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Abstract

A new technique to derive delay models from systems of partial differential equations is
investigated. This technique is based on the Mori-Zwanzig formalism, which gives a formal
rewriting of the system using a projection onto a set of resolved variables. The rewritten
system contains a memory term. The computation of this memory term requires the solving
of the so-called orthogonal dynamics equation, which represents the unresolved dynamics.
Finding an accurate solution to this equation is crucial in the application of the formalism.
Here, the new technique is applied to a two-strip model of the El Niño Southern Oscillation.
A mathematical derivation of a delay differential model, using the Mori-Zwanzig formalism
and an alternative (exact) method based on variation of constants, is given. The derived
delay model contains an additional term compared to a previously proposed conceptual
model. This new term leads to a higher period of the model, which is closer to that seen in
data. The Mori-Zwanzig formalism turns out to be not necessary to arrive at the resulting
equations. Furthermore, the technique is applied to a model of the Atlantic Multidecadal
Oscillation. This results in a delay difference model for the phenomena. In addition to this
result, which can also be obtained by integration along characteristics, error terms for a
smoothening approximation of this delay difference system have been derived.
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1 Introduction

Modern climate models that are used to run global simulations are much more complex than
two decades ago. An important reason for this is the increased available computing power. This
allows for the models to be run at a higher spatial resolution, as well as for more processes,
which happen at different timescales, to be included. These computations require a better
understanding of the physics behind climate phenomena, to allow for a suitable parametrization
in the models. To get a better understanding of the physical mechanisms and reduce parameter
uncertainty, conceptual climate models are needed.

Conceptual climate models contain only the necessary features for a phenomenon to occur
and thus represent the dominant physics. As a result these models are relatively simple and
allow for mathematical analysis. A useful way in which these models can be analysed is through
bifurcation analysis. This analysis allows for the distinction of different state regimes and possible
other modes of variability. The dependence on the few parameters present can be investigated
relatively easy compared to high complexity models. One type of a conceptual climate model is a
delay model. This type of model is particularly useful as a conceptual climate model, since delay
models are infinite-dimensional, meaning they can be quite complex, but only contain a limited
number of variables. This allows for an easier mathematical treatment, while these models still
represent the physics in a realistic manner.

Many processes in climate contain positive and negative feedbacks. Some of these feedbacks
are delayed, for example by transport through an ocean basin. The presence of such a delayed
feedback can sometimes be determined from data [33]. In delay models it is not necessary to
resolve all of the processes involved in the feedback. A parametrization by the resulting delay
time is sufficient. Therefore it is useful to be able to derive delay models from more complex
climate models. This can result in a model which can be fully analysed, compared to models
which can only be studied by numerical simulation.

In 2017 Keane et al. provided an overview of delay models used to describe climate processes
[27]. The two main areas in the climate system on which delay models so far have focused are
Energy Balance Models and models for the El Niño Southern Oscillation (ENSO). Especially
for ENSO there is extensive literature on both the oscillation itself, as well as its timing during
the year, using delay models. ENSO is a well understood climate phenomenon in the equatorial
Pacific Ocean. During an El Niño event, the sea surface temperature in the eastern part of the
basin is warmer than usual, resulting in severe weather disturbances in countries at both sides
of the Pacific Ocean. Its counterpart is La Niña, when the sea surface temperature is colder
than usual. These two events alternate with intermediate phases in between, resulting in an
oscillation with a period of four to seven years.

One of the most successful models of ENSO is that by Zebiak and Cane (1987) [41]. The
view of the behaviour of ENSO in terms of normal modes resulted in the so-called recharge-
discharge oscillator mechanism of ENSO [9, 24, 25]. This mechanism provides insight in a delay
mechanism present in the physics of the ENSO process. The delay mechanism here is related to
the propagation of equatorial and off-equatorial waves. These waves need time to travel through
the basin, resulting in a delayed arrival of a temperature signal. Already in 1988 Suarez and
Schopf proposed a delay model to describe the dynamics of ENSO based on this delay mechanism
[36].

As mentioned above, the underlying physical mechanism of ENSO is well established and
there is a delay model describing its dynamics at a reasonably accurate level. This makes ENSO
an ideal phenomenon to test a new method for deriving delay equations. In this method the
Mori-Zwanzig formalism is used to derive delay equations starting from more complex models
[5]. Both the initial complex model, as well as possible resulting delay models, are well known
in the case of ENSO and have been studied extensively. The application of this method can
provide a new justification for the use of delay models to describe the dynamics of ENSO.

In many processes in climate propagating waves play an important role. This can be an
indication that delay models can be used in more instances than has been done so far [27], since
in ENSO this wave propagation is the origin of the delay. Another climate process governed by
propagating waves is the Atlantic Multidecadal Oscillation (AMO). This is an oscillation in sea
surface temperature in the North Atlantic Ocean with a period of fifty to seventy years. The
mechanism behind the AMO has been described by Te Raa and Dijkstra (2002) [39]. The sea
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surface temperature mode of the AMO relies on the transport of temperature through thermal
wind balance. Baroclinic instability plays an important role in the interaction of sea surface
temperature modes in the North Atlantic Ocean [6, 11]. Low-order models of the AMO have
been studied by, among others, Broer et al. [4], and recently by Sévellec and Huck [34]. In
contrast to ENSO, there is no known physical mechanism for the AMO which would result in
a delay. There is no localised feedback mechanism present in the AMO, while there is in the
physics of ENSO.

Usually delay models for climate systems are derived from more complex models by making
physical assumptions about the system [28]. This way, it is physically argued that there is a
delay of a certain form, resulting in a simplified delay model. Battisti and Hirst have done so to
arrive at a delay model for ENSO, corresponding on first order to the model stated by Suarez and
Schopf [1, 2]. The Mori-Zwanzig formalism could provide a way to give this derivation of delay
models a stronger mathematical foundation [5]. For the AMO no such physical justification for
a possible delay model exists.

The Mori-Zwanzig formalism gives a formal rewriting of a system of ordinary differential
equations with the goal of reducing the number of dependent variables [19]. The result is a
system for only a select set of resolved variables. The unresolved variables are no longer present
in the resulting system due to a projection onto the resolved variables. The formalism often
is applied to systems with large scale differences [40], which in most cases have a Markovian
parametrization [3]. Also for non-Markovian systems some results exist [8]. Hamiltonian systems
are another class of systems to which the formalism has been applied [5]. The component of the
rewritten system that is focused on in this thesis is the memory term. This term is the integral
over a memory kernel, which contains the history of the system. This hints at the idea that,
under some approximations, this memory term can be simplified to a term with a delay, since a
delay also represents the history of the system.

In this thesis the Mori-Zwanzig formalism is applied to both an ENSO model and an AMO
model. The ENSO model is used as a test case for the derivation of delay models using the
formalism, since the physics here clearly indicate the presence of a delay mechanism. For the
AMO model it is not yet clear whether a delay is present. In the process of deriving possible
delay models, the necessity of using the Mori-Zwanzig formalism is always reviewed. Other
mathematically based methods to arrive at the same result are considered.

In Section 2 the theory behind the Mori-Zwanzig formalism is discussed. In Section 3 and
4 the formalism is applied to models of both the ENSO and AMO. In these sections first the
models are explained. For ENSO the model by Jin (1997) is used [24], while for the AMO
the more recent model by Sévellec and Huck (2015) is considered [34]. After the discussion of
the models, the Mori-Zwanzig formalism is applied to these systems of equations. The possible
resulting delay models for the ENSO and AMO are then studied in some detail. In Section 5
the derived ENSO and AMO models and their behaviour are discussed and compared.
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2 Mori-Zwanzig Formalism

The mathematical foundation used in this thesis for deriving delay equations is the Mori-Zwanzig
formalism. Here the approach of Chorin et al. (2002) is followed [5]. They were the first to
propose this way of applying the formalism. Their method is based on the work by Mori (1965)
[30], and Zwanzig (1973) [42]. The Mori-Zwanzig formalism gives a formal rewriting of a set of
ordinary differential equations to a reduced system for the resolved variables, which still captures
all of the dynamics of the system. For this rewriting to be a valuable and realistic reduction of
the original model, often approximations to some terms in the reduced system are needed.

This section starts by discussing a linear example to illustrate the Mori-Zwanzig formalism
in Section 2.1. Then a derivation of the formalism is given in Section 2.2. After this derivation,
in Section 2.3, an approximation to the orthogonal dynamics system for the unresolved variables
is given. Lastly, in Section 2.4 an approximation for the memory kernel is derived.

2.1 Linear Illustration

To gain insight in the ideas and arguments for applying the Mori-Zwanzig formalism, a linear
example is given. Here, the work by Gouasmi et al. is followed [20]. Consider the following
linear system of ordinary differential equations:

dx1

dt
= a11x1 + a12x2,

dx2

dt
= a21x1 + a22x2,

(1)

with xi(t) : R → R continuous and parameters aij ∈ R for i, j = 1, 2. The goal is to arrive at
an equation for only a chosen set of resolved variables. Finding such an equation reduces the
number of variables that have to be considered when solving the system, likely simplifying the
computations. Here x1 is chosen as the resolved variable, so the unresolved variable is x2. In
the linear case of Equation (1) the formal solution of the equation for the unresolved variable x2

is

x2(t) = ea22tx2(0) +

∫ t

0

a21e
a22(t−s)x1(s)ds. (2)

Here, the first term is the solution to the homogeneous equation for the unresolved variable.
The second term is the particular solution obtained by the method of variation of constants [17].
Substituting this formal solution for x2 into the equation for x1 yields

dx1

dt
= a11x1(t) + a12e

a22tx2(0) + a12

∫ t

0

a21e
a22(t−s)x1(s)ds. (3)

Now the system in Equation (1) has been reduced to one equation for the resolved variable x1

without losing the dynamical behaviour. The rewritten system is exact, since no approximations
have been made in the derivation process.

The right-hand side of this reduced equation consists of three terms. The first term is the
dependence on the resolved variable x1 that was already present in the initial equation. It is
referred to as the Markovian term, since it does not depend on the initial conditions or history
of the system. The second term is the dependence on the initial conditions of the unresolved
variable x2. Note that this term does not depend on x1, meaning its evolution is fixed by the
homogeneous solution for x2. In statistical physics the unresolved dynamics often represents the
fast (Brownian) motion, while the resolved dynamics give the main direction of the movement
of particles [19]. The fast motion is often parametrized as noise in those cases. Therefore this
term is called the noise term. The last term is an integral over the history of the resolved
variable x1, weighted by some function dependent on the form of the homogeneous solution for
the unresolved variable x2. Because of the dependence on the history of x1, this term is often
referred to as the memory term and the component in front of x1 in the integral as the memory
kernel. In the derivation of delay equations using the Mori-Zwanzig formalism the focus is on
this memory term.
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2.2 Derivation of the Formalism

The methods employed in Section 2.1 to arrive at the final reduced equation work only for linear
systems. In this section a similar result, which is also valid for nonlinear systems, is derived.
The linear example discussed in the previous section gives an idea of the result that is expected.
This anticipated result is an equation split up in a Markovian, noise, and memory term. The
derivation given below is based on that by Chorin et al. [5].

Consider the following n-dimensional system of ordinary differential equations:

d

dt
φ(t) = R(φ(t)), φ(0) = x0, (4)

where φ(t) ∈ Rn is a continuous function of t ∈ R, x0 ∈ Rn is a variable representing the
initial conditions and R : Rn → Rn has components Ri. For every initial condition x0 there
is a corresponding trajectory φ(t) = φ(x0, t), φ : Rn × R → Rn. The flow map is Φ : x0 7→
φ(x0, t). With this notion, the system of Equation (4) is equivalent to the Liouville equation for
u : Rn × R→ Rn:

∂

∂t
u(x0, t) = Lu(x0, t), u(x0, 0) = g(x0), (5)

for g(x0) = x0i. This way the solution is u(x0, t) = φi(x0, t), which is the i-th component of
Equation (4). Here L =

∑n
i=1Ri(x0)∂x0i

is the Liouville operator. The proof of this equivalence
can be found in the article by Chorin et al. [5]. The Liouville equation is mostly used in
statistical and Hamiltonian mechanics [38]. The equation describes the evolution of the density
in the system around any given point moving through phase-space. The Liouville operator is
also known as the generator function. In statistical systems this can be related to infinitesimal
generator matrix [31].

The goal, as for the linear system, is to find a system of equations for a select set of m resolved
variables φ̂ ∈ Rm. The unresolved variables are denoted by φ̃ ∈ Rn−m, such that φ = (φ̂, φ̃).
To reduce the system from n components to the desired m components a projection operator
P : C(Rn,R)→ C(Rm,R) is needed. An example of such a projection operator is the orthogonal
projection:

(Pf)(x̂0) =

∫
f(x0)ρ(x0)dx̃0∫
ρ(x0)dx̃0

, (6)

for f : Rn → R and where ρ : Rn → R is a probability density function. Note that here
integration is only over the unresolved variables. This projection operator is often applied to
Hamiltonian systems [5, 20]. Another projection operator is the linear projection, defined by

P (f(x̂0, x̃0)) = f(x̂0, 0) ≡ f̂(x̂0), which sets all unresolved variables to zero and retains only the
resolved components. The converse of P is Q = I − P . The choice of projection is important,
since it determines the final result.

For a resolved variable one has φi(x0, t) = etLx0i by Equation (5), where etL is the transfer
operator corresponding to the Liouville equation. For this resolved variable Equation (5) can be
written as

d

dt
etLx0i = etLLx0i = etLPLx0i + etLQLx0i, (7)

since L and etL commute. Now the second term in the right-hand side of this equation is
considered. This component gives the evolution of the unresolved variables. The Dyson formula
is applied to find an expression for this term. This formula is [16]

et(A+B) = etA +

∫ t

0

e(t−s)(A+B)BesAds. (8)

For etL = et(P+Q)L this yields

etL = etQL +

∫ t

0

e(t−s)LPLesQLds. (9)
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Now apply this operator to QLx0i to get

etLQLx0i = etQLQLx0i +

∫ t

0

e(t−s)LPLesQLQLx0ids. (10)

Substituting this result into Equation (7) yields the generalized Langevin equation:

∂

∂t
φi(x0, t) = etLPLx0i + Fi(x0, t) +

∫ t

0

e(t−s)LKi(x̂0, s)ds

= Ri(φ̂(x0, t)) + Fi(x0, t) +

∫ t

0

Ki(φ̂(x0, t− s), s)ds,
(11)

where it is defined that Ri(φ̂(x0, t)) = (PRi)(φ(x0, t)) and with

Fi(x0, t) = etQLQLx0i, Ki(x̂0, t) = PLFi(x0, t). (12)

Note that Fi(x0, t) is the solution to the so-called orthogonal dynamics equation:

d

dt
Fi(x0, t) = QLFi(x0, t), Fi(x0, 0) = QLx0i. (13)

Comparing the Langevin equation with the linear result of Equation (3), there is the Markovian

term Ri(φ̂(x0, t)), the noise term Fi(x0, t) and the memory term as integral over the memory

integrand Ki(φ̂(x0, t− s), s). This memory integrand consists of a memory kernel applied to the
resolved variables.

This rewriting of the system is exact, but that does not mean it is useful. If solving the orthog-
onal dynamics equation is just as difficult as solving the full system, there is no use in applying
the formalism. The applicability thus depends on the system and whether a suitable projection
exists. Such a projection would yield an orthogonal dynamics system which is relatively straight-
forward to solve or approximate in a good way. Applications to slow-fast [40], Markovian [3],
non-Markovian [8], and Hamiltonian systems [5], as well as systems with an orthogonal basis
of eigenfunctions [37], have been considered in literature [19]. For non-Hamiltonian systems of
partial differential equations, which are studied in this thesis, less literature is available.

2.3 Orthogonal Dynamics Equation

The main difficulty in the applicability of the Mori-Zwanzig formalism is the solving of the
orthogonal dynamics system of Equation (13). It is important that this equation is easier to
solve than the original system. The choice of projection is an important factor in determining
the form and complexity of the orthogonal dynamics equation. The projection needs to be
chosen in such a way that the orthogonal dynamics system is stable and less involved than the
original system. Alternatively, it has to be possible to accurately approximate the orthogonal
dynamics equation by a stable and less involved system. Preferably, the orthogonal dynamics
system decays at a faster rate than the full system. In that case it can be justified to neglect
the noise term in the Langevin equation. For linear systems this means that the eigenvalues of
the orthogonal dynamics system are more negative than those of the full system.

To simplify the issue of solving the orthogonal dynamics system, Gouasmi et al. derived the
pseudo-orthogonal dynamics equation [20]. Under certain assumptions this is an exact rewriting
of the orthogonal dynamics equation. In this rewritten form the orthogonal dynamics system
can be more easily solved. The main assumption in the approach is the commutativity of etQL

and R:

etQL(R(x0)) ≈ R(etQLx0) = R(φQ(x0, t)). (14)

For linear systems this is always valid, since then all operators are linear. For nonlinear sys-
tems it mostly is not valid, but can be used as a first approximation. With this assumption,
the orthogonal dynamics equation can be reformulated into the pseudo-orthogonal dynamics
equation:

∂

∂t
φQ(x0, t) = R(φQ(x0, t))−R(φ̂Q(x0, t)). (15)
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Note that this equation can be implemented more straightforward in numerical codes compared
to the original orthogonal dynamics equation. When this equation is solved, the noise term
corresponding to the resolved component φi is given by

Fi(x0, t) = Ri(φ
Q(x0, t))−Ri(φ̂Q(x0, t)). (16)

This is the part of the pseudo-orthogonal dynamics system corresponding to the respective
resolved variable. The noise term thus can be retrieved directly when solving the pseudo-
orthogonal dynamics equation.

2.4 Memory Kernel

Having a solution to the orthogonal dynamics system is not necessarily sufficient to also have
a clear expression for the memory term. When the noise term is a complicated function of the
solution to the orthogonal dynamics equation, it can be quite involved to get an expression for the
memory kernel. Therefore, it is useful to look into approximations of the kernel. The following
approximation has been derived by Gouasmi et al. [20]. The first step in the derivation of this
approximation is to consider the n components of LFi(x0, t) as one sensitivity in the direction
of

R̄(x0) =
R(x0)

||R(x0)||
, (17)

instead of n separate sensitivities in directions Ri(x0). Here R̄ : Rn → Rn and || · || is the
l2-norm, so the standard Euclidean norm as the space considered is Rn. This yields

LFi(x0, t) =

N∑
j=1

Rj(x0)∂xjFi(x0, t)

= ||R(x0)||
N∑
j=1

R̄j(x0)∂xjFi(x0, t).

(18)

Now define ∇R̄(x0) =
∑N
j=1 R̄j(x0)∂xj , so

LFi(x0, t) = ||R(x0)||
(
∇R̄(x0)Fi(x0, t)

)
= ||R(x0)|| lim

ε→0

Fi(x0 + εR̄(x0), t)− Fi(x0, t)

ε
.

(19)

Here ∇R̄(x0)Fi(x0, t) has been written as limit. The memory kernel is the projection of this
equation onto the resolved variables. Since Fi(x0, t) is the solution to the orthogonal dynamics
equation, it only depends on the unresolved variables. Therefore, this component disappears
after projection onto the resolved variables, that is PFi(x0, t) = Fi(x̂0, t) = 0. Applying P to
Equation (19) and using finite differences, results in the following approximation for the memory
kernel:

Ki(x̂0, t) ≈ ||R(x̂0)||Fi(x̂0 + εR̄(x̂0), t)

ε
. (20)

The exact result can be recovered if the limit of ε → 0 exists. The memory integral can be
approximated by the rectangle rule or another approximation method for integrals.

The derived approximation is most useful when working numerically. To obtain analytical
expressions using this method can be quite involved. However, if the result of the approximation
remains tractable and the limit can be computed, it can result in an exact expression for the
memory kernel.

7



3 El Niño Southern Oscillation

The El Niño Southern Oscillation (ENSO) is an oscillation in sea surface temperature in the
Pacific Ocean with a period of four to seven years [10]. The normal situation above the Pacific
Ocean consists of strong westward trade winds, which blow the warm surface water towards
Indonesia and Australia. The east-west temperature differences in sea surface temperature
interact with a convective circulation. At the western side of the ocean warm water heats the
air, causing it to rise. High in the atmosphere the air flows eastward, after which it sinks near
South America. At the surface it flows back towards the west, forming the trade winds. Since the
water is blown away from the coast of South America, at that side of the ocean water rises from
depths to the surface. This upwelling results in a shallow thermocline at the eastern boundary.
The thermocline is the division layer between the upper-ocean warm mixed layer and the cooler
deep waters below. In the thermocline temperature changes rapidly with depth.

During an El Niño event the atmospheric pressure differences between the east and west
equatorial Pacific Ocean are smaller than usual, resulting in weaker trade winds. As a conse-
quence, the warm surface water spreads further towards the east, reinforcing the small pressure
difference by a reduced temperature gradient. During a La Niña event the opposite happens.
The pressure difference is larger compared to the normal situation, resulting in stronger trade
winds and even more upwelling at the coast of South America. In Figure 1 the sea surface
temperature, wind patterns and thermocline depth of the three different situations are shown.
These changes in sea surface temperature and thermocline depth, with El Niño as maximum and
La Niña as minimum, follow an oscillation with a period of four to seven years. This oscillation
is most pronounced in the eastern part of the Pacific Ocean.

Figure 1: The situation in the Pacific Ocean during El Niño, normal and La Niña conditions.
The colors show the sea surface temperature (red above 30◦C, dark blue below 20◦C) and the
thermocline is shown in blue. The black arrows denote air movement, while the white arrows
show ocean currents. Figure taken from PMEL/NOAA [29].
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3.1 Delay Model by Suarez and Schopf

The processes behind ENSO, as explained before, are well understood. Many models have been
developed to describe the dynamics of ENSO. An example of such an ENSO model is that by
Zebiak and Cane (1987) [41]. This model is a system of partial differential equations for the flow
in both the ocean and atmosphere, together with a ocean mixed layer temperature equation. In
1988 Suarez and Schopf proposed a much simpler model for ENSO. This delay model for only
the sea surface temperature in the east of the Pacific Ocean is [36]

dT

dt
= T (t)− T (t)3 − αT (t− δ). (21)

Here δ is the delay time and α a scaled parameter indicating the strength of the delayed feedback.
Note that this model is scaled to contain as little parameters as possible. Battisti and Hirst gave
a physical derivation of the linear terms in this model and some arguments for the form of the
nonlinearity [2]. Their results are based on a sea surface temperature model by Battisti [1],
which is similar to the model by Zebiak and Cane [41].

The delay in the processes of ENSO is caused by the physical mechanism depicted in Figure
2. A positive perturbation in the thermocline depth, meaning a deeper thermocline and a higher
sea surface temperature, causes a weakening of the trade winds by a smaller zonal (east-west)
temperature gradient. This weakening results in transport of warm surface water towards the
equator. By this meridional (north-south) transport there is a positive temperature perturbation
at the equator and a negative perturbation at higher latitudes. The positive perturbation travels
eastward in the form of an equatorial Kelvin wave [7], causing the thermocline to deepen even
further in the east of the basin. This positive feedback effect is considered to be immediate in
the model by Suarez and Schopf. The negative perturbation at a higher latitude first travels
westward in the form of a Rossby wave [7]. When it reaches the coast, the perturbation travels
towards the equator as a coastal Kelvin wave and back to the eastern boundary as an equatorial
Kelvin wave. Since the Rossby wave travels slow compared to the Kelvin waves, the travel time
of this signal is much longer than that of the direct Kelvin wave.

Figure 2: The mechanism behind the delay in ENSO. Figure taken from Keane et al. [27].

The delay model of Equation (21) gives oscillations with a period of two to three years. This
is on the short side of the measured period of ENSO, indicating that there is an aspect missing
in the model. The physics behind the delay is well understood, justifying the linear terms in
Equation (21). However, the nonlinear term in the model by Suarez and Schopf is proposed ad
hoc and no physical justification is given for it in their article. Battisti and Hirst provided some
arguments for the form of the nonlinearity [2], but no thorough mathematical derivation has
been given yet.

In the following sections a mathematical derivation of a delay model for ENSO is given. This
derivation leads to an extended version of the delay model by Suarez and Schopf, resulting in
an increase of the period. The derivation of a delay model also provides a proof of concept for
the application of the Mori-Zwanzig formalism in deriving delay equations.
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3.2 Linear Two-Strip Model

This section starts with the formulation of the (linear) model to which the Mori-Zwanzig for-
malism will be applied. After the formulation of the model, the application of the formalism is
discussed, including the use of characteristics to arrive at a linear delay equation.

3.2.1 Model Formulation

The derivation of a delay model for ENSO starts from the two-strip model derived and studied
by Jin in 1997 [24, 25]. This two-strip model is derived from the dimensionless shallow water
equations [12]:

∂tu− yv + ∂xh+ ε0u = τ,

yu+ ∂yh = 0,

∂th+ ∂xu+ ∂yv + ε0h = 0.

(22)

Here u and v are the zonal and meridional velocities respectively and h is the thermocline depth.
The wind forcing is represented by τ and ε0 is a linear damping coefficient. The terms with y,
the meridional coordinate, represent the β effect due to the earth’s rotation. The model is scaled
such that x ∈ [0, 1] and perturbations in velocities and thermocline depth are of order one.

Reducing these equation to one equation for thermocline depth and assuming a parabolic
dependence of the thermocline near the equator, yields a system of equations for the thermocline
depth at the equator (he) and at some latitude yn between 5◦ and 15◦ (hn):

(∂t + ε0)(he − hn) + ∂xhe = τ |y=0,

(∂t + ε0)hn −
1

y2
n

∂xhn = ∂y

(τ
y

)∣∣∣
y=yn

,
(23)

with boundary conditions

he(0, t) = rWhn(0, t), hn(1, t) = rEhe(1, t). (24)

Here rW and rE are a measure of the allowed mass flux at the western and eastern boundaries
respectively. The ∂x-terms give the advection of anomalies in the thermocline by Kelvin waves
(he) and Rossby waves (hn).

The wind forcing depends on the sea surface temperature at the equator (Te), as discussed
in Section 3.1. Following the Gill atmosphere model in a simplified version [12], it is given by

τ = µA(Te)e
− (αy)2

2 , (25)

where µ is the coupling coefficient and α the fraction between meridional scales in the ocean and
atmosphere. It is assumed that the wind stress depends on the temperature according to

A(Te) = g(x)Te(xE , t). (26)

Here xE is a location in the east of the basin and g(x) gives the pattern of the wind forcing in
the zonal direction. This represents the physical mechanism as described in Section 3.1, where
the temperature in the east affects the wind forcing. For simplicity the choice xE = 1 is made.

An equation for the temperature perturbations Te at the equator, derived by Dijkstra and
Neelin [13], is added to the thermocline equations. This way the two-strip model describing the
dynamics of ENSO becomes

(∂t + ε0)(he − hn) + ∂xhe = µg(x)Te(xE , t),

(∂t + ε0)hn −
1

y2
n

∂xhn = −µ θ

y2
n

g(x)Te(xE , t),

∂tTe + cTTe − chhe = 0.

(27)

Here θ is an order one coefficient representing the difference in wind forcing between the equator
and higher latitudes. In the equation for temperature cT represents local damping and ch gives
the effect of thermocline depth on temperature through upwelling.
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For the formula determining cT one can consult the article by Dijkstra and Neelin [13]. The
formula for ch is discussed here, since it will be used when a nonlinear variation of the model is
considered. The expression for ch is

ch = fh(x)
∂Ts
∂h

, (28)

where fh gives the background wind forcing (see Dijkstra and Neelin for the expression [13])
and Ts is the subsurface temperature as a function of thermocline depth at the equator. For the
parametrization of the subsurface temperature the result by Hao et al. is used [22]:

Ts(h) = Ts0 + (T0 + Ts0) tanh
(h+ h0

H∗
)
. (29)

Here T0 is the ocean equilibrium temperature in absence of dynamics, h0 is an offset value for
the thermocline and Ts0 is the temperature at h = −h0. H∗ determines the steepness of the
transition when h passes through −h0. For the linear model ch is considered at the reference
state of the thermocline.

Considering the system of Equation (27), there is a way to rewrite the equations for the
thermoclines such that decoupled equations for hn and a new variable hc = he − 1

1+y2n
hn are

found. This new variable is dominated by the thermocline depth at the equator, but includes
some influence of the higher latitudes as well. In these new variables the equations are

∂thc + ε0hc + ∂xhc = µ
(

1− θ

1 + y2
n

)
g(x)Te(xE , t),

∂thn + ε0hn −
1

y2
n

∂xhn = −µ θ

y2
n

g(x)Te(xE , t),

∂tTe + cTTe − ch
(
hc +

1

1 + y2
n

hn

)
= 0,

(30)

with boundary conditions

hc(0, t) =
(
rW −

1

1 + y2
n

)
hn(0, t), rEhc(1, t) =

(
1− rE

1 + y2
n

)
hn(1, t). (31)

If rE = 0, then hn(1, t) = 0, meaning no reflection occurs at the eastern boundary.
The homogeneous equations for thermocline depth in the rewritten system of Equation (30),

without wind forcing, can be solved analytically. Doing so yields

h0
c(x, t) = Hce

σkte−(σk+ε0)x,

h0
n(x, t) = Hne

σkte(σk+ε0)y2nx,
(32)

with

σk = −ε0 +
1

1 + y2
n

(
ln
(rErW (1 + y2

n)− rE
(1 + y2

n)− rE

)
+ 2πik

)
, k ∈ N. (33)

Here by the boundary conditions it is required that Hc =
(
rW − 1

1+y2n

)
Hn. For rE = 0, the

only possible solution of the homogeneous system is the trivial one: h0
c = h0

n = 0. The solutions
in Equation (32) are the eigensolutions of the two-strip model. Note that these eigensolutions
are not orthogonal, meaning they are not convenient as a basis of the system on which can be
projected.

3.2.2 Mori-Zwanzig Formalism

Starting from the rewritten version of the two-strip model in Equation (30), the goal is to derive
a delay equation describing ENSO using the Mori-Zwanzig formalism. It is expected this model
will be similar to that by Suarez and Schopf in Equation (21). The first issue to overcome, is
that the Mori-Zwanzig formalism works on ordinary differential equations, while the two-strip
model is a system of partial differential equations.
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A route that is often taken in such situations is to use the eigensolutions as a basis for the
general solutions [8, 19, 37]. Projecting onto these solutions yields a basis in which the system
can be represented as a system of ordinary differential equations. However, for the two-strip
model this does not yield a feasible result, since the eigensolutions are not orthogonal. Other
projection methods, such as the use of Fourier exponentials or orthogonal polynomials as a basis
[35], either do not work due to incompatible boundary conditions, or yield very tedious results
which are not suitable for analytical computations.

Here, the solution used is to initially look at ∂x as an operator and consider the system as
ordinary differential equations in time. After going through the procedure of the Mori-Zwanzig
formalism, the resulting terms that contain ∂x are analysed. In this section the linear version of
the two-strip model is considered, meaning cT and ch are allowed to depend on place (x) and
possibly time (t), but not on any of the variables hc, hn or Te. Here cT (x) and ch(x, εt) are
taken.

Firstly the Liouville operator is identified:

L =
(
−
(
ε0 + ∂x

)
hc(x, 0) + µ

(
1− θ

1 + y2
n

)
g(x)Te(xE , 0)

)
∂hc

+
(
−
(
ε0 −

1

y2
n

∂x
)
hn(x, 0)− µ θ

y2
n

g(x)Te(xE , 0)
)
∂hn

+
(
− cT (x)Te(x, 0) + ch(x, εt)

(
hc(x, 0) +

1

1 + y2
n

hn(x, 0)
))
∂Te .

(34)

It gives the evolution of the system for arbitrary initial conditions. The model by Suarez and
Schopf is a delay equation for the temperature at the equator in the east of the basin. Therefore,
the equatorial temperature Te is chosen as the resolved variable. A linear projection is used
when applying the Mori-Zwanzig formalism:

P (f(Te, hc, hn)) = f(Te, 0, 0) ≡ f̂(Te), (35)

with P : C(R3,R) → C(R,R), f : R3 → R and f̂ : R → R, reducing the number of dependent
variables from three to one.

Applying the formalism results in an equation, which is defined according to Equation (11),
for just the resolved variable Te. The different terms in this Langevin equation are computed
and discussed separately. Firstly the Markovian term is computed:

etLPL(Te(x, 0)) = etLP
(
− cT (x)Te(x, 0) + ch(x, εt)(hc(x, 0) +

1

1 + y2
n

hn(x, 0))
)

= −cT (x)etLTe(x, 0)

= −cT (x)Te(x, t).

(36)

As expected, this is the right-hand side dependence on the resolved variable Te in the temperature
component of the rewritten two-strip model.

To compute the noise and memory term the first step is to solve the orthogonal dynamics
equation. Since here the system considered is linear, the pseudo-orthogonal dynamics approx-
imation in Equation (15) is exact. This is used to compute the solutions of the orthogonal
dynamics equation. The pseudo-orthogonal dynamics system for the thermocline equations of
the two-strip model is

d

dt
hQc (x, t) = −(ε0 + ∂x)hQc (x, t),

d

dt
hQn (x, t) = −(ε0 −

1

y2
n

∂x)hQn (x, t).
(37)

Here Q is used to denote the variables in the orthogonal dynamics equation. These equations
are independent of each other and can be easily solved. The solutions are

hQc (x, t) = e−(ε0+∂x)thc(x, 0),

hQn (x, t) = e
−(ε0− 1

y2n
∂x)t

hn(x, 0).
(38)
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Note that this is another way of writing the solutions in Equation (32) of the homogeneous two-
strip model. Having solved the orthogonal dynamics equation, the noise term can be computed.
In the pseudo-orthogonal dynamics approximation it is defined by

FTe(x, t) = ch(x, εt)
(
hQc (x, t) +

1

1 + y2
n

hQn (x, t)
)
. (39)

This is the right-hand side of the equation that corresponds to the resolved variable Te in the
pseudo-orthogonal dynamics system. Substituting the solutions of the orthogonal dynamics
system into this equation gives

FTe(x, t) = ch(x, εt)
(
e−(ε0+∂x)thc(x, 0) +

1

1 + y2
n

e
−(ε0− 1

y2n
∂x)t

hn(x, 0)
)
. (40)

The last component of the Langevin equation that needs to be computed is the memory
term. To do this, first the memory kernel is computed:

KTe(Te(x, 0), t) = PLFTe(x, t)

= PL
(
ch(x, εt)

(
e−(ε0+∂x)thc(x, 0) +

1

1 + y2
n

e
−(ε0− 1

y2n
∂x)t

hn(x, 0)
))

= ch(x, εt)
(
PL
(
e−(ε0+∂x)thc(x, 0)

)
+

1

1 + y2
n

PL
(
e
−(ε0− 1

y2n
∂x)t

hn(x, 0)
))
.

(41)

It is assumed that P and L commute with e−(ε0+∂x)t and e
−(ε0− 1

y2n
∂x)t

. The validity of this
assumption will be discussed in Section 3.3. This gives

KTe(Te(x, 0), t) = ch(x, εt)

· P
(
e−(ε0+∂x)t

(
−
(
ε0 + ∂x

)
hc(x, 0) + µ

(
1− θ

1 + y2
n

)
g(x)Te(xE , 0)

)
+

1

1 + y2
n

e
−
(
ε0− 1

y2n
∂x

)
t(− (ε0 −

1

y2
n

∂x)hn(x, 0)− µ θ

y2
n

g(x)Te(xE , 0)
))

= ch(x, εt)
(
µ
(

1− θ

1 + y2
n

)
e−(ε0+∂x)t − µ θ

y2
n

1

1 + y2
n

e
−(ε0− 1

y2n
∂x)t
)

· g(x)Te(xE , 0).

(42)

It is important to note that the memory kernel is the term in front of Te(x, 0), not the full
expression given. Using the Langevin equation, the memory term is found by substituting the
computed memory integrand into the integral. This yields∫ t

0

KTe(Te(x, t− s), s)ds =

∫ t

0

ch(x, ε(t− s))
(
µ
(
1− θ

1 + y2
n

)
e−(ε0+∂x)(t−s)

− µ θ

y2
n

1

1 + y2
n

e
−(ε0− 1

y2n
∂x)(t−s))

g(x)Te(xE , s)ds.

(43)

Now all terms present in the Mori-Zwanzig formalism of Equation (11) are computed. The
result, found by substituting the above computed expression into this Langevin equation, is the
following equation for the temperature at the equator:

dTe
dt

(x, t) = −cT (x)Te(x, t)

+ ch(x, εt)
(
e−(ε0+∂x)thc(x, 0) +

1

1 + y2
n

e
−(ε0− 1

y2n
∂x)t

hn(x, 0)
)

+

∫ t

0

ch(x, ε(t− s))
(
µ
(
1− θ

1 + y2
n

)
e−(ε0+∂x)(t−s)

− µ θ

y2
n

1

1 + y2
n

e
−(ε0− 1

y2n
∂x)(t−s))

g(x)Te(xE , s)ds.

(44)
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The partial derivative to x still is present in the exponential terms. In the noise term this is not
an issue, since the terms are exactly the solutions as given in Equation (32) to the homogeneous
system:

e−(ε0+∂x)thc(x, 0) = h0
c(x, t), e

−(ε0− 1
y2n
∂x)t

hn(x, 0) = h0
n(x, t). (45)

In the memory term it is less clear what to do with these exponentials. In the next section a
way of simplifying these terms using the method of characteristics is given.

3.2.3 Characteristics

In this section the memory integral is considered, focusing on the exponential ∂x-terms. Here
the method of characteristics is used [17]. Both components in the memory kernel are of the
form e−(ε0+c∂x)(t−s)f(x, s), for either c = 1 or c = −1/y2

n. This expression is the solution to the
partial differential equation

∂tf + c∂xf = −ε0f, (46)

with initial conditions given at t = s. The characteristic equations for this partial differential
equation are [17]

dt

dy
= 1,

dx

dy
= c. (47)

The solutions to these equations are t(y) = y+t0 and x(y) = cy+x0. This results in characteristic
curves x− x0 = c(t− t0) along which f(x, t) is conserved, meaning f(x, t) is constant on such a
curve apart from the damping caused by the ε0-term. This gives

e−(ε0+c∂x)(t−s)f(x, s) = e−ε0(t−s)f(c(t− s) + xs, s), (48)

where xs is the location at time s. This expression is valid as long as the argument of f lies in
the domain. Otherwise boundary effects need to be considered.

In the two-strip model x ∈ [0, 1], which means the reflection of characteristics at the boundary
has to be discussed. In the memory integral there are two different exponentials, with c = 1
and c = −1/y2

n. The corresponding characteristics represent the eastward traveling equatorial
Kelvin waves for c = 1 and the westward traveling Rossby waves for c = −1/y2

n. Note that the
Rossby waves indeed take longer to cross the basin than the Kelvin waves as yn > 1. In Figure 3
the characteristics of the memory term are shown. The red line shows what happens to a signal
emitted from x = 0.7 at time zero until it arrives at the eastern boundary.

The characteristics of the system are used to get an expression for the memory term. The
goal is to find a result for the temperature in the east of equatorial basin (xE). This is where the
model by Suarez and Schopf is valid and it is the location of the temperature on which the wind
forcing depends. Looking at the signal at one location allows for the following of characteristics
from a source given by g(x) to that one location. Denoting Te(xE , t) = TEe (t) the memory
integral at x = xE is of the form∫ t

0

ch(xE , ε(t− s))
(
µ
(
1− θ

1 + y2
n

)
·
[
e−(ε0+∂x)(t−s)g(x)

]
xE
TEe (s)

− µ θ

y2
n

1

1 + y2
n

·
[
e
−(ε0− 1

y2n
∂x)(t−s)

g(x)
]
xE
TEe (s)

)
ds.

(49)

The first term in the memory integral gives the waves that are traveling westward at t = s.
Setting xE = 1, these waves need a time t = 1− x to arrive at the eastern boundary. Assuming
reflection takes place at the eastern and western boundary, the signal arrives a second time after
t = 1 − x + (y2

n + 1). This way the signal keeps reflecting through the basin, arriving at the
eastern boundary after times tk = 1 − x + k(y2

n + 1) for k = 0, 1, 2, .... At each reflection the
wave loses energy by a factor ArE at the eastern boundary and a factor ArW at the western
boundary. These factors are determined by the amount of flux allowed through the boundaries
and thus by the boundary conditions for hn and hc. This means

ArW = rW (1 + y2
n)− 1, ArE =

(1 + y2
n

rE
− 1
)−1

, (50)
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Figure 3: The characteristics of ∂tf+∂xf = −ε0f (black) and ∂tf− 1
y2n
∂xf = −ε0f (blue). In red

the path of a signal following the characteristics is shown until it reaches the eastern boundary.

where the factor 1+y2
n relative to the thermocline boundary conditions in Equation (31) emerges

due to the different contributions of hc and hn in the temperature equation of the two-strip model.
The result of these reflections through the basin on the first part of the memory term at the
eastern boundary is∫ t

0

ch(1, ε(t− s))µ
(
1− θ

1 + y2
n

)[
e−(ε0+∂x)(t−s)g(x)

]
xE
TEe (s)ds

=

Kmax(t)∑
k=0

∫ t−k(y2n+1)

t−(1+k(y2n+1))

ch(1, ε(t− s))µ
(
1− θ

1 + y2
n

)
e−ε0(t−s)

· (ArEArW )kg(1 + k(y2
n + 1)− (t− s))TEe (s)ds,

(51)

where Kmax(t) = b t−1
y2n+1c for t ≥ 1 is the number of reflections that have occurred by time t.

Note that there are time intervals for which this term has no effect at the eastern boundary,
since it only represents half of the characteristics.

To get this part of the memory integral in a form which shows more of the delay behaviour,
a change of coordinates is applied. Let x = 1 + k(y2

n + 1)− (t− s), for which dx
ds = 1. Changing

coordinates from s to x, the memory integral becomes

Kmax(t)∑
k=0

∫ 1

0

ch(1, ε(1 + k(y2
n + 1)− x))µ

(
1− θ

1 + y2
n

)
e−ε0(1+k(y2n+1)−x)

· (ArEArW )kg(x)TEe (t− (1 + k(y2
n + 1)− x))dx.

(52)

Writing the integral this way shows that the memory term contains a component that depends
on past states of the resolved variable TEe . How strong the effect is of different times depends
on the function g(x), which gives the spatial distribution of the wind forcing.
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The result for the waves that first travel towards the western boundary is achieved in a
similar way. These waves need times tk = y2

nx+ 1 + k(1 + y2
n) for k = 0, 1, 2, ... to arrive at the

eastern boundary. Now x = − 1
y2n

(1 + k(y2
n + 1) − (t − s)) is used for the change of variables.

Going through the same steps as before, the total memory integral becomes

Kmax(t)∑
k=0

(ArEArW )kµ

∫ 1

0

g(x)e−ε0k(y2n+1)

·
((

1− θ

1 + y2
n

)
ch(1, ε(1 + k(y2

n + 1)− x))e−ε0(1−x)TEe (t− (1 + k(y2
n + 1)− x))

− θ

y2
n

ArW
1 + y2

n

ch(1, ε(1 + k(y2
n + 1) + y2

nx))e−ε0(1+y2nx)TEe (t− (1 + k(y2
n + 1) + y2

nx))
)
dx.

(53)

This expression shows there are multiple delays present in the two-strip model for ENSO. The
exact form of the delay (distributed or discrete) and delay times are determined by the spatial
pattern of the wind forcing g(x).

3.2.4 Delay Model

Using the results from the two previous sections, an equation for the evolution of temperature at
the eastern boundary of the domain can be obtained. Considering Equation (44) for x = xE = 1
and using Equations (45) and (53) gives

dTEe
dt

= −cT (1)TEe (t) + ch(1, εt)
(
h0
c(1, t) +

1

1 + y2
n

h0
n(1, t)

)
+

Kmax(t)∑
k=0

(ArEArW )kµ

∫ 1

0

g(x)e−ε0k(y2n+1)

·
((

1− θ

1 + y2
n

)
ch(1, ε(1 + k(y2

n + 1)− x))e−ε0(1−x)

· TEe (t− (1 + k(y2
n + 1)− x))

− θ

y2
n

ArW
1 + y2

n

ch(1, ε(1 + k(y2
n + 1) + y2

nx))e−ε0(1+y2nx)

· TEe (t− (1 + k(y2
n + 1) + y2

nx))
)
dx.

(54)

The effect of the components of the memory term decreases with k by the energy loss at reflection.
To simplify this expression two assumptions are made.

First, it is assumed there is no reflection at the eastern boundary, so rE = 0 and thus ArE = 0.
The only components in the sum of the memory term that remain with this assumption are the
components for k = 0. Furthermore, as noted in Section 3.2, the homogeneous solution in that
case is identically zero. This means the noise term vanishes in Equation (54). The equation for
TEe then becomes

dTEe
dt

= −cT (1)TEe (t) + µ

∫ 1

0

g(x)
((

1− θ

1 + y2
n

)
ch(1, ε(1− x))e−ε0(1−x)TEe (t− (1− x))

− θ

y2
n

ArW
1 + y2

n

ch(1, ε(1 + y2
nx))e−ε0(1+y2nx)TEe (t− (1 + y2

nx))
)
dx.

(55)

This is already a strong simplification compared to Equation (54). However, the integral over
the memory kernel still has to be computed. Unknown in this integral is the function g(x), which
determines the form of the memory kernel. This function gives the pattern of the wind forcing.
More specifically, g(x) indicates where the effect of the wind is strong and weak. From Section
3.1 it is known that the wind dominantly has an effect near the centre of the basin. Away from
this location the effect is small, meaning the wind forcing acts quite locally. Here, this local
effect of the wind forcing is approximated by g(x) = A0δxw(x), a delta function of height A0 at
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x = xw. This delta function leaves only the effect of that one location on the integral, meaning
Equation (55) becomes

dTEe
dt

= −cT (1)TEe (t) + µA0

((
1− θ

1 + y2
n

)
ch(1, ε(1− xw))e−ε0(1−xw)TEe (t− (1− xw))

− θ

y2
n

ArW
1 + y2

n

ch(1, ε(1 + y2
nxw))e−ε0(1+y2nxw)TEe (t− (1 + y2

nxw))
)
.

(56)

This way a linear discrete delay equation for temperature has been found.
The resulting equation does not yet resemble the model by Suarez and Schopf from Equation

(21) in the linear terms. Instead of one, there are two delay times present. However, 1− xw �
1 + y2

nxw indicating that this effect can be considered to be immediate compared to the other
delay time. Thus it is assumed that TEe (t−(1−xw)) ≈ TEe (t). This is the same as assuming that
Kelvin waves have a direct effect, as was discussed in Section 3.1. This approximation yields the
final linear delay model:

dTEe
dt

= cST
E
e (t)− cLTEe (t− d), (57)

where

cS = µA0

(
1− θ

1 + y2
n

)
ch(1, ε(1− xw))e−ε0(1−xw) − cT (1),

cL = µA0
θ

y2
n

ArW
1 + y2

n

ch(1, ε(1 + y2
nxw))e−ε0(1+y2nxw),

d = 1 + y2
nxw.

(58)

This model (after rescaling) gives the linear part of the model by Suarez and Schopf. The delay
term is due to the emission of Rossby waves caused by a wind forcing which depends on the
temperature near the eastern boundary. These waves travel to the western boundary, where
they reflect in the form of Kelvin waves. The process described in Section 3.1 is well reflected
throughout the derivation of Equation (57). This delay model does not yet account for the
nonlinearity in the model by Suarez and Schopf. To be able to consider such a nonlinearity the
model with which one starts already has to be nonlinear.

3.3 Nonlinear Two-Strip Model

In this section a nonlinear variation of the two-strip model is derived. Then this nonlinear model
is studied using the Mori-Zwanzig formalism and a method based on variation of constants.

3.3.1 Model Formulation

To investigate how realistic the nonlinearity in the model by Suarez and Schopf is, a nonlinear
version of the two-strip model is derived. To create such a nonlinearity in the model ch is
considered, meaning the upwelling feedback is assumed to be nonlinear. This is the nonlinearity
that is found to be the most important in describing the behaviour of ENSO by Battisti and
Hirst [2]. Recall that ch, as defined by Equations (28) and (29), is proportional to the derivative
of the subsurface temperature Ts with respect to the thermocline depth h. Computing this
derivative gives

dTs
dh

=
T0 − Ts0
H∗

(
1−

(Ts − Ts0
T0 − Ts0

)2)
. (59)

The assumption made here is that Te is proportional to Ts−Ts0, so perturbations in the equato-
rial sea surface temperature are assumed to be proportional to perturbations in the subsurface
temperature. Using this assumption, Equation (28) becomes

ch = fh(x)
T0 − Ts0
H∗

(
1−

( cseTe
T0 − Ts0

)2)
, (60)
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where cse is the proportionality constant. This introduces a cubic nonlinearity in the temperature
equation of the two-strip model.

To check the validity of the assumption made, buoy data of the equatorial Pacific Ocean is
considered. There are ten locations in the equatorial Pacific where buoy data is available. Since
the model only is concerned with the behaviour of the temperature in the east of the basin, it
is sufficient to consider only buoys in the eastern part of the Pacific Ocean. To avoid coastal
boundary layer effects the second most eastern buoy, which is located at 110 degrees west, is
chosen. In Figure 4 the temperature data for this buoy is shown. The deviation from the mean
for the sea surface temperature versus the offset subsurface temperature (see Equation 59) is
depicted. The correlation between the two datasets is 0.87, indicating there is a strong relation,
which is also visible in the figure. The slope between the two temperature perturbations is
cse ≈ 1.

Figure 4: Temperature data from a buoy at the east side of the Pacific Ocean (110◦W) for
measurements at the surface and the subsurface (depth of 25m). Shown are the deviations from
the average sea surface temperature versus the offset subsurface temperature. The red line is
the best linear fit through the data and has a slope of 1.037 ± 0.035. Data is taken from the
Global Tropical Moored Buoy Array Project Office of NOAA/PMEL.

Using Equation (60) the nonlinear two-strip model (in the rewritten version) becomes

∂thc + ε0hc + ∂xhc = µ
(

1− θ

1 + y2
n

)
g(x)Te(xE , t),

∂thn + ε0hn −
1

y2
n

∂xhn = −µ θ

y2
n

g(x)Te(xE , t),

∂tTe + cTTe − c∗h(1− βT 2
e )
(
hc +

1

1 + y2
n

hn

)
= 0.

(61)

Here c∗h = fh(x)T0−Ts0
H∗ and β =

(
1

T0−Ts0

)2

. It is important to realise that this result is in

principle only valid in the eastern part of the basin, because at that location it has been shown
there is a strong correlation and cse ≈ 1. At other locations the correlation turns out to be quite
strong as well, but the proportionality constant between the surface and subsurface temperature
is different.

Before continuing with the Mori-Zwanzig formalism for this nonlinear model, the model is
studied in a more thorough way. Note that the equations for hc and hn are still linear, meaning
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they can be rewritten in the form of integral equations, as was done in the linear illustration of
Section 2.1. Using variation of constants, this gives

hc(x, t) = e−(ε0+∂x)thc(x, 0) +

∫ t

0

e−(ε0+∂x)(t−s)µ
(

1− θ

1 + y2
n

)
g(x)Te(xE , s)ds,

hn(x, t) = e
−(ε0− 1

y2n
∂x)t

hn(x, 0)−
∫ t

0

e
−(ε0− 1

y2n
∂x)(t−s)

µ
θ

y2
n

g(x)Te(xE , s)ds.

(62)

These expressions for hc and hn can be substituted into the equation for Te. The resulting
equation for Te is

dTe
dt

= −cT (x)Te(x, t) + c∗h(x)(1− βT 2
e (x, t))

·
(
e−(ε0+∂x)thc(x, 0) +

∫ t

0

e−(ε0+∂x)(t−s)µ
(

1− θ

1 + y2
n

)
g(x)Te(xE , s)ds

+
1

1 + y2
n

(
e
−(ε0− 1

y2n
∂x)t

hn(x, 0)−
∫ t

0

e
−(ε0− 1

y2n
∂x)(t−s)

µ
θ

y2
n

g(x)Te(xE , s)ds
))
.

(63)

The same procedure can be applied to the linear model, making the use of the Mori-Zwanzig
formalism redundant. This way the commutativity assumption made in Section 3.2.2 can be
verified. For fixed x the result is found to be exactly the same, providing a justification for the
assumption.

Under the same assumptions as made in the previous section for the linear model (no reflection
at the eastern boundary and a localized wind forcing), characteristics can be used to arrive at a
delay equation. The delay model for the temperature at the eastern boundary becomes

dTEe
dt

= −cT (1)TEe (t) + c∗h(1)(1− βTEe (t)2)µA0

((
1− θ

1 + y2
n

)
e−ε0(1−xw)TEe (t− (1− xw))

− θ

y2
n

ArW
1 + y2

n

e−ε0(1+y2nxw)TEe (t− (1 + y2
nxw))

)
.

(64)

Assuming, as before, that the short delay is instantaneous, yields

dTEe
dt

= (c∗S − cT (1))TEe (t)− c∗LTEe (t− d)− βc∗STEe (t)3 + βc∗LT
E
e (t)2TEe (t− d), (65)

where

c∗S = µA0

(
1− θ

1 + y2
n

)
c∗h(1)e−ε0(1−xw),

c∗L = µA0
θ

y2
n

ArW
1 + y2

n

c∗h(1)e−ε0(1+y2nxw),

d = 1 + y2
nxw.

(66)

This way a nonlinear discrete delay equation for the temperature at the equator, including two
cubic terms, has been found. Compared to the model by Suarez and Schopf in Equation (21), a
fourth term, which is proportional to TEe (t)2TEe (t−d), emerges. The effect of this additional term
on the dynamics of the delay model is discussed in Section 3.4. Before studying the behaviour of
this extended delay model, first the application of the Mori-Zwanzig formalism to the nonlinear
model in Equation (61) is discussed.

3.3.2 Mori-Zwanzig Formalism

The Mori-Zwanzig formalism is valid for both linear and nonlinear equations. The problem when
considering nonlinear equations arises when solving the orthogonal dynamics equation. The first
question that has to be answered to resolve this problem, is what the chosen projection does to
nonlinear terms. Here the same linear projection as for the linear model is used (Equation (35)).
The initial condition of the orthogonal dynamics system then is

QL(Te(x, 0)) = c∗h(x)
(
1− βT 2

e (x, 0)
)(
hc(x, 0) +

1

1 + y2
n

hn(x, 0)
)
. (67)
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This expression is nonlinear, just as the initial system. Formally the noise term then can be
written as

FTe(x, t) =

∞∑
k=0

tk

k!
(QL)kc∗h(x)

(
1− βT 2

e (x, 0)
)(
hc(x, 0) +

1

1 + y2
n

hn(x, 0)
)
, (68)

by expressing the exponential as a sum. The components that are linear in hc(x, 0) and hn(x, 0)
do not pose a problem. These terms both can be written in the form of an exponential sum. To
see this consider

QL(hc(x, 0)) = −
(
ε0 + ∂x

)
hc(x, 0), (69)

which means
∞∑
k=0

tk

k!
(QL)khc(x, 0) =

∞∑
k=0

tk

k!

(
− (ε0 + ∂x)

)k
hc(x, 0) = e−(ε0+∂x)thc(x, 0). (70)

For hn a similar result holds. This gives exactly the same result as found by using the pseudo-
orthogonal dynamics approximation in the linear model.

Now the nonlinear terms in Equation (68) are examined. Applying the operator QL more
times gives terms of increasing order in the initial conditions of Te, hc and hn. This does not
converge to an analytical computable solution. Therefore, an approximation has to be made.
A possibility is to neglect terms above some order, but this does not yield a workable solution.
Another option is to approximate the orthogonal dynamics equation by the pseudo-orthogonal
dynamics equation as described in Section 2.3. The conditions for this approximation are not met
for the nonlinear two-strip model, but it can be used as a first estimate. This last approximation
will be applied in the remainder of this section.

The pseudo-orthogonal dynamics equations for the nonlinear two-strip model are

d

dt
hQc (x, t) = −(ε0 + ∂x)hQc (x, t),

d

dt
hQn (x, t) = −(ε0 −

1

y2
n

∂x)hQn (x, t),

d

dt
TQe (x, t) = c∗h(x)

(
1− βTQe (x, t)2

)(
hQc (x, t) +

1

1 + y2
n

hQn (x, t)
)
.

(71)

The first two equations also occur in the pseudo-orthogonal dynamics system for the linear model
and have exponential functions as solutions. In addition, this time a solution for TQe has to be
found, since the noise term depends on it. Recall here that the noise term is given by the right-
hand side of the equation for TQe . Substituting the solutions for hQc and hQn into the equation
for TQe , the solution for TQe with the condition that (TQe )2 < 1

β is

TQe (x, t) =
1

β
tanh2

(
arctanh

(√
βTe(x, 0)

)
+ c∗h(x)

√
β
(
(1− e−(ε0+∂x)t)(ε0 + ∂x)−1hc(x, 0)

+
1

1 + y2
n

(1− e−(ε0− 1
y2n
∂x)t

)(ε0 −
1

y2
n

∂x)−1hn(x, 0)
))
.

(72)

If (TQe )2 > 1
β the tanh has to be replaced by a coth, and when (TQe )2 = 1

β the result is a constant

TQe , since then d
dtT

Q
e (x, t) = 0. The initial conditions determine which of the solutions should

be used. It is most likely that (TQe )2 < 1
β , as β is small and Te is of order one. Therefore in the

following Equation (72) is used.
The noise term is given by the right-hand side of the equation for TQe in Equation (71), for

which now a closed expression is known. The next step is to compute the memory kernel. By
the presence of the hyperbolic tangent and several nonlinearities, Equation (20) from Section
2.4 is used to approximate the memory kernel. Taking the limit ε→ 0, yields

KTe(Te(x, 0), t) = c∗h(x)
(
1 + βT 2

e (x, 0)
)(
µ
(
1− θ

1 + y2
n

)
e−(ε0+∂x)tg(x)Te(xE , 0)

− µ θ

y2
n

ArW
1 + y2

n

e
−(ε0− 1

y2n
∂x)t

g(x)Te(xE , 0)
)
.

(73)
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All components of the equation for Te using the Mori-Zwanzig formalism with the pseudo-
orthogonal dynamics approximation are known. Using the above expression for the memory
kernel and substituting the general solution for TQe (x, t) in the noise term, the approximate
equation for Te becomes

dTe
dt

(x, t) = −cT (x)Te(x, t) + c∗h(x)
(
e−(ε0+∂x)thc(x, 0) +

1

1 + y2
n

e
−(ε0− 1

y2n
∂x)t

hn(x, 0)
)

·
(

1− tanh2
(

arctanh
(√

βTe(x, 0)
)

+ c∗h(x)
√
β
(
(1− e−(ε0+∂x)t)

hc(x, 0)

ε0 + ∂x
+

1

1 + y2
n

(1− e−(ε0− 1
y2n
∂x)t

)
hn(x, 0)

ε0 − 1
y2n
∂x

)))
+

∫ t

0

c∗h(x)
(
1 + βT 2

e (x, s)
)(
µ
(
1− θ

1 + y2
n

)
e−(ε0+∂x)(t−s)g(x)Te(xE , s)

− µ θ

y2
n

ArW
1 + y2

n

e
−(ε0− 1

y2n
∂x)(t−s)

g(x)Te(xE , s)
)
ds.

(74)

Similar to the procedure followed for the linear model in Sections 3.2.3 and 3.2.4, this equation
can be simplified. The desired result is an equation for the temperature in the east of the basin.
Applying the method of characteristics one gets rid of the exponential ∂x-terms. Assuming no
reflection takes place at the eastern boundary, the noise term vanishes. The memory term further
simplifies to two delay terms when a localized wind forcing is assumed. Considering the short
delay as being instantaneous, the resulting nonlinear delay equation is

dTEe
dt

= (c∗S − cT (1))TEe (t)− c∗LTEe (t− d)− βc∗STEe (t)3 + βc∗LT
E
e (t− d)3, (75)

where

c∗S = µA0

(
1− θ

1 + y2
n

)
c∗h(1)e−ε0(1−xw),

c∗L = µA0
θ

y2
n

ArW
1 + y2

n

c∗h(1)e−ε0(1+y2nxw),

d = 1 + y2
nxw.

(76)

This equation is almost the same as Equation (65) derived in the first part of Section 3.3 by
applying variation of constants. The only difference, which arises due to the pseudo-orthogonal
dynamics approximation, is the fourth term. Since Equation (65) is exact, this difference is due
to errors in the pseudo-orthogonal dynamics approximation. Since the exact result is known,
the accuracy of the approximation can be tested for this ENSO model.

3.4 Delay Model Analysis

In Sections 3.2 and 3.3 delay models for ENSO have been derived. The linear model in Equation
(57) shows the presence of a delay in the two-strip model. Adding a nonlinearity to the model
results in two different delay models given in Equations (65) and (75). The first of these is derived
by applying variation of constants to the thermocline equations and is exact. The second delay
model is derived using the pseudo-orthogonal dynamics approximation and contains some error.
Both models contain an extra term compared to the delay model proposed by Suarez and Schopf
as given in Equation (21).

In this section the behaviour of the three different nonlinear delay models is studied. In Figure
5 model simulations for the three different models are shown. The model derived using the Mori-
Zwanzig formalism has a very different shape of the oscillation, which does not correspond to data
of ENSO. Both derived models have a longer period than the model by Suarez and Schopf, as well
as a smaller amplitude. These two aspects lead to a better representation of the measurements
of ENSO. The main focus in this section is on the similarities and differences between the model
by Suarez and Schopf and the exact delay model derived by applying variation of constants.
Furthermore, the model derived using the approximated Mori-Zwanzig formalism is studied to
get an idea of the error made in using the pseudo-orthogonal dynamics approximation.
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Figure 5: Model simulations of the different delay models for ENSO (α = 0.86, γ = 0.49 and
δ = 4.9 after scaling). The model by Suarez and Schopf (red), the nonlinear model derived using
variation of constants (blue) and the model derived using the Mori-Zwanzig approach (purple)
are shown.

Before the models are studied in more detail, temperature and time are scaled to reduce
the number of parameters. This allows for an easier treatment of the models in the following
bifurcation analysis. On the other hand, the physical meaning of the results requires some
translation in the end. In this section the sub- and superscripts of temperature are omitted, so

T is written for TEe . Time is scaled by t′ = (c∗S − cT (1))t and temperature by T ′ =
√

βc∗S
c∗S−cT (1)T .

The scaled equation for the exact model of Equation (65), after dropping the primes, is

dT

dt
= T (t)− T (t)3 − αT (t− δ)

(
1− γT (t)2

)
, (77)

where

α =
c∗L

c∗S − cT (1)
, γ =

c∗S − cT (1)

c∗S
, δ = (c∗S − cT (1))d. (78)

Here the parameters are chosen such that for γ = 0 the model by Suarez and Schopf is recovered.
Note that the scaled parameters do not depend on β. Only the temperature scale depends on
this nonlinearity parameter. Since c∗S > cT (1) all scaled parameters are positive and γ < 1.
By the strong interdependence, it is difficult to relate values of the new parameters to values of
the physical parameters. This issue is addressed at the end of the section. The scaling for the
Mori-Zwanzig model of Equation (75) is the same.

3.4.1 Bifurcation Analysis

The exact delay model is analysed in the same way as was done by Suarez and Schopf [36]. First
the steady states of Equation (77) are computed. Setting dT

dt = 0, three different equilibrium
points are found:

T00 = 0, T0± = ±
√

1− α
1− αγ

. (79)

To study the stability of these equilibrium points, a small perturbation T ′ from a steady state
T0 is considered. That is T = T0 +T ′. Substituting this into Equation (77) and considering only
first order terms gives

dT ′

dt
=
(
1− (3− 2αγ)T 2

0

)
T ′(t)− α

(
1− γT 2

0

)
T ′(t− δ). (80)
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For T0 = T00 the resulting linear delay model is not stable, indicating this is an unstable
equilibrium. In the following T0 = T0± is considered. Here, an exponential ansatz is made. This
means T ′ = T̄ e(σr+iσi)t is substituted into the above equation. Splitting the resulting equation
in a real and imaginary part yields

σr =
(
1− (3− 2αγ)T 2

0

)
− α

(
1− γT 2

0

)
cos(σiδ)e

−σrδ,

σi = α
(
1− γT 2

0

)
sin(σiδ)e

−σrδ.
(81)

To find where the equilibrium solutions change stability, the curves of neutral stability are
computed by setting σr = 0. This way the frequency σi of the perturbation as a function of the
parameters can be computed. The result is

σi =

√
α2
(
1− γT 2

0

)2 − (1− (3− 2αγ)T 2
0

)2
, (82)

and the corresponding two solutions for the delay time δ are

δ+ =
1

σi

(
2πk + arccos

(1− (3− 2αγ)T 2
0

α
(
1− γT 2

0

) ))
,

δ− =
1

σi

(
2πk − arccos

(1− (3− 2αγ)T 2
0

α
(
1− γT 2

0

) ))
,

(83)

for a positive (or zero) integer k. Note that for k = 0 the two solutions are identical. In Figure 6
the neutral curves for k = 0 and k = 1, together with the dimensionless periods, are shown in α-
δ-parameter space for two values of γ. The curve for k = 0 asymptotes to α = 1

γ (1−
√

1− γ) for
large delay δ. Below the curve of k = 0, the non-zero steady states are stable and no oscillation
occurs. Crossing the curve, a Hopf bifurcation occurs and a periodic solution emerges. At the
curve with k = 1 another Hopf bifurcation occurs [23, 32], meaning a second periodic orbit
emerges. This results in bistability of periodic orbits, which here has little effect on the period
of the solutions.

(a) γ = 0 (b) γ = 0.6

Figure 6: The (dimensionless) period of oscillation in α-δ-space for two different values of γ.
The pink curves show the first and second Hopf bifurcation curves.

In Figure 7 the dimensionless period of the oscillations is shown in the full three dimensional
α-δ-γ-parameter space. Note Figure 6 gives two slices of this plot for γ = 0 and γ = 0.6. The
period increases as the delay time increases. Increasing the delay time means that the waves
take longer to travel through the basin, and thus arrive later at the eastern side of the basin.
Increasing γ leads to the shrinking of the region where oscillations occur. That means α has to
be larger to get stable periodic solutions for the same delay time δ. Important to note is that
for the same values of delay δ and parameter α, the period increases as γ increases. This shows
that the derived delay model has a longer period compared to the original model by Suarez and
Schopf, indicating it is closer to reality.
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Figure 7: The (dimensionless) period of oscillation in α-δ-γ-space. The pink surfaces show the
first and second Hopf bifurcation surfaces.

To investigate the errors made in applying the pseudo-orthogonal dynamics approximation to
the Mori-Zwanzig formalism, a similar bifurcation analysis is performed on the scaled model of
Equation (75). The result for γ = 0.4 is shown in Figure 8. Clearly the model derived using the
approximate Mori-Zwanzig formalism exhibits a higher period than the exact model. Especially
for large delays the difference is significant. Furthermore, the region in which oscillations are
stable is smaller. As a consequence, it is less likely to find stable oscillations for realistic values of
the parameters. Because of this last factor, this model is of little use in modeling the dynamics
of ENSO.

(a) Variation of constants. (b) Mori-Zwanzig.

Figure 8: The (dimensionless) period of oscillation in α-δ-space for γ = 0.4 for the models
derived using variation of constants and the approximated Mori-Zwanzig formalism. The pink
curves show the first and second Hopf bifurcation curves.
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3.4.2 Parameter Dependence

So far the discussion about the periodic behaviour has been given in abstract dimensionless
scaled variables. To get an idea what realistic values are, the expressions for cT (x) and c∗h(x)
from Dijkstra and Neelin are used [13]. They are

cT (x) = εw + 0.5
(
(1− α0) + (1 + α0) tanh(

δ1
F

ε
F (x))

)
δ1
FF (x),

c∗h(x) = 0.5
(

tanh(
δ1
F

ε
F (x))− 1

)
α0δ

1
FF (x)(T0 − Ts0)

H

H∗
,

(84)

with background wind forcing F (x) = 0.6
(
0.12 − cos(x−x0

2x0
π)2
)

for x0 = 0.57 and parameters

εw = εTL
c0

, α0 = H1

H̃
, δ1
F = τ0L

c0
bw
H1

. The dimensional values are given in Table 1. The parameters
are considered at x = 0.9 to avoid effects of the boundary layer in the background state.

Table 1: Parameter values used in determining cT and c∗h.

Damping scale Newtonian cooling εT 9.25 · 10−8 s−1

Basin length L 1.5 · 107 m
Velocity first baroclinic Kelvin mode c0 2 m/s
Background wind forcing strength τ0 2.667 · 10−7 m/s2

Parametrization constant bw 1.026 · 102 s
Depth surface layer H1 50 m
Depth top layer H 200 m

Depth for temperature gradient H̃ 50 m
Steepness transition subsurface temperature H∗ 30 m
Temperature without dynamics T0 30 ◦C
Background subsurface temperature Ts0 22 ◦C
Rayleigh friction coefficient aM 1.3 · 10−8 s−1

Scaling parameter ε 10−4

The other dimensionless variables in the definitions of c∗S and c∗L are µ, ε0, ArW , θ, yn, A0

and xw. For the first three parameters the book Nonlinear Physical Oceanography by Dijkstra
is followed [12]. Here µ is the coupling strength between the wind and the ocean for which a
realistic value is µ = 1. For the damping coefficient ε0 = aML

c0
is taken. Recall that ArW is

defined by Equation (50), for which rW = 3/5 is used. Lastly xw = 0.6 is chosen as the location
where the wind has its strongest effect. The other parameters are varied according to Table 2
to study the dependence of the period. Note that these values differ from the those in Jin [24]
due to a different scaling.

Table 2: The ranges in which the nondimensional parameters are varied.

Parameter Dimensional Dimensionless Step

Wind forcing factor at yn θ - 1.0 - 4.0 0.2
Wind forcing strength A0 0.5 - 3.0 ·10−2 Pa 0.1 - 0.6 0.05
Latitude Rossby waves yn 5.0◦ - 12.1◦ 1.4 - 3.4 0.2

Varying the parameters in the ranges given in Table 2, the period of oscillation is computed
for both the exact derived model and the model by Suarez and Schopf. In Figure 9 the periods
of oscillation for these models are shown versus one another. The period of the derived model
is larger in every situation where still an oscillation is present. There are locations in parameter
space where no oscillation occurs in the derived model, while they do occur in the model by
Suarez and Schopf. This already was indicated by the smaller region of oscillation for larger γ
in Figure 7.

The dependence of the period on the different parameters is shown in Figure 10. For increas-
ing θ, that is, when the effect of the wind forcing at higher latitudes increases, the period slowly
increases. There turns out to be a minimum value for θ around 1.7 below which no oscillations
occur. In that case the signal at higher latitudes is too weak to have a significant effect at the
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Figure 9: The period of the model derived using variation of constants versus the period according
to the model by Suarez and Schopf. The line of equal period is shown in red.

eastern boundary. Considering the strength of the wind forcing A0, a stronger wind results in
a shorter period. This can be due to the larger absolute difference between the effect at the
equator and at higher latitudes, leading to a weaker effect of the latter. This decrease with
increasing wind strength appears to be approximately exponential. For a realistic A0 in the
centre of the range, the period of the oscillation is approximately 2.5 to 3.5 years. This is still
smaller than that of ENSO.

Looking at the latitude yn at which the Rossby waves travel, instead of the latitude itself,
1/y2

n is plotted, since this gives the velocity of the Rossby wave traveling at that latitude. For
higher velocities, so lower latitudes, the oscillations have a smaller period. The faster the wave
travels, the shorter the delay is, resulting in a shorter period. Similarly, slow waves result in
longer periods.

(a) Changing θ. (b) Changing A0. (c) Changing yn.

Figure 10: The dependence of the period of the oscillation on the parameters θ, A0 and yn
for the exact derived model. The range for each value of one of the parameters is due to the
variation of the other two parameters.
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4 Atlantic Multidecadal Oscillation

The Atlantic Multidecadal Oscillation (AMO) is an oscillation in the sea surface temperature
in the North-Atlantic Ocean with a period of fifty to seventy years [12]. In Figure 11 the sea
surface temperature deviations in the North Atlantic Ocean are shown for the last 160 years.
Even though there is not enough data to show multiple oscillations, there is evidence of a clear
oscillation with a period of several decades. In addition, high resolution climate models show an
oscillation on this same timescale. This phenomenon has not been studied as long or extensively
as ENSO, because of its relatively recent discovery.

Figure 11: The deviations in sea surface temperature in the North Atlantic Ocean for the last 160
years. In black the 12-monthly running mean is shown. Data from the NCEP/NCAR reanalysis
project [26].

The background state against which this oscillation occurs is that of the Atlantic Meridional
Overturning Circulation (AMOC) [10]. In the south of the basin, near the equator, the water
is heated by the sun. Via the Gulf Stream and other ocean currents this water is transported
northward (and eastward), losing heat on its way. Near the poles the water is cooled down so
much that it sinks. Near the bottom of the ocean it then flows southward. Also in the zonal
direction such an overturning circulation occurs, but it is much weaker than the meridional flow.

Figure 12: The physical mechanism responsible for the Atlantic Multidecadal Oscillation. Figure
taken from Dijkstra (2006) [11].
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The physical mechanism behind the AMO, as described in [39], depends on thermal wind
balance, which states that flow is along temperature (and thus pressure) gradients. When there
is a positive temperature perturbation in the northern-central part of the basin, there is a north-
south temperature gradient. This meridional temperature gradient results in zonal overturning
with westward surface flow through thermal wind balance. This is shown in the left part of Figure
12. The negative zonal flow transports the positive temperature anomaly towards the western
boundary, creating a zonal temperature gradient. Again through thermal wind balance, this now
leads to perturbations in the meridional overturning circulation (right part of Figure 12). This
flow transports cold water from near the poles southward, reducing the meridional temperature
gradient. This smaller north-south temperature gradient causes a positive (eastward) zonal flow,
after which the same pattern as described above is followed with a sign change.

Similar to the procedure described in Section 3, it is investigated whether the AMO can be
described by a delay model. However, here no clear traveling wave transporting temperature is
part of the process. This could indicate that a delay equation may not be a feasible model for
the AMO. No delay model for the AMO has yet been proposed.

4.1 AMO Model

In this section first the AMO model to which the Mori-Zwanzig formalism will be applied is
formulated. The strengths and weaknesses of the model are discussed and a possible extension
is given.

4.1.1 Model Formulation

To derive a delay model, the model for the AMO derived by Sévellec and Huck (2015) is taken
as a starting point [34]. In the derivation of this three-layer model, they consider a background
state with a zonal velocity ū and meridional and vertical temperature gradients (∂yT̄ and ∂zT̄ ).
No background meridional or vertical velocity is assumed, since the zonal flow, which is forced
by the wind, is much stronger. Equations for the perturbations from this background state are
considered. For temperature this yields

∂tT = −ū∂xT − v∂yT̄ − w∂zT̄ + κ∂xxT, (85)

where κ is the horizontal eddy diffusivity coefficient.
For the velocities perturbations to the geostrophic and hydrostatic equations are considered.

The geostrophic equation represents a balance between the Coriolis force and horizontal pressure
gradients, while the hydrostatic equation gives an equilibrium between gravity and the vertical
pressure gradient [7]. No inertia is taken into account. This results in the thermal wind balance:

f∂zv = αT g∂xT, (86)

where f is the Coriolis parameter, αT the thermal expansion coefficient and g the acceleration
of gravity. Since it is assumed that ∂yT ≈ 0, this is the only part of the thermal wind balance
that is present. This assumption also implies that u = 0. Vertical integration of the continuity
equation (∇ · ~u = 0), while assuming no vertical velocity at the surface and bottom, gives the
baroclinic condition:∫ 0

−H
vdz = 0, (87)

for an ocean of depth H. Discretization of the model over three vertical layers (of depth h1, h2

and h3), results in expressions for the meridional velocity in each layer via Equation (86). So
these expressions are in terms of the x-derivatives of temperature in the different layers. Using
the Sverdrup balance [7]

βv = f∂zw, (88)

which employs the β-plane approximation of the Coriolis parameter f = f0 + βy, results in
expressions for the vertical velocities in the top two layers in a similar way.
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Table 3: The values of the parameters in the AMO model by Sévellec and Huck [34].

Thickness layer one h1 600 m
Thickness layer two h2 600 m Vertical temperature gradient
Thickness layer three h3 3300 m
Total ocean depth H 4500 m ∂zT̄ = − 2c

h1+h2

(
∆T − αS

αT
∆S
)

Zonal basin size W 4.000 km
Meridional basin size L 6500 km Control parameter c
Horizontal diffusivity κ 2 · 103 m2/s Standard c = 1
Acceleration of gravity g 9.8 m/s2

Coriolis parameter f 10−4 s−1

β effect β 1.5 · 10−11 (ms)−1

Thermal expansion coefficient αT 2 · 10−4 K−1 Meridional temperature gradient
Haline contraction coefficient αS 7 · 10−4 psu−1

Meridional temperature diff. ∆T -20 K ∂yT̄ = 2
L

(
∆T − αS

αT
∆S
)

Meridional salinity diff. ∆S -1.5 psu
Zonal velocity ū 10−2 m/s

Substituting the expressions for the velocities in the different layers into the temperature
equation leads to a three-layer temperature model. It is assumed there is no background flow,
nor a background temperature gradient in the bottom layer. The resulting model by Sévellec
and Huck is

∂tT1 = a1∂xT1 + b1∂xT2 + c1∂xT3 + κ∂xxT1,

∂tT2 = a2∂xT1 + b2∂xT2 + c2∂xT3 + κ∂xxT2,

∂tT3 = κ∂xxT3,

(89)

with boundary conditions

Ti|West = −Ti|East, i = 1, 2, 3. (90)

The derivation of the boundary conditions can be found in the appendix to the article by Sévellec
and Huck [34]. The constants in the model are all positive for physically realistic values and
defined by

a1 =
αT g

2Hf

(
− h1(h2 + h3)∂yT̄ +

β

2f
h2

1(h2 + h3)∂zT̄
)
− ū,

b1 =
αT g

2Hf

(
− h2(h2 + 2h3)∂yT̄ +

β

2f
h1h2(h2 + 2h3)∂zT̄

)
,

c1 =
αT g

2Hf

(
− h2

3∂yT̄ +
β

2f
h1h

2
3∂zT̄

)
,

a2 =
αT g

2Hf

(
h2

1∂yT̄ +
β

2f
h2

1(h2 + 2h3)∂zT̄
)
,

b2 =
αT g

2Hf

(
− h2(h3 − h1)∂yT̄ +

β

2f
(4h1h2h3 + h2

2(h1 + h3))∂zT̄
)
− ū,

c2 =
αT g

2Hf

(
− h2

3∂yT̄ +
β

2f
h2

3(2h1 + h2)∂zT̄
)
.

(91)

The values of the parameters are given in Table 3.
The next step is to scale the equations. This is done by defining new variables x = Wx′ and

t = Y t′ for space and time, with W as in Table 3 and Y a year (in seconds). The parameters
then change by a factor Y

W for ai, bi and ci, e.g. a′i = Y
W ai. For the diffusion term the factor

is Y
W 2 . From here onwards the scaled model is considered, where the primes of the scaling are

dropped.
Note in Equation (89) that the only term acting in the third layer is diffusion, since the

bottom layer is assumed to be at rest. Therefore, any perturbation damps out. For this reason,
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and to simplify the mathematical treatment of the system, it is assumed that there are no
perturbations in the bottom layer (T3 = 0). Furthermore, the diffusion terms are approximated
by linear damping with damping coefficient α. Under these two approximations the system of
Equation (89) becomes a two-layer system:

∂tT1 = a1∂xT1 + b1∂xT2 − αT1,

∂tT2 = a2∂xT1 + b2∂xT2 − αT2.
(92)

This is the model for the AMO that is studied in this AMO section and to which the Mori-
Zwanzig formalism is applied.

Before continuing the study of this model, first it is simulated without damping. This is
done using an upwind discretization scheme for the x-derivatives and a forward Euler scheme
in time. Note that this discretization includes numerical diffusion. The result for dx = 0.0025
(corresponding to 10 km), with an initial positive Gaussian temperature perturbation in the
centre of the basin, is shown in Figure 13. Note the opposite sign of the temperature in the two
layers, which is due to the baroclinic nature of the waves [7]. The model shows a combination of
two oscillations with different periods. First, there is a long period of approximately sixty years,
which corresponds to a thermal Rossby wave responsible for driving the AMO. Secondly, there
is a high frequency oscillation with a period of around five years. This short period oscillation
does not correspond to a planetary Rossby wave, as one might expect, since decreasing β does
not result in a disappearance of these oscillations. It is a thermal Rossby wave, just as the one
responsible for the AMO oscillation.

Figure 13: Model simulation of the AMO model in Equation (92) for an initial positive Gaussian
temperature perturbation in the centre of the basin. In the right figure a zoom of the left figure
for the first 150 years is shown.

The occurrence of this short period is surprising, as it is not known from literature. In Figure
14 the spectrum of the AMO is shown. This spectrum is computed by calculating the discrete
Fourier transform of the data. The two clear peaks correspond to periods of one year, which is
seasonality, and of approximately seventy years, which is the AMO. Between those two peaks
there appears to be a small peak corresponding to a period of approximately eight years, which
is on the same order has the short period in the model. However, this peak can also be due to
noise in the data. The dominant appearance of this mode in the model simulations thus does
not clearly correspond to the data of the AMO. It could be an artificial feature of the model.

This AMO model of temperature oscillations also provides information about oscillations in
the zonal and meridional overturning circulation. By the thermal wind balance in Equation (86),
the vertical shear in the meridional flow can be related to the zonal temperature gradient. This
results in a quarter of a phase difference between the two. The vertical shear in the meridional
flow indicates whether there is a positive or negative perturbation in the meridional overturning.
A positive perturbation in ∂zv means more northward flow at the surface compared to the
bottom, and thus a positive perturbation in the overturning circulation. Similarly a negative
perturbation in ∂zv corresponds to a negative overturning perturbation.
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Figure 14: The spectrum of the AMO as computed by the discrete Fourier transform. Data
from the NCEP/NCAR reanalysis project [26]..

To get an idea of the behaviour of perturbations in the zonal overturning, the y-averaged
continuity equation is considered. Here it is assumed that there is no flow through the boundaries
of the basin, so v|South = v|North = 0. Using the Sverdrup balance from Equation (88), after
taking the z-derivative of the integrated continuity equation, gives the following equation:

∂x
(
∂zu
)

= −β
f
∂zv = −β

f

αT g

f
∂xT. (93)

This indicates there is a difference of half a phase between zonal overturning perturbations and
temperature perturbations. The phase difference between the zonal and meridional overturning
perturbations is a quarter phase, as is expected from literature [12].

Computing the evolution of the meridional and zonal perturbations in the vertical shear from
the temperature deviations, yields the results seen in Figure 15. For both the short and long
period oscillations, the quarter and half phase difference between the temperature oscillations
and the meridional and zonal overturning perturbations respectively can be seen. A positive
peak in temperature coincides with a negative zonal overturning perturbation, which transports
this perturbation westward. Physically a short delay between these two would be expected, but
due to the assumption of immediate thermal wind balance this is not present in the model. The
resulting zonal temperature gradient causes a negative meridional overturning perturbation with
equatorward surface flow, lagging by a quarter phase. This is followed by a negative tempera-
ture perturbation and a positive zonal overturning, inducing a positive meridional overturning
perturbation, after which the oscillation starts again. Apart from the timing of the peaks in
temperature and zonal overturning perturbations, this is exactly the physical process of the
AMO as described in the beginning of Section 4.

4.1.2 Background Overturning Circulation

The AMO model by Sévellec and Huck does not contain a background overturning circulation,
as the meridional and vertical flow is neglected in the background state. This results in the
presence of a negative overturning circulation in the model. Adding background meridional and
vertical velocities (v̄ and w̄) yields the following perturbation equation for temperature:

∂tT = −ū∂xT − v̄∂yT − w̄∂zT − v∂yT̄ − w∂zT̄ + κ∂xxT. (94)

If ∂yT is taken into account, the two equations for thermal wind balance are

f∂zv = αT g∂xT, f∂zu = −αT g∂yT. (95)
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Figure 15: The evolution of the vertical shear in the meridional and zonal direction (blue)
together with the temperature oscillations (red) in the top layer.

This means the partial derivative of temperature to y can be expressed in terms of ∂zu. In
addition to the previous equations, also expressions for ∂zT and ∂zu in the three different layers
are needed. For u this is done by assuming a baroclinic condition, similar to Equation (87). For
T the vertical derivatives in the different layers can be computed if it is assumed there are no
temperature perturbations at the bottom (T |−H = 0).

If, as before, it is assumed that no perturbations in the third layer are present, the model
reduces again to a two-layer model. A model simulation, with v̄ = 0.5 ·10−2 m/s and w̄ = −0.17 ·
10−6 m/s, is shown in Figure 16. The result of adding the background overturning circulation,
is a damping of the high frequency oscillation. The short period oscillation is absorbed by the
background overturning circulation, while the long period oscillation persists. The amplitude of
the oscillation corresponding to the AMO appears to be barely affected by the damping. This
can be due to the presence of an amplifying effect of the background overturning in some parts
of the equations.

In the following sections the AMO model without background overturning is considered, to
simplify the computations. However, one has to keep in mind that the high frequency oscillation
present in the model, does not sustain in the presence of a background overturning.

4.2 Mori-Zwanzig formalism

For the ENSO model, as described in Section 3.2, the procedure of projecting onto the temper-
ature at one location presented itself in a quite straight-forward manner. For the AMO model
from Section 4.1 it is more difficult to see how this projection is done.

The model is linear, meaning it is possible to formally write down a solution for T2 using
variation of constants and substitute this into the equation for T1. This yields

∂tT1 = a1∂xT1 − αT1 + b1∂x

(
e(b2∂x−α)tT2(0) +

∫ t

0

e(b2∂x−α)(t−s)a2∂xT1(s)ds
)
. (96)

Here the application of integration along characteristics to get rid of the exponentials is not
sufficient, because the exponential terms act on the x-derivative of T1 instead of T1 itself. By
the nature of the equations, there are waves traveling in the system, but by rewriting the system
this way it is difficult to see whether a delay is present. Note that because of the x-derivative to
T1 in the equation, it is also difficult to arrive at an equation for temperature at one location.
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Figure 16: Simulations of the temperature in the two layers without (red, blue) and with (black,
cyan) a background overturning circulation.

The way in which is proceeded here, is to first change the partial differential equations
into ordinary differential equations by discretization. On the resulting large system of ordinary
differential equations the Mori-Zwanzig formalism is applied. In the following sections this
procedure is described. In the end this results in a delay model for the AMO. The nature of
this model is quite different from the model found for ENSO. An alternative method is to use a
change of variables. This way a system with two separated variables can be found, after which
integration along characteristics can be applied.

4.2.1 Discretization

The first step is to find a stable discretization of the AMO model in Equation (92). Since all
parameters in the model are positive, the direction in which the waves travel is known. This
indicates the best way to discretize the model. A grid of N + 1-points in space with distance
dx = 1

N is used. Since all waves travel westward, an upwind discretization scheme is used. The
discretized equations are

∂tT
n
1 =

a1

dx
(Tn+1

1 − Tn1 ) +
b1
dx

(Tn+1
2 − Tn2 )− αTn1 ,

∂tT
n
2 =

a2

dx
(Tn+1

1 − Tn1 ) +
b2
dx

(Tn+1
2 − Tn2 )− αTn2 ,

(97)

for n = 0, ..., N , with boundary conditions

TN1 = −T 0
1 ,

TN2 = −T 0
2 .

(98)

Because of the circular nature of the boundary conditions, this is a 2N -dimensional system.
Let ~T = (T 0

1 , T
0
2 , ..., T

N−1
1 , TN−1

2 ). The system from Equation (97) can be written as a matrix
equation:

∂t ~T = M ~T, (99)

33



with

M =



− a1
dx − α − b1

dx
a1
dx

b1
dx

− a2
dx − b2

dx − α
a2
dx

b2
dx

− a1
dx − α − b1

dx

. . .

− a2
dx − b2

dx − α
. . .

. . . a1
dx

b1
dx

. . . a2
dx

b2
dx

− a1
dx − b1

dx − a1
dx − α − b1

dx

− a2
dx − b2

dx − a2
dx − b2

dx − α


. (100)

Before continuing with this discretized system of ordinary differential equations, its stability
is verified. This is done by computing the eigenvalues of the matrix M . They are shown in
Figure 17 for two different values of N . For each N two curves are visible with approximate
equal spacing in the imaginary part between the subsequent eigenvalues. For increasing N both
curves of eigenvalues approach a line with real part −α. Since all eigenvalues are negative, the
discretization is stable. In the limit of N →∞, the continuous model, which has eigenvalue −α,
is approached. Since this discretization of the AMO model is stable, it is suitable for applying
the Mori-Zwanzig formalism.

Figure 17: The eigenvalues of the discretized AMO model for N = 500 (blue) and N = 1000
(red).

4.2.2 Projection

Now a stable discretization of the AMO model has been found, the next step is to choose the
resolved variables. The goal is to get an equation for the temperature at one location. In this
linear situation, the resulting orthogonal dynamics system can also be represented by a matrix
equation. This is a system for all variables except the resolved one(s) onto which is projected.
The corresponding evolution matrix is the same as the matrix for the full system, but with the
rows and columns corresponding to the resolved variable(s) removed. The eigenvalues of this
orthogonal dynamics system indicate how good the corresponding projection is. If the eigenvalues
show a fast decay compared to the full model, the noise term decays quickly and the robustness
and accuracy of the Mori-Zwanzig formalism are good. This also provides a justification for
neglecting the noise term in the final equation. If the decay of the orthogonal dynamics is on
the same order as that of the full system, the reduction by the chosen projection is not as good.
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The problem of solving the full system is transfered to the equally difficult problem of solving
the orthogonal dynamics system. In that case the application of the Mori-Zwanzig formalism
does not yield the desired result. This eigenvalue discussion for the choice of the projection can
be extended to nonlinear models.

Projecting at one location in the AMO model still leaves multiple options. One can project
onto either T1 or T2, or on both. In Figure 18 the eigenvalues of the full system and the projected
system are shown for two different projections on the boundary variables. For projection onto
just T 0

1 the eigenvalues are not that different from those of the full system. The eigenvalues for
projection onto only T 0

2 show similar behaviour. Projection on both T 0
1 and T 0

2 turns out to be
better. There are only two eigenvalues left, which move further away from zero the larger N
gets. Therefore this projection on both T1 and T2 at one location is chosen.

It does not matter which location is chosen for the resolved variables. The eigenvalues are
the same for every point onto which can be projected due to the properties of the system. For
simplicity the boundary is chosen as the location of the resolved variables and the result for this
projection is discussed in the following sections. The resulting final equations will be the same
for every location in the basin. This is because all waves travel in the same direction and there
is no loss of energy at the boundaries.

Figure 18: The eigenvalues of the discretized AMO model for N = 500 before (red) and after
projection onto either only T 0

1 (blue) or both T 0
1 and T 0

2 (purple).

4.2.3 Noise and Memory Terms

For projection onto T 0
1 and T 0

2 the orthogonal dynamics system is

∂t ~TQ = MQ
~TQ, (101)

where ~TQ = (T 1
1Q, T

1
2Q, ..., T

N−1
1Q , TN−1

2Q ) and

MQ =



− a1
dx − α − b1

dx
a1
dx

b1
dx

− a2
dx − b2

dx − α
a2
dx

b2
dx

− a1
dx − α − b1

dx

. . .

− a2
dx − b2

dx − α
. . .

. . . a1
dx

b1
dx

. . . a2
dx

b2
dx

− a1
dx − α − b1

dx

− a2
dx − b2

dx − α


. (102)
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To solve this system, the first step is to compute the eigenvalues and (generalized) eigenvectors.
The eigenvalues of MQ are

λ± = −α− l±
dx
, (103)

where

l± =
1

2

(
a1 + b2 ±

√
a2

1 + b22 − 2a1b2 + 4a2b1

)
. (104)

Each of them has multiplicity N − 1. The corresponding generalized eigenvectors of MQ for
i = 1, ..., N − 1 are

~vi± =
(dx
l±

)i−1

· (0, ..., 0, w±, 1, 0, ..., 0), (105)

where the non-zero values are located on the coordinates corresponding to location i, and with

w± =
1

2a2

(
a1 − b2 ±

√
a2

1 + b22 − 2a1b2 + 4a2b1

)
. (106)

Using the eigenvalues and generalized eigenvectors, the solution to the orthogonal dynamics
system can be found [14]. It is

~TQ(t) = eλ+t
(
c1+~v

1
+ + c2+(t~v1

+ + ~v2
+) + ...+ ci+

( ti−1

(i− 1)!
~v1

+ +
ti−2

(i− 2)!
~v2

+ + ...+ ~vi+

)
+ ...+ cN−1

+

( tN−2

(N − 2)!
~v1

+ + ...+ ~vN−1
+

))
+ eλ−t

(
c1−~v

1
n + c2−(t~v1

− + ~v2
−) + ...+ ci−

( ti−1

(i− 1)!
~v1
− +

ti−2

(i− 2)!
~v2
− + ...+ ~vi−

)
+ ...+ cN−1

−

( tN−2

(N − 2)!
~v1
− + ...+ ~vN−1

−

))
.

(107)

Here the constants ci± are determined by the initial conditions. Each generalized eigenvector has
only components in the directions of T i1 and T i2. This means that, to find expressions for the
constants, the following system has to be solved for each i:

ci+w+

(dx
l+

)i−1

+ ci−w−

(dx
l−

)i−1

= T i1(0),

ci+

(dx
l+

)i−1

+ ci−

(dx
l−

)i−1

= T i2(0).

(108)

The solution is

ci+ =
( l+
dx

)i−1

· T
i
1(0)− w−T i2(0)

w+ − w−
,

ci− = −
( l−
dx

)i−1

· T
i
1(0)− w+T

i
2(0)

w+ − w−
.

(109)

This way an analytical solution to the orthogonal dynamics equation for general initial conditions
has been found.

This general solution is used to compute first the noise terms, and subsequently the memory
terms. The noise terms for the AMO model are defined by

FT 0
1
(t) =

a1

dx
T 1

1Q(t) +
b1
dx
T 1

2Q(t),

FT 0
2
(t) =

a2

dx
T 1

1Q(t) +
b2
dx
T 1

2Q(t).

(110)
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Only the generalized eigenvectors v1
± in the solution of the orthogonal dynamics equation con-

tribute to the components of the noise terms in the above equations. The resulting equations
are

FT 0
1
(t) = a1N

(
w+e

λ+t
N−1∑
i=1

ci+
ti−1

(i− 1)!
+ w−e

λ−t
N−1∑
i=1

ci−
ti−1

(i− 1)!

)
+ b1N

(
eλ+t

N−1∑
i=1

ci+
ti−1

(i− 1)!
+ eλ−t

N−1∑
i=1

ci−
ti−1

(i− 1)!

)
,

FT 0
2
(t) = a2N

(
w+e

λ+t
N−1∑
i=1

ci+
ti−1

(i− 1)!
+ w−e

λ−t
N−1∑
i=1

ci−
ti−1

(i− 1)!

)
+ b2N

(
eλ+t

N−1∑
i=1

ci+
ti−1

(i− 1)!
+ eλ−t

N−1∑
i=1

ci−
ti−1

(i− 1)!

)
,

(111)

where dx has been replaced by 1
N .

To be able to compute the memory terms, it has to be investigated what the operator PL
does when it acts on the noise terms. Since the noise terms are linear in the initial conditions, it
is sufficient to consider the effect of this operator on each of these conditions separately. Acting
on each of the initial conditions gives

PL
(
T 1

1 (0), T 1
2 (0), ..., T i1(0), T i2(0), ..., TN−1

1 (0), TN−1
2 (0)

)
= P

(
...,

a1

dx
(T i+1

1 (0)− T i1(0)) +
b1
dx

(T i+1
2 (0)− T i2(0))− αT i1(0),

a2

dx
(T i+1

1 (0)− T i1(0)) +
b2
dx

(T i+1
2 (0)− T i2(0))− αT i2(0), ...

)
=
(
0, ..., 0,− a1

dx
T 0

1 (0)− b1
dx
T 0

2 (0),− a2

dx
T 0

1 (0)− b2
dx
T 0

2 (0)
)
.

(112)

This means only the terms that, before the application of the operator PL, depend on TN−1
1 (0)

and TN−1
2 (0) remain in the memory kernel. Those are the terms from the general solution which

contain cN−1
± . Replacing dx by 1

N , the memory integrands are

KT 0
1
(T 0

1 (0), T 0
2 (0), t) = PL

(
N(a1w+ + b1)eλ+tcN−1

+

tN−2

(N − 2)!

+N(a1w− + b1)eλ−tcN−1
−

tN−2

(N − 2)!

)
,

KT 0
1
((T 0

1 (0), T 0
2 (0), t) = PL

(
N(a2w+ + b2)eλ+tcN−1

+

tN−2

(N − 2)!

+N(a2w− + b2)eλ−tcN−1
−

tN−2

(N − 2)!

)
.

(113)

Substituting the values of λ± and cN−1
± , from Equations (104) and (109) respectively, yields

KT 0
1
((T 0

1 (0),T 0
2 (0), t) = N

tN−2

(N − 2)!
e−αt

·
(
e−l+Nt(a1w+ + b1)PL

(
(l+N)N−2T

N−1
1 (0)− w−TN−1

2 (0)

w+ − w−

)
+ e−l−Nt(a1w− + b1)PL

(
− (l−N)N−2T

N−1
1 (0)− w+T

N−1
2 (0)

w+ − w−

))
= N2 tN−2

(N − 2)!
e−αt

(
(l+N)N−2e−l+Nt

(
A1+T

0
1 (0) +B1+T

0
2 (0)

)
+ (l−N)N−2e−l−Nt

(
A1−T

0
1 (0) +B1−T

0
2 (0)

))
,

(114)
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and similarly

KT 0
2
((T 0

1 (0), T 0
2 (0), t) = N2 tN−2

(N − 2)!
e−αt

(
(l+N)N−2e−l+Nt

(
A2+T

0
1 (0) +B2+T

0
2 (0)

)
+ (l−N)N−2e−l−Nt

(
A2−T

0
1 (0) +B2−T

0
2 (0)

))
,

(115)

with

A1+ =
(a1w+ + b1)(−a1 + w−a2)

w+ − w−
, A1− =

−(a1w− + b1)(−a1 + w+a2)

w+ − w−
,

B1+ =
(a1w+ + b1)(−b1 + w−b2)

w+ − w−
, B1− =

−(a1w− + b1)(−b1 + w+b2)

w+ − w−
,

A2+ =
(a2w+ + b2)(−a1 + w−a2)

w+ − w−
, A2− =

−(a2w− + b2)(−a1 + w+a2)

w+ − w−
,

B2+ =
(a2w+ + b2)(−b1 + w−b2)

w+ − w−
, B2− =

−(a2w− + b2)(−b1 + w+b2)

w+ − w−
.

(116)

All components of Equation (11), the system resulting from the application of the Mori-
Zwanzig formalism, are now known. The resulting equations for T 0

1 and T 0
2 , found by substituting

the noise and memory terms into the Langevin equation, are

∂tT
0
1 = −a1NT

0
1 − b1NT 0

2 − αT 0
1

+Ne−αt
N−1∑
i=1

(
(a1w+ + b1)e−l+Ntci+ + (a1w− + b1)e−l−Ntci−

) ti−1

(i− 1)!

+

∫ t

0

N2 (t− s)N−2

(N − 2)!
e−α(t−s)

(
(l+N)N−2e−l+N(t−s)(A1+T

0
1 (s) +B1+T

0
2 (s)

)
+ (l−N)N−2e−l−N(t−s)(A1−T

0
1 (s) +B1−T

0
2 (s)

))
ds,

∂tT
0
2 = −a2NT

0
1 − b2NT 0

2 − αT 0
2

+Ne−αt
N−1∑
i=1

(
(a2w+ + b2)e−l+Ntci+ + (a2w− + b2)e−l−Ntci−

) ti−1

(i− 1)!

+

∫ t

0

N2 (t− s)N−2

(N − 2)!
e−α(t−s)

(
(l+N)N−2e−l+N(t−s)(A2+T

0
1 (s) +B2+T

0
2 (s)

)
+ (l−N)N−2e−l−N(t−s)(A2−T

0
1 (s) +B2−T

0
2 (s)

))
ds.

(117)

This system still depends on the discretization, or more precisely, on the number of points N .
The discretization affects both the noise and memory terms. The effect of this dependence on
the noise terms is considered in the next section. The effect on the memory terms is briefly
discussed here. To see what this effect of N is, consider the function

fK(t) = N2 tN−2

(N − 2)!
e−αt(µN)N−2e−µNt, (118)

which contains the dependence of the memory kernel on t and N for µ = l±. This function
provides information about the behaviour of the memory kernel for increasing N . In Figure 19
this function is plotted for several N and fixed µ. For increasing N the function approaches a
peak of increasing height at 1/µ. This blow up at one point is due to the projection onto one
location. This prevents the waves from traveling through the basin in the orthogonal dynamics
system, resulting in an accumulation of energy at the location of the resolved variables. This
blow up of the memory kernel has to be dealt with. Here it is important to note that the memory
kernel occurs in an integral, meaning the surface below fK is the determining factor, not the
peak height. In the next section the limit behaviour of the memory integral is investigated by
applying Laplace’s approximation.
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Figure 19: The function fK(t) with µ = 0.5 for N = 25 (red), N = 50 (purple) and N = 100
(blue).

4.2.4 Limit Behaviour

The components within the memory integrals satisfy the conditions for Laplace’s approximation
[15]. This is used to expand the memory integrals in ε = 1

N . Laplace’s approximation says
that for a large number N , a smooth function h(x), and a twice differentiable function g(x), the
following integral can be approximated by∫ b

a

h(x)eNg(x)dx =

√
2π

N |g′′(x0)|
eNg(x0) ·

(
h(x0) +

1

N

(
− h′′(x0)

2g′′(x0)
+
h(x0)g′′′′(x0)

8(g′′(x0))2

+
h′(x0)g′′′(x0)

2(g′′(x0))2
− 5h(x0)(g′′′(x0))2

24(g′′(x0))3

)
+O

( 1

N2

))
,

(119)

provided that there is an x0 ∈ (a, b) such that g(x) is only close to g(x0) if x is close to x0. At
that point g(x) is required to have a maximum, so g′′(x0) < 0.

For the AMO model considered, all components in the memory integrals can be written in
the form hij±(s)eNg±(s), for i = 1, 2 and j = 1, 2, with

g±(s) = log(l±(t− s))− l±(t− s),

hij±(s) =
NN

(N − 2)!
(l±(t− s))−2e−α(t−s)Cj±Ti(s),

(120)

where Cj± is either Aj± or Bj± as defined in Equation (116). To check that the conditions for
the Laplace approximation are satisfied, the first two derivatives of g±(s) are computed:

g′±(s) = − 1

t− s
+ l±,

g′′±(s) = − 1

(t− s)2
.

(121)

The first derivative indicates there is one extreme at s0 = t− 1
l±

. This means the first condition

is satisfied. Furthermore, g±(s0) = −l2± < 0, indicating the second condition is satisfied. This
means that Laplace’s approximation can be applied. To be able to compute the first error term
of Laplace’s approximation, also the third and fourth derivative of g±(s) are computed:

g′′′± (s) = − 2

(t− s)3
,

g′′′′± (s) = − 6

(t− s)4
,

(122)
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as well as the first two derivatives of hij±:

h′ij±(s) =
NN

(N − 2)!
(l±(t− s))−2e−α(t−s)Cj±

((
α+

2

t− s
)
Ti(s) + T ′i (s)

)
,

h′′ij±(s) =
NN

(N − 2)!
(l±(t− s))−2e−α(t−s)Cj±

(((
α+

2

t− s
)2

+
2

(t− s)2

)
Ti(s)

+ 2
(
α+

2

t− s
)
T ′i (s) + T ′′i (s)

)
.

(123)

Substituting all the above computed terms into the Laplace approximation of Equation (119)
gives∫ t

0

hij±(s)eNg±(s)ds =

√
2π

Nl2±
e−N

NN

(N − 2)!
e
− α
l± Cj±

(
Ti
(
t− 1

l±

)
+

1

N

1

2l2±

(
(2l±(l± + α) + α2)Ti

(
t− 1

l±

)
+ 2(l± + α)T ′i

(
t− 1

l±

)
+ T ′′i

(
t− 1

l±

))
+O

( 1

N2

))
.

(124)

This gives an approximation for every part of the memory integrals of the AMO model. In the
above equation delay terms have emerged, meaning that also the AMO can be modeled by some
type of delay equation.

In Equation (124) there still is N -dependence present. To investigate the behaviour of this
dependence one factor of N is taken out, after which a Taylor expansion in 1/N around zero is
applied. The result is√

2π

Nl2±
e−N

NN

(N − 2)!
=
N

l±

(
1− 13

12

1

N
+O

( 1

N

))
. (125)

This means all terms in the memory integrals can be expanded in terms of ε = 1
N . That is∫ t

0

hij±(s)eNg±(s)ds =
N

l±
e
− α
l± Cj±

(
Ti
(
t− 1

l±

)
+ ε

1

2l2±

((
(l± + α)2 − 7

6
l2±
)
Ti
(
t− 1

l±

)
+ 2(l± + α)T ′i

(
t− 1

l±

)
+ T ′′i

(
t− 1

l±

))
+O(ε2)

)
.

(126)

So far, only the memory terms of the Mori-Zwanzig formalism have been considered. The
behaviour of the noise terms for increasing N also needs to be investigated. Each component of
the sum in the noise terms in Equation (111) is proportional to

Ne−l±Nt
(l±Nt)

N−k

(N − k)!
, (127)

for some k = 2, ..., N . Dividing by N the resulting function peaks at time t = 1
l±

, just as the

memory kernels do. If N is increased, the contribution of all other times goes to zero faster than
ε2. At the time where the noise term peaks, it can be expanded in ε, just as has been done for
the memory terms. The result is

Ne−N
(N)N−k

(N − k)!
=

1√
2π

N√
ε
(1− 13

12
ε+O(ε2)). (128)

This shows that the noise terms indeed decay faster then the memory terms at dominant order.
The decay is proportional to

√
ε, which is slower than the decay of the first perturbation to the

memory terms. However, this is an effect that happens at one time only, as a remnant of the
initial conditions. At later times it does not have any effect, and therefore it is neglected when
the resulting equations are considered in the next section. But when considering the possible
predictability of noise, this can be an interesting term to consider in more detail.

40



4.3 Delay Model

The limiting behaviour of the noise and memory terms has been discussed in the previous
section. Dividing by N in Equation (117), the resulting system can be written as an expansion
in ε. Here, as noted in the previous section, the noise term is neglected. Up to first order the
resulting equations are

ε
dT1

dt
= −a1T1(t)− b1T2(t) +

A1+

l+
e
− α
l+ T1

(
t− 1

l+

)
+
B1+

l+
e
− α
l+ T2

(
t− 1

l+

)
+
A1−

l−
e
− α
l− T1

(
t− 1

l−

)
+
B1−

l−
e
− α
l− T2

(
t− 1

l−

)
+ εfε1(t) +O(ε2),

ε
dT2

dt
= −a2T1(t)− b2T2(t) +

A2+

l+
e
− α
l+ T1

(
t− 1

l+

)
+
B2+

l+
e
− α
l+ T2

(
t− 1

l+

)
+
A2−

l−
e
− α
l− T1

(
t− 1

l−

)
+
B2−

l−
e
− α
l− T2

(
t− 1

l−

)
+ εfε2(t) +O(ε2),

(129)

where

fε1(t) = −αT1(t) +
A1+

l+
e
− α
l+ gε+

(
T1

)
+
B1+

l+
e
− α
l+ gε+

(
T2

)
+
A1−

l−
e
− α
l− gε−

(
T1

)
+
B1−

l−
e
− α
l− gε−

(
T2

)
,

fε2(t) = −αT2(t) +
A2+

l+
e
− α
l+ gε+

(
T1

)
+
B2+

l+
e
− α
l+ gε+

(
T2

)
+
A2−

l−
e
− α
l− gε−

(
T1

)
+
B2−

l−
e
− α
l− gε−

(
T2

)
,

(130)

for

gε±
(
T
)

=
1

2l2±

((
(l± + α)2 − 7

6
l2±
)
T
(
t− 1

l±

)
+ 2(l± + α)T ′

(
t− 1

l±

)
+ T ′′

(
t− 1

l±

))
. (131)

This equation is the main result achieved by applying the Mori-Zwanzig formalism to the dis-
cretized system of the AMO in Equation (92).

Letting ε → 0, the equations simplify to a set of delay difference equations. These delay
difference equations can also be derived by integration along characteristics of the original system
[17]. Such a delay difference equation shows the transport of temperature through the basin with
(possibly) different velocities. For more theory on delay difference and delay differential equations
one can consult the book by Hale and Verduyn Lunel [21]. Delay difference equations can exhibit
an increasing frequency of switching between different states if the delay is irrational [18]. To
prevent this possibility of infinite switching, in numerical studies an ε ddt -term is added. This
term smooths the solution by preventing the infinite switching. In applying the Mori-Zwanzig
formalism an error term for the addition of this ε ddt -term, has been computed. This error term
corresponds to the error made in the discretization of the x-derivative, indicating it reflects
(numerical) diffusion.

The method employed here to derive a delay model for the AMO, including error terms,
can be generalized to other systems. Also for the ENSO model this method results in a delay
equation. The derivation of this is given in Appendix A. Note that both the AMO and ENSO
model are diagonalizable in their ∂x-dependence. It is expected that other diagonalizable systems
of wave equations also have a corresponding delay (difference) equation. In the ENSO model the
result of a delay differential equation is (partly) due to absence of a ∂x-terms in the temperature
equation. To see whether this can be generalized more research is needed.

In Figure 20 a simulation of the delay model of the AMO is shown for ε = 10−2, together
with the resulting error term. The history taken here is from a simulation of the initial AMO
model. For this ε the model is stable and shows the transport of the history with two different
velocities. The error is present dominantly for the high frequency oscillations and, as expected,
an order ε smaller than the original oscillation. The fast velocity corresponds to a delay of about
3 years, while the second delay is approximately 27 years. These delay times correspond to the
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Figure 20: A model simulation of the AMO delay model in Equation (129) with ε = 10−2 where
a simulation of the original model is used as history. In the right figure the corresponding first
order error term is shown.

time the waves need to cross the basin. The long delay time corresponds to the AMO and the
short delay time represents another thermal Rossby wave present in the model. By the inversion
in the boundary conditions, the period doubles compared to the delay.

The behaviour of this delay model for the AMO is similar to that of the full model by Sévellec
and Huck. The periods of oscillation are the same, meaning both the five and sixty year period
are recovered. An interesting aspect of this delay model is that it can be initiated with real data
to predict the evolution of the AMO, including possibly the behaviour of noise. The dominance
of the high frequency in the error terms, indicates that this component might be less stable, as
already was shown in Section 4.1.2 by adding a background overturning circulation. In summary,
this delay (difference) model with additional ε ddt -term is just as good a model for the AMO as
the full model by Sévellec and Huck when initialized with a realistic history.
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5 Summary, Discussion and Conclusion

Delay models are useful as conceptual climate models by their infinite dimensional nature and
limited number of parameters. They are suited for mathematical analysis and this way can add to
the physical understanding of the processes involved. In this thesis the Mori-Zwanzig formalism
has been investigated as a method to derive delay equations. The two-strip model of the El
Niño Southern Oscillation (ENSO) was used as a test case for the application of the technique.
The reason for this was that delay models had already been proposed for this phenomenon. The
formalism then was applied to a model of the Atlantic Multidecadal Oscillation (AMO). No
delay model for this phenomenon has been proposed up to now.

The Mori-Zwanzig formalism gives an exact rewriting of a system of ordinary differential
equations [5]. The rewritten equation contains a Markovian, noise, and memory term. Here the
focus was on the memory term, since this is an integral over the history of the system, just as
the delay term represents this history. By making approximations of the memory integral, delay
terms can be derived. This was achieved for models of both the ENSO and AMO.

For the model of ENSO, in addition to the use of the Mori-Zwanzig formalism, also a general-
ized version of the method of variation of constants has been employed. Starting from the linear
two-strip model [24], the linear part of the delay model by Suarez and Schopf has been derived
[36]. The two methods used here yield the same result. Furthermore, a nonlinear version of the
two-strip model was derived by assuming that the sea surface temperature is proportional to the
subsurface temperature. This assumption is supported by (NOAA) buoy data from the Pacific
Ocean. Also for the nonlinear two-strip model (nonlinear) delay models have been derived. Here
the two methods do not yield the same result. This is due to the approximations needed to
obtain a closed-form equation from the Mori-Zwanzig formalism. The method of variation of
constants is exact.

Both derived nonlinear delay models contain an extra cubic delay term compared to the
model by Suarez and Schopf [36]. In both cases this additional term results in an increased
period of the model oscillation. Another consequence of the additional term is the decrease of
the area in parameter space where stable oscillations occur. For the model derived using the
approximated Mori-Zwanzig formalism, this decrease is so large that no stable periodic behaviour
occurs for realistic values of the parameters. The exact derived model does show oscillations for
these parameter values. The period of the model derived using variation of constants is closer to
the real period of ENSO than the model proposed by Suarez and Schopf. However, its period is
still smaller than what is seen in data. An option to improve the match between model period
and data, is to no longer assume a delta-function for the spatial pattern of the wind forcing,
but rather take a more realistic pattern. As a consequence, the resulting delay model will no
longer contain a discrete delay, but a distributed delay. Another option for improvement is to
add additional nonlinearities, for example in the thermocline equations.

Also for the AMO a delay model has been derived from a three-layer model by Sévellec and
Huck [34]. In contrast to the delay differential model for ENSO, the derived model for the AMO
is a delay difference model at first order. This means the current state is fully determined by
past states. This type of model can exhibit an increasing switching frequency between states
[18], making it physically unrealistic. Often an ε ddt -term is added to prevent this behaviour and
allow for better numerical treatment. Starting from the discretized AMO model, an error term
for this approximation was derived. This error term corresponds to the upwind discretization
scheme used.

The AMO model by Sévellec and Huck does not contain a background overturning circulation.
This results in a high frequency model oscillation which is not clearly seen in data. As discussed
in Section 4.1.2, adding the meridional overturning circulation to the background state of the
model, results in a damping of this high frequency oscillation. It would be interesting to see what
the effect of this background overturning is on the resulting delay equations. The addition of the
overturning results in a change of the eigenvalues of the discretized system. These eigenvalues
then show a stronger decay for the high frequency mode and a weaker decay for the low frequency
mode. It is expected that this will be expressed in the parameters in front of the different delay
terms in the resulting delay model. There is not expected to be an effect on the delay times,
but this has to verified. The application of the Mori-Zwanzig formalism to this extended AMO
model remains for future research.
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The method of deriving delay equations applied to the AMO model can be generalized. It is
expected that every diagonalizable linear system of wave equations can be rewritten in the form of
a delay difference equation. Integration along characteristics already yields the dominant terms.
In addition, the Mori-Zwanzig formalism gives error terms to a smoothening approximation of
the resulting delay difference system. For non-diagonalizable systems a similar statement might
be valid, but the computations become more involved. The necessity of the diagonalizability
remains for future work.

For the ENSO model it is not necessary to use the Mori-Zwanzig formalism to arrive at a
delay equation. It does not give additional understanding compared to the method of variation
of constants. This last method works for both the linear and nonlinear model, since the nonlinear
model is still linear in the equations for the unresolved variables (thermocline depth). Therefore,
the variation of constants method yields a delay equation for the resolved variable (temperature)
in both cases. The Mori-Zwanzig formalism gives the same result for the linear system, but the
computation is more involved. For nonlinear systems the formalism does not give accurate
results, since approximations are needed.

For the derivation of the delay model of the AMO, the Mori-Zwanzig formalism is not strictly
necessary, just as is the case for the ENSO model. Since the model is linear, it can be diagonalized
in the ∂x-terms. When linear terms, so terms that do not contain an x-derivative, are not present,
there is a change of variables to a system in which the equations for all different variables are
separated. Integration along characteristics will give the delay difference equations as found by
the Mori-Zwanzig formalism in this thesis. However, when linear terms are present the Mori-
Zwanzig formalism still gives a resulting delay difference equation, in contrast to the alternative
method. The Mori-Zwanzig formalism is needed as well to find the error terms of the smoothening
approximation for the delay difference model.

When the equations of the model considered are also nonlinear in the unresolved variables,
the Mori-Zwanzig formalism is the only method that will give a result. In such a nonlinear case
the orthogonal dynamics system has to be approximated. This approximation needs to be an
improvement on the pseudo-orthogonal dynamics approximation [20], since this approximation
was shown to be not accurate for the ENSO model. Only if its accuracy can be shown for
a specific model, it can be justified to apply this approximation method. The derivation of
improved approximations is a first step that needs to be taken to apply the Mori-Zwanzig
formalism accurately to nonlinear models. This is a necessary step to be able to reliably derive
nonlinear delay models for climate systems.

Since many climate models are wave equations in one form or another, it is expected that
they can also be represented by a delay system. In the models studied in this thesis, it was
shown that projecting a system of wave equations onto one location yields a delay model. This
would imply that there is an abundance of processes in climate that can be described by a delay
equation. For linear models, this thesis provides the handles to derive such a delay model. Here,
the Mori-Zwanzig formalism is not always necessary. For nonlinear models it should be possible
to arrive at a delay model as well. To do so, the Mori-Zwanzig formalism is needed, unless the
unresolved dynamics still is linear. When the formalism is applied, the orthogonal dynamics
equation has to be approximated. To do this accurately, new approximation methods need to
be developed. Only then it is possible to derive accurate nonlinear delay models for climate
systems.
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[15] A. Erdélyi. Asymptotic Expansions. Dover Publications, 1956.

[16] D.J. Evans and G.P. Morriss. Statistical Mechanics of Nonequilibrium Liquids. 2nd. ANU
E Press, 2007, p. 61.

[17] L.C. Evans. Partial Differential Equations. 2nd. Vol. 19. American Mathematical Society,
2010.

[18] M. Ghil, I. Zaliapin, and B. Coluzzi. “Boolean delay equations: A simple way of looking
at complex systems”. In: Physica D 237 (2008), pp. 2967–2986.

[19] D. Givon, R. Kupferman, and A. Stuart. “Extracting macroscopic dynamics: model prob-
lems and algorithms”. In: Nonlinearity 17 (2004), pp. 55–127.

[20] A. Gouasmi, E.J. Parish, and K. Duraisamy. “A priori estimation of memory effects in
reduced-order models of nonlinear systems using the Mori-Zwanzig formalism”. In: Proc.
R. Soc. A. 473rd ser. 20170385 (2017).

[21] J.K. Hale and Verduyn Lunel S.M. Introduction to Functional Differential Equations.
Springer, 1993.

[22] Z. Hao, J.D. Neelin, and F. Jin. “Nonlinear Air-Sea Interaction in the Fast-Wave Limit”.
In: Journal of Climate 6 (1993), pp. 1523–1544.

46



[23] A.R. Humphries et al. “Dynamics of a delay differential equation with multiple state-
dependent delays”. In: Discrete and Continuous Dynamical Systems 32.8 (2012), pp. 2701–
2727.

[24] F. Jin. “An Equatorial Ocean Recharge Paradigm for ENSO. Part I: Conceptual Model”.
In: Journal of Atmospheric Sciences 54 (1997), pp. 811–829.

[25] F. Jin. “An Equatorial Ocean Recharge Paradigm for ENSO. Part II: A Stripped-Down
Coupled Model”. In: Journal of Atmospheric Sciences 54 (1997), pp. 830–847.

[26] E. Kalnay and Coauthors. “The NCEP/NCAR Reanalysis 40-year Project”. In: Bulletin
of the American Meteorological Society 77 (1996), pp. 437–471.

[27] A. Keane, B. Krauskopf, and C.M. Postlethwaite. “Climate models with delay differential
equations”. In: Chaos 27.114309 (2017).

[28] B. Krauskopf and J. Sieber. “Bifurcation analysis of delay-induced resonances of the El-
Niño Southern Oscillation”. In: Proceedings of the Royal Society A 470.2169 (2014).

[29] Pacific Marine Environmental Laboratory. Explaining El Niño. NOAA. May 23, 2018. url:
https://www.pmel.noaa.gov/elnino/schematic-diagrams.

[30] H. Mori. “Transport, Collective Motion and Brownian Motion”. In: Progress of Theoretical
Physics 33.3 (1965), pp. 423–455.

[31] G.A. Pavliotis. Stochastic Processes and Applications. Diffusion Processes, the Fokker-
Planck and Langevin Equations. 2014.

[32] D. Roose and R. Szalai. “Continuation and Bifurcation Analysis of Delay Differential Equa-
tions”. In: Numerical Continuation Methods for Dynamical Systems. Ed. by B. Krauskopf,
Osinga H.M., and J. Galán-Vioque. Springer, Dordrecht, 2007.

[33] J. Runge, V. Petoukhov, and J. Kurths. “Quantifying the Strength and Delay of Climate
Interactions: The Ambiguities of Cross Correlation and Novel Measure Based on Graphical
Models”. In: Journal of Climate 27 (2014), pp. 720–739.
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A ENSO: Discrete Mori-Zwanzig Formalism

The discretization method applied to the AMO model of Equation (92) in Section 4.2, can also
be applied to the ENSO model in Equation (30). This gives the exact same result as found in
Section 3.2.2 for a correct parametrization of the delta-function. Just as for the AMO model,
the basin is divided into N + 1 points and discretized according to an upwind scheme following
the waves. This discretization is shown in Figure 21. The resulting discretized model is

∂th
n
c = −ε0hnc −

1

dx
(hnc − hn−1

c ) + µA0

(
1− θ

1 + y2
n

)
Nδnw(n)TNe , n = 1...N,

∂th
n
n = −ε0hnn +

1

y2
n

1

dx
(hn+1
n − hnn)− µA0

θ

y2
n

Nδnw(n)TNe , n = 0...N − 1,

∂tT
n
e = −cTTne + ch

(
hnc +

1

1 + y2
n

hnn

)
, n = 0...N,

(132)

with boundary conditions

h0
c =

ArW
1 + y2

n

h0
n,

hNn = 0.

(133)

Here already the assumptions of a localized wind effect and no reflection at the eastern boundary
from Section 3.2.4 have been applied. The temperature equation only couples back into the
equations for the thermocline depth for n = N , which therefore is the only n for which the
temperature equation is considered. Note that in the discretization of the continuous delta-
function a factor N is incorporated to have the same energy in the system for every N . This
system can be written in matrix form, just as the discretized AMO model.

n-1   n

hc

n   n+1

hn

ArW                                                                                     ArE

0    1    2                                       n           nw                           N-1  N

x=0                                                             x=xw                               x=1

Figure 21: The basin and discretization of the ENSO model. The equator is shown in red, the
higher latitude in blue and the boundary conditions in green.

The projection in the AMO model was on one location in x. In that case the memory kernel
blew up because the wave was prevented from traveling through the basin. This resulted in an
accumulation of wave energy at one location in the orthogonal dynamics model. To achieve a
similar result for the ENSO model, it is not sufficient to only project onto TNe , as then the waves
can still propagate fully in the orthogonal dynamics system. A projection onto both TNe and h0

n
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is taken. This results in a 2N − 1-dimensional matrix for the orthogonal dynamics:

MQ = −



ε0 + 1
dx

− 1
dx ε0 + 1

dx
. . .

. . .

− 1
dx ε0 + 1

dx
ε0 + 1

y2n

1
dx − 1

y2n

1
dx

ε0 + 1
y2n

1
dx

. . .

. . . − 1
y2n

1
dx

ε0 + 1
y2n

1
dx


, (134)

working on yQ = (h1
cQ, h

2
cQ, ..., h

N
cQ, h

1
nQ, ..., h

N−1
nQ ).

The procedure followed here is exactly the same as for AMO model in Section 4.2. The
eigenvalues of MQ are

λc = −ε0 −
1

dx
(N times), λn = −ε0 −

1

y2
n

1

dx
(N − 1 times), (135)

and the corresponding generalized eigenvalues are

vic = (0, ..., dxi−1, ..., 0, 0, ..., 0), i = 1, ..., N,

vin = (0, ..., 0, 0, ..., (y2
ndx)i−1, ..., 0), i = 1, ..., N − 1,

(136)

at the locations of hN+1−i
cQ and hinQ respectively. The general solution, similar to Equation (107),

is given by

yQ(t) = eλct
(
c1cv

1
c + c2c(tv

1
c + v2

c ) + ...+ cic(
ti−1

(i− 1)!
v1
c +

ti−2

(i− 2)!
v2
c + ...+ vic)

+ ...+ cNc (
tN−1

(N − 1)!
v1
c + ...+ vNc )

)
+ eλnt

(
c1nv

1
n + c2n(tv1

n + v2
n) + ...+ cin(

ti−1

(i− 1)!
v1
n +

ti−2

(i− 2)!
v2
n + ...+ vin)

+ ...+ cN−1
n (

tN−2

(N − 2)!
v1
n + ...+ vN−1

n )
)
.

(137)

Since every generalized eigenvector has a component in only one direction, the constants here
are

cic =
1

dxi−1
hN+1−i
c (0), i = 1, ..., N,

cin =
1

(y2
ndx)i−1

hin(0), i = 1, ..., N − 1.
(138)

The noise terms are defined by

Fh0
n
(t) =

1

y2
n

1

dx
h1
nQ =

1

y2
n

1

dx
eλnt

N−1∑
i=1

cin
ti−1

(i− 1)!
,

FTNe (t) = chh
N
cQ = che

λct
N−1∑
i=1

cic
ti−1

(i− 1)!
,

(139)

where it is assumed that the wind forcing does not act at the western boundary (nw 6= 0).
To find the memory kernels, first the effect of applying PL separately to each of the initial
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conditions is checked. This gives

PL
(
..., hic(0), ..., hin(0), ..., TNe

)
=P
(
...,−ε0hic(0)− 1

dx
(hic(0)− hi−1

c (0)) + µA0

(
1− θ

1 + y2
n

)
Nδnw(i)TNe (0),

...,−ε0hin(0) +
1

y2
n

1

dx
(hi+1
n (0)− hin(0))− µA0

θ

y2
n

Nδnw(i)TNe (0), ...,

− cTTNe (0) + chh
N
c (0)

)
=
( 1

dx

ArW
1 + y2

n

h0
n(0), ..., µA0

(
1− θ

1 + y2
n

)
Nδnw(nw)TNe (0),

...,−µA0
θ

y2
n

Nδnw(nw)TNe (0), ...,−cTTNe (0)
)
.

(140)

So only the terms that before application of PL depend on h1
c(0), hnwc (0), hnwn (0) and TNe (0) are

left in the memory kernels. The corresponding constants are cNc , cN+1−nw
c and cnwn . This means

Kh0
n
(t) = −µA0

θ

y2
n

e−ε0te
− N
y2n
t
N
(N
y2
n

)nw tnw−1

(nw − 1)!
TNe (0).

KTNe
(t) = che

−ε0t
( ArW

1 + y2
n

e−NtNN tN−1

(N − 1)!
h0
n(0)

+ µA0

(
1− θ

1 + y2
n

)
e−NtNN+1−nw tN−Nw

(N − nw)!
TNe (0)

)
.

(141)

These memory kernels show peaks at certain times, just as in the AMO model. However, here
only the kernel for h0

n blows up, while the one for TNe remains bounded. This is because the
original temperature equation does not contain any x-derivatives.

To compute the contribution of the memory term, Laplace’s approximation of Equation (119)
is used. Here, there are three different components to which the approximation has to be applied.
With

g1(s) =
nw
N

log
( t− s
y2
n

)
− t− s

y2
n

, h1(s) =
Nnw+1

(nw − 1)!

e−ε0(t−s)

t− s
TNe (s), (142)

g2(s) = log(t− s)− (t− s), h2(s) =
NN

(N − 1)!

e−ε0(t−s)

t− s
h0
n(s), (143)

g3(s) =
N − nw
N

log(t− s)− (t− s), h3(s) =
NN+1−nw

(N − nw)!
e−ε0(t−s)TNe (s), (144)

the contributions to the memory terms are

−µA0
θ

y2
n

∫ t

0

h1(s)eNg1(s)ds, (145)

and

ch
ArW

1 + y2
n

∫ t

0

h2(s)eNg2(s)ds+ chµA0

(
1− θ

1 + y2
n

)∫ t

0

h3(s)eNg3(s)ds, (146)

in the equations for h0
n and TNe respectively. Applying Laplace’s approximation to the above

memory terms yields

− µA0
θ
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(147)

50



for the h0
n memory term and

ch
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(148)

for the memory term of TNe . In the limit N → ∞ it holds that nw
N → xw. Writing ε = 1

N , just
as in the AMO model, results in
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Taking the limit N →∞ while dividing the equation for h0
n by N , yields the final delay system:
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Note that by letting ε → 0 and considering the equation for h0
n at time t − 1 the derived delay

model for ENSO from Equation (57) is found.
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