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“It is either easy or impossible.”

– Salvador Daĺı



Abstract

Real world complex systems, such as ecosystems, can undergo abrupt and radical qual-

itative changes in their states. This comes about when the system crosses a critical

threshold, also referred to as a tipping point. Such dramatic shifts between alternative

stable states, known as catastrophic regime shifts or critical transitions, are inevitably

accompanied by sizeable ecological and economic losses; it therefore gets inestimably

valuable to forewarn and avert them. Although prognosticating ecological transitions is

a seemingly problematic issue, auspiciously, the detection of a general class of diagnostic

indices – the so-called early warning signals, has been recently demonstrated by different

methods utilising simple mathematical models. These warning indicators are essentially

statistical anomalies starting to be seen ahead of the unwanted collapse, appearing to

be applicable to a broad variety of dynamical systems. Recent studies made clear that

it can be that many systems might exhibit slow transients between the alternative do-

mains of attraction owing to low rates of change in the system after a tipping point

has been crossed. Reviewing the crux of the concept of critical transitions in complex

dynamic systems together with the proposed early warning indicators, we centre around

a dryland ecosystem that undergoes a catastrophic regime shift from a vegetated to a

bare desert ecological state through a fold bifurcation. We systematically explore the

rate of change during the transient of the system along with the detectability of the

potential early warning signals. The main goal of the study is to acquire more insight

into the transient behaviour of semi-arid land surface systems that exhibit long tran-

sient periods, evaluating how fast the transition unfolds after transgressing a threshold

and what are the early warning signals that may be detected in such systems. We em-

ployed a two-dimensional lumped model which describes the dynamics of two coupled

environmental compartments – a slow component, the soil subsystem and a fast, the

vegetation subsystem – under the effect of grazing pressure. A scenario analysis demon-

strates that soil parameters (i.e., bare bedrock weathering rates) significantly influence

how quickly the transition unfolds after crossing the tipping point. Importantly, the

shift between the contrasting states can be either rapid, unfolding over a period of a few

years or unexpectedly slow, responding over centuries or more. Early warning signals

in biomass can be observed in the form of increasing variance and declining skewness

prior to the critical point, whereas statistical signatures of soil time series seemed to

fail detecting the critical change. Further, when the system exhibits a transient phase

(unfolding very slowly), early indicators hardly provide a timely warning of the actual

shift. Our findings underline the great uncertainty involved when it comes to predict

critical transitions explained by the prolonged transient phase together with the system

dynamics after transcending the critical point.
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Chapter 1

Introduction

Naturally enough, gradual changes in the external conditions of ecosystems typically

result in gradual, unsurprising and reversible transitions in their states (or ‘regimes’).

However, sporadically, precipitous radical changes might occur. This means that a

system keeps inert until the gradually changing environment passes a certain threshold

(i.e., critical point or tipping point or bifurcation point) marking a sudden change from

an original to another contrasting state. Such abrupt responses – so-called catastrophic

regime shifts or critical transitions – have been described across an array of complex

dynamical systems including ecosystems (Scheffer et al., 2009). Catastrophic regime

shifts go hand in hand with broad-ranging dire consequences for ecosystems, inasmuch as

irreversible changes (i.e., sizeable loss of ecosystem functioning) may be brought about.

This, in turn, might strongly affect the human well-being, which relies on ecosystem

services.

Critical transitions can likewise be identified in ecohydrological systems, located in

dry regions. Climatic variations (e.g. precipitation) or human activities (e.g. grazing)

influence such arid ecosystems resulting in sharp shifts from a vegetated state to a bare

desert state (Noy-Meir, 1975; Schlesinger et al., 1990; Scheffer et al., 2001; Rietkerk

et al., 2004; Foley et al., 2003; Saco et al., 2007; Kéfi, 2008). This is commonly related

to the process of desertification which is a serious problem in arid regions.

Arid ecosystems presently occupy about 41% of the Earth’s land surface and are home

to over 2 billion inhabitants including about a couple of hundred million people in the

less-developed world; it is also estimated that 10 to 20% of these drylands are already

degraded (Reynolds et al., 2007). The persistent degradation of dryland ecosystems has

a detrimental effect on a great many living beings in view of the fact that it carries

enormous ecological, economic and social costs. Therefore, we could say that at the

present time it constitutes a large environmental challenge (MEA, 2005). In this context,

1



Chapter 1. Introduction 2

it would be useful and absolutely vital to make headway towards creating measures that

can foretell the probability and the timing of a catastrophic degradation.

Although forecasting critical transitions is a thorny issue (Clark et al., 2001; Kleinen

et al., 2003; Guttal and Jayaprakash, 2009; Dakos et al., 2010, 2011; Karssenberg and

Bierkens, 2012; Kéfi et al., 2014) several studies put forward that some system variables

do change before the regime shift in ways that allow us to discern the proximity of a

system to a drastic transition (Scheffer et al., 2009). Such warning signals are indicators

of a general phenomenon known in dynamical systems theory as ‘critical slowing down’

(Wissel, 1984; Strogatz, 1994). This happens in the generality of bifurcation points

when the dominant eigenvalue of the system tends to zero. This denotes that when

approaching a transition, the return time to equilibrium after a perturbation is getting

bigger, signifying that a disturbed system calls for more time to recover when it nears a

transition (Van Nes and Scheffer, 2007).

Early warning signals can be direct consequences of critical slowing down (e.g. slow re-

covery from perturbations, increasing autocorrelation, increasing variance); alternatively

they can be linked to asymmetries in the stability landscape or even jump between al-

ternate states (e.g. skewed responses, flickering). Quite possibly, the salient feature of

early warning signals hitherto proposed, is that they can be applicable in a wide variety

of dynamical systems with multiple attractors. This generic character is founded on

the common mathematical properties that are revealed as the system is on the brick of

crossing a critical point (or threshold).

Generic early warnings or leading indicators have been recently assessed on eco-

logical time series observations by different methods (e.g. increasing autocorrelation

(Ives, 1995; Held and Kleinen, 2004; Dakos et al., 2008; Scheffer et al., 2009), increasing

variance (Brock and Carpenter, 2006; Carpenter and Brock, 2006), shifts to low fre-

quency variance (Kleinen et al., 2003; Biggs et al., 2009), changing skewness (Guttal

and Jayaprakash, 2008), conditional heteroscedasticity (Seekell et al., 2011)). Moreover,

using spatial information for systems allow us to identify additional (and possibly more

powerful (Dakos et al., 2010; Scheffer et al., 2012)) predictive measures of imminent

transitions (e.g. increasing spatial correlation (Dakos et al., 2010), increasing spatial

variance (Oborny et al., 2005; Guttal and Jayaprakash, 2009; Donangelo et al., 2010),

peak spatial skewness (Guttal and Jayaprakash, 2009)). The statistical discernment of

these early warning indicators is comparatively simple to measure since they do not

depend on the complete understanding of the processes of the system (Carpenter and

Brock, 2006).

Model studies embodying spatial scales and water-vegetation positive feedback mech-

anisms (e.g. Rietkerk et al. (2000)) put forward that in a similar vein, the vegetation
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patchiness may be used to identify indicators that can foresee and possibly forestall

incipient regime shifts (von Hardenberg et al., 2001; Rietkerk et al., 2004; Kéfi et al.,

2007). A striking manifestation of drylands is that the vegetation cover consists of a

mosaic or pattern made up of discrete patches with high vegetation cover coexisting

with sparsely vegetated, or bare ground patches, dispersed across the landscape (Mon-

tana, 1992; Aguiar and Sala, 1999; Valentin et al., 1999; Alados et al., 2004; Barbier

et al., 2006; Saco et al., 2007); seeing that in such water-limited ecosystems there is an

adaptive advantage to plants of making localised aggregations rather than organising

homogeneously (Sherratt, 2013). The vegetation pattern formation differs in scale and

shape and it depends on slope and rainfall (von Hardenberg et al., 2001; Rietkerk et al.,

2002).

For the most part, catastrophic regime shifts are considered to be sharp and short-

lasting. Nonetheless, on a more subtle level, for many systems it is not known how

quickly the transition unwinds, once a critical threshold is passed. This is to say that they

may often exhibit slow transient responses and thus, this can be a serious impediment

to the prevention or reversion of imminent ecological transitions (Hughes et al., 2013).

Importantly, the rate of change (fast or slow) throughout the course of the transition

turns on the response time of the system (Hughes et al., 2013). In a slowly unfolding

regime shift, occasionally, the transient can be first slow and then fast, especially in a

mixed system consisting of a slow and a quick component (e.g. Karssenberg (2014)).

In this study, we focus on the occurrence of a critical transition in a hillslope system

within a semi-arid ecosystem triggered by overgrazing or climate change. To be more

specific, the system switches from a healthy state, with high vegetation cover and well

developed soils, to a degraded state with low or no vegetation cover and largely degraded

soils.

Seeking properties of the system that may noticeably change as the regime shift to

a barren state is neared, we check whether statistical properties of the state variables

in the system provide ample advance warning to avoid the adventitious degradation.

We ponder how fast the critical transition unfolds and we look at the potential early

warning signals.

This is done in a modelling study. We consider a distributed hillslope evolution model

(Karssenberg, 2011) that simulates the transition from a vegetated hillslope with thick

soils (i.e., healthy state) to an unvegetated, bare-soil hillslope (i.e., degraded state),

having as main output a time series of hillslope geometries (i.e., topographical surface,

development of gullies, regolith thickness) and vegetation coverage. Principally, we

utilise a spatially-lumped model (Karssenberg, 2014), which is defined from the spatially-

distributed model and solely represents the fundamental processes of the vegetation-soil
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system. The lumped model is composed of two coupled differential equations describing

the interaction between the vegetation and the soil system. The system is mainly driven

by the grazing rate (increasing grazing intensity engenders a decrease in vegetation cover

and soil thickness). To this effect, the main objectives of our research strive to address

the following questions:

• How fast does the land surface system collapse when the grazing threshold is

exceeded?

• What early warning signals emerge in advance of the catastrophic regime shift in

the vegetation-soil system and in which components of the model do these early

warnings occur?

• Considering a transient behaviour by the system, can we observe discernible changes

in the statistical values subsequent to the actual shift point that may be useful

as early warning signals and how do they rest on the key parameters of the soil

system such as bedrock-weathering rate?

We implement an innovative approach working in a recently-emerged large body of

literature on catastrophic regime shifts and early warning signals. We systematically

examine the system’s behaviour, while modifying the soil parameter values, with main

focus the weighing of the lumped model for early warning indicators by statistically

analysing its outcome.

The overall structure of this thesis takes the form of six chapters, including this in-

troductory chapter 1. The remainder of this work is organised in the following way:

In chapter 2, we provide a brief description of the theoretical background for the phe-

nomenon of critical transitions outlining essential concepts of dynamical systems theory.

We also give a thumbnail sketch of the several early warning signals as predicted from

the theory. We centre upon critical transitions in arid ecosystems, a well known exem-

plar of tenuous ecosystems prone to lose their vegetated state and dramatically switch

to a desertified state owing to external perturbations or system’s internal dynamics.

Within this chapter, we further provide a broad overview of the ecohydrological and

geomorphological characteristics of such water-limited systems. Chapter 3 is devoted to

the methods utilised in this research project giving an account of the models employed

to evaluate the prospective early warning signals along with the way of analysing the

simulation results from these models. It is followed by chapter 4, wherein the results

of our simulations are presented. Next, we discuss our findings together with future

research directions in chapter 5. Finally, we draw our conclusions in chapter 6.



Chapter 2

Background Theory

In this chapter, we present a literature review on the rudiments of the theory of critical

transitions, paying particular attention to catastrophic regime shifts in semi-arid ecosys-

tems. We shed light on the pieces of theory of generic early warning signals, such as the

notion of critical slowing down, giving various examples of these indicators.

2.1 The basics

Dynamical systems theory is a field of mathematics utilised to describe the behaviour of

complex dynamical systems. A dynamical system can be any system (e.g. ecosystems,

financial markets, physiological systems and the climate), which is retained in a dynamic

equilibrium by forces acting against each other. To paraphrase, it is anything that its

state can be grasped as a balance of processes (Scheffer, 2009). For instance, the number

of species on an island represents a balance between the rate of immigration to the island

by new species and the rate of extinction of species on the island (MacArthur and Wilson,

1963, 1967) (figure 2.1).

Interestingly, ecosystems are in fact never in equilibrium meaning that they do change

over time – there are always slow trends or continuous fluctuations of species popula-

tions (Scheffer and Carpenter, 2003). Nonetheless, even if the environmental conditions

remained the same, population dynamics would fluctuate. For example, this was put

forward by Benincà et al. (2008) who presented the first experimental demonstration of

chaos in a long-term experiment with a complex food web isolated from the Baltic Sea.

They showed that species interactions in food webs can generate intrinsic deterministic

chaos (i.e., system does not have an equilibrium). In this respect, we could say that this

is a particular equilibrium of nature (i.e., behaves in unpredictable way) occurring, inter

alia, in ecosystems.

5
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Figure 2.1: The concept of the equilibrium theory illustrated for island species densities. At
equilibrium, immigration balances extinction and different species exist on the island. This
means that the number of species on the island remains roughly the same. Nevertheless, while
the number of species does not change, the composition of those species on the island may change
(modified from Phelan et al. (2009)).

In parenthesis, to keep away from misreading, it is important to note here the differ-

ence between chaos and stochasticity. Chaotic systems go along with deterministic rules

having high predictability for a short period of time, contrastingly stochastic fluctua-

tions occur to a certain degree by chance – so stochastic systems are solely predictable

in terms of probabilities (Benincà, 2010).

Sometimes, nonetheless, precipitous and unexpected shifts are observed, e.g. major

regime shifts in oceans, lakes, rangelands (Scheffer et al., 2001). These changes are often

caused by a major external impact, but more interestingly, the system might growingly

become brittle up to the point that a slight perturbation can trigger a radical change.

In this regard, we could symbolically liken a complex system to a ship that is being

designed dangerously by increasing its size to pile more passengers aboard. Just as such

a ship is inherently unstable and a minor wave can tip its balance, a complex system

can slowly lose resilience until even a tiny perturbation can trigger a large shift in the

system by passing a critical point.

Comprehending when complex systems become brittle may be quite puzzling, never-

theless the fact that they might be governed by some common identifiable underlying

principles such as dynamic equilibrium or tipping points suggests that under certain

conditions many systems can behave in such drastic and unforeseeable way.
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2.2 Types of transitions

Abrupt transitions occur when the gradually changing environment passes a critical

point or when discrete perturbations bring about sudden shifts in the underlying en-

vironmental drivers (Scheffer et al., 2001). Such abrupt responses triggered by small

forces, symbolise the so-called catastrophic bifurcations (Scheffer and Carpenter, 2003).

The term ’catastrophic’ is understood to refer to the mathematical field of catastrophe

theory which is a branch of bifurcation theory in the study of dynamical systems and

has its origin in the work of the French mathematician René Thom in the 1960s (Thom,

1974). It classifies phenomena in systems characterised by drastic shifts arising from

small changes in circumstances (Kéfi, 2008).

There is a plethora of paradigms of ecosystems exhibiting such dramatic regime

shifts, including marine and coastal environments (e.g. Glynn (1988); Done (1992);

Knowlton (1992); Hughes (1994); Estes and Duggins (1995); Steele (1996); McCook

(1999); Petraitis and Dudgeon (1999); Worm et al. (1999); Hare and Mantua (2000);

Nyström et al. (2000); de Roos and Persson (2002); Steneck et al. (2002); Daskalov et al.

(2007)), fresh water systems (e.g. Blindow et al. (1993); Scheffer et al. (1993); Scheffer

et al. (1997); Carpenter et al. (1999); Gunderson (2001); Walters and Kitchell (2001);

Post et al. (2002); Carpenter (2003); Jackson (2003); Scheffer et al. (2003); Scheffer

(2004); Carpenter (2005); Scheffer and Jeppesen (2007)), and terrestrial ecosystems

(e.g. Dublin et al. (1990); Walker (1993); Bisigato and Bertiller (1997); Brown et al.

(1997); Anderies et al. (2002); D’Odorico and Porporato (2004); Peters et al. (2004);

Rietkerk et al. (2004); Bestelmeyer (2006); Schmitz et al. (2006); Narisma et al. (2007)).

Such catastrophic regime shifts ensue from systems with alternative stable states

(or alternative attractors), referring to a system of having more than one stable state

under the same external conditions. Typically, alternative stable states rest upon the

presence of positive feedback mechanisms. Positive feedbacks usually involve biological

and physical processes (Rietkerk and Van de Koppel, 1997; Scheffer et al., 2001), exam-

ples thereof including, inter alia, trophic cascades (Carpenter et al., 1999), land surface

climate feedback (Foley et al., 2003), spreading desertification (Peters et al., 2004).

An intuitive denotation for comprehending the implications of alternative stable states

is stability landscapes, shown in figure 2.2d. The position of the ball in the landscape

corresponds to the state of the system, and the bottom of the valleys illustrates the

alternative states. The range of conditions that lead to equilibrium set the basins of

attraction (or domains of attraction) of the two alternative states of the system. The

ball rolls down the hillsides and is at rest at the lowest part of the valleys representing

equilibrium.
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There are two manners in which a system can move from one stable state to another.

The first way is by a quite large perturbation which is applied directly to the state

variables (shift in variables), and the second one is by a change of the landscape per

se owing to changes in external conditions (shift in parameters) (Beisner et al., 2003).

The size of the basin of attraction plays a crucial role in how easily the system might

be displayed from its equilibrium; the larger the basin of attraction is, the more likely

the system is to return to its initial state.

In terms of Holling (1973), the magnitude of perturbation a system can stand before

it shifts to a contrasting state is referred to as the resilience of the system. As the

system reaches the critical threshold, the size of the attraction basin becomes small,

resilience is small as well, and even a minute perturbation might bring the system into

the contrasting basin of attraction.

Figure 2.2 shows the different types of transitions, together with how external condi-

tions can affect the resilience of equilibria. A transition in a system can be induced by

an external forcing (e.g. climate, human pressure). Some systems’ state may react in a

smooth continuous way to such perturbations. For instance, if a system behaves almost

linearly, a change in system state may be caused by a large external force (figure 2.2a).

In other instances, small changes in conditions can result in disproportionally large

changes in the state of the system – although a reversal of conditions of an equally small

magnitude can reverse the regime shift (figure 2.2b).

Alternatively, however, it can be that tiny changes in conditions may hasten extreme

discontinuous responses that are most likely irreversible (figure 2.2c). This occurs when

at a threshold, the system precipitously shifts towards a different state. In the first

and the second situation (figure 2.2a,b), there is only one stable state, but in this third

response (figure 2.2c) reinforcing feedbacks determine two alternative states.

On very many occasions, it has been erroneously proposed that these three afore-

mentioned equilibria responses are said to be gradual, sudden and catastrophic – but

actually, the rate of response by the systems to a change in conditions or driver variables

may vary from quick to slow, depending on the response time of the system in every

case (Hughes et al., 2013). Thus, in line with Hughes et al. (2013), in order to avoid

misinterpretation, we consider that the response (at equilibrium) can be smooth and

reversible (figure 2.2a), threshold and reversible (figure 2.2b) and hysteretic (alternative

attractor) (figure 2.2c).
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Figure 2.2: Depiction of the different responses of a dynamic system to change in conditions:
(a) Smooth and reversible response: changes in the state of the system foreseeably occur. (b)
Threshold and reversible: the state of the system reacts in continuous expected way. (c) Bi-
stability and hysteresis: adventitious change of the system (transition between two alternative
states) (taken from Hughes et al. (2013)). (d) Stability landscapes exemplifying the transition
of a system state between two alternative stable states. The ball in the landscape represents the
state of the system and the valleys represent the basins of attraction that correspond in stable
equilibria. The motion of the ball denotes the change in the state of the system and the slope of
the landscape corresponds to the rate of change. The bottom plane shows the equilibrium curve.
The ball rolls down the hill and becomes firm representing equilibrium situations. As getting
close to the critical threshold 1, the basin of attraction contracts (i.e., the system becomes less
stable) up to the point that a minute perturbation may tip it out of the basin of attraction to the
alternative state. White points threshold 1 and threshold 2 indicate catastrophic bifurcations
(taken from Dakos (2011)).

Although it is generally believed that regime shifts between alternative states are

depicted as sharp and radical, it can often be that transitions unfold for a length of time

and may also require more time to reverse (Hughes et al., 2013). Systems behaving as

such, undergo a gradual transient response following the passing of a tipping point, and

this can be due to the low rate of change in the system (Karssenberg, 2014). Figure

2.3 shows a paradigm of how fast- and slow-responding systems change throughout

the transition, depicting the modelling response of an ecosystem to a driver of change.
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Figure 2.3: The modelled response of how
fast (black)- and slow (red)-responding sys-
tems change through time after a threshold
has been reached (taken from Hughes et al.
(2013)).

Interestingly, it can be observed that the system responding at a slow pace is most of

the time in transient state when crossing a critical threshold. Thus, a major issue that

emerges from this specifically relates to the capacity to prognosticate and anticipate

such regime shifts.

2.3 Early warning signals for critical transitions: a review

2.3.1 Critical slowing down and its manifestations

As complex systems (e.g. ecosystems) are on the brink of crossing a tipping point, their

dynamics are related to a phenomenon known in dynamical systems theory as ‘critical

slowing down’ (Wissel, 1984). A straightforward manner to comprehend why we should

anticipate early warnings before critical transitions is by thinking of the fate of a globe

in a landscape of hills and valleys (figure 2.4). Balls represent the state of the system

and valleys correspond to the basins of attraction. The size (i.e., width and steepness)

of the basin of attraction is a measure of the maximum disturbance that a system can

absorb without shifting to an alternative state and it reflects the resilience of the state

of the system (Holling, 1996) (figure 2.4a,b).

As the system comes near to a critical transition, the basin of attraction of the

current state of the system gets smaller and so does its resilience. Even a minute

perturbation may shift the sphere to another valley. The steepness of the basin of

attraction simultaneously lowers meaning that, although the same perturbation that may

not tip the system, it will definitely take longer to dissipate, leading to the phenomenon

of critical slowing down (figure 2.4c,d).

In technical terms, when approaching a fold bifurcation point the dominant eigenvalue

that characterises the rate of change around the equilibrium tends to zero. Critical
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Figure 2.4: Stability properties of an ecosystem exhibiting alternative stable states: valleys
represent stability domains and balls represent the system. If the size of the attraction basin is
large (i.e., stable system), the system will quickly return to its equilibrium when it is slightly
perturbed. If the size of the attraction basin is small, resilience is small and even a slight
perturbation may bring the system into the alternative basin of attraction (taken from Van Nes
and Scheffer (2007)).

slowing down relates to the ability of a system to recover from small perturbations in

order to return to its previous state. A system that is able to quickly recover from small

perturbations is said to be a stable system. The critical slowing down is the reduction

in the speed in which these small changes are recovered from; it can therefore be seen

as a slow transition into a less stable state. The reduction in the system’s ability to

recover leads to a decline in the rate of change within the system, from one time step to

the next.

Among others, Scheffer et al. (2009) showed that the slowing down begins to occur far

from the bifurcation point (i.e., a critical threshold in conditions at which the qualitative

behaviour of a system changes), with the recovery rate reducing smoothly towards this

point. The detection of this slowing down can therefore act as an early warning of a

catastrophic event (Wissel, 1984; Gandhi et al., 1998; Van Nes and Scheffer, 2007).

A way to detect the slowing down of a system is through measuring its variance. As

the system recovery speed reduces, the effects of small perturbations are not removed.

The accumulation of these perturbations through time increases the variance. A peak

in variance is therefore an indication of an imminent bifurcation (Carpenter and Brock,

2006). Another, quite straightforward way to measure slowing down is to look at auto-

correlation. Critical slowing down results in a rise in autocorrelation in advance of the

upcoming shift of the system (Held and Kleinen, 2004; Dakos et al., 2008).
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2.3.2 Skewness and flickering

In addition to the early warning signals given by a critical slowing down, a system

approaching a catastrophic event can be seen to experience an increase in the asymmetry

of the fluctuations. At a critical threshold the system slows, resulting in the system state

remaining near that critical threshold for longer. This means that the slight fluctuations

in the system are skewed towards the threshold value. This skewness can be either higher

or lower than the modal value, namely positive and negative skewness. This slowing

down occurs until the rate of change in the system immediately prior to the bifurcation

is (almost) zero. Thus, we may observe a changing trend (i.e., increase or decrease) of

the distribution of skewness in the time series of a state variable close to a tipping point

(Guttal and Jayaprakash, 2008).

Another phenomenon that can be observed in the vicinity of a tipping point is termed

flickering or stuttering. In highly stochastic environments, large disturbances (i.e., noise)

can potentially cause the system to ’flicker’ between the basins of attraction of the

system’s alternative states (Dakos et al., 2013). In such conditions critical slowing down

cannot be observed and the efficacy of its related generic indicators in presaging the

imminent transition is restricted (Scheffer et al., 2009; Perretti and Munch, 2012; Dakos

et al., 2013). Nevertheless, flickering can be detected as a warning signal of alternative

stable states and it causes an increase in variance and skewness, as well in bimodality

(e.g. Carpenter and Brock, 2006; Carpenter et al., 2008; Wang et al., 2012).

2.3.3 Spatial patterns

In addition to subtle predictive measures in time series, in a more general setting, spatial

structure of ecosystems gives us information about the ecosystem degradation level (Kéfi

et al., 2014). Critical transitions may be signalled by changes in spatial characteristics of

the system. Possibly, spatial patterns may be considered to be more forceful indicators

to anticipate regime shifts insofar as containing more information than a single data

point in a time series (Dakos et al., 2010).

Several early warning indicators have been proposed for spatial ecological data. In

such cases, it has been shown that spatial correlation may increase prior to a transition

(Dakos et al., 2010), and by computing the discrete Fourier transform (DFT) spatial

spectral properties may change as the system approaches a tipping point (Carpenter

and Brock, 2010). In parallel lines, an increase in spatial variance (Oborny et al.,

2005; Guttal and Jayaprakash, 2009; Donangelo et al., 2010) accompanied by a peak in

skewness (Guttal and Jayaprakash, 2009) could provide early warnings of approaching

transitions.
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Moreover, it has been suggested that utilising the characteristics of spatial vegetation

patterns such as patch-size distributions (Kéfi et al., 2007) or spatial regularity (Rietkerk

et al., 2004; Kéfi et al., 2010) acts as early signs of an upcoming transition.

2.3.4 Early warning signals in systems with slow transients

As mentioned earlier, critical transitions between alternative states can unfold either

rapidly or slowly (Hughes et al., 2013). For instance, in a slowly unfolding regime shift

the transient can be initially slow and then fast, especially in a dynamic system consisting

of slow and quick components (e.g. Karssenberg (2014)). Hence, besides the warning

signals that can be discerned toward the critical shift point, another forewarning might

be picked up above the tipping point.

To the author’s knowledge, studies of early warning signals in systems with long-

lasting transients do not exist so-far and the detection of diagnostic indices may therefore

be formidably challenging. It remains unclear how robust and informative the differ-

ent early warning signals would be. This give emphasis on the uncertainty related to

prognosticating critical transitions in ecosystems (Karssenberg and Bierkens, 2014).

2.4 Ecohydrology and geomorphology of arid ecosystems

2.4.1 Eco-hydro-geomorphic processes

In drylands, impacts of feedback between vegetation, hydrology, and geomorphology

are quite tight appearing across different scales (Saco and Rodriguez, 2013), leading

to the emergence of banded landscapes consisting of alternating bands of vegetation

and bare soil oriented along the topographic contour in some gently sloping. Such

patterns ensue from the co-evolution of landforms and biotic components, which makes

the understanding of mechanisms causing ecosystem state change, as well as its forecast,

greatly challenging (Saco and Moreno-de las Heras, 2013).

Figure 2.5, reproduced from Ludwig et al. (2005), depicts a schematic diagram of

hydrological and ecological events and processes appearing on a gentle hillslope. The

principal limiting factor in drylands, precipitation (P), falls to the landscape surface

(vegetation patches and interpatches) on hillslopes. Infiltration of water (I) moves into

deeper layers depending on hydraulic conductivity (K) and soil water might be lost by

deep drainage (DD). When the rate of rainfall on the surface exceeds the rate at which

water can infiltrate the ground, runoff (RO) occurs that can be captured as runon (RN)
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by vegetated patches and stored in soil horizons (∆S) furthering biological activity (e.g.

ants and earthworms) (B), thereby improving infiltrability. Interpatches might have

low infiltration rates owing to their vulnerability to soil surface sealing. In contrast,

vegetation patches promote greater infiltration in the soil. Soil water is evaporated (E)

in bare soil patches and evapo-transpired (ET) within the bounds of vegetated patches.

Overland flow might move downslope toward a surface water body (e.g. creek or river)

(D).

Figure 2.5: Schematic diagram illustrating links and interactions between hydrological and
ecological events and processes occurring on a hillside. Higher infiltration rates under vegetation
set off the generation of runon-runoff mechanism. In this way, this mechanism brings about a
positive feedback by giving a rise to soil moisture availability for plant growth (for explanation
of symbols, see main text) (taken from Ludwig et al. (2005)).

On the basis of the aforementioned processes, the runoff-runon mechanism can trigger

a positive feedback by increasing soil moisture and vegetation growth (Valentin et al.,

1999; Wilcox et al., 2003; Saco et al., 2007; Pelletier et al., 2012). Within vegetated

patches, higher infiltration leads to higher soil moisture availability, thereby reinforcing

the pattern. This redistribution of water from interpatch (source) to patch (sink) re-

gions constitutes a key process in arid landscapes (Saco et al., 2007). Additionally, the

redistribution of water by surface flow includes sediment and nutrients.

In their major study, Tongway and Ludwig (2001) reviewed some of the theories

about the intriguing question of why banded landscapes form, contending that there are

many conjectural viewpoints for their origin. Some put forward that banding is recent

and formed from a uniform vegetation cover owing to land use effects by human domi-

nation. As another opinion, it may be driven by the climatic shifts over the Holocene,

or geomorphic processes (i.e., interactions between the Earth’s surface and the natural

forces). Furthermore, it might be viewed as the response of vegetation to environmental

driving forces (e.g. water and wind), with water playing a predominant role in band

formation (Tongway and Ludwig, 2001).
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Vegetation bands can be generated in a broad range of drylands all over the world

(e.g. in Africa (Thiery et al., 1995), Australia (Ludwig et al., 1999; Dunkerley and

Brown, 2002), North America (Montana, 1992; McDonald et al., 2009), Southern Europe

(Bergkamp et al., 1999), Western Asia (White, 1969)). Importantly, a fundamental

condition in the development of banded patterns is the ability of landscape surface

conditions to produce overland flow (Valentin et al., 1999; Tongway and Ludwig, 2001;

Saco et al., 2007). This means that in landscapes wherein their surface form prevents

the generation of overland flow, no vegetation banding occurs.

2.4.2 Transitions in dry regions

The general mechanism underlying catastrophic regime shifts in water-limited environ-

ments is vegetation-climate feedback loops (i.e., feedbacks among precipitation, soil

moisture and vegetation) (figure 2.6a). Dryland ecosystems are characterised by the

limited water availability and evidently, plant growth is mainly limited as well. There-

fore, vegetation cover increases when water availability increases. Similarly and in a

converse manner, if vegetation biomass declines (e.g. by increasing aridity or high in-

tensity grazing), less water is available for the vegetation and the remaining water runs

off. Further, in the case of severe rain events soil erosion may be caused. In this way,

such disturbances may change the structure of vegetation patches. So, there is a range

that two alternative stable states can coexist due to the fact that each stable state is

stabilised by positive feedback loops (figure 2.6; (Kéfi, 2008)). This case is referred to

as the bistability area (Noy-Meir, 1975) and its emergence has provided a great impetus

for cognisance of arid ecosystems over the recent decades (Caylor et al., 2014).

Positive feedbacks can lead to a typical spatial pattern distribution of vegetation

(Rietkerk et al., 2004). Dryland vegetation is patchy meaning that less-vegetated or

bare patches coexist with vegetation patches, ranging in size and shapes. This occurs

due to the resource-concentration and local facilitation mechanisms (King et al., 2012;

Mayor et al., 2013). In terms of von Hardenberg et al. (2010), there are two fundamental

broad categories of spatial vegetation patterns: a) periodic vegetation patterns that have

characteristic length scales (e.g. bands on hill slopes or spotted patterns) (Valentin et al.,

1999) and b) scale-free patterns that vary in length scales and coexist in the system (Kéfi

et al., 2007).

2.4.3 Reviewing previous hydrological and landscape evolution models

Over the past few decades, a plethora of modelling methods have been developed and

utilised to simulate hydrological processes in arid areas, including metric, conceptual and
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Figure 2.6: (a) Vegetation-climate feedbacks in drylands, a positive feedback can arise between
vegetation cover and local precipitation (taken from Scheffer and Carpenter (2003). (b) At the
centre is the bifurcation graph for May’s model (May, 1977). Positive feedbacks are responsible
for the existence of two alternative states – one with vegetation (healthy state) and one without
(degraded state) – separated by an unstable state (grey line). The arrows show the direction of
change if the system is not in one of the stable states. If the initial vegetation is high, it will
lead to more water (i.e., high infiltration (I), low evaporation (E), for a given precipitation (P )).
Thus, the stable state with vegetation might be caused and stabilised by a positive feedback
between vegetation and local precipitation. If the initial vegetation is low the positive feedback
loop will work vice versa. So, the vegetation declines and the system collapses to a degraded
state (taken from Kéfi (2008)).

physically based modelling (Wheater et al., 2008). In recent years, there has been a wide

assortment of research on modelling vegetation pattern formation and vegetation-water

dynamics on drylands (e.g. Thiery et al. (1995); Ludwig et al. (1999); HilleRisLambers

et al. (2001); Tongway and Ludwig (2001); Rietkerk et al. (2002); Porporato et al.

(2003); Fernandez-Illescas and Rodriguez-Iturbe (2004); Gilad et al. (2004); Meron et al.

(2004); Boer and Puigdefábregas (2005); Saco et al. (2007); Pelletier et al. (2012)).

Commonly, band formation and patterned vegetation are mathematically obtained with

reaction-diffusion equations for vegetation biomass and water availability (Borgogno

et al., 2009). An outstanding review of ecohydrological models of vegetation pattern

formation is found in Borgogno et al. (2009), who provide a rigorous analysis of the
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major theories explaining the mechanisms underlying such landform-vegetation pattern

formation. Constructively, recent modelling studies have focused on the interactions

between water redistribution and vegetation patterns by giving important insight into

structural transformations on a mechanistic level (e.g. HilleRisLambers et al. (2001);

Rietkerk et al. (2002)); nonetheless they do not encompass landform-water-vegetation

feedbacks (Saco and Moreno-de las Heras, 2013).

Of the numerous published studies that have modelled vegetation band development,

we solely centre on the approach by Saco et al. (2007), who first pointed out the im-

portance of topography in controlling banded vegetation systems utilising a modelling

framework. They investigated the interaction between dynamic vegetation patterns and

geomorphology in banded vegetation systems, deploying a coupled, dynamic vegetation-

landform evolution model. They looked at the interactions between patterned vegetation

and erosion by accounting for the effect of dynamic water redistribution. The authors

utilised a dynamic vegetation model for the development of vegetation pattern in water

limited ecosystems that describes the dynamics of three state variables: plant biomass

density, soil moisture, and overland flow. In addition, they used SIBERIA (Willgoose

et al., 1991), a physically based model of the evolution of landforms under the action of

fluvial erosion, creep and mass movement. Their model reproduced vegetation patterns,

as obtained by other models of arid ecosystem dynamics, and a stepped microtopogra-

phy, as observed in the field.

Saco and co-workers found that stationary and migrating vegetation bands self-

organise perpendicular to the flow direction and their appearance is associated with

emergence of a runon-runoff pattern. Seed dispersal might be preferentially oriented

in the downslope direction owing to transport in runoff. Banded vegetation arises on

hillslopes where water flow is disrupted by bands of vegetation resulting in facilitation

due to increased water availability in these areas, whereas water availability is lower in

inter-band areas thus inhibiting vegetation growth.

The erosion-deposition mechanisms change microtopography, influencing surface wa-

ter redistribution, soil moisture spatial patterns and the evolution of the vegetation

patterns (Saco et al., 2007). This has a major effect on the co-evolution of biotic (i.e.,

ecosystem, community, population, individuals) and abiotic (i.e., region, catchment,

hillslope, soil patch) units (Saco et al., 2007).



Chapter 3

Methods

The theme of this chapter is on describing the ways in which we address the research

questions posed in the introduction (chapter 1). We select to utilise a two-dimensional

simple lumped model (Karssenberg, 2014), which is derived from a fully-distributed

process-based hillslope evolution model (Karssenberg, 2011). It is basically devised to

describe the interaction between the vegetation and the soil subsystem. It should be

noted that we solely give a brief and to the point description of these models here, in

view of the fact that they have been fully described elsewhere.

3.1 Models description

3.1.1 Distributed model

A fully-distributed model – parameters, inputs and outputs vary spatially – of an 80m by

40m hillslope (figure 3.1b) simulates the evolution of a semi-arid vegetation-soil system

over hundreds of years with a weekly time step containing a shift from a vegetated

hillslope with thick soils to a hillslope with low vegetation cover and degraded soils.

Figure 3.1 (a) shows a causal loop diagram illustrating the key positive (+) and negative

(-) effects of the system.

Water enters the system via rainfall and exits from it via evapotranspiration and

surface runoff. Each week either zero or one rainfall events occur. This is determined

by drawing from a discrete probability distribution. The water on the ground surface

enters the soil up to the maximum infiltration capacity or until the soil has reached its

maximum water content. Evapotranspiration is modelled as a function of the vegetation

biomass.

18
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Figure 3.1: (a) Casual loop diagram depicting the positive and negative feedback loops in the
modelled system (taken from Karssenberg (2011)). (b) The model area: a hillslope with length
and width of 40 m and 80 m respectively (Karssenberg et al., 2015).

Considering two well-studied ecological model systems of vegetation collapse in semi-

arid regions (Noy-Meir, 1975; May, 1977), vegetation biomass grows logistically including

spatial diffusion of biomass. The vegetation cover is calculated as a function of grazing

pressure, soil depth and hydrology. Regolith (soil) thickness is modelled by soil creep

and wash processes (i.e., erosion by wash and splash), as a function of rainwater reaching

the ground surface and runoff. Vegetation growth rate depends on regolith thickness

and soil wash is inversely proportional to the vegetation cover. The main output of the

model is a time series of hillslope geometries such as topographical surface, development

of gullies, regolith thickness, and vegetation coverage. For a detailed description of the

distributed model, refer to Karssenberg et al. (2015).

3.1.2 Lumped model

3.1.2.1 Representing the change in soil depth and vegetation biomass

An appropriate representation of the key processes of the system is provided by a simple

lumped model which consists of a set of two coupled differential equations describing

the dynamics of soil and vegetation subsystems. The equations and parameters of the
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lumped model are derived from the aforementioned distributed model (Karssenberg

et al., 2015). The change in the soil depth is determined by bedrock weathering and

net erosion, and the change in biomass is determined by vegetation growth and grazing

terms.

The change in soil depth D (m) is modelled as:

dD

dt
= W0e

−aD − e−B/b(Et + e−D/c(E0 − Et))− C + e (3.1)

Soil thickness is dependent on the balance between soil production and erosion. In

equation 3.1, the first rhs (right-hand side) term corresponds to soil production function.

The rate of weathering of bedrock can be modelled as an exponential reduction with

thickening of the soil, with W0 the potential soil production rate occurring under zero

soil depth and a an empirical constant (weathering exponent).

The second rhs term stands for water erosion and the third rhs term is the soil loss

by downhill creep. Concerning soil erosion by water processes, a decrease in soil depth

increases erosion in the wake of the lessened maximum soil water content. In this way,

the soil becomes saturated resulting in increased surface runoff. To represent this effect

of soil depth on erosion, the erosion rate parameter E0 and the exponent c are used.

Also, note that Et stands for erosion rate at zero biomass and an infinitely thick soil

layer. A possible increase in biomass vegetation maintains slopes and reduces erosion

owing to increased intercepted rainwater and infiltration capacity of the soil that tends

to go up, holding more rainwater on-site and decreasing runoff. Exponent b corresponds

to this influence of biomass on erosion.

The last term, e, corresponds to a Gaussian noise process representing environmental

stochasticity, which is added to the deterministic processes in order to be in a position

to detect the early warning signals. We expand a bit further on this at the end of the

current chapter.

The change in biomass B (kg/m2) is modelled as:

dB

dt
= (1− (1− i)e−D/d)

(
rB

(
1− B

c

))
− g

(
B

s+B

)
+ e (3.2)

In equation 3.2, the first rhs term stands for the growth of the vegetation and the

second rhs one represents its consumption by grazers. The first part of the first rhs term

describes the decline in growth rate when soil depth decreases, with the exponent d and

the intercept i. Additionally, the second bit of the first rhs term corresponds to a well-

studied overharvesting model system of vegetation collapse which has been regularly
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used in investigating dynamics of critical transitions (Noy-Meir, 1975; May, 1977). The

grazing term (second term) incorporates the grazing pressure g, whose influence can lead

to bistable dynamics. As with the soil depth, some random noise e is added.

The primary driver of the system is the grazing pressure, which, when going up, is

consequent on decrease in environmental compartments such as soil thickness and vege-

tation biomass, leading to the occurrence of a critical transition. A succinct description

of various parameters and symbols is available in the following subsection 3.1.2.3.

Bear in mind that the identification of parameters in the above differential equations

has been done by manual calibration. A good fit between the rates of change computed

by the lumped model and those computed by the distributed model, has been obtained,

where the system has been on the brink of crossing the catastrophic shift. Parameters

have been adjusted, specifically resulting in an adequate fit between soil thickness and

biomass values, utilising a good many combinations of soil thickness and biomass values.

For a more complete account of this procedure, refer to Karssenberg et al. (2015).

3.1.2.2 Stability and steady-state solution

As discussed previously, stability of an equilibrium has a reference to the system propen-

sity to get back to its former position after a perturbation. Here, the dynamic equilibrium

of the system (i.e., the system does not change anymore) is found by setting the rate of

change equal to 0 (equation 3.3; 3.4) and solving the resulting algebraic equations (see

appendix B).

dD

dt
= f(D) = 0 (3.3)

dB

dt
= f(B) = 0 (3.4)

As another option, the equilibrium point can also be found by running the model

dynamically for a sufficiently long time. In this case, the model succeeds in obtaining

the steady state situation by itself, running until it stabilises.

The steady state for both soil and vegetation subsystems can be graphically repre-

sented by the crossing of the stable equilibria lines (red dot in the figure 3.2). Under

increasing of grazing pressure g, the system is held at equilibrium as late as the equilib-

ria lines for vegetation and soil intersect. On this account, when these lines stop being

crossed, the system undergoes a critical transition towards a bare state (i.e., biomass

and soil depth is around zero).
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Figure 3.2: Stability diagram of the lumped
model. The green line corresponds to the veg-
etation subsystem and the brown line repre-
sents the soil subsystem (solid branches of the
curve, stable equilibrium; dashed branches,
unstable equilibrium). The two subsystems
are in equilibrium at the location where the
stable equilibria lines cross, shown by red
round.

3.1.2.3 Parameter values used for the simulations

The inputs and parameters of the lumped model representing the soil and vegetation

changes, are explicitly summarised in the following table 3.1. We considered the same

parameter values set as in Karssenberg (2014).

Symbol in the text Parameter in the script Value Unit Explanation

parameters in soil depth model

W0 w 0.0005? m/y

Soil production rate

as a result of bedrock

weathering for bare

bedrock (D=0)

α e 4.0? m−1
Weathering exponent

parameter

D r 0.4? m Soil thickness

1/c p 20 m−1

Exponent related to

the effect of soil depth

on erosion

E0 z 0.084 m/y
Erosion rate for soils

without soil cover

Et m 0.021 m/y
Erosion rate for soils

with infinite soil cover

B b 1.0? kg/m2 Biomass

b v 0.28 m−1

Exponent related to

the effect of biomass on

erosion

C c 0.0001 m/y Soil loss by creep

parameters in biomass model

D r 0.4 m Soil thickness

d a 0.04 m−1 Regolith range
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i i -0.7 Regolith intercept

r g 2.1 y−1 Growth rate

B b 1.0 kg/m2 Biomass

c c 2.9 kg/m−2 Carrying capacity

g s 1.75? kg m−2 y−1 Grazing pressure

s s 0.4 kg/m2 Vegetation density

e e 0.2 % SD of Gaussian noise

Table 3.1: Listing of the various symbols along with values used in this study. Values marked
with a star symbol (?) correspond to the initial ones.

3.2 Model scenarios

Following Karssenberg (2014), we considered two main model scenarios concerning the

impact of soil parameters on the transient behaviour of the system – one with low and

one with high bedrock weathering rates. In particular, in these two scenarios the values

for bare bedrock weathering rate W0 and the weathering exponent parameter a were

tuned, as shown in table 3.2. The ensuing parameter values for soil thickness D and

biomass B are given as well.

We ran the model for different combinations of the initial values of state variables.

Note that the grazing pressure g was set just above the respective threshold values when

the shift was reached, and kept fixed after that. We refer to these scenarios as low

and high bare bedrock weathering rate scenarios. Using as a basis these scenarios, the

transient responses in the course of critical transition in our system are analysed, with

specific interest on the identification of early warning signals.

Low bare bedrock

weathering rate scenario

High bare bedrock

weathering rate scenario

Soil production rate as a result of

bedrock weathering for bare bedrock

(W0) (m/y)

0.0004 0.002

Weathering exponent parameter (α)

(m−1)
3.47 7.49

Soil thickness (D) (m) 0.20 0.25

Biomass (B) (kg/m2) 1.50 1.22

Grazing pressure (g) (kg/m−2) 1.9390 1.9660

Table 3.2: Parameter values for the two different scenarios (i.e., low and high bare bedrock
weathering rates).
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3.3 Model analysis

The analysis of the output of the model is mainly based on the diagnostic indices which

are suggested as precursors to the catastrophic regime shifts. Our goal here is to develop,

evaluate and contrast the different early waning signals by measuring the magnitude of

changes in the statistical properties (i.e., alterations in variability) of the time series pro-

duced by the lumped model. To this end, we straightforwardly calculated the following

potential indicators for the simulation results.

3.3.1 Calculating early warning signals

Variance

When the system is nearing a tipping point, the return time to equilibrium upon a slight

perturbation comes to be pretty small (i.e., critical slowing down). In consequence of

this, the variance of fluctuations in state variables (e.g. biomass and soil thickness)

may discernibly change (increase or decrease) over time. It therefore can serve as an

early warning. Variance, or second moment about the mean µ of a distribution, can be

estimated by the following mathematical formula:

V =
1

n− 1

n∑
i=1

|xi − µ|2 (3.5)

where x is the state variable value and µ is the mean value of x.

Skewness

Apart from the variance, a system approaching a regime shift can experience an increase

in the asymmetry of the fluctuations and this does not ensue from critical slowing down

(Guttal and Jayaprakash, 2008). Importantly, in the same way as variance, we may

observe an increase in skewness of the distribution of states. More generally, it might

either increase or decrease, turning upon whether the shift is towards a contrasting state

that is larger or smaller than the present state (Dakos et al., 2012). Skewness, symbolised

by SK, is a pure number (i.e., nondimensional) measuring the degree of asymmetry and

it can be estimated as the third moment around the mean:

SK =
1
n

∑n
i=1(xi − µ)3

(
√

1
n

∑n
i=1(xi − µ)2)3

(3.6)
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where x is the state variable value and µ is the mean value.

Basically, we are interested in investigating how quickly the catastrophic regime shift

unfolds and importantly, whether the selected early indicators provide sufficient advance

warning in such a mixed system composed by a slow and a fast subsystem.

Seeing that we perform a transient simulation, model simulations start with grazing

pressure g just below the critical value where the transition occurs. We then increased

it, little by little, until reaching the point of the shift, and then kept it constant during

the system collapse shortly or long afterwards, depending on the response time of the

system (i.e., the pace of response).

The dryland ecosystem is always perturbed in the sense that it is always in a stochastic

environment of perturbations. We mean to say that the state of the system may well

fluctuate over time. When the system is on the brink of crossing the critical point, the

manner of how it fluctuates changes by rule, enabling us to detect generic indicators. In

this respect, to be able to foresee the critical shift, we included stochastic dynamics in the

model. This can be done either by adding some Gaussian random noise (i.e., statistical

noise which conforms to a Gaussian probability density function) on the grazing pressure

g or as additive directly to the state variables.

Here, we assume that a repeated, normally distributed noise is independently added

to the biomass and the soil thickness stepwise (i.e., every week). More specifically, we

generated a noise process that takes random values from a normal distribution with a

mean equal to zero and 0.2% standard deviation of the biomass or soil thickness in the

dynamic section of the model over a set of time steps. Note that the amount of noise

was kept the same over time.

The above process permits us to capture the statistical signatures of the dynamic effect

of our system (i.e., the phenomenon of critical slowing down) that becomes apparent

in the vicinity of tipping points. Estimations of leading indicators (variance, skewness)

were done utilising python’s pandas data analysis toolkit. We applied rolling statistics

functions on biomass and soil depth time series within moving windows of fixed size. The

window size in weeks was chosen in such a way to track the variation and simultaneously

not to be excessively large; this depends of course on how quickly the system is collapsing.

This is to say that when the regime shift unfolds at a slow pace, the system change is

so little that we could perhaps have used a bigger window size.

Our analysis, at its most basic level focuses on the temporal indicators that presage the

approaching shift. We set side by side the search for indicators that typically predict the

advance on critical point inferring a quick transition and the potential warning signals
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that may additionally arise in a much more gradually collapse, after crossing the tipping

point.

All simulations and statistical analyses are performed in Enthought Canopy v.1.3.0

(https://www.enthought.com/products/canopy/) using a combination of the python

v.2.7.6 (https://www.python.org/) and PCRaster 4.0.0 (freely available at http://

pcraster.geo.uu.nl/pcraster-4-0-0/) scripting language.

https://www.enthought.com/products/canopy/
 https://www.python.org/
 http://pcraster.geo.uu.nl/pcraster-4-0-0/ 
 http://pcraster.geo.uu.nl/pcraster-4-0-0/ 


Chapter 4

Results

In what follows, we present the results of the processes described in the previous chapter

3. The time series of the lumped model are analysed by putting to the test different

values of soil parameters and estimating the statistical indices, giving attention to their

behaviour prior to, as well as after the critical point where the system starts collapsing.

4.1 Model behaviour

4.1.1 Equilibrium point and stability

Let us set about the current section by inspecting the stability of the lumped model

performing a graphical investigation of the steady-state behaviour. The equilibrium

state (i.e., the stable fixed point of the model) is obtained where the rate of change of

the two state variables is synchronously zero, as a function of their values (dD/dt = 0

and dB/dt = 0).

By plotting the resulting equilibrium lines, a graphical representation of the steady-

state and stability conditions of the lumped model can be seen in figure 4.1. Stability

graphs for the vegetation (green line) and the soil (brown line) subsystems are presented

on the left-hand side panels of the figure. On the right, depicted is the direction and

the rate of change of the two state variables. Where the two isoclines intersect, both

subsystems are in dynamic equilibrium (i.e., sources and sinks are in balance), indicated

by the red dot (figure 4.1). This means that the system will go back towards the

equilibrium when it is slightly perturbed from it. Now then, if it is considerably displaced

from the equilibrium, consequently it will collapse to the contrasting state. This happens

when the system state drops either below approximately 0.1 m soil depth or 0.6 kg/m2

vegetation biomass.

27
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The dynamics of our system depend on the driving variable (i.e., grazing). With

increasing grazing rate g, the equilibrium line for vegetation seems to move towards

lower biomass and higher soil thickness values; the equilibrium point (red round) changes

position downwards, throughout the length of soil equilibrium line (figure 4.1 panel a

to panel d). The different levels of grazing rates presented here correspond to g= 1.75,

1.85, 1.92 and 1.93 kg ·m−2 · w−1.

4.2 Scenario analysis

In figure 4.2, one can see the system’s response for both scenarios from a state at which

the critical threshold is just exceeded to a new equilibrium state corresponding to a

full collapse. Additionally, the panels in figure 4.3 represent the stability diagrams of

the model for each of these scenarios at level of grazing parameters where the system

undergoes a critical transition.

We first touch on the results of low bedrock weathering rate model scenario (W0=0.0004,

a=3.47) in which the grazing pressure rate is held constant, just above the critical value

at g=1.9390 kg ·m−2 · w−1. As it can be seen in figure 4.2, the system exhibits a long-

lasting transient response. In particular, the transition unwinds within approximately

260 years. Soil thickness reduces with heavy steps along with vegetation biomass. Then,

in about 200 years, the vegetation subsystem starts responding in a much quicker man-

ner and eventually collapses. Once it has completely collapsed, soil depth drastically

diminishes towards zero.

By contrast, when increasing the bare bed weathering rate values – high bedrock

weathering rate scenario (W0=0.002, a=7.49) – a sharp, rapid transition from one state

to another can occur, happening in a span of decades (figure 4.2). In this case, the

protracted transient time period corresponding to the previous setting cannot be seen

any longer. The soil subsystem starts slowly declining and steeply collapses straight

away in the time following the ultimate vegetation collapse. Note that here the grazing

parameter value is set at g=1.9660 kg ·m−2 · w−1.

Figure 4.1 (preceding page): Left, stability diagrams of the lumped model. The vegetation
subsystem is represented by the green line and the soil subsystem by the line in brown colour.
The solid lines symbolise stable equilibria, whereas the broken lines correspond to unstable
equilibria. The two subsystems are in equilibrium at the location where the stable equilibria
lines cross, shown by the red dot. Right, the rate of change for the lumped model. The arrowed
lines point towards the direction of change; colour scale represents log-transformed values. An
increase in grazing rate moves the fixed point downward from panel to panel. When the two
stable equilibrium lines come to be separated the system goes through a critical shift (d).
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Figure 4.2: The unfolding
of the catastrophic regime
shift (green lines, biomass;
brown lines, soil thickness).
The pale-coloured lines cor-
respond to low bare bedrock
weathering rate values and
the deep-coloured lines rep-
resent the high bare bedrock
weathering rate scenario.

Figure 4.3: Regime shift. Stability plots for (a) low bare bedrock weathering scenario and (b)
high bare bedrock weathering scenario with grazing pressure g just above the threshold value
where the transition occurs (green lines, biomass; brown lines, soil thickness). The solid lines
represent the stable equilibria and the dashed lines correspond to the unstable equilibria. The
blue line represents the transient response between the two alternative stable states (green round
marks symbolise years). The panels on the right-hand side show the rate of change. The arrowed
lines point towards the direction of change; colour scale represents log transformed values.
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Thus, it can be clearly observed that changes in the soil parameters, and more specif-

ically, the altering of bare bedrock weathering rate values, have a considerable effect

on the transition time after a threshold has been transgressed (high W0 scenario, takes

around 50y; low W0 scenario, takes around 260y).

This difference is due to the fact that the position of stable equilibrium lines of the

system change in each scenario model run. In particular, for the scenario with high bare

bedrock weathering the equilibrium line of soil thickness is placed less high in position

corresponding to lower biomass values than the soil equilibrium line in the low bare

bedrock scenario (figure 4.3).

4.3 Early warning indicators

4.3.1 Low bare bedrock weathering rate scenario (slow response)

We consider the case that the system exhibits a slow, transient response. A single

realisation of this model scenario is presented below, showing the simulated dataset of

biomass and soil thickness (figure 4.4 and 4.5 respectively). Beginning simulations from

equilibrium, the level of grazing pressure is initially set to g=1.0 kg ·m−2 · w−1. Then,

it very slowly increases in a linear manner stepwise (i.e., 6.8 · 10−6 units every week),

until it reaches a critical value (g ≈ 1.90 at t ≈ 2500), and is kept constant thereafter

while the system is already in a transient state. Although the gradual increase of grazing

rate, the system remains in the vegetated state for 2540 time units. After that time, the

regime shift unrolls over a span of 1000 years, a relatively long period of time given that

typically, ecosystems on the brink of crossing a critical threshold shift pretty sharply to

alternative states.

Both biomass and the soil thickness time series fluctuate randomly in reaction to the

additive noise at each time step. On approaching the transition point, the variability on

the vegetation time series visibly increases (figure 4.4). This random variation seems to

slightly increase further just before the actual moment of the collapse (figure 4.4). As

regards the soil time series, we cannot observe such a visible change in random variation

as the transition is approached (figure 4.5).

Delving into these qualitative features, we consider the probability distribution of a

snapshot of the dynamical variables of the model when the system is far from (g= 1.59),

and near to (g=1.89) the critical point (figure 4.6). At g= 1.59, the probability density

of biomass time series appears to be symmetric and with a relatively tight distribution

span. Near the switch point, the histogram becomes wider and looks to be developing



Chapter 4. Results 32

Figure 4.4: Slowly unfolding regime shift. Time series of biomass (green line). The gradual
increase of grazing rate (black line) brings about a slight decrease in biomass until a critical point
is reached beyond which the regime shift starts unfolding (transparent grey rectangle region).
The lower plots zoom in on a much finer time scale showing the variation in biomass when the
system is, far from the transition (t=100-150; left), prior to the critical threshold (t=2400-2450;
in the middle) and before the actual moment of transition (t=3350-3400; right).

Figure 4.5: Slowly unfolding regime shift. Time series of soil thickness (brown line). The
gradual increase in grazing pressure (black line) drives the system slowly to a catastrophic
collapse (transparent grey rectangle region), with bottom panels zoomed in far from the transition
(t=100-150; left), prior to the critical threshold (t=2450-2500; in the middle) and before the
actual moment of transition (t=3350-3400; right).
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an asymmetric tail to the left (i.e., negative skewness). Further, no considerable asym-

metry in the distribution of soil depth is observed, in view of the fact that changes of

variability in soil thickness time series has not been observed either (e.g. figure 4.5).

These characteristics set the basis for the early warning indicators proposed below. Note

that extra plots of these simulations can be found in the Appendix A (figure A.2).

Figure 4.6: Figure displaying the qualitative behaviour of the state variables as the system gets
closer to the threshold of collapse. This can be shown intuitively by the landscape illustration
at the top of the figure. The numerical simulation results for biomass (green) and soil thickness
(brown) time series and their probability density (histograms) based on static grazing rates when
the system is far from (g=1.59; left-hand side) and close to (g=1.89; right-hand side) the critical
threshold.

4.3.1.1 Variance and skewness

We estimate the leading indicators (i.e., variance and skewness) applying a moving

window of 200 years. On the biomass time series, variance substantially increases prior
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to the transition point (figure 4.7b; left). It also roughly rises toward the actual collapse,

though exhibiting a relatively strong variation (figure 4.7b; right). Moreover, skewness

decreases showing a peak just before the switch point (figure 4.7c; left), whereas no

evident change is observed after the onset of the shift (figure 4.7c; right). Concerning

the soil depth, we find no apparent change signalling the critical shift. When plotting

the statistical indices over time, noisy erratic trends for both variance and skewness are

observed (figure 4.8).

Figure 4.7: (a) Time series of biomass. Quantitative measures of variability of the time series:
(b) variance and (c) skewness of biomass estimated within moving window of size 6% of the time
series; right-hand side panels show the time period after the transition point is passed.
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Figure 4.8: (a) Time series of soil thickness. Quantitative measures of variability of the time
series: (b) variance and (c) skewness of soil thickness estimated within moving window of size
6% of the time series; right-hand side panels show the time period after the transition point is
passed.

4.3.2 High bare bedrock weathering rate scenario (fast response)

In contrast to the aforementioned model scenario, we now consider the case where the

system typically undergoes a direct, rapid transition. The simulation results can be seen

in figure 4.9 (biomass time series) and 4.10 (soil time series). As in the other scenario,

simulation started with system in the vegetated stable state, and progressively increasing

the grazing rate at a slow pace (i.e., 7 · 10−5 units every week) from g=1.0 to g=1.97

(critical value). Once this threshold is crossed (g≈ 1.97 at t≈ 270), grazing rate stops

increasing and the system quickly jumps to the degraded state.

The critical transition occurs at t≈270y where the system precipitously switches to

the unvegetated state. Similarly to the earlier subsection, the fluctuation in biomass gets

greater in the direction of the shift (figure 4.9), whilst the variation in the soil does not

(figure 4.10). If we now look at the frequency distributions we find analogous results.

At low levels of g, the histogram of biomass has a symmetric shape characterised by

small width, whereas nearing the critical threshold, the distribution widens out tending

to have a tail to the left (i.e., negative skewness) (figure 4.11).
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Figure 4.9: Quickly unfolding regime shift. With the slow, linear increase of grazing rate (black
line) over time, biomass (green line) gradually declines through time until it nears a critical point
at which the system starts collapsing (transparent grey rectangle region). The plots at the bottom
of the panel zoom in on a much finer time scale (i.e., 260 time steps) showing the difference in
biomass variation on the time series far from the transition (t=10-15; left-hand side), and toward
to the critical threshold (t=245-250; right-hand side).

Figure 4.10: Quickly unfolding regime shift. Time series of soil thickness (brown line). Grazing
pressure (black line) linearly increases over time causing a critical transition (transparent grey
rectangle region).
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Figure 4.11: Figure displaying the qualitative behaviour of the state variables as the system
gets closer to the threshold of collapse. This can be shown intuitively by the landscape illustration
at the top of the figure. The numerical simulation results for biomass (green) and soil thickness
(brown) time series and their probability density (histograms) based on static grazing rates when
the system is far from (g=1.59; left-hand side) and close to (g=1.89; right-hand side) the critical
threshold.

4.3.2.1 Variance and skewness

Once more, we estimate the higher-order statistics applying a moving window of 10% of

the time series (window size= 30 years). Regarding biomass time series data, variance

clearly shows an upward trend well ahead of the shift (figure 4.12b). In an analogous

fashion, skewness declines, peaking when the system is on the brink of crossing the

critical point (figure 4.12c). Accordingly, these characteristic trends clearly provide
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indication of the nearby systemic transition. Our simulations also show that no early

warning signals were found in soil thickness time series (figure 4.13).

Figure 4.12: (a) Time series of biomass. Quantitative measures of variability of the time series:
(b) variance and (c) skewness of biomass estimated within moving window of size 10% of the
time series.
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Figure 4.13: (a) Time series of soil thickness. Quantitative measures of variability of the time
series: (b) variance and (c) skewness of biomass estimated within moving window of size 10% of
the time series.

4.4 Multiple realisations and the effect of noise

The stochastic addition utilised in the model leads to the model offering different outputs

following each run. The random disturbances cause the critical shift to happen earlier

or later. This can be clearly seen from figure 4.14, showing the soil and biomass time

series output for 10 model runs (low weathering rate scenario, 4.14a; high weathering rate

scenario, 4.14b). At the low bare bedrock weathering rate scenario one observes a distinct

difference in the course of collapsing of the system among the transient simulations

(around 800y). The same randomness also holds for the high weathering scenario though

showing less variability (about 10y). Note that this variability arises from the stochastic

disturbances alone.
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Figure 4.14: Soil and biomass time series over 10 simulation runs; (a) low bare bedrock
weathering rate scenario and (b) high bare bedrock weathering rate scenario.



Chapter 4. Results 41

Further, of particular importance is the strength of the additive noise. As shown in

figure 4.15, increasing the strength of the noise markedly impacts on the duration of the

shift– the higher the noise level is, the sooner the system collapses. In particular, at

noise level 0.1% the system switches to an unvegetated state within 3800 years. As the

magnitude of noise becomes bigger the system will always collapse more quickly (noise

level 0.2%, in 3400y; noise level 0.5% in 2500y; noise level 2%, in 1400y) (figure 4.15).

This is likely owing to the fact that there may be a larger probability that the system

is driven over the edge. The foregoing simulation results correspond to the low bare

bedrock weathering rate scenario.

Figure 4.15: Biomass and soil thickness model output while increasing the noise level with all
the other parameters kept the same (all the plots correspond to the slow transient).
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Discussion

In this study we used a quite straightforward two-dimensional lumped model (Karssen-

berg, 2014) that represents the basic processes of a semi-arid vegetation-soil system

exhibiting a regime shift between alternative stable states under the control of grazing

pressure. This is a state transition of a physical system manifesting hysteresis (i.e., the

difference in the paths followed by the system during shifting and recovering). Consider-

ing that catastrophic regime shifts may happen slowly once going beyond the transition

point (Hughes et al., 2013), particular attention was paid to the rate of change through-

out the transitional period. We addressed not only how fast the land surface system

collapses after a certain point is transgressed, but also applied high-order statistics such

as variance and skewness to the simulated time series so as to evaluate their utility as

early warning signals. We now move onto discussing our results in the context of the

research questions posed in the introductory chapter 1.

5.1 Catastrophic regime shifts may unroll quickly or slowly

The geomorphological system we consider is described by its two constituent subsystems,

the soil and the vegetation. It is essentially a mixed system composed of a slow (soil)

and a fast (vegetation) components, seeing that the rate of change between these two

subsystems is markedly different (Karssenberg, 2014). On inspecting the phase-plane

graph, one can observe that the arrows are pointed towards north-south, meaning that

the system most rapidly changes along the course of biomass, as the rate of change in

biomass is bigger (figure 4.1). That being said, it is not applicable to the points near to

the vegetation equilibrium, and nor does at small soil thickness or biomass values.

These speed-wise differing subsystems relate specifically to the manner at which the

critical shift unrolls. Our findings showed that there is distinct difference between the two

42
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model scenarios (figure 4.2, 4.3). With one setting (low bare bedrock weathering rates),

it is mainly the soil subsystem that reaches the shift. Soil behaves very slowly owing

to the low rates of change. Consequently, the system exhibits a progressive transition

developing over some hundreds of years. In the other situation (high bare bedrock

weathering rates), it is mainly the vegetation subsystem that collapses first, and then

the soil collapses. This is done much more quickly, unwinding within a few years.

Ergo, we could say that our land surface system is quite easily affected by adjusting

the soil parameters. This greatly influences the response of the system even after passing

the point of instability. The foregoing exactly concur with Karssenberg and Bierkens

(2014) and Karssenberg (2014).

5.2 Variance and skewness as diagnostic indices of the up-

coming shifts

In our analysis, we produced early warning signals based on both variance and skewness

exploring two unlike scenarios corresponding to different soil parameters. Generally, we

found slightly differing results between these indicators, nevertheless both show peaks

prior to the occurrence of the tipping point, fundamental for any early warning signal.

It turns out that statistical anomalies appeared in vegetation biomass as manifestations

of critical slowing down, whereas no apparent trends found in soil thickness. The latter

was likely because the soil subsystem is a pretty slow system. Soil time series exhibit a

slower pattern as the variation has a larger range. It therefore seems highly improbable

to observe apparent changes in such kinds of system components since one might need

much greater time periods to detect possible characteristic trends (e.g. figure A.6).

To be more specific, concerning the slowly unfolding critical shift, rising variance

in biomass serves as early warning signal prior to the critical point, as does skewness,

peaking just ahead of the instability point. On top of that, but less clearly, variance

seems to proclaim the true shift (hardly building-up) while skewness does not (figure

4.7). The aforementioned statistical properties of soil thickness seem to fail signalling

the catastrophic shift (figure 4.8). Moreover, in the situation of the typical, fast transient

response, as expected, the variability visibly increases on the biomass time series, as does

the asymmetry in the fluctuations (figure 4.9, 4.11). Our results indicate that variance

and skewness of biomass performed well as indicators signalling the upcoming shift

(figure 4.12). The foregoing findings are summarised in the table 5.1, simply showing in

which occasion indicators announce the approaching shift.
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Critical shift Slowly unfolding regime shift Quickly unfolding regime shift

Indicators Variance Skewness Variance Skewness

Biomass
CriticalPoint•

TrueShift•
CriticalPoint•

TrueShift◦
• •

Soil thickness
CriticalPoint◦

TrueShift◦
CriticalPoint◦

TrueShift◦
◦ ◦

Table 5.1: Early warning signals for low and high bare bedrock weathering model scenarios
(black bullets, when the indicator signifies the shift; white bullets, when it fails to announce the
shift).

In addition, for fast transient response, besides the increasing variance the actual shift

is preceded by a progressive decline in biomass (figure 4.12a). So we could say that both

biomass and its variance may be interpreted as indicators. In contrast, when looking at

long-lasting transient, biomass itself is barely decreasing prior to the actual switch point

– it remains nearly the same between 2600 and 3400y (figure 4.7a). Therefore, in this

instance we can solely utilise the early warning signal.

Commenting on the performance of the proposed indicators, we could say that the

variance seems to behave slightly finer as early warning over skewness. This is due to

the increase in variance occurring several hundred time steps earlier than the peaking

seen in skewness (i.e., around 800y at the low bare bedrock weathering rate scenario,

figure 4.7; around 50y at the high bare bedrock weathering rate scenario, figure 4.12).

Nevertheless there exists one noteworthy issue in the use of variance for an early warning

indicator. The rise in variance is gradual towards its peak prior to the critical threshold.

This causes a problem in foreseeing the imminence of the critical point itself once an

increase in variance is discerned. Skewness on the other hand rapidly diverges from

zero to become more negative. This has the advantage that when a notable decline in

skewness occurs, the imminence of the critical point is more predictable. In any case, we

could say that neither of these is considered to be more effective in treating individually

to diagnose the imminence of shift (Guttal and Jayaprakash, 2008; Dakos et al., 2012).

Moreover, for both scenarios we found an increase in variance of biomass before the

tipping point (‘technically’ critical point). Comparing the magnitude of the increasing

variance between the gradual transition (increase in variance prior to the critical point)

(figure 4.7) and the fast response (increase in variance prior to the critical point– equiv-

alent to the actual shift point) (figure 4.12), we can observe that the degree of growth in

variance is almost the same. We could therefore say that the predictability of the ‘tech-

nically’ critical threshold of the system for the fast and the slow transient seems to be

more or less identical. Nevertheless, this may not be sufficient in reflecting an upcoming

gradual shift corresponding to a slow trajectory of change, since it may be still more

protracted after transgressing the critical point and thus perhaps passes unnoticed.
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Recapping, our work suggests that the statistical indices of vegetation biomass may

exhibit a noticeable change (increasing variance or decreasing skewness) before the tip-

ping point, serving in this way as early warning indicators; nonetheless, they may miss

the mark when the system shows long transient behaviour. Importantly, this under-

scores the sizeable uncertainty over predicting slow catastrophic regime transitions (e.g.

Frank et al. (2011); Karssenberg (2014)) ensuing from the prolonged transient phase

together with the system dynamics after transcending the critical threshold.

5.2.1 The noise level effect

An interesting observation is that stochastic dynamics of the model play an important

role in its behaviour, lead to the model offering different outputs following each run (e.g.

figure 4.14). This variability is a result of the stochastic variable per se (no parameters

were changed). Although taking a quite low noise level (0.2%), noticeable differences

occurred in the course of collapsing of the system, especially for the slow transient

scenario (figure 4.14a). In this regard, we chose to analyse a realisation at which the

system collapsing very late.

Furthermore, the patterns produced using higher magnitude of noise exhibit shorter

collapses (figure 4.15). This is because strong noise levels affect the processes of the

model by increasing the probability of the system to be pushed over the limit. This

variability may has a significant effect on the duration of the early warning, with some

critical points possibly receiving suitable warning, whereas others receiving little or none

(e.g. Perretti and Munch (2012)).

5.3 Comparison with other studies, remarks and future

directions

Our analysis shows that discernible changes in variance and skewness of biomass perform

as indicators of nearness to a certain threshold where the system starts turning to

another state, as suggested in the previous studies (e.g. Carpenter and Brock (2006);

Guttal and Jayaprakash (2008); Carpenter et al. (2008)). We investigated the use of

diagnostic indicators based on biomass and soil, nonetheless the results presented here,

provide strong support for the use of these early warning signals across a multitude

of disciplines including climate, biology and finance. Notwithstanding differences, one

may successfully apply these indicators in any system with a tipping point, based on

its universal properties; and this gives special value to their potential for forewarning,

albeit the restricted knowledge of the underlying behaviour of the system.
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In addition to time series data, spatial patterns could be analysed providing value-

added indicators, insofar as they can support additional information compared to a single

point in time (Scheffer et al., 2012). To this effect, it would be an interesting extension

to treat spatial indicators by utilising the fully-distributed process-based model. The

combination of both temporal and spatial indicators perhaps improves the dependability

of the signals (Dakos et al., 2012). In this regard, further work into the full spatial system

so as to build composite indicators is desirable.

It is important to note that despite the encouraging fact that some few recent studies

have dealt with the detection of early warnings in real data (e.g. Dakos et al. (2008);

Drake and Griffen (2010); Carpenter and Brock (2011); Dai et al. (2013)), it is still highly

challenging to use this in reality. To this effect, possible flaws can be found in view of the

requirement of large volumes of high resolution data (Dakos et al., 2008; Karssenberg and

Bierkens, 2012), lacking understanding of indicators’ behaviour in considerably complex

systems (Scheffer et al., 2012) and the ineffectiveness of administrative policy processes

(Biggs et al., 2009).

Therefore the question remains concerning the applicability of these findings to real

world scenarios. For instance, the utilisation of either of these early warning signals

described above requires the continued measurement of biomass and soil through time

in order for the variance and skewness to be calculated and monitored for changes. Also,

a further shortcoming emerges with regard to averting critical transitions is that the

parameter values, and the relationships between them, that the model uses to determine

the usefulness of the early warning indicators will surely vary depending on vegetation

type, soil type and climate.

On conditions that the threshold responses become slow, the likelihood of forestalling

them considerably reduces or even nullifies. It is of the essence here to emphasise the in-

creased risk of false warnings or ambiguous signals (e.g. Dakos et al. (2012); Guttal et al.

(2013); Dakos et al. (2015)) for the slow transients. Hence, the discrimination between

rapid and slow transitions looks to be critically important (Hughes et al., 2013). With

this in mind, we should further research into elucidating such long-lasting transients

and yet more into evaluating the robustness of the postulated early indicators in slow

responding systems. Moreover, regarding the applicability of our findings in reality, an

important direction of future work should involve empirical tests on field observations.

One for example would focus on developing statistical methods to investigate the phe-

nomenon of time-delays in consequence of producing slow, transient responses in real

data, as suggested by Guttal et al. (2013).
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Recalling that the spatially-lumped model used here is derived from a high-resolution

model which describes the ecohydrological processes of a land surface system incorpo-

rating spatially varying data. In this regard, we would like to underline the strength of

this approach as suggested by Karssenberg (2014), in view of the successful combination

of the two models. The distributed model gives a more circumstantial representation

of the geomorphological system while the low resolution model allows deriving analyt-

ical approximations. Despite of being minimalistic, it represents well the fundamental

processes of the vegetation-soil system. Additionally, the lumped simulation offers fast

computation time. Consequently, one may equally apply this novel approach to a mul-

tiplicity of other systems consisting of many coupled units in order to develop a better

understanding of their functioning (Karssenberg, 2014).

Despite the possible pitfalls involved, coming up with statistical procedures that pro-

vide evidence for the imminence of the system to upcoming regime shifts is absolutely

valuable. Considering their capacity for practical application though, conditions are

rather far from ideal especially to ecological systems that may exhibit long transient

phases. In order to make the early warning signals more functional in predicting un-

wanted changes we have to tackle the underlying deep uncertainty. To this end, the

development of integrating modelling, monitoring and management approaches is still

required.



Chapter 6

Conclusions

In this research project we studied a semi-arid land surface system which undergoes a

critical transition between two contrasting states associated to hysteresis. For this, we

employed a two-dimensional, spatially-lumped model (Karssenberg, 2014) that simulates

the fundamental processes of a soil-vegetation system by testing it under two differing soil

parameter settings. At the same time, we investigated the usage of variance and skewness

of biomass and soil time series data as early warning indicators for such catastrophic

changes.

It turns out that when the system crosses the switch point, the unwanted shift occurs

either classically fast, having a transitional period just about a few years, or unexpectedly

slow unfolding over hundreds or even thousands of years. This considerable difference

in transient dynamics ensues from altering bare bedrock weathering rates. Our analysis

also suggests that the variance and the skewness of vegetation biomass may serve as

early warning signals of the forthcoming critical shift, whereas statistic signatures of soil

thickness does not provide clear trends. Importantly, in case the transitional period lasts

longer (i.e., the regime shift unfolding very slowly), the actual switch is somehow prob-

lematic to detect. In particular, although the proposed indicators show characteristic

trends prior to the ‘technically’ critical point, they may be lacking power to detect the

true collapse. Notwithstanding forewarnings of the critical point, it is distinctly possible

that a systemic transition may pass unnoticed. This spotlights the great uncertainty

when it comes to predicting the timing of the shift.

Though the assorted constraints, early warning signals of critical transitions certainly

provide important clues in the dynamics of the system which further our ability to

forecast radical systemic changes. This is mainly based on their certain generic char-

acter (Scheffer et al., 2009), nonetheless the task of their practical application is still
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challenging (Dakos et al., 2015). Working towards bettering the power of early warn-

ing indicators, further research should concentrate on the better understanding of the

dynamics and critical changes in systems with smooth and slow threshold responses.

Additionally, complementing multifarious indicators (temporal and spatial) could be an

important direction of future work since it is considered rather promising in the progno-

sis of an undesirable collapse (e.g. Carpenter et al. (2011); Dakos et al. (2011)). Lastly,

given that the applicability of these findings to real world scenarios remains an open

question, field testing will be needed to verify the reliability of the proposed statistical

methods in reality.



Appendix A

Supplementary figures

Supplementary figures associated with this study can be found here.

Unfolding of critical transition

Figure A.1: The transient response between the two alternative stable states for the low
bare bedrock weathering scenario (pale colored lines) and for the high bare bedrock weathering
scenario (deep colored lines) (green lines, biomass; brown lines, soil thickness).

50



Appendix A. Supplementary figures 51

Low bare bedrock weathering scenario (W0=0.0004, a=3.47)

Figure A.2: Slowly unfolding regime shift. At the top, time series of biomass (green line; right)
and soil thickness (brown line; left) plotted together with grazing rate (black line) against time.
At the bottom, combined plot: time series of biomass (green line) and soil thickness (brown
line).
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High bare bedrock weathering scenario (W0=0.002, a=7.49)

Figure A.3: Quickly unfolding regime shift. At the top, time series of biomass (green line;
right) and soil thickness (brown line; left) plotted together with grazing rate (black line) against
time. At the bottom, combined plot: time series of biomass (green line) and soil thickness (brown
line).
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Multiple realisations

High bare bedrock weathering rate scenario

Figure A.4: Soil and biomass time series output for 10 runs. Each individual line shows one
model run.
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Low bare bedrock weathering rate scenario

Figure A.5: Soil and biomass time series output for 10 runs. Each individual line shows one
model run.
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Test run

Longer runtime

Here we consider an even longer run representing a hypothetical situation where one

would have a really slow system. We take a realisation of 936000 time steps by increasing

the grazing pressure by only 1 ·10−6 units each time step, so as to get rid of the observed

variation. Interestingly, it can be showed that the trend tends to be slightly smoothed

out and the estimated variance reveals a characteristic pattern (this run corresponds to

the low bare bedrock weathering rate scenario).

Figure A.6: Top, soil time series output for a very long runtime (i.e., 936000 time steps);
below, variance estimated within moving window of 18% the size of the time series.
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Mathematical operations

Estimating the steady-state solution

We find the equilibria for the soil and the vegetation subsystems by setting the rate of

change equal to 0 and solving the resulting algebraic equations. This is done as follows:

dD

dt
= W0e

−aD − e−B/b(Et + e−D/c(E0 − Et))− C (B.1)

dD

dt
= f(D) = 0

−e−B/b =
e−W0e

−aD

(Et + e−D/c(E0 − Et))

e−B/b =
W0e

−aD − C
Et + e−D/c(E0 − Et)

−B
b

= ln

(
W0e

−aD − C
Et + e−D/c(E0 − Et)

)
B = −b · ln

(
W0e

−aD − C
e−D/c(Eo − Et) + Et

)
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dB
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)(
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− 1
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Programming Information

This provides a concise summary relating to the programming part. Note that the

process-based distributed model was built within PCRaster Python framework (for full

details refer to Karssenberg et al. (2015)). The lumped model is formed by two dif-

ferential equations (3.1 & 3.2), essentially capturing the interaction between the soil

and the vegetation systems. Statistical analyses made in python v.2.7.6 (https:

//www.python.org/) with pandas DataFrame. The high-order statistics of the time se-

ries data estimated using the rolling var and rolling skew rolling statistics functions.

Figures produced using matplotlib plotting library.

Below we provide the main script (basic code for the simulations) of the lumped model,

followed by the simpleParameters.py function containing the parameters used, var.py

and skew.py functions for calculating mathematical statistics (variance and skewness

respectively).
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Model scripts

# main simulation script

import math

import generalfunctions

from pcraster import *

from pcraster.framework import *

from simpleModelFunctions import *

from simpleParameters import *

# time step is a week

nrOfSamples = 1

numberOfTimeSteps =52 * 1000

multiplierDeposition =1.0

findEquilibrium=False

passWeatheringParameters=False

class CatchmentModel(DynamicModel ,MonteCarloModel ):

def __init__(self):

DynamicModel.__init__(self)

MonteCarloModel.__init__(self)

setclone(’clone.map’)

setrandomseed (101)

def premcloop(self):

print ’done’

def initial(self):

# timestep duration in hours

self.timeStepDuration = 7.0 * 24.0

# normal execution: take all from simpleParameters .py

self.weatheringRateBareBedrock=weatheringRateBareBedrock

self.weatheringExponentParameter=weatheringExponentParameter

self.slope =1.00 # low scen . ,1.9390; high scen . ,1.9660

self.thickness =0.20 # low scen . ,0.20; high scen . ,0.25

self.biomass =1.50 # low scen . ,1.50 ;high scen . ,1.22

self.thickLi =[]

self.bioLi =[]

self.slopeLi =[]

self.durationToDegraded = -9999.0

self.durationToDegradedStored=False

def dynamic(self):

if self.currentTimeStep () % 1 == 0 or (self.currentTimeStep () == 1):

self.thickLi.append(self.thickness)

self.bioLi.append(self.biomass)

self.slopeLi.append(self.slope)
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bioGrowth=growth(self.biomass ,self.thickness ,carryingCapacity , \

growthRateParameter ,regolithRange , regolithIntercept)

bioGrazing=grazing(self.biomass , intercept , self.slope)

self.biomass=self.biomass+self.timeStepDuration *(( bioGrowth -bioGrazing )\

/(52.0*24.0))

# add noise; low scen., 0.003; high scen., 0.00244

self.biomass=self.biomass+np.random.normal(0, 0.003)

# increase the grazing pressure

if self.slope <1.9000:

self.slope= self.slope + 0.00000100 # low scen., 6.8*10e -6; high scen., 7*10e-5

else:

self.slope= self.slope + 0

regWeathering=weathering(self.thickness ,self.weatheringRateBareBedrock , \

self.weatheringExponentParameter)

regErosion=erosion(self.thickness ,self.biomass ,erosionRateBareBedrockThickZero , \

erosionRateBareBedrockThickMax , \

erosionExponentParameter ,vegetationRange)

self.thickness=self.thickness+multiplierDeposition *( regWeathering -regErosion )/1.0

# add noise; low scen., 0.0004; high scen., 0.0005

self.thickness=self.thickness+np.random.normal(0, 0.0004)

if self.thickness < 0.01 and not self.durationToDegradedStored:

self.durationToDegraded=self.currentTimeStep ()

self.durationToDegradedStored=True

if self.currentTimeStep () == numberOfTimeSteps:

numpy.save(’thick.npy’,self.thickLi)

numpy.save(’bio.npy’,self.bioLi)

numpy.save(’slope.npy’,self.slopeLi)

numpy.save(’durationToDegraded.npy’,self.durationToDegraded)

def postmcloop(self):

print ’done’

myModel = CatchmentModel ()

dynamicModel = DynamicFramework(myModel , numberOfTimeSteps)

mcModel = MonteCarloFramework(dynamicModel , nrOfSamples)

mcModel.setForkSamples(True ,2)

mcModel.run()
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# simpleParameters (the parameters used in the model)

# low scenario

weatheringRateBareBedrock =0.0004

weatheringExponentParameter =3.47

# high scenario

weatheringRateBareBedrock =0.002

weatheringExponentParameter =7.49

vegetationRange = 0.28

meanErosionRate =0.0008*52.0

factor =2.01

erosionRateBareBedrockThickMax = meanErosionRate/factor

erosionRateBareBedrockThickZero = meanErosionRate*factor

erosionExponentParameter= 20.0

growthRateParameter =2.1

carryingCapacity =2.9

regolithRange =0.04

regolithIntercept =-0.7

intercept =0.2

# grazing pressure

slope =1.00 # low scen., 1.9390; high scen., 1.9660
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# calculate rolling variance

import pandas as pd

import numpy as np

#data = numpy.loadtxt(’biomass.txt ’)

#bio_data=data

bio_data=bio

# type(bio_data)

inda=np.arange (1 ,181876)

df = pd.DataFrame(bio_data [:], index=inda [:])

# plot the time series

df.plot(style=’k--’)

# calculate the rolling mean and plot

pd.rolling_mean(ts ,2600). plot(style=’k’)

# add the rolling variance:

pd.rolling_var(df ,2600). plot(style=’b’)

var=pd.rolling_var(df ,2600)

np.savetxt(’var_biomass.txt’, var , fmt=’%.10f’, newline=os.linesep)

# calculate rolling skewness

import pandas as pd

import numpy as np

#data = numpy.loadtxt(’biomass.txt ’)

#bio_data=data

bio_data=bio

# type(bio_data)

inda=np.arange (1 ,181876)

df = pd.DataFrame(bio_data [:], index=inda [:])

# plot the time series

df.plot(style=’k--’)

# calculate the rolling mean and plot

pd.rolling_mean(ts ,5200). plot(style=’k’)

# add the rolling skewness:

pd.rolling_skew(df ,5200). plot(style=’b’)

skew=pd.rolling_skew(df ,5200)

np.savetxt(’skew_biomass.txt’, skew , fmt=’%.10f’, newline=os.linesep)
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