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Abstract

In this thesis, we provide background and proofs of some of the results stated in
the articles of H.W. Lenstra on profinite number theory [Len05, Len16]. We start
by constructing the topological ring of profinite integers, known as Ẑ (pronounced
“Zee-hat”), as the completion of the integers with respect to a certain metric in
Chapter 3. This leads to an investigation of its connection to p-adic rings Zp and
the subsequent introduction of the profinite logarithm in Chapter 4. Aided by this
machinery, we study the extension of the Fibonacci map to the ring of profinite
integers and its fixed points in Chapter 5.
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1 Introduction

Although the so-called profinite integers form an important technical tool in various
parts of arithmetic geometry and algebraic number theory, such as infinite Galois the-
ory, their own virtues “have never been recognized” (Lenstra, [Len05]). Therefore, their
little-known but remarkable properties have not been studied extensively. The present
thesis serves as an introduction to profinite integers and some of their striking prop-
erties, which have been presented informally in the articles of H. W. Lenstra on the
subject (see [Len05, Len16]).

Profinite integers may be defined in several equivalent ways. The following is the most
straightforward approach. Note that every positive integer n has a unique representation
– called the factorial representation – as

n = c1 · 1! + c2 · 2! + · · ·+ ck−1 · (k − 1)! + ck · k! def= (ck . . . c3c2c1)!,

with ci ∈ Z, 0 ≤ ci ≤ i, for every positive integer i ≤ k, and ck 6= 0. For example, we
can write 6 = (100)! and 49 = (2001)!. The number k is, in the case of positive integers,
always finite. However, permitting k to become arbitrarily large, we obtain the desired
profinite integers, which are of the form

c1 · 1! + c2 · 2! + c3 · 3! + · · · = (. . . c3c2c1)!.

These new numbers are not integers in the ordinary sense, and require a theoretical
framework to be explored formally and in depth. This will be done in Chapter 3.
There, the space of profinite integers Ẑ will be introduced as the Cauchy completion of
Z with respect to a certain metric.

In Chapter 4, we prove that profinite integers can indeed be identified uniquely with
their factorial representation. This representation, as the observant reader may note,
is strongly reminiscent of the p-adic integers: these can be represented as c0p

0 + c1p
1 +

c2p
2 + · · · = (. . . c3c2c1)p for some fixed prime number p and integers ci with 0 ≤ ci ≤

p− 1, for every i. Chapter 4 shows that this intuition is justified: we prove that there
exists an isomorphism of topological rings between Ẑ and the product space of all p-adic
rings. Lastly, Chapter 4 describes the p-adic and profinite logarithms, which we need in
Chapter 5 of this thesis: a study of the extension of the Fibonacci map to the profinite
integers and its fixed points.
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10 | Profinite Number Theory

As for prerequisites, although the reader may be helped with the extensive list of def-
initions and theorems in Chapter 2 (making the thesis almost self-contained), he may
surely take advantage of any basic knowledge pertaining to topology and number theory.

Utrecht University
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2 Preliminaries

The content of this thesis resides in the domain of number theory and topology, where
the latter is most often used to provide a foundation for the main results concerning
the former. The notions recalled in the following subsections provide a starting point
to the reader in his study of profinite integers. These definitions and results can be
found (with proofs) in any elementary textbook, see for example Crainic [Cra16] for the
topology and Beukers [Beu15] for the number theory part.

2.1 Topology

Definition 2.1. Let X be a set and T a collection of subsets of X. Then T is a
topology on X if

(1). T contains the empty set and X.

(2). Any union of members of T is a member of T .

(3). Any finite intersection of members of T is a member of T .

The pair (X, T ) is called a topological space and is often denoted simply by X. The
members of T are called open sets or opens, and their complements are the closed
sets.

Definition 2.2. Let X be a set and B a collection of subsets of X. Then B is called a
topology basis if

(1). For any x ∈ X, there exists a B ∈ B such that x ∈ B.

(2). For any B1, B2 ∈ B and x ∈ B1 ∩ B2, there exists a B ∈ B such that x ∈ B ⊂
B1 ∩B2.

Furthermore, B induces a topology T = T (B) given by the collection

T def= {U ⊂ X : ∃B′ ⊂ B : U = ∪B∈B′B}.

Definition 2.3. Let X and Y be topological spaces. Recall the following notions:

(1). A map f : X → Y is continuous if f−1(U) is open in X for any open U ⊂ Y .

(2). X is called Hausdorff if for any two distinct points x, y ∈ X there exist opens
U, V in X such that x ∈ U , y ∈ V and U ∩ V = ∅.

Utrecht University



12 | Profinite Number Theory

(3). Given a subset A of X, the induced topology T |A on A consists of all subsets
B of A such that B = U ∩A for some U ∈ T .

(4). X is called connected if it cannot be written as the union of two disjoint, nonempty
opens. Furthermore, any C ⊂ X is called connected if C, together with the induced
topology, is connected.

(5). X is called totally disconnected if each connected subset C ⊂ X is a singleton,
i.e. C = {x} for some x ∈ X.

(6). A cover of X is a family U of subsets of X, such that
⋃

U∈U U = X. The cover
is open if each of the subsets U ∈ U is open. Furthermore, X is called compact
if each of its open covers admits a finite open subcover; that is, if for any open
cover U there is a finite subcollection F ⊂ U such that

⋃
U∈F U = X.

(7). A sequence of elements (xn)∞n=1 converges to x ∈ X if for every open U , contain-
ing x, there exists an integer N ≥ 0 such that xn ∈ U for all n ≥ N . Furthermore,
X is called sequentially compact if any sequence (xn)∞n=1 ∈ X has a convergent
subsequence.

(8). We can construct a topology on X × Y , known as the product topology, by
declaring a subset D ⊂ X × Y to be open if and only if for all (x, y) ∈ D there
exist opens U ⊂ X and V ⊂ Y such that x ∈ U , y ∈ V and U × V ⊂ D.

(9). Given a subset A of X, we can form its closure, denoted A, which is the smallest
closed subset of X containing A. If the closure of A equals the whole space X,
then A is called dense in X.

Lemma 2.4. Any continuous bijection from a compact space to a Hausdorff space is a
homeomorphism.

Definition 2.5. Let (X, d) be a metric space. Recall that the topology induced by d
is defined as the collection Td of subsets of X given by

Td
def= {U ⊂ X : ∀x ∈ U ∃ε > 0 : Bd(x, ε) ⊂ U}.

The pair (X, Td) is a topological space.

Lemma 2.6. Let X be a metric space. Then X is compact if and only if it is sequentially
compact.

Utrecht University
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Definition 2.7. A metric space X is called complete if all Cauchy sequences converge
(to a limit inside the space).

Lemma 2.8 ([Sea06], p. 176). Any uniformly continuous function X → Y between
metric spaces has a unique continuous extension X̂ → Y , if X is dense in X̂ and Y is
complete.

2.2 Rings and number theory

Let p be a prime number and n a positive integer.

Lemma 2.9. Recall that we say that a and b are congruent modulo n and write
a ≡ b (mod n) if a − b is divisible by n. Given integers a, a′, b, b′ and k such that
a ≡ a′ (mod n) and b ≡ b′ (mod n), the mod operator, also called the congruence
relation, satisfies the following properties:

(1). It is an equivalence relation.

(2). a+ kb ≡ a′ + kb′ (mod n).

(3). ab ≡ a′b′ (mod n).

(4). ak ≡ (a′)k (mod n) if k ≥ 0.

Lemma 2.10. The equation ax ≡ b (mod n) is solvable if gcd(a, n) divides b. In that
case, the total number of solutions is gcd(a, n), and if s is some particular solution, the
full set of solutions is given by{

s+ kn

gcd(a, n) : k ∈ Z, 0 ≤ k < gcd(a, n)
}
. (2.1)

Definition 2.11. Recall that two integers a, b are said to be coprime if gcd(a, b) = 1.
The function that counts the number of positive integers less than a given integer n
which are coprime to n, is known as the Euler totient function and denoted by ϕ(n).
In particular, ϕ(p) = p− 1.

Theorem 2.12 (Euler). Let a be an integer coprime to n. Then aϕ(n) ≡ 1 (mod n).

Corollary 2.13 (Fermat’s little theorem). Let a be any integer. Then ap ≡ a (mod p).

Theorem 2.14 (Wilson). Let n! denote the factorial of n. Then

(p− 1)! ≡ −1 (mod p). (2.2)

Utrecht University
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Corollary 2.15. We have (p− 2)! ≡ 1 (mod p).

Definition 2.16. Recall that a is said to be a quadratic residue (mod p) if there
exists an x such that x2 ≡ a (mod p). The associated Legendre symbol is defined as

(
a

p

)
def=


1 if a is a quadratic residue (mod p) and a 6≡ 0 (mod p),
−1 if a is a quadratic nonresidue (mod p),
0 if a ≡ 0 (mod p).

(2.3)

Lemma 2.17. Let a be an integer. Then a
p−1

2 ≡
(

a
p

)
(mod p).

Lemma 2.18 (Quadratic reciprocity). Let p and q be prime numbers. Then(
p

q

)(
q

p

)
= (−1)

p−1
2 ·

q−1
2 . (2.4)

Theorem 2.19 (Chinese Remainder Theorem). Let n = n1n2 · · ·nk be a factorization
of n into k coprime factors. Then the map

φ : Z/nZ→ Z/n1Z× · · · × Z/nkZ,

φ(x (mod n)) def= (x (mod n1), . . . , x (mod nk)),

is a ring isomorphism.

Definition 2.20. Recall that the tuple (R,+, ·) is called a ring when + (addition) and
· (multiplication) are binary operations on R such that

(1). (R,+) is an abelian group.

(2). Multiplication is associative, and there exist an element 1 ∈ R such that 1 · r =
r = r · 1 for all r ∈ R.

(3). Multiplication is (left and right) distributive with respect to addition.

A subset S of a ring R is a subring of R when S with the addition and multiplication
of R forms a ring itself, and has the same multiplicative identity as R. Furthermore,
we say that R is a topological ring if it is a ring and the operations of addition and
multiplication are continuous as maps R×R −→ R.

Utrecht University
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3 Construction of the topological ring of profinite integers

There are several ways to define the ring Ẑ of profinite integers. To avoid category-
theoretical constructions, we will define a topology on Z, which turns out to be induced
by a metric; see section 3.1. Once this is done, we show in 3.2 that Ẑ can be defined
as the Cauchy completion of Z with respect to this metric. The final section 3.3 of this
chapter is a small investigation into the ring theoretic properties of Ẑ.

3.1 A metric topology on the integers

The somewhat unconventional topology which forms the starting point of our study of
profinite integers, is known as the Furstenberg topology, named after Hillen Fursten-
berg (who used the space to give an elegant topological proof of the infinitude of the
primes (see [LM15, Fur55])), and is defined by means of the following basis.

Lemma 3.1. Given integers m > 0 and a, let a + mZ = {a + km : k ∈ Z} denote
the associated arithmetic progression, and let B = {a + mZ : a,m ∈ Z, m > 0} be the
collection of all such progressions. Then B is a topology basis.

Proof. Any x ∈ Z is contained in the basis member x+mZ. Furthermore, if B1 and B2

are members of B and x an element in their intersection, then we can write B1 = x+mZ
and B2 = x+ nZ for some integers m and n greater than 0. Defining B = x+mnZ we
obtain x ∈ B ⊂ B1 ∩B2. Hence B is a topology basis. �

The topology T , induced by B, is therefore given by the collection B together with the
empty set and arbitrary unions of members of B (see Definition 2.2). The resulting
topological space (Z, T ) is often called the Furstenberg space. It has the property
that any arithmetic progression a + mZ is open (by definition) as well as closed: it is
the complement of

m−1⋃
b=1

(a+ b) +mZ,

which is a union of opens.

The Furstenberg topology has the property that it is metrizable. An explicit metric
that induces T arises from the following, somewhat peculiar function on Z. Define

| · | : Z −→ R≥0, |n| def=

0 if n = 0,
1/max {k : n ≡ 0 (mod k!)} else.

(3.1)

Utrecht University
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In short, | · | measures the divisibility of an integer by factorial numbers. (For some, this
may seem reminiscent of the p-adic absolute value – and this is not entirely coincidental,
as we shall see later on.) We shall refer to this function as ‘the absolute value (on Z)’,
even though it does not satisfy the usual multiplicative rule |mn| = |m||n|. Instead, it
has the following properties.

Lemma 3.2. The absolute value | · | satisfies the following properties, for all m,n ∈ Z:

(1). |m| ≥ 0, and |m| = 0 if and only if m = 0.

(2). |m+ n| ≤ max{|m|, |n|}, and |m| > |n| implies |m+ n| = |m|.

(3). |mn| ≤ min{|m|, |n|}.

(4). | −m| = |m|.

(5). |n| is equal to the reciprocal of some positive integer if n 6= 0.

Proof. The properties (1), (4) and (5) hold by definition. If m or n equals 0, all state-
ments hold trivially. Therefore, let m and n be integers different from 0. Then there
existm′ and n′, and maximal (positive) k1 and k2, such thatm = k1!·m′ and n = k2!·n′.
Assume without loss of generality that k1 ≤ k2. Hence |m| = 1/k1 ≥ 1/k2 = |n|. Then

m+ n = k1! · (m′ + (k1 + 1) · . . . · k2 · n′).

If k1 is strictly less than k2, then (k1 + 1)! can’t divide m+ n, by maximality of k1. If
k1 = k2 then it may occur that k1 + 1 divides the expression in the parenthesis on the
right-hand side (for instance, take m = n = 1), hence the presence of the inequality
sign is necessary. This proves (2). For (3), since

mn = k2! · k1!m′n′,

we have |mn| ≤ |n|. The inequality may be strict when m′ is divisible by k2 + 1. �

The absolute value naturally gives rise to a metric on Z, defined as d : Z× Z −→ R≥0

by d(x, y) = |x−y|. Property (1) ensures that d(x, y) = 0 holds if and only if x = y, and
the fourth property guarantees that d(x, y) = d(y, x), so that d is, in fact, symmetric.
Moreover, by property (2) we have d(x, z) = |x−z| = |x−y+y−z| ≤ max{|x−y|, |y−z|}.
Hence d satisfies

d(x, z) ≤ max{d(x, y), d(y, z)},

Utrecht University
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which is the so-called ultrametric inequality, a stronger version of the triangle in-
equality. The map d, which we have just indeed proven to be a metric, is for this reason
sometimes called non-Archimedean.

As mentioned before, we need the topology Td induced by d to be the same as T . It
has the basis B = {Bd(x, r) : x ∈ Z, r > 0} of open balls, where each ball is defined as
Bd(x, r) def= {y ∈ Z : d(x, y) = |x− y| < r}. By property (5) of Lemma 3.2, we might as
well take r to be the reciprocal of a positive integer, so that we can redefine the basis
to be the countable collection B = {Bd(x, 1/n) : x, n ∈ Z, n > 0}.

The condition d(x, y) < 1/n is equivalent to max{k : x ≡ y (mod k!)} > n. This is
satisfied by all y ∈ Z with x ≡ y (mod (n + 1)!); conversely, all y that satisfy the
condition also satisfy x ≡ y (mod (n+ 1)!). Hence

Bd(x, 1/n) = x+ (n+ 1)!Z.

Lemma 3.3. The topology Td, induced by the metric d, coincides with T .

Proof. By the preceding observations, it is clear that Td ⊂ T , since T contains all
arithmetic progressions. For the other inclusion, let a+ bZ ∈ T . If b = 1, the result is
clear since Z = (1 + 2!Z) ∪ 2!Z. If b > 1, then we can write

a+ bZ =
(b−1)!−1⋃

k=0
(a+ kb) + b!Z,

which is a union of members of Td, so a+ bZ ∈ Td. �

From now on, Z will refer to the space (Z, T ). To conclude this subsection, we state
the following.

Lemma 3.4. Z is a topological ring.

Proof. We need to show that addition and multiplication are continuous. In fact, we
will show that they are uniformly continuous. Assume that a ≡ a′ (mod k!) and
b ≡ b′ (mod k!). Elementary properties of divisibility (see Lemma 2.9) imply that
ab ≡ a′b′ (mod k!) and a+ b ≡ a′ + b′ (mod k!). This already shows that addition and
multiplication are uniformly continuous: indeed, if k > 1, the assumptions imply that

Utrecht University
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a′ ∈ Bd(a, 1/(k − 1)) and b′ ∈ Bd(b, 1/(k − 1)), and hence we deduce that

a′ + b′ ∈ Bd

(
a+ b,

1
k − 1

)
, a′b′ ∈ Bd

(
ab,

1
k − 1

)
. �

See also [LM15] for more properties of the Furstenberg space.

3.2 The Cauchy completion of the integers

The Cauchy completion X̂ of a metric space X can be regarded as the space X to
which precisely those points are added that make all Cauchy sequences converge with
a limit in X̂. The space X̂ is hence complete. The completion comes equipped with
an isometric (that is, distance-preserving) embedding ı : X ↪→ X̂, such that ı(X) is
dense in X̂. Hence, in some sense, X̂ is the ‘smallest’ complete space containing an
isometrically embedded copy of X.

In this context, Cauchy sequences in Z take the following form.

Lemma 3.5. Let (an)∞n=1 be a sequence in Z. Then (an)∞n=1 is Cauchy if and only if
for all integers N > 0 there exists an r > 0, such that for all n ≥ r,

an+1 ≡ an (mod N !).

Proof. For N = 1, the statement is trivial. By definition, (an)∞n=1 is Cauchy if and
only if for all N > 1 there exists an r = r(N) such that d(am, an) = 1/(max{k : am ≡
an (mod k!)}) < 1/(N − 1) for all m,n ≥ r; that is, if and only if am ≡ an (mod N !).
As a direct consequence we have that an+1 ≡ an (mod N !). On the other hand, if
an+1 ≡ an (mod N !) for all n ≥ r, then

. . . ≡ ar+3 ≡ ar+2 ≡ ar+1 ≡ ar (mod N !).

In other words, am ≡ an (mod N !) for all m,n ≥ r. �

Many Cauchy sequences do not converge in Z. A generic example which shall occur as
a motif in various places in this thesis, is the sequence (an)∞n=1 given by an =

∑n
k=1 k!,

for all n. In order to make this type of sequences converge, the space Z needs to be
completed.

Utrecht University
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We will denote the space of Cauchy sequences in Z by CS(Z). Let x = (xn)∞n=1 and
y = (yn)∞n=1 be two Cauchy sequences. Define

d′ : CS(Z)× CS(Z)→ R≥0, d′(x, y) def= lim
n→∞

d(xn, yn).

Note that d′ is well-defined since the sequence (d(xn, yn))∞n=1 is a Cauchy sequence in
the complete space R, so the limit on the right-hand side exists.
However, d′ can’t be a metric: any two Cauchy sequences x and y that eventually coin-
cide, satisfy d′(x, y) = 0, and, of course, we can easily manage for x and y to be distinct
by letting the initial terms be different. So d′ is degenerate.

In fact, d′ is still symmetric and satisfies the ultrametric inequality, which follows im-
mediately from the (similar) properties of d. Such a d′ is often called a pseudometric.
The failure of d′ to be a metric shows that the space of Cauchy sequences needs some
modification to suit our purposes. Luckily, we only need a small adjustment, consisting
of modding out the ‘right’ sequences; the pseudometric d′ then descends to the resulting
quotient – which is defined to be Ẑ – where it transforms back to a full-fledged metric.
Formally, we have an equivalence relation ∼ on CS(Z), given by

x ∼ y ⇔ d′(x, y) = 0,

and the space of profinite integers defined as the quotient

Ẑ def= CS(Z)/ ∼,

which has elements [x] = {y ∈ CS(Z) : x ∼ y}, where x ∈ [x] is an arbitrary repre-
sentative. ‘Having distance zero’ is easily seen to be an equivalence relation, using the
properties of d′. Clearly, d′(x, x) = 0, and if d′(x, y) = 0, then also d′(y, x) = 0 by sym-
metry. Furthermore, if d′(x, y) = d′(y, z) = 0, then d′(x, z) = 0 by the non-Archimedean
property.
The equivalence relation ∼ resolves the degeneracy of d′. The metric on Ẑ can now be
defined as

d̂ : Ẑ× Ẑ→ R≥0, d̂([x], [y]) def= d′(x, y).

Lemma 3.6. The map d̂ is a well-defined ultrametric.

Proof. For the first part we have to check that any x, x′ ∈ [x] and y, y′ ∈ [y] satisfy

Utrecht University
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d′(x, y) = d′(x′, y′). Note that d′(x, x′) = d′(y, y′) = 0. By the non-Archimedean
property of d′, we have d′(x, y) ≤ max{d′(x, x′), d′(x′, y)}. Expanding this further (by
again using the non-Archimedean property) yields

d′(x, y) ≤ max{d′(x, x′), max{d′(x′, y′), d′(y′, y)}},
= max{d′(x, x′), d′(x′, y′), d′(y′, y)},
= d′(x′, y′).

Interchanging x with x′ and y with y′ gives d′(x′, y′) ≤ d′(x, y) in a similar fashion.
Hence d′(x, y) = d′(x′, y′), so d̂ is well-defined.
The fact that d̂ is an ultrametric follows immediately from the non-Archimedean prop-
erty of d′. �

As promised, we have the following:

Lemma 3.7. Let ı be the canonical inclusion given by

ı : Z ↪→ Ẑ, n 7→ [n] def= [(n, n, n, . . .)].

Then ı is an isometric embedding and ı(Z) is dense in Ẑ.

Proof. Clearly,

d̂(ı(m), ı(n)) = d̂([m], [n]) = d′((m,m, . . .), (n, n, . . .)) = lim
i→∞

d(m,n) = d(m,n),

for any m and n ∈ Z. Hence ı is an isometry. By nondegeneracy of d, we see that ı is
injective: indeed, if ı(m) = ı(n), then d(m,n) = d̂(ı(m), ı(n)) = 0, and hence m = n.
To prove the second statement, let [x] ∈ Ẑ, (xn)∞n=1 ∈ [x] and N > 0. Then (xn)∞n=1 is
Cauchy. Hence there exists an r > 0 such that any i, j ≥ r satisfy d(xi, xj) < N . For
the element ı(xr) = [xr] we have

d̂([xr], [x]) = d′((xr), (xn)∞n=1) = lim
i→∞

d(xr, xi) < N.

It follows that ı(xr) ∈ Bd̂([x], N). So

ı(Z) ∩Bd̂([x], N) 6= ∅,

that is, ı(Z) is dense in Ẑ. �
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However, Ẑ is still ‘much larger’ than Z, in the sense that it is uncountable; see Corollary
4.3 for a proof. Lemma 3.7 implies that Ẑ is a separable topological space, since it
contains a countable, dense subset.

3.3 The profinite integers as a ring

In fact, the complete metric space Ẑ comes with a richer structure: it is a commutative
ring. The ring operations are naturally inherited from those on Z, by setting

[x] + [y] def= [x+ y] = [(x1 + y1, x2 + y2, . . .)]

and
[x] · [y] def= [xy] = [(x1y1, x2y2, . . .)].

Indeed, the elements x+y and xy are Cauchy sequences: choose n large enough such that
d(xn+1, xn) and d(yn+1, yn) are less than a given N > 0. Then d(xn+1 + yn+1, xn + yn)
and d(xn+1yn+1, xnyn) are less than N as well (by an argument similar to the one in
the proof of Lemma 3.4). So the operations are well-defined. The commutativity of Ẑ
is now an immediate consequence of this definition of addition.

The next lemma states that the ring operations are compatible with the topological
structure of Ẑ.

Lemma 3.8. Ẑ is a topological ring.

Proof. The argument is similar to the one in the proof of Lemma 3.4. Let [x′] ∈
Bd̂([x], 1/N) and [y′] ∈ Bd̂([y], 1/N). Then there exist r(x) and r(y) such that xn ≡
x′n (mod (N + 1)!) for all n ≥ r(x), and yn ≡ y′n (mod (N + 1)!) for all n ≥ r(y).
Choose r = max{r(x), r(y)} and let n ≥ r. Clearly, xn + yn ≡ x′n + y′n (mod (N + 1)!)
and xnyn ≡ x′ny

′
n (mod (N + 1)!). Hence we obtain [x′ + y′] ∈ Bd̂([x + y], 1/N) and

[x′y′] ∈ Bd̂([xy], 1/N). �
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4 Algebraic and topological aspects of Ẑ

In this chapter, we state and prove some theorems that we need in the course of our
study of profinite Fibonacci numbers in Chapter 5. Section 4.1 of this chapter is mainly
devoted to the proof of Theorem 4.1, which provides a more intuitive way of thinking
about profinite integers than as equivalence classes of Cauchy sequences. In section 4.2,
we study the close relation between p-adic rings and Ẑ, as described in Theorem 4.6.
Introducing the group of units of Ẑ leads to section 4.3, where we define the logarithm
on Ẑ and prove some of its properties.

4.1 The Representation Theorem

We have the following important representation of elements of Ẑ.

Theorem 4.1 (Representation Theorem). Every element [c] ∈ Ẑ contains a uniquely
determined element of the form

(. . . c3c2c1)!
def= c1 · 1! + c2 · 2! + c3 · 3! + · · · ,

with 0 ≤ ci ≤ i, for all i, in the following sense: for all a = (an)∞n=1 ∈ [c] and N greater
than 0, there exists an r = r(a,N) such that

an ≡ c1 · 1! + c2 · 2! + c3 · 3! + · · ·+ cN−1(N − 1)! (mod N !),

for all n ≥ r, such that the ci’s do not depend on the chosen representative a ∈ [c].

Proof. Before starting this proof, we want to warn the reader that, for simplicity, it
adopts a slight abuse of notation: the mod-operator is used for reduction (mod n) (in
order to produce an integer between 0 and n− 1), and to denote the equivalence class
(mod n). However, from the context it should be clear which one is intended.

Let a = (an)∞n=1 ∈ [c] and N > 0. Then there exists an r = r(a,N) such that am ≡
an (mod N !) for all m,n ≥ r. Choose such an r. Define

āi
def= (ar (mod (i+ 1)!)− (ar (mod i!))

i! , (4.1)

for all i ≥ 1. Note that the numerator of each āi is always greater than or equal to 0, and
strictly less than (i+ 1)!. Additionally, the numerator is divisible by i! by construction.

Utrecht University



24 | Profinite Number Theory

It follows that ai is an integer with 0 ≤ āi ≤ i. Furthermore, the identity

1 · 1! + 2 · 2! + 3 · 3! + · · ·+ k · k! = (k + 1)!− 1

guarantees that ā1 · 1! + ā2 · 2! + ā3 · 3! + · · · + ān · n! (mod N !) =
∑N−1

i=1 āi · i! for all
n ≥ N , and

N−1∑
i=1

āi · i! =
N−1∑
i=1

(ar (mod (i+ 1)!)− (ar (mod i!)) = ar (mod N !), (4.2)

where the last equality holds since the summation in the middle is telescoping. Since
the sequence a is Cauchy, it follows that an ≡ ar (mod N !) for all n ≥ r by Lemma 3.5.
Hence we can choose ci = āi, for all i ≤ N .
Moreover, this choice of ci’s is unique for a. Namely, choose di’s that also satisfy the
conditions. Then for any N > 0, we have

c1 · 1! + c2 · 2! + c3 · 3! + · · ·+ cN ·N ! = d1 · 1! + d2 · 2! + d3 · 3! + dN ·N !.

Setting N = 1, we deduce that c1 = d1, and proceeding inductively (that is, choosing
N = 2, 3, and so on) we see that ci = di for all i.

Strictly speaking, the element c1 · 1! + c2 · 2! + · · · is not really ‘contained’ in an element
[c] ∈ Ẑ, since it is not a Cauchy sequence. However, its partial sums almost trivially
define a Cauchy sequence. We simply identify (. . . c2c1)! with this sequence, and then
everything above goes through.

To conclude the proof, we still need to show that the ci’s do not depend on the chosen
representative. To this end, let (bn)∞n=1 be another representative of [c] and let i be given.
By definition, limn→∞ d(an, bn) = 0. Hence there exists an r such that an ≡ bn (mod i!)
and an ≡ bn (mod (i+ 1)!) for all n ≥ r. By virtue of their construction (see Equation
(4.1)), we now see that the ci’s do not depend on the chosen representative. �

From now on, we shall drop the brackets around c and, using Theorem 4.1, just say
that [c] = c =

∑∞
i=0 ci · i! = (. . . c3c2c1)!. Any partial sum c (mod N !) =

∑N−1
i=0 ci · i! =

(. . . 00cN−1 . . . c2c1)! identifies naturally with a positive integer. In fact, we can reduce
c to any modulus n by calculating (in Z) the reduction c =

∑n!−1
i=0 ci · i! (mod n). We

say that c is divisible by n if c ≡ 0 (mod n). An element of Ẑ is called even or odd
when c1 = 0 or c1 = 1, respectively, in accordance with the fact that c ≡ c1 (mod 2).
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The identification of ı(Z) with Z is consistent with earlier introduced notation – that
is, for any integer n we recover [n] = n. We also have the following lemma.

Lemma 4.2. Z is a subring of Ẑ.

Proof. The multiplicative identity of Ẑ is simply 1 = (. . . 001)! and is therefore contained
in Z. The operations of addition and multiplication on Ẑ coincide with the usual
operations of addition and multiplication on Z, which make the integers are ring. So Z
must be a subring of Ẑ as well. �

Using Theorem 4.1 we can now easily deduce the uncountability of Ẑ.

Corollary 4.3. The set Ẑ is uncountable.

Proof. Looking at Theorem 4.1, we see that we may choose any ci freely as long as
0 ≤ ci ≤ i, since each resulting sequence is Cauchy, and distinct from any sequence
given by another choice of ci’s. Hence, as a set, Ẑ is in bijective correspondence with
{0, 1} × {0, 1, 2} × {0, 1, 2, 3} × . . . , which is uncountable. �

A limit that we shall often encounter in the course of this thesis, is the following.

Lemma 4.4. The limit limn→∞ n! exists and equals 0.

Proof. Clearly, d̂(n!, 0) = 1/n!, which converges to zero as n tends to infinity. �

The sequence (an)∞n=1 which we saw earlier, defined by an =
∑n

k=1 k! for all n, is now
almost trivially seen to converge to the element (. . . 111)! ∈ Ẑ.

Although not strictly necessary for the remainder of the present thesis, it would be
almost crude to exclude the following theorem. It justifies the thesis’ title and could
be considered as a tiny footstep into the large theoretical framework encompassing the
study of profinite integers.

Theorem 4.5. Ẑ is compact, Hausdorff and totally disconnected.

Proof. Since any metric space is Hausdorff, the second statement follows directly. For
the latter, first observe that any open ball B = Bd̂(x, r) is closed as well. Namely,
assume that y 6∈ B, then by the ultrametric inequality, B ∩ Bd̂(y, r) is empty. Hence
the complement of B is open, so B is closed.
Now assume that two distinct elements a and b of Ẑ are given. Then there exists an
r > 0 such that d̂(a, b) > r. It follows that b 6∈ Bd̂(a, r). However, by the previous
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claim, the complement of Bd̂(a, r) is open as well. Hence the connected components of
Ẑ are the singletons, so Ẑ is totally disconnected.

To show that Ẑ is compact, we prove that it is sequentially compact, which is an
equivalent statement for metric spaces. Let (xn)∞n=1 be a sequence in Ẑ. If i is an
integer and y an element of Ẑ, then

y ∈ Bi,N
def= Bd̂

(
i,

1
N − 1

)
if there exists an n0 > 0 such that yn ≡ i (mod N !) for all n ≥ n0. Hence for any N > 1,
the collection

BN
def= {Bi,N : 0 ≤ i ≤ N !− 1}

is a finite open cover of Ẑ. Now let N = 2. Then at least one of the members of
BN = B2 contains an infinite number of elements of (xn)∞n=1. Choose the smallest i
such that this holds for Bi,2, and let

S2
def= {m : xm ∈ Bi,2}.

Proceeding inductively, for any N > 2, one finds a smallest j such that Bj,N contains an
infinite number of xm’s with m ∈ SN−1; again, the set of indices m such that xm ∈ Bj,N

is called SN . Note that there always exists such a Bj,N , because BN contains only
finitely many balls (and if each of these would only contain only finitely many elements
of the sequence (xn)∞n=1, then the sequence would be finite, which is a contradiction).

By construction, SN ⊂ SM for all N ≥ M . Since each of the SN ’s is infinite, we can
choose elements nk ∈ Sk, with nk < nk+1, for all k ≥ 2. Let i, j ≥ k, then it follows
that d̂(xni , xnj ) < 1/(k−1). Hence the subsequence (xnk

)∞k=1 is Cauchy in the complete
space Ẑ, so converges. It follows that Ẑ is sequentially compact. �

Topological spaces such as Ẑ that are compact, Hausdorff, and totally disconnected are
often called profinite spaces. Its additive group and group of invertible elements are
examples of profinite groups, and when considered as a ring, the profinite integers
form a so-called profinite ring. Profinite spaces find their origin in category theory,
and have been studied extensively (see for example [RZ10]). The name of the research
field studying number theoretic aspects of Ẑ is called profinite number theory, ac-
cordingly. This motivates the name of the present thesis.
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4.2 p-adic rings and the unit group Ẑ×

Let p be a prime number. In the course of introducing the absolute value on Z, we
briefly touched upon p-adic numbers. These numbers form an analogue of Ẑ: there is an
absolute value inducing a completion of Z, which also carries the structure of a ring. For
this reason, it is known as the ring of p-adic numbers and denoted by Zp. Any element
[c] = c ∈ Zp has a unique p-adic expansion given by c = c0+c1p+c2p

2+· · · = (. . . c2c1c0)p

with every ci an integer such that 0 ≤ ci ≤ p − 1 (see [Len03]). Comparing this with
Theorem 4.1 in particular, the resemblance with Ẑ can altogether hardly be overlooked.
Although we won’t delve deeply into the interesting properties of p-adic numbers and
their analysis, the following theorem provides a connection between them and the ring
of profinite integers, which forms an important tool in the forthcoming. The reader
may find an informal outline of the construction and properties of Zp in Appendix B,
along with a few relevant references.

Theorem 4.6. Let b = (b2, b3, b5, . . .) ∈
∏

p Zp, where the product extends over all
primes p. Write Zp 3 bp = (. . . bp,2bp,1bp,0)p with 0 ≤ bp,i ≤ p − 1, for each p and i.
Define the maps

ψ : Ẑ→
∏
p

Zp, c 7→ (ψ2(c), ψ3(c), ψ5(c), . . .), (4.3)

ψp : Ẑ→ Zp, c 7→ (. . . bp,2bp,1bp,0)p, (4.4)

where
∏

p Zp is equipped with the product topology and has the algebraic structure of a
product ring, and set

bp,i = bp,i(c)
def= c (mod pi+1)− c (mod pi)

pi
(4.5)

for any integer i ≥ 0. Then ψ is a well-defined isomorphism of topological rings.

Proof. Let p be prime. We will start by showing that ψ is well-defined. An argument
similar to the one in the proof of Theorem 4.1 shows that each bp,i is an integer satisfy-
ing 0 ≤ bp,i ≤ p− 1. Hence any c ∈ Ẑ is indeed mapped to the ring Zp under ψp, and ψ
is well-defined. Actually, the map ψp is nothing more than ‘writing c in base p’. Since
addition and multiplication on Ẑ and Zp are both inherited from the usual operations
on Z, it is clear that ψp is a homomorphism.
Note that

∑m
i=0 bp,ip

i = c (mod pm+1). Let n be a positive integer. The prime factoriza-
tions n! = ps1

1 · · · p
sk
k and (n+ 1)! = qt1

1 · · · q
tl
l provide, invoking the Chinese Remainder
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Theorem 2.19, ring isomorphisms

Z/n!Z ∼= Z/ps1
1 Z× · · · × Z/psk

k Z, Z/(n+ 1)!Z ∼= Z/qt1
1 Z× · · · × Z/qtl

l Z,

which guarantee the uniqueness of c (mod (n+1)!) and c (mod n!), given bp1,s1 , . . . , bpk,sk

and bq1,t1 , . . . , bql,tl
. These together determine cn uniquely, by Theorem 4.1. As n gets

larger, any prime power will eventually divide n!. It follows that ψ is a ring isomorphism.
To show that the isomorphism is also topological, we first prove that ψ is continuous.
Fix p and let N > 0 be an integer. Set M = pN and assume x ≡ c (mod M !). Then
x ≡ c (mod pi) for all i ≤ N . Hence bp,i(x) = bp,i(c) for all i ≤ N − 1. Hence
ψp(x) ≡ ψp(c) (mod pN ), so ψp is continuous. It follows that ψ is continuous. As Ẑ
is compact (see Theorem 4.5) and Zp is Hausdorff, ψ is a homeomorphism by Lemma
2.4. �

Lemma 4.7. The unit group of Zp is Z×p = Zp − pZp.

Proof. Let γ = b0+b1p+b2p2+· · · ∈ Zp. If γ is invertible, then it must also be invertible
mod p. Hence b0 6= 0. For the other inclusion, write γ = b0 +pγ′ and note that γ′ ∈ Zp.
If b0 6= 0, then

(b0 + pγ′) · b−2
0 (b0 − pγ′ + · · ·+ (−1)n(pγ′)n) = 1 + (−1)n(pγ′)n+1 ≡ 1 (mod pn+1),

for every integer n. Hence after expanding we find coefficients ci such that b−1
0 + c1p+

c2p
2 + · · · is the inverse of γ. Hence γ ∈ Z×p . �

Corollary 4.8. The unit group of Ẑ is given by

Ẑ× ∼=
∏
p

(Zp − pZp). (4.6)

Proof. This is an immediate consequence of the fact that the unit group of a product
ring is the product of the respective unit groups, Theorem 4.6, and Lemma 4.7. �

The explicit isomorphism from Theorem 4.6 now shows that no unit u ∈ Ẑ× is divisible
by any prime number p. Indeed, c (mod p) = bp,0 6= 0. Therefore every unit is odd, and
the only units contained in the subring Z are given by ±1.
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4.3 The logarithm on Ẑ×

This section is devoted to the construction of the logarithm on Ẑ×. Before we are ready
to define the map (see Equation (4.13)) and prove some of its properties in Theorem
4.13, we define the p-adic logarithm which naturally induces the map in (4.13). In
anticipation of that theorem, we will prove the following lemma.

Lemma 4.9. Let u ∈ 1 + pZp and n ≥ 0 be an integer. Then

upn ≡

1 (mod pn+1) if p is an odd prime,
1 (mod pn+2) if p = 2 and n > 0.

Proof. Let u ∈ 1 + pZp and n ≥ 0. Define

Pp,n(u) = Pn
def=


upn−1
pn+1 if p is an odd prime,

upn−1
pn+2 if p = 2.

(4.7)

whenever it exists. We proceed by induction, starting with the case that p is an odd
prime. Note that u ≡ 1 (mod p). Assume the statement is true for some n ≥ 0. Then
Pn(u) is p-adic and we can write upn = 1 + Pn(u)pn+1. Hence

upn+1 = (upn)p = (1 + Pn(u)pn+1)p,

= 1 +
p∑

k=1

(
p

k

)
Pn(u)kp(n+1)k,

= 1 + pn+2Pn(u) + p2n+2
p∑

k=2

(
p

k

)
Pn(u)kp(n+1)(k−2),

and from here, the result is immediate. Also, it follows that

Pn+1(u) = Pn(u) + pn
p∑

k=2

(
p

k

)
Pn(u)kp(n+1)(k−2)

is again p-adic. Furthermore, Pn+1(u)− Pn(u) is divisible by pn.
If p = 2, then we can write u = 1 + 2γ for some γ ∈ Zp. Hence u2 = 1 + 4γ(γ +
1) ≡ 1 (mod 8). If u2n = 1 + 2n+2Pn(u) for some n and 2-adic Pn(u), it follows that
u2n+1 = (u2n)2 = (1+2n+2Pn(u))2 = 1+2n+3Pn(u)+22(n+2)Pn(u)2 ≡ 1 (mod 2n+3), so
that Pn+1(u) is again 2-adic and the result follows by induction. Furthermore, Pn+1(u)−
Pn(u) = 2n+1Pn(u)2. �
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We are now ready to define the p-adic logarithm, which is the subject of the following
theorem.

Theorem 4.10. The map

logp :

1 + pZp → pZp if p is an odd prime,
1 + 4Z2 → 4Z2 if p = 2,

logp(u) def= lim
n→∞

upn − 1
pn

, (4.8)

is a well-defined, continuous group homomorphism between the multiplicative group 1 +
pZp (or 1 + 4Z2) and the additive group pZp (or 4Z2).

Proof. Let u ∈ 1 + pZp. The fraction on the right-hand side of Equation (4.8) exists for
every p and n by virtue of the previous lemma. In its proof we saw that the sequence
Pp,n(u) (as a sequence with index n) satisfies Pp,n+1(u) − Pp,n(u) ≡ 0 (mod pn). By
analogy of Lemma 3.5, we may deduce that the sequence is Cauchy in the complete
space Zp. Hence the limit on the right-hand side of Equation (4.8) exists, and we can
even say, as a consequence of the previous lemma, that

logp(u) = p lim
n→∞

upn − 1
pn+1 , log2(u) = 4 lim

n→∞
u2n − 1

2n+2 ,

where the prime p is odd. As each of these limits is an element of Zp, this proves that
logp maps to pZp if p is odd and to 4Z2 if p = 2.

For the homomorphism property, write Tn(u) = upn−1
pn . Then upn = 1 + Tn(u)pn and

vpn = 1 +Tn(v)pn, and we have (uv)pn = 1 + (Tn(u) +Tn(v))pn +Tn(u)Tn(v)p2n. Since
limn→∞ p

n = 0, it follows that

logp(uv) = lim
n→∞

Tn(u) + Tn(v) + Tn(u)Tn(v)pn = logp(u) + logp(v).

Hence logp is a group homomorphism.

For continuity, let pN > 1 be given. Set M = pN . Let x, u ∈ 1 + pZp such that x ≡
u (mod M). Then x = u+λpN for some λ ∈ Zp. Since the logarithm is a homomorphism
and u is invertible, we have logp(x) − logp(u) = logp(xu−1) = logp(1 + λpNu−1). We
start by considering the case that p is odd. Adopting the previous notation, we have

Tn+1 = (upn)p − 1
pn

,
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= (1 + Tnp
n)p − 1

pn
,

= 1
pn+1

p∑
k=1

(
p

k

)
T k

np
nk.

Some rewriting gives

Tn+1 = Tn

1 + T p−1
n pn(p−1)−1 +

p−1∑
k=2

1
k

(
p− 1
k − 1

)
T k−1

n pn(k−1)

 . (4.9)

Note that 1
k

(p−1
k−1
)

= 1
p

(p
k

)
is an integer for all 2 ≤ k ≤ p− 1. Equation (4.9) shows that

Tn divides Tn+1 for all n ≥ 1. In particular, since

T1 = (1 + λpNu−1)p − 1
p

= λpp(p−1)Nu−p +
p−1∑
k=1

1
k

(
p− 1
k − 1

)
λkpkNu−k, (4.10)

is divisible by pN , it follows that pN divides Tn for all n ≥ 0.
If p = 2, then Tn+1 = (1+Tn2n)2−1

2n = Tn(2 + 2nTn). Again, we see that Tn divides Tn+1

for all n ≥ 0 so that we may immediately deduce that pN divides Tn for all n ≥ 0. �

Lemma 4.11 and 4.12 provide some further insight into the p-adic logarithm. The first
states that it is a group isomorphism, and gives its inverse: the p-adic exponential map.
The second shows that the logarithm may be extended to a map on (the whole of) Z×p .

Lemma 4.11. For every prime p, the map logp as defined in Theorem 4.10 is a group
isomorphism, with inverse

expp :

pZp → 1 + pZp if p 6= 2,
4Z2 → 1 + 4Z2 if p = 2,

expp(x) =
∑
k≥0

xk

k! . (4.11)

Proof. See [Rob00, p. 261] and [Kob84, p. 81]. �

Lemma 4.12. The p-adic logarithm can be extended to a continuous homomorphism
Logp : Z×p ∼= Zp−pZp → Zp, also known as the Iwasawa logarithm, with the same image
as logp, by setting, for any u ∈ Z×p ,

Logp(u) def= 1
p− 1 logp(up−1). (4.12)

Proof. See [Rob00, p. 260]. �
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In the forthcoming, we will simply denote the Iwasawa logarithm as logp instead of
Logp and refer to it as the p-adic logarithm. Therefore, Lemma 4.11 should be read as
‘log2 |1+4Z2 and logp |1+pZp are group isomorphisms for any odd prime p’.

In the following theorem, we will introduce the logarithm on Ẑ×. Its definition, as the
reader will see in (4.13), is much alike the p-adic logarithm. We basically prove that it
has the same properties as the p-adic logarithm, and the (ideas of the) proofs are very
similar.

Theorem 4.13. The map

log : Ẑ× → Ẑ, log(u) def= lim
n→∞

un! − 1
n! , (4.13)

is a (1) well-defined, (2) continuous group homomorphism, with (3)

ker log = {u ∈ Ẑ× : ∃n ∈ Z>0 : un = 1}, im log = 2J,

where J =
⋂

p pẐ =
∏

p pZp is the so-called Jacobson radical of Ẑ.

For the proof of this theorem, we need the following lemma:

Lemma 4.14. Let u ∈ Ẑ× be a unit. For all positive integers n, we have

un! ≡ 1 (mod n!). (4.14)

Proof. We proceed by induction. The result is clear for n = 1. Assume the statement
holds for some integer n ≥ 1. Then we can define

An = An(u) def= un! − 1
n! ∈ Ẑ, (4.15)

so that un! = 1 +Ann!. By the binomial theorem, we have

u(n+1)! = (1 +Ann!)n+1,

= 1 +An+1
n (n!)n+1 +

n∑
k=1

(
n+ 1
k

)
Ak

n(n!)k,

= 1 +An+1
n (n!)n+1 +

n∑
k=1

n+ 1
k

(
n

k − 1

)
Ak

n(n!)k,

= 1 +An+1
n (n!)n+1 + (n+ 1)!

n∑
k=1

(
n

k − 1

)
Ak

n

(n!)k−1

k
. (4.16)
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The sum on the last line is in Ẑ, since k divides (n!)k−1 for all 1 ≤ k ≤ n. Hence we
obtain u(n+1)! ≡ 1 + (Ann!)n+1 (mod (n + 1)!). We need to show that (Ann!)n+1 ≡
0 (mod (n+ 1)!), that is,

An+1
n (n!)n ≡ 0 (mod n+ 1). (4.17)

In fact, we even show thatAnn! ≡ 0 (mod n+ 1) if n+ 1 6= 4,
(n!)2 ≡ 0 (mod n+ 1) if n+ 1 = 4.

(4.18)

There are three cases. First assume n+ 1 6= 4 is composite. Then n+ 1 = ab for some
2 ≤ a, b ≤ n. If we can choose a 6= b, we are done. If not, then n + 1 is the square of
a prime q. Since 2q < q2 by the assumption n + 1 6= 4, it follows that both q and 2q
divide n!. Therefore, n! ≡ 0 (mod n+ 1).
When n+ 1 = p is prime, the result is an easy consequence of Fermat’s little theorem.
Namely, since p− 1 divides p!, we have

up! = (up−1)p(p−2)! ≡ 1p(p−2)! ≡ 1 (mod p).

That leaves the case n + 1 = 4. We now find (3!)2 ≡ 0 (mod 4) and hence we are
done. �

We are now ready to prove Theorem 4.13.

Proof of Theorem 4.13. We will treat the claims (1), (2) and (3) as stated in the theorem
separately.

— Claim 1. The logarithm is well defined; that is, the limit on the right-hand side
of Equation (4.13) exists.

Proof of Claim 1. Note that Lemma 3.5 and its proof still hold in the more general
setting of sequences in Ẑ, by replacing d with d̂ throughout. Since Ẑ is complete,
the Lemma offers a characterization of (general) convergent sequences. The limit
on the right-hand side of Equation (4.13) henceforth exists if the profinite differ-
ence of succeeding terms tends to zero in the limit. Using (4.15), it follows that
the limit exists if

lim
n→∞

d̂(An+1, An) = 0. (4.19)
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We start by assuming n ≥ 2. Since 1 +An+1(n+ 1)! = (1 +Ann!)n+1, we have

An+1 = (1 +Ann!)n+1 − 1
(n+ 1)! ,

=
n+1∑
k=1

1
(n+ 1)!

(
n+ 1
k

)
Ak

n(n!)k,

= An +
n+1∑
k=2

1
(n+ 1)!

n+ 1
k

(
n

k − 1

)
Ak

n(n!)k,

= An +An

n+1∑
k=2

(
n

k − 1

)
Ak−1

n (n!)k−1

k
. (4.20)

By Equation (4.18), we know that the slightly stronger 1/k · (Ak−1
n (n!)k−2) ∈ Ẑ

holds, when k = n+ 1. When 2 ≤ k ≤ n, the fraction in the summation is clearly
a profinite integer since k divides n!. Hence the equality (4.20) shows that An

divides An+1. Note that this also holds for n = 1, since A2 = 1/2 · A1(A1 + 2),
and A1(u) = u − 1 is even for any unit u. An immediate consequence of these
facts is that An is even for all n. So, we may even assume that n ≥ 1, and write

An+1 −An = Ann!
n+1∑
k=2

(
n

k − 1

)
Ak−1

n (n!)k−2

k
.

The preceding considerations show that the fraction in this summation is always
a profinite integer. We therefore obtain An+1 ≡ An (mod n!). It follows that the
limit (4.19) exists and equals 0. �

— Claim 2. The logarithm is a continuous group homomorphism.

Proof. This is almost entirely the same argument as in the proof of Theorem 4.10.
Let u and v be units. Writing un! = 1 + Ann! and vn! = 1 + Bnn!, we obtain
(uv)n! = 1 + (An +Bn)n! +AnBn(n!)2. Hence

log(uv) = lim
n→∞

An +Bn +AnBnn! = log(u) + log(v), (4.21)

since limn→∞ n! = 0.

For continuity, let N ! > 0 be given and set M = N !. Once again, let x, u ∈ Ẑ×

such that x ≡ u (mod M). Then there exists a λ ∈ Ẑ such that log(x)− log(u) =
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log(1 + λN !u−1). Note that A1(1 + λN !u−1) = λN !u−1 is divisible by N !. In the
proof of Claim 1 we saw that An+1 is divisible by An for all n ≥ 1. Hence An is
divisible by N !, for all n ≥ 1. Therefore log(1+λN !u−1) = limn→∞An is divisible
by N !. �

— Claim 3. The logarithm has kernel and image given by

ker log = {u ∈ Ẑ× : ∃n ∈ Z>0 : un = 1}, im log = 2J,

where J =
⋂

p pẐ =
∏

p pZp is the so-called Jacobson radical of Ẑ.

Proof. We will first look at the image of the logarithm. Fix a prime p. Consider
u = (u2, u3, . . .) as an element of

∏
p Zp. Looking at the definition of the p-adic

logarithm (4.12), we see that since logp(um) = m logp(u) for any integer m, we
have

logp(u) = lim
r→∞

umpr − 1
mpr

.

Choosing values mr for any r such that mrp
r = (pr)!, we see that the p-th com-

ponent (
un! − 1
n!

)
p

∈ Zp

must converge p-adically to logp(up). Now logp(up) maps onto pZp when p is odd
and onto 4Z2 when p = 2, by Lemma 4.11. Hence

im log = 4Z2 ×
∏
p 6=2

pZp = 2J.

For the kernel, by definition, the logarithm of any element of finite order vanishes.
Since the logarithm is continuous and ker log = log−1(0), the kernel must be
closed, so it contains the closure of all units of finite order. To show the other
inclusion, let u ∈ ker log, then for all N > 0 we have un!−1

n! ≡ 0 (mod N !) for
n large enough. Hence un! ≡ 1 (mod N !). It follows that u is a limit point of
A = {u ∈ Ẑ× : ∃n ∈ Z>0 : un = 1}, so u ∈ A. �

Claim 1, 2 and 3 together prove the theorem. �

Finally, we can state the following lemma.
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Lemma 4.15. The map exp : 2J → 1 + 2J induced by the collection of maps expp for
all p, is an isomorphism of topological rings, with inverse log |1+2J : 1 + 2J→ 2J.

Proof. This is a consequence of Theorem 4.13 (in particular, the proof of Claim 3) and
Lemma 4.11. �
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5 Profinite Fibonacci numbers

In this chapter, we turn our attention to the well-known Fibonacci numbers. In Z,
these are given as usual by F0 = 0, F1 = 1 and

Fn+1
def= Fn + Fn−1

for all n ≥ 1. The Fibonacci numbers have many interesting properties, which can be
found in for instance [Luc78]. An important related sequence is formed by the Lucas
numbers. It satisfies the same recurrence, but has starting values L0 = 2 and L1 = 1.
The defining recurrence relation of the Fibonacci sequence can be used to extend
the sequence to include negative indices quite naturally. Namely, considering that
Fn+1 − Fn = Fn−1, we may simply define F−1 = F1 − F0 = 1, F−2 = F0 − F−1 = −1,
and so on. The same can be done for the Lucas sequence. From this we can easily
infer that F−n = (−1)n−1Fn and L−n = (−1)nLn, for all n ≥ 0. In this chapter, we
will henceforth consider the Fibonacci and Lucas sequences as sequences with indices
ranging over the whole of Z. If we regard F as a map Z→ Z ⊂ Ẑ, defined as n 7→ Fn,
then it turns out that F admits a unique continuous extension to a function Ẑ → Ẑ,
called the Fibonacci map. The same holds for L.

The extended map F admits eight non-trivial fixed points (that is, they do not emerge
from fixed points in Z), which is the main result of this thesis (see 5.34). In section
5.1, we prove some relevant properties of the Fibonacci map and establish a suitable
definition of F over Ẑ. In sections 5.2 and 5.4, we develop an iterative method to obtain
the fixed points of F , aided by the power series expansion of F found in section 5.3.

5.1 Defining the Fibonacci map

Many of the properties of the Fibonacci and Lucas sequence needed to comprehend the
fixed points of the Fibonacci map, have elementary proofs and are therefore included
in Appendix A so as not to distract the reader from the main discussion. Throughout
this whole chapter, the symbols ϑ and ϑ̄ will be the roots in Z[1+

√
5

2 ] of the polynomial
x2 − x − 1, given by ϑ = 1+

√
5

2 and ϑ̄ = 1−
√

5
2 . Recall that the Fibonacci and Lucas

numbers are given by

Fn = ϑn − ϑ̄n

ϑ− ϑ̄
and Ln = ϑn + ϑ̄n, (5.1)
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respectively, see Lemma A.1. The Lucas numbers also satisfy Ln = Fn−1 + Fn+1 for
all integers n, see Lemma A.2. There is an addition law for Fibonacci numbers, see
Lemma A.3, and the Fibonacci sequence is a strong divisibility sequence — it sat-
isfies gcd(Fm, Fn) = Fgcd(m,n) for all integers m and n, see Lemma A.4. These together
reveal a lot of information regarding the divisibility of Fibonacci numbers.
A technical but essential part of the impending discussion is the fact that we now work
over Z[ϑ] instead of Z, which could ‘distort’ the associated completion. Luckily the
completion of Z[ϑ] satisfies Ẑ[ϑ] = Ẑ[ϑ]. The analysis of Ẑ[ϑ] is strongly interlinked
with the analysis of Ẑ, and the main difference between the two actually boils down
to the multiplicative order of the elements ϑ and ϑ̄ modulo p, which is considered in
Lemma A.6.

Note that ϑ and ϑ̄ are units of Ẑ[ϑ], since they both satisfy x(x− 1) = 1. Analogous to
Lemma 4.14, we have the following.

Lemma 5.1. For every n ≥ 4,

ϑn! ≡ 1 (mod n!). (5.2)

Proof. A calculation shows that

ϑ4! = 1 + 4! · (2160 + 966
√

5) = 1 + 4! · (1932ϑ+ 1194), (5.3)

so the statement holds for n = 4. Assume the statement holds for some n ≥ 4, then we
can again write ϑn! = 1 + n!An. Proceeding as in the proof of Lemma 4.14, once again
we obtain the expression (4.16) and need to show (4.17). The proof given there in the
case that n+ 1 is composite, is here exactly the same. However, if n+ 1 = p is prime,
we need another argument. Using Equation (A.2), we obtain ϑp2−1 ≡ 1 (mod p) for all
primes p > 5. Note that p2 − 1 = (p − 1)(p + 1) divides (p − 1)! when p + 1 divides
(p − 2)!. Since p + 1 is composite, and not a square, there exist distinct a and b such
that ab = p + 1. Hence 2 ≤ a, b ≤ p+1

2 , which is less than or equal to p − 2 precisely
when p ≥ 5. Therefore p2 − 1 divides (p− 1)! for all p ≥ 5, so we obtain

ϑ(p−1)! = (ϑp2−1)(p−1)!/(p2−1) ≡ 1 (mod p). (5.4)

Since ϑ(p−1)! ≡ 1 (mod (p− 1)!), it follows that ϑp! ≡ 1 (mod p!).
If p = 5, the identity (5.3) shows that A2

4 ≡ 0 (mod 5). We have now shown (4.17), so
the statement follows. �
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Since

ϑ̄4! = ϑ4! = 1 + 4! · (2160− 966
√

5) = 1 + 4! · (1932ϑ̄+ 1194), (5.5)

Lemma 5.1 also holds for ϑ̄ instead of ϑ. An immediate consequence is the following
corollary.

Corollary 5.2. For all integers n ≥ 4, k > 0 and i,

Fkn!+i ≡ Fi (mod n!), Lkn!+i ≡ Li (mod n!). (5.6)

Proof. This follows directly by combining Lemma 5.1, Theorem A.1 and the remark
preceding this corollary. �

In fact, more is true when i = 0.

Lemma 5.3. For all positive integers k and n ≥ 4, we have

Lkn! ≡ 2 (mod (n+ 1)!), (5.7)
Fkn! ≡ kFn! (mod (n+ 1)!). (5.8)

Proof. If n+1 is prime, then (5.4) shows that Lkn! ≡ 1k+1k ≡ 2 (mod n+1). Combining
this with Corollary 5.2 we obtain the claim. The proof when n + 1 is composite is
postponed until after the introduction of the power series of ϑs (see Lemma 5.13 and
thereafter).
For (5.8), the statement is trivial when k = 1. If k = 2, using (5.7) and the well-
known identity F2n = FnLn (which is a consequence of Lemma A.3), we obtain F2n! ≡
2Fn! (mod (n + 1)!). Proceeding by induction and assuming the statement to be true
for some k ≥ 1, we have

F(k+1)n! = Fkn! ·
Ln!
2 + Lkn!

2 · Fn! ≡ kFn! + Fn! ≡ (k + 1)Fn! (mod (n+ 1)!)

by Lemma A.3. The claim follows. �

Slightly more general than the congruence (5.8) when k = n + 1, we can state the
following lemma.

Lemma 5.4. For all n ≥ 4,

F(n+1)! ≡ 0 (mod (n+ 1)Fn!). (5.9)
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Proof. Note that

F(n+1)!
Fn!

= ϑ(n+1)! − ϑ̄(n+1)!

ϑn! − ϑ̄n! =
n∑

k=0
ϑkn!ϑ̄(n−k)n!. (5.10)

If n + 1 = p is prime, then (5.4) shows that each summand of the summation on the
right-hand side of Equation (5.10) is congruent to 1 (mod n + 1). If n + 1 6= 4 is
composite, the proof of (4.18) shows that n! ≡ 0 (mod n+ 1). Combined with Lemma
5.1 and the remark before Corollary 5.2, we also obtain that each summand is congruent
to 1 (mod n+ 1). In both cases, the total number of summands is n+ 1, and hence the
whole summation is divisible by n+ 1. �

Lemma 5.5. For all n ≥ 4, we have

Fn! ≡ 0 (mod 2n!
∏

p≤2n+( p
5 )

p 6=5

p ).

Proof. Let p 6= 5 be prime and n ≥ 4. Note that p−
(p

5
)
divides n! for all n ≥ 1

2 ·
(
p−

(p
5
))
.

Hence in that case, gcd
(
Fn!, Fp−( p

5 )
)

= Fp−( p
5 ). Since Fp−( p

5 ) ≡ 0 (mod p) by Lemma
A.5, it follows from the above that Fn! ≡ 0 (mod p). Combining this with Corollary
5.2, we see that

Fn!
n! ≡ 0 (mod

∏
n<p≤2n+( p

5 )
p 6=5

p ).

Invoking Lemma 5.4 repeatedly, we obtain

F(n+i)!
(n+ i)! ≡ 0 (mod

∏
i<p≤2(n+i)+( p

5 )
p 6=5

p )

for all i such that n+ i ≥ 4. Fixing i = 4 and using that F4!/4! = 22 ·3 ·7 ·23, we obtain
the desired result (by again using Lemma 5.4). �

Theorem 5.6. F admits a unique continuous extension to a function F : Ẑ → Ẑ,
defined by

F (s) = Fs
def= ϑs − ϑ̄s

ϑ− ϑ̄
. (5.11)
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Proof. By Lemma 2.8, taking X = Z and Y = Ẑ, there exists a unique continuous
extension F : Ẑ → Ẑ, since Z is dense in Ẑ and Ẑ is complete. This gives the desired
result. For uniform continuity of (5.11), let N ≥ 4. If x ≡ s (mod N !), we have
Fx ≡ Fs (mod N !) by Corollary 5.2. �

Strictly speaking, we have not yet defined the powering operation when the exponent
is an arbitrary profinite integer, but we will return to this question in a later section.

Corollary 5.7. For each k ≥ 3 and s ∈ Ẑ, the first k digits of Fs and Ls are determined
by the first k digits of s.

Proof. Let n ≥ 4. Set t = (. . . sn+1sn0 . . . 0)! and t′ = (. . . 0sn−1 . . . s1)!. Then

Fs = Ft+t′ = Ft+1Ft′ + FtFt′−1 ≡ F1Ft′ + F0Ft′−1 ≡ Ft′ (mod n!), (5.12)

by Corollary 5.2 and Lemma A.3. Of course, the same holds for L, since Ls = Fs−1 +
Fs+1. �

5.2 Fixed points of the Fibonacci map: an iterative approach (I)

Of particular interest are the fixed points of F , given by numbers s ∈ Ẑ that satisfy
Fs = s. It is easy to see that apart from F0 = 0, F1 = 1 and F5 = 5, no integer
examples exist. However, Ẑ contains eight other fixed points which exhibit some quite
remarkable behaviour, as we shall see further on.

By Corollary 5.2, Fn!/n! is in Ẑ for all n ≥ 4. Note that

Fn!
n! = ϑn! − ϑ̄n!

n!(ϑ− ϑ̄)
= ϑn! − 1
n!(ϑ− ϑ̄)

− ϑ̄n! − 1
n!(ϑ− ϑ̄)

= 1
ϑ− ϑ̄

(
ϑn! − 1
n! − ϑ̄n! − 1

n!

)
. (5.13)

Hence

lim
n→∞

Fn!
n! = 1

ϑ− ϑ̄
(log(ϑ)− log(ϑ̄)),

which exists since ϑ and ϑ̄ are units. Since log(ϑ) + log(ϑ̄) = log(ϑϑ̄) = log(−1) = 0, it
follows that log(ϑ) = − log(ϑ̄). Define

l
def= log(ϑ)

ϑ− ϑ̄
= lim

n→∞
Fn!
2n! . (5.14)
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By Lemma 5.5, l is divisible by all primes p 6= 5; more precisely, the number of factors p
in l is equal to the number of factors p in Fp−1Fp+1. When p = 5, we have the following.

Lemma 5.8. We have Fn!/n! ≡ 2 (mod 5) for all n ≥ 4.

Proof. Adopting the notation from (4.15), a simple check shows that An(ϑ) = ϑn!−1
n! ≡√

5 (mod 5) and An(ϑ̄) = ϑ̄n!−1
n! ≡ −

√
5 (mod 5) for n = 4 and n = 5. Let u be a unit in

Ẑ[ϑ]. Since An+1(u) ≡ An(u) (mod n!) for all n ≥ 4 we have An(u) ≡ A5(u) (mod 5).
It follows that An(ϑ) ≡

√
5 (mod 5) and An(ϑ̄) ≡ −

√
5 (mod 5). Hence Fn!/n! =

An(ϑ)−An(ϑ̄)
ϑ−ϑ̄

≡ 2
√

5√
5 ≡ 2 (mod 5) for all n ≥ 4. �

The eight other profinite fixed points can be computed by means of an iteration. Note
that s is a fixed point of Fs if and only if Fs ≡ s (mod n!) for all n ≥ 4, by Corollary 5.7.
The idea is to find for any n ≥ 4 an sn ∈ Z such that Fsn ≡ sn (mod n!). Therefore,
start by fixing n = 4. We then have to determine iteratively a k = k(n) such that
sn+1 = sn + kn!. We should have Fsn+1 ≡ sn+1 ≡ sn + kn! (mod (n+ 1)!). Hence

Fsn+1 = Fsn+kn! = 1
2 (FsnLkn! + Fkn!Lsn) ,

≡ 1
2 (2Fsn + kFn!Lsn) (mod (n+ 1)!),

where we used the addition law A.3 on the first line and Lemma 5.3 on the second. It
follows that

Fsn − sn

n! + kLsn

Fn!
2n! ≡ k (mod n+ 1),

and hence

Fsn − sn

n! ≡ k
(

1− Lsn

Fn!
2n!

)
(mod n+ 1). (5.15)

This equation has a unique solution for k if gcd
(
n+ 1, 1− Lsn

Fn!
2n!

)
= 1. If n + 1 is

not divisible by 5, this follows immediately from Lemma 5.5. However, when n + 1 is
divisible by 5, we encounter the following problem.

Lemma 5.9. If n ≡ −1 (mod 5), then gcd
(
n+ 1, 1− Lsn

Fn!
2n!

)
= 5k for some positive

integer k.

Proof. The first few values of the Lucas sequence (2, 1, 3, 4, 7, 11, . . .) show that it is
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periodic modulo 5, with

Lm ≡



2 (mod 5) if m ≡ 0 (mod 4),
1 (mod 5) if m ≡ 1 (mod 4),
3 (mod 5) if m ≡ 2 (mod 4),
4 (mod 5) if m ≡ 3 (mod 4).

(5.16)

Let s be a fixed point of F . Corollary 5.7 shows that the first k digits of Fs are
determined by the first k digits of s, for each k ≥ 3. Hence, for example, Fs ≡ s (mod 4!).
Modulo 4! = 24, the only fixed points of F are 0, 1 and 5. Hence for any n ≥ 4, either
sn = (. . . 000)!, sn = (. . . 001)! or sn = (. . . 021)!. However, there are no even fixed points
except 0, as we will prove in Lemma 5.10. It follows from (5.16) that sn ≡ 1 (mod 4)
and hence Lsn ≡ 1 (mod 5). Hence by Lemma 5.8 we have 1 − Lsn

Fn!
2n! ≡ 0 (mod 5).

By Theorem 5.5 the expression 1 − Lsn
Fn!
2n! is not divisible by any other prime less

than 2n. Obviously, all prime factors of n + 1 are less than 2n, so it follows that
gcd

(
n+ 1, 1− Lsn

Fn!
2n!

)
= 5k for some k ≥ 1. �

We still need to prove the claim made in the previous lemma.

Lemma 5.10. F has no nontrivial even fixed points.

Proof. Let s be an even fixed point. The argument in the proof of the previous lemma
shows that the last three digits of s must equal zero. Let n ≥ 4 be given. If sn = 0, then
Fsn−sn = 0. Equation (5.15) shows that k = 0 is a solution for the next digit. Assuming
that n 6≡ −1 (mod 5), it is the only solution, since gcd

(
n+ 1, 1− Lsn

Fn!
2n!

)
= 1. Now

assume n ≡ −1 (mod 5). Since sn ≡ 0 (mod 4), the periodicity of L (see (5.16)) shows
that Lsn ≡ 2 (mod 5). Hence

1− Lsn

Fn!
2n! ≡ −1 (mod 5).

Again, Lemma 5.5 shows that gcd
(
n+ 1, 1− Lsn

Fn!
2n!

)
= 1, so k = 0 is the only solution.

Hence s = 0. �

5.3 The power series expansion for the Fibonacci map

Lemma 5.9 shows that a given starting value for the iteration alone is not sufficient to
determine a unique digit of a fixed point s at each step. Intuitively, we would like to
have a ‘stronger’ congruence than (5.15), in order to retain uniqueness of k, even when
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n ≡ −1 (mod 5). Ideally, we would like to have the same congruence as (5.15), but with
(mod n+ 1) replaced by (mod 5r(n+ 1)) for some suitable r: the exponent satisfying
5r = gcd(1 − Lsn

Fn!
2n! , n + 1). This turns out to be true, and establishing that fact (see

Theorem 5.15) is the main goal of this chapter. However, we need some more machinery
to prove this, to which this section is devoted, starting with the following theorem.

Theorem 5.11. Let P = {p1, . . . , pt} be a set of prime numbers. Define

ap
def=


p− 1 if

(p
5
)

= 1,
2(p+ 1) if

(p
5
)

= −1,
20 if p = 5,

(5.17)

for any p ∈ P , and nP
def= lcm{ap : p ∈ P}. Let s ∈ Ẑ be divisible by nP and m an

integer whose prime factors are contained in P . Then

ϑs ≡
∑
k≥0

(l∗s)k

k! (mod m), (5.18)

where l∗ = log(ϑ) = l
√

5 (as defined in (5.14)).

Proof. Let p ∈ P . Then there exists an η = η(p) ∈ Zp[ϑ] such that

ϑap = 1 + pη (5.19)

by Lemma A.6. Since ap divides s, we obtain ϑs = (1 + pη)s/ap . Hence logp(1 + pη) =
logp(ϑap) = ap logp(ϑ). Note that lp, the p-th component of l as defined in (5.14),
equals logp(ϑ)/(ϑ − ϑ̄) and is hence divisible by p by Lemma 5.5, if p 6= 5. Write
l∗p = logp(ϑ) = lp

√
5. Then we have

ϑs = (1 + pη)s/ap ,

= expp(logp((1 + pη)s/ap)),
= expp(l∗ps),

= 1 + l∗ps+
(l∗ps)2

2! +
(l∗ps)3

3! + · · · ,

which is a p-adic power series. Hence we obtain the congruence

ϑs ≡ 1 + l∗s+ (l∗s)2

2! + (l∗s)3

3! + · · · (mod pk) (5.20)
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for any integer k ≥ 0. Using the Chinese Remainder Theorem, we obtain Equation
(5.18). �

Note that logp(ϑ) = − logp(ϑ̄) for all p. Hence a similar argument would give

ϑ̄s ≡ 1− l∗s+ (l∗s)2

2! − (l∗s)3

3! + · · · (mod m), (5.21)

where s and m satisfy the same properties as in the previous theorem.

Using Theorem 5.11, we establish the following power series for F in the point s, around
s0.

Lemma 5.12. Let P , ap, nP and m be as in Theorem 5.11. Let s− s0 ∈ Ẑ be divisible
by nP . Then

Fs ≡
∑
k≥0

5kl2k+1Ls0
(s− s0)2k+1

(2k + 1)! + 5kl2kFs0
(s− s0)2k

(2k)! (mod m). (5.22)

Proof. Let t ∈ Ẑ be divisible by nP . From Theorem 5.11 and the remark above, we
obtain

Ft = ϑt − ϑ̄t

ϑ− ϑ
≡ 1√

5

(
2l∗t+ 2(l∗t)3

3! + · · ·
)
,

≡ 2
∑
k≥0

5kl2k+1 t2k+1

(2k + 1)! (mod m), (5.23)

and

Lt = ϑt + ϑ̄t ≡ 2 + (l∗t)2 + (l∗t)4

12 + · · · ,

≡ 2
∑
k≥0

5kl2k t2k

(2k)! (mod m). (5.24)

Hence, writing Fs = Fs−s0+s0 and substituting s− s0 for t, we obtain

Fs = Fs−s0+s0 = 1
2(Fs−s0Ls0 + Ls−s0Fs0),

≡
∑
k≥0

5kl2k+1Ls0
(s− s0)2k+1

(2k + 1)! + 5kl2kFs0
(s− s0)2k

(2k)! (mod m),
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which is the desired expression. �

We can now conclude the proof of Lemma 5.3, using the following technical lemma.

Lemma 5.13. Let Pk = {p : p ≤ k} be the set of primes less than or equal to k, and
let k ≥ 12. Adopting the notation from Theorem 5.11, we have⌊

k

2

⌋
! ≡ 0 (mod nPk

) if k is composite or
(
k

5

)
= 1, (5.25)⌊

k + 1
2

⌋
! ≡ 0 (mod nPk

) if
(
k

5

)
= −1, (5.26)

where bxc denotes the greatest integer less than or equal to x.

Proof. Note that nP12 = lcm{6, 8, 20, 16, 10} = 24 · 3 · 5 = 240, which divides 6! = 720,
and nP13 = lcm{6, 8, 20, 16, 10, 28} = 24 · 3 · 5 · 7 = 1680, which divides 7! = 5040. Now
assume that the statements holds for some k − 1 and k, with k ≥ 13, and k + 1 is not
prime. Then nPk+1 = nPk

, and since we have
⌊

k+1
2

⌋
! ≡ 0 (mod nPk

) by the induction

hypothesis, it follows that
⌊

k+1
2

⌋
! ≡ 0 (mod nPk+1), so that Equation (5.25) holds.

If k + 1 is prime, then k is even and hence composite. Therefore nPk
= nPk−1 , so that

nPk+1 = lcm{nPk
, ak+1} = lcm{nPk−1 , ak+1}. Again, we have two cases.

(1). If
(

k
5

)
= −1, then ak+1 = 2(k + 2) = 4 · k+2

2 . Hence

nPk+1 = lcm
{
nPk−1 , 4 ·

k + 2
2

}
.

Since 4 divides nPk−1 , using the induction hypothesis, it follows that nPk+1 is a
divisor of

k + 2
2 ·

⌊
k

2

⌋
! =

⌊
k + 2

2

⌋
!,

which agrees with Equation (5.26).

(2). If
(

k
5

)
= 1, then ak+1 = k = 2 · k

2 . Hence

nPk+1 = lcm
{
nPk−1 , 2 ·

k

2

}
.
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Since 2 divides nPk−1 , again using the induction hypothesis, it follows that nPk+1

is a divisor of

k

2 ·
⌊
k − 1

2

⌋
! =

⌊
k

2

⌋
!,

if k − 1 is not prime or
(

k−1
5

)
= 1. Once again, this agrees with Equation (5.25).

However, we still need to consider the case that
(

k−1
5

)
= −1. In that case,

ak+1 = k and ak−1 = 2k, so their least common multiple is simply ak−1. Hence
nPk+1 = nPk−1 , which divides

⌊
k
2

⌋
! by the induction hypothesis.

The claims (1) and (2) together conclude the proof of this lemma. �

Proof of Lemma 5.3. Adopting the notation of the previous lemma, we see that nPk

divides k! for all k ≥ 12. A simple calculation shows that this even holds for all k ≥ 5.
Hence choosing n ≥ 5, P = Pn, s = rn! for some integer r > 0 andm = (n!)2 in Theorem
5.11, then the previous lemma shows that s divides nPn . Hence Equation (5.24) shows
that

Lrn! ≡ 2
∑
k≥0

5kl2k (rn!)2k

(2k)! ≡ 2 (mod (n!)2). (5.27)

If n+1 is not prime, then it is a divisor of n! (see also the proof of Lemma 4.14). Hence
Lrn! ≡ 2 (mod (n+ 1)!), which was to be shown. �

5.4 Fixed points of the Fibonacci map: an iterative approach (II)

In this section, we will state and prove the announced refinement of the congruence
(5.15), see Theorem 5.15. Lemma 5.14 provides an essential technical tool for the proof
of Theorem 5.15. In the course of its proof, we use the map

vp : Ẑ→ Z≥0, vp(s) def= max{k : s ≡ 0 (mod pk)},

which counts the number of times a given profinite integer is divisible by some fixed
prime number p.

Lemma 5.14. Let s 6= 0 be a fixed point of F . Then

v5(1− lLs) = j, (5.28)

for some 1 ≤ j ≤ 3.
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Proof. By Lemma 5.9, the j in the theorem is larger than or equal to 1. Therefore, we
have to show that 1 − lLs 6≡ 0 (mod 54). Note that if we know the first 19 digits of l
(or equivalently, l (mod 20!)), then we also know l (mod 54), since 54 divides 20!.
One particularly nice application of the power series is the determination of l to any
desired precision. Namely, set s0 = 0, then Fs0 = 0 and Ls0 = 2. For suitable m and s,
the power series now reads

Fs ≡
∑
k≥0

5kl2k+1 2s2k+1

(2k + 1)! ,

≡ 2ls+ 2 · 5 · l3 · s3

3! + 2 · 52 · l5 · s5

5! + · · · (mod m). (5.29)

To determine l to an accuracy of 19 digits, we have to find an s ∈ Ẑ and putm = 2s·20!,
in such a way that Fs ≡ 2ls (mod m). Then Fs/2s would be congruent to l (mod 20!).
Note that 20! = 218 · 38 · 54 · 72 · 11 · 13 · 17 · 19. Let P be the set of prime numbers less
than or equal to 19. Then nP = lcm(6, 8, 20, 16, 10, 28, 36, 18) = 24 · 32 · 5 · 7.
Recall that l is divisible by any prime number except 5. Hence (2 ·5 · l3 ·s3)/6 is divisible
by s3 · (23 · 32 · 5 · 73 · 113 · . . .). This is congruent to 0 (mod m) if 216 · 36 · 53 divides s2.
Pick s = 28 · 33 · 52 · 7 (the factor 7 is included so that nP divides s). Since all prime
factors of m are contained in P , it now follows that (2 · 5 · l3 · s3)/6 – and therefore all
subsequent terms of the power series development (5.29) – are congruent to 0 (mod m).
Hence Fs/2s ≡ l (mod 20!). A computer calculation shows that the first 19 digits of l
are therefore given by

l = (. . . , 18, 10, 4, 7, 6, 8, 10, 10, 4, 9, 0, 0, 0, 1, 2, 0, 1, 0, 0)!, (5.30)

where we denote (. . . , c1, c0)! = (. . . c1c0)!.

We now return to the proof of the lemma. Since n! is divisible by 54 for all n ≥ 20,
using (5.30), we can calculate that l ≡ 591 (mod 54). Assume by contradiction that
1 − lLs ≡ 0 (mod 54). Then Ls ≡ 591−1 ≡ 386 (mod 54). Note that L is also
periodic modulo 54, with a period of 500, as one may verify computationally. We can
now use a computer calculation to show that no nonnegative integer n < 500 satisfies
Ln ≡ 386 (mod 54). Therefore, no profinite integer s (in particular, no fixed point s of
F ) satisfies Ls ≡ 386 (mod 54). This concludes the proof. �

We are now ready to prove the main result of this chapter.
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Theorem 5.15. Let n ≥ 5 be an integer and 1 ≤ j ≤ 3 be the integer satisfying
j = v5(1− lLsn). Then

Fsn − sn

5jn! ≡ k1− lLsn

5j
(mod n+ 1). (5.31)

for all n ≥ 5j. Furthermore, if we take n ≥ 15, then k is uniquely determined by this
congruence.

Proof. Recall that sn+1 = sn + kn!, and we need to determine k so that Fsn+1 ≡
sn+1 (mod (n + 1)!); however, let us now impose the stricter congruence Fsn+1 ≡
sn+1 (mod 5j(n+ 1)!). Set P = Pn+1, the set of primes less than or equal to n+ 1, and
m = 5j(n+ 1)! in Lemma 5.12. Note that sn+1− sn = kn! is divisible by nP by Lemma
5.13. Looking at the associated power series for F ,

Fsn+1 =
∑
t≥0

5tl2t+1Lsn

(kn!)2t+1

(2t+ 1)! + 5tl2tFsn

(kn!)2t

(2t)! (mod 5j(n+ 1)!), (5.32)

it is clear that all terms beyond the third vanish when j = 3, and therefore also when
j < 3. Hence, it reads

Fsn+1 ≡ lLsnkn! + Fsn +A+B (mod 5j(n+ 1)!),

with

A = 5l3Lsn

(kn!)3

6 + 5l2Fsn

(kn!)2

2 , B = 25l5Lsn

(kn!)5

120 + 25l4Fsn

(kn!)4

24 .

Note that both A and B are divisible by 5l(kn!)2. Some elementary rewriting shows
that 5l(kn!)2 ≡ 0 (mod 5j(n+ 1)!) if n ≥ 5j. Hence

Fsn+1 ≡ lLsnkn! + Fsn (mod 5j(n+ 1)!)

for all n ≥ 5j, and therefore,

1− lLsn

5j
kn! ≡

kn! + Fsn − Fsn+1

5j
≡ Fsn − sn

5j
(mod (n+ 1)!), (5.33)

since Fsn+1 ≡ sn + kn! (mod 5j(n + 1)!). Dividing by n! yields the desired congruence
(5.31). Furthermore, since gcd(1 − lLsn , n + 1) is a power of 5 by Lemma 5.9 and at
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most 5j , we have

gcd
(1− lLsn

5j
, n+ 1

)
= 1,

for all n ≥ 15 ≥ 5j. Therefore, there is a unique k satisfying (5.31). �

Theorem 5.15 shows that the fixed points of F are uniquely determined, once the first
14 digits of s are known. This means (by combining with the uniqueness of k when
n 6≡ −1 (mod 5)) that we only have to make choices for the fourth, ninth, and fourteenth
digit, each admitting five options for k that satisfy the congruence (5.15). Computa-
tionally, we find eleven possibilities for the first 14 digits, namely

z1 = (. . . , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)!,

z2 = (. . . , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)!,

z3 = (. . . , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1)!,

z1,5 = z4 = (. . . , 11, 2, 9, 0, 10, 0, 7, 1, 4, 1, 1, 0, 0, 1)!,

z1,0 = z5 = (. . . , 8, 11, 1, 3, 3, 4, 7, 1, 4, 1, 1, 0, 0, 1)!,

z1,−5 = z6 = (. . . , 6, 5, 6, 5, 7, 8, 7, 1, 4, 1, 1, 0, 0, 1)!,

z1,−1 = z7 = (. . . , 8, 0, 7, 3, 3, 9, 5, 3, 1, 2, 2, 0, 0, 1)!,

z5,0 = z8 = (. . . , 12, 8, 5, 2, 4, 4, 0, 0, 0, 0, 0, 0, 2, 1)!,

z5,−5 = z9 = (. . . , 10, 2, 10, 4, 8, 8, 0, 0, 0, 0, 0, 0, 2, 1)!,

z5,−1 = z10 = (. . . , 11, 11, 11, 2, 4, 8, 7, 1, 4, 1, 1, 0, 2, 1)!,

z5,1 = z11 = (. . . , 3, 11, 3, 11, 0, 9, 1, 6, 2, 4, 4, 0, 2, 1)!.

(5.34)

There are 52 other integers s satisfying Fs ≡ s (mod 15!). Of those, 32 can be con-
structed as follows: Pick a zi with 4 ≤ i ≤ 11 from the list above. Change its last
(i.e. leftmost) digit to another number between 0 and 15, such that the new digit is
congruent to the old digit, modulo 3. Since there are four options of those, this gives
4 · 8 = 32 options. However, none of these options satisfies (5.31) with n = 15, for any
k, as one may check computationally.

The other twenty options are profinite numbers that already differ from the ones given
above at an earlier digit. None of these satisfies the congruence (5.31) with n = 14, for
any k, as a straightforward computation shows.
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Since no nontrivial even fixed points exist, z1 must be 0. Lastly, when i is 2 or 3, then
Fzi = zi. Hence k = 0 is always a solution for the next digit of the congruence (5.31).
By uniqueness, no other solutions exist. Hence z2 = 1 and z3 = 5. The eight other fixed
points are the nontrivial ones. In Appendix C, where they are given to fifty digits, one
also finds the first hundred digits of l.

The alternative indices of the fixed points are chosen because we have the following
conjecture.

Conjecture 5.16 (Lenstra). Let a ∈ {1, 5} and b ∈ {−5,−1, 0, 1, 5}, then

za,b ≡ a (mod 6k), za,b ≡ b (mod 5k), (5.35)

for all positive integers k. (For a = b ∈ {1, 5}, one may take za,b = a.) Furthermore,
the fixed points are uniquely determined by these congruences.

According to Lenstra ([Len05]), the fixed points za,b have “the tendency to approxi-
mately inherit properties of a, b.” The exact outcome of these tendencies may be found
in the cited article. Among those, we have z2

1,0 ≡ z1,0 (mod 10!), by analogy of the fact
that both 0 and 1 satisfy x2 = x; likewise, z2

1,−1 ≡ 1 (mod 21!) is reminiscent of the
property that both 1 and −1 satisfy x2 = 1; furthermore, z1,5 + z5,1 ≡ 6 (mod 30!) and
z1,5 · z5,1 ≡ 5 (mod 30!) are similar to the equalities 1 + 5 = 6 and 1 · 5 = 5; and quite
stunningly,

z2
5,−5 ≡ 25 (mod 201!),

which reflects (±5)2 = 25. Further investigations into the realm of profinite integers
shall have to account for this now seemingly inexplicable behaviour.
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A Identities of the Fibonacci and Lucas sequences

Lemma A.1. Let ϑ = 1+
√

5
2 and ϑ̄ = 1−

√
5

2 be the roots in Z[1+
√

5
2 ] of x2−x−1. Define

F̃n
def= ϑn − ϑ̄n

ϑ− ϑ̄
, L̃n

def= ϑn + ϑ̄n,

for all integers n. Then F̃n = Fn and L̃n = Ln.

Proof. We proceed by induction. A simple check shows that F̃0 = 0, F̃1 = 1, L̃0 = 2
and L̃1 = 1. Now assume the statements hold for n = k − 1 and n = k. Since ϑ and ϑ̄
satisfy x2 = x+ 1, we obtain

F̃k+1 = ϑk+1 − ϑ̄k+1

ϑ− ϑ̄
= ϑk + ϑk−1 − (ϑ̄k + ϑ̄k−1)

ϑ− ϑ̄
,

= ϑk − ϑ̄k

ϑ− ϑ̄
+ ϑk−1 − ϑ̄k−1

ϑ− ϑ̄
= F̃k + F̃k−1.

Similarly, L̃k+1 = L̃k + L̃k−1. Hence F̃n and L̃n satisfy the same recurrence relation as
Fn and Ln and have the same starting values, so F̃n = Fn and L̃n = Ln for all n. �

Lemma A.2. The Lucas numbers satisfy Ln = Fn−1 + Fn+1 for all integers n.

Proof. Note that F−1 +F1 = L0 = 2 and F0 +F2 = L1 = 1. Furthermore, the sequence
defined by Kn = Fn−1 + Fn+1 for all n clearly satisfies Kn+1 = Kn +Kn−1. Hence the
result follows by induction. �

Lemma A.3 (Addition law of Fibonacci numbers). The Fibonacci numbers satisfy

Fm+n = Fm ·
Ln

2 + Lm

2 · Fn = Fn+1Fm + FnFm−1.

Proof. We start by proving the first equality. Using Lemma A.1, we have

Fm · Ln = ϑm+n − ϑ̄m+n + ϑmϑ̄n − ϑ̄mϑn

ϑ− ϑ̄
.

Interchanging m and n gives a similar formula for Lm · Fn, and adding them gives

Fm · Ln + Lm · Fn = 2 · ϑ
m+n − ϑ̄m+n

ϑ− ϑ̄
= 2 · Fm+n.
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For the second equality, we have

Fm · Ln + Lm · Fn = Fm · (Fn−1 + Fn+1) + (Fm−1 + Fm+1) · Fn,

= Fm · (Fn−1 + Fn+1) + (2Fm−1 + Fm) · Fn,

= Fm · (Fn−1 + Fn) + Fm · Fn+1 + 2Fn · Fm−1,

= 2 (Fn+1Fm + FnFm−1).

where the equality on the first line follows by Lemma A.2. �

Lemma A.4. The Fibonacci sequence is a strong divisibility sequence; that is, it
satisfies

gcd(Fm, Fn) = Fgcd(m,n),

for all integers m and n.

Proof. See [Luc78, p. 206]. �

Lemma A.5. For any prime p 6= 5, we have

Fp−( p
5 ) ≡ 0 (mod p), Fp ≡

(
p

5

)
(mod p), and Fp+( p

5 ) ≡ 1 (mod p).

Proof. Note that the statements hold for p = 2. If p 6= 2, a straightforward calculation
shows that, in Z[ϑ],

ϑp ≡
(

1 +
√

5
2

)p

≡ 1 +
√

5p

2 ≡ 1 + 5
p−1

2
√

5
2 (mod p). (A.1)

and similarly for ϑ̄. Note that 5
p−1

2 =
(

5
p

)
(mod p) and

(
5
p

)
=
(p

5
)
by quadratic

reciprocity. Recall that

(
p

5

)
=


1 if p ≡ ±1 (mod 5),
−1 if p ≡ ±2 (mod 5),
0 if p = 5.

Since p 6= 5, we won’t consider the last case. It follows that

ϑp ≡

ϑ (mod p) if
(p

5
)

= 1,
ϑ̄ (mod p) if

(p
5
)

= −1,
and ϑ̄p ≡

ϑ̄ (mod p) if
(p

5
)

= 1,
ϑ (mod p) if

(p
5
)

= −1.
(A.2)
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Putting things back together, we obtain ϑp − ϑ̄p ≡ (ϑ − ϑ̄) ·
(p

5
)
and hence Fp ≡(p

5
)

(mod p). We also deduce that

ϑp−( p
5 ) − ϑ̄p−( p

5 ) ≡ ϑ1−1 − ϑ̄1−1 ≡ 0,

if
(p

5
)

= 1, and
ϑp−( p

5 ) − ϑ̄p−( p
5 ) ≡ ϑ̄ · ϑ− ϑ · ϑ̄ = 0,

if
(p

5
)

= −1. Hence we obtain Fp−( p
5 ) ≡ 0 (mod p). Finally, using that Fn+1 = Fn+Fn−1,

again separating the two cases, we get Fp+( p
5 ) ≡ 1 (mod p). �

Lemma A.6. For all primes p 6= 5, the order of ϑ and ϑ̄ in Z/pZ[ϑ] is a divisor of
either p − 1 (if

(p
5
)

= 1) or of 2(p + 1) (if
(p

5
)

= −1). Furthermore, when p = 5, the
order of ϑ and ϑ̄ equals 20.

Proof. The expressions in (A.2) show that ϑp−1 ≡ 1 (mod p) and ϑ̄p−1 ≡ 1 (mod p) if(p
5
)

= 1. When
(p

5
)

= 1, we see that ϑp+1 ≡ −1 (mod p) and ϑ̄p+1 ≡ −1 (mod p). Hence
squaring yields the result in both cases. When p = 5, a straightforward calculation shows
that the order of ϑ and ϑ̄ equals 20 (as a consequence of the fact that ϑ5 = 5ϑ + 3 ≡
3 (mod 5) – and the same holds for ϑ̄). �

B The ring Zp of p-adic integers

Here, we will present a short and informal overview of the construction of the p-adic ring
Zp, for a given prime p, along with some theorems. Define |n|p = p−max{k:n≡0 (mod pk)}

if n 6= 0, and zero otherwise. Completely analogous to the construction of Ẑ (see
Chapter 3), we may now define a metric dp on Z by setting dp(x, y) = |x − y|p. Once
again, this induces a metric on the space CS(Z) of Cauchy sequences (with respect to
dp). Using (mutatis mutandis) the same equivalence relation ∼ as before, we construct
Zp as CS(Z)/ ∼, and endow it with a metric also induced by dp. This space and its
associated maps satisfy analogues of many basic properties that also hold for the ring
of profinite integers. Among these are Lemmas 3.5, 3.6, 3.7, 3.8, and Theorems 4.1 and
4.5.
The reader may find proofs of these statements and more on p-adic integers in (for
example) [Kob84, Rob00].
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C Fixed points up to fifty digits

Using the methods described in the last chapter, we calculated the eight nontrivial fixed
points up to 50 digits, which are given by

z1,5 = z4 = (. . . , 32, 35, 20, 16, 39, 40, 34, 6, 30, 18, 12, 17, 28, 21, 20, 2, 3, 6, 29, 2, 29, 26,
26, 24, 16, 3, 19, 21, 4, 18, 6, 16, 11, 6, 16, 2, 11, 2, 9, 0, 10, 0, 7, 1, 4, 1, 1, 0, 0, 1)!,

z1,0 = z5 = (. . . , 6, 49, 13, 0, 18, 39, 15, 19, 7, 32, 27, 38, 14, 9, 6, 12, 15, 10, 15, 27, 19, 4,
28, 14, 8, 23, 13, 16, 5, 0, 7, 16, 14, 7, 11, 6, 8, 11, 1, 3, 3, 4, 7, 1, 4, 1, 1, 0, 0, 1)!,

z1,−5 = z6 = (. . . , 32, 13, 5, 31, 44, 37, 41, 31, 28, 5, 2, 18, 38, 34, 29, 22, 27, 14, 2, 20, 8, 13,
1, 4, 1, 17, 7, 11, 5, 4, 8, 16, 17, 8, 6, 10, 6, 5, 6, 5, 7, 8, 7, 1, 4, 1, 1, 0, 0, 1)!,

z1,−1 = z7 = (. . . , 25, 4, 1, 30, 29, 14, 24, 18, 15, 28, 29, 35, 8, 24, 30, 19, 28, 10, 25, 17, 10,
25, 16, 27, 26, 1, 18, 21, 3, 0, 0, 8, 1, 3, 15, 1, 8, 0, 7, 3, 3, 9, 5, 3, 1, 2, 2, 0, 0, 1)!,

z5,0 = z8 = (. . . , 25, 13, 41, 31, 25, 44, 26, 12, 20, 14, 15, 20, 24, 25, 23, 10, 12, 3, 19, 24, 20,
8, 1, 17, 19, 19, 18, 19, 0, 4, 1, 0, 3, 0, 12, 3, 12, 8, 5, 2, 4, 4, 0, 0, 0, 0, 0, 0, 2, 1)!,

z5,−5 = z9 = (. . . , 50, 27, 34, 15, 4, 43, 7, 24, 40, 28, 31, 1, 10, 13, 9, 20, 24, 7, 6, 17, 9, 16,
3, 7, 12, 13, 12, 14, 0, 8, 2, 0, 6, 1, 7, 7, 10, 2, 10, 4, 8, 8, 0, 0, 0, 0, 0, 0, 2, 1)!,

z5,−1 = z10 = (. . . , 7, 49, 12, 19, 24, 31, 14, 43, 24, 11, 30, 25, 9, 0, 30, 28, 5, 31, 10, 9, 6, 28, 19,
3, 9, 23, 23, 23, 21, 3, 14, 11, 8, 14, 15, 14, 11, 11, 11, 2, 4, 8, 7, 1, 4, 1, 1, 0, 2, 1)!,

z5,1 = z11 = (. . . , 22, 7, 18, 19, 14, 10, 14, 2, 1, 30, 23, 14, 20, 18, 33, 23, 15, 33, 23, 2, 6, 3,
2, 3, 10, 22, 5, 2, 18, 3, 14, 3, 7, 11, 0, 13, 3, 11, 3, 11, 0, 9, 1, 6, 2, 4, 4, 0, 2, 1)!.

Furthermore, the first 100 digits of l are

l = (. . . , 57, 88, 83, 84, 84, 49, 90, 16, 67, 83, 22, 83, 71, 65, 0, 26, 69, 45, 21, 69, 13, 63, 17, 59,
51, 62, 56, 29, 35, 4, 64, 4, 11, 25, 39, 24, 63, 51, 48, 54, 5, 0, 52, 36, 1, 32, 22, 1, 16, 11, 37,
2, 31, 14, 40, 31, 42, 27, 41, 24, 27, 13, 19, 8, 4, 26, 33, 5, 1, 13, 17, 11, 23, 4, 7, 1, 16, 0, 4, 16,
13, 18, 10, 4, 7, 6, 8, 10, 10, 4, 9, 0, 0, 0, 1, 2, 0, 1, 0, 0)!.

Utrecht University



David Hokken | 57

References

[Beu15] F. Beukers, Getaltheorie - Een inleiding, Epsilon Editions, Utrecht 2015.

[Cra16] M. Crainic (2016), Inleiding Topologie 2015/2016. Retrieved from
URL = <http://www.staff.science.uu.nl/ crain101/topologie2015/
aaa-main-2015-2016.pdf>.

[Fur55] H. Furstenberg (1955), On the Infinitude of Primes, The American Mathemat-
ical Monthly, 62(5), 353-353. doi:10.2307/2307043

[HW08] G. H. Hardy & E. M. Wright (2008), An Introduction to the Theory of Numbers,
sixth edition. Oxford: Oxford University Press.

[Kob84] N. Koblitz (1984), p-adic Numbers, p-adic Analysis, and Zeta-Functions, sec-
ond edition. New York: Springer Verlag.

[Len03] H. W. Lenstra (2003), Profinite Groups, lecture notes available
on the web. Retrieved from URL = <http://www.mat.unb.br/~
zapata/Research/Files/lenstra-profinite.pdf>.

[Len05] H. W. Lenstra (2005), Profinite Fibonacci numbers, Nieuw Arch. Wisk. (5)6,
297–300.

[Len16] H. W. Lenstra (2016), Profinite Number Theory, EMS Newsletter June 2016
(100), 14-18.

[LM15] R. Lovas & I. Mezo (2015), Some observations on the Furstenberg topological
space, Elemente der Mathematik, 70, 103–116. doi:10.4171/EM/283

[Luc78] E. Lucas (1878), Théorie des Fonctions Numériques Simplements Péri-
odiques, [Continued]. American Journal of Mathematics, 1(3), 197-240.
doi:10.2307/2369311

[Rob00] A. M. Robert (2000), A Course in p-adic Analysis. New York: Springer Verlag.

[RZ10] L. Ribes & P. Zalesskii (2010), Profinite Groups, second edition. Berlin:
Springer Verlag.

[Sea06] O’Searcoid, M. (2006), Metric spaces, Springer Science & Business Media.

Utrecht University


	Introduction
	Preliminaries
	Topology
	Rings and number theory

	Construction of the topological ring of profinite integers
	A metric topology on the integers
	The Cauchy completion of the integers
	The profinite integers as a ring

	Algebraic and topological aspects of 
	The Representation Theorem
	p-adic rings and the unit group 
	The logarithm on 

	Profinite Fibonacci numbers
	Defining the Fibonacci map
	Fixed points of the Fibonacci map: an iterative approach (I)
	The power series expansion for the Fibonacci map
	Fixed points of the Fibonacci map: an iterative approach (II)

	Identities of the Fibonacci and Lucas sequences
	The ring Zp of p-adic integers
	Fixed points up to fifty digits
	References

