	a	

discrete	analog	to	a	density	plot,	stripe	plots	can	be	considered	the	discrete	analog	to	a	gradient	plot	
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(Kay,	2016).	

	 In	the	study	of	Kay	(2016),	stripe	plot-50	performed	poorly,	as	it	elicited	in	respondents’	

probability	estimates	that	were	the	least	precise	of	all	conditions.	Kay	(2016)	explains	its	

underperformance	by	addressing	the	phenomenon	of	the	stripe	plot	being	converged	and	read	like	a	

continuous	plot.	However,	this	explanation	does	not	resolve	the	issue,	since	Dot-100,	which	can	be	seen	

as	the	discrete	analog	to	the	density	plot,	did	not	suffer	from	this	potential	convergence	as	it	performed	

well	and	similarly	to	the	density	plot	in	the	study	of	Kay	et	al.	(2016).	In	order	to	test	the	influence	of	the	

amount	of	outcomes	displayed	in	a	discrete	encoding,	a	stripe	plot	with	20	stripes	(Stripe-20)	is	

introduced	and	the	Stripe-50	of	Kay	(2016)	will	be	adopted	in	the	current	study.	Moreover,	gradient	

plots,	the	actual	continuous	analog	to	the	stripe	plot	(not	included	in	the	study	of	Kay	et	al.	2016)),	are	

known	to	perform	well	in	displaying	statistical	uncertainty	(Correll	&	Gleicher,	2014;	Gschwandtner	et	al,	

2016).	To	investigate	the	effect	of	discrete	and	continuous	encodings	of	continuous	distributions	on	

probability	estimates,	both	the	stripe	plot	and	the	gradient	plot	will	be	included	in	the	current	study.	

Gradient	plot	

A	gradient	plot	is	a	shaded	horizontal	bar	glyph	of	fixed	height	and	width,	in	which	the	probability	

density	of	the	quantity	at	a	point	is	encoded	by	opacity.	The	darker	the	shade,	the	higher	the	probability	

of	the	given	estimate	(Jackson,	2008).	In	contrast	to	error	bars,	which	may	give	the	false	binary	

interpretation	that	all	points	within	the	whiskers	are	equally	likely	and	that	points	outside	the	lines	are	

impossible,	a	gradient	plot	gives	a	fuller	description	of	the	uncertainty	surrounding	the	parameter	

estimate	by	representing	the	entire	distribution	in	one	dimension	without	terminating	at	a	clear	limit	

(Jackson,	2008).	Although	opacity	is	known	to	be	a	less	effective	way	of	visually	encoding	density	than	

width	and	area	(as	used	in	violin	and	density	plots)	(Mackinlay,	1986),	the	purpose	of	the	gradient	plot	is	

to	indicate	the	shape	of	the	distribution,	rather	than	to	allow	precise	determination	of	the	value	of	each	

point	(Jackson,	2008).	Moreover,	the	fixed	size	of	the	gradient	plot	benefits	perception	as	it	reduces	

visual	clutter.	The	visual	variable	‘fuzziness’	is	intuitively	linked	to	uncertainty	and	is	therefore	a	suitable	

visual	metaphor	for	communicating	uncertainty	(Gherson,	1998;	MacEachren	et	al.,	2012)	

	 Both	the	stripe	and	gradient	plot	are	especially	useful	for	accurately	extracting	the	point	of	

maximum	probability	density	(Ibrekk	&	Morgan,	1987).	Gradients	are	especially	useful	for	representing	

statistical	uncertainty	(Gschwandtner	et	al.,	2016)	and	can	be	used	to	communicate	a	wide	variety	of	

data	sources	with	an	underlying	normal	distribution	(Tak,	Toet	&	van	Erp,	2014).	Correll	&	Gleicher	

recommend	the	gradient	plot	as	an	alternative	to	error	bars	and	box	plots,	as	it	is	visually	symmetric	and	
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visually	continuous.	Other	work	shows	that	the	gradient	plot	is	superior	to	violin	plots	and	accumulated	

probability	plots	in	communicating	probabilities	(Gschwandtner	et	al.,	2016).	The	effectiveness	of	the	

gradient	plot	will	be	evaluated	in	the	current	study.	

Non-selected	encodings	

Box-and-whiskers	plot	

	
John	Tukey’s	box-and-whiskers	plot	(often	referred	to	as	the	box	plot)	gives	a	five	number	summary	of	a	

batch	of	data,	which	consists	of	the	largest,	smallest,	median,	and	upper	and	lower	quartiles	(Tukey,	

1977).	This	graphical	statistic	summary	makes	the	location,	spread,	skewness,	and	longtailed-ness	of	the	

data	available	with	a	quick	glance	(Benjamini,	1988).	The	box	plot	can	tell	a	lot	about	a	distribution,	

while	still	remain	its	simplicity	(Few,	2015).	In	some	cases,	outliers	are	displayed	as	individual	dots	

independently	from	the	whiskers.	However,	this	demands	the	binary	decision	whether	an	observation	

should	be	considered	as	an	“outlier”	and	this	can	be	quite	arbitrary,	especially	in	case	of	non-normal	

underlying	distributions	(Dragicevic,	2016;	Kampstra,	2008).	There	have	been	suggested	variations	of	the	

boxplot,	in	which	density	information	is	included	and	conveyed	by	the	sides	of	the	box	(Benjamini,	

1988),	from	which	the	violin	plot	is	the	most	successful	example	(Hintze	&	Nelson,	1998).	Last	but	not	

least,	when	using	the	boxplot	to	present	information	to	others,	it	should	be	kept	in	mind	that	most	

people	in	the	world	have	never	learned	how	to	read	a	boxplot	and	that	it	therefore	might	need	a	short	

explanation	(Few,	2015).	The	box	plot	is	not	included	in	the	current	study,	because	it	is	visually	clunkier	

than	error	bars	and	still	suffers	from	some	of	the	same	problems	(Krusz,	2013).	Although	the	box	plot	

conveys	more	information	about	the	shape	of	the	distribution	than	error	bars,	the	need	for	prior	

knowledge	does	not	make	the	box	plot	an	intuitive	and	appropriate	alternative	to	error	bars.	

	
Violin	plot	

	
A	violin	plot	combines	the	common	components	of	a	box	plot	(i.e.	upper	and	lower	values,	quartiles	and	

the	median)	with	density	traces	that	are	plotted	symmetrically	to	both	sides	of	the	vertical	box	plot	

(Hintze	&	Nelson,	1998).	The	resulting	single,	symmetrical	plot	contains	the	basic	summary	statistics,	

while	also	providing	an	indication	of	the	shape	of	the	distribution	including	any	existing	clusters	in	data	.	

This	together	makes	the	violin	plots	a	valuable	tool	for	data	analysis	and	exploration	(Hintze	&	Nelson,	

1998).	Like	the	density	plot,	the	violin	plot	relies	on	the	retinal	variables	area	and	width.	These	effective	

visual	encodings	enable	the	viewer	to	detect	clusters	or	bumps	within	a	distribution	at	first	glance.	

	 Correll	&	Gleicher	(2014)	recommend	the	violin	plot	to	mitigate	some	of	the	problems	

associated	with	error	bars,	as	it	is	visually	symmetric	and	visually	continuous.	The	researchers	show	that,	
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despite	its	unfamiliarity,	the	violin	plot	offers	performance	advantages	to	a	general	audience.	The	violin	

plot	is	not	included	in	the	current	study,	since	the	selected	density	plot	is	able	to	convey	sufficient	

information	about	the	shape	of	the	distribution	without	redundant	visual	clutter.		

	

Bean	plot	

	
The	bean	plot	looks	like	the	violin	plot,	but	replaces	the	interior	box	plot	with	lines	representing	

individual	observations.	Since	it	relies	on	the	same	retinal	variables	as	the	violin	plot,	it	has	the	same	

advantages	with	regards	to	visual	inference.	A	bean	plot	combines	a	density	trace	of	a	distribution	(the	

pod)	with	a	one-dimensional	scatter	plot	representing	individual	data	points	as	small	lines	(the	beans).	

To	enable	quick	comparison,	the	overall	average	is	drawn	as	a	vertical	line.	The	bean	plot	can	be	

symmetric	like	a	violin	plot,	but	can	also	be	used	to	display	two	subgroups	simultaneously	in	a	special	

asymmetric	bean	plot	(Kampstra,	2008).	This	makes	the	bean	plot	a	helpful	tool	for	visually	comparing	

multiple	batches	of	data.	Another	added	value	of	the	bean	plot	in	comparison	to	the	violin	plot	is	that	it	

all	individual	data	points	are	shown,	which	provides	information	about	the	number	of	observations	in	a	

group	and	makes	outliers	detectable.	Hence,	there	is	no	need	for	dichotomous	assumptions	about	

outliers,	as	discussed	with	regards	to	the	boxplot.	The	bean	plot	is	not	included	in	the	current	study,	

since	the	selected	density	plot	is	able	to	convey	sufficient	information	about	the	shape	of	the	

distribution	without	redundant	visual	clutter.	

	
Strip	plot	

	

A	strip	plot	is	a	one-dimensional	scatter	plot	representing	individual	observations	using	a	dot	or	other	

symbol.	They	are	especially	useful	for	small	batches	of	data	and	for	comparing	multiple	distributions	at	

once	(Few,	2012).	However,	for	large	sets,	a	strip	plot	can	easily	suffer	from	overplotting:	multiple	points	

in	the	same	location.	There	are	several	ways	to	solve	this.	With	relatively	few	values	it	is	an	option	to		

jitter	the	data	points.	Jittering	is	the	act	of	repositioning	points	that	overlap	either	horizontally	or	

vertically,	so	that	they’re	no	longer	on	top	of	each	other	(Few,	2012).	For	larger	datasets,	points	can	be	

made	transparent,	which	makes	the	overplotted	areas	denser	in	color,	allowing	to	see	variation	in	the	

number	of	values	(Few,	2012).	A	third	way	to	solve	overplotting	is	to	use	symbol	size	to	encode	the	

frequency	of	an	observation	or	data	point	(Kirk,	2016).	Strip	plots	are	not	included	in	the	current	study,	

since	they	do	not	show	the	shape	of	a	statistical	distribution	very	well	(Few,	2012).	They	are	valuable	in	

the	comparison	of	small	batches	of	observations.		 	
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Appendix	C:	Error	size	curve	before	log-transformation	
	

	
Figure	16.	Accuracy	curve	before	log	transformation.	Note:	bin	sizes	are	irregular.		 	
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Appendix	D:	Median	split	
	
Table	13.	
Average	percentages	correct	on	the	graph	task	(Q2	and	Q3)	per	high/low	group	after	performing	a	
median	split	for	every	user	characteristic.	

	


