
Convergence and behaviour of various iterative
minimization algorithms

Niels Scholte
Mathematics

Bachelor Thesis

Supervisor:
Tristan van Leeuwen

8 June 2018

1

Contents

1 Introduction 4

2 Conjugate Gradients 5

2.1 Linear Conjugate Gradients . 6

2.1.1 Conjugate Directions . 6

2.1.2 Conjugate Gradients . 9

2.1.3 Convergence in n steps∗ 11

2.1.4 Convergence in r steps∗ 12

2.2 Non-linear conjugate gradients 16

2.2.1 Line searches . 18

2.2.2 Global Convergence . 20

2.2.3 Convergence speed . 25

3 Nesterov Accelerated Gradient 29

3.1 Momentum . 29

3.2 Convergence rate . 31

3.2.1 Convexity . 31

3.2.2 β-smoothness and convexity 33

3.2.3 Convergence analysis . 33

3.3 Momentum in practise . 35

4 Discussion and conclusions 37

References 38

5 Appendix 39

2

5.1 Lemmas . 39

5.2 NAG reimplemented . 39

3

1 Introduction

Artificial intelligence, or function approximation, is becoming very popular for
solving tasks in a wide variëty of fields. These fields include biology [Anger-
mueller et al., 2017], natural language processing [Wu et al., 2016] and image
processing [He et al., 2016]. The rise of artifical inteligence, and more specif-
ically deep learning, was catalysed by a breakthrough in image classification
in 2012 [Krizhevsky et al., 2012], where it was demonstrated to be much more
very effective than previous methods. Deep learning is at its core solving an
optimisation problem. Namely, an objective function is minimized by changing
parameters based on the gradient of this objective function.

For example, in medical imaging it might be essential to analyze X-ray im-
ages effectively and cost efficiently using computer programs, with less need for
human experts. A desired function could take the X-ray image pixel data as
input and output confidence scores for a certain diagnosis. One could acquire
such a function through deep learning by cleverly defining parameters on the
input and changing these parameters such that inputs give desired outputs. In
other words, an objective function is used to measure how different the realized
outputs are from the desired outputs, for training samples in a dataset. This ob-
jective is a function of the parameters in the model, thus the objective function
can be minimized over these parameters resulting in a highly useful function.

Such functions must contain non linear components if they are to be more
accurate than linear classifiers. To accomplish this, a function is built by alter-
nating matrix multiplications, containing parameters, and non linear functions,
for increased complexity. This results in a highly complex optimization prob-
lem, often containing tens of millions of parameters. Because of this, iterative
methods are necessary.

A method of choosing the steps by which the parameters are changed is called
an optimizer. In this bachelor thesis, convergence properties and behaviour of
several optimizeres are discussed and visualised. The first class of optimizers
are variants of the Conjugate Gradients method (Conjugate gradients or CG),
which are more classically used methods. Most proofs involving these methods
were obtained from [Jorge Nocedal, 2006]. In this chapter, the sections marked
with ∗ contain proofs which, although very interesting, are of lesser importance
to the overarching theme of this thesis and can therefore be skipped.

The second class of optimizers that we review are the Momentum Based Methods
(MBM), in which an average gradient is used to update the parameters. More
specifically, Nesterov Accelerated Gradients (NAG) will be discussed in detail.
Most proof in this section, more specifically 3.2, are obtained from [Bubeck,
2015].

4

2 Conjugate Gradients

The Conjugate Gradient method (Also referred to as Conjugate Gradients or
CG) was introduced in [Hestenes and Stieffel, 1952] as an alternative method
to solving linear systems of the form Ax = b, where b, x ∈ Rn and A ∈ Rn×n
a symmetric positive definite matrix. Because this is equivalent to minimizing
the quadratic function f : Rn → R given by

f(x) :=
1

2
xTAx− bTx, (1)

the Conjugate Gradient method will be viewed as a way of minimizing an objec-
tive function where the function in this particular case is given by equation (1).
Since its introduction, many variants have been introduced to also minimize
general continuously differentiable functions. The method based on minimizing
equation (1) will be called the linear Conjugate Gradient method whereas meth-
ods for other functions will be called non-linear Conjugate Gradient methods.

What makes CG particularly interesting is that for systems in equation (1), CG
converges in at most n iterations and often faster depending on the distribution
of eigenvalues of the matrix A. These results, assuming exact arithmetic, turn
out to partially carry over to non-linear CG. This property of acquiring quick
approximate solutions is very valuable for big complex systems as computation
can be big.

Because of this, the convergence rate of linear CG is discussed first. Then,
the global convergence, the convergence to a stationary point from any starting
point, is established for a non-linear CG variant. Finally, the convergence rates
of this variant will be compared to other variants through experimental results.

5

2.1 Linear Conjugate Gradients

2.1.1 Conjugate Directions

The Conjugate Gradient method relies on generating so called conjugate direc-
tions which we define as follows:

Definition 2.1. The non-zero vectors p0, p1, ..., pn−1 ∈ Rn are said to be con-
jugate with respect to a symmetrical positive definite matrix A ∈ Rn×n if

pTi Apj = 0, for all i 6= j.

The results discussed in this chapter are in and of itself great ways of obtaining
intuition for this definition. Therefore, we will refer to figure 1 for a visualisation
of conjugate direction vectors in action and only remark that conjugacy implies
linear independence. This can be proven by contradiction by assuming that the
conjugate vectors are not linearly independent. If that is the case then there
exist a pm ∈ {p0, p1, ..., pn−1}, and an l 6= m, for which 0 6= al , such that

pm =

n−1∑
k=0
k 6=m

akpk,

where ai ∈ R. Because p0, p1, ..., pn−1 are conjugate we find that

0 = pTl Apm

= pTl A

n−1∑
k=0
k 6=m

akpk

= alp
T
l Apl 6= 0,

because A is positive definite and al 6= 0.

Using such a set of conjugate directios, the method finds the minimizer x∗ of
equation (1) by minimizing the objective function along each conjugate direc-
tion separately. This results in an iterative algorithm where at each iteration,
the next point xk+1 is generated by minimizing the objective function f along
a conjugate direction pk. The step size αk along pk, required to get to this
minimum, can be found by deriving f(xk + αpk) with respect to α. So define

gk(α) = f(xk + αpk)

=
1

2
(xk + αpk)TA(xk + αpk)− bT (xk + αpk)

= α2(
1

2
pTkApk) + α

(
(xTkA− bT)pk

)
+ (

1

2
xTkAxk − bTxk).

6

Since A is positive definite, g′′k (α) = pTkApk > 0. Minimizing over α then gives

αk = − (Axk − b)T pk
pTkApk

. (2)

Because this step size applies to all sets of conjugate directions, we can define
an algorithm that, unlike GC, does not generate its own conjugate directions
and study its convergence. This algorithm, shown in algorithm 1, is called the
conjugate direction method.

Algorithm 1 Conjugate Direction Method

1: Given x0 and a set of conjugate vectors {p0, p1, ..., pn−1};
2: Set k ← 0;
3: while Axk 6= b do

αk ← −
(Axk − b)T pk

pTkApk

xk+1 ← xk + αkpk

k ← k + 1

This algorithm has various interesting properties. Before investigating those,
we introduce the residuals which are the gradients of f at the iterates, given by

rk = Axk − b.

These can be written as a function of the previous residual, namely

rk+1 = A(xk + αkpk)− b
= rk + αkApk.

(4)

Using this we find that

rTk+1pk = (rk + αkApk)T pk

= rTk pk −
rTk pk
pTkApk

pTkApk

= 0.

(5)

This result is not surprising considering the fact that αk minimizes the objec-
tive function f along pk, therefore an orthogonal gradient is to be expected.
However, using induction, it can also be shown that the residuals produced by
Algorithm (1) are orthogonal to all previous directions. In other words,

rTk+1pi = 0, for i = 0, 1, ..., k. (6)

7

To proof this, first note that in particular for k = 0, we have that rT1 p0 = 0 by
equation (5). Then, assuming the induction hypothesis

rTk+1pi = 0, for i = 0, 1, ..., k,

we note that rTk+2pk+1 = 0 by equation (5). Similarly we have for i 6= k+ 1 that

rTk+2pi = (rk+1 + αk+1Apk+1)T pi

= rTk+1pi + αk+1p
T
k+1Api

= 0,

since pTk+1Api = 0 by conjugacy and rTk+1pi = 0 using the induction hypothesis.

A second interesting property is that algorithm 1 converges to the minimum in
at most n steps, which will be used to show that CG converges in at most n steps.
In other words, we can show that xn = x∗ if x∗ 6= xk for all k ∈ {0, 1, ..., n− 1}.
To prove this we first note that by the definition of the iterates we have

xn − x0 = α0p0 + ...+ αn−1pn−1.

Secondly, we note that the conjugate vectors p0, p1, ..., pn−1 are linearly inde-
pendent as shown earlier. Therefore, they span Rn and we have that

x∗ − x0 = µ0p0 + ...+ µn−1pn−1 (7)

for some µ0, ..., µn−1 ∈ R. Using conjugacy this results in

µkp
T
kApk = pTkA(µ0p0 + ...+ µn−1pn−1)

= pTkA(x∗ − x0), by equation (7);

= pTkA(x∗ − xk + xk − x0)

= pTkA(x∗ − xk) + pTkA(xk − x0).

By the definition of the algorithm we have for the second term on the RHS that

pTkA(xk − x0) = pTkA(α0p0 + ...+ αk−1pk−1) = 0,

by conjugacy. So,

µkp
T
kApk = pTk

(
A(x∗ − xk)

)
= −pTk (Axk − b)

resulting in µk = − (Axk−b)T pk
pTkApk

= αk, for k = 0, 1, ..., n− 1. Therefore, x∗ = xn.

We can, however, make this result slightly stronger using a multivariate ap-
proach.

Lemma 2.1. The iterates xk generated by the algorithms 1 minimize f(x) =
1
2x

TAx− bTx from equation (1) over the set

{x+ x0|x ∈ span{p0, p1, ..., pk−1}} (8)

8

Proof. Notice first that if the minimizer of f over the given set exists, it is of the
form x̂k+1 = x0 + â0p0 + â1p1 +...+ âkpk = x0 +Pkâk, where Pk =

(
p0, p1, ..., pk

)
and âk =

(
â0, â1, ..., âk

)T ∈ Rk. Since x̂k+1 is only variable in âk for minimizing
over the given set, we now define gk : Rk → R as

gk(ak) := f(x0 + Pkak)

=
1

2
(x0 + Pk−1ak)TA(x0 + Pkak)− bT (x0 + Pkak)

=
1

2
aTk (PTk APk)ak +

(
(xT0 A− bT)Pk

)
ak +

1

2
xT0 Ax0,

and notice that that PTk APk is a diagonal matrix due to conjugacy. We also
notice that it has only positive elements on the diagonal, due to A being positive
definite. Because the standard unit vectors are eigenvectors of a diagonal matrix,
the eigenvalues lie on the diagonal. Therefore, ∇2gk(a) = PTk APk is positive
definite and thus gk is a convex quadratic function. Because of this, the mini-
mizer x̂k exists and we have that âk minimizes gk. Therefore ∇gk(âk) = 0 ∈ Rk,
as ∇gk is continuous. Combining this with the fact that PTk APk is diagonal we
now notice that for α =

(
α0, α1, ..., αk

)
as in in algorithm 1, α = â. Therefore,(

α0, α1, ..., αk
)
minimizes g, thus minimizing f over the set given by equation

(8).

In particular, this also implies that algorithm 1 terminates in at most n steps.

2.1.2 Conjugate Gradients

In contrast to algorithm 1, CG generates its own conjugate directions. It does
so by setting the first direction to be p0 = −r0 and its next directions to be

pk+1 = −rk+1 + βk+1pk, (9)

where βk+1 is determined by imposing pTkApk+1 = 0. This results in

0 = pTkA
(
pk+1

)
= pTkA

(
− rk+1 + βk+1pk

)
= −pTkArk+1 + βk+1p

T
kApk,

which yields βk+1 =
rTk+1Apk

pTkApk
. The resulting algorithm is given in Algorithm 2

and an illustration of the algorithm in two dimensions is given in figure 1.

9

Algorithm 2 Conjugate Gradient Method
1: Given x0;
2: Set r0 ← Ax0 − b, p0 ← −r0, k ← 0;
3: while rk 6= 0 do

αk ← −
rTk pk
pTkApk

xk+1 ← xk + αkpk

rk+1 ← Axk+1 − b

βk+1 ←
rTk+1Apk

pTkApk

pk+1 ← −rk+1 + βk+1pk

k ← k + 1

Although two dimensions is not enough to illustrate the method’s behaviour
beyond the direct consequences of how it was constructed, it still gives insight
in how the method operates.

Figure 1: Conjugate gradients applied to the system f(x) = 1
2x

T
(

2 0
0 8

)
x −(−.05

.05

)
x. The ellipses are (rounded) level curves of f , the vector field illustrates

the gradient ∇f and the blue line shows the steps taken by CG.

10

2.1.3 Convergence in n steps∗

This section focuses on showing that CG generates conjugate directions, en-
abling us to use Lemma 2.1 to show that CG converges in at most n steps.
It can be skipped if one is only interested in methods for non-linear objective
functions.

To show that the directions pk are conjugate, we first need to show that

span{p0, p1, ..., pk} = span{r0, r1, ..., rk} = span{r0, Ar0, ..., A
kr0}. (11)

We note that only the case where xk 6= x∗ is interesting, since xk = x∗ implies
that pk and rk are zero. The proof is by induction. First note that for k = 0,
equation (11) holds as p0 = −r0. Assuming that equation (11) is true for k we
show that the same holds for k + 1. Beginning with the right equality, we first
show that

span{r0, r1, ..., rk, rk+1} ⊂ span{r0, Ar0, ..., A
kr0, A

k+1r0}.

Note that by the induction hypothesis rk, pk ∈ span{r0, Ar0, ..., A
kr0}. Because

of this, there exist γ0, ..., γk ∈ R such that

pk = γ0r0 + γ1Ar0 + ...+ γkA
kr0,

and therefore

Apk = γ0Ar0 + γ1A
2r0 + ...+ γkA

k+1r0.

Since αk ∈ R, we conclude by equation (4) that rk+1 is also a linear combi-
nation of r0, Ar0, ..., A

k+1r0. Combining this with the induction hypothesis,
every element in span{r0, ..., rk+1} can be written as a linear combination of
r0, Ar0, ..., A

k+1r0, so we have

span{r0, r1, ..., rk, rk+1} ⊂ span{r0, Ar0, ..., A
kr0, A

k+1r0}.

For the reverse inclusion we note that by a similar reasoning as above we have

Ak+1r0 = A(Akr0)

∈ span{Ap0, Ap1, ..., Apk}, By the induction hyp.;

= span{r1 − r0

α0
,
r2 − r1

α1
, ...,

rk+1 − rk
αk

}, By equation(4);

⊂ span{r0, r1, ..., rk+1}.

Therefore we have

span{r0, r1, ..., rk, rk+1} = span{r0, Ar0, ..., A
kr0, A

k+1r0}. (12)

11

To prove the left equality of equation (11) for k + 1, we note that

span{p0, p1, ..., pk, pk+1}
= span{p0, p1, ..., pk, rk+1}, by equation (9);
= span{r0, r1, ..., rk, rk+1}, by the induction hypothesis;

proving equation (11).

We can now show that the conjugate gradient method convergences in at most
n steps by using the precious result.

Theorem 2.2. The Conjugate Gradient method, given by algorithm 2, gener-
ates conjugate direction vectors and converges in at most n steps.

Proof. The proof by induction. First note that by construction of βk, pk+1Apk =
0, so in particular for k = 0 we have p1Ap0 = 0. Now assume that pkApi = 0
for all i = 0, 1, ..., k − 1 and prove that this holds for k + 1.

We note that βk was constructed such that pk+1Apk = 0, so we only need to
consider pk+1Api for i = 0, 1, ..., k− 1. By the definition of pk+1 in equation (9)
we then have that

pTk+1Api = (−rk+1 + βk+1pk)TApi = −rTk+1Api + βk+1p
T
kApi

We note that by equation (11), Api is a linear combination of p0, p1, ..., pi+1. It
follows that rTk+1Api = 0 by equation (6) and that pTkApi = 0 by the induction
hypothesis. Therefore, pTk+1Api = 0 for i = 0, 1, ..., k. Because the directions
are conjugate, it follows by Lemma 2.1 that algorithm 2 terminates in at most
n steps.

2.1.4 Convergence in r steps∗

This section focuses on showing that CG converges in at most r steps, where r is
the number of distinct eigenvalues of A in equation (1). This result shows that
CG has the potential to converge very fast, increasing the interest in extending
it to methods for non-linear objectives. It can be skipped if one is only interested
in methods for non-linear objective functions.

We first introducing the distance induced by the norm1:

‖z‖2Ā := zT Āz,

1Note that 〈z1, z2〉 := zT1 Āz2 defines the inner product that induces the norm, showing
that ‖ · ‖Ā is indeed a norm.

12

where Ā ∈ Rn×n is a symmetrical positive definite matrix. Using this norm we
will show that

‖xk − x∗‖2A ≤ max
1≤i≤n

(
1 + λiPk(λi)

)2‖x0 − x∗‖2A,

for the iterates of algorithm 2, for all polynomials Pk of degree k. This will then
be used to prove Theorem 2.3 which demonstrates the faster convergence. We
begin by noticing that for all x ∈ Rn we have that

1

2
‖x− x∗‖2A =

1

2
(x− x∗)TA(x− x∗)

=
1

2
xTAx− xTAx∗ +

1

2
x∗

T

Ax∗

= (
1

2
xTAx− xT b)− (

1

2
x∗

T

Ax∗ − x∗
T

Ax∗)

= (
1

2
xTAx− bTx) + (

1

2
x∗

T

Ax∗ − bTx∗)

= f(x)− f(x∗).

Because by Lemma 2.1 the the iterate xk+1 of algorithm 2 minimizes f over the
set Lk := {x + x0|x ∈ span{p0, p1, ..., pk}} and f(x∗) is a constant, they also
minimize ‖x− x∗‖2A over this same set. In other words

min
x∈Lk

‖x− x∗‖2A = ‖xk+1 − x∗‖2A.

We will now rewrite xk to the more convenient form

xk+1 = x0 + α0p0 + ...+ αkpk

= x0 + γ0r0 + ...+ γkA
kr0, by equation (11),

for some γ0, ..., γk ∈ R. We can rewrite this further by defining a polynomial
P ∗k : Rn×n → Rn×n of degree k as

P ∗k (A) = γ0I + γ1A+ ...+ γkA
k.

Since xk+1 = x0 + P ∗k (A)r0, we have

min
x∈Lk

‖x− x∗‖2A = ‖xk+1 − x∗‖2A

= ‖x0 − x∗ + P ∗k (A)r0‖2A
= min

Pk

‖x0 − x∗ + Pk(A)r0‖2A,

as Pk 6= P ∗k implies f(x0 +Pk(A)r0) > f(xk), resulting in a greater value of the
norm. Next we will rewrite the expression ‖x0 − x∗ + Pk(A)r0‖2A. Using the
notation λi and vi for the eigenvalues and the corresponding eigenvectors of A,

13

we have by Lemma 5.1 that

‖x‖2A = xTAx

= xT
n∑
i=1

λiviv
T
i x

=

n∑
i=1

λi(x
T vi)(v

T
i x)

=

n∑
i=1

λi(v
T
i x)2, for all x ∈ Rn.

(13)

We also note that because the orthonormal eigenvectors of A span Rn, we can
write

x0 − x∗ =

n∑
i=1

ξivi, (14)

for some ξi ∈ R. Therefore we have by using the orthonormality of the eigen-
vectors that

‖x0 − x∗‖2A = ‖
n∑
j=1

ξjvj‖2A

=

n∑
i=1

λi
(
vTi

n∑
j=1

ξjvj
)2

=

n∑
i=1

λi
(n∑
j=1

ξi(v
T
i vj)

)2
=

n∑
i=1

λiξ
2
i .

(15)

14

Using the same notation we also find

x0 − x∗ + Pk(A)(r0) = (x0 − x∗) + Pk(A)
(
A(x0 − x∗)

)
=
(
I + Pk(A)A

)
(x0 − x∗)

=
(
I + Pk(A)A

) n∑
i=1

ξivi

=

n∑
i=1

(
I +

(
Pk(A)

)
A
)
ξivi

=

n∑
i=1

(
I +

(
γ0I + ...+ γkA

k
)
A
)
ξivi

=

n∑
i=1

(
1 +

(
γ0 + ...+ γkλ

k
i

)
λi

)
ξivi

=

n∑
i=1

(
1 +

(
Pk(λi)

)
λi

)
ξivi, for all Pk.

(16)

By combining the equations (13), (14), (15) and (16) and by again using the
orthonormality of the eigenvectors of A we now find

‖xk+1 − x∗‖2A = min
Pk

‖x0 − x∗ + Pk(A)r0‖2A

= min
Pk

n∑
i=1

λi

(
vTi

n∑
j=1

(
1 + Pk(λj)λj

)
ξjvj

)2

= min
Pk

n∑
i=1

λi

(n∑
j=1

(
1 + Pk(λj)λj

)
ξj(v

T
i vj)

)2

= min
Pk

n∑
i=1

λi
(
1 + Pk(λi)λi

)2
ξ2
i

≤ min
Pk

max
1≤j≤n

(
1 + Pk(λj)λj

)2 n∑
i=1

λiξ
2
i

= min
Pk

max
1≤j≤n

(
1 + Pk(λj)λj

)2‖x0 − x∗‖2A

Because this inequality holds for the minimizer of the right hand side, it holds
for all polynomials Pk. We will now use this to prove the following result.

Theorem 2.3. If A in equation (1) has r distinct eigenvalues, then algorithm
2 will find the solution in at most r iterations.

Proof. We will construct a polynomial such that

0 ≤ ‖xr − x∗‖2A ≤ max
1≤i≤n

(
1 + λiPr−1(λi)

)2‖x0 − x∗‖2A = 0.

15

Because the eigenvalues of the positive definite matrix A take on the r distinct
values 0 < τ1, τ2, ..., τr we can define the polynomial

Qr(x) := (−1)r
(x− τ1)(x− τ2)...(x− τr)

τ1τ2...τr
.

Now note that Qr(τi) = 0 and that Qr(0) = 1. Therefore Qr(x) − 1 can be
written as

Qr(x)− 1 = c1x+ c2x
2 + ...+ crx

r

for some constants ci ∈ R. This means that we can define

Pr−1 :=
Qr(x)− 1

x
= c1 + c2x

1 + ...+ crx
r−1.

This yields

0 ≤ ‖xr − x∗‖2A
≤ max

1≤i≤n

(
1 + λiPr−1(λi)

)2‖x0 − x∗‖2A

= max
1≤i≤n

(
1 + λi

Qr(λi)− 1

λi

)2‖x0 − x∗‖2A

= max
1≤i≤n

Qr(λi)
2‖x0 − x∗‖2A

= 0, since Qr(λi) = 0,

thus proving that xr = x∗

2.2 Non-linear conjugate gradients

Now that we have shown that the conjugate gradient method can potentially
converge quite fast, a natural thing to do is to extend the method to general
non-linear, but still continuously differentiable functions φ : Rn → R. To do so,
two adjustments need to be made to the method. That is, methods of finding the
search directions and the step sizes are required, as these previously depended
on the exact formulation of f . The Fletcher-Reeves method (Fletcher-Reeves
or FR) proposes a method for both of these issues.

To find the new search direction, FR simply replaces the gradient of f by the
gradient of the new function φ. However, it does so in a slightly rewritten the
version of CG, where for convenience {φk, fk,∇φk,∇fk} will be used to denote
{φ(xk), f(xk),∇φ(xk),∇f(xk)}. The algorithm will be rewritten using that fact
that

rTj ri = 0, for i 6= j. (17)

16

This will be shown using Theorem 2.2. As the generated directions of algorithm
2 are conjugate, we have by equation (6) that

0 = rTk pi

= rTk (−ri + βipi−1)

= −rTk ri + βir
T
k pi−1, for i = 1, 2, ..., k − 1.

Therefore, rTk ri = βi(r
T
k pi−1) = 0. For i = 0 we have by the same equation that

rTk r0 = −rTk p0 = 0.

To rewrite algorithm 2, first note that by equation (4) we have that Apk =
rk+1−rk

αk
. Combining this with the equations (6) and (17) yields

βk+1 =
rTk+1Apk

pTkApk

=
rTk+1(rk+1 − rk) 1

αk

pTk (rk+1 − rk) 1
αk

= −
rTk+1rk+1

pTk rk

For k = 0 this gives

β1 =
rT1 r1

−pT0 r0
=
∇fT1 ∇f1

∇fT0 ∇f0
.

For other k we find by equation (6) that

βk+1 = −
rTk+1rk+1

(−rk + βkpk−1)T rk
=
rTk+1rk+1

rTk rk
=
∇fTk+1∇fk+1

∇fTk ∇fk
.

This is sufficient for defining FR, however, as a curiosity, we note that using
the same equations we can also rewrite αk to yield a more efficient algorithm.
Namely, for k = 0 we have

α0 =
rT0 p0

pT0 Ap0
= −∇f

T
0 ∇f0

pT0 Ap0
,

and for other k we have

αk =
rTk pk
pTkApk

=
rTk (−rk + βkpk−1))

pTkApk
= −∇f

T
k ∇fk

pTkApk
,

resulting in

αk =
∇fTk ∇fk
pTkApk

;

βk+1 =
∇fTk+1∇fk+1

∇fTk ∇fk
, for all k.

This results in the new βFRk =
∇φT

k+1∇φk+1

∇φT
k∇φk

.

17

2.2.1 Line searches

To find the new step size FR uses a different scheme. It uses a line search to
determine a sufficiently decreased next iterate. In a line search one searches for
a step size αk in the direction pk until a step size has been found that satisfies
a stop condition. At that new point xk+1 = xk +αkpk, the objective function φ
is deemed to have decreased sufficiently and to be suficiently close to the local
minimum. The strong Wolfe Conditions are commonly used stop conditions
given by

φ(xk + αkpk) ≤ φ(xk) + c1αk∇φ(xk)T pk (18a)

|∇φ(xk + αkpk)T pk| ≤ c2|∇φ(xk)T pk|, for 0 < c1 < c2 < 1. (18b)

The first of these equations ensures that {φ(xi)} is a monotonically decreasing
sequence. It also asserts that large steps require a greater drop in the objective
function to be accepted. The second equation ensures that xk+1 is closer to a
local minimum than xk along the direction pk. To be able to stability use the
strong Wolfe conditions as a stop condition for the line search in FR, we must
ensure that it is always possible to find such a step size. This a guarantee will
be given in the following Lemma.

Lemma 2.4. Let φ : Rn → R be continuously differentiable and let pk be a
descent direction. If φ is bounded below along the line {xk + αpk|α > 0}, then
there exists at least one interval of step sizes α that satisfy the strong Wolfe
conditions formulated in the equations (18a) and (18b).

Proof. We begin by naming the RHS and the LHS of equation (18a) as

gk(α) := φ(xk + αpk);

lk(α) := φ(xk) + c1α∇φ(xk)T pk,

and note that

g′k(0) = ∇φ(xk)T pk < c1∇φ(xk)T pk = l′k(0), (19)

since 0 < c1 < 1. Also note that gk(0) = φ(xk) = lk(0). Therefore, gk lies below
lk near α = 0.

Because lk(α) → −∞ when α → ∞ due to pk being a descent direction and
because gk is bounded below, we have by the intermediate value theorem2 that
lk and gk will intersect at least once. Choose α̃k to be the first value of α for
which this intersection occurs. Explicitly this gives

φ(xk + α̃pk) = φ(xk) + α̃c1∇φ(xk)T pk. (20)
2using the continuity of gk and lk

18

We now have that equation (18a) holds for the all α < α̃k. To find an interval
that satisfies the second equation as well, we use the mean value theorem to
find that a ξk ∈ (0, α̃k) exists such that

gk(α̃k)− gk(0) = gk(ξk)(α̃k − 0);

φ(xk + α̃kpk)− φ(xk) = α̃k∇φ(xk + ξkpk)T pk.

Together with equation (20) and the fact that 0 < c1 < c2 we then have that

|∇φ(xk + ξkpk)T pk| = c1|∇φ(xk)T pk| < c2|∇φ(xk)T pk|

Because φ is continuously differentiable we then have that there exists an interval
around ξk such that the inequality above, which is equivalent to equation (18b),
holds for all elements in that interval. Therefore, there exists an interval such
that the strong Wolfe conditions hold.

Given an objective function that satisfies the conditions above, an algorithm
that produces descent directions and a line search algorithm that finds and
picks an αk, we can now guarantee that the Wolfe conditions can be used in
practise.

Note that in the design of the objective function it can be asserted that φ is
bounded below. Because the first search direction p0 of FR is the negative
gradient −∇φ0, it follows from Lemma 2.4 that the strong Wolfe conditions
can be used to produce the next iterate. To be able to use Lemma 2.4 to
show that we can use the strong Wolfe conditions for all iterates, we have to
show that FR does indeed produce descent directions whenever the previous
iterate was produced using the strong Wolfe conditions. We will show this for
0 < c1 < c2 <

1
2 , in Lemma 2.5.

Lemma 2.5. If the iterate, xk = xk−1 + αk−1pk−1, in FR is produced using
a descent direction pk−1 and an αk−1 that satisfies the strong Wolfe conditions
with 0 < c2 <

1
2 , then the next search direction pk is a descent direction that

satisfies

− 1

1− c2
≤ ∇φ

T
k pk

‖∇φk‖2
≤ 2c2 − 1

1− c2
. (21)

Proof. The proof is by induction. We first introduce the function t : [0, 1
2]→ R

given by t(ξ) := 2ξ−1
1−ξ . We note that t is continuous on its domain and that it

is injective since t(a) = t(b) gives a = b. Because also −1 = t(0) < t(1
2) = 0, t

is strictly monotonically increasing.

We will now consider the case k = 0. Because c2 ∈ (0, 1
2) we have that ∇φ

T
0 p0

‖∇φ0‖2 =

−1 = t(0) < t(c2) and therefore − 1
1−c2 <

∇φT
0 p0

‖∇φ0‖2 <
2c2−1
1−c2 . Next we will assume

19

that equation (21) holds for k and show that the same holds for k+ 1. To prove
the RHS of equation (21) for k + 1 we write

∇φTk+1pk+1

‖∇φk+1‖2
=
∇φTk+1(−∇φk+1 + βFRk+1pk)

‖∇φk+1‖2
;

=
∇φTk+1(

∇φT
k+1∇φk+1

∇φT
k∇φk

pk)

‖∇φk+1‖2
− 1;

=
∇φTk+1pk

‖∇φk‖2
− 1;

≤
|∇φTk+1pk|
‖∇φk‖2

− 1;

≤ c2
|∇φTk pk|
‖∇φk‖2

− 1, by equation (18b);

= −c2
∇φTk pk
‖∇φk‖2

− 1, as ∇φTk pk < 0;

≤ c2
1− c2

− 1, by the LHS of eq. (21);

=
2c2 − 1

1− c2
.

Similarly, to prove the LHS of equation (21) for k + 1 we now write

∇φTk+1pk+1

‖∇φk+1‖2
=
∇φTk+1pk

‖∇φk‖2
− 1;

≥ −c2
|∇φTk pk|
‖∇φk‖2

− 1, by equation (18b);

= c2
∇φTk pk
‖∇φk‖2

− 1, as ∇φTk pk < 0;

≥ − c2
1− c2

− 1, by the LHS of eq. (21);

= − 1

1− c2
.

Because of this, equation (21) holds for all k. Since c2 ∈ (0, 1
2), we have that

∇φT
k pk

‖∇φk‖2 ≤
2c2−1
1−c2 = t(c2) < t(1

2) = 0 as t strictly monotonically increases on its
domain. Therefore pk is a descent direction for all k.

2.2.2 Global Convergence

Now we know that the strong Wolfe conditions can be used reliably as a stop
criterium for the line search, FR can be formulated in algorithm 3.

20

Algorithm 3 Fletcher Reeves
1: Given x0, c1, c2;
2: Evaluate ∇φ0 = ∇φ(x0)
3: Set p0 ← −∇φ0, k ← 0;
4: while ∇φk 6= 0 do

Determine αk

xk+1 ← xk + αkpk

Evaluate ∇φk+1

βk+1 ←
∇φTk+1∇φk+1

∇φTk∇φk
(22a)

pk+1 ← −∇φk+1 + βk+1pk (22b)

k ← k + 1

For this algorithm we will first demonstrate its global convergence through a
mathematical proof to illustrate that non-linear conjugate gradient methods can
have global convergence properties. We will then show that related non-linear
conjugate gradient algorithms outperform FR, demonstrated through empiri-
cally determined convergence rates. These will be used demonstrated that

1. the earlier determined convergence in much less than n steps can some-
times carry over to non-linear conjugate gradient methods;

2. mathmatically estimating the convergence rate of FR might not be very
useful.

The main tool that will be used to prove global convergence is Zoutendijk’s
theorem, shown in Lemma 2.6.

Lemma 2.6. Suppose that an objective function φ : Rn → R is Lipschitz
continuously differentiable on an open set N ⊃ L := {x|φ(x) ≤ φ0} and that φ
bounded below on L. In other words, there exists a constant L such that

‖∇φ(x)−∇φ(y)‖ ≤ L‖x− y‖, for all x, y ∈ N . (23)

For such an objective function, consider an iteration of the form xk+1 = xk +
αkpk where pk is a descent direction and αk satisfies the Wolfe conditions for-
mulated as

φk+1 ≤ φk + c1αk∇φTk pk; (24a)

∇φTk+1pk ≥ c2∇φTk pk, for 0 < c1 < c2 < 1. (24b)

21

Then
∞∑
k≥0

cos2(θk)‖∇φk‖2 <∞,

where θk is the angle between pk and the steepest descent direction −∇φk,
defined by

cos(θk) =
−∇φTk pk
‖∇φk‖‖pk‖

. (25)

Proof. We begin by noting that because of the Lipschitz continuity of ∇φ and
the definition of xk+1 we have that

‖∇φk+1 −∇φk‖ ≤ L‖xk+1 − xk‖ = Lαk‖pk‖, as αk ≥ 0,

which gives

(∇φk+1 −∇φk)T pk ≤ |(∇φk+1 −∇φk)T pk|
≤ ‖∇φk+1 −∇φk‖‖pk‖ by Cauchy-Schwarz

≤ Lαk‖pk‖2.

On the other hand, by subtracting ∇φTk pk from the second Wolfe condition in
(24b) we find that

(c2 − 1)∇φTk pk ≤ (∇φTk+1 −∇φTk)pk.

Combining the two equations above yields

(c2 − 1)∇φTk pk
L‖pk‖2

≤ (∇φk+1 −∇φk)T pk
L‖pk‖2

≤ αk.

Combining this with the first Wolfe conditions (24a) and noting that ∇φTk pk < 0
we get

φk+1 ≤ φk + c1
c2 − 1

L‖pk‖2
(∇φTk pk)2,

which, by the definition of the angle between pk and −∇φk in equation (25),
results in

φk+1 ≤ φk − c3 cos2(θk)‖∇φTk ‖2,

where c3 = c1
1−c2
L > 0. Since this holds for all k, we can repeatedly apply this

inequality to obtain

φk+1 ≤ φ0 − c3
k∑
i=0

cos2(θi)‖∇φTi ‖2,

22

which is identical to

k∑
i=0

cos2(θi)‖∇φTi ‖2 ≤
φ0 − φk+1

c3
.

From this last expression we see that the RHS is an upper bound for the LFH.
Since φ is bounded below on L and the Wolfe conditions ensure that {φi} is
monotonically decreasing, the RHS is less than a constant for all k. Therefore
we have that

∞∑
k≥0

cos2(θk)‖∇φk‖2 <∞.

This will now be used to show that FR converges globally by showing that for
the iterates of algorithm 3 we have that

lim
k→∞

inf ‖∇φk‖ = 0,

if

1. the level set L := {x|φ(x) ≤ φ0} is bounded;

2. on some open neighborhood N of L, the objective function φ is Lipschitz
continuously differentiable;

3. the line search in algorithm 3 satisfies the stong Wolfe conditions, with
0 < c1 < c2 <

1
2 .

The proof is by contradiction. Assume that limk→∞ inf ‖∇φk‖ 6= 0. Then there
exits a lower bound µ such that

‖∇φk‖ > µ > 0, for all k large enough. (26)

Note that by the assumptions 1 and 2 we have that

‖∇φ(x)‖ ≤ ‖∇φ(x)−∇φ(y)‖+ ‖∇φ(y)‖
< L‖x− y‖+ ‖∇φ(y)‖
< M + ‖∇φ(y)‖
=: T,

for some L,M, T ∈ R, y ∈ L and for all x ∈ L. Because ‖∇φ(x)‖ is bounded
we know that by the mean value theorem ‖φ(x)‖ is also bounded. Because of
this and the fact that the strong Wolfe conditions imply the Wolfe conditions
(note that ∇φkpk < 0) we are able to use Zoutendijk’s theorem.

23

Rewriting the result of Lemma 2.5 gives us

1− 2c2
1− c2

‖∇φk‖
‖pk‖

≤ −∇φTk pk
‖∇φk‖‖pk‖

≤ ‖∇φk‖
‖pk‖

1

1− c2
,

where 1−2c2
1−c2 > 0, since c2 ∈ (0, 1

2). Combining this with cos(θk) =
−∇φT

k pk
‖∇φk‖‖pk‖ ,

the assumption in equation (26) and the result of Zoutendijk’s theorem we get

µ4(
1− 2c2
1− c2

)2
∞∑
k=0

1

‖pk‖2
< (

1− 2c2
1− c2

)2
∞∑
k=0

‖∇φk‖4

‖pk‖2
≤
∞∑
k=0

cos2(θk)‖∇φk‖2 <∞.

Therefore we find that
∞∑
k=0

1

‖pk‖2
<∞. (27)

Rewriting the result of Lemma 2.5 again, we get

c2|∇φTk−1pk−1| = −c2∇φTk−1pk−1 ≤ ‖∇φk−1‖2
c2

1− c2
.

Combining this with the second strong Wolfe condition, equation (18b), gives

|∇φTk pk−1| ≤ ‖∇φk−1‖2
c2

1− c2
. (28)

Using this to rewrite ‖pk‖2, we get

‖pk‖2 = (−∇φk + βFRk pk−1)T (−∇φk + βFRk pk−1) by eq. (22b)

≤ ‖∇φk‖2 + (βFRk)2‖pk−1‖2 + 2βFRk |∇φTk pk−1|

≤ ‖∇φk‖2 + (βFRk)2‖pk−1‖2 + 2βFRk ‖∇φk−1‖2
c2

1− c2
by eq. (28)

= ‖∇φk‖2 + (βFRk)2‖pk−1‖2 + ‖∇φk‖2
2c2

1− c2
by eq. (22a)

=
1 + c2
1− c2

‖∇φk‖2 + (βFRk)2‖pk−1‖2.

Using this expression repeatedly, with c3 = 1+c2
1−c2 > 0, we get

‖pk‖2 ≤ c3‖∇φk‖2 + (βFRk)2‖pk−1‖2

≤ c3‖∇φk‖2 + (βFRk)2(‖c∇φk−1‖2 + (βFRk−1)2‖pk−2‖2)

= c3
‖∇φk‖4

‖∇φk‖2
+ c

‖∇φk‖4

‖∇φk−1‖2
+ (βFRk)2(βFRk−1)2‖pk−2‖2

≤ c3‖∇φk‖4
k∑
i=1

1

‖∇φi‖2
+
‖∇φk‖4

‖∇φ0‖4
‖p0‖2

= c3‖∇φk‖4
k∑
i=0

1

‖∇φi‖2
.

24

Combining this with 0 < µ < ‖∇φk‖ and ‖∇φ(x)‖ < T for all x ∈ L, we find

‖pk‖2 < c3
(k + 1)T 4

µ2
.

Together with equation (27) this results in

µ2

T 4c3

∞∑
k=0

1

k + 1
<

∞∑
k=0

1

‖pk‖2
<∞. (29)

However, this cannot be true as
∑∞
k=1

1
k ≮ ∞. Therefore, the assumption in

equation (26) cannot be true, proving the claim that limk→∞ inf ‖∇φk‖ = 0.

2.2.3 Convergence speed

Now that global convergence of FR has been shown, we will give an impression
of its convergence speed compared to other conjugate gradient methods. This
will be done by comparing FR to various other non-linear conjugate gradient
methods both on problems of around 1000 dimensions, as well as problems of
two dimensions, which can be easily visualized.

The first alternative non-linear conjugate gradient method that will be used is
Polak-Ribiere (PR), which differs from FR in using

βPRk =
∇φTk+1(∇φk+1 −∇φk)

∇φTk∇φk
.

However, this method is not guaranteed to converge globally, but such guar-
entees can be produced for alternatives such as

βPR+
k = max(βPRk , 0)

and

βFR−PRk =


−βFRk if βPRk < −βFRk ;

βPRk if |βPRk | < βFRk ;

βFRk if βPRk > βFRk ,

which we will not go into further. These four methods have been compared in
[Gilbert and Nocedal, 1992] on various problems. An overview of convergence
speeds is given in table 1, equivalent to table 3 in the same publication. The
table reports for various problems P, of size N, the number of iterations and
the number of function and gradient evaluations required for each of the above
algorithms to converge. Convergence is declared if ‖∇φk‖∞ < 10−5(1 + |φk|),
where ‖(x1, x2, ..., xn)T ‖∞ := max(|x1|, |x2|, ..., |xn|). The columns described as
‘mod’ indicate the number of times the methods βFR−PRk and βPR+

k differ from

25

Table 1: Convergence speeds of non-linear conjugate gradient methods on vari-
ous problems P of size N, as reported by [Gilbert and Nocedal, 1992].

βPRk . Lastly, ∗ indicates failure by exceeding 9999 iterations and ∗∗ indicates
failure to find a suitable αk through the line search procedure. For a description
of the individual problems and the implementation of the line search we refer
to the original publication.

From this table it is clear that FR often converges more slowly and that it is less
stable than its alternatives. We also note that the non-linear CG often converge
faster to the solution in less than n steps as predicted. To visualize the first
property in two dimensions, we construct two functions that are deemed to be
sufficiently non linear, namely

r1(x, y) =y4 − 1

2
y2 + 2yx− y cos(x)− sin(y)

+ x4 − 1

2
x2 − x cos(y)− sin(x) +

cos(xy) sin(xy)

4y
;

(30a)

r2(x, y) =y4 − 1

2
y2 + y|x| − y| cos(x)| − sin(y) + xy

+ x4 − 1

2
x2 − x cos(y)− sin(x) +

cos(xy) sin(xy)

4y
,

(30b)

where we note that in contrast to the second function, the first function is
smooth near x = 0.

In figure 2, the optimizers minimize the first function using a line search that
finds a netxt iterate satisfying the strong Wolfe conditions using c1 = 10−4

and c2 = .4. This was implemented by modifying exiting code from SciPy
[Jones et al., 2001]. Convergence is declared if ‖∇φk‖2 < 10−5. A behaviour

26

Figure 2: various non-linear conjugate gradient methods applied to the objective
function in equation (30a), starting at (.1, .1). Convergence speeds are reported
in table 2.

that stands out is FR spiraling around the minimum, taking very small steps,
whereas the other methods converge straight to the minimum once they are
near. This can be understood by rewriting the RHS of equation (21) and noting
that

0 <
1− 2c2
1− c2

‖∇φk‖
‖pk‖

, since c2 ∈ (0,
1

2
) and xk 6= x∗;

≤ −∇φTk pk
‖∇φk‖‖pk‖

, by eq. (21);

= cos(θk), by eq. (25).

Which tells us that if the gradient and the direction pk computed by FR are
nearly orthogonal, and therefore cos(θk) ≈ 0, then ‖∇φk‖ � ‖pk‖. Since xk is
nearing the solution and the steepest descent is pointing directly to the mini-
mum, it is reasonable to assume that a direction that is almost orthogonal to
the gradient will lead to a small step. This will result in ∇φk+1 ≈ ∇φk, which
in turn results in βk+1 = ‖∇φk+1‖

‖∇φk‖ ≈ 1. Because of this, pk will likely dominate
pk+1 = −∇φk+1 + βk+1pk, leading to a long series of small steps in ineffective
directions. In contrast, βPRk+1 ≈ 0 when ∇φk+1 ≈ ∇φk, resetting the method to
the steepest descent direction. To find out how reliant the method is on the
smoothness conditions, the experiments are repeated using function (30b). As
can be seen in figure 3, the method quickly stagnates as it fails to find a next
iterate satisfying the strong Wolfe conditions. Since the strong Wolfe conditions
assume that gradient vanishes at the minimum, the line search is adjusted to

27

FR PR PR+ FR-PR

figure it/φ,∇φ it/φ,∇φ it/φ,∇φ mod it/φ,∇φ mod

2 ∗
400/520

11/30 10/28 2 15/37 12

3 ∗∗
4/115

∗∗
3/96

∗∗
3/96

0 ∗∗
4/118

3

4 ∗∗
35/277

∗∗
43/254

∗∗
43/254

0 ∗∗
38/288

3

Table 2: Convergence speeds of the optimization procedures displayed in the
figures 2, 3 and 4. The table is structures in the same way as table 1, with
the exception that the number of iterations and function evaluations are still re-
ported when methods did not converge. Transitions in the line search parameter
c2 happen after 100 unfruitful function and gradient evaluations

Figure 3: various non-linear conjugate gradient methods applied to the objective
function in equation (30b), starting at (.1, .1). Convergence speeds are reported
in table 2.

try c2 = 1.2 and c2 = 3.6 after failure3. The results are displayed in figure 4.
We note that convergence is never declared since

lim
x↑0

∂r2(x, y)

∂x
= − cos(y)− 3

4
; lim

x↓0

∂r2(x, y)

∂x
= 2y − cos(y)− 3

4
.

3It wa later verified that these c2 values essentially remove the second strong wolfe condition
since c2 = 1020 gives similar results (not shown). Because of this CG is actually 100-200
evaluations faster than in table 2. Because the gradient is very steep for x < 0 near 0, the
interval on the other side of the ridge is too narrow for a line search to find. Because of this
using the wolfe conditions instead of the strong wolfe conditions leads to the same results.

28

(a) (b)

Figure 4: various non-linear conjugate gradient methods applied to the objective
function in equation (30b), using the adjusted line search algorithm, starting
at (.1, .1). (a) displays the entire trajectory, (b) is zoomed in on the minimum.
Convergence speeds are reported in table 2.

To still give a measure of how well the solution is approximated, we note that
the solution is located at x = 0, which yields the equation

∂r2(x, y)

∂y

∣∣∣∣
x=0

= 4y3 − y − cos(y)− 1 = 0.

This results in the approximate solution (0, .856301). This approximation is
then used to determine the distances to the last iterates. These distances are
displayed in table 3 and it is worth noting that although the algorithm broke
down, great approximations are still obtained.

FR PR PR+ FR-PR
3.67 · 10−3 9.49 · 10−3 9.49 · 10−3 3.12 · 10−3

Table 3: The distances of the last iterates displayed in figure 4 to a minimum
of the function (30b)

3 Nesterov Accelerated Gradient

3.1 Momentum

In the previous chapter we saw that non-linear CG can arrive at the solution
of a system quite quickly, especially considering the algorithm only has access

29

to local information in a highly non linear landscape. However, the algorithm
breaks down when the objective function is no longer smooth. Although the
smoothness was only violated in one dimension, CG still fails to make progress
in the other dimensions. This could be a big problem if the parameter space is
large and one dimension can stagnate all the others.

In this chapter, another approach will be introduced, namely gradient descent
with momentum. In such an algorithm, a running average of the gradient is used
to take the descent steps without a line search, making it resistant to fluctuations
in the gradient. Such an algorithms is useful when dealing with conflicting local
information due to a noise or due to great local changes in the steepness of
the landscape. The exact algorithm used for constructing a running average
turns out to matter little in practise since the different methods exhibit similar
behaviour. Nonetheless, it matters for the analysis of its convergence rate.
Because of this, we analyze the variant called Nesterov Accelerated Gradient
(NAG) [Nesterov, 1983], algorithm 4, in the next section.

Algorithm 4 Nesterov Accelerated Gradient
1: Given x0, η0, lr0, kmax
2: Set k ← 0
3: while k ≤ kmax do

Evaluate ∇φk;

yk+1 ← xk − lrk∇φk
xk+1 ← yk+1 + ηk(yk+1 − yk)

Compute lrk+1, ηk+1

k ← k + 1

Before we specify ηk and lrk, we first obtain an intuition as to why this method
can be thought of as an algorithm that uses momentum. We first consider
its behaviour in the situation where the iterates enter a regime in which the
gradient suddenly drops to values close to 0. That way, xk+1−xk is dominated
by the built up momentum in the term ηk(yk+1 − yk), where 0 < ηk < 1. In
a regime where the gradient is very low, this is then approximately equal to
ηk(xk − xk−1). In other words, the step taken by the current iterate is given by
the decayed step of the previous iterate.

Another illustration can be given by considering the case where the gradients,
the learn rate (or step size) lrk and the momentum parameter η are constant.

30

This gives the step sizes

xk+1 − xk = −c+ η(xk − xk−1)

= −c
k−1∑
t=0

ηt + ηk(x1 − x0)

= −c
k−1∑
t=0

ηt + ηk
(
− c+ η(x0 − c− x0)

)
= −c

k+1∑
t=0

ηt,

for some c. Therefore the step sizes converge (or accelerate) to −1
1−η c, much

larger in amplitude than c. Additionally, if the gradient and therefore c were to
suddenly flip sign, the steps would slowly decrease, accelerating in the reverse
direction.

NAG uses an ever increasing momentum term that is given by ηk = λk − 1
λk+1

,

where λ−1 = 0 and λk+1 =
1+
√

1+4λ2
k

2 . For k > 0 this means that 0 < ηk < 1
and that it grows to 1 as k → ∞. One can show this by noticing that λk is a
solution to the quadratic equation 0 = λ2

k − λk − λ2
k−1. Since λk > 0 for k > 0,

one finds that

λk < λk+1 −
1

2
< λk+2 − 1 =

λ2
k+1

λk+2
,

which in turns yields that

ηk =
λk − 1

λk+1
<
λk+1 − 1

λk+2
= ηk+1,

since −1
λk+1

< −1
λk+2

. This shows that the sequence is monotonically increasing.
We also note that by the same inequalities we have that λk +n < λk+2n, which
shows λk →∞ as k →∞, showing that ηk grows to 1 as k →∞ (write out ηk’s
definition). For defining its step size, NAG assumes that the objective function
is Lipschitz continuously differentible with constant β. The learn rate is then
given by lr = 1

β .

3.2 Convergence rate

3.2.1 Convexity

Now that we have obtained an intuition for the algorithm, we derive a theoretical
convergence rate, which also shows global convergence. For this proof there

31

are two assumptions. The first is that φ : Rn → R is Lipschitz continuously
differentiable with constant β, in other words ‖∇φ(x)−φ(y)‖ ≤ β‖x− y‖. This
will be referred to this by saying that φ is β-smooth. The other assumption is
that φ is convex, where convexity is defined below.

Definition 3.1. A set χ ⊂ Rn is said to be convex if it contains all its segments,
that is

tx+ (1− t)y ∈ χ, for all (x, y, t) ∈ χ× χ× [0, 1].

A function φ : χ→ R is said to be convex if

φ
(
tx+ (1− t)y

)
≤ tφ(x) + (1− t)φ(y), for all (x, y, t) ∈ χ× χ× [0, 1].

A function φ : χ→ R is said to be α-strongly convex with constant α > 0 if

φ(x)− φ(y) ≤ ∇φ(x)T (x− y)− α

2
‖x− y‖2, for all x, y ∈ χ.

To develop an intuition, we note that strong convexity, as the names indicate,
implies convexity. To show this (momentarily ignoring that φ : Rn → R and
that Rn is convex), we note that if φ is strongly convex, then

φ(x)− φ(y) ≤ ∇φ(x)T (x− y), for all x, y ∈ χ, (32)

as α > 0. Because χ is convex, we have that z = tx + (1 − t)y ∈ χ for all
t ∈ [0, 1]. Therefore, we have by the above inequality that

t
(
φ(z)− φ(x)

)
≤ t

(
∇φ(z)T (z − x)

)
+(1− t)

(
φ(z)− φ(y)

)
+ (1− t)

(
∇φ(z)T (z − y)

)
.

This reduces to

−tφ(x) + φ(z) + (t− 1)φ(y) ≤ ∇φ(z)T (ty − tx+ z − y),

which in turn reduces to

φ
(
tx+ (1− t)y

)
≤ tφ(x) + (1− t)φ(y) (33)

by substituting back z. From this we conclude that strong convexity implies
convexity. It also holds that (33) implies (32). One can see this by noticing that
by reshuffling the terms in equation (33), we get

φ
(
y + t(x− y)

)
− φ(y)

t
≤ φ(x)− φ(y),

which by the definition of the derivative results in equation (32), as t→ 0 (note
that x and y are swapped). Combined, this is known as the first order condition.
Intuitively this means that a function is convex if and only if first order taylor
approximations always give a lower bound of the function value.

32

3.2.2 β-smoothness and convexity

In preparation of the analysis of the convergence rate, we now show that under
the assumed β-smoothness we have that

|φ(x)− φ(y)−∇φ(y)T (x− y)| ≤ β

2
‖x− y‖2. (34)

We do this by rewriting the LHS in terms of integrals and noticing that∣∣∣(φ(x)− φ(y)
)
−
(
∇φ(y)T (x− y)

)∣∣∣
=
∣∣∣(∫ 1

0

∇φ
(
y + t(x− y)

)T
(x− y) dt

)
−
(∫ 1

0

∇φ(y)T (x− y) dt
)∣∣∣

=
∣∣∣ ∫ 1

0

(
∇φ
(
y + t(x− y)

)
−∇φ(y)

)T
(x− y) dt

∣∣∣
≤
∫ 1

0

(
‖∇φ

(
y + t(x− y)

)
−∇φ(y)‖

)
‖x− y‖dt, by Cauchy–Schwarz

≤
∫ 1

0

(
β‖t
(
x− y

)
‖
)
‖x− y‖dt, by β-Lipschitz

=
β

2
‖(x− y)‖2.

This result can then be combined with convexity to show that, by the first order
condition, we have that

0 ≤ φ(x)− φ(y)−∇φ(y)T (x− y)| ≤ β

2
‖x− y‖2. (35)

The previous inequlity can in turn be used to show that for x̃ = x− 1
β∇φ(x);

φ(x̃)− φ(y) ≤ ∇φ(x)T (x− y)− 1

2β
‖∇φ(x)‖2, for all x, y ∈ Rn. (36)

This is done by also using the first order condition and substituting back x̃,
which results in

φ(x̃)− φ(y) = φ(x)− φ(y) + φ(x̃)− φ(x)

≤ ∇φ(x)T (x− y) +∇φ(x)T (x̃− x) +
β

2
‖x̃− x‖2

= ∇φ(x)T (x− y)− 1

2β
‖∇φ(x)T ‖2.

3.2.3 Convergence analysis

For the analysis of the convergence rate, recall that lr = 1
β and ηk = λk − 1

λk+1
,

where λ−1 = 0 and λk+1 =
1+
√

1+4λ2
k

2 . We will show that using these parame-

33

ters, for any starting point x0 = y0, we have that

φ(yk)− φ(x∗) ≤ 2β‖x0 − x∗‖2

(k + 1)2
, for all k > 0. (37)

We begin by noting that by equation (36) and the definition of yk+1 we have
that

φ(yk+1)− φ(yk) ≤ ∇φ(xk)T (xk − yk)− 1

2β
‖∇φ(xk)‖2

= β(xk − yk+1)T (xk − yk)− β

2
‖xk − yk+1‖2.

(38)

In the same way we also find that

φ(yk+1)− φ(x∗) ≤ β(xk − yk+1)T (xk − x∗)−
β

2
‖xk − yk+1‖2. (39)

Multiplying equation (38) by (λk − 1) and adding it to equation (39) we get by
reshuffling the terms of both sides that

λk
(
φ(yk+1)− φ(x∗)

)
+ (1− λk)

(
φ(yk)− φ(x∗)

)
≤ β(xk − yk+1)T

(
λkxk + (1− λk)yk − x∗

)
− λk

β

2
‖xk − yk+1‖2.

Next, using the notation δk = φ(yk)− φ(x∗), we take advantage of the identity
2aT b− ‖a2‖ = ‖b‖2 − ‖b− a‖2 by multiplying the above inequality by λk. This
yields

λ2
kδk+1 + λk(1− λk)δk

≤ β

2

(
2
(
λk(xk − yk+1)

)T (
λkxk + (1− λk)yk − x∗

)
− ‖λkxk − yk+1‖2

)
=
β

2

(
‖λkxk + (1− λk)yk − x∗‖ − ‖λkyk+1 + (1− λk)yk − x∗‖

)
.

(40)

This can be further rewritten by noticing that by the definition of the algorithm
we have that

xk+1 = yk+1 + ηk(yk+1 − yk);

λk+1xk+1 = λk+1yk+1 + (λk − 1)(yk+1 − yk);

λk+1xk+1 + (1− λk+1)yk+1 = λkyk+1 + (1− λk)yk.

With this, the contents of the norms in equation (40) can be rewritten using the
notation vk = λkxk+(1−λk)yk−x∗. Together with the fact that λ2

k−1 = λ2
k−λk,

this results in

λ2
kδk+1 − λ2

k−1δk ≤
β

2

(
‖vk‖ − ‖vk+1‖

)
, for all k ≥ 0.

34

Since λ−1 = 0 it can be concluded that

λ2
k−1δk = λ2

k−1δk − λ2
−1δ0

=

k−1∑
t=0

λ2
t δt+1 − λ2

t−1δt

≤
k−1∑
t=0

β

2

(
‖vt‖ − ‖vt+1‖

)
=
β

2

(
‖v0‖ − ‖vk‖

)
≤ β

2
‖v0‖.

This gives

φ(yk)− φ(x∗) ≤ β

2λ2
k−1

‖v0‖, for all k > 0.

By induction it follows directly that k+1
2 ≤ λk−1 since λ0 = 1 and t+1

2 ≤ λk−1 ≤
λk if the inequality holds for k. Therefore we conclude that equation (37) holds.

3.3 Momentum in practise

In contrast to the analysis in the previous section, when using Momentum Based
Methods (MBM) in practise, the momentum term η is often chosen constant.
To understand why a lower momentum might be favourable, one should realize
that the momentum term was chosen such that it had favourable properties on
convex problems. However, when using high dimensional very non linear and
rugged functions, this might not be desirable as the landscape can change dras-
tically at any point in the optimization procedure. For example, when training
a model in computer vision, first rough features such as colour shades and con-
tours are detected before the model can distinguish details, such as fur types
to differentiate between different breeds of dogs. However, when momentum
becomes too high, the optimizer ‘remembers’ gradients from too far back. It
will then keep moving in the direction it remembered to be favourable when it
was learning about rudimentary shapes and will therefore fail at learning more
detail quickly.

In a widely used optimizer called Adam, [Kingma and Ba, 2014]. The momen-
tum parameter is chosen to be .9. Adam mainly differs from NAG in using the
magnitutde of the gradients to make equal progress in all directions, regardless
of steepness. Other than providing even more stability, in machinelearning, this
intuitively allows learning to take place when features are sparse.

Another detail in which practical applications differ from the approach above is
that the step size is often exponentially decreased in which case it can be given

35

by lrk = ρklr0 for some 0� ρ ≤ 1. A decaying step size is often used to capture
fine grain details or in other words, find the local minima more precisely.

We now visualize the behaviour of Adam and NAG using the functions (30a) and
(30b) from the previous chapter. The trajectories are displayed in the figures 5
and 6. Here, Adam uses its default parameters. Similarly, for NAG η = .9 is
chosen. The learn rates used are lrAdamk = 1

10 ·.99k and lrNAGk = 2
100 ·.99k. In the

appendix, 5.2, a demonstration is given of NAG using its increasing momentum
with the same learn rate.

Adam NAG
figure it it

5 184 149
6 152 215

Table 4: Convergence rates of the optimization procedures displayed in the
figures 5 and 6. In contrast to the previous section, the table displays only the
iterations required for convergence as no line search is used.

Figure 5: The momentum based optimizers Adam and NAG applied to the
objective function in equation (30a), starting at (.1, .1). The convergence rates
are reported in table 4.

What makes MBM particularly suitable for the optimization of non smooth
functions is that they are able to traverse the ridge at x = 0 of function 30b,
as can be observed in figure 6b. Even though the gradient does not vanishing
at the minimum, an indication of convergence speed is still given by declaring
convergence when ‖xk − (0, .856301)T ‖2 < 10−3. These rates, along with the

36

(a) (b)

Figure 6: The momentum based optimizers Adam and NAG applied to the
objective function in equation (30b), starting at (.1, .1). (a) displays the entire
trajectory, (b) is zoomed in on the minimum. The convergence rates are reported
in table 4.

convergence rates of trajectories in figure 5, are shown in table 4. When com-
paring these results to those of table 2 it can be noted that although CG can
get stuck, they converged better on our problems.

Another argument for the use of CG can be found in the noise visible in figure
6b. This noise is the optimizer requiring a lower learn rate to converge properly.
This problem is automatically addressed by Adam as it scales its learn rate
for each dimension individually. However, NAG does not solve this problem
automatically. Therefore it ‘waits’ for the step size to decrease or for it to be
declared ‘converged’, simply by chance.

4 Discussion and conclusions

We have seen various optimizers with different properties. Because our initial
interest was to apply the optimizers in machine learning, we note that in su-
pervised learning (learning using given datasets), models tend to perform very
well if they contain tens of millions of parameters and use the non-linearity
max(x, 0), also referred to as the Rectified Linear Unit (ReLU). Given the sta-
bility of MBM, Adam is often used as the default optimizer for such tasks.
Another active field of research is Reinforcement Learning (RL, an agent learns
from a self-created dataset), in which much smaller models tend to work bet-
ter. In these models, non linear functions such as the tanh are more common.
Although line searches are difficult to use in RL, CG could potentially excel at

37

such tasks. In fact, the recently published method called Trust Region Policy
Optimization (TRPO), introduced in [Schulman et al., 2015] uses CG in their
algorithm.

References

C. Angermueller, H. J. Lee, W. Reik, and O. Stegle. Deepcpg: Accurate pre-
diction of single-cell dna methylation states using deep learning. Genome
biology, 18(1), 2017.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi,
Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey,
Jeff Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, Lukasz Kaiser,
Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens,
George Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason
Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, and
Jeffrey Dean. Google’s neural machine translation system: Bridging the gap
between human and machine translation. CoRR, abs/1609.08144, 2016.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recogni-
tion. In Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, volume 2016-January, pages 770–778, 2016.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in Neural Information Processing
Systems, volume 2, pages 1097–1105, 2012.

S. Wright Jorge Nocedal. Numerical Optimization. Springer
New York, 2006. doi: 10.1007/978-0-387-40065-5. URL
https://doi.org/10.1007/978-0-387-40065-5.

Sébastien Bubeck. Convex optimization: Algorithms and complexity. Foun-
dations and Trends R© in Machine Learning, 8(3-4):231–357, 2015. doi:
10.1561/2200000050. URL https://doi.org/10.1561/2200000050.

M. R. Hestenes and E. Stieffel. Methods of conjugate gradients for solving
linear systems. Journal of Research of the National Bureau of Standards, 49:
409–436, 1952. doi: 10.1101/081380.

J. Gilbert and J. Nocedal. Global convergence properties of conjugate gradient
methods for optimization. SIAM Journal on Optimization, 2:21–42, 1992.
doi: 10.1137/0802003.

Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source scientific
tools for Python, 2001. URL http://www.scipy.org/.

38

Yurii Nesterov. A method of solving a convex programming problem with con-
vergence rate O(1/(k2)). Soviet Mathematics Doklady, 27:372–376, 1983.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion. CoRR, abs/1412.6980, 2014. URL http://arxiv.org/abs/1412.6980.

John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, and Pieter
Abbeel. Trust region policy optimization. CoRR, abs/1502.05477, 2015. URL
http://arxiv.org/abs/1502.05477.

5 Appendix

5.1 Lemmas

Lemma 5.1. if A is a symmetric matrix, it can be written in the form A =∑n
i=1 λiviv

T
i where λi and vi are the eigenvalues and corresponding eigenvectors

of A.

Proof. Because A is symmetric it has eigenvectors that are orthonormal. Define
the matrix R = [v0, v1, ..., vn] and notice that RTR = I as vTi vj = 0 for i 6= j and
1 otherwise due to orthonormality. Because the eigenvectors are orthonormal,
they are linearly independent, thus R is invertible. Because of this, RT = R−1

and therefore RRT = I. We can now write

A = AI = ARRT = A

n∑
i=1

viv
T
i =

n∑
i=1

Aviv
T
i =

n∑
i=1

λiviv
T
i

5.2 NAG reimplemented

In this section NAG is reimplemented using its initial parameter ηk = λk − 1
λk+1

and the learn rate lrk = 2
100 · .99k as used in section (3.3) for a fair comparison.

The results are shown in the table and graphs below.

39

NAG
figure it

7 369
8 165

Table 5: Convergence rate of the reimplemented NAG displayed in the figures
7 and 8.

Figure 7: The reimplemented NAG applied to the objective function in equation
(30a), starting at (.1, .1). The convergence rate is reported in table 5. The
iterate are smoothly directed to the minimum when momentum is still low, but
overshoot the minimum as momentum grows.

(a) (b)

Figure 8: The reimplemented NAG applied to the objective function in equation
(30b), starting at (.1, .1). (a) displays the entire trajectory, (b) is zoomed in on
the minimum. The convergence rates are reported in table 5.

40

