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Abstract

The main goal of this thesis is to prove the theorem that the fundamental group of
a compact Lie group is finite, under the assumption that the Lie group is connected
and semisimple. This theorem relies on theory developed in the study of differentiable
manifolds and Lie groups as well as constructions from algebraic topology. Roughly
the first half of the thesis will be dedicated to analyze the topological part of the
approach, whereat the the next part the main focus will be shifted to analysis and
differential geometry. This thesis includes various definitions of the structures involved,
but prerequisite knowledge on basic theory of manifolds and homology is advised.
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1 THE FUNDAMENTAL GROUP 1

1 The fundamental group

We will begin with the construction of certain notions that are part of the branch of mathema-
tics called algebraic topology. The question whether two spaces X and Y are homeomorphic
plays a key role in this discipline. Sometimes it is enough to consider purely topological
properties of both spaces to conclude that such a homeomorphism cannot exist. However,
it may not be enough to look only at the number of connected components or compactness
of spaces to tell if they are different. This is a good motivation for defining new algebraic
structures on topological spaces which will allow us to compare them by looking at their
corresponding structures, instead of comparing the spaces directly.

Throughout the first two subsections, we will roughly follow Chapters 0 and 1 of Hatcher
[6]. Here we will introduce the simplest and most important tool, also known as the funda-
mental group of a space. In order to define this, we will first look at concept of homotopy.
This will allow us to tell if two continuous maps from one topological space to another are
‘similar’. Once the notion of fundamental group is established, we will proceed with exam-
ples of fundamental groups. Finally, we will apply this theory to the concept of topological
groups to prove the main lemma of this section.

1.1 Homotopy

In topology we can bend, compress and curve spaces without changing their topological pro-
perties. A homeomorphism is an explicit way to bend one space into another. When looking
at general functions between topological spaces, we are interested in similarities between
these functions. More specifically, we can ask ourselves the question whether one function
can be transformed into another in a ‘nice’ way.

Example 1.1.1. To make this more concrete, let us consider functions S1 → R2 \ {0}. The
first example that comes to mind is the inclusion S1 ↪→ R2 \ {0}. We can compare this map
to the function f where f(x, y) = 1

2
(x, y) and note that f is actually a different version of

the inclusion that is shrunk down. We could transform the inclusion over time into f in a
continuous way by linearly collapsing the image of the inclusion until its radius is halved.

Now define the function g by g(x, y) = (x, y + 1
2
). Again, the inclusion and g are similar

in the way that g can be obtained from the inclusion. This can be done by moving the image
of the inclusion upwards over time until we get g. We call such a transformation of functions
an homotopy. 4

From this point on I is the unit interval [0, 1] ⊂ R.

Definition 1.1.2. A homotopy between two maps f0, f1 : X → Y is a continuous function
H : X × I → Y such that H|X×{0} = f0 and H|X×{1} = f1. If such a function exists, we call
f0 and f1 homotopic and we write f0 ' f1.

This definition can be directly applied to Example 1.1.1.

Example 1.1.3. The homotopy between the inclusion and f in Example 1.1.1 can be given
by

H : S1 × I → R2 \ {0} : ((x, y), t) 7→ (1− 1

2
t)(x, y)
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and the homotopy between the inclusion and g by

H̃ : S1 × I → R2 \ {0} : ((x, y), t) 7→ (x, y +
1

2
t)

Both can be viewed as a family of functions (Ht)t∈I , each of them being continuous as a
map from S1 to R2 \ {0}. Once we fix a point (x, y) ∈ S1, the resulting map that sends
t 7→ H((x, y), t) is also continuous.

4

After having seen these examples, it might be reasonable to assume that all functions
S1 → R2 \ {0} are homotopic. It turns out that this is not the case.

Claim 1. Not all maps S1 → R2 \ {0} are homotopic.

Observe that the inclusion map, f and g all have one thing in common; the image of
the circle is mapped around the point that is taken out of the plain. We can define a new
function h by h(x, y) = (x, y + 2) that maps the circle completely above the missing point.
It may seem obvious that there is now way to deform h into the inclusion, since we cannot
’drag’ the image of the circle over the singularity in a continuous manner. However, it will
turn out to be rather difficult to directly proof this. One way to make this argument into
a proof, would be to use the fundamental group of π1(R2 \ {0}) and the theory of covering
spaces. See Hatcher [6, p. 29].

Proposition 1.1.4. The homotopy relation ' of maps is an equivalence relation.

Proof. Let f, g, h : X → Y be maps.
We define a homotopy K : X × I → Y : (x, t) 7→ f(x) to conclude that f ' f . Since we
chose f arbitrarily, the relation is reflexive.

Assume that f ' g, with corresponding homotopy H. Then K : X × I → Y : (x, t) 7→
H(x, 1 − t) defines a homotopy. Note that K|X×{0} = g and K|X×{1} = f . Hence we also
have g ' f , which proves the symmetry.

Now assume that f ' g and g ' h with their respective homotopies H and H̃. Then

K(x, t) =

{
H(x, 2t) if 0 ≤ t ≤ 1

2

H̃(x, 2t− 1) if 1
2
≤ t ≤ 1

defines an homotopy. We observe that K|X×{0} = f and K|X×{1} = h, verifying that f ' h.
Therefore the relation is transitive.

1.2 Defining the fundamental group

The fundamental group is defined by looking at loops and deformations of loops. In order to
arrive there, we will introduce the notion of a path.

Definition 1.2.1. A path in the space X is a continuous map γ : I → X. We call this path
γ a loop if its initial point and end point coincide, i.e. if γ(0) = γ(1). This point is called
the base point of γ.
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Now that we have defined the notion of path, we are interested in a slightly stronger
version of homotopy.

Definition 1.2.2. We say that paths γ0, γ1 : I → X are path homotopic if there exists an
homotopy H : I × I → X between γ0 and γ1 that does not change the base point. By that
we mean for each path γt = H(·, t) with t ∈ I we have that γt(0) = γ0(0) and γt(1) = γ0(1).
Such H is called an homotopy of paths.

If we have two paths γ, η : I → X with γ(1) = η(0), then there is a way to compose these
paths to obtain an new path.

Definition 1.2.3. The concatenation of paths η · γ is defined by

η · γ =

{
γ(2t) if 0 ≤ t ≤ 1

2

η(2t− 1) if 1
2
≤ t ≤ 1

Finally, before we define the fundamental group there is one lemma that will be useful
when dealing with homotopies of paths. It states that traversing a path at different speeds
will not change the path with respect to homotopy.

Lemma 1.2.4. Let γ : I → X be a path and φ : I → I a map such that φ(0) = 0 and
φ(1) = 1. Then we can conclude that γ ' γ ◦ φ.

Proof. Define the homotopy H : I × I → X as

H(s, t) = γ((1− t)s+ tφ(s))

where t acts as the deformation parameter and s is in the domain of a path. Then H(s, 0) =
γ(s) and H(s, 1) = γ(φ(s)). Moreover, we have H(0, t) = γ(tφ(0)) = γ(0) and H(1, t) =
γ(1 − t + tφ(1)) = γ(t) by the assumption that φ does not change the end points of the
interval. This shows that H is an homotopy of path and thus proves the lemma.

Let us now look at the set of all loops γ : I → X such that γ(0) = γ(1) = x0 with
x0 ∈ X. These are the loops in X with base point x0. Proposition 1.1.4 states that the
relation of maps being homotopic is an equivalence relation. If we specifically look at the
relation induced by the homotopy of paths, the proof of Proposition 1.1.4 would still apply in
this situation. The reflexivity is trivial and the homotopies that are constructed to provide
the symmetry and transitivity of the relation, fix the end points throughout the homotopy.
Hence it makes sense to view the quotient of the set of all loops at x0 by the homotopy of
paths relation.

Definition 1.2.5. The set π1(X, x0) is defined as the set of classes [γ] of loops γ : I → X
with base point x0 ∈ X with respect to homotopy of paths.

Proposition 1.2.6. π1(X, x0) equipped with the product [η] · [γ] = [η · γ] is a group.
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Proof. Let us first check that the product is well defined, because a priori it is not clear if
the product depends on the choice of representatives. Assume that [η0] = [η1] and [γ0] = [γ1].
Then there are homotopies Hη, connecting η0 and η1, and Hγ connecting γ0 and γ1. Our goal
is to show [η0 · γ0] = [η1 · γ1]. Define the homotopy H : I × I → X by

H(s, t) =

{
Hη(2s, t) if 0 ≤ s ≤ 1

2

Hγ(2s− 1, t) if 1
2
≤ s ≤ 1

Then we can check that H|I×{0} = η0 · γ0 and H|I×{1} = η1 · γ1. Therefore we indeed have
that η0 · γ0 ' η1 · γ1, proving that the product is well defined.

We proceed by checking that π1(X, x0) obeys the axioms of a group. Define the identity
element to be the class of the constant path c : I → X : x 7→ x0. If we apply Lemma 1.2.4
to the function φ : I → I where

φ(s) =

{
0 if 0 ≤ s ≤ 1

2

2s if 1
2
≤ s ≤ 1

It follows that [c · γ] = [γ ◦φ] = [γ]. The equation [γ · c] = [γ] follows in a similar way. Hence
c is indeed the identity.

Let α, β, γ : I → X be paths. In order to show the associativity of the product, we need
to convince ourselves that [α · (β · γ)] = [(α · β) · γ]. Again these are the same paths up to a
difference in speed, so by Lemma 1.2.4 we have the equivalence α · (β · γ) ' (α · β) · γ.

Lastly, every element in the group should have an inverse. Let γ : I → X and define
the inverse as γ−1(s) = γ(1 − s). To show that [γ] · [γ−1] = [c], we can construct another
homotopy K where

K(s, t) =

{
γ(2st) if 0 ≤ s ≤ 1

2

γ−1(1− 2t+ 2st) if 1
2
≤ s ≤ 1

Note that K(s, 1
2
) is well defined, K|I×{0} = γ−1 · γ and K|I×{1} = c. Hence this is indeed

the inverse.
Having checked all group axioms, we can conclude that π1(X, x0) is a group.

From now on we will refer to π1(X, x0) as the fundamental group of X at x0.

Lemma 1.2.7. Let X be path connected, then for any x0, x1 ∈ X there is a group isomor-
phism π1(X, x0) ' π1(X, x1).

Proof. See Hatcher [6, p. 29].

As a consequence, we will denote the fundamental group of any path connected space X
as π1(X). Since two different choices of a base points will result in the same fundamental
group, this abbreviation leads to no ambiguity.

Definition 1.2.8. A deformation retraction of a space X into A with A ⊂ X is a homotopy
H : X × I → X such that H(x, 0) = x and H(x, 1) ∈ A for all x ∈ X and H fixes A, i.e.
H(a, t) = a for all a ∈ A and t ∈ I.



1 THE FUNDAMENTAL GROUP 5

1.3 Topological groups

Definition 1.3.1. A topological group is a group G equipped with a topology such that the
product function G×G→ G : (x, y) 7→ xy and an inversion function G→ G : x 7→ x−1 are
continuous. Here G×G is equipped with the product topology.

Lemma 1.3.2. Let G be a topological group the identity element e. Then π1(G, e) is abelian.

Proof. Let γ1, γ2 ∈ π1(G, e) and γ1 · γ2 be the concatenation of these paths. We will take
the direct approach by constructing a homotopy to show γ1 · γ2 and γ2 · γ1 are homotopy
equivalent. Define H : I × I → G to be

H(s, t) =

{
γ1(2st)−1γ1(2s)γ2(2st) if 0 ≤ s ≤ 1

2

γ2(t(2s− 1))−1γ2(2s− 1)γ1(t(2s− 1)) if 1
2
≤ s ≤ 1

Note that H is continuous. Furthermore, evaluating H in t = 0, the first and last factor
of the product become γ1(0) and γ2(0), which are both equal to e. We are left with the
definition of γ1 · γ2, so we can conclude that H(t, 0) = γ1 · γ2(t).

Evaluating H at t = 1 the first and middle factor of the product cancel, because they are
each others inverse with respect to the group multiplication on G. We see that H(s, 1) =
γ2 · γ1(s).

Finally it is necessary to check that H is a homotopy of paths. Since we have H(0, t) =
H(1, t) = e for all t ∈ I, this is indeed the case. Therefore we can conclude that γ1 ·γ2 ' γ2 ·γ1,
completing the proof.
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2 The first homology group

This section we will establish a connection between the fundamental group of a space X
and the first homology group H1(X) with coefficients in Z. Readers are assumed to be
familiar with the concept of singular homology. If this is not the case, then Hatcher [6]
provides the constructions we will use in Chapter 2. Whereas the fundamental group only
gives information on the way paths can be embedded into the space, the homology measures
the way simplices of arbitrary dimension can be embedded. In the 1-dimensional case there
is a natural correspondence between the two objects given by h : π1(X, x0) → H1(X,Z)
where interpret each loop f : I → X as a 1-simplex. Note that every loop is a cycle because
∂f = f(1)− f(0) = 0.

Remark 2.0.1. Before we arrive at the main theorem of this section. It is useful to introduce
the notation that we will be using.

• The notation ∆n stands for an n-simplex. This is a topological space that corresponds
to the generalization of a triangle to dimension n.

• A continuous function σ : ∆n → X is called a singular n-simplex or n-cycle. Formal
sums of the form

∑
i σi will be referred to as chains.

• The space of all singular n-simplices σ : ∆n → X is denoted by ∆n(X).

• The group Cn(X) is defined as the direct sum
⊕

σ∈∆n(X)

Z. Instead of choosing coefficients

in Z, we may also use another abelian group M for this purpose. In that case we denote
Cn(X,M).

• The groups Cn(X) together with the maps ∂ : Cn(X)→ Cn−1(X) form a chain complex
(C, ∂). The homology of this complex is called the singular homology and the n-th
homology class is denoted by Hn(X). In case we used coefficients in M , we write
Hn(X,M).

Theorem 2.0.2. The map h : π1(X, x0)→ H1(X,Z) is a homomorphism of groups. Further-
more, if X is path connected, then h is surjective and the kernel of h is exactly the commutator
subgroup of the fundamental group of X.

Remark 2.0.3. The proof of Theorem 2.0.2 will be based on the proof that is given in
Hatcher [6, p. 166]. We will adopt the convention that throughout this section f ' g means
that f and g are path homotopic. The notation f ∼ g means f is in the same homology
class as g, i.e. their difference f − g is the boundary of a 2-cycle.

To prove theorem 2.0.2, we will first prove four helpful lemmas.

Lemma 2.0.4. Let c be the constant path in X such that c(t) = x0 for every t ∈ I. Then we
have c ∼ 0.

Proof. Define the constant 2-chain σ : ∆2 → X : x 7→ x0. We denote the edges of ∆2 by
v0, v1, v2 and use square brackets for the convex hull of edges, so ∆2 = [v0, v1, v2]. Then we
see that ∂σ = σ|[v1,v2]− σ|[v0,v2] + σ|[v0,v1] = f − f + f = f , because σ is also constant on the
boundary. Therefore c is in the image of ∂2 and we conclude that c ∼ 0.
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(a) Visualization of Lemma 2.0.5 (b) Visualization of Lemma 2.0.6

Lemma 2.0.5. Let f and g be loops at x0. If f and g are homotopic, then they are also
homologous as cycles. That is, f ' g implies f ∼ g.

Proof. Let H : I×I → X be the homotopy connecting f and g. We can visualize the domain
as a square that we divide into two 2-simplices σ1 and σ2 (see Figure 1a from Hatcher [6]).
Now observe that

∂(σ1 − σ2) = σ1|[v1,v3] − σ1|[v0,v3] + σ1|[v0,v1] − σ2|[v2,v3] + σ2|[v0,v3] − σ2|[v0,v2] = f − g

Here we used that σ1 and σ2 agree on [v0, v3]. Hence f − g is a boundary, proving the
lemma.

Lemma 2.0.6. Let f and g be paths in X with the property that f(1) = g(0), then f ·g ∼ f+g.
That is, the concatenation of paths is homologous to the sum of the paths viewed as simplices.

Proof. Let v′ be the middle point of the edge [v0, v2] of the simplex ∆2. Define the map
P : ∆2 → [v0, v2] as the orthogonal projection of ∆2 onto [v0, v2]. By this we mean that v1 is
send to v′. The orthogonality means that for every x ∈ ∆2 the line through the points x and
P (x) is perpendicular to the edge [v0, v2], given that x 6= P (x). Now we define σ : ∆2 → X
to be a chain that is given by σ = (f · g) ◦ P , where f · g : [v0, v2]→ X. It now follows that
σ|[v0,v2] = f · g, σ|[v0,v1] = f and σ|[v1,v2] = g (see Figure 1b from Hatcher [6]). It is easy to see
that ∂ω = g−f ·g+f . Consequently g−f ·g+f is a boundary, so we obtain f ·g ∼ f+g.

Lemma 2.0.7. Let f be a loop at x0 and f̄ be the path traversed in the opposite direction.
Then f̄ ∼ −f .

Proof. This lemma is a consequence of the previous three lemmas. Using these relations we
derived, we obtain f + f̄ ∼ f · f̄ ' c ∼ 0, where c is the constant path. Therefore we have
f + f̄ ∼ 0, which proves the lemma.
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Proof of Theorem 2.0.2. So far we have only defined h on loops. To check that h is well
defined on homotopy classes of loops, it is sufficient to make sure that two loops in the same
homotopy class are send to the same homology class. Lemma 2.0.5 exactly states that this
is the case.

Lemma 2.0.6 applied to the classes of loops in the fundamental group of X, ensures that
h respects the group product. In other words, for [f ], [g] ∈ π1(X) we have h([f ] · [g]) =
h([f ]) + h([g]). This makes h into a homomorphism, which proves the first statement of the
theorem.

From now on we assume X to be path connected. To prove the surjectivity of h, let the
finite sum

∑
i niσi be a representative of a homology class in H1(X,Z). We will proceed by

constructing an element of H1(X,Z) that is homologous to
∑

i niσi and lies in the image of
h. That means the element we construct will have to be a loop based at x0.

First we rewrite

∑
i

niσi =
∑
i

|ni|∑
j=1

sign(ni)σi =
∑
j

sign(nj)σj

where on the right hand side we combined the two sums into a single sum over a larger index
set. To get rid of the signs, we use lemma 2.0.7 to see that

∑
j

sign(nj)σj ∼
∑
j

σ̃j where we

define

σ̃j =

{
σj if sign(nj) = 1

σj if sign(nj) = −1

Since the chain
∑

j σ̃j is an element of a homology class, we have ∂(
∑

j σ̃j) = 0. This implies
that the end points of the σ̃j cancel. If there is an index j such that σ̃j is not a loop, then
there has to a another index j′ such that the composition σ̃j · σ̃j′ is well defined. By iterating
this process we obtain a new element of the homology class

∑
k ηk that consists only of loops

ηk. Lemma 2.0.6 provides that
∑

k ηk ∼
∑

j σ̃j.
Since X is path connected, let γk be a path from x0 to the base point of ηk. Then

γk · ηk · γk is a loop with base point x0. Moreover, by using Lemmas 2.0.6 and 2.0.7 we have
γk · ηk · γk ∼ ηk.

Returning to the original representative of the homology class we chose, we have now
constructed an element

∑
k γk · ηkγ̄k that is homologous to

∑
i niσi, and is a sum of loops

around x0. Finally, we use Lemma 2.0.6 to make
∑

k γk · ηkγ̄k into a single loop γ around x0,
which clearly lies in the image of h. This completes the proof that h is surjective.

It rests us to prove that the kernel of h is the commutator subgroup [π1(X), π1(X)] =
{aba−1b−1|a, b ∈ π1(X)}. We have proven that h is a homomorphism, so the commutator
subgroup is mapped to zero due to H1(X) being abelian. The other inclusion, ker(h) ⊆
[π1(X), π1(X)], requires a bit more work.

Let [f ] ∈ ker(h), then there exists a formal sum of simplices
∑

i niσi ∈ C2(X) such that
its boundary is equal to f . By allowing singular one simplices σi to appear multiple times
in the sum, we may assume that ni = ±1. We write ∂σi = τi0 − τi1 + τi2 where the τij are
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1-cycles. Using this expression, we get

f = ∂(
∑
i

niσi) =
∑
i

ni∂σi =
∑
i,j

(−1)jniτij

Since C1(X) is the direct sum of all singular 1-simplices in X without any relations
between elements, we deduce from the equality above that there is one specific 1-cycle such
that f = (−1)jniτij and the rest of the cycles on the right hand side cancel pairwise. Define
the space K as disjoint union of the domains ∆2

i that belong to the 2-cycles σi where we
identify the previously paired edges τij. Using the orientation induced by the edges, K is
a ∆-complex. Note that K has a finite number of path components K0, . . . , KN . We may
number these components such that If ⊂ K0, where If is the domain of f . Let J(K0) be
the index set such that i ∈ J(K0) if and only if ∆i ⊂ K0 and let J(K \K0) be the index set
consisting of all other indices. Then we may split the sum into two parts:

f = ∂(
∑

i∈J(K0)

niσi) + ∂(
∑

i∈J(K\K0)

niσi).

The first term of the right hand side is f and the second term vanishes. Therefore we may
as well assume K to be path connected.

Combining the maps σi, we obtain a map σ : K → X. Let vj be the vertices of the
simplices σi and let v0 be one of end points of If . Then there exist paths γj in K from vj to
v0.

Claim 1. The maps γj extend to a homotopy H : K × I → X that deforms σ such that If
is left unchanged and the vj are send to v0. By this we mean H|K×{0} = σ and H(vj, 1) = x0

for all vertices vj as well as H(x, t) = x for all t ∈ I and all x ∈ K that are mapped to If .

Define the new chain
∑

i σ̃i given by σ̃i(x) = H(σi(x), 1). Since the H fixes ∂(
∑

i niσi) =
f , there exists a β ∈ C3(X,Z) such that the homotopy H applied to

∑
i σi gives

H1(
∑
i

σi)−H0(
∑
i

σi) = ∂β.

This means that
∂(
∑
i

σ̃i) = ∂
∑
i

σi + ∂∂β = f.

Therefore the edges of
∑

i σ̃i cancel out, leaving only f . This chain has the property that
each edge of each simplex in the chain is a loop around x0.

Finally, we look at the class of f in the abelianization of the fundamental group of X,
defined as π1(X)ab = π1(X)/[π1(X), π1(X)]. By using additive notation for the group product
in π1(X)ab, we get

[f ] =
∑
i,j

(−1)jni[τ̃ij] =
∑
i

ni[∂σ̃i]

where ∂σ̃i = τ̃i0 − τ̃i1 + τ̃i2. Observe that the composed loop τ̃i0 − τ̃i1 + τ̃i2 is homotopic to a
constant loop, since τ̃i0 · (−τ̃i1 · τ̃i2) is homotopy equivalent to a point by using a contraction
of the simplex ∆2. Therefore [f ] =

∑
i

ni[∂σ̃i] = [0] in π1(X)ab. This shows that the loops

at x0 that are the boundary of a singular 2-chain, are indeed in de commutator subgroup of
π1(X). Hence ker(h) = [π1(X), π1(X)], which proves the theorem.
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To prove Claim 1 we will use the following lemma.

Lemma 2.0.8. Let f : X → Y be a continuous map, A ⊂ X closed and H : A × I → Y a
homotopy such that H|A×{0} = f |A. If X× I deformation retracts into X×{0}∪A× I, then
there is an extension of H to a homotopy X × I → Y such that H|X×{0} = f .

Proof. Let U ⊆ Y be closed, then f−1(U)× {0} is closed in X × I. Since H−1(U) is closed
in A × I and A × I is closed in X × I, it follows that H−1(U) is also closed in X × I. We
extend H to H̃ : X × {0} ∪ A × I → Y by H̃|X×{0} = f . To check that H̃ is continuous, it

is enough to see H̃−1(U) = f−1(U) ∪ H−1(U) is the union of two closed sets and therefore
is closed. First applying the deformation retraction on X × I and then applying H̃ gives us
the desired extension of the homotopy.

Proof of Claim 1. Let σ : K → X be the continuous map in Lemma 2.0.8. Choose A =
If ∪

⋃
j

vj, that is, the union of the vertices of σi and the edge that is the domain of f . Then

A ⊂ K is closed. We define the homotopy H : K × I → X by H(x, t) = x for all x ∈ If and
t ∈ I. Furthermore we define H(vj, t) = γj(t) for all vertices that do not lie in If . Recall
that γj is a path in K from vj to v0. Then we indeed have H|A×{0} = σ|A. It is clear by
drawing a picture that X × I deformation retracts into X × {0} ∪ A× I. Alternatively, we
can also use Proposition 0.16 in Hatcher [6, p. 15] to arrive at the same conclusion.

Hence by Lemma 2.0.8 we have the homotopy extension we required.
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3 Structures on manifolds

In this section we will introduce the notion of forms and vector fields on smooth manifolds. In
order to understand these subjects, it is useful to first discuss the underlying linear algebra.
Once we have defined forms and vector fields, we will have a closer look at the way they
behave on manifolds. In particular, we will formulate a lemma that gives us a criterion to
asses whether two forms are equal using vector fields. Our main purpose here is to formulate
the theory of manifolds that we can use in the context of compact semisimple Lie groups.
Readers that are already familiar with smooth manifolds should feel free to skip this section.

3.1 Covectors and the tensor product

The theory in this subsection is focused on real finite dimensional vector spaces. In general,
similar theory can be developed for any vector space over a field with characteristic zero.
However, in our case it is sufficient to only concern ourselves with the real case.

Definition 3.1.1. The dual of a vector space V is defined as the set {f : V → R|f is linear}.
Together with the operations of point wise addition of functions and scalar multiplication V ∗

is a vector space itself. We denote the dual vector space by V ∗. Elements of V ∗ are called
covectors of V .

This rest of this subsection is based on the notes of E.P. van den Ban [1] Chapter 1 and
2.

Definition 3.1.2. Let e1, . . . , ek be a basis for the vector space V . We define the dual basis
e1, . . . , ek of V ∗ as ei(ej) = δij for 1 ≤ i, j ≤ k. This symbol, also known as the Kronecker
delta, is defined by δij = 1 if i = j and δij = 0 if i 6= j.

Proposition 3.1.3. The dual basis defined above is a basis for V ∗.

Proof. The elements of the dual basis are defined on the basis of V . By extending them
linearly onto V , we see that the dual basis indeed are elements of V ∗. Assume

∑k
i=1 λie

i = 0.

This implies in particular that
∑k

i=1 λie
i(ej) = 0 for 1 ≤ j ≤ k. Therefore we have λi = 0.

This shows the linear independence of e1, . . . , ek. Every element ξ ∈ V ∗ can be written as a
linear combination of e1, . . . , ek in the following way:

ξ =
k∑
i=1

ξ(ei)e
i

We can check that both sides are equal by evaluating both sides at the basis elements of
V .

By applying the definition of dual vector space to V ∗, we obtain the double dual vector
space V ∗∗ = (V ∗)∗. There is an canonical embedding ι : V → V ∗∗ defined by ι(v)(ξ) = ξ(v)
for ξ ∈ V ∗. This map is clearly linear. Furthermore, if ι(v)(ξ) = 0 for all ξ ∈ V ∗, then this
also holds for each basis vector of V ∗, so ei(v) = 0. This implies that v = 0, showing the
injectivity of ι.
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Lemma 3.1.4. Let V be a finite dimensional vector space, then the embedding ι : V → V ∗∗

is a linear isomorphism.

Proof. From Proposition 3.1.3 we get dim(V ∗∗) = dim(V ∗) = dim(V ) and ι is injective linear
map. Hence ι is a linear bijection.

Definition 3.1.5. For vector spaces V1, . . . , Vk and W , a W -valued multilinear map f is a
map f : V1 × . . .× Vk → W that is linear in each argument separately. We denote the space
of all W -valued multilinear maps of V1, . . . , Vk by Lk(V1, . . . , Vk;W ).

There is one special class of R-multilinear functions that we are interested in, called
k-covectors.

Definition 3.1.6. A k-covector on a real vector space V is a map f ∈ Lk(V, . . . , V ;R) that
is alternating. Let Sk be the group of permutations of length k. Saying that f is alternating
is equivalent to the statement that for any permutation σ ∈ Sk, the application of σ to the
arguments of the function results in the change by a factor equal to the sign of σ. That is
f(v1, . . . , vk) = Sign(σ)f(vσ(1), . . . , vσ(k)) for all σ ∈ Sk. We denote the set of all k-vectors of
V by ∧kV ∗.

Remark 3.1.7. Note that Lk(V, . . . , V ;R) is closed under the point-wise addition of functi-
ons and multiplication by scalars. This makes Lk(V, . . . , V ;R) into a vector space. Moreover,
the point-wise addition and scalar multiplication of alternating functions will result in another
alternating function. Therefor ∧kV ∗ is a linear subspace of Lk(V, . . . , V ;R).

There is another interesting concept that is obtain by dualizing Lk(V, . . . , V ;R), which is
called the tensor product.

Definition 3.1.8. For V1, . . . , Vk finite dimensional real vector spaces, we define their tensor
product as V1⊗ · · · ⊗ Vk = Lk(V ∗1 , . . . , V

∗
K ;R). For an element (x1, . . . , xk) ∈ V1× . . .× Vk its

tensor product is defined as

[x1 ⊗ · · · ⊗ xk](ξ1, . . . , ξk) = ξ1(x1) · · · ξk(xk)

Let φ : V1× . . .×Vk → V1⊗· · ·⊗Vk be the map such that φ(x1, . . . , xk) = x1⊗· · ·⊗xk. It
is easy to check that φ is multilinear. Therefore we indeed have x1⊗ · · ·⊗xk ∈ V1⊗ · · ·⊗Vk.

Lemma 3.1.9. Let V1, . . . , Vk be finite dimensional real vector spaces of dimension dj, re-
spectively. Let ej,1, . . . , ej,dj be a basis for Vj for all 1 ≤ j ≤ k. We define the index set I as
the set of elements of the form i = (i(1), . . . , i(k)) where 1 ≤ i(j) ≤ dj for all 1 ≤ j ≤ k.
Then

{e1,i(1) ⊗ · · · ⊗ ek,i(k)|i ∈ I}
is a basis for V1 ⊗ · · · ⊗ Vk.

Proof. Let e1
j , . . . , e

dj
j be the basis of V ∗j . To somewhat shorten the notation, we use multi-

index notation and write ei for (e
i(d1)
1 , . . . , e

i(dk)
k ). Likewise, we denote ei = (e1,i(d1), . . . , ek,i(dk))

for i ∈ I. Furthermore, we write

(⊗e)i = φ(ei) = e1,i(1) ⊗ · · · ⊗ ek,i(k).
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Moreover, will show for t ∈ V1 ⊗ · · · ⊗ Vk that t = 0 if and only if t(ei) = 0 for all i ∈ I
by using its multilinearity. Per definition t = 0 if and only if t(ξ1, . . . , ξk) = 0 for all

(ξ1, . . . , ξk) ∈ V ∗1 × . . .× V ∗k . We write ξj = ξj(ej,1)e1
j + . . . + ξj(ej,dj)e

dj
j for 1 ≤ j ≤ k. Now

we get

t(ξ1, . . . , ξk) =
∑
i∈I

ξit(ei)

where the coefficients ξi are
k∏
j=1

ξj(ej,i(j)). Using the expression on the right, we immediately

see that t(ξ1, . . . , ξk) = 0 if and only if t(ei) = 0 for all i ∈ I.
Let m ∈ I, then (⊗e)i(em) equals 1 if i = j and equals 0 otherwise. To conclude that
the vectors (⊗e)i are linearly independent, let λi be coefficients and assume that we have∑

i∈I λi(⊗e)i = 0. Evaluation in the ej gives us λj = 0 for all j ∈ I. Therefore we have linear
independence.
To show that (⊗e)i also span V1 ⊗ · · · ⊗ Vk, it is sufficient to convince ourselves that we can
write t =

∑
i∈I t(e

i)(⊗e)i for an arbitrary t ∈ V1 ⊗ · · · ⊗ Vk. Again by evaluating both sides
at ej, all terms on the right hand side exempt from one vanish and we see that the equality
holds.

From now on we will use the notation ⊗kV by which we mean the k-fold product V ⊗
· · ·⊗V . Note that ⊗kV ∗ is defined as the space Lk(V ∗∗, . . . , V ∗∗;R). Lemma 3.1.4 states that
we may identify V ∗∗ with V and therefore have the identification ⊗kV ∗ ∼= Lk(V, . . . , V ;R) as
vector spaces. This identification makes it possible to view the space ∧k(V ∗) of alternating
k-linear maps as a linear subspace of ⊗kV ∗. Since we are mainly interested ∧k(V ∗) it is very
useful to construct a projection of ⊗kV ∗ onto ∧k(V ∗).

Definition 3.1.10. For a real vector space V , we define Alt : ⊗kV ∗ → ∧k(V ∗) by

Alt(v1 ⊗ · · · ⊗ vk) =
1

k!

∑
σ∈Sk

Sign(σ)vσ
−1(1) ⊗ · · · ⊗ vσ−1(k).

Strictly speaking, Alt depends on the degree k and it would be reasonable to denote it
is by Altk. However, the k is commonly omitted in literature and it its absence leads to no
large ambiguity.

Proposition 3.1.11. The map Alt is well-defined and it is a projection. In other words, for
each alternating tensor ω ∈ ⊗kV ∗ we have Alt(ω) = ω.

Proof. Let ω ∈ ⊗kV ∗ and assume that ω = v1 ⊗ · · · ⊗ vk. Now define the group action
Sk ×⊗kV ∗ → ⊗kV ∗ : (σ, ω) 7→ σ · ω where σ · ω stand for vσ

−1(1) ⊗ · · · ⊗ vσ−1(k).
Let τ ∈ Sk, then we have

τ(Alt(ω)) =
1

k!

∑
σ∈Sk

Sign(σ)(τσ) · ω =
1

k!

∑
σ∈Sk

Sign(σ)vτ
−1σ−1(1) ⊗ · · · ⊗ vτ−1σ−1(k)

=
1

k!

∑
τσ∈Sk

Sign(τσ)vσ
−1(1) ⊗ · · · ⊗ vσ−1(k) =

1

k!

∑
τσ∈Sk

Sign(τσ)σ · ω = Sign(τ) Alt(ω)
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Therefore we see that Alt(ω) is alternating. Furthermore, if ω ∈ ⊗kV is already alternating,
we have

Alt(ω) =
1

k!

∑
σ∈Sk

Sign(σ)vσ
−1(1) ⊗ · · · ⊗ vσ−1(k) =

1

k!

∑
σ∈Sk

Sign(σ) Sign(σ−1)vσσ
−1(1) ⊗ · · · ⊗ vσσ−1(k)

=
1

k!

∑
σ∈Sk

v1 ⊗ · · · ⊗ vk = v1 ⊗ · · · ⊗ vk = ω

In general ω ∈ ⊗kV ∗ implies that we can write ω =
∑

i v
1
i ⊗ · · · ⊗ vki . The argument above

can also be applied to this case. This makes Alt into a projection.

We can use Alt to define the wedge product of two covectors.

Definition 3.1.12. Define the wedge product ∧ : ⊗kV ∗ → ∧kV ∗ : (v1⊗· · ·⊗vk) 7→ v1∧· · ·∧vk
where v1 ∧ · · · ∧ vk = k! Alt(v1 ⊗ · · · ⊗ vk) =

∑
σ∈Sk

Sign(σ)vσ
−1(1) ⊗ · · · ⊗ vσ−1(k).

Proposition 3.1.13. The formula for computing the wedge product of two wedges is given
by

(v1 ∧ . . . ∧ vk) ∧ (w1 ∧ . . . ∧ wl) =
(k + l)!

k!l!
Alt[(v1 ∧ . . . ∧ vk)⊗ (w1 ∧ . . . ∧ wl)]

Proof. Write A = v1∧ . . .∧vk and B = w1∧ . . .∧wl. By using the same group action defined
in the proof of Proposition 3.1.11, we get v1 ∧ . . .∧ vk =

∑
τ∈Sk

Sign(τ)τ ·A = k! Alt(A) and
w1 ∧ . . . ∧ wl =

∑
ρ∈Sl

Sign(ρ)ρ ·B = l! Alt(B). Now observe that

(k + l)!

k!l!
Alt[(v1 ∧ . . . ∧ vk)⊗ (w1 ∧ . . . ∧ wl)] =

∑
σ∈Sk+l

Sign(σ)σ · (AltA⊗ AltB)

=
∑

σ∈Sk+l
τ∈Sk
ρ∈Sl

Sign(στρ)σ · (τ · A⊗ ρ ·B) =
∑
σ,τ,ρ

Sign(στρ)(στρ) · (A⊗B)

In the last expression we used an embedding Sk ↪→ Sk+l : τ 7→ (τ(1), . . . , τ(k), k+1, . . . , k+ l)
into the first coordinates and Sk ↪→ Sk+l : ρ 7→ (1, . . . , k, ρ(k + 1), . . . , ρ(k + l)) onto the last
coordinates. Continuing where we left off, we have

=
1

k!l!

∑
τ,ρ

∑
σ

Sign(στρ)(στρ) · (A⊗B) =
1

k!l!
k!l!

∑
σ

Sign(σ)σ · (A⊗B)

=v1 ∧ . . . ∧ vk ∧ w1 ∧ . . . ∧ wl
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3.2 Differential forms

Now that we have discussed the necessary linear algebra, we will change our point of view
to that of manifolds. From now on manifold will mean C∞-manifold. If the dimension of a
manifold is not specified, we will assume it to be n-dimensional. This is a good moment to
clarify the notation that is used for certain basis elements.

Remark 3.2.1. By fixing a chart of M , we obtain a local basis of the tangent space which is
denoted by ∂1, . . . , ∂n and the local dual basis of the cotangent space denoted by dx1, . . . , dxn.
We will denote the induced basis elements of TpM by (∂i)p and basis elements of T ∗pM by
dxip for 1 ≤ i ≤ n. Also note that we can evaluate basis elements of the cotangent space in
the elements of the tangent space to obtain the Kronecker delta: ∂i(dxj) = δij.

By applying Definition 3.1.6 to the tangent space of a manifold, we arrive at the notion
of differential forms.

Definition 3.2.2. A set-theoretical differential k-from on a manifold M is a assignment
M 3 p 7→ ωp ∈ ∧kT ∗pM , i.e. ωp is a k-covector of the tangent space at p.

We now want to state what it means for a set-theoretical differential k-from to be smooth.
Consider χ : U → Rn a chart around p ∈M . This chart induces a local dual basis ∂1

p , . . . , ∂
n
p

on T ∗pM . Using this basis, we can write any set-theoretical k-form as

ω(p) =
∑
i∈I

ωi(p)dxi1p ∧ . . . ∧ dxikp

using multi-index notation for i = (i1, . . . ik) where I is the set of all k-tuples of integers
such that 1 ≤ i1 < . . . < ik ≤ n. The functions ωi : U → R we obtain, will be called the
coordinate functions of ω. A set-theoretical differential k-form is said to be smooth at p if
there is a chart χ with domain U around p such that ωi ∈ C∞(U) for all i ∈ I. A differential
k-form, or simply k-form, is a set-theoretical differential k-form that is smooth at every point
p ∈M . We denote the set of k-forms on M by Ωk(M).

Example 3.2.3. The most straight forward example of a 1-form is the differential of a
differentiable function f : M → R. At each point p ∈ M , f gives rise to a tangent map
(df)p : TpM → R. The tangent map is linear and it has only one argument, so it is a covector
of TpM . 4

There is a natural way that allows one to define forms on a manifold M by ’pulling them
back’ from another manifold N via a smooth map.

Definition 3.2.4. Let f : M → N be smooth and ω ∈ Ωk(N). We define the pullback f ∗ω ∈
Ωk(M) of ω by f to be the composition of tangent map of f with ω, i.e. for V1, . . . , Vk ∈ TpM
we have (f ∗ω)p(V1, . . . , Vk) = ωf(p)(Tpf(V1), . . . , Tpf(Vk)).

Note that we have f ∗ω : TpM × . . . × TpM → R. Since ω is alternating, so is f ∗ω.
Furthermore the linearity of the tangent map and the multilinearity of ω imply that f ∗ω is
multilinear. Therefore f ∗ω is indeed a k-form on M .
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3.3 Vector fields

Definition 3.3.1. A set-theoretical vector field is a assignment M 3 p 7→ Xp ∈ TpM . Similar
to the way we defined differential forms, we want to characterize the smoothness of vector
fields. Let χ : U → Rn be a chart around p. This chart gives induces a basis (∂1)p, . . . , (∂n)p
of TpM . Using this basis, we can write

Xp =
n∑
i=1

X i(p)(∂i)p

where X i : M → R are the component functions of X. We say that X is smooth at p is there
is a chart χ with domain U around p such that X i ∈ C∞(U) for all 1 ≤ i ≤ n. A vector field
on M is a set-theoretical vector field that is smooth at every p ∈ M . We denote the vector
space of vector fields on M by X(M).

Now we proceed with the definition of the pullback of vector fields. The difference with
the pullback of forms lies in the properties we require of the function we pull back along.
Although we could define a pullback of forms along any smooth map, in the case of vector
fields we need the function to be a diffeomorphism. That is because we need to be able to
use the inverse of the tangent map.

Definition 3.3.2. Let f : M → N be a diffeomorphism and X ∈ X(N). We define the
pullback f ∗X ∈ X to be f ∗X(p) = (Tpf)−1X(f(p)) for all p ∈ TpM .

Per definition, two k-forms ω1, ω2 are equal if they are equal at every point p ∈ M .
There is a natural way of evaluating forms in vector fields on M . Vector fields allow us to
associate a tangent vector to every point of M . Let X(1), . . . , X(k) ∈ X(M) and ω ∈ Ωk(M).
We define the expression ω(X(1), . . . , X(k)) in a point p ∈ M by ω(X(1), . . . , X(k))(p) =

ωp(X
(1)
p , . . . , X

(k)
p ). This provides us with the map ω(X(1), . . . , X(k)) : M → R.

Proposition 3.3.3. For any ω ∈ Ωk(M) and X(1), . . . , X(k) ∈ X(M) the map ω(X(1), . . . , X(k)) :
M → R is smooth.

Proof. Let p ∈ M and fix a chart χ : U → Rn. This chart provides us with a basis of TpM
and T ∗pM . By using the notation from Definition 3.2.2 and 3.3.1 for the bases of the tangent

and cotangent space, we write ω =
∑
i∈I
ωidxi1 ∧ . . . ∧ dxik and X =

n∑
j=1

Xj∂j.

ω(X(1), . . . , X(k))(p) =
∑
i∈I

ωi(p) · dxi1p ∧ . . . ∧ dxikp (X(1)
p , . . . , X(k)

p )

Corollary 3.3.4. Let p ∈M , then the map X(M)→ TpM : X 7→ Xp is surjective.

Proof. Let V ∈ TpM . Choose a chart χ : U → Rn around p. Then the tangent map Tpχ :
TpM → Rn is an isomorphism of vector spaces. Let K ⊂ χ(U) be a compact neighborhood
of χ(p). Then there exists a compactly supported function ϕ ∈ C∞C (Rn) with the properties
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that ϕ = 1 on a open neighborhood of K and supp(ϕ) ⊂ χ(U). Define the vector field
X̃ by X̃(y) = ϕ(y) · Tpχ(Xp) for all y ∈ Rn. Now define the vector field X on M by
X(m) = (χ∗X̃)(m) for m ∈ U and X(m) = 0 otherwise. Note that the extension by zero is
smooth, because χ∗X̃ is strictly supported in the open set U . We can now conclude that X
has the property that X(p) = V , since ϕ(χ(p)) = 1.

It turns out the evaluation of forms in vector fields is compatible with the evaluation of
forms in points by the lemma below.

Lemma 3.3.5. Let ω, η ∈ Ωk(M), then the following are equivalent:

i) ω = η

ii) For all vector fields X(1), . . . , X(k) ∈ X(M) and points p ∈M we have ωp(X
(1)
p , . . . , X

(k)
p ) =

ηp(X
(1)
p , . . . , X

(k)
p ).

Proof. Assume i). Fix vector fields X(1), . . . , X(k) ∈ X(M) and p ∈ M . Observe that

X
(1)
p , . . . , X

(k)
p ∈ TpM per definition of a vector field. By our assumption we can directly

conclude that ωp(X
(1)
p , . . . , X

(k)
p ) = ηp(X

(1)
p , . . . , X

(k)
p ).

For the other direction assume ii). Let p ∈ M and V1, . . . , Vk ∈ TpM . Corollary 3.3.4

provides us with vector fields X(i) for all 1 ≤ i ≤ k with the property that X
(i)
p = Vi.

Therefore we have ωp(V1, . . . , Vk) = ηp(V1, . . . , Vk) for all V1, . . . , Vk ∈ TpM and we are done.

Definition 3.3.6. We define the derivation of a smooth real-valued functions on M by a
vector field to be the map C∞(M) × X(M) → C∞(M) : (f,X) 7→ Xf , where we define
Xf(p) = (df)P (Xp). This can be interpreted as the directional derivative of f at p along Xp.
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4 Lie theory

It is in this section that we introduce Lie groups and Lie algebras. The extra structure that
a Lie group has over manifolds, will give rise to so called left invariance of vector fields and
forms on the Lie group. In the end of this section we will discuss the proof of the surjectivity
of the Lie bracket, under the assumption that G has certain properties.

4.1 Basic properties

Definition 4.1.1. A Lie group is a smooth manifold equipped with a smooth product
function G × G → G : (x, y) 7→ xy and a smooth inversion function G → G : x 7→ x−1

that makes it into a group.

Example 4.1.2. • Rn equipped with addition and neutral element 0 is a Lie group. [2]

• The space of invertible n×n-matrices together with matrix multiplication and neutral
element I is a Lie group.

• The unit circle S1 ⊂ C together with the multiplication of complex numbers and neutral
element 1 again forms a Lie group.

4

Definition 4.1.3. Define the Lie algebra of G to be the tangent space at the identity e,
denoted by g = TeG.

For any Lie groups there is an identification of the Lie algebra g with the space of so
called left invariant vector fields on G.

Definition 4.1.4. For g ∈ G we define the map lg : G→ G : x 7→ xg as the left multiplica-
tion. A vector field V ∈ X(G) is called left invariant if (lg)∗V = V for all g ∈ G. The set of
left invariant vector fields on G is denoted by XL(G).

Note that the map lg is smooth, because the multiplication on G is smooth. Its inverse
is exactly lg−1 , which is smooth as well. That makes lg into a diffeomorphism from G onto
itself and therefore the push forward operation by lg is well defined.

Lemma 4.1.5. The following are equivalent:

i) V ∈ X(G) is left invariant.

ii) For all x, y ∈ G we have V (xy) = Ty(lx)V (y).

Proof. Note for x ∈ G that lx is a diffeomorphism, which leads to a linear isomorphism on the
tangent spaces. In particular, we can write the identity map Id : G→ G as lx−1 ◦lx and apply
the chain rule in the point xy to conclude that Txy(Id) = Txy(lx−1 ◦ lx) = Ty(lx) ◦ Txy(lx−1).
This gives us Txy(lx−1)−1 = Ty(lx). Assume i), then we use this equality to conclude

V (xy) = (lx−1)∗V (xy) = Txy(lx−1)−1V (lx−1(xy)) = Ty(lx)V (y)
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Hence we have ii). The other implication is given by a similar argument. It suffices to see
that

V (xy) = Ty(lx)V (y) = Txy(lx−1)−1V (lx−1(xy)) = (lx−1)∗V (xy)

This characterization of left invariance shows that a left invariant vector field is completely
determined by its value at the identity. By choosing y = e we obtain for an arbitrary left
invariant vector field: V (x) = Te(lx)V (e). The rest of this subsection is based on Chapter
2,3 and 4 of Lie Groups [2].

Lemma 4.1.6. The map vX : g → XL(G) : X 7→ vX where we define vX(g) = Te(lg)X is a
linear isomorphism.

Proof. We have to show that vX is left invariant. By differentiating the map lxy = lx ◦ ly and
applying the chain rule, we get

vX(xy) = Te(lxy)X = Ty(lx)Te(ly)X = Ty(lx)vX(y)

By lemma 4.1.5 this proves the left invariance of vX . Note that v is injective, since vX = vY
implies vX(e) = vY (e) and thus X = Y . The map V 7→ V (e) that evaluates left invariant
vector fields in the identity acts as an inverse of v. That makes v into a bijection.

We can use these vector fields to construct the exponential map. Recall that an integral
curve of a vector field V is any differential map γ : [a, b] → G with a < 0 < b such that
γ′(t) = V (γ(t)).

Definition 4.1.7. Let αX be the maximal integral curve of the left invariant vector field vX
with starting point e. We define the exponential map as exp : g→ G : X 7→ αX(1).

It is shown in Lie groups [2, p. 16] that the domain of αX is R, therefore exp is well defined.

Let us now move on to another important map. First consider the map Cx : G → G :
y 7→ xyx−1 that conjugates elements of G by an x ∈ G. Observe that Cx is a diffeomorphism
from G to itself by the same reasoning that was used in the case of the left multiplication lg.
For any x ∈ G we have cx(e) = e. Hence the tangent map Te(Cx) is an isomorphism of g onto
itself. Note that for x, y ∈ G the composition Te(Cx) ◦ Te(Cy) is again an isomorphism from
g to g. Furthermore, for each x ∈ G the inverse of Te(Cx) is given by Te(C

−1
x ). Therefore the

isomorphisms of g, or in fact any vector space, onto itself is a group which we will denote by
GL(g).

Definition 4.1.8. We define the adjoint representation of a Lie group G as the map Ad :
G→ GL(g) such that Ad(x) = TeCx

Let v1, . . . , vn be a basis of TeG, then there is a unique linear map from Rn to g that
sends the standard i-th basis element ei to vi. For another basis w1, . . . , wn of g, there is a
linear map L : Rn → Rn that sends wi to vi. This is a linear bijection and therefore a linear
isomorphism. From this we can conclude that GL(g) can be equipped with charts that make
it into a smooth manifold, independent of the choice of a basis.
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Since GL(g) is a group as well as a manifold, it follows that it is a Lie group if the product
and inversion map are smooth. This is the case, see page 16 of Lie Groups [2]. Using this
new insight, Ad becomes a smooth map between Lie groups.

Definition 4.1.9. We define ad as the tangent map of Ad at the identity e, hence ad =
Te Ad : g→ End(g).

Note that GL(g) is a linear subspace of End(g), the space of all linear transformation from
g to itself. Now observe that End(g) ' RN for a certain N , since it is a finite dimensional
vector space. Let I stand for the identity element of GL(g), then it follows that TI GL(g) =
TIEnd(g) = End(g). This is because GL(g) ⊂ End(g) is open. That explains why ad maps
into End(g).

From properties of the exponential map and the use of the chain rule, we can derive that
ad(X) = d

dt
|t=0 Ad(exp tX). See [2, p. 19].

Definition 4.1.10. A real Lie algebra is a real vector space V together with a bilinear map
[·, ·] : V × V → V that is anti-symmetric and obeys the Jacobi identity. By that we mean
for all X, Y, Z ∈ V we have [X, Y ] = −[Y,X] and [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0.
This operation is called a Lie bracket.

Definition 4.1.11. For a Lie group, we define the Lie bracket TeG×TeG→ teG : (X, Y ) 7→
[X, Y ] where [X, Y ] = (adX)Y .

Proposition 4.1.12. The tangent space TeG equipped with the operation defined above is a
Lie algebra.

Proof. See Lie Groups [2, p. 20-21].

Definition 4.1.13. We call a k-form ω ∈ Ωk(G) left invariant if l∗gω = ω for all g ∈ G. The
space of all left invariant k-forms on G is denoted by Ωk

L(G).

Each k-form on G defines a k-covector of TeG by evaluation in the identity element, so
there is a map Ev : Ωk(G) → ΛkT ∗eG : ω 7→ ωe. On the other hand, we will see soon that
any k-covector can be made into a left invariant k-form on G.

Definition 4.1.14. We define the map φ : ΛkT ∗eG→ Ωk(G) that makes k-covectors of TeG
into k-forms on G such that for any ωe ∈ TeG we have

φ(ωe)g =

{
ωe if g = e

Te(lg−1)∗ωe if g 6= e

Therefore, once we choose a k-covector ωe, the evaluation of the corresponding form in g ∈ G
becomes ωg(X1, . . . , Xk) = ωe(Te(lg−1)X1, . . . , Te(lg−1)Xk) for X1, . . . , Xk ∈ TeG.

Proposition 4.1.15. The vector space of left invariant k-forms on G is isomorphic to the
space of k-covectors of TeG. More precisely, the linear isomorphism is given by Ev : Ωk

L(G)→
ΛkT ∗eG : ω 7→ ωe.
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Proof. Let ω ∈ Ωk
L(G) be a left invariant form. Since ω is left invariant, evaluating ω at

x ∈ G is the same as evaluating (lx−1)∗ω at x. Therefore, we have

ωx(X1, . . . , Xk) = ωe(Te(lx−1)X1, . . . , Te(lx−1)Xk)

This implies that ω is completely determined by its evaluation in the identity. Hence Ev is
injective.

For surjectivity we will check that the map φ from Definition 4.1.14 actually provides left
invariant forms. Let ωe ∈ ΛkT ∗eG and, for simplicity, we denote ω = φ(ωe). We want to
prove that l∗xω = ω. Let g ∈ G, then for X1, . . . , Xk ∈ TgG we have

(l∗xω)g(X1, . . . , Xk) = ωxg(Tg(lx)X1, . . . , Tg(lx)Xk)

= ωe(Txg(l
−1
xg )Tg(lx)X1, . . .)

= ωe(Txg(l
−1
g l−1

x )Tg(lx)X1, . . .)

= ωe(Tg(l
−1
g l−1

x lx)X1, . . .)

= ωe(Tg(l
−1
g )X1, . . .) = ωg(X1, . . . , Xk)

Therefore ω is indeed left invariant. Now note that Ev ◦ φ is the identity map on ΛkT ∗eG,
hence Ev is surjective.

4.2 Surjectivity of the Lie bracket

In this subsection we assume that G is a connected semisimple compact Lie group. That is,
G is compact, connected and ker(ad) = 0. Note that

ker(ad) = {X ∈ g|[X, Y ] = 0 for all Y ∈ g}

is precisely the center of g, because [X, Y ] = 0 if and only if [X, Y ] = −[X, Y ], which is
equivalent to [X, Y ] = [Y,X] by the anti-symmetry of the Lie bracket.

Our goal is to prove the following lemma:

Lemma 4.2.1. If G is a semisimple compact Lie group, we have [g, g] = g. That is, for
every element Z ∈ g we have

∑
i[Xi, Yi] = Z for certain Xi, Yi ∈ g.

Lemma 4.2.2. There exists a positive definite inner product 〈., .〉 on g such that for X, Y ∈ g
we have 〈Ad(g)X,Ad(g)Y 〉 = 〈X, Y 〉 for all g ∈ g.

Proof. Let (., .) be any positive definite inner product defined on g. Similar to the way we
constructed a left invariant form that is nowhere vanishing on G from an element ωe ∈ ΛkT ∗eG,
we can construct a right invariant form on G. Let dg be a right invariant top form, i.e. it has
order n equal to the dimension of G. We will use the orientation on G induced by the form
dg. With this orientation, dg is per definition positively oriented. We use the integration by
top forms to define a new inner product

〈X, Y 〉 =

∫
G

(Ad(g)X,Ad(g)Y )dg.
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Note that per definiteness of (., .), (Ad(g)X,Ad(g)Y ) is continuous in g. Moreover, (Ad(g)X,Ad(g)X)
is non-negative, because we assumed (., .) to be positive definite. Since dg is a positive form,
we also have 〈X,X〉 ≥ 0. In the case that 〈X,X〉 = 0, we integrate a non-negative function,
so the map g 7→ (Ad(g)X,Ad(g)X) must be identically zero. By choosing g = e we obtain
(Ad(e)X,Ad(e)X) = (X,X) = 0. This implies X = 0, because (., .) is positive definite. This
shows 〈., .〉 is positive definite.

We claim that the inner product is invariant. Let g0 ∈ G, then

〈Ad(g0)X,Ad(g0)Y 〉 =

∫
G

(Ad(g) Ad(g0)X,Ad(g) Ad(g0)Y )dg

=

∫
G

(Ad(gg0)X,Ad(gg0)Y )dg

=

∫
G

ϕ(gg0)dg =

∫
G

ϕ(g)dg = 〈X, Y 〉

Here we viewed (Ad(.)X,Ad(.)Y ) as a function ϕ : G → R. Therefore we can use the right
invariance of dg to conclude that integrating over ϕ(gg0) is the same as integrating over ϕ(g).
This verifies our claim.

Lemma 4.2.3. The inner product 〈., .〉 defined in Lemma 4.2.2 has the property that 〈[U,X], Y 〉 =
−〈X, [U, Y ]〉 for all U,X, Y ∈ g.

Proof. Let U,X, Y ∈ g. From the properties of the inner product, ad and the exponential
map, it follows that

〈[U,X], Y 〉 = 〈ad(U)X, Y 〉
= 〈 d

dt
|t=0 Ad(exp(tU))X, Y 〉

= d
dt
|t=0〈Ad(exp(tU))X, Y 〉

= d
dt
|t=0〈Ad(exp(−tU)) Ad(exp(tU))X,Ad(exp(−tU))Y 〉

= d
dt
|t=0〈Ad(exp(−tU + tU))X,Ad(exp(−tU))Y 〉

= 〈X, d
dt
|t=0 Ad(exp(−tU))Y 〉

= 〈X,− ad(U)Y 〉 = −〈X, [U, Y ]〉

This is proves the lemma.

Definition 4.2.4. We define an ideal a in g to be a linear subspace a < g such that [g, a] ⊂ a,
or equivalently for all X ∈ g and Y ∈ a we have [X, Y ] ⊂ a. We write aC g.

We denote the orthogonal complement of a as a⊥ = {X ∈ g|〈X, Y 〉 = 0 ∀Y ∈ a}.
Corollary 4.2.5. If aC g, then a⊥ C g.

Proof. Note that a⊥ is a linear subspace of g. Therefore, we only have to check that [g, a⊥] ⊂
a⊥. Let X ∈ a⊥ and Y ∈ g, then for any U ∈ a we use Lemma 4.2.3 to conclude 〈[Y,X], U〉 =
〈X,−[Y, U ]〉. Since a is an ideal, we have [Y, U ] ∈ a. Finally, recall that X ∈ a⊥, therefore
〈X,−[Y, U ]〉 = 0.

The equality 〈[Y,X], U〉 = 0 shows that ad(Y )a⊥ ⊂ a⊥, which proves that a⊥ is indeed
an ideal.
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Theorem 4.2.6. Let g admit a ad(g)-invariant positive definite inner product. Then g
decomposes as the direct sum of minimal ideals that are pairwise disjoint.

Proof. We will proceed by a proof by induction on the dimension of g. In the 0-dimensional
case, the statement of this theorem is trivial. Assume that the statement is true for all g
with dim(g) ≤ k. Now assume that dim(g) = k + 1. If g is a minimal ideal, we are done. If
this is not the case, then there exists a strictly smaller ideal a1 of g that is unequal to {0}.
By choosing smaller and smaller ideals in g, we obtain the following sequence.

gB a1 B . . .B a

Since g has finite dimension and each consecutive ideal will have a strictly smaller dimension,
the sequence is finite and has a smallest element a unequal to {0}. Hence we write g as the
orthogonal direct sum a⊕ a⊥. Note that 〈., .〉|a still is positive definite and ad-invariant. So
by the induction hypothesis a⊥ = b1 ⊕ . . .⊕ bk.

We now want to prove that bi is an ideal of g. Observe that a and a⊥ are both ideals, so
[a, a⊥] ⊂ a ∩ a⊥. For every 0 6= X ∈ a we have 〈X,X〉 6= 0, hence X /∈ a⊥, so a ∩ a⊥ = 0.
This implies that [a, a⊥] = 0. With this information we conclude for all 1 ≤ i ≤ k that

[g, bi] = [a, bi]⊕ [a⊥, bi]

= [a ∩ bi ⊕ bi ∩ b⊥i , bi]⊕ [a⊥, bi]

= [a ∩ bi, bi]⊕ [bi ∩ b⊥i , bi]⊕ [a⊥, bi]

The last expression is the direct sum of three Lie brackets. Note that in all three cases the
left argument is a linear subspace of a⊥. Since bi C a⊥, we have [g, bi] ⊂ bi. Therefore
g = a⊕ b1 ⊕ . . .⊕ bk is a direct sum of pairwise orthogonal ideals, all of which are minimal.
That completes the induction step.

Corollary 4.2.7. For each minimal ideal ai from Theorem 4.2.6, we have [ai, ai] = ai.

Proof. Let X ∈ g and U, V ∈ ai, then by the Jacobi identity and anti-symmetry of the Lie
bracket, we have [X, [U, V ]] = [[X,U ], V ] + [U, [X, V ]]. Note that U, V ∈ ai, which implies
that [X,U ], [X, V ] ∈ ai. Therefore [[X,U ], V ], [U, [X, V ]] ∈ ai. Finally, we use the fact that
ai is a linear subspace to conclude that [X, [U, V ]] ∈ ai. Hence, [ai, ai] C g.

We already have [ai, ai] ⊂ ai. Because ai is a minimal ideal, we are left with two possi-
bilities; either [ai, ai] = 0 or [ai, ai] = ai. If [ai, ai] = 0, we also know that [ai, aj] = 0 for
i 6= j. This leads to [ai,⊕Nj=1aj] = [ai, g] = 0. Hence ai ⊂ ker(ad). At the beginning of this
subsection we stated that ker ad = 0, so ai = 0. However, that cannot be the case. Therefore
we have [ai, ai] = ai.

Proof of Lemma 4.2.1. Using the decomposition of Theorem 4.2.6 and the result of Corollary
4.2.7, we get

[g, g] =
∑
i,j

[ai, aj] =
∑
i

[ai, ai] =
∑
i

ai = g
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5 The relation between cohomology and homology

In this section we have establish the last ingredients we need to be able to prove that π1(G) is
finite. For that we will define the de Rham cohomology by using differential forms. Further
on we will look at modules to extend the notion of tensor product. At the end we will arrive
at the universal coefficient theorem for homology.

5.1 The Rham cohomology

Definition 5.1.1. We define the exterior differential for all k ≥ 1 on a manifold M to be
the unique map d : Ωk−1(M)→ Ωk(M) such that for ω ∈ Ωk−1(M) and X1, . . . , Xk ∈ X(M)
the following holds:

dω(X1, . . . , Xk) =
∑

1≤i≤k

(−1)i−1Xi(ω(X1, . . . , X̂i, . . . , Xk))

+
∑

1≤i<j≤k

(−1)i+jω([Xi, Xj], X1, . . . , X̂1, . . . , X̂j, . . . , Xk).

The notation X̂i indicates that this argument is left out and [Xi, Xj] is the Lie bracket of
vector fields defined in Lee [7, p. 186].

Proposition 5.1.2. The exterior differential d has the following properties:

a) d is R-linear.

b) If ω ∈ Ωk(M) and η ∈ Ωl(M), then

d(ω ∧ η) = dω ∧ η + (−1)kω ∧ dη.

c) d ◦ d = 0.

d) d is the usual differential of smooth functions on Ω0(M).

e) d commutes with pullbacks. Let F : M → N be a smooth map between manifolds and
F ∗ : Ωk(N)→ Ωk(M) the associated pull back map. Then we have

F ∗(dω) = d(F ∗ω).

for all ω ∈ Ωk(M).

Proof. See Lee [7] page 365.

We call ω ∈ Ωk(M) exact if there exists an η ∈ Ωk−1(M) such that ω = dη. Moreover,
ω ∈ Ωk(M) is said to be closed if dω = 0. Note that d ◦ d = 0 implies that every exact form
is closed. The vector spaces of k-forms on M together with the exterior differential give rise
to a complex called the de Rham-complex.

0 −→ Ω0(M)
d−→ Ω1(M)

d−→ Ω2(M)
d−→ . . .
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Definition 5.1.3. Let Zk(M) = {ω ∈ Ωk(M)|ω is closed} andBk(M) = {ω ∈ Ωk(M)|ω is exact}.
We define the de Rham cohomology Hk

dR(M,R) as the homology of this complex, so the k-th
de Rham cohomology is the quotient Zk(M)/Bk(M).

Now we return to the case that we have a connected, compact semisimple Lie group G.
In this case we have the notion of left invariance of forms.

For every k ≥ 0, we have Ωk
L(G) ⊂ Ωk(G). Also note that taking the differential of a left

invariant form, will result in another left invariant form, i.e. d(Ωk
L(G)) ⊂ Ωk+1

L (G) by the
following corollary.

Corollary 5.1.4. Let ω ∈ Ωk
L(G) be a left invariant form, then dω is also left invariant.

Proof. This follows directly from property e) of Proposition 5.1.2. Let g ∈ G, then we have

l∗g(dω) = d(l∗gω) = dω.

by the left invariance of ω.

Therefore we obtain a chain complex consisting of left invariant forms as a subcomplex
of the de Rham-complex. We will now define a new complex, which will turn out to be
isomorphic to this subcomplex.

Definition 5.1.5. Proposition 4.1.15 provided an linear isomorphism φ : Ωk
L(G) → g∗. We

define the long sequence

0 R g∗
∧2 g∗ . . . .

dkos, 0 dkos, 1 dkos, 2

The differential dkos is defined by dkos, i = φ ◦ di ◦ φ−1. Hence we have

dkos ◦ dkos = (φ ◦ d ◦ φ−1) ◦ (φ ◦ d ◦ φ−1) = φ ◦ d ◦ d ◦ φ−1 = 0.

Therefore the long sequence is a complex, which we will call the Koszul-complex.

Observe that it follows immediately from the construction of the Koszul-complex that
φ : (Ωk

L(G), d)→ (∧kg∗, dkos) is an isomorphism of chain complexes. That is, φ : Ωk
L(G)→ g∗

is an isomorphism for all k ≥ 0 and dkos ◦ φ = φ ◦ d. We obtain the following diagram:

0 R g∗
∧2 g∗ . . .

0 Ω0
L(G) Ω1

L(G) Ω2
L(G) . . .

0 Ω0(G) Ω1(G) Ω2(G) . . .

dkos

φ−1

dkos

φ−1

dkos

φ−1

d

i

d

i

d

i

d d d
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Lemma 5.1.6. Let ω ∈ Ωk
L(G) and X1, . . . , Xk ∈ XL(G). Then ω(X1, . . . , Xk) ∈ C∞(G) is

constant.

Proof. Let g ∈ G. Since ω as well as the vector fields are left invariant, we derive by using
the chain rule that

ωg(X
1
g , . . . , X

k
g ) = (l∗g−1ω)g(X

1
g , . . . , X

k
g )

= ωe(Tg(lg−1)X1
g , . . . , Tg(lg−1)Xk

g )

= ωe(Tg(lg−1)Te(lg)X
1
e , . . . , Tg(lg−1)Te(lg)X

k
e )

= ωe(Te(le)X
1
e , . . . , Te(le)X

k
e ) = ωe(X

1
e , . . . , X

k
e ).

Therefore the value of ω(X1, . . . , Xk) is independent of g ∈ G.

Lemma 5.1.7. The cohomology class H1(
∧• g∗, dkos) is trivial.

Proof. Let ωe ∈ g∗. By using dkos, 1 = φ ◦ d ◦ φ−1, we get for all X1, X2 ∈ g that

dkosω(X1, X2) = dω(X1, X2).

Here ω = φ(ωe) and X1, X2 ∈ XL(G) are the unique left invariant vector fields such that
X1
e = X1 and X2

e = X2. Now we can use the formula from Definition 5.1.1 to see that

dω(X1, X2) = X1(ω(X2))−X2(ω(X1))− ω([X1, X2]) = −ω([X1, X2]).

The last equality follows from Lemma 5.1.6, which tells us that ω(X1) and ω(X2) are con-
stant. Therefore we have that ωe ∈ ker(dkos,1) if and only if −ω([X1, X2]) = 0 for all
X1, X2 ∈ XL(G). By the surjectivity of the Lie bracket this is equivalent to ω(X) = 0 for all
X ∈ XL(G), so ω = 0. Hence ker(dkos,1) = 0, which proves that H1(

∧• g∗, dkos) is trivial.

Lemma 5.1.8. For k ≥ 0 we have Hk(
∧• g∗, dkos) = Hk

dR(G,R).

Proof. See [8].

Theorem 5.1.9. For k ≥ 0 we have Hk
dR(G,R) = Hk(G,R).

Proof. See Lee [7, p. 484].

Remark 5.1.10. By combining the previous three results, we can conclude that H1(G,R) =
0. We will use the characterization of singular homology used in Lee [7] on page 472, which
states that H1(G,R) ' Hom(H1(G,R);R). By Hom(H1(G,R);R) we mean the space all
linear maps from H1(G,R) to R. Since H1(G,R) is trivial and H1(G,R) is a real vector
space, we also have H1(G,R) = 0.
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5.2 Modules

We will now introduce the concept of modules. After the definition is given, we will extend the
the tensor product to modules. Then certain properties of this tensor product are discussed.
Finally, we will apply these constructions to H1(G,R) to analyze H1(G,Z).

The following definition comes from Modules and Rings [5].

Definition 5.2.1. Let R be a ring. An abelian group (M,+) is a right R-module is there
exists a function

M ×R→M : (x, a) 7→ xa

such that for all x, y ∈M and a, b ∈ R the following conditions are fulfilled:

1. (x+ y)a = xa+ ya

2. x(a+ b) = xa+ xb

3. x(ab) = (xa)b

A left R-module is defined likewise.

From now on we will focus on the case R = Z.

Definition 5.2.2. A Z-module morphism is a map f : M → N between Z-modules M and
N such that

• f(x+ y) = f(x) + f(y)

• f(kx) = kf(x)

for all x, y ∈M and kinZ.

Definition 5.2.3. Let M be a right Z-module, N a left R-module and G be an abelian
group. The tensor product M ⊗Z N of M and N over Z is defined as a Z-module together
with a Z-linear map M × N → M ⊗Z N : (m,n) 7→ m ⊗ n that is defined uniquely up to
isomorphisms by the following universal property: Let b : M ×N → L be a Z-linear map to
the Z-module L. Then there exists a unique Z-module morphism b̃ : M ⊗ZN → L such that
the following diagram commutes.

M ×N L

M ⊗Z N

b

b̃

Lemma 5.2.4. The tensor product M ⊗Z N exists and is uniquely determined up to group
isomorphisms.

Proof. See Tensor Products [4].

Proposition 5.2.5. The group M ⊗Z N is generated by elements of the form m ⊗ n with
m ∈M and n ∈ N .
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Proof. This proof is based on the proof given on Wikipedia [9]. Let Q be the subgroup of
M ⊗Z N generated by the elements in the statement of the proposition. Since M ⊗Z N is
abelian, Q is a normal subgroup. Let π : M ⊗Z N → (M ⊗R N)/Q be the corresponding
quotient map, then M ⊗R N/Q is abelian. We obtain the following diagram:

M ×N M ⊗Z N

(M ⊗R N)/Q

⊗

π◦⊗
π

Now observe that the map π ◦ ⊗ sends every (m,n) ∈M ×N to zero. If we were to replace
π in the diagram above with the map that is identically 0, the diagram would still commute.
By the universal property of the tensor product, we know that the quotient π = 0. Hence
Q = M ⊗Z N .

Remark 5.2.6. Let H be an abelian group, then there exists a natural way to give H the
structure of an left Z-module. Namely, define the map H × Z→ H : (h, k) 7→ hk. It is easy
to check that this map satisfies the conditions of an Z-module. There is an analogous map
that makes H into a right Z-module.

Proposition 5.2.7. The groups Z⊗Z R and R are isomorphic.

Proof. Define the Z-module morphism ψ : R → Z ⊗Z R by ψ(r) = 1 ⊗Z r. Assume that
ψ is not injective. Then there exists an r ∈ R with r 6= 0 such that 1 ⊗ r = 0. Therefore
Z× r = 0. However, this implies the map Pr : Z× R→ R : (k, r) 7→ kr cannot be lifted to
a map Z ⊗Z R → R, since Pr(1, r) = r and P̃ r(1 ⊗ r) = P̃ r(0) = 0 for every choice of P̃ r.
This contradicts with the assumption that every Z-bilinear map can be lifted. Therefore ψ
is injective.

For the surjectivity, let x ∈ Z⊗ZR. By Proposition 5.2.5 we can write x =
∑n

i=1 ki⊗Z ri.
It follows from elementary properties of the tensor product that

n∑
i=1

ki ⊗Z ri =
n∑
i=1

1⊗Z kiri = 1⊗Z

n∑
i=1

kiri

Hence x ∈ im(ψ). Therefore ψ is an isomorphism.

5.3 Coefficients for homology

From now on we will de following the approach of Hatcher [6, p. 261-265] in order to under-
stand the universal coefficient theorem for homology.

Definition 5.3.1. Let A0, A1, . . . be groups. A long sequence has the form

. . .
f3−→ A2

f2−→ A1
f1−→ A0 → 0

where the fi : Ai → Ai−1 are group homomorphisms and 0 is the trivial group. We will use
additive notation for the group product. A sequence is called exact at Ai if ker(fi) = im(fi+1).
The sequence is exact if it is exact at every group.
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Lemma 5.3.2. Let A
f−→ B

g−→ C → 0 be an exact sequence of right Z-modules A,B,C and
let M be a left Z-module. Then the sequence given by

A⊗RM
f⊗Id−−−→ B ⊗RM

g⊗Id−−−→ C ⊗RM → 0

is also exact.

Proof. This proof is based on Hatcher [6, p. 262]. Note that exactness of the short sequence
at C precisely states that g is surjective. Therefore g⊗ Id is also surjective. This proves the
exactness at C ⊗Z M .

We now proceed by showing that the sequence is exact at B⊗ZM . It is enough to prove
that the map B⊗ZM/im(f ⊗ Id)→ C⊗RM induced by g⊗Z Id is an isomorphism. We will
achieve this by constructing the inverse. Define the map ψ : C ×M → B ⊗Z M/im(f ⊗ Id)
by ψ(c,m) = b ⊗m where b ∈ B such that g(b) = c. Note that ψ is well defined, because
if g(b) = g(b′) = c, then b − b′ ∈ ker(g) = im(f). Therefore there exists an a ∈ A such that
f(a) = b−b′. This leads to b⊗Zm−b′⊗m = (b−b′)⊗Zm ∈ im(f⊗Id). Since ψ is Z-bilinear, by
the universal property we obtain a Z-module morphism C⊗RM → B⊗RM/im(f ⊗ Id).

Definition 5.3.3. Let H be an abelian group, then a free resolution F of H is a long exact
sequence

. . .→ F2
f2−→ F1

f1−→ F0
f0−→ H → 0

such that each Fi is a free group.

Let M be a abelian group and F be a free resolution of H. By viewing all groups involved
as Z-modules, we tensor the free resolution F of H by M over Z to obtain a long sequence

. . .→ F2 ⊗Z M
f2⊗Id−−−→ F1 ⊗Z M

f1⊗Id−−−→ F0 ⊗Z M
f0⊗Id−−−→ H ⊗Z M → 0.

Observe that Lemma 5.3.2 states that this sequence is exact at F0 ⊗Z M and H ⊗Z M . We
write Hn(F ⊗Z M) for the homology group ker(fn ⊗ Id)/im(fn+1 ⊗ Id).

Lemma 5.3.4. For any two free resolutions F and F ′ of H we have Hn(F⊗ZM) ' Hn(F ′⊗Z
M).

Proof. See Hatcher [6] page 263.

Therefore Hn(F ⊗Z M) is only dependent on the choice of M and H.

Remark 5.3.5. Let Tor(H,M) denote H1(F ⊗Z M). Furthermore, by Hn(C;M) we mean
the n-th homology class of the chain complex C with coefficients in the abelian group M .

Theorem 5.3.6 (The universal coefficient theorem for homology). Let C be a chain complex
of free abelian groups and M an abelian group. Then there are natural short exact sequences

0→ Hn(C)⊗Z M → Hn(C;M)→ Tor(Hn−1(C),M)→ 0

for all n ≥ 1.

Proof. See Hatcher [6, p. 264].
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6 Finiteness of the fundamental group

Throughout this section, let G be a connected, compact semi simple Lie group.

Lemma 6.0.1. The natural map H1(G) ⊗Z R → H1(G;R) : (
∑

i r1σi, λ) 7→ λ
∑

i r1σi is a
group isomorphism.

Proof. We will make use of Theorem 5.3.6. Let C be the singular complex of G

. . .→ C2(G)
∂2−→ C1(G)

∂1−→ C0(G)→ 0 (1)

Note that Ci are all free abelian groups. Choose M = R. Then we have in particular
Hn−1(C) = H0(G) = Z, because G is connected.

Now we want to calculate Tor(Z,R). We choose the free resolution F by F0 = Z and
Fi = 0 for i > 0. This gives us the exact sequence

. . .→ 0→ Z Id−→ Z→ 0.

After tensoring with R we obtain the sequence F ⊗Z R:

. . .→ 0→ Z⊗Z R
Id−→ Z⊗Z R→ 0

By Proposition 5.2.7 this sequence is equal to

. . .→ 0→ R Id−→ R→ 0

Hence Tor(Z,R) = H1(F ⊗Z R) = 0. By Theorem 5.3.6 we now have the following short
exact sequence:

0→ H1(G)⊗Z R→ H1(G;R)→ 0

Therefore the natural inclusion i : H1(G) ⊗Z R → H1(G;R) given by i(
∑

j kjσj ⊗ rj) =∑
j rjkjσj is an isomorphism.

Definition 6.0.2. Let H be a group, then an element h ∈ H is called torsion, if there exists
an n ∈ N such that hn = e.

Example 6.0.3. The only torsion elements in the additive groups Z and R are 0. Any finite
group contains only torsion elements. 4

Lemma 6.0.4. If H1(G)⊗Z R = 0, then every element of H1(G) is torsion.

Proof. Define the map φ : H1(G) → H1(G,R) such that φ(c) = c ⊗Z 1. Fix c ∈ H1(G)
and define Zc = {kc ∈ H1(G)|k ∈ Z}. Then we have Zc ⊂ H1(G), so φ(Zc) = 0. Define
ϕ : Z→ Zc that maps n onto nc. We obtain

Z Zc

Z/ ker(ϕ)

ϕ

π
f
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Note that ϕ is a surjective homomorphism of Z-modules. Therefore f is an isomorphism of
Z-modules and ker(ϕ) is an ideal of Z. From the fact that Z is prime ideal domain, we derive
ker(ϕ) = (n) for a certain n ∈ N or ker(ϕ) = 0. Assume the latter, then Zc is isomorphic to Z
as Z-module. Hence Zc⊗ZR ' Z⊗ZR = R by 5.2.7. This contradicts with H1(G)⊗ZR = 0.
Therefore ker(ϕ) = (n), so c is torsion.

Remark 6.0.5. From Remark 5.2.6 it follows that H1(G,R) = 0. By Lemma 6.0.1 we
get that H1(G) ⊗Z R = 0. Using Lemma 6.0.4, we now have that H1(G) only contains
torsion elements. Finally, we can conclude that π1(G) contains only torsion elements, since
π1(G) ' π1(G)ab ' H1(G).

Theorem 6.0.6. Let G be a compact manifold, then H1(G) is finitely generated.

Proof. See Bott and Tu [3] page 42 Theorem 5.1 and Proposition 5.3.1

By using H1(G) ' π1(G), we get that π1(G) is finitely generated.

Theorem 6.0.7. The fundamental group of a connected, compact semisimple Lie group G
is finite.

Proof. Since π1(G) is finitely generated, let x1, . . . , xk ∈ π1(G) be generators of the funda-
mental group. Since every element is torsion, for all 1 ≤ i ≤ k there exists an ni ∈ N such
that xni

i = e. Let y ∈ π1(G) be arbitrary. Then we write y = xj11 . . . x
jn
n , because π1(G) is

abelian. Furthermore, we may assume that 0 ≤ ji < ni. Therefore the number of distinct
elements of π1(G) is at most

∏k
i=1 ni. This proves the theorem.
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