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Abstract

Driver assistance systems are paving the way for automated driving. Until fully
autonomous driving will be available and in wide-spread use, assistance systems,
such as lane-keeping assistance, can help prevent accidents by supporting a
human driver. However, if a lane-keeping assistance system strongly restricts the
driver’s autonomy, the driver may overly trust the system (Inagaki & Itoh, 2013)
and distract herself more frequently (Llaneras et al., 2013). It is advantageous
to base the intensity of assistance on the attentiveness of the driver (see Pohl
et al., 2007 and Blaschke et al., 2009). Thereby, the driver is kept in the loop
when attentive but is supported during periods of distraction. Driver distraction
is a serious issue; 14% of crashes in the USA were affected by distracted driving
in 2018 (NHTSA, 2020). Taking into account the driver’s distraction for the
activation of assistance technology could help prevent such accidents.

We design an agent as a lane-keeping assistant that shares control of the
vehicle with the driver. The driver’s distraction is estimated online, allowing the
agent to assist a distracted driver while keeping an attentive driver in control.
For the estimation of the driver’s distraction, the agent relies solely on driving
performance measures, such as the driver’s steering movements and sensory
information about the vehicle’s position. To account for uncertainty about
the driver’s distraction and the exact position of the vehicle, the problem is
modeled as a Partially observable Markov decision process (POMDP). To the
best of our knowledge, this is the first study using only commonly available
driving performance metrics instead of sophisticated driver monitoring systems
to estimate the driver’s distraction with a POMDP.

We apply the Partially observable Monte-Carlo Planning (POMCP) algorithm
(Silver & Veness, 2010) to solve the POMDP online. The algorithm performs
Monte-Carlo tree search, sampling possible future scenarios to form a strategy.
Our experiments confirm that the driver’s overall lane-keeping performance is
significantly enhanced. Our approach has potential. However, there are obstacles
that have to be overcome for the method to be viable in practice. First, the
solver is not efficient enough; planning takes too much time. Second, we use
simple hand-crafted driver models for our experiments. The driver model can
and should be replaced by a more sophisticated and realistic model. Third, our
method relies on the discretization of the action and observation spaces. A car’s
sensory information and steering actions are naturally continuous. We discuss
these limitations in detail and provide suggestions for future improvements.



Contents

Abstract

List of Figures

List of Tables

Acronyms

1 Introduction
1.1 Motivation . . . . . . ... ..
1.2 Related work and contributions . . . ... ... ......
1.3 Problem overview and research questions . . . . ... ...
1.4 Outline . . . . . . .. . . . ...

Theoretical foundation

2.1 Sequential decision making . . . . . . ... Lo
2.2 Partially observable Markov decision process (POMDP) . .
2.3 Key challenges . . . . . . .. .. ... L.
2.4 Algorithms to approximately solve large POMDPs . . . . .

Methodology

3.1 Overview . . . . . . . . . e
3.2 Lane keeping with a human in the loop as a POMDP . . .
3.3 Solution approach using the POMCP algorithm . . . . ..

Experimental setup

4.1 Evaluated scenarios . . . . . . ... ... L
4.2 Experiment design decisions . . . . ... ... ... ...
4.3 Hyperparameter optimization . . . .. ... .. ... ...
4.4 Performance metrics. . . . . .. ... oo
Results

5.1 Lower and upper performance bound . . .. ... .. ...
5.2 Hyperparameter optimization . . . .. ... .. ... ...
5.3 Performance impact of the number of searches during planning
5.4 Mean lane centeredness . . . . . . . .. ... ...
Discussion

6.1 Analysis of theresults . . . . . .. .. ... ... ...
6.2 Limitations . . . . . .. ... L Lo

O

© 0w O Ut G

27
27
28
30
31

32
32
33
34
39

41
41
44



Contents

7 Conclusion and future outlook
7.1 Conclusion . . . . . . . . . .. .o
7.2 Road toward application with human drivers . . . . . . . .
Appendices

A Lane centeredness comparison
Al Simple driver model . . . . . .. ... ..
A2 Driver model with steering overcorrection

Bibliography

47
47
48

51

52
52
53

54



List of Figures

2.1
2.2

3.1
3.2
3.3
3.4
3.5
3.6

3.7
3.8

3.9

5.1

5.2
5.3

5.4

9.5

Al

A2

Markov decision process (MDP) . . . . ... ... ... .. ...
Comparison of offline and online solving procedure . . . . . . . .

Overview of the modules used to represent and solve the shared
control lane keeping POMDP . . . . . .. .. ... ... .. ...
Course of the road of a section of the TORCS highway track used
for experiments. . . . . ... ...
Mlustration of lane centeredness and yaw angle values . . . . . .
Mapping steering actions to steering angles . . . . . . . .. . ..
A POMCP belief tree . . . . . .. ... o o
Flow chart illustrating the Partially observable Monte-Carlo
Planning (POMCP) algorithm . . . . .. ... ... .......
Original pseudocode for POMCP algorithm . . . . . ... .. ..
Comparison of POMCP belief trees with discrete observations
and continuous observations . . . .. .. ..o
Pseudocode for the particle injection . . . . . . . ... ... ...

Average cumulative rewards for combinations of search horizon
and exploration constant . . . . . ... ... ...
Performance of POMCP with a simple driver model . . . . . . .
Performance of POMCP with a driver that overcorrects when
regaining attentiveness . . . . . . .. ... Lo
Performance of POMCP with a driver that overcorrects and
steering noise . . . . . ... ..o L oLl
Mean lane centeredness for the different agents in the experiments
with the driver model with driver action noise and steering
overcorrection . . . .. ... Lo

Mean lane centeredness for the different agents in the experiments
with the simple driver model . . . . . .. .. ... ... .....
Mean lane centeredness for the different agents in the experiments
with the driver model with driver action noise and steering
overcorrection . . . .. ... Lo

14
15
17
18
21

22
23

24
25

33
35

37

38

40

52

53



List of Tables

3.1
3.2
3.3
3.4
3.5

4.1

5.1
5.2

5.3

5.4

Examplary car state . . . . . . ... L0000
Discrete steering actions for the driver and the agent . . . . . .
Driver action discretization . . . . . . .. ...
Observations for the agent . . . . . ... ... ... .......
Preferred actions probabilities . . . . . ... .. ... ... ...

Number of searches during planning considered in the experiments

Independent driver performance . . .. ... ... ... .....
Number of terminal runs and average planning time for all
experiments with the simple driver model . . . . . . . . ... ..
Number of terminal runs and average planning time for all
experiments with the driver model with steering over correction
Number of terminal runs and average planning time for all
experiments with the driver model with steering over correction
and noise . . . ...

16
18
18
20
26

32

36

37

39



Acronyms

DESPOT Determinized sparse partially observable tree. 11
HSVI Heuristic Search Value Iteration. 10

MCTS Monte Carlo tree search. 11

MDP Markov decision process. iv, 5, 6

PBVI Point-based Value Iteration. 10
POMCP Partially observable Monte-Carlo Planning. i, iv, 2, 11, 13, 20, 22
POMDP Partially observable Markov decision process. i, 2, 4, 5, 6, 8

TORCS The Open Racing Car Simulator. 4, 13, 14

UCB1 Upper Confidence Bounds 1. 11, 22

vi



Chapter 1
Introduction

1.1 Motivation

Fully autonomously driving cars have the potential to rule out human driving
error. However, many social and technical obstacles have yet to be overcome
until fully autonomous cars become market-ready (Maurer et al., 2016). Cars
will likely not be able to drive fully autonomously in the near future, continuing
to require some degree of human supervision and intervention (Cummings and
Ryan, 2014, and Stephen M. Casner, 2016). Until fully autonomous cars are
available, driving assistance systems with increasing autonomy will be employed
transitionally (NHTSA, 2018). Specific tasks, such as lane-keeping or cruise
control, are delegated to an assistance system, while the driver retains the
responsibility for other tasks.

However, delegating tasks to an assistance system could limit the driver’s
autonomy. A loss of autonomy can turn driving into a monotonous and tedious
supervisory task. As a result, drivers may distract themselves more frequently
(Llaneras et al., 2013), have increased reaction times (M. Young & Stanton, 2007),
suffer from a lower situational awareness (Endsley & Kaber, 1999), and can place
too much trust in the assistance system (Inagaki & Itoh, 2013). Moreover, it
may take the driver too long to take over control from the assistance system if
necessary in critical situations (Eriksson & Stanton, 2017). To mitigate these
issues, Mulder et al., 2012 propose employing a shared control scheme: The
driver and the assistance system continuously share the control authority of the
car, cooperating in the driving task. The driver is kept in the loop. Thereby, the
driving task stays enjoyable, and drivers are prevented from relying too heavily
on the assistance system.

A large part of driving accidents is associated with driver distraction (NHTSA,
2020). Therefore, it seems reasonable to make the extend of the assistance
dependent on the driver’s level of attention. Whenever a driver is inattentive or
distracted, an assistance system needs to be particularly sensitive. Pohl et al.,
2007 and Blaschke et al., 2009 show that increasing the intensity of lane-keeping
assistance when the driver is distracted increases lane-keeping performance, while
the driver is not influenced in her driving while being attentive.

We propose a novel method for lane-keeping assistance with a potentially
distracted human in the loop. The presented assistance system serves as a
proof-of-concept to account for the uncertainty about the driver’s distraction
and exact car position in a shared-control lane-keeping scenario. The system
plans ahead, estimating the driver’s attentiveness using a driver model. In
contrast to previous approaches, we do not rely on intricate measures such as
gaze monitoring or head tracking to classify the driver’s attentiveness. Planning
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is based on the driver’s past steering actions alone. We use a Partially observable
Markov decision process (POMDP) to model the decision process and account
for the uncertainty involved. The POMDP is solved online using the Partially
observable Monte-Carlo Planning (POMCP) algorithm (Silver & Veness, 2010).

1.2 Related work and contributions

Lane-keeping assistance systems have been a topic of strong scientific research
interest and development (Amditis et al., 2010). Most car manufacturers today
already offer lane-keeping assistance systems (“Study "How to maximize the
road safety benefits of ADAS?”, 2020). An in-depth survey of approaches is
out of scope for this thesis (see Shaout et al., 2011, and Bengler et al., 2014 for
an overview). Instead, we focus on lane-keeping assistance systems that take
the driver’s distraction into account. To the best of our knowledge, none of the
commercially available lane-keeping assistants adapt to the driver’s attentiveness.

Pohl et al., 2007 and Blaschke et al., 2009 study the effect of adapting the
intensity of lane-keeping assistance based on the driver’s distraction. The concept
is promising. The method, if the detection of the driver’s distraction is accurate,
proves to be effective at keeping the driver engaged when she is attentive while
keeping a distracted driver safe at the same time.

Many methods have been proposed to classify driver distraction using methods
that use video recordings to classify the driver’s attentiveness. Methods like eye
movement tracking (Liang et al., 2007), head tracking (Wollmer et al., 2011), and
driver gaze monitoring (Kutila et al., 2007) have been proven to be successful.
However, they all rely on continuous video recordings and analysis of the driver.
This constitutes a privacy intrusion and may not be desirable or impractical (for
example, in low-light situations).

Research suggests that driver distraction can lead to a change in driving
performance. Distracted drivers show certain behaviors, such as lane position
deviations, infrequent steering wheel movements, and increased reaction times (K.
Young et al., 2003). Jin et al., 2012 show that monitoring driving performance
measures (steering wheel angle, heading angle, and lateral deviation) alone can
be sufficient to detect driver distraction accurately. Driven by those findings, we
propose to estimate the driver’s attentiveness in an online manner based on on
driver’s past driving behavior alone.

We use a Partially observable Markov decision process (POMDP) to account
for the uncertainty about the driver’s distraction. POMDP is a framework
to model sequential decision problems (one decision influences the next) in a
partially observable environment (Kaelbling et al., 1998). An agent interacts with
the environment. After performing an action, the agent receives observations
about the environment and a reward signal. It uses the observations it receives
over time to estimate the environment’s state. Using its estimate of the true
state of the environment, the agent can decide which actions to perform next to
maximize the long-term reward.
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POMDPs are well suited to model driving problems in which the internal
psychological state of a human is important but unknown (such as her intend,
goals, drowsiness, or attentiveness). Research mostly focuses on fully autonomous
cars assessing the behavior of other traffic participants. By employing a POMDP
to model the uncertainty about humans’ internal states, improved driving policies
were achieved in three, widely studied scenarios: pedestrian avoidance (Bai et al.,
2015, and Hsu et al., 2021), intersection crossing (Brechtel et al., 2014, Sadigh
et al., 2016, Song et al., 2016, and Hubmann et al., 2017), and lane changes
(Ulbrich and Maurer, 2013, Sadigh et al., 2016, Z. N. Sunberg et al., 2017,
Nordmark and Sundell, 2018, and Sierra Gonzalez, 2019).

The aforementioned studies demonstrate that a POMDP is suitable for
dealing with the uncertainty related to a person’s internal psychological state
and that this can be beneficial for making the right decisions when driving.
However, the focus lies on estimating the state of external drivers rather than
considering the state of the driver in a shared control scenario. Lam and Sastry,
2014 introduce a framework to model shared control driving scenarios with a
human in the loop using POMDPs. The benefits of the framework are exemplified
by assisting a potentially drowsy driver with lane-keeping: The assistance system
is able to reason about the driver’s drowsiness effectively and can handle noisy or
erroneous observations. A driver model is used to simulate human behavior, and
a simple car model is employed to simulate the car’s dynamics in the experiments.
However, the approach relies on the availability of observations that strongly
correlate with the driver’s drowsiness (observation whether the driver’s eyes are
closed or not).

In this thesis, an assisted lane-keeping scenario with a potentially distracted
human in the loop is modeled as a POMDP and solved online using the POMCP
algorithm. Our method bases the detection of driver distraction on the driver’s
past actions alone. No sophisticated or closely correlated measures are required.
The driving dynamics are simulated using a realistic driving simulator. Labeled
data is not required. Our method is unsupervised and based on a driver model.
As far as we know, this is the first work to use online POMDP solving to account
for uncertainty about a driver’s distraction in a shared-control, lane-keeping
scenario while relying only on commonly available driving performance metrics
as observations.

1.3 Problem overview and research questions

The problem examined in this thesis is assisted lane keeping with shared control
by a potentially distracted human driver and an agent acting as an assistance
system. The agent assists the driver in keeping the car centered in its lane. The
driver becomes distracted periodically. During distraction episodes, the driver
may act suboptimally. The driver’s behavior is simulated using a driver model.
The driver’s attentiveness is unknown to the agent. It has to infer if the driver is
distracted from the driver’s past steering activity and sensory observations about
the car’s state. The dynamics of the car are simulated using the driving simulator



Outline

The Open Racing Car Simulator (TORCS). A POMDP model is employed to
account for the uncertainty about the driver’s attentiveness.

The following research questions arise:

1. How can a lane-keeping scenario with shared control between a potentially
distracted human driver and an agent be modeled using a POMDP?

2. Can the agent estimate the driver’s distraction using driver performance
measures alone, allowing it to take appropriate actions when the driver
becomes distracted?

3. Is the solution approach viable for a real-world scenario, and if not, what
limitations are there, and what are potential methods to solve them?

1.4 Outline

The remaining content of the thesis is organized as follows:

Chapter 2 introduces the basic theoretical POMDP concepts which serve as a
foundation for the thesis.

Chapter 3 presents the methodology, including the definition of the POMDP
used to model the shared control lane-keeping task and the chosen solution
approach.

Chapter 4 describes the experiments that we perform to assess the performance
of the solution approach.

Chapter 5 showcases the results from the experiments.

Chapter 6 analyzes the results and elaborates the limitations of the solution
approach.

Chapter 6 highlights the conclusion, contributions, and challenges for a potential
future real-world application.



Chapter 2
Theoretical foundation

This chapter introduces the basic theoretical concepts that serve as a foundation
for the problem definition and solution approach of this thesis. The problem we
study is assisted lane keeping with shared control by a potentially distracted
human driver and an agent. The agent acts as a lane-keeping assistant. The
driver’s attention and the exact position of the vehicle are unknown to the
agent. The task involves sequential decision making, where every prior decision
influences the following ones. Section 2.1 shows how sequential decision making
tasks can be formulated using Markov decision processes (MDP). However,
since the agent only observes partial information, uncertainty about the driver’s
attentiveness and the car’s road position is involved. Section 2.2 introduces the
POMDP, which is an extension of an MDP, accounting for partial observability
of information. It is well suited to model the uncertainty involved in the problem.
Solving POMDP is a difficult task. Section 2.3 discusses the key challenges
involved in solving POMDP. Section 2.4.2 provides an overview of POMDP
solvers.

2.1 Sequential decision making

Lane-keeping of a car is a sequential decision-making task. Every steering action
directly influences the choice of the best succeeding steering actions. MDP are
well suited and widely used to model sequential decision-making tasks. An MDP
is a discrete-time framework for a decision maker, the agent, to interact with
an environment. Figure 2.1 illustrates the process. At every time step t, the
environment is in a certain state s;, fully observable by the agent. The agent
interacts with the environment by performing an action a; that determines the
next state s;11 of the environment. The underlying assumption, the Markov
property, is that the next state of the environment only depends on its current
state and the agent’s action. The transition to a succeeding state does not need
to be deterministic but can be probabilistic, accounting for randomness in the
environment. After performing an action a¢, leading to state s¢41, the agent
receives a numerical reward ;11 (also called return). The agent’s goal is to
maximize the cumulative reward it receives over time. An action that leads
to a high immediate return is not optimal if another action leads to a higher
cumulative reward in the long run. Thus, the agent needs to find an optimal
policy that decides the best action to take in every state. If the state transition
probabilities are known to the agent, the optimal policy can be found using
model-based techniques such as value or policy iteration. If the transition model
is unknown, model-free reinforcement learning can be applied to learn an optimal
policy.
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P ks SN

Figure 2.1: Markov decision process (MDP)

Assisting a human driver in the lane-keeping task is essentially a sequential
decision-making task. However, the agent assisting the human driver does
not know about the driver’s internal psychological state. This state includes
everything that influences the driver’s behavior, such as the driver’s goals,
intentions, emotions, and perceptions, but is not visible from the outside world.
We focus on the driver’s attention to the driving task when referring to her hidden
psychological state hereafter. A distracted driver may steer poorly and needs
assistance. But how can the agent tell whether the driver is distracted? Reading
the driver’s mind is not feasible, and even if it were, it would be too invasive
for this task. Instead, the agent needs to estimate the driver’s internal state to
act adequately. A Partially observable Markov decision process (POMDP) is a
generalization of an MDP that allows planning under uncertainty. Even without
observing the complete state of the agent’s environment, a POMDP enables the
agent to estimate the environment’s true state using the partial information it
observes. In the next section, we will give a formal definition of a POMDP.

2.2 Partially observable Markov decision process (POMDP)

A POMDP is a generalization of an MDP for planning under uncertainty. The
environment’s true state is unknown to the agent. It has to rely on observations
with partial information about the environment’s true state to choose its actions.
We follow the description in Kaelbling et al., 1998 and define a POMDP as a
tuple (S, A, T, R, 0, Z), where:

e S is the set of all possible states s € S of the environment. A state describes
the environment at a time point. It must not be an all-encompassing
description but must include all relevant information to make decisions.
The state is hidden from the agent. This is the main difference to an MDP.
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A is the set of all possible actions a € A the agent can perform in the
environment.

o T:8x AxS —0,1] defines the conditional state transition probabilities.
T(s,a,s’) = Pr(s’|s,a) constitutes the probability of transitioning to state
s after performing action a in state s.

e R:S5x A— R is the reward function providing the agent with a reward
of R(s,a) after performing action a in state s.

e O is the set of all possible observations o € O. Observations are the
agent’s source of information about the environment, enabling the agent
to estimate the environment’s state.

o Z:8xAx0O — |[0,1] defines the conditional observation probabilities.
Z(s',a,0) = Pr(o|s’,a) represents the probability of receiving observation
o at state s’ after performing action a in the previous state.

At any time, the environment is in a certain state s. Unlike in the case of
an MDP, the agent cannot directly observe the environment’s state. Instead,
the agent receives an observation o that provides partial information about the
current state. The agent uses the observations it perceives over time to estimate
the true state of the environment to choose adequate actions. At any time step ¢,
it takes into account the complete history h; of actions and observations until ¢:

hy = {ag,01,...,01—1,a1-1,0:} (2.1)

Keeping a collection of all past observations and actions is very memory
expensive. A less memory-demanding alternative is to only keep a probability
distribution over the states at every step, called a belief b. The probability of
being in state s given history h is denoted as b(s, h).

bi(s,h) = Pr(s; = s|hy = h) (2.2)

The belief is a sufficient statistic for the agent to form a decision about its
next action (Smallwood & Sondik, 1973). Thus, only the belief needs to be
kept and can be recursively updated whenever the agent performs an action and
receives a new observation. The agent starts with an initial belief by about the
initial state of the environment. At every subsequent time step, the new belief
b’ can be recursively calculated based on the previous belief b, the last action a,
and the current observation o. The previous belief can then be discarded as the
history it represents is no longer up-to-date. For an exact update of the belief,
one can apply the Bayes theorem:
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b'(s") = Pr(s'|o,a,b)
Pr(o|s’,a,b)Pr(s'|a,b)
Pr(o|a,b)
Pr(ols’,a) Y cq Pr(s'|a,b,s)Pr(s|a,b) (2.3)
Pr(ola,b)
Z(s',a,0) 3 ,cgT(s,a,b)b(s)
Pr(o|a,b)

The agent chooses its actions based on its belief according to its policy 7 : b — a.
The agent’s policy defines the action to choose at any given belief state. It
describes the strategy for every possible situation the agent can encounter.
Solving a POMDP consists in finding an optimal policy 7* that maximizes the
cumulative reward obtained over some time horizon N starting from initial belief
by using a discount factor 0 < A < 1:

N
D> bils) Y N R(s, a)m (b, a)|b0] (2.4)

t=0 seS acA

™ = argmazx, E

The return gained by following a policy 7 from a certain belief b can be obtained
with the value function V7 (b):

V() =Y m(ba) [Z b(s)R(s,a) + XY Pr(olb,a)V™ (V) (2.5)

a€A sES 0€0

The optimal policy 7* maximizes V7 (by). For any POMDP, there exists at least
one optimal policy.

2.3 Key challenges

2.3.1 Curse of dimensionality and curse of history

Computing an optimal policy for a POMDP is challenging for two distinct but
interdependent reasons (Pineau et al., 2006). On the one hand, there is the
so-called curse of history: Finding an optimal policy means searching through the
space of all possible action-observation histories. The number of distinct histories
grows exponentially with the size of the time horizon. Therefore, planning further
into the future increases the computation complexity exponentially. Finding an
optimal policy can be relatively easy for short histories. However, it becomes
computationally infeasible for larger time horizons. On the other hand, there
is the curse of dimensionality: The belief space is |S|-dimensional. Therefore,
the size of the belief space, representing the number of states in a POMDP,
grows exponentially with |S|. For a POMDP with a large state space or time
horizon, finding an optimal policy is computationally infeasible (Papadimitriou

8
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& Tsitsiklis, 1987). For this reason, approximate algorithms are often applied.
We summarize those approximate algorithms in section 2.4.2.

2.3.2 Unknown transition and observation probabilities

For many problems, it is difficult or impossible to know the probability
distributions 7" or Z explicitly. This is also the case for the shared control
lane-keeping scenario assessed in this thesis. Neither the transition probabilities
nor the observation probabilities are known a priori. The belief update method
using Bayes’ theorem presented in Equation 2.3 is not computable without
knowing the probability distributions explicitly. However, exact updates are too
complex for problems with large state spaces in general (Silver & Veness, 2010).

Some solution approaches circumvent the problem of unknown transition and
observation probability distributions by using a generative model to sample state
and observation transitions. This generative model can, given the current state
and action, stochastically generate a successor state, reward, and observation.
Thereby, it implicitly defines the transition and observation probabilities, even if
they are not explicitly known. In this thesis, we follow this idea and employ a
generative model to solve this challenge in our practical task. The generative
model is described in detail in section 3.2.5.

2.4 Algorithms to approximately solve large POMDPs
2.4.1 Offline and online POMDP solving

Offline solver

Compute policy Execute policy

Online solver

[—

short policy computation period between actions

Figure 2.2: Comparison of offline and online solving procedure

There are two general approaches to solve POMDP: offline and online (see
figure 2.2). Offline solvers compute the optimal policy prior to execution for all
possible future scenarios. Their advantage is that once the policy is determined,
policy execution is fast as there is only a very minimal, negligible time overhead.
However, offline planning is hard to scale to complex problems as the number of
possible future scenarios grows exponentially with the size of the time horizon
(curse of history). Furthermore, while the performance for small to medium-
sized POMDPs can be good, computing the policy may take a very long time.

9
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Furthermore, even small changes in the dynamics of the environment require a
full recomputation (Ross et al., 2008). Online solvers interleave planning and
plan execution. At every time step, only the current belief is considered for
the computation of the next optimal action by searching ahead until a certain
depth is reached. On the one hand, the scalability is greatly increased. On the
other hand, sufficiently more online computation than for offline planning is
required. The amount of available online planning time at each time step limits
the performance.

2.4.2 Overview of aproximate POMDP solvers

As discussed in section 2.3.1, finding an exact optimal policy is only feasible for
small discrete POMDPs. Larger POMDPs are usually solved approximately. A
wide range of offline and online approximate solvers is available. An extensive
survey of possible approaches is out of scope for this thesis. A good overview
of different methods is given in the chapter "State uncertainty" of the book
"Algorithms for Decision Making" (Kochenderfer et al., 2022). We focus on
introducing a selection of especially noteworthy approaches to solving POMDP
in this section.

For discrete POMDP, the most effective offline approximate solvers apply a
form of Point-based Value Iteration (PBVI), where only a representative subset
of the belief space is considered to approximate the value function (Pineau et al.,
2003). State of the art methods include Perseus (Spaan & Vlassis, 2005), and
Heuristic Search Value Iteration (HSVI) (Smith & Simmons, 2004). Perseus
chooses belief states by randomly sampling trajectories from an initial belief
(Spaan & Vlassis, 2005). It is sufficiently more compute efficient than PBVI but
can suffer from a slow convergence behavior (Shani et al., 2013). HSVI improves
on Perseus potential slow convergence in large domains by constructing a belief
search tree, maintaining the order of visited beliefs to be backtrack value updates
bottom-up (Smith & Simmons, 2004). Even the most advanced offline solvers
reach their limit when dealing with POMDPs with large state spaces. As the
state space for the shared control lane-keeping task is large, offline solvers are
not considered further in this thesis.

When it comes to online solvers, the paradigm of searching for a good policy
locally for the current belief state makes them sufficiently more efficient. The
general approach is to construct a search tree with the current belief as root,
evaluating all possible further actions and observations (Kochenderfer et al.,
2022). This tree can be used to efficiently generate a good approximately optimal
action to perform at the current belief. The methods mainly differ in how the
tree is constructed. After an action has been performed in the real environment,
the agent receives a reward and observation. On this basis, it updates its belief,
and the process repeats from the new belief.

Constructing the search tree using Monte Carlo sampling has recently led to
promising results for online solving of large POMDPs (Silver & Veness, 2010).
Including all possibilities in the search tree is not feasible for deep time horizons
because of the curse of history and the curse of dimensionality (see section

10
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2.3.1). Monte Carlo tree search (MCTS) methods address this issue by using a
generative model to sample state transitions and observations (see section 2.3.2).
By doing so, only a subset of histories is considered. The curse of dimensionality
can be overcome in a similar fashion. Instead of evaluating all belief states, the
start states for the search tree are sampled from the belief space. The number
of belief states to consider can thereby be drastically reduced.

2.4.3 Online POMDP solving using Monte Carlo tree search

The approach of using Monte Carlo sampling for both the choice of evaluated
histories and estimating the belief was first applied in the Partially observable
Monte-Carlo Planning (POMCP) algorithm by Silver and Veness, 2010. The
exploration is controlled using the Upper Confidence Bounds 1 (UCB1) (Auer et
al., 2002) algorithm for action selection. The belief search tree is constructed by
sampling possible action-observation trajectories. The key idea is to approximate
the belief space using the same set of states sampled for the search tree
construction. POMCP’s belief representation eliminates the need for expensive
belief update calculations. POMCP has successfully been applied to solve large
POMDPs. Thus, the POMCP algorithm was selected as the solver for our
problem. In section 3.3.1, we explain how we employed POMCP to solve the
shared control lane-keeping task.

The Determinized sparse partially observable tree (DESPOT) algorithm
by Ye et al., 2017 is a similar approach that can be seen as an evolution of
POMCP. DESPOT is efficient as only a fixed number of sampled scenarios are
considered. A scenario is a determinized trajectory in the belief tree that is
defined in advance. At every depth of the belief tree, all actions but only a
subset of resulting observations are considered. Thereby, the observation space is
simplified. DESPOT’s main advantage over POMCP is the ability to overcome
POMCP’s relatively poor worst-case behavior (Coquelin & Munos, 2007) caused
by the UCBI1 algorithm’s tendency to overfit. DESPOT circumvents this by
using regularization in the value function. First, a suboptimal policy is searched
using heuristic search (Smith & Simmons, 2004) and then it is incrementally
improved upon. Branch-and-bound pruning is performed by pruning action
nodes from the tree if their expected value is lower than the lower bound of
another action. There are further extensions of DESPOT: HyPDESPOT is a
parallelized version of DESPOT with significant performance enhancements (Cai
et al., 2018). DESPOT-« further improves DESPOT’s capability to handle
very large observation and state spaces (Garg et al., 2019). And DESPOT-IS
applies importance sampling to account for very rare events that are hard to
sample (Luo et al., 2018). Unfortunately, DESPOT and its derivatives require
the observation probability Z to be explicitly known. This is not feasible for the
shared control lane-keeping task considered in this thesis.
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2.4.4 Solving continuous POMDP

The scenario of lane-keeping with a human in the loop that we examine is
naturally continuous; steering actions, car state, and sensory information about
the car’s position are all composed of continuous values (see section 3.2). Hence,
a solver that can handle continuous POMDP is required.

The aforementioned algorithms POMCP and DESPOT can natively handle
continuous state spaces (Goldhoorn et al., 2014). It is unlikely that two identical
continuous states are inserted into the collection of states representing the
agent’s belief. Therefore, the individual relative frequency of a state in the
belief, representing its probability in the discrete case, is rendered meaningless.
Nevertheless, if the agent samples multiple similar situations, the corresponding
states are also similar. For the continuous case, the assumed probability of being
in a certain state is given by the number of belief states close to it.

However, POMCP and DESPOT cannot be applied directly with PODMPs
that have continuous action and observation spaces. Discretization is required
(Goldhoorn et al., 2014). Action and observation discretization is performed in
this thesis to be able to use POMCP. The details are discussed in section 3.3.2.

Various solvers have been developed that are suitable to solve POMDP with
continuous action and observation spaces without relying on discretization. To
the best of our knowledge, they all require the observation probabilities Z to
be known explicitly and are therefore not applicable to the problem addressed
in this thesis. Yet, such approaches may be advantageous in future work if the
problem of unknown observation probabilities can be circumvented. Two notable
solvers are POMCPOW (Z. Sunberg & Kochenderfer, 2018), and LABECOP
(Hoerger & Kurniawati, 2020). POMCPOW is an extension of POMCP using
progressive widening. It uses weighted belief updates and limits the number of
observations considered during planning. LABECOP is based on MCTS as well
but avoids limiting the number of considered observations.
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Chapter 3
Methodology

This chapter formally defines the POMDP used to model the shared-control
lane-keeping task that is considered in this thesis. Furthermore, the chosen
solution approach and how it was applied for the defined task are presented.
Section 3.2 begins with an overview of the three components comprising the
problem: The driver model representing the human driver, the driving simulator,
and the agent assisting the driver. The simple driver model that we use to
simulate human driving behavior is specified in section 3.1.2. Section 3.1.1
describes how The Open Racing Car Simulator (TORCS) is used to simulate
the dynamics of a car driving on a highway. The agent employs the Partially
observable Monte-Carlo Planning (POMCP) algorithm to solve the POMDP
online. A detailed explanation of how the algorithm is applied is provided in
section 3.3.1.

3.1 Overview

The problem addressed in this thesis is an assisted driving lane-keeping task,
where a human driver shares control with an agent over a car. The driver and
the agent cooperatively control the steering wheel. The goal is to keep the car
centered in its lane. Both the agent and the driver have only lateral control; the
car’s speed is fixed. The driver can be attentive or distracted and alternates
between the two states. The general assumption is that an attentive driver shows
(nearly) optimal steering behavior, while a distracted driver steers suboptimally
and needs assistance. The agent, however, cannot observe whether the driver is
attentive or not. To fulfill the goal of consistently keeping the car centered in
the lane, the agent has to effectively estimate the driver’s state of attentiveness
according to the information it receives over time. Based on its estimate, the
agent determines what actions the driver is likely going to take. It can then plan
ahead and select adequate steering actions.

Rather than experimenting with real humans and a real car, simulation
models are used for both the car and the human driver in experiments. Figure
3.1 gives an overview of the three distinct modules employed to represent the
problem as a POMDP and solve it: First, the racing car simulator TORCS
(Espié et al., 2005) simulates the dynamics of a car driving on a highway. Second,
the driver model substitutes the human driver. Third, the agent applies POMCP
in order to solve the POMDP online. From the perspective of the agent, its
environment is composed of both the simulated car and the simulated driver.
The simulation modules are described in detail in the following subsections.
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Figure 3.1: Overview of the modules used to represent and solve the shared
control lane keeping POMDP

3.1.1 TORCS as a highway driving simulator

The Open Racing Car Simulator (TORCS) is an open-source car driving simulator
(Espié et al., 2005). As the name suggests, TORCS was initially developed to
simulate racing car tournaments. However, as racing cars are fundamentally also
just cars and everything, including the tracks, is highly customizable, highway
driving can be simulated just as well. Part of TORCS is a comprehensive and
realistic discrete-time simulation engine to simulate car dynamics, as well as
an API for computer-controlled drivers, so-called robots. It has been widely
used by researchers to simulate car driving and to evaluate the performance of
autonomous driving agents (for example in Wierstra et al., 2007, Sallab et al.,
2016, Mnih et al., 2016, and K6vari et al., 2020).

We use TORCS as a simulator for car dynamics for two purposes. First, to
simulate the dynamics of the car the agent and the driver share control over.
This simulation is part of the environment of the agent. It represents the car
in the real world and would be replaced by an actual car in a realistic setting.
TORCS maintains the car’s true state and updates it based on the combined
steering action. Second, we use the simulation engine as a generative model
(see section 3.2.5). The generative model is part of the agent, constituting the
agent’s model of the world. The agent uses it to sample state and observation
transitions for the forward search performed during the online MCTS policy
computation (planning).

Typical racing tracks for TORCS have sharp road bends and wide roads
with differing widths around the course. This does not reflect a highway driving
scenario well. Therefore, a custom highway track is used instead (see figure 3.2).
The custom track only has moderate road bends and a constant lane width of
3.75m, as it is common in Europe (Schoon, 1994). The road is completely flat
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Figure 3.2: Course of the road of a section of the TORCS highway track used
for experiments.

and there are no other cars on it. Moreover, a fixed speed of 80 km/h is set
during our experiments.

3.1.2 Driver model

In this study, the driver is simulated using a stochastic driver model, instead
of performing experiments with an actual human driver. The driver model
determines when a driver is attentive or becomes distracted, for how long the
attentive or distracted period persists, and what actions the driver takes. We
design a simple driver model to evaluate our approach. If the agent can plan
successfully with a simple driver model, this serves as an initial confirmation
that the solution approach is promising. The focus of this thesis is not a realistic
driver model.

3.1.2.1 Configurations

Three different driver model configurations with increasingly complex dynamics
are used in the experiments:

1. Simple driver model: The simplest model steers optimally when the
driver is attentive. If it is in a distracted state, the model repeats the
last attentive steering action until the driver regains her attentiveness. A
distracted driver’s ability to notice changes in the course of the road is
limited because of reduced situational awareness, and therefore she does
not adjust to road changes like an attentive driver would (Kass et al., 2007;
K. L. Young et al., 2011).

2. Steering overcorrection: When a distracted driver diverts strongly
from the lane center and then becomes attentive again, the driver suddenly
notices the deviation. In this case, drivers tend to perform an overly strong
steering correction and overshoot (Hildreth et al., 2000). We implemented
this behavior in a second, more complex model. The first action of a driver
that regains attentiveness is increased by a random amount between 10
and 25 percent. The randomness makes the model less predictable when
the driver becomes attentive again.

3. Steering overcorrection and noise: The last, most complex scenario
introduces action noise. A random noise between five and 20 percent is
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added to every action the driver takes. The action can thereby become five
to 20 percent stronger or weaker. The overcorrection for the first action
after regaining attentiveness, introduced in the last model, is performed as
well. The noise is added on top. The noise makes the driver less predictable
in every situation.

3.2 Lane keeping with a human in the loop as a POMDP

In this section, we formulate the shared control lane-keeping problem as a
POMDP. Refer to section 2.2 for a general definition of a POMDP. In the following
subsections, we define the state space and the state transition probabilities, the
action space, the reward function, and the observation space with the observation
probabilities.

3.2.1 States and transition probabilities

The overall state space S consists of all possible states of the agent’s environment.
For the agent, the environment is compiled of both the driver and the car.
Therefore, the state space we have to consider in the POMDP is the combination
of all possible combinations of the state of the car and the state of the driver
model. The state transition probabilities 7" are not explicitly given but implicitly
defined by the car dynamics simulated by TORC’s simulation engine.

Car state

TORCS data model for the car state is too extensive to list here in full'. Table
3.1 shows the most important attributes. These include the car’s position on
the track, its current velocity, and its acceleration. Among others, there are
additional attributes for the state of transmission and engine, the friction and
spin of the wheels, and aerodynamic influences such as drag and lift. The values
in the state are continuous.

Long. position Lat. position Yaw angle Velocity Acceleration
115m (from start) 0 (lane center) 45° 80 km/h (fixed) 0.3
Transmission Engine ‘Wheels Aerodynamics
gear, clutch, ... rpm, pressure, ... friction, spin, ... drag, lift, ...

Table 3.1: Examplary car state. This is an incomplete table, only listing the
most important attributes. For a full state representation, look up the tCar
struct in the TORCS API documentation.

The lateral position (lane centeredness) and the yaw angle of the car are illustrated
in figure 3.3. The lane centeredness of the car is defined over a continuous interval

1See tCar struct in the TORCS API documentation
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of (—o0,00), with values in between -1 (right lane border) and +1 (left lane
border) denoting that the car is within its lane, and everything beyond standing
for an off-track position. A value of zero means the car is centered in its lane.
The car’s relative yaw angle is given with respect to the track direction and
defined over an interval of [—m, 4] radians. A value of zero indicates that the
car is heading in the same position as the track.

lane centeredness yaw angle
0 +1 -1 45°

lane oD &

Figure 3.3: Illustration of lane centeredness and yaw angle values

Driver state

The driver state consists of three variables: The current attentiveness (attentive
or distracted), the remaining duration the driver stays attentive or distracted,
and the driver’s last performed action. The duration the driver remains attentive
or distracted is randomly chosen but lies between one second (10 actions) and
5 seconds (50 actions). When the time runs out, an attentive driver becomes
distracted, and a distracted driver regains attentiveness. The duration for
the next state is then randomly chosen again. The process repeats until the
experiment is over.

3.2.2 Actions

The action space A consists of all steering actions the agent can perform. In the
experiments, two different sets of actions are referred to: First, a full action set,
which enables the agent to overrule and effectively reverse the driver’s actions
completely. Second, a reduced action set containing only moderate steering
actions (reduced action space in table 3.2). The motivation behind this is the
assumption that strong steering actions are seldomly needed while driving on a
highway. Leaving them away might reduce the planning complexity.

The human driver and the agent share control of the steering wheel. The
steering input of the driver a4 jver and agent aqgen: are added to acar € [—1,+1]
using Equation 3.1.

Qeqr = min( —1, max(1, (agriver + Qagent) ) ) (3.1)

A steering action of —1 means steering fully to the right (159 degrees),
and an action of +1 has the effect of fully steering to the left (21 degrees).
The relationship between steering actions and steering angles is illustrated in
figure 3.4.
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16
27

Figure 3.4: Mapping steering actions to steering angles

Table 3.2 shows the discrete actions for the driver and the agent. The discrete
values have been chosen empirically. More actions allow for more precise control.
However, the number of actions is the branching factor for the search tree
construction during planning. Thus, it has a strong impact on the complexity of
the search problem. Therefore, a compromise between precision and performance
is made. Because minor actions are more likely and generally preferable in a
highway driving scenario, the resolution is higher for small steering actions.

If the driver is distracted while the car is in a road bend, in the most extreme
situation, she could potentially steer into the opposite direction of where she
needs to steer to keep the car centered in its lane. In this case, to correct the
driver’s incorrect action, the agent needs to be able to effectively reverse the
driver’s action. Therefore, the action space of the agent is extended by plus two
and minus two.

-2 -1 -0v5 -05 -0.25 -0.15 -0.1 0O 0.1 015 025 05 075 1 2

Table 3.2: Discrete steering actions for the driver and the agent.

The actions of the driver are naturally continuous. We discretize them by
mapping their continuous values to the closest value in the discrete action space,
as it can be seen in table 3.3.

Action -1 -0.75 -0.5 -0.25 -0.15 -0.1 0 0.1 015 025 05 0.75 1

From -1 -0.875 -0.625 -0.375 -0.2 -0.125 -0.05 0.05 0.125 0.2 0.375 0.625 0.875
To -0.875 -0.625 -0.375 -0.2 -0.125 -0.05 0.05 0.125 0.2 0.375 0.625 0.875 1

Table 3.3: Driver action discretization. For negative values, the To value is
exclusive. For zero, both From and To are inclusive. For positive values, the
From value is exclusive.
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3.2.3 Reward

The reward function R is based on the car’s distance to the center of the lane
and its relative angle to the road path (see section 3.2.3). The attentiveness of
the driver is not considered. The agent is expected to estimate it based on the
driver’s behavior alone. However, the reward is correlated with the quality of
the agent’s estimate as its actions can only lead to optimal steering behavior
with a correct estimate.

The reward function defines the goal of the agent. For the task of lane
centering, two sub-goals need to be considered: First, the car is supposed to
stay as close to the lane center as possible. Second, the car’s yaw angle (the
direction into which the car is headed) should be as close to the track axis angle
as possible.

Equation 3.2 shows the reward function for the agent that incorporates
both targets. The relative yaw angle is denoted as 6, and ¢ represents the
lane centeredness (see figure 3.3). A lane centeredness of zero means the car is
centered. If the car is on the left-most side of the lane, the value equals one.
For the right-most side, it equals minus one. The agent receives the maximum
reward if the car is in the middle of the road, while its relative yaw angle is
equal to zero. Similar reward formulations have been used successfully before
(Ko6vari et al., 2020; Graves et al., 2020). The attentiveness of the driver is not
directly included in the reward function. However, it is implicitly considered.
If the agent performs an action that leads to a suboptimal combined steering
action, it is penalized by receiving a lower reward. Thereby, if the agent acts
when the attentive driver behaves optimally, it is punished indirectly.

) (3.2)
0, otherwise

R {6059—1— o], if ¢ € [-1,41]

3.2.4 Observations and observation probabilities

The observation space O includes all possible observations. The observed
attributes are displayed in table 3.4. The agent observes sensory information
about the car’s current lane centeredness and relative yaw angle. Moreover, the
driver’s last action is observed. At any time step, the agent only observes the
action of the driver for the last time step. The agent has to estimate the most
likely next action of the driver by considering the history of past observations.
The observations are discrete. They are discretized by mapping their naturally
continuous values to the closest value from the values listed in table 3.4. The
conditional observation probabilities Z are not explicitly given but implicitly
defined by the dynamics of TORCS and the driver model.

3.2.5 Generative model

The state transition probabilities 7" and the Observation probabilities Z are
not explicitly known. Instead, the agent uses a generative model to sample the
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Observation Description and values

Relative yaw angle  Angle between car direction and track axis direction. The continuous
values between —7 and 7 radians are discretized using 101 bins:

Values: { —m, —49/50m, ..., 0, ..., —49/507, 7 }

Lane centeredness Horizontal distance between the car and the lane center. 0 when the
car is centered in its lane, +1 if the car is on the left edge of the lane,
and —1 if the car is on the right edge of the lane. Greater numbers
than +1 or smaller numbers than —1 indicate that the car is off-lane.
The continuous values between —oco and co are discretized using 103

bins:

Values: { right off-lane, -1, -49/50, ..., 0, 49/50, 1, left off-lane }
Driver steering The agent perceives the last input of the human. This is the action
(last time step) of the human at the last time step. The agent does not know which

action the human is going to choose simultaneously to its own action.
—1 means full right and +1 means full left. The values are discrete.

Values: See table 3.2.

Table 3.4: Observations for the agent. See figure 3.3 for an illustration of the
yaw angle and the lane centeredness.

transitions. For the task at hand, the agent combines TORCS and the driver
model to form a generative model. The agent does not know about the real
state of the driver model nor of TORCS. During planning, the agent can use the
simulation engine of TORCS and an interface to the driving model to simulate
transitions by performing actions starting from arbitrary belief states. The
generative model then returns the next state for both driver and TORCS, a
reward (using the reward function from section 3.2.3), and an Observation. If
the belief state is close to the real state, the next state, reward, and observation
from the generative model will be close to what they would be if the agent had
performed an action in the real environment.

3.3 Solution approach using the POMCP algorithm

3.3.1 Solving procedure of POMCP

The key idea of Partially observable Monte-Carlo Planning (POMCP) is to use
Monte Carlo sampling both to sample start states from the belief and to sample
histories using a generative model (Silver & Veness, 2010). Thereby, the curse of
dimensionality and the curse of history are broken (see section 2.3.1). POMCP
is an anytime, online solver. For an online solver, policy computation (planning)
and execution (acting) are intertwined. An anytime algorithm builds the solution
incrementally. It can be stopped at any time, and there will be a solution, albeit
the solution might not be very good if the algorithm is stopped early.

POMCP constructs a search tree of histories (see figure 3.5). Sequences of
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Figure 3.5: A POMCP belief tree with two actions and two observations. The
agent simulates action-observation trajectories starting from the current belief at
history h (left). The action with the highest mean return from the simulations
is executed in the real environment, and the agent receives a real observation o
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Source: Silver and Veness, 2010.

states, observations, and rewards are simulated using a generative model. Given a
state and action, the generative model returns a successor state, observation, and
reward. The simulations allow POMCP to estimate the value of histories without
knowing the exact transition dynamics of the POMDP. For each represented
history, a node T'(h) = (N(h),V(h)) is maintained. N(h) stands for the number
of times the history h has been visited, while V'(h) stores the history’s value. The
value is estimated by the mean return from all searches that start at history h.

The belief over the states is approximated by employing an unweighted
particle filter approach. The belief is represented by a collection of states. For
every history h visited during searches, the belief B(h) is updated to include the
simulation state (particle) returned by the generative model. The more likely a
state is at a history, the more often it is expected to occur in simulations. As
a consequence, the relative frequency of a state in the belief approximates its
probability.

Figure 3.6 illustrates the process of POMCP and Figure 3.7 presents the
pseudocode of the algorithm. If the belief for the current history A, does
not contain particles at the beginning of a planning episode (B(h.cq;) = 0), the
agent has lost track of the environment’s state completely. If this happens, we
consider the planner to have failed and select actions randomly from this point
on. Otherwise, a start state for a search is sampled from the belief at the current
history: s ~ B(hreai)-

Searches are divided into two stages. During the first stage, which is active
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Figure 3.6: Flow chart illustrating the Partially observable Monte-Carlo Planning
(POMCP) algorithm
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as long as child nodes exist for all children, actions are selected using the Upper
Confidence Bounds 1 (UCBL1) algorithm (Auer et al., 2002). UCBI1 chooses
actions by the principle of optimism in the face of uncertainty; the values of
actions are increased with an exploration bonus that is higher for rarely tried
actions (see equation 3.3, ¢ is a constant hyperparameter).

Vocsi(ha) = V(ha) + e/ N (3.3)

If any history is visited for the first time, the algorithm continues in the
second stage: rollout. During this stage, the agent cannot rely on previous
experiences to weigh the actions. Hence, actions are selected using a pre-defined
rollout strategy mroiout. We use uniformly random action selection during the
rollout phase, if no preferred actions are applied (see section 3.3.4). First, all
action nodes are initialized with initial counts N,,;; and initial values V.
These are usually zero unless preferred actions are used.

Only for the first new history encountered during a rollout, a node is added
to the tree. More histories may be simulated, but they are not included in the
tree. The tree’s growth is thereby limited to one level of depth per search. The
main purpose of the rollout is to form a first estimation of the newly encountered
history. After every search, the values at all nodes encountered during the search
are updated by backpropagating the rewards through the tree.

To select which action to perform in the real environment, a fixed number of
searches is performed from the current history. After all searches are complete,
the action apes; with the highest value at the current history h,..q; is returned.
After this action is executed in the real environment, with an observation 07,4,
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the tree can be pruned. Only the nodes from history A,cqi@pestO1ast Onward stay
relevant as all other histories are rendered impossible (see figure 3.5). Then, the
process repeats from the new history.

The number of searches performed during the planning has a substantial
impact on the quality of the derived policy. Unfortunately, the computational
complexity is exponential with respect to the number of performed searches.
However, for a good policy, only a finite number of searches are required. The
performance is expected to increase with the number of searches only until
convergence occurs (Silver & Veness, 2010).

Algorithm 1 Partially Observable Monte-Carlo Planning
procedure SEARCH(h)

procedure SIMULATE(S, h, depth)

repeat if y%°Pt" < ¢ then
if h = empty then return 0
s~T end if
else if h ¢ T then
s~ B(h) for all a € A do
end if

SIMULATE(S, h, 0)
until TIMEOUT()
return argmax V (hb)

b

end procedure

procedure ROLLOUT(s, h, depth)
if y%Pt" < ¢ then

T(ha) — (Ninit (ha), ‘/init(ha)7 (0)
end for
return ROLLOUT(s, h, depth)
end if

a < argmax V (hb) + ¢
b
(s',0,m) ~ G(s,a)

R <+ 7 + ~.SIMULATE(s', hao, depth + 1)
B(h) + B(h) U {s}

log N (h)
N(hb)

return 0 N(h) < N(h) +1
end if
N(ha) < N(ha) +1
a ~ Trottout(h, *) Vih Vih R—V(ha)
(s'y0,7) ~ G(s,a) (ha) < V(ha) + “Fa
returnr + v.ROLLOUT(s', hao, depth+1) return R
end procedure end procedure

Figure 3.7: Pseudocode for the POMCP algorithm. Note: Instead of a time
limit for the search procedure, we stop after a predefined number of searches have
been performed.

Source: Silver and Veness, 2010.

3.3.2 Action and observation space discretization

POMCP is not suited to solve continuous POMDP. However, using POMCP
with continuous states is possible as the particle filter approach can still provide
a good approximation of the belief as long as the number of samples is large
enough. The shared control lane-keeping task naturally has continuous actions
and observations. To account for continuous action and observation spaces,
discretization is necessary. Figure 3.8 shows how POMCP behaves when tasked
with solving POMDP with continuous observation or action spaces without
discretization. If the observations are continuous, the search tree cannot extend
beyond the first observation layer as every observation is unique, and thus, no
history will ever be visited twice. In the case of continuous actions, the chance
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Figure 3.8: Comparison of POMCP belief trees with discrete observations (left)
and continuous observations (right) with two actions.

of executing the same action twice is very low. Therefore, in this case, likewise,
no history is reached twice. Planning becomes impossible. However, POMCP
can be successfully applied with continuous POMDP by discretizing the action
and observation spaces (Goldhoorn et al., 2014).

The action space is discretized as outlined before in section 3.2.2 and the
discretization of the observation space is defined in section 3.2.4. A balanced
discretization resolution is chosen empirically. A too fine-grained discretization
leads to very wide belief trees and can thereby hinder convergence. A coarse
discretization increases the convergence probability but comes with a lower
precision in planning.

3.3.3 Particle deprivation and particle injection

Particle filter approaches, POMCP included, can fail due to a phenomenon
called particle deprivation. Because of the random nature of the process, the
belief sometimes converges towards a state that is far from the environment’s
true state. Particles that differ from the converged state have a low probability
while sampling (low relative count). Hence, after every iteration, they become
scarcer until they are completely erased from the belief. At this point, the
agent is sure to be in an erroneous state and cannot recover anymore. Particle
injection (also called particle reinvigoration) is a method to counteract this
problem by introducing a number of random particles to the belief at each
iteration (Kochenderfer et al., 2022). While this reduces the accuracy of the
belief, it prevents its complete convergence towards a wrong state.

Thus, particle injection is used to increase the variance of the belief about
the driver model state. Figure 3.9 showcases the pseudocode for our concrete
implementation of particle injection. We sample states from the belief, transform
them and inject the transformed states into the belief.

The transformation only adapts the attentiveness of the driver and the
number of remaining actions until the driver’s attentiveness changes. The car
state and the driver’s last action stay unchanged. The attentiveness and the
number of remaining actions (duration for the current state) are randomly chosen.
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The duration can be lower than the minimum defined in section 3.1.2 because
the true remaining number of driver actions in a particular state might be lower
after having performed actions already. Like in the original POMCP paper
(Silver & Veness, 2010), the number of transformed particles added before each
planning step is 1/16 of the number of searches. The particles can be injected
during policy execution, and therefore, do not influence the planning time.

procedure InjectParticles ()
injections < 0
repeat
origState ~ B(h)
transformedState <+ Copy(origState)
transformedState.driver. distracted < Random(true, false)
transformedState. driver.duration < Random (0, maxDuration)
B(h) U transformedState
injections++
until injections = numSearches / 16
end procedure

Figure 3.9: Pseudocode for the particle injection. Note: Only the driver
distraction and duration for the current state are changed in the transformed
state. The car state and the driver’s last action are copied.

3.3.4 Preferred actions

Silver and Veness, 2010 improve the performance of POMCP by providing domain
knowledge in the form of preferred actions to the agent. Domain knowledge
allows the agent to focus on promising states without altering the aglorithm’s
performance behavior (Silver & Veness, 2010). Preferred actions are initialized
with an initial value Vj,;;, increasing the likelihood to be selected by the UCB1
algorithm. Moreover, the rollout strategy 7,104+ can be changed from uniformly
random action selection to a more informed method. Refer to figure 3.7 to see
how changing V;,;; and 7,104 integrates into the algorithm.

For example, Silver and Veness, 2010 implemented preferred actions for the
game Pac-Man, where the player is chased by ghosts in a maze who aim to catch
and eat her. By collecting a power pill, the player is enabled to eat the ghosts
instead. When using preferred actions, the value of moving in directions in which
the player sees ghosts is based on the power pill. If the player collected one,
the value of moving towards ghosts is increased, if not, it is decreased. Thereby,
the agent is made aware of basic domain knowledge, and its performance is
increased.

In the case of the lane-keeping scenario on a highway, one thing to consider is
that strong steering actions are seldomly needed. Strong actions should only be
needed as a countermeasure when a distracted driver turns strongly in the wrong
direction. The idea is to make minor actions more likely to be chosen during
searches by giving them a higher initial value than stronger actions. Thereby,

25



Solution approach using the POMCP algorithm

less-severe steering actions are selected and tried out first by the UCB1 algorithm.
If they lead to good results, the agent can exploit them quicker. If not, the agent
will also evaluate less preferred actions.

We employ preferred actions to evaluate their effect on the performance of
the agent. The design we use was empirically chosen and is not meant to provide
a fully correct representation of driving domain knowledge. Instead of choosing
actions uniformly random during rollouts, we use the probabilities shown in
table 3.5 for the action selection by the rollout strategy T oiout. Thereby, we
favor minor steering actions over strong actions. The initial count Nj;,;+ is set to
zero for all actions. The initial value for all actions is set to Vj,:

Vinit(a) = 0.9+ 0.1« Pr(a)

Action +2 +1 +0.75  +0.5 +0.25 +£0.15 +£0.1 0
Probability (%) 2.5 5 5 5 7.5 10 10 10
Initial value 0.9025 0.905 0.905 0.905 0.9075 0.91 0.91 091

Table 3.5: Preferred actions probabilities and initial values. The positive and
negative values each have the same probabilities and values.
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Chapter 4
Experimental setup

In this chapter, our experiments are introduced. First, an overview of the different
evaluated scenarios is given in section 4.1. Subsequently, in section 4.2 some
important experiment design decisions are explained and justified. Furthermore,
the process of tuning the hyperparameters is discussed in section 4.3. Lastly, the
performance metrics for the evaluation are presented in section 4.4.

All experiments have been performed single-threaded, but in parallel, on a
Google Cloud C2 Compute-optimized' virtual machine with 60 CPU cores and
240 GB RAM, running Ubuntu 20.04 LTS.

4.1 Evaluated scenarios

Three different agent configurations are evaluated, with differing action selection
procedures. Moreover, there are three driver models with increasing complexity.
In the experiments, each agent is tested with each of the driver models. The aim
is to find out how well the different agents can handle the increasing complexity
of the driver models.

The three agents that are considered all use the POMCP algorithm. The
difference lies in the way they select actions. The first agent utilizes the full
action space. During rollouts, it chooses actions uniformly randomly. The second
agent only considers a subset of the action space containing only minor steering
actions (see table 3.2). This is done because we do not expect strong steering
actions to be needed often. For both the first and the second agent, the actions
are given an initial value of zero. The third agent uses preferred actions (see
section 3.3.4). It considers the full action space but assigns different probabilities
to the actions for their selection during rollouts, preferring minor steering actions
over strong ones. Furthermore, it assigns initial values to the action nodes (see
table 3.5).

The driver model configurations are introduced in section 3.1.2. The basic
driver model acts optimally when the driver is attentive and, when distracted, the
last action which was performed while the driver was still attentive is repeated.
The second model adds complexity by introducing a random amount of steering
overcorrection when a formerly distracted driver regains her attentiveness. The
intuition is that a driver who suddenly realizes that she has deviated from the
lane center is startled and thus steers too strongly to correct the car’s position.
The third driver model is based on the second one and adds a random amount
of action noise on top. This noise is meant to make the driver’s behavior more
realistic and less predictable.

1See Google Cloud machine families
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Experiment design decisions

In total, this makes nine scenarios (three agents x three driver models). For
each of these scenarios, various experiments are executed with varying numbers
of forward searches during planning with the POMCP algorithm (see section
3.3.1). The rationale behind this is to determine after how many searches the
agents’ performance converges. The number of searches has a substantial impact
on the planning time the agent needs before deciding on its next action. The
fewer searches are needed for a good policy, the better, as this translates to a
lower planning time.

4.2 Experiment design decisions

We made a number of noteworthy experiment design decisions that are important
to consider. These are highlighted and motivated in the following subsections.

4.2.1 Episode definition and repetitions

Every experiment consists of 50 repetitions (runs) of episodes consisting of
1,000 actions each, if no terminal state is reached earlier. An episode can end
prematurely if a terminal state is reached. A state is terminal if the car is off
track, which is considered to be the case if the center of the car lies within more
than 20 cm beside the left or right lane markings. The episodes are independent
of each other - no data is persisted. Each episode starts with the same car state
(centered in the lane, relative yaw angle of zero) and the same driver model
state (attentive, same duration until distracted). The acceleration and braking
are controlled by an external controller, keeping the speed constant at 80 km/h
during the entire episode.

4.2.2 Experiments do not use real-time simulation

It is important to consider that the simulation is not executed in real-time
because this limits the applicability of this study to a real-world scenario. The
agent and driver provide a new steering action every 0.1 seconds. For the time
in between, their steering action stays constant. 1,000 actions represent 100
seconds of simulated driving time. This means that the car drives 100 seconds
in TORCS. However, because the planning time before each action may be
substantial, the experiment execution can take much longer in real-time. While
the agent plans, the simulation waits; it is paused until the agent decides on its
next action and executes it. This is not realistic and would not work with a real
human and a real car. Section 7.2.2 discusses how performance optimizations
could be implemented in order to circumvent this problem.

4.2.3 Choice of evaluated number of searches

The number of searches impacts the required planning time significantly.
Increasing the number of searches leads to an increased planning time. In the
experiments, we evaluate different numbers of searches to assess the performance
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10 100 200 300 400 500 750 1000 1500 2500 5000 7500 10000

Table 4.1: The different values for the number of searches during planning that
are considered in the experiments.

impact. We expect the performance to converge after some amount of searches
and want to find out when this convergence occurs. Table 4.1 shows the various
values that are used in the experiments. The computational complexity of
the planning process grows relative to the number of searches. Therefore, it
was decided to increase the relative distance between the values we try as the
values increase. This prevents a precise determination of the convergence point.
However, otherwise, the experiments would not be computationally feasible
with our resources. To further narrow down the convergence point, additional
experiments would be required.

4.2.4 Initial belief

The initial belief of the agent consists of 1,000 particles that each consist of a
randomly sampled attentive driver model state and a car state that is slightly
modified but close to the true car state. The lane centeredness and the yaw angle
of the real car state are increased or decreased by a randomly chosen amount of
up to five percent. Thereby, the agent does not have perfect knowledge of the
car’s current lateral position but has a close initial estimate.

The main objective for the agent is to cope with the unpredictability of and
partial information about the driver’s attentiveness. The agent knows that the
driver is initially attentive but not for how long. The duration until the next
change of attentiveness occurs is randomly sampled but adheres to the usual
dynamics of the driver model; the duration may not be larger than the maximum
or smaller than the minimum defined in section 3.2.1.

4.2.5 Decreasing the steering frequency

By default, TORCS expects drivers to input new steering actions every 0.02
seconds. However, for the experiments, the action frequency for the agent and
the driver model was decreased to 0.1 seconds. The simulation progresses during
this time (see section 3.2.1). This means that every combined action is repeated
for 0.1 seconds. There are two reasons for this: First, this enables the evaluation
of the agent’s performance with a longer driving time. Especially for a large
number of searches, the planning time for every action is rather large. Getting
data for 100 seconds of driving time with an action frequency of 0.02 would
require five times the current computation time. This is not feasible with the
limited recourses for this thesis. Second, lowering the action frequency makes
the driving task more difficult as it is easier to overshoot when the same action
is repeated often. The agent has to plan more carefully. Moreover, the agent
has to look further ahead as there are more situations in which the action that
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leads to the highest immediate reward is not the best to choose to maximize
long-term return.

4.2.6 Driver action discretization

The actions of the driver are discrete (see section 3.2.2). Obviously, this is not
very realistic. The discretization of the driver’s actions decreases the complexity
of the problem sufficiently. It is conceivable that POMCP could be applied even
if the driver’s actions were continuous. Continuous driver actions, rather than
continuous agent actions, do not have the effect of limiting the search tree depth
because of a width explosion (see section 3.3.2). However, they make it a lot
harder to predict the driver’s actions precisely.

4.2.7 Controlling randomness to ensure comparability

Every run has a different seed for the random number generator used for the
randomly chosen state durations. Every run has different state duration times.
However, the driver state durations are the same for the different agents in the
runs. For example, during run one, the driver is attentive or distracted at the
same times and for the same durations for all agents. The reason for this setup
is twofold: First, varying driver behavior for different runs verifies the robustness
of the agents to varying situations. Second, using the same state durations
for the different agents ensures the comparability between experiments. The
driver model used for the generative model of the agent and the driver model
representing the actual driver do not share the same seed.

4.3 Hyperparameter optimization

Besides the number of searches, there are two additional hyperparameters of
POMCP that have a strong influence on the planning performance: The search
horizon and the exploration constant. The exploration constant is used to enhance
the value of rarely-tried actions in order to facilitate exploration and stop the
agent from overfitting. The search horizon (or discount horizon) describes how
many actions the agent looks into the future during planning if no terminal state
is reached earlier.

Six different exploration constants and three different search horizons are
evaluated in a grid search for the best combination. Each combination is assessed
by the average cumulative return from an experiment with 20 runs, up to
1,000 actions each, and 1,000 searches per planning step. The second driver
model is used for the grid search (steering overcorrection, no action noise; see
section 3.1.2.1). The grid search is only performed for this selected scenario
because of limited computing and time resources. However, the experiments
should be sufficient to indicate the performance differences stemming from the
hyperparameter combinations.
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4.4 Performance metrics

The performance of the agents is measured in two ways: First, there is the
cumulative reward an agent receives in an experiment for a particular scenario.
Second, the terminal states an agent encounters during the experiment are
considered. Terminal states entail that the lane-keeping task was failed. It
is to be expected that all agents will lead to similar cumulative rewards with
an increasing number of searches during planning. The key is the number of
searches they require in order to achieve this reward. A lower number of searches
means more efficient, faster planning. Furthermore, the optimality of the agents
policies when converged will be evaluated by comparing the agents’ performances
with two baselines. First, as the lower bound, the driver model driving without
assistance. Second, as the upper bound, an agent with perfect knowledge of the
state, who always acts optimally.

)
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Chapter 5
Results

This chapter presents the results from the experiments. First, in section 5.1 the
performance of the driver without assistance, and of an agent that acts optimally,
are established as the lower and upper performance bounds respectively. In
section 5.2, the results of the hyperparameter optimization are presented. Then,
the influence of the number of searches during planning on the performance is
evaluated in section 5.3, with the aim of identifying the point of convergence for
each agent. The cumulative reward but also the terminal states reached during
experiments are taken into account. The results are grouped according to the
different versions of the driver model. Lastly, in section 5.4 the progression of
the mean lane centeredness is shown for an increasing number of searches.

5.1 Lower and upper performance bound

The benchmark for the performance of the agents is the performance of the
driver without assistance system as the lower bound, and the performance of an
agent that always reacts optimally to the driver’s actions as the upper bound.
For both baselines, 50 runs with up to 1,000 actions each, if no terminal state is
reached earlier, are performed for each of the three driver models.

In the case of the independent driver, no run was completed successfully. At
some point in any run, the driver becomes distracted and fails to adjust to a
change of the course of the road, leading to lane departure. Table 5.1 shows that
the more complex the driver model is, the worse its performance is. The simple
driver model and the driver model with steering overcorrection lead to a few
runs with a relatively high number of successful actions before a lane departure
occurs. After becoming distracted, the driver only repeats its last attentive
action. In some cases, this means that the distracted driver continues to steer
straight, which is less likely to lead to lane departure on the highway track than
consecutively steering left or right.

The agent reacting optimally to the driver’s actions has full knowledge about
the car state, as well as the driver’s next action. It always chooses the action
that leads to the best possible combined action. It finishes every run successfully
and leads to average cumulative rewards of 999.3 for all driver models.

Mean reward  Min #actions  Max #actions

Simple driver 54.39 17 347
Over correction 51.26 17 233
Over correction and noise 31.08 14 74

Table 5.1: Independent driver performance
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5.2 Hyperparameter optimization

Hyperparameter optimization is performed for agents with all three action
configurations and the driver model with steering overcorrection but without
noise. Grid search is used to search for the combination of search horizon and
exploration constant that leads to the highest average cumulative reward after
20 runs, with up to 1,000 actions each and 1,000 searches per planning step.

All actions Action subset Preferred actions

25 440 377 361 - 226 178 386 429 352

g 10 324 468 323 524 229 238 376 405 413
2

§ 5 356 436 574 207 262 513 496 443

.é 1.5 500 528 523 554 495 - 467 501

o

;% 0.75 - 529 405 111 92 97 548 548

0.5 356 59 112 38 45 67 52 77 129

5 10 25 5 10 25 5 10 25

Search horizon

Figure 5.1: Average cumulative rewards for combinations of search horizon and
exploration constant for all three action configurations (20 runs with up to 1,000
actions each and 1,000 searches per planning step; driver model with steering
overcorrection but without noise). The framed values indicate the combination
with the best result that we use for further experiments.

For the agent with a full, unweighted action space, two combinations lead to a
sufficiently higher average cumulative reward than the others: The combination
of a search horizon of 5 actions with an exploration constant of 0.75 leads to a
reward of 587.67, and the combination of planning ten actions ahead with an
exploration constant of 5 results in a reward of 581.40. The shallower the search
horizon, the less planning time is needed at every planning step as fewer actions
need to be simulated. Thus, at the same performance, a lower search horizon is
preferable. The combination of a search horizon of 5 actions and an exploration
constant of 0.75 is used for further experiments.

In the case of the agent restricted to using a subset of the action space, the
combination of a search horizon of 5 actions and an exploration constant of 25
yields the highest average cumulative reward of 646.83. Only the combination
of a search horizon of 25 actions with an exploration constant of 1.5 comes
relatively close with a reward of 616.47. As a lower search horizon is preferable,
the setup for the further evaluation for this agent is a search horizon of 5 actions
with an exploration constant of 25.

The best combination of search horizon and exploration constant for the
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agent with preferred actions is 25 actions and 1.5, respectively. This combination
yields an average cumulative reward of 942.05, which is sufficiently higher than
the return of any other combination. Consequently, this is the combination used
for this agent in subsequent experiments.

5.3 Performance impact of the number of searches during
planning

We want to determine after how many searches during planning the lane-keeping
performance of the three evaluated agents converges. Performing more searches
means evaluating more possible scenarios. In turn, more evaluated scenarios
enable the agents to form better policies. However, after some number of searches,
the information gain from additional searches decreases, and performance is
expected to converge (Silver & Veness, 2010). We evaluate each of the agents
in the scenarios with the simple driver model, the driver model with steering
overcorrection after regaining attentiveness, and the driver with overcorrection
and noise. A lower number of searches is preferable as each search requires a
substantial amount of planning time. The applicability of a planner is limited
by the planning time required for good results. Thus, knowing after how many
searches the performance converges, and therefore being able to choose the
minimal number of searches to perform for a good result, is critical.

5.3.1 Simple driver model

Figure 5.2 illustrates the performance differences between evaluations with various
different numbers of searches during planning for the experiment with the simple
driver model. All evaluated agents lead to similar convergence behavior. Already
with just 200 searches, the average cumulative reward is above 600 for all agents.
However, as it can be seen in Table 5.2, the number of runs that lead to a
terminal state is high. In the runs resulting in a terminal state, the agents are
able to assist the drivers well at first but suffer from particle deprivation after
some time (see section 3.3.3). Then, their belief deviates noticeably from the
true states of the car and the driver. The agents are not able anymore to make
accurate assumptions about whether the driver is attentive or not. Thus, they
are rendered unable to decide on the right actions to keep the car centered.

The agent using the full range of actions reaches four terminal states with
300 searches, whereas the other two agents need more searches to perform well.
The best result for all three agents is achieved with 1,500 searches. Then, no
run results in a terminal state. The agent with the full action space receives
an average cumulative reward of 957.83, the agent with a reduced action space
yields 981.99, and the agent using preferred actions gains 973.88.

For more searches, the average cumulative rewards are similar for the agents
with a subset of actions and preferred actions. They seem to have converged. In
contrast, the agent with a complete action space encounters four terminal states
in the trial with 5000 searches and six in the experiment with 7,500 searches.
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Figure 5.2: Performance comparison of POMCP when utilizing all actions, an
action subset, or preferred actions with a simple driver model. Each point shows
the mean cumulative reward from 50 runs with 1,000 actions each, if no terminal
state is reached earlier.

These terminal states are reached early on during the run - executing less than
50 actions before. They are caused by an extreme action of the agent that leads
to the opposite of optimal steering behavior. The actions completely overrule the
driver’s actions, who is even concentrated during three of the ten occasions. The
reason for choosing these extreme actions is a poor belief that strongly deviates
from the true states of the environment and the driver. The agent with preferred
actions is less likely to perform extreme actions, and the agent with a subset of
minor actions cannot do so.

The agent restricted to use only a subset of minor actions reaches terminal
states in two states in the experiments with 2,500, 7,500, and 10,000 searches.
These are not caused by particle deprivation. In all cases, the car is in a
road bend, and the driver is distracted, steering in the wrong direction. The
agent performs its best possible action by steering as much as possible in the
opposite direction than the driver. However, because the agent’s range of actions
is severely limited, the combination of the agent’s and driver’s actions is not
enough to keep the car in the lane.

Using preferred actions results in only one terminal state for experiments
with 1,500 searches or more. The reason, like for the terminal states reached by
the agent without weighted actions, is particle deprivation. There are multiple
occasions where a distracted driver steers in the wrong direction in a road bend,
and the agent is able to correct the steering by effectively reversing the driver’s
actions.

Table 5.2 also includes the average planning times the agents require to
perform all their searches in each planning episode. The planning times are
mostly influenced by the search horizon. Whereas the agents without preferred
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Number of searches 10 100 200 300 400 500 750 1000 1500 2500 5000 7500 10000
All # term. states 50 50 22 4 4 3 3 1 0 1 4 6 1
actions & plan. time (s) .02 .06 .12 .14 .16 .19 .28 .37 .55 .88 1.76 2.67 3.59

Action # term. states 50 48 27 26 11 18 6 5 0 2 0 2 2
subset & plan. time (s) .02 .05 .09 .13 .16 .19 .31 .37 .56 .89 1.85 2.73 3.58

Pref. # term. states 50 50 32 13 8 4 1 3 0 0 1 0 0
actions @ plan. time (s) .11 .25 .39 .55 .70 .87 1.35 1.91 3.52 5.96 9.23 16.71 22.36

Table 5.2: For each of the experiments with the simple driver model, this table
includes the total number of runs during which a terminal state was reached and
the average planning time per planning step in seconds. Note: .xx is short for
0.zz in the table.

actions both only look five actions ahead during planning, the agent with
preferred actions considers 25 possible future actions in its tree. Therefore, it
needs to perform five times the number of simulations during planning, which
requires more time. The planning time is needed before executing each action.
In the most extreme case, with 10,000 searches, this means that the agent with
preferred actions needs to plan for an average of 22.36 seconds of real-time before
deciding on the action for the next 0.1 seconds of simulated driving time. The
simulation halts during planning. However, in a real-world scenario, this is not
feasible.

5.3.2 Steering overcorrection

A driver that overcorrects after regaining attentiveness by steering too strongly
in her first attentive action presents a greater challenge for the agents. When
choosing its next action, an agent also needs to account for the driver’s possible
overcorrection. The amount of overcorrection is stochastic (see section 3.1.2).
Attentive drivers are less predictable when they overcorrect. Rather than just
performing the optimal steering action, different overcorrection intensities can
lead to a variety of actions at the same position. The complexity of the planning
problem is higher. Generally, more searches are needed in order to evaluate a
greater variety of possible states from the belief while planning.

As it can be seen in Figure 5.3, the agent using preferred actions converges
sufficiently earlier towards a good policy than the other two agents. This is
mainly caused by a high number of terminal states reached during evaluation
runs of the agents without preferred actions (see Table 5.3). For example, with
750 searches, the agent using preferred actions receives an average cumulative
reward of 883.43 with only ten runs ending in a terminal state, while the other
agents each reach terminal states in 42 runs. The agent with an unrestricted
action space yields a mean return of 464.89, and the one with a restricted action
space gains 473.67.

In contrast to the experiment with the simple driver model, the terminal
states are caused almost exclusively by particle deprivation after a formerly
distracted driver becomes attentive again and overcorrects. If the agent did
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Figure 5.3: Performance comparison of POMCP when utilizing all actions, an

action subset, or preferred actions with a driver model that over-corrects when

it regains attention. Each point shows the mean cumulative reward from 50 runs
with 1000 actions each, if no terminal state is reached earlier.

Number of searches 10 100 200 300 400 500 750 1000 1500 2500 5000 7500 10000
All # term. states 50 50 49 45 42 46 42 41 35 13 4 5 6
actions & plan. time (s) .02 .05 .08 .12 .16 .20 .28 .37 .55 .91 1.75 2.72 3.63
Action # term. states 50 50 49 49 48 49 42 39 23 17 3 1 1

subset & plan. time (s) .02 .05 .08 .12 .15 .19 .28 .36 .53 .88 1.84 2.69 3.54

Pref. # term. states 50 50 49 42 35 29 10 3 0 0 0 0 0
actions & plan. time (s) .10 .24 .40 .54 .68 .88 1.22 1.69 2.51 4.30 9.39 16.15 22.53

Table 5.3: For each of the experiments with the driver model with steering over
correction, this table includes the total number of runs during which a terminal
state was reached and the average planning time per planning step in seconds.
Note: .xx is short for 0.zz in the table.

not account for this possibility properly, no matching node for the observation
resulting from the overcorrection is contained in the agent’s planning tree. In
this case, the agent cannot recover and continues using uniformly random action
selection (see section 3.3.1), which usually leads to a terminal state after just a
few actions. The agent with preferred actions is able to form an accurate belief
of the environment’s true state using fewer searches than the other two agents.

Moreover, table 5.3 presents the average planning times needed by the agents.
These are comparable with the results for the scenario with the simple driver
model.

5.3.3 Steering overcorrection and noise

The noise added to the driver’s actions is added with the goal to make the driver’s
behavior more realistic and thereby also more difficult to plan with. However,
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the performance of the agents in the experiment with overcorrection and noise
is very similar to the experiment with overcorrection but without noise. Figure
5.4 displays the performance differences for the agents with various numbers of
searches. Surprisingly, all agents even receive slightly higher average cumulative
rewards and show a similar convergence behavior. The agent using preferred
actions converges to a reward of roughly 960 with 1,000 searches or more. The
agent with a full action range reaches peak performance at 5,000 searches with a
return of about 860, staying at roughly the same level subsequently. The agent
with the small action space converges at around 960, with 7,500 searches and
more. The actual convergence probably occurs with somewhere between 5,000
and 7,500 searches, but no experiment was conducted with a number of searches
in between.
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Figure 5.4: Performance comparison of POMCP when utilizing all actions, an
action subset, or preferred actions with a driver model that over-corrects when
it regains attention and performs noisy actions. Each point shows the mean
cumulative reward from 50 runs with 1,000 actions each, if no terminal state is
reached earlier.

Table 5.4 shows the number of terminal states reached during the experiments
and the average planning times needed. The numbers of terminal runs are
comparable for the two agents with unweighted actions. For the agent using
preferred actions, the number of terminal states reached at 750 searches is twice
as high. In most of these cases, the cause for this is a combination of a strong
overcorrection with a high driver action noise. This combination is unlikely but
possible with the random nature of the process. Despite this deviation, the data
is very similar to the experiment without noise. The average planning times are
similar to the times from the experiments with the other two driver models.
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Number of searches 10 100 200 300 400 500 750 1000 1500 2500 5000 7500 10000
All # term. states 50 50 50 44 42 40 40 40 30 15 4 6 5
actions & plan. time (s) .02 .05 .09 .12 .16 .21 .29 .37 .55 .92 1.78 2.73 3.01
Action # term. states 50 50 49 47 46 47 37 35 25 14 5 1 1

subset & plan. time (s) .02 .06 .09 .12 .17 .19 .28 .38 .55 .89 1.80 2.69 3.61

Pref. # term. states 50 50 48 43 37 26 20 1 0 0 3 0 0
actions @ plan. time (s) .12 .24 .39 .55 .68 .84 1.25 1.66 2.53 4.20 9.13 16.66 22.21

Table 5.4: For each of the experiments with the driver model with steering over
correction and noise, this table includes the total number of runs during which a
terminal state was reached and the average planning time per planning step in
seconds. Note: .xx is short for 0.xx in the table.

5.4 Mean lane centeredness

The reward reflects how well the agents manage to keep the car centered in the
lane and angled to the road trajectory. From the last section, it is clear that the
number of simulations has a strong impact on the agents’ performance. However,
the last section only showcased this based on the average cumulative rewards
and terminal states reached. In this section, we want to emphasize the difference
in lane centeredness that stems from using more searches during planning. More
specifically, we consider the mean absolute lane centeredness, which is the average
distance to the lane center, regardless of whether the deviation is on the left or
right side.

For the experiment with the driver model with driver action noise and steering
overcorrection, figure 5.5 shows the average absolute lane centeredness for an
increasing number of searches. We focus on this figure in the analysis. The
results for the other two scenarios are similar (see appendix A.1 and appendix
A.2). The runs ending in terminal states are taken into account until the terminal
state occurs. For the remaining actions, they are ignored in the graphs. It is
therefore important to consider them (see table 5.4).

With just 200 searches, most runs end in terminal states. What is striking
is that the average lane centeredness is quite volatile and often drifts off into
the extreme. Neither of the three agents is consistently capable of keeping
the car centered in the lane. The graph for 500 searches already suggests an
improvement. There are less extreme values, and the standard errors are lower.
The agents with unweighted actions appear to perform better than the agent
with preferred actions at first glance. However, still, almost all runs of the two
agents with unweighted actions lead to terminal states, and only about half of
the runs of the agent with preferred actions. The performance of the agent with
preferred actions is arguably better. Using 1,000 searches marks the start of
convergence for the agent with preferred actions. The average lane centeredness
is consistently lower than with 500 searches throughout the experiment. The
agent using a reduced set of actions performs better than with 500 searches,
leading to less variation in the lane centeredness and fewer terminal states
reached during the experiment. The lane centering of the agent with the full
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action range is virtually unchanged. When 10,000 searches are performed during
planning, all agents have converged to their peak performance. The two agents
using unweighted actions agents achieve similar results in this case. The agent
with preferred actions slightly outperforms the others but appears to have a
higher variance in its lane centeredness.
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Figure 5.5: Mean lane centeredness for the different agents in experiments with
the driver model with oversteering and driver action noise. A lower distance is
favorable. The shaded area shows the standard error. The optimal agent does
not build a search tree, and thus there is no difference between the four plots
for the optimal agent. Note: This figure is intended to showcase the difference
in lane centeredness between experiments with different numbers of searches
for a particular agent. It is not suited to compare the agents with each other
without taking into account the different number of terminal runs during the
experiments (see Table 5.4). The two agents without preferred actions appear
to have lower mean distances than the agent using preferred actions in the first
graphs. However, many of their runs end in terminal states. After the terminal
state is reached, these runs do not produce additional data and are therefore not
reflected anymore in these graphs.
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Chapter 6
Discussion

In this chapter, we analyze the results that were presented in the previous
chapter. The reasons for the performance differences but also the similarities of
the agents are explained in section 6.1. Furthermore, section 6.2 elaborates on
limitations of the chosen solution approach.

6.1 Analysis of the results

6.1.1 Lower and upper performance bound

Without assistance, the driver is not able to keep the car in its lane in any
scenario. This is because the driver is not able to account for changes in the road
trajectory when distracted. It is unlikely that an actual human that becomes
distracted performs as poorly as our driver models. A realistic driver model was
not in the scope of this thesis. However, the incapability of a distracted driver
to keep the car in its lane only makes the task harder for the agent. All agents
are able to significantly improve the driver’s lane-keeping performance.

We determined the upper performance bound using an agent acting optimally
(or almost optimally, as the discretization does not allow for very fine-grained
control). The optimal agent had full knowledge of the car’s position and the
driver’s attentiveness and achieved average cumulative rewards of 999.3 in all
scenarios. Considering the theoretical maximum average cumulative reward of
1,000, this means that an almost perfect return is possible if the agents estimate
the driver’s attentiveness correctly. Especially with many searches, the agents
come close. However, none of the evaluated agents is able to consistently estimate
the state of its environment correctly and gain an optimal return.

6.1.2 Hyperparameter optimization

The results for the hyperparameter optimization are particularly interesting
for two reasons: First, the extended experiments are based on the resulting
hyperparameters that are deemed best. Second, the results are quite different
for the three agents.

A combination of a relatively low exploration constant and a shallow search
horizon leads to the best results for the agent with the full unweighted action set.
This combination has the effect that the agent constructs a search tree with a
maximum depth of only five actions while it explores relatively little. The agent
with the reduced action space yields the best result with a combination of a
shallow search horizon but a large exploration constant. During planning, it also
only considers five potential future actions but is inclined to explore considerably
more.
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The agent using the full action space starts to exploit early during planning
on actions that have shown to be rewarding initially. In contrast, the agent with
a reduced action space considers actions more often before starting to exploit the
ones which show better returns. The difference in the agents’ behaviors makes
sense considering the different number of actions they can choose from during
planning. The agent utilizing the full action space has to be more selective.
Otherwise, it would waste a large number of its searches to explore the many
potential actions and would not be able to generate a meaningful belief at any
node.

For the agent using preferred actions, the best results are achieved with a
deep search horizon and a low exploration constant. The agent plans ahead 25
actions into the future, with a relatively low exploration. The increased search
horizon has the effect that the planning complexity, and thereby the planning
time, is significantly greater than for the other two agents. It is very important
to take this into account. The potential applicability to driving with a real
human is highly dependent on the planning time.

Comparing agents using different search horizons may not be fair. Although
the grid search led to the best performance with different search depths for
the agents, differing search depths essentially mean that the agents perform a
significantly varying lookahead into the potential future. An agent with a deeper
search horizon bases its planning on more information. Running experiments
with longer search horizons for the agents without preferred actions could lead
to additional insight and is advisable for future research.

6.1.3 Performance impact of the number of searches during
planning

All agents can lead to good policies if they perform a high number of searches.
For the simple driver model, convergence occurs significantly earlier than with
the less predictable driver models. All three agents perform similarly. The agent
using the full unweighted action space converges first, but the other two agents
reach slightly higher results later on. From 1,500 searches onward, for the agents
using the full action space, both weighted and unweighted, the terminal states
reached during runs are caused by particle deprivation. The agent using the
reduced action set encounters terminal states because it cannot counteract a
distracted driver’s wrong actions precisely because its action space is reduced.
For the more complex driver model implementing steering overcorrection,
using preferred actions leads to a substantially earlier convergence and to fewer
terminal states. The performance of the agent using preferred actions converges
somewhere around 1,500 searches. From this point on, no terminal states are
reached anymore. The other two agents still lead to terminal states during some
runs for all evaluated numbers of searches. The return for episodes where no
terminal state is reached is similar to the simple driver model experiments. The
agents driving policies are therefore not worse. What is worse is their ability
to estimate the current state of the driver. The terminal states result almost
exclusively from particle deprivation after a formerly distracted driver becomes
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attentive again and overcorrects. This was expected since the complexity of the
planning task increases with the introduction of oversteering. Only the agent
using preferred actions is able to avoid particle deprivation.

The experiments for the third driver model with steering overcorrection and
additional driver action noise lead to similar results as the experiments without
noise. The most likely reason for this is the discretization applied to the driver’s
actions (see section 3.3.2). Low noise that is added to an action is often lost
during discretization. The resulting action can therefore be the same action as
it would have been before adding the noise. However, there are cases where a
combination of a strong overcorrection with a high driver action noise leads to
unexpected situations and therefore particle deprivation, even for the agent with
preferred actions.

Main problem: Particle deprivation The main cause for suboptimal behavior
and reaching terminal states is particle deprivation. The more complex the
problem, the more searches are needed to guarantee that a wide array of possible
future scenarios are covered. As long as their belief represents the environment’s
and driver’s states well, all agents lead to a good lane-keeping performance.
However, even with a large number of searches, the agents without preferred
actions reach terminal states in some runs, independent of which driver model
is used. The only agent that consistently avoids reaching terminal states in all
experiments with more than 5,000 searches is the agent using preferred actions.

Particle deprivation occurs when an agent’s belief strongly diverges from the
true state. At some point, none of the observations it receives during planning
will match the real observation anymore. The agent has lost track of the true
state completely. For the node representing the real observation, the belief tree
stores no particles. From this point on, the agent is effectively clueless about
the true state and continues to use random action selection.

Estimating the car’s state is not problematic. As the car states in the
initial belief are very similar to the true car state, and the simulation engine is
deterministic (same state and action always lead to the same next state), the
car states in the belief do not diverge significantly from the true state during
the experiments. The problem lies in the estimation of the state of the driver
model. If the agent wrongfully beliefs that the driver is attentive or distracted
and the real observations match the observations from planning for some time,
the agent’s belief will converge to the wrong state. Particle injection (see section
3.3.3 is implemented to circumvent this to some degree. However, the method is
no guaranteed cure for particle deprivation.

Using preferred actions lowers the chance of particle deprivation. Due to the
use of preferred actions, the agent does not start with equal initial values at new
nodes during rollouts. Instead, the actions are weighted with domain knowledge
(see section 3.3.4). The likelihood of selecting an action for a rollout is bound
to its intensity, with less severe steering actions being preferred as the need for
strong steering is scarce on a highway track. Assuming the underlying assumption
of the introduced domain knowledge is valid, and the return is confirmed to be
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higher for a preferred action during initial searches, then exploration is kept to
a minimum. If the reward does not drop sufficiently, the agent is allowed to
exploit the preferred action. Thereby, a preferred action, if successful initially,
is evaluated relatively often, even with fewer searches. Consequently, nodes
connected with the preferred actions hold a more comprehensive belief. More
driver model states will be considered, and therefore particle deprivation is
prevented.

Intuitively, one would expect the agent with the reduced action set to lead
to a similar improvement when it comes to particle deprivation as the agent
using preferred actions. The reduced number of actions means that the fixed
number of searches is distributed over fewer actions. Thereby, more potential
driver models could be covered per action, which should reduce the chance
of particle deprivation. However, during the experiments, the agent with the
reduced action set did not lead to significantly lower terminal states reached
due to particle deprivation than the agent using the full action set. A plausible
explanation for this could be the large exploration constant for the agent with
the reduced action set. The high value for the exploration constant leads to
intensive exploration. Thereby it could counteract the effect of the reduced
action space. An additional test with a smaller exploration constant would be
necessary to verify this assumption.

6.1.4 Mean lane centeredness

Increasing the number of searches during planning leads to better lane-centering
for all agents. This was to be expected as the ability to estimate the driver’s
state correctly increases with the number of searches. With 10,000 searches, the
car can mostly be kept between 0.5 and 1.0 meters from the lane center. The
optimally-acting agent is able to consistently keep the distance to the lane center
close to zero. In contrast, it is clear that none of the agents is able to estimate
the driver’s state accurately enough to keep the car centered at all times.

It is difficult to compare this result with the lane-keeping performance
achieved in other papers as the experiment setups differ widely. The experiments
in different studies differ in their road setup, car speed, action frequency,
and car simulation dynamics. However, it is highly likely that commercially
available systems today that do not account for the driver’s distraction would
outperform our approach significantly. Nevertheless, this does not undermine
our contribution because the fundamental premise of assisting a potentially
distracted driver by solving a POMDP model including only driver performance
measures is proven to work. Nevertheless, improvements are necessary.

6.2 Limitations

There are multiple factors that limit the applicability of the solution approach
taken in this thesis to a more realistic setting or even a real-world scenario. The
most striking limitations of the solution approach are elaborated in the following
subsections.
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6.2.1 Long planning time

One of the most striking shortcomings of the online solution approach taken
in this thesis is the long planning time the agents require for the search they
perform during planning. Anything beyond a few fractions of a second would
be too much in a real-world driving scenario. The agents that are analyzed
in this thesis require many searches during planning in order to avoid particle
deprivation. Only the agent using preferred action was able to consistently avoid
terminal states for all driver models, and that only with 7,500 searches or more.
The other agents may require even more forward searches. Especially for the
agent with preferred actions, due to the deep search horizon, performing a large
number of searches means having to plan for a long time. Performing 7,500
searches with a search horizon of 25 means the agent has to simulate a total of
187,500 actions, which takes about 16 to 17 seconds on average (see tables 5.2,
5.3, and 5.4).

It may be possible to speed up the computation and therefore reduce the
amount of planning time that is needed. There are two main ways in which
improvements can be achieved. First, the efficiency of the generative model can
be improved. Second, the POMCP algorithm could be parallelized or potentially
even replaced by a more efficient algorithm. Both options are discussed in
section 7.2.2.

6.2.2 Dependency on a reliable generative model

For the experiments conducted in this thesis, the same driving simulator and
driver model that were used as a simulation of a real driving scenario were
also used as the generative model for the agent. Therefore, the transition
and observation probabilities underlying the generative model were an exact
replication of the dynamics of the agent’s environment (car and driver). POMCP
is based on the assumption that such a generative model exists, which can sample
the true transition and observation probabilities. However, in a real-life scenario
or with a more realistic driver model, such a generative model might not be
available. It is conceivable that it could be sufficient to use a generative model
that approximates the dynamics of the environment. This has not yet been
evaluated and likely leads to problems if the approximation is not accurate.

6.2.3 Action and observation space discretization

The action and observation space for the agents are discrete. POMCP is not
suited to be used with continuous action and observation spaces (see section 3.3.2).
Steering actions and a car’s sensory information are naturally continuous. The
results indicate that a discretization of the observation space can be successful.
However, the lower the number of discretization bins, the lower is the precision.
On the one hand, increasing the resolution of the discretization can lead to a
considerable elevation of the planning complexity. More distinct observations
may be encountered while constructing the search tree. A low precision of the
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observations, on the other hand, does not allow the agent to act precisely, leading
to suboptimal behavior. Limited steering precision is also caused by discretizing
the action space. If the agent can only choose from a limited number of actions,
it cannot steer accurately. Its assistance might be jumpy. This does not allow
for a smooth driving experience. Section 7.2.4 discusses briefly how this obstacle
could be overcome.

Furthermore, the actions of the driver are discretized as well. This reduces
the driver’s precision which is unacceptable in any realistic scenario. The state
space is continuous. Therefore, theoretically, POMCP can work with continuous
driver actions, as long as they are discretized for the observations. However,
none of the agents is remotely successful if continuous driver actions are used. It
becomes impossible to account for all potential driver actions while planning.
A wide array of sampled actions would probably be enough to allow for a good
estimation. However, a low discretization resolution for the observations leads
to a large range of different driver actions that are represented by a single
observation. Planning becomes too imprecise. Using a continuous observation
space could, therefore, potentially enable the agent to plan with continuous driver
actions as well. Further experiments are necessary to verify this assumption.
Possible approaches to handle continuous actions are discussed in section 7.2.4.

6.2.4 Driver does not learn or adapt

Research suggests that drivers adapt their driving behavior when they are assisted
by a lane-keeping assistant (Miller & Boyle, 2017). The driver model used in
the experiments does not evolve over time. It does not adapt to the behavior of
the agent. Even if the agent would steer in the wrong direction repeatedly, the
driver model does not adapt to the agent by adjusting its behavior. The driver
also does not develop any reliance on the agent - it does not reduce its steering
efforts, trusting the agent to correct it, like it would be conceivable with real
humans.
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Chapter 7
Conclusion and future outlook

This chapter concludes the study of this thesis about distraction-aware lane-
keeping assistance with a human in the loop. Section 7.1 presents the conclusions
of this thesis. Section 7.2 outlines the necessary adaptations required to apply
our approach with a more complex driver model or a human driver.

7.1 Conclusion

In this thesis, an agent acting as a lane-keeping assistance system is conceived
that estimates the driver’s distraction online, sharing control over the car with
the driver. The agent does not observe whether the driver is attentive or
distracted. For its assessment of the driver’s distraction, the agent relies solely
on observations about driving performance measures, such as the steering actions
of the driver, and sensory information about the position of the car. The
problem is modeled as a POMDP to account for the uncertainty about the
driver’s distraction and the exact positon of the car. The POMCP algorithm
(Silver & Veness, 2010) is applied to solve the POMDP online. To the best of our
knowledge, this is the first work that applies online POMDP solving to address
the uncertainty about a driver’s distraction in a shared control lane-keeping
scenario while relying only on commonly available measures as observations.

The main conclusions of this thesis can be summarized as follows:

1. We provide a POMDP model with a continuous state as a representation
of the shared control lane-keeping scenario, outlining how both the human
driver and the car’s dynamic can be simulated.

2. Our model for the human driver is simple. However, our modeling approach
is also suitable for the integration of a more sophisticated driver model
(see section 7.2.3).

3. We enable an agent to act as a lane-keeping assistant to the driver, taking
into account the driver’s potential distraction. The POMDP is solved
online by applying the POMCP algorithm. Experimental results show that
the driving performance is enhanced.

4. Particle deprivation is a common problem with a particle filter approach
such as POMCP. Implementing particle injection (see section 3.3.3) and
introducing domain knowledge by the use of preferred actions (see section
3.3.4) leads to an improvement.

5. Using the TORCS driving simulator as a generative model during planning
with POMCP is not efficient enough for a real-time scenario. The
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performance needs to be significantly optimized. Suggestions on how
to achieve this are provided in section 7.2.2.

6. The lane-keeping performance of our approach is inferior to traditional lane-
keeping assistance systems. The immediate application of the approach is
not advisable. Section 7.2 outlines opportunities for improvement.

7. Our simulation method allows for a repetition of experiments. Problems
can be revisited and analyzed. This is important in the safety-critical
domain of automated driving.

7.2 Road toward application with human drivers

In this section, adaptations and improvements that we suggest for the application
of our approach with a more complex driver model or a human driver are
discussed.

7.2.1 Avoiding particle deprivation

The main problem encountered during planning is particle deprivation. This
happens when the belief of the agent diverges substantially from the true state.
In our case, this is mostly caused by either taking into account too few possible
future trajectories during planning or not successfully identifying and focusing
on more probable future scenarios. Taking into account too few possibilities can
be circumvented by increasing the exploration. However, this has a negative
performance impact. A more promising solution would be to improve the
performance of the generative model we use for the search during the planning
phase. The next section addresses this issue. Enabling the agent to focus on
more probable scenarios can be achieved in two ways: First, one can pass domain
knowledge to the agent, as we did by using preferred actions. Second, offering
the agent more sophisticated observations could lead to a more accurate belief
state.

The domain knowledge we offer our agent, with the chosen implementation of
preferred actions, is not very extensive nor accurate. It is based on the assumption
that strong steering actions are less likely to be needed. Providing better domain
knowledge may improve the agent’s action selection during planning substantially.
For example, this could be achieved by learning an initial policy offline from
driving data and providing it to the agent (see Gelly and Silver, 2007).

It is possible to classify driver distraction using driver performance measures
alone (Jin et al., 2012). However, estimating the driver’s attention using only
her past steering actions and the car’s position is difficult. Including additional
information may be helpful. This could be additional performance measures, such
as acceleration and braking behavior. Additionally, using more sophisticated
information is conceivable, such as driver’s eye gaze, head position, or even
biometric factors, like her heart rate or brain activity. The likelihood of a good
prediction increases with a stronger correlation of the observations with the

48



Road toward application with human drivers

driver’s attentiveness. Nevertheless, it must be considered how likely it is to
have access to this data in a realistic driving situation.

7.2.2 Performance optimization

Our experiments have shown that a considerable planning time is required for
the agent to achieve acceptable lane-keeping performance. There are two main
causes for this. Firstly, the generative model we use for the Monte-Carlo forward
simulation during planning is not very efficient. Secondly, the POMCP algorithm
itself is not very efficient; forward simulations during planning are sequential.

The generative model uses TORCS for the simulations of the driver states.
Thousands of trajectories need to be simulated. The number of performed
searches and the search depth determine the volume of simulations performed
during the online planning. For example, with 10,000 searches and a search
horizon of 25, up to 250,000 individual simulations are performed during each
online planning step before the next action can be executed (less than 250.000 if
terminal states are reached before the search horizon). We did not perform any
sophisticated profiling. Nevertheless, it is very likely that the performance of
TORCS could be highly optimized. However, optimizing TORCS would require
an extensive amount of work. This may be avoided by either replacing TORCS
with a simpler, more efficient driving simulator or by parallelizing the planning.
A simpler model may represent the driving dynamics less accurately but can
potentially still lead to good results (see Lam and Sastry, 2014 for an example of
a simple mathematical model). Parallelization of the planning would enable the
use of multiple instances of TORCS simultaneously. Thereby, multiple possible
future scenarios can effectively be evaluated at once.

Basu et al., 2021 show that POMCP can be parallelized by constructing
multiple search trees simultaneously during the planning phase and merging them
afterward. The planning time is reduced without strongly negatively impacting
the solution quality. Another, more potent parallelized MCTS algorithm that
could be considered instead of POMCP is DESPOT-a (Garg et al., 2019). It
utilizes both CPU and GPU parallelization and could decrease the required
planning time substantially while keeping a similar performance or even improving
it. However, it requires the observation probabilities Z to be known explicitly for
the POMDP (see section 2.2). It may be possible to approximate the observation
probabilities. A more in-depth investigation of the necessary adaptations would
be necessary.

7.2.3 Integrating a sophisticated driver model

The POMCP algorithm is taking a model-based planning approach. The driver
models we use in our experiments are simple and not suited to accurately model
real human behavior. The POMCP algorithm is dependent on the accuracy of
the model used for planning. In our experiments, the same model is used to
represent the driver during evaluation and to simulate drivers for the search tree
construction during planning. With a real human driver, this is not possible. If
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the agent shares control over the car with a human, a sophisticated, accurate
model is required for Monte-Carlo sampling during planning. Driver behavior
modeling is an active research field. It is not within the scope of this thesis
to provide an overview of driver modeling approaches. Extensive reviews of
different methods can be found in literature by Pléchl and Edelmann, 2007,
Doshi and Trivedi, 2011, and AbuAli and Abou-zeid, 2016.

The integration of a more advanced driver model is straightforward. It
can be used as a replacement for one of the three driver models we use in our
experiments. The only requirement is an interface to be used as a generative
model for the agent to sample future states and observations during planning.
The exact composition of the driver model state can be arbitrary, as the agent
never evaluates the driver model state directly but only stores it in a belief
particle to be used in the next forward search.

7.2.4 Continuous action and observation space

We utilize discretization to be able to use POMCP with naturally continuous
action and observation spaces (see section 3.3.2). Discretization is necessary for
POMCP to work. However, it comes with the drawback of a loss of precision.
Even if one would increase the resolution of the discretization - using more bins,
some degree of information loss is inevitable. The alternative would be to work
with the continuous spaces directly. A switch from POMCP to another POMDP
solver would be required.

Various solvers have been developed to work with fully continuous POMDP.
Two algorithms worth mentioning are POMCPOW, an extension of POMCP
using progressive widening (Z. Sunberg & Kochenderfer, 2018), and LABECOP,
which, in contrast to POMCPOW, avoids limiting the number of observations
considered during planning (Hoerger & Kurniawati, 2020). However, both
methods require the observation probabilities Z to be explicitly known, which
is not the case in our scenario. One would need to find a way to circumvent
this problem. A potential approach would be to approximate the observation
probability distribution.

7.2.5 Use of active probing

Human drivers likely react to the actions of the agent, with potentially different
reaction times or behavior for distracted drivers. The driver models used in our
experiments did not account for this. Sadigh et al., 2016 show that actively
probing human drivers can reduce the uncertainty about their mental state.
Enabling the agent to gather information about the human by actively probing
her might help to improve the agent’s performance. In a scenario with a human
driver, the internal state of the human is very complex and therefore hard to
estimate. Active probing, such as intentional small steering actions, even if they
are not necessary, could be used to gauge the state of the driver more accurately.
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Appendix A
Lane centeredness comparison

A.1  Simple driver model
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Figure A.1: Mean lane centeredness for the different agents during experiments
with the simple driver model. In principle, a lower distance is favorable. The
shaded area shows the standard error. The optimal agent does not build a search
tree, and thus there is no difference between the four plots for the optimal agent.
Note: This figure is intended to showcase the difference in lane centeredness
between experiments with different numbers of searches for a particular agent. It
is not suited to compare the agents with each other without taking into account
the different number of terminal runs during the experiments.
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Driver model with steering overcorrection

A.2 Driver model with steering overcorrection
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Figure A.2: Mean lane centeredness for the different agents during experiments
with 1,000 actions, with oversteering and driver action noise, using 200, 500, 1,000,
or 10,000 searches while planning. In principle, a lower distance is favorable. The
shaded area shows the standard error. The optimal agent does not build a search
tree, and thus there is no difference between the four plots for the optimal agent.
Note: This figure is intended to showcase the difference in lane centeredness
between experiments with different numbers of searches for a particular agent. It
is not suited to compare the agents with each other without taking into account
the different number of terminal runs during the experiments,
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