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Introduction

In this bachelor thesis, we will give an exposition of the basic representation theory of locally
compact groups. Locally compact groups are groups endowed with a topological structure that
is compatible with the group structure, and the topology on these groups satisfy two regularity
conditions: the Hausdorff property and the local compactness property. A concrete discussion of
these groups can be found in Chapter 1. The first chapter is mainly devoted to introducing the main
machinery for doing analysis on these type of groups. The theory developed during this chapter is
of importance during the rest of the thesis.

Chapters 2 and 3 are devoted to representation theory. In Chapter 2 we will present the basic
notions of representation theory and prove a handful of useful results. We shift our attention to
compact groups in Chapter 3. The compact case will turn out to be easier to understand. The
main result of Chapter 3 is the Peter-Weyl theorem. After proving this, we will continue to prove
some interesting corollaries. For instance, we will prove the Gleason-Yamabe theorem for compact
groups using the theorem of Peter-Weyl. Afterwards, we will introduce a generalization of the
Fourier transform on compact groups. We conclude Chapter 3 by determining all unitary irreducible
representations of SU.2/ and U.2/.

The reader of this text should be familiar with the basics of topology, measure theory and
functional analysis. Some material which is usually not covered during the introductory course on
functional analysis taught at Utrecht University, is included in the appendix.

I will take this opportunity to expand on the notation used in this thesis. Throughout this
thesis, we consider 0 a natural number, and consequently write N WD fn 2 Z j n � 0g. Let X
be a topological space. Then we will let C.X/ denote the vector space of continuous function
X ! C. The subspace ofC.X/ consisting of all compactly supported continuous functionsX ! C
is denoted by Cc.X/. Suppose that V;W are normed vector spaces. An operator V ! W will
always mean a linear map V ! W . The set of bounded operators V ! W is denoted by B.V;W /,
and we denote B.V / WD B.V; V /. Whenever a bijective bounded operator T W V ! W has a
bounded inverse, we say that T is an isomorphism. The set of isomorphisms V ! W is denoted by
Iso.V;W /. Again, we denote Iso.V / WD Iso.V; V /.
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1. Integration on groups

We start by introducing the concept of topological groups, and especially (locally) compact groups.
We then proceed to introduce the main tool for doing analysis on locally compact groups, the Haar
measure. This measure is compatible with both the topology and the group structure of a topological
group. We will follow the approach taken in [Coh13] and [DE14].

1.1 Topological groups

Definition 1.1.1. A group G equipped with a topology is said to be a topological group if the
multiplication and inversion maps,

G �G �! G W .x; y/ 7! xy;

G �! G W x 7! x�1;

are continuous. Such a group is said to be a (locally) compact group if the underlying topology is
Hausdorff and (locally) compact.

For topological groups, the requirement to be Hausdorff is more subtle, as we will show shortly.
We start by stating some important properties of topological groups. First, recall the tube lemma
from topology.

Lemma 1.1.2 (Tube lemma). Let X; Y be topological spaces and suppose that X is compact. Let
U � X � Y be an open subset. Suppose that U contains the slice X � fyg for some y 2 Y . Then
there exists a neighbourhood V of y such that X � V � U .

We will use the lemma above multiple times. For example in the following proposition. For a
group G, we will denote the identity element by 1. We say that a subset A � G is symmetric if
A�1 D A. Here A�1 denotes the set fx�1 j x 2 Ag. Furthermore, we denote gA WD fga j a 2 Ag,
Ag WD fag j a 2 Ag and AB WD fab j a 2 A; b 2 Bg for g 2 G and subsets A;B of G.

Proposition 1.1.3. Let G be a topological group.

(i) For every neighbourhood U of the identity, there exists a neighbourhood V of the identity
such that V 2 D V V � U .

(ii) The identity has a basis of symmetric neighbourhoods.
(iii) For every open subset U � G containing a compact set K, there exists a neighbourhood V

of the identity such that KV � U .
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CHAPTER 1. INTEGRATION ON GROUPS 5

Proof. We start by proving (i). Let U be a neighbourhood of 1. By continuity of multiplication, we
have neighbourhoods V1; V2 of 1 such that V1V2 D U . Then V WD V1 \ V2 is a neighbourhood of
1 satisfying V 2 � U , as desired.

We show (ii). Let U be an arbitrary neighbourhood of 1. By continuity of inversion, U�1 is a
neighbourhood of 1. Now V WD U \ U�1 is a symmetric neighbourhood of 1 contained in U .

We turn to assertion (iii). Let U be an open subset of G andK � G compact such thatK � U .
Note that the slice K � f1g is contained in the preimage of U under the multiplication map. As this
preimage is open, the tube lemma implies that there exists a neighbourhood V of 1 such thatK � V
is contained in this preimage. Thus KV � U .

Proposition 1.1.4. Let H be a normal subgroup of a topological group G. Then G=H (equipped
with the quotient topology) is again a topological group, and the projection mapG ! G=H is open.

Proof. Let� W G ! G=H be the projectionmap. Note that forU � G open, we have��1.�.U // DS
h2H hU . Since g 7! hg is a homeomorphism for every h 2 H , we get that �.U / is open. Hence

� is an open map. To show that G=H is a topological group, it suffices to show that the map
f W G=H � G=H ! G=H W .x; y/ 7! xy�1 is continuous. Let x; y 2 G and U a neighbourhood
of xy�1H . Then ��1.U / is a neighbourhood of xy�1. Hence we find open neighbourhoods V1; V2
of respectively x and y, such that V1V �12 � ��1.U /. Since � is a homeomorphism, we get that
�.V1/ � �.V2/

�1 � U . Note that �.V1/ and �.V2/ are open neighbourhoods of respectively xH
and yH . Hence f is continuous, as desired.

Proposition 1.1.5. Let G be a topological group, and H a normal subgroup of G. Then G=H is
Hausdorff if and only ifH is closed.

Proof. First, assume that H is closed. We show that G=H is Hausdorff. Consider two elements
xH; yH 2 G=H such that xH ¤ yH . The latter is equivalent to saying that xy�1 … H . Since H
is closed, we find an open neighbourhood U of xy�1 such that U \H D ∅. Moreover, sinceG is a
topological group, we find open neighbourhoods V1, V2 inside G of respectively x and y such that
V1V

�1
2 � U � G nH . The images of these two neighbourhoods inG=H are open neighbourhoods

of xH and yH by Proposition 1.1.4. The fact that V1V �12 � G nH now translates to the fact that
these images in G=H are disjoint. Hence G=H is Hausdorff.

Coversely, assume that G=H is Hausdorff. For any element x 2 G n H , we have xH ¤ H .
Thus, by Hausdorffness, we find an open U � G=H such that H … U . Now, the preimage of U
under the natural projection is an open set which is disjoint fromH . HenceH is closed.

Using the proposition above, we obtain the following result.

Corollary 1.1.6. Let G be a topological group. Then the following are equivalent:

1. G is Hausdorff,
2. G has the T1-property (i.e. every singleton is closed),
3. f1g is closed inside G.

We see that the Hausdorff condition can be translated to a condition in the neighbourhood of the
identity. This is an import principle in general, and we will see more examples of this. For example,
it is readily verified that the topology on a topological group is locally compact if and only if the
identity element has a compact neighbourhood.
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As preparation, we will prove some statements about the continuous functions with compact
support on a topological space.

Lemma 1.1.7. Let G be a topological group and f 2 Cc.G/. Then for every " > 0, there exists a
neighbourhood U of the identity such that jf .x/ � f .y/j < " whenever y 2 xU or y 2 Ux for all
x; y 2 G.

Proof. For every x 2 supp f , we choose an open neighbourhood Vx of x such that for all y 2 Vx
we have jf .y/ � f .x/j < "=2. By Proposition 1.1.3, we find an open neighbourhood Ux of 1 such
that U 2x � x�1Vx . This yields an open cover fxUxgx2supp f of the (compact) support of f . Hence
there exists x1; : : : ; xn 2 supp f such that supp f �

Sn
iD1 xiUxi . Using Proposition 1.1.3 again,

we find a symmetric neighbourhood U 0 of 1 such that U 0 �
Tn
iD1 Uxi . We show that for x; y 2 G,

we have jf .x/ � f .y/j < " whenever y 2 xU 0.
Indeed, the inequality holds if x; y … supp f . Hence assume that at least one of the elements

x; y is contained in the support of f . Consider the case that x 2 supp f , then there exists an
index i such that x 2 xiUxi . This implies that y 2 Vxi as xU 0 � xiU

2
xi
� Vxi and x 2 Vxi as

xiUxi � xiU
2
xi
� Vxi . It follows that jf .x/ � f .y/j � jf .x/ � f .xi /j C jf .xi / � f .y/j < ". If

x … supp f , then we have y 2 supp f . Since y D xu for some u 2 U 0, we get that yu�1 D x.
Because U 0 is symmetric, we conclude that x 2 yU 0. Now, interchanging x and y in the reasoning
of previous case, we obtain the inequality as well.

Applying the same reasoning to the map x 7! f .x�1/ (which is again compactly supported), we
find a symmetric neighbourhoodU 00 of 1 such that for all x; y 2 U 00 we have jf .x�1/�f .y�1/j < "
whenever y 2 xU 00. As U 00 is symmetric, we get x�1 2 y�1U 00 whenever x 2 U 00y, and hence
jf .x/ � f .y/j < ". We find the desired neighbourhood U by intersecting U 0 and U 00.

For a topological group G, we endow Cc.G/ with the supremum-norm k � k1, making Cc.G/ a
normed vector space. Note that G acts on Cc.G/ as follows. We have homomorphisms

L W G �! B.Cc.G// W g 7! Lg ; R W G �! B.Cc.G// W g 7! Rg ;

such that for g 2 G we have,

Lgf .x/ WD f .g
�1x/ and Rgf .x/ WD f .xg/: .f 2 Cc.G//

In fact, Lg and Rg are surjective isometries.

Proposition 1.1.8. Let G be a topological group and f 2 Cc.G/. Then and g 7! Lgf and
g 7! Rgf are continuous maps from G to Cc.G/.

Proof. Fix an element g 2 G. On the strength of Lemma 1.1.7, we find a neighbourhood U
of the identity such that jf .x/ � f .y/j < " whenever y 2 Ux for all x; y 2 G. Consider the
neighbourhood V WD gU�1. Let h 2 V . Then for all x 2 G, we have h�1x 2 Ug�1x thus
jf .g�1x/�f .h�1x/j < ". It follows that kLhf �Lgf k1 � "whenever h 2 V . Thus g 7! Lgf

is continuous. Continuity of g 7! Rgf is shown in a similar way.
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1.2 Radon measures
We now introduce a notion of a Borel measure on a general topological space, which is compatible
with the topology in the following sense. We denote the � -algebra of Borel sets of a topological
space X by B.X/.

Definition 1.2.1. A Radon measure on a topological spaceX is a measure � W B.X/! Œ0;1� such
that

(i) the measure � is outer regular on all Borel subsets, i.e.

�.A/ D inff�.U / j A � U with U openg

for all A 2 B.X/,
(ii) the measure � is inner regular on all open sets, i.e.

�.U / D supf�.K/ j K � U with K compactg

for all open subsets U of X ,
(iii) the measure � is finite on all compact subsets of X .

Example 1.2.2. The following are examples of Radon measures.

� The trivial measure on an arbitrary topological space which assigns zero to each Borel subset.
� Let X be a Hausdorff space and x 2 X . Then the Dirac measure ıx , i.e. the measure that

assigns 1 to Borel subsets containing x and assigns 0 to Borel subsets which do not contain x.
� The Lebesgue measure on Rn restricted to the Borel subsets.

Using the following proposition, one can readily come up with a large arsenal of Radonmeasures
on topological manifolds. We will not prove this here, instead we refer to the proof found in [Coh13,
Proposition 7.2.3].

Proposition 1.2.3. Let X be a second countable, locally compact Hausdorff space. Then every
measure � W B.X/! Œ0;1� which is finite on compact subsets of X , is a Radon measure on X .

For a Radon measure � on a topological space X , we write

�.f / WD

Z
X

f d�

for an integrable function f . It is readily verified that f 7! �.f / defines a complex-valued linear
functional on Cc.X/. Note that on the set of positive compactly supported functions,

CCc .X/ WD ff 2 Cc.X/ j f � 0g;

the function f 7! �.f / is positive. I.e., f 7! �.f / is a positive linear functional. In fact, when
X is locally compact Hausdorff, every Radon measure arises as a positive linear functional. This is
the content of the representation theorem of Riesz. We state this theorem below; a full proof may be
found in [Coh13, Theorem 7.2.8] or [DE14, Theorem B.2.2].
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Theorem 1.2.4 (Riesz representation theorem). Let X be a locally compact Hausdorff space and
I be a positive linear functional on Cc.X/. Then there exists a unique Radon measure � such that
I.f / D �.f / for every f 2 Cc.X/.

We will prove the uniqueness assertion of the theorem here.

Lemma 1.2.5. Let X be a locally compact Hausdorff space. Let K � X be compact and suppose
thatU is an open neighbourhood ofU . Then there exists a compactly supported continuous function
f W X ! Œ0; 1� such that f D 1 on K and supp f � U .

Proof. We find an open subset V such that K � V � U such that V is compact (we can achieve
this by covering K with finitely many relatively compact neighbourhoods of points in K). On the
strength of Urysohn’s lemma, there exists a continuous function Qf W V ! Œ0; 1� such that Qf D 1

on K and Qf D 0 on V n V . We extend Qf to a continuous function f defined on the whole space
X by setting f D Qf on V and f D 0 on X n V . Note that f is well-defined and continuous as
it is the combination of two continuous maps defined on closed subsets of X , which agree on the
intersection of these closed subsets. The support of the resulting map f is contained in the compact
V , hence f has compact support.

Lemma 1.2.6. Let � be a Radon measure on a topological space X . Suppose that F � CC.X/ is
a family of functions such that for every f; g 2 F there exists a h 2 F such that h � maxff; gg.
Then

�. sup
f 2F

f / D sup
f 2F

�.f /:

Proof. Write g for the measurable function supf 2F f . It is clear that supf 2F �.f / � �.g/. We
show the converse inequality. Consider a simple function � � f (recall that a simple function is
a linear combination of characteristic functions of finite measure with positive coefficients). Let
" > 0. Then � can be written as � D

Pn
iD1 ai1Ai with ai > 0 and Ai 2 B.G/ of finite measure

for all i . Without loss of generality we may assume that the Ai ’s are disjoint. By inner regularity
we find compact sets K1; : : : ; Kn such that Ki � Ai and �.Ai / � "=.nai / � �.Ki / for every i .
Setting  WD

Pn
iD1 ai1Ki , we obtain another simple function  � g for which �.�/ � �. /C ".

Let 1 � i � n. For every x 2 Ki , we have  .x/ D ai � g.x/. Hence we find a fx 2 F
such that ai � fx.x/. Thus the subset Ux WD f �1x .�.1 � "/ai ;1Œ/ is an open neighbourhood of x.
As Ki is compact, there exists points x1; : : : ; xm 2 Ki such that

Sm
jD1 Uxj � Ki . Next, choose

f .i/ 2 F greater or equal to maxffx1 ; : : : ; fxmg everywhere. Then f .i/ � .1 � "/ai1Ki . Finally,
we choose a f 2 F such that f � maxff .1/; : : : ; f .n/g. It follows that f � .1 � "/ . Hence,Z

X

� d� �

Z
X

 d�C " �
1

1 � "

Z
X

f d�C " �
1

1 � "
sup
f 2F

�.f /C ":

As this holds for any " > 0 and any simple function � � g, the desired result follows.

Corollary 1.2.7 (Uniqueness assertion of Theorem 1.2.4). Let X be a locally compact Hausdorff
space. Then for a Radon measure � on X we have for every open subset U � X

�.U / D supf�.f / j f 2 Cc.X/ such that 0 � f � 1 and supp f � U g;

and in particular every Radon measure on X is completely determined by how it acts on CCc .X/.
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Proof. We prove the first assertion. Let U � X be open. Taking F WD ff 2 Cc.X/ j 0 � f �
1 and supp f � U g, we see that supf 2F f D 1U on account of Lemma 1.2.5. The desired equality
now follows Lemma 1.2.6.

We turn to the second assertion. Let � be another Radon measure on X such that �.f / D �.f /
for every f 2 CCc .X/. Then we get from the above that � and � equal on the open subsets of X .
Hence, it follows from outer regularity that � D �.

For a measure space .X;A; �/ we will denote Lp.�/, for the p-th power integrable functions
X ! C, 1 � p < 1. If p D 1 we will define L1.�/ to be the space of essentially bounded
measurable functionsX ! C. We denote k � kp for theLp-norm when 1 � p <1. TheL1-norm
(i.e. the essential supremum norm) will be denoted with k � kess . Endowed with these norms,
Lp.�/ becomes a semi-normed space. The null space N of the Lp-norms is exactly the space of
measurable functions that vanish almost everywhere. The quotientLp.�/ WD Lp.�/=N (a quotient
of vector spaces) with the norm induced by the k � kp norm (which we will again denote by k � kp)
forms a Banach space. Recall from integration theory that in the case of p D 2, this is a Hilbert
space. The equivalence class of a function f 2 Lp.�/ (w.r.t. the quotient map Lp.�/! Lp.�/)
will be denoted by f CN D Œf �.

Proposition 1.2.8. Let X be a locally compact Hausdorff space and � a Radon measure on X .
Then Cc.X/ is dense Lp.�/ for 1 � p < 1 (here we identify Cc.X/ with its image under the
natural inclusion Cc.X/ ,! Lp.�/).

Proof. Recall that the complex simple functions (i.e. the C-linear combinations of characteristic
functions of finite measure) are dense in Lp.X/. Hence, it suffices to show that the characteristic
functions of the Borel sets of X with finite measure sit inside the closure of Cc.X/.

Indeed, let A be a Borel set of X of finite measure. Let " > 0. There exists an open subset U
containing A such that �.U / < �.A/C ". Furthermore, there exists a compact subset K � A such
that �.A/ � " � �.K/. Hence �.U / � �.K/ < 2". Let f 2 Cc.X/ such that f D 1 on K and
supp f � U . ThenZ

X

j1A � f j
p d� D

Z
UnK

j1A � f j
p
� 2p�.U nK/ � 2pC1":

Thus 1A can be approximated by continuous compactly supported functions.

Proposition 1.2.9. Let X be a topological space equipped with a Radon measure �. Then, for a
homeomorphism f W X ! X , we have f .A/ 2 B.X/ for every A 2 B.X/, and

�f W B.X/ �! Œ0;1� W A 7! .� ı f /.A/

defines again a Radon measure.

Proof. For a subset C of the power set of X , denote f�.C/ WD ff .A/ j A 2 Cg. It is readily verified
that when C is a � -algebra, its image f�.C/ is again a � -algebra. Denoting the topology on X by
T , we get f�.T / � f�.B.X// D f�.�.T //. Since f is a homeomorphism, f�.T / D T . As
f�.B.G// is a � -algebra, we have B.X/ � f�.B.X//. We get the reverse inclusion by replacing f
with its inverse f �1 in the reasoning above. Hence f�.B.X// D B.X/.

Checking that �f satisfies the regularity conditions of Definition 1.2.1 is a straight-forward
procedure; it follows from the fact that A 7! f .A/ restricts to bijections between the open and
compact sets of X .
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1.3 Products of Radon measures
Wefinish this digression into Radonmeasures by proving a theorem of Fubini for Radonmeasures on
locally compact spaces. The reader might be aware of this theorem in the context of � -finite measure
spaces. However, generally, not every Radon measure on a locally compact space is � -finite.

Lemma 1.3.1. Let X; Y be topological spaces, and Z a metric space. Suppose that K � Y is
compact. Let f W X � Y ! Z be a continuous map. Then, for each " > 0 and � 2 X , there exists
a neighbourhood U of � such that for all .x; y/ 2 U �K, we have d.f .x; y/; f .�; y// < ".

Proof. Consider the subset V WD f.x; y/ 2 X � Y j d.f .x; y/; f .�; y// < "g � X � Y . This
set is open due to continuity of the map .x; y/ 7! d.f .x; y/; f .�; y//. Since V contains the slice
f�g�K, the tube lemma implies that there exists a neighbourhoodU of � such thatU �K � V .

Lemma 1.3.2. LetX and Y be locally compact Hausdorff spaces, with respectively Radon measures
� and �. Then for every map f 2 Cc.X � Y /, we have that x 7!

R
Y f .x; y/d�.y/ 2 Cc.X/ and

y 7!
R
X f .x; y/d�.x/ 2 Cc.Y / andZ

X

Z
Y

f .x; y/d�.y/d�.x/ D

Z
Y

Z
X

f .x; y/d�.x/d�.y/:

Proof. Let K1 � X and K2 � Y be, respectively, the projection of supp f onto X and Y . Then
K1 and K2 are both compact by continuity of the projections and supp f � K1 � K2. It follows
that for every y 2 Y the map f y W x 7! f .x; y/ vanishes outside K1. Likewise, for every x 2 X ,
the map fx W y 7! f .x; y/ vanishes outside K2. Thus for all .x; y/ 2 X � Y we get that the maps
fx and f y are integrable.

A fortiori, the mapping x 7!
R
Y fx d� is continuous with compact support. Indeed, consider

� 2 X and let " > 0. On account of Lemma 1.3.1, there exists a neighbourhood U of � such that
jf .x; y/ � f .�; y/j < " for every .x; y/ 2 U �K2. It follows that for x 2 U , we haveˇ̌̌̌Z

Y

fx d� �

Z
Y

f� d�

ˇ̌̌̌
�

Z
Y

ˇ̌
fx � f�

ˇ̌
d� D

Z
K2

ˇ̌
fx � f�

ˇ̌
d� � "�.K2/:

As " is an arbitrary constant greater than zero, and �.K2/ is finite, this implies that the mapping
x 7!

R
Y fx d� is continuous. It has compact support, since it vanishes outside K1. Applying the

same reasoning to f y , we get that y 7!
R
X fy d� is continuous with compact support. In particular,

all integrals in the statement of the theorem exist.
Themain content of the proof remains to show. Let " > 0. For every � 2 K1, there exists an open

neighbourhood U� of � such that for all x 2 U , jfx � f� j < " onK2, by Lemma 1.3.1. This defines
an open cover of K1, thus there exists �1; : : : ; �n such that

Sn
iD1 U�i � K1. Set A1 WD U�1 \K1

and Ai WD U�i n
Si�1
jD1 U�i \ K1 for i � 1. Note that the collection fAigniD1 consists of Borel

subsets partioning K1. Consider the function

g W X � Y �! C W .x; y/ 7!
nX
iD1

f .�i ; y/1Ai .x/:

For everyx 2 X , themappinggx W y 7! g.x; y/ is Borelmeasurable and integrablewith
R
Y gx d� DPn

iD1

R
Y f .�i ; y/d�.y/1Ai .x/. As the Ai ’s are Borel subsets, the function x 7!

R
Y gx d� is a
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simple function. It is integrable since �.Ai / <1 andZ
X

Z
Y

g.x; y/d�.y/d�.x/ D

Z
X

Z
Y

gx d� d�.x/ D

nX
iD1

Z
Y

f .�i ; y/d�.y/�.Ai /:

Similarly, for y 2 Y , the mapping gy W x 7! g.x; y/ is integrable and the function y 7!
R
X g

y d�

is integrable, yieldingZ
Y

Z
X

g.x; y/d�.x/d�.y/ D

Z
Y

Z
X

gy d�d�.y/ D

nX
iD1

Z
Y

f .�i ; y/d�.y/�.Ai /:

Thus the iterated integrals over g agree.
Now, note thatˇ̌̌̌Z
X

Z
Y

f .x; y/d�.y/d�.x/ �

Z
X

Z
Y

g.x; y/d�.y/d�.x/

ˇ̌̌̌
�

nX
iD1

Z
Ai

Z
K2

jf .x; y/ � f .�i ; y/j d�.y/d�.x/ � "�.K2/

nX
iD1

�.Ai / D "�.K1/�.K2/:

Similarly, we deduce thatˇ̌̌̌Z
Y

Z
X

f .x; y/d�.x/d�.y/ �

Z
Y

Z
X

g.x; y/d�.x/d�.y/

ˇ̌̌̌
� "�.K1/�.K2/:

From this, and the fact that the iterated integrals over g agree, we getˇ̌̌̌Z
X

Z
Y

f .x; y/d�.y/d�.x/ �

Z
Y

Z
X

f .x; y/d�.x/d�.y/

ˇ̌̌̌
� 2"�.K1/�.K2/:

As this holds for arbitrary " > 0, the iterated integrals agree.

Using the representation theorem of Riesz (see Theorem 1.2.4), we come to the following
definition.

Definition 1.3.3. Let X and Y be two locally compact Hausdorff spaces with, respectively, Radon
measures � and �. Then the product measure �� � W B.X � Y /! Œ0;1� of � and � is the unique
Radon measure such that

.� � �/.f / D

Z
X

Z
Y

f .x; y/d�.y/d�.x/ D

Z
Y

Z
X

f .x; y/d�.x/d�.y/

for all f 2 Cc.X � Y /.

Theorem 1.3.4 (Fubini’s theorem). Let X and Y be two locally compact Hausdorff spaces with,
respectively, Radon measures � and �. Suppose that f W X � Y ! C is a B.X � Y /-measurable
function. The following statements are true.
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(i) If f is integrable (w.r.t. � � �) then x 7!
R
Y f .x; y/d�.y/, y 7!

R
X f .x; y/d�.x/ are

integrable a.e. andZ
X�Y

f d.� � �/ D

Z
AX

Z
Y

f .x; y/d�.y/d�.x/ D

Z
AY

Z
X

f .x; y/d�.x/d�.y/;

where AX 2 B.X/ and AY 2 B.Y / are the sets where the integrand is defined.
(ii) If f vanishes outside a � -finite set andZ

Y

Z
X

jf .x; y/j d�.x/d�.x/ <1 or
Z
X

Z
Y

jf .x; y/j d�.x/d�.x/ <1

then f is integrable.

Proof. We start by proving assertion (i). We start by showing the equality for the characteristic
functions 1A with A 2 B.X/ of finite measure.

Consider the case that A is open. Consider the family F WD ff 2 Cc.X � Y / j 0 � f �

1 and supp f � Ag. Using Corollary 1.2.7 and Lemma 1.3.2 we obtain

.� � �/.A/ D sup
f 2F

.� � �/.f / D sup
f 2F

Z
X

Z
Y

f .x; y/d�.y/d�.x/:

We now define G WD fx 7!
R
Y f .x; y/d�.y/ j f 2 Fg. Then G � CCc .X/ on account of Lemma

1.3.2 and meets the condition of Lemma 1.2.6 as F has this property. It follows that

.� � �/.A/ D sup
g2G

Z
X

gd� D

Z
X

sup
g2G

gd� D

Z
X

sup
f 2F

Z
Y

f .x; y/d�.y/d�.x/:

Finally, applying Lemma 1.2.6 to the family fy 7! f .x; y/ j f 2 Fg we get

.� � �/.A/ D

Z
X

Z
Y

sup
f 2F

f .x; y/d�.y/d�.x/ D

Z
X

Z
Y

1A.x; y/d�.y/d�.x/:

If A is compact, then we can choose a relatively compact open neighbourhood U of A. Thus
1A D 1U � 1UnA, a linear combination of characteristic functions of opens with finite measure
(hence each characteristic function is integrable). It now directly follows from the above and linearity
of the integral that .� � �/.A/ D

R
X

R
Y 1A.x; y/d�.y/d�.x/.

Next, let A be an arbitrary Borel subset of A with finite measure. Using inner regularity of the
product measure, we find a collection fKngn2N of compact subsets of A such that .� � �/.A/ �
.� � �/.Kn/ � 1=.n C 1/ for all n 2 N. The sets K WD

S
n2NKn and N WD A n K partition

A. Note that 1Kn ! 1K pointwise as n ! 1. Using the monotone convergence theorem and
the above, we obtain .� � �/.K/ D

R
X

R
Y 1K.x; y/d�.y/d�.x/. As N is negligible, we can

find an open neighbourhood U of N such that .� � �/.U / < " for every " > 0. It follows
that

R
X

R
Y 1N .x; y/d�.y/d�.x/ �

R
X

R
Y 1U .x; y/d�.y/d�.x/ D .� � �/.U / < ". As this

holds for any " > 0, we deduce that �.N/ D
R
X

R
Y 1N .x; y/d�.y/d�.x/ D 0. Hence, also

�.A/ D �.K/C �.N/ D
R
X

R
Y 1A.x; y/d�.y/d�.x/.

Now, consider a positive measurable function f � 0. Then there exists a sequence .�n/n2N of
simple functions such that �n ! � pointwise monotone as n!1. It follows from the monotone
convergence theorem and the above thatZ

X�Y

f d.� � �/ D lim
n!1

Z
X

Z
Y

�n.x; y/d�.y/d�.x/:
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Applying themonotone convergence theoremapplied to themeasurable sectionsy 7!
R
Y �n.x; y/d�.y/,

x 2 X , we get Z
X�Y

f d.� � �/ D

Z
X

lim
n!1

Z
Y

�n.x; y/d�.y/d�.x/:

Using themonotone convergence theoremagain, we conclude that the sectionsx 7!
R
Y f .x; y/d�.y/

are measurable and Z
X�Y

f d.� � �/ D

Z
X

Z
Y

f .x; y/d�.y/d�.x/:

Reversing the roles of X and Y in the reasoning above, we also get that
R
X�Y f d.� � �/ DR

Y

R
X f .x; y/d�.x/d�.y/.
Now let f be a real valued integrable function. Then we decompose f into its positive part f C

and its negative part f � such that f D f C � f �. From the above we have
R
X�Y f

˙ d.� � �/ DR
X

R
Y f
˙.x; y/d�.y/d�.x/ < 1. Hence x 7!

R
Y f
˙.x; y/d�.y/ is finite on a Borel subset

A˙X such that �.X n A˙X / D 0. Define AX WD ACX \ A
�
X . Note that the complement of AX

is again negligible. It follows that for x 2 AX the section y 7! f .x; y/ is �-integrable and
x 7!

R
Y f .x; y/d�.y/ is integrable on AX such thatZ

AX

Z
Y

f .x; y/d�.y/d�.x/ D

Z
AX

�Z
Y

f C.x; y/d�.y/ �

Z
Y

f �.x; y/d�.y/

�
d�.x/

D

Z
X�Y

f C d.� � �/ �

Z
X�Y

f � d.� � �/ D

Z
X�Y

f d.� � �/:

The iterated integral withX and Y reversed can be treated in the same way. If f is a complex valued
integrable function, then the resired result follows after considering the real and imaginary parts of
f and using the above. This finishes the proof of assertion (i).

We turn to assertion (ii). Assume that f is measurable and f �1.C n f0g/ is contained in a
� -finite subset of X � Y . Without loss of generality, we may assume that

C WD

Z
X

Z
Y

jf .x; y/j d�.y/d�.x/ <1:

By assumption there exists an increasing sequence of Borel subsets of finite measure fAngn2N such
that f �1.C n f0g/ �

S1
nD0An. This induces a sequence of measurable functions .jf jn/n2N given

by jf jn WD jf j1An . Note that jf jn ! jf j pointwise monotone as n ! 1. It follows from
assertion (i) thatZ

X�Y

jf jn d.� � �/ D

Z
X

Z
Y

1An.x; y/ jf .x; y/j d�.y/d�.x/ � C:

Using the monotone convergence theorem, we conclude thatZ
X�Y

jf j d.� � �/ � C <1:
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1.4 Haar measures

We now introduce the notion of a Haar measure, as promised. First, note that for any Borel subset
A of a topological group G and group element g 2 G, the translations gA and Ag are again Borel
subsets of G on account of Proposition 1.2.9 and continuity of multiplication.

Definition 1.4.1. A left-invariant Haar measure (resp. right-invariant Haar measure) on a topo-
logical group G is a non-trivial Radon measure � W B.G/ ! Œ0;1� such that �.gA/ D �.A/

(resp. �.Ag/ D �.A/) holds for every Borel subset A � G. Right-invariant and left-invariant Haar
measures are both called Haar measures.

Note that the Lebesgue measure, restricted to the Borel subsets, is a Haar measure on Rn. The
following proposition follows from Proposition 1.2.9, and should be clear.

Proposition 1.4.2. Every left-invariant Haar measure � on a topological group G induces a right-
invariant Haar measure Q� on G such that Q�.A/ D �.A�1/ for every A 2 B.G/. The map � 7! Q�
defines a bijection between the left- and right-invariant Haar measures on G.

Example 1.4.3. If G is a discrete group, i.e. a topological group with the discrete topology, we can
readily classify all Haar measures on G. Note that B.G/ D P.G/ in this case. Every multiple of
the counting measure defines a left- and right-invariant Haar measure. Indeed, consider the map

� W B.G/ �! Œ0;1� W A 7!

(
c jAj if A is finite
1 if A is infinite;

where c 2 �0;1Œ. Since the compact sets in the discrete topology are precisely the finite sets, we get
inner regularity on all finite subsets of G. Since c > 0, we also have inner regularity on the infinite
subsets. Outer regularity on the subsets follows immediately. Clearly, � is finite on compact sets
since c <1. It is readily verified that � is left- and right-invariant.

We show that every Haar measure � on G is a (finite and non-zero) multiple of the counting
measure. Define c WD �.f1g/. Note that c is finite, since � is finite on compact sets. Using
translation invariance, we get that �.fgg/ D c for every g 2 G. Thus, if A � G is finite, we get
�.A/ D

P
g2A �.fgg/ D cjAj. As the compact sets of G are exactly the finite sets, this implies

that c ¤ 0. Indeed, if c were zero, all subsets of A would be negligible by inner regularity, and �
would be the trivial measure. Now, for an infinite subset of A, we get �.A/ D 1. Indeed, choose
any injection f W N ! A, then �.f .N// D

P
g2f .N/ �.fgg/ D 1 � �.A/. We conclude that

� D c � counting measure on G.

Remark 1.4.4. Not every group has a Haar measure. Consider the rationals (with addition) equipped
with the topology inherited from R. Assume that � is a left-invariant Haar measure on Q, and set
c WD �.f0g/. As Q is countable, c uniquely determines �. Note that c > 0 as � is not trivial. For
every open neighbourhood U of 0, we have that there exists some � > 0 such that ��"; "Œ\Q � U .
As ��"; "Œ contains infinitely many rational numbers, we have that �.��"; "Œ \ Q/ D 1. Hence,
�.U / D1. Using outer regularity, we get that c D1, which violates Definition 1.2.1.

Note that the invariance of the Haar measures imply the following for the integral.



CHAPTER 1. INTEGRATION ON GROUPS 15

Proposition 1.4.5. Let G be topological group. Suppose that � is a left-invariant Haar measure
(resp. right-invariant Haar measure) on G. Then a Borel measurable function f W G ! C is
integrable if and only if Lgf (resp. Rgf ) is integrable, and in this case we have

R
G Lgf d� DR

G f d� (resp.
R
G Rgf d� D

R
G f d�).

Proof. Suppose that � is left-invariant; the case that � is right-invariant is shown similarly. If
f is a characteristic function of a Borel subset of G, then we have

R
G Lgf d� D

R
G f d� by

left-invariance. Thus this equality continues to hold whenever f is a simple function. If f
is a positive and Borel measurable, then we can find a sequence of pointwise monotone simple
functions convering to f pointwise (this is a result used in basic integration theory). The monotone
convergence theorem implies that the equality holds for f . Considering the positive and negative
part of a real Borel measurable function f , we see that f is integrable precisely when Lgf is
integrable and

R
G Lgf d� D

R
G f d�. The result now readily follows for complex-valued Borel

measurable functions.

Furthermore, the Haar integral has the following properties.

Proposition 1.4.6. Let � be a Haar measure on a topological group G. The following statements
are true.

(i) If A is a Borel set of G with non-empty interior, then A has positive measure.
(ii) If f 2 CC.G/ then �.f / D 0 if and only if f D 0.

Proof. We prove (i). Assume to the contrary that there exists a Borel set A 2 B.G/ with non-empty
interior such that �.A/ D 0. As VA ¤ ∅, we can cover every compact subset ofG with finitely many
translates of A (which are again negligible). But this implies that every compact subset of G is
negligible. Regularity of the measure then implies that � D 0, a contradiction since � is non-trivial.

We turn to assertion (ii). Clearly, �.f / D 0 whenever f D 0. Assume that f 2 CC.G/ and
f ¤ 0. Then U WD f �1.�0;1Œ/ is a non-empty open subset of G. It follows from assertion (i)
that �.U / > 0. Since �.U / > 0, we can find a compact set K � U such that �.K/ > 0 as �
is inner regular on opens. By compactness of K we have m WD infx2K f .x/ > 0. Now note that
�.f / �

R
K md� D m�.K/ > 0.

In case of a left-invariant Haar measure on a topological group G, the integral over Rgf where
f is an integrable function, might fail to be constant as g 2 G varies. We still have the following
result.

Proposition 1.4.7. Let � be a Radon measure on a locally compact groupG and f 2 Cc.G/. Then
the maps

G �! C W g 7! �.Lgf / D

Z
G

Lgf d�; G �! C W g 7! �.Rgf / D

Z
G

Rgf d�

are continuous.

Proof. We show continuity of the first map. Continuity of the second map is treated similarly. Let
g 2 G and " > 0. Fix a compact neighbourhood N of g. Note that N � supp f is again a compact
set (since it is the image of the compact set N � supp f under multiplication) and hence has finite
measure. We find a neighbourhoodU � N of g such that kLhf �Lgf k1 < "=.�.N �supp f /C1/
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whenever h 2 U by Proposition 1.1.8. Consider an element h 2 U . Then if x … N � supp f , we
have g�1x; h�1x … supp f and thus f .g�1x/ D f .h�1x/ D 0. It follows that supp.Lhf �Lgf /
is contained in N � supp f . It follows thatˇ̌

�.Lgf / � �.Lhf /
ˇ̌
�

Z
G

ˇ̌
Lgf � Lhf

ˇ̌
d� �



Lhf � Lgf 

1 �.N � supp f / < ":
This implies continuity of the map g 7! �.Lgf /.

Lemma 1.4.8. Let � be a non-trivial Radon measure on a locally compact group G. Suppose that
�.Lgf / D �.f / for all f 2 CCc .G/ and g 2 G, then � is a left-invariant Haar measure.

Proof. Let g 2 G. For f 2 CCc .G/ we have supp Lgf D g � supp f . Thus in light of Corollary
1.2.7, we obtain �.U / � �.gU /, and hence, �.U / D �.gU /, for all open subsets U of G. Using
the outer regularity of �, we deduce that � is left-invariant. As � is not trivial, this implies that �
is a left-invariant Haar measure.

Corollary 1.4.9. Let �; � be left-invariant Haar measures on, respectively, locally compact groups
G andH . Then the product measure � � � is a left-invariant Haar measure on G �H .

We deduce from Lemma 1.4.8 and Riesz representation theorem (see Theorem 1.2.4) that we
can characterize Haar measures using positive linear functionals.

Corollary 1.4.10. Let G be a locally compact group. Suppose that I W Cc.G/ ! C is a positive
linear functional such that I.Lgf / D I.f / for all f 2 CCc .G/ and I ¤ 0. Then there exists a
unique left-invariant Haar measure � on G such that �.f / D I.f / for all f 2 Cc.G/.

Example 1.4.11. Consider the circle group S1 D fz 2 C j jzj D 1g. It is readily verified that the
functional

I W C.S1/ �! C W f 7!
1

2�

Z 2�

0

f .eit /dt

is positive. This functional is also left-invariant, as we will show. Let z 2 S1 and write z D ei�

for some angle � 2 R. Then I.Lzf / D 1=.2�/
R 2�
0 f .ei.t��//dt D 1=.2�/

R 2�C�
� f .eit /dt:

Consider the C 1-map F W R ! C W s 7!
R s
0 f .e

it /dt . One readily verifies that the map s 7!
F.2�C s/�F.s/ is constant by calculating its derivative. Hence I.Lzf / D F.2�C�/�F.�/ D
F.2�/ � F.0/ D

R 2�
0 f .eit /dt D I.f /. Thus Corollary 1.4.10 implies that there exists a Haar

measure � on S1 for which �.f / D I.f / for all f 2 C.S1/. Note that this measure is left- and
right-invariant as S1 is abelian.

We now present another way of constructing this measure. Consider the continuous map g W
Œ0; 2��! S1 W t 7! eit . Let �0 denote the restriction of the Lebesgue measure to the Borel subsets
of the interval Œ0; 2��. As g is in particular measurable, we can consider the pushforward measure
g��0 W B.S1/ ! Œ0;1� W A 7! �0.g

�1.A//. Note that g��0.S1/ D �0.Œ0; 2��/ D 2� < 1.
Hence Proposition 1.2.3 implies that g��0 is a Radon measure. Thus �0 WD 1=.2�/g��0 is again a
Radon measure. Note that for A 2 B.S1/ we have

�0.A/ D
1

2�

Z 2�

0

1g�1.A/.t/dt D
1

2�

Z 2�

0

1A.e
it /dt:
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Using a standard argument (similar to the proof of Proposition 1.4.5; we first consider simple
functions, then positive functions and use the monotone convergence theorem), we obtain the
integral formula Z

S1
f d�0 D

1

2�

Z 2�

0

f .eit /dt: .f 2 L1.�0//

On the strength of Corollary 1.2.7, we now deduce that � D �0.

1.5 Haar’s theorem
If we consider groups that are locally compact, we obtain the following result. This section is
devoted to proving this result. There are multiple known ways to prove this theorem; we will follow
the proof in [Coh13].

Theorem 1.5.1 (Haar’s theorem). Let G be a locally compact group, then there exists left-invariant
Haar measure on G. Furthermore, every other left-invariant Haar measure is a positive multiple
this measure.

Consider a topological group G. Let K � G be compact, and U � G be a non-empty subset.
Then we define

#.K W U/ WD minfn 2 N j there exists g1; : : : ; gn such that K �
Sn
iD1 giU g:

This is called the covering number of U overK. Note that this quantity is well-defined the translates
of U forms an open cover of the subset K, and hence there exists finitely many translates of U
covering K.

Lemma 1.5.2. Let G be a topological group. Let K1; K2 � G be compact subsets of G, let and
U � G be a non-empty open subset. Then the following statements are true.

(i) If VK2 ¤ ∅ then #.K1 W U/ � #.K1 W VK2/#.K2 W U/.
(ii) For every g 2 G we have #.gK1 W U/ D #.K1 W U/.
(iii) If K1 � K2 then #.K1 W U/ � #.K2 W U/.
(iv) We have #.K1[K2 W U/ � #.K1 W U/C#.K2 W U/, with equality ifK1U�1\K2U�1 D ∅.

Proof. The assertions (i)-(iii) are readily verified. We turn to assertion (iv). The inequality is
clear, hence we prove the last part of the assertion. Assume that K1U�1 \ K2U�1 D ∅. Set
n WD #.K1 [ K2 W U/ and let g1; : : : ; gn 2 G be the elements such that K1 [ K2 �

Sn
iD1 giU .

For j D 1; 2 we define Ij WD f1 � i � n j giU \ Kj ¤ ∅g. By minimality of n, we have
1; : : : ; n 2 I1 [ I2. We show that I1 and I2 are disjoint. Indeed, assume to the contrary that there
exists an index i 2 I1 \ I2. Then giU \ K1 ¤ ∅ and giU \ K2 ¤ ∅, but this implies that
gi 2 K1U

�1 \K2U
�1, which is a contradiction. Thus I1 and I2 partition the indices 1; : : : ; n. It

follows that #.K1 [K2 W U/ D n D jI1j C jI2j � #.K1 W U/C #.K2 W U/.

Lemma 1.5.3. Let G be a locally compact group G. Denote the collection of compact subsets of G
by C. Then there exists a non-zero map m W C ! Œ0;1Œ which satisfies

(i) m.∅/ D 0,
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(ii) m.gK/ D m.K/ for all g 2 G,
(iii) m.K1/ � m.K2/ if K1 � K2,
(iv) m.K1 [K2/ � m.K1/Cm.K2/, with equality if K1 \K2 D ∅,

for all K;K2; K2 2 C.

Proof. Fix a compact neighbourhood C of 1. Let B be a basis of open neighbourhoods of 1. For
U 2 B , we define a map mU W C ! Œ0;1Œ given by mU .K/ WD #.K W U/=#.C W U/ for every
K 2 C. As C has non-empty interior, we havemU .K/ 2 Œ0; #.K W VC/� on account of Lemma 1.5.2.

The space
P WD

Y
K2C

Œ0; #.K W VC/�

(equipped with the product topology) is compact on account of Tikhonov’s theorem. Note that
mU 2 P for every U 2 B . For a neighbourhood V of the identity, we define

M.V / WD fmU j U 2 B;U � V g � P:

We now set
M WD

\
V 2B

M.V /:

The spaceM is not empty. Indeed, assume to the contrary thatM is empty. Then fP nM.V /gV 2B
covers P . As P is compact, there exists V1; : : : ; Vn 2 B such that P �

Sn
iD1 P nM.Vi /. This

implies that
Tn
iD1M.Vi / D ∅. However, there exists a U 2 B with U �

Tn
iD1 Vi . This leads to a

contradiction as mU 2 M.Vi / for all indices i . We conclude thatM is non-empty. Therefore, fix a
map m 2M . We show that this m satisfies (i)-(iv).

Claim. Let K1; : : : ; Kn 2 C, r1; : : : ; rn 2 R and let S � R be closed. If there exists a neigh-
bourhood V of the identity, such that

Pn
iD1 rimU .Ki / 2 S for every U 2 B with U � V , thenPn

iD1 rim.Ki / 2 S .
Proof of the claim. Note that the for every i , the evaluation map �i W P ! R W f 7! f .Ki / is
continuous, by definition of the product topology. Hence the map s WD

Pn
iD1 ri�i is continuous. It

now follows that
fmU j U 2 B;U � V g �M.V / � s

�1.S/;

as S is closed. Thus in particular, we have that s.m/ D
Pn
iD1 rim.Ki / 2 S . ˘

Since mU .∅/ D 0 and mU .C / D 1 for every U 2 B , we get m.∅/ D 0 and m.C/ D 1 by
the previous claim. In particular, m is non-zero. Similarly, (ii) follows from Lemma 1.5.2(ii) and
previous claim. Now, if K1; K2 � C and K1 � K2, then mU .K1/ � mU .K2/ 2 ��1; 0� for all
U 2 B . Thus previous claim implies that m.K1/ � m.K2/. Finally, we show (iv). Clearly, the
inquality ‘�’ follows again from the previous claim and lemma. Assume that K1 \K2 D ∅. As G
is Hausdorff, we find disjoint open neighbourhoods U1, U2 of respectively K1, K2. It follows from
Proposition 1.1.3 that there exists neighbourhoods V1; V2 such that K1V1 � U1 and K2V2 � U2.
Thus V WD V �11 \ V �12 has the property that for all open subsets U 2 B contained in V , we have
mU .K1[K2/ D mU .K1/CmU .K2/ by Lemma 1.5.2(iv). From the previous claim it follows that
we have the same equality for the map m.
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Lemma 1.5.4. Let G be a locally compact group. Denote the collection of subsets of G again by
C. Suppose there exists a map m W C ! Œ0;1Œ satisfying conditions (i)-(iv) of Lemma 1.5.3. Then
there exists a left-invariant Haar measure on G.

Proof. We construct an outer measure �� W P.G/! Œ0;1� as follows, for U � G open, we set

��.U / WD supfm.K/ j K compact ; K � U g:

For an arbitrary subset A of G, we define

��.A/ WD inff��.U / j U open ; A � U g:

It is readily verified that this is well-defined (i.e. the latter definition agrees with the first on the open
subsets) and that �� is monotone. Condition (i) implies that ��.∅/ D 0. To conclude that �� is
indeed an outer measure, it remains to show subadditivity of ��.

Let U1; U2 be open subsets of G. Let K � U1 [ U2 be compact. Then K n U1 and K n U2 are
disjoint compact sets, hence there exists disjoint open neighbourhoods V1, V2 of respectivelyK nU1
andK nU2. Note thatK nV1 � U1 andK nV2 � U2 are compacts sets, andK nV1[K nV2 D K.
Hence, it follows from condition (iv) that m.K/ � m.K n V1/Cm.K n V2/ � ��.U1/C ��.U2/.
As K � U1 [ U2 was arbitrary, we conclude that

��.U1 [ U2/ � �
�.U1/C �

�.U2/:

Next, consider a collection fUigi2N of open subsets of G. Let K �
S1
iD0 Ui be compact. By

compactness, there exists a n 2 N such thatK �
Sn
iD0 Ui . By successively applying the inequality

we proved above, we obtain

m.K/ � ��

 
n[
iD0

Ui

!
�

nX
iD0

��.Ui / �

1X
iD0

��.Ui /:

Thus it follows that ��.
S1
iD0 Ui / �

P1
iD0 �

�.Ui /. Finally, consider a collection fAigi2N of
arbitrary subsets of G. Let " > 0. For every i 2 N we find an open subset Ui � Ai such that
��.Ui / � �

�.Ai /C "=2
iC1. It now follows that

��

 
1[
iD0

Ai

!
� ��

 
1[
iD0

Ui

!
�

1X
iD0

��.Ui / �

1X
iD0

��.Ai /C

1X
iD0

"

2iC1
D

1X
iD0

��.Ai /C ":

As " > 0 was arbitrary, the desired inequality follows.
On strength of the Carathéodory’s theorem (see [Coh13, Theorem 1.3.6]), �� restricted to the

� -algebra A of sets that meet the Carathéodory criterion, is a measure. We show that B.G/ � A.
It suffices to show that every open subset U of G obeys the Carathéodory condition. First, consider
an open set V . Let K1 � U \ V compact. For every compact set K2 � V n K1 we have
m.K1/ C m.K2/ D m.K1 [ K2/ � ��.V / by condition (iv). Because this holds for every
compactum K2 � V n K1, we get m.K1/C ��.V n K1/ � ��.V /. Note that V n U � V n K1.
As K1 � U \ V was an arbitrary compact set, we obtain ��.V \ U/ C ��.V n U/ � ��.K/.
Now, consider a subset A of G. Let " > 0. Then there exists an open subset V � A such that
��.V / � ��.A/C ". It follows that

��.A \ U/C ��.A n U/ � ��.V \ U/C ��.V n U/ � ��.V / � ��.A/C ":
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Hence U 2 A. Thus we conclude that B.G/ � A.
Denote � for the restriction of �� to B.G/. This is a measure on account of what we showed

above. From the definition of �� and condition (ii) onm, it readily follows that �� is invariant under
left-translations. Hence � is left-invariant. Furthermore, it directly follows from the definition
of �� that it is outer regular on the Borel sets. Again using the definition, and observing that
m.K/ � ��.K/ for all compact subsetsK, we deduce that � is inner regular on the open sets. Note
that� is not the trivial measure, asm is non-zero. It remains to show that� is finite on compact sets.
Indeed, letK be compact. Then we can coverK with finitely many relatively compact open subsets
U1; : : : ; Un. It follows that �.K/ �

Pn
iD1 �.Ui / �

Pn
iD1m.Ui / < 1 (here we used condition

(iii)). We conclude that � is a left-invariant Haar measure.

Proof of Theorem 1.5.1. Combining Lemma 1.5.3 and Lemma 1.5.4, we conclude that there exists
a left-invariant Haar measure � on G. We turn to the second assertion of the theorem. Let � be
another left-invariant Haar measure on G. For f 2 Cc.G/ with �.f / ¤ 0 we define

Df W G �! C W x 7!
�.Rxf /

�.f /
:

On the strength of Proposition 1.4.7 this map is continuous. Using left-translation invariance of �
(see Proposition 1.4.5), we get for g 2 Cc.G/,

�.f /�.g/ D

Z
G

Z
G

f .x/g.x�1y/d�.y/d�.x/:

Invoking the theorem of Fubini (see Theorem 1.3.4), using left-translation of� and applying Fubini’s
theorem again, we obtain

�.g/ D
1

�.f /

Z
G

Z
G

f .yx/g.x�1/d�.x/d�.y/

D
1

�.f /

Z
G

Z
G

f .yx/g.x�1/d�.y/d�.x/ D

Z
G

Df .x/g.x
�1/d�.x/:

Thus we have Z
G

.Df .x/ �Df 0.x//g.x
�1/d�.x/ D 0

for everyf; f 0 2 Cc.G/with�.f /; �.f 0/ ¤ 0. Substitutingx 7! �.x�1/.Df .x
�1/ �Df 0.x

�1//

for g, where � 2 CCc .G/ is arbitrary, we deduce that �jDf �Df 0 j2 D 0 using Proposition 1.4.6.
It follows from Lemma 1.2.5 that Df D Df 0 . Setting c WD �.f /=�.f / D Df .1/, we obtain that
�.f 0/=�.f 0/ D Df 0.1/ D c for every other f 0 2 Cc.G/ with �.f 0/ ¤ 0. Thus in particular, we
have �.f 0/ D c�.f 0/ for every f 0 2 CCc .G/. On account of Corollary 1.2.7 we get � D c�.

1.6 Modular functions
Note that for a locally compact group G with a left-invariant Haar measure �, the map �x W A 7!
�.Ax/, x 2 G, is again a Radon measure on account of Proposition 1.2.9. It is readily verified that
�x is left-invariant again. Thus �x must be a multiple of � on account of Haar’s theorem. Thus
there exists a c > 0 such that �x D c�. This number c does not depend on �. Indeed, for another
left-invariant Haar measure �, we have � D c0� for some c0 > 0. Hence �x D c0�x D cc0� D c�.
This motivates the following definition.
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Definition 1.6.1. Let G be a locally compact group with a left-invariant Haar measure �. Then
the unique function � W G ! �0;1Œ such that �x D �.x/� for all x 2 G, is called the modular
function of G. The group G is said to be unimodular if � D 1 everywhere.

It is readily verified that if a group is unimodular, its left-invariant Haar measures concide with its
right-invariant Haar measures. The following proposition is proven in the same way as Proposition
1.4.5.

Proposition 1.6.2. Let � be a left-invariant Haar measure on a locally compact group G. Let
g 2 G. Then a Borel measurable function f W G ! C is integrable if and only ifRgf is integrable,
and in this case we have

�.Rgf / D �.g
�1/�.f /:

Proposition 1.6.3. The modular function � on a locally compact group G is a continuous homo-
morphism of groups (with multiplication on �0;1Œ).

Proof. It is readily verified that � is a group homomorphism. We show that it is continuous. Let
� be a left-invariant Haar measure on G. Fix a map f 2 Cc.G/ with �.f / ¤ 0. Then we obtain
�.x/ D �.Rx�1f /=�.f / in light of Proposition 1.6.2. Continuity of � now directly follows from
Proposition 1.4.7.

Corollary 1.6.4. Every compact group is unimodular.

Proof. The image of a compact group under its modular function is a compact subgroup of �0;1Œ
in light of Proposition 1.6.3. There is only one such subgroup: f1g.

We are now ready to formulate a generalization of Proposition 1.4.7 in case of Haar measures.

Proposition 1.6.5. Let � be a left-invariant Haar measure on a locally compact group G. Suppose
that f 2 Lp.�/ for some 1 � p <1. Then the maps

G �! Lp.�/ W g 7! ŒLgf �; G �! Lp.�/ W g 7! ŒRgf �

are continuous.

Proof. It is clear that the maps above are well defined, since the maps G ! Lp.�/ W g 7! Lgf

and G ! Lp.�/ W g 7! Rgf factor through the quotient map Lp.�/! Lp.�/ as consequence of
Proposition 1.4.5 and Proposition 1.6.2.

We show continuity of the map g 7! ŒRgf �. Let g 2 G and " > 0. We fix an compact
neighbourhood N of g. On account of Proposition 1.2.8 there exists a � 2 Cc.G/ such that
kf � �kp < "1=p. Similarly as in the proof of Proposition 1.4.7, we find an open neighbourhood
U � N of g such that kRh� �Rg�k1 < minf1; "=�.supp.�/ �N�1/g and supp.Rh� �Rg�/ �
supp.�/ �N�1 whenever h 2 U . It follows that for h 2 U

Rhf �Rgf 

pp � Z

G

jRhf �Rh�j
p d�C

Z
G

ˇ̌
Rh� �Rg�

ˇ̌p
d�C

Z
G

ˇ̌
Rf � �Rgf

ˇ̌p
d�

� .�.g�1/C�.h�1// kf � �kp C " � .�.g�1/C�.h�1/C 1/":

Here we used Proposition 1.6.2. Note that � is bounded on N�1 since � is continuous. Hence it
follows from inequality above that g 7! ŒRgf � is continuous.

The proof of the continuity of g 7! ŒLgf � is similar, but one exploits the left-invariance of the
Haar integral in this case instead of using Proposition 1.6.2.
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1.7 Convolutions
Definition 1.7.1. Let � be a left-invariant Haar measure on a locally compact group G. Let f; g be
integrable functions on G. Then the convolution of f and g is the map

f � g W G �! C W x 7!

(R
G f .y/g.y

�1x/d�.y/ if y 7! f .y/g.y�1x/ is integrable
0 otherwise:

Proposition 1.7.2. Let � be a left-invariant Haar measure on a locally compact group G. Let f; g
be integrable functions onG. Then the convolution f �g is integrable and kf �gk1 � kf k1kgk1.

We will need the following lemma to prove this proposition.

Lemma 1.7.3. Let � be a left-invariant Haar measure on a locally compact group G. Then every
integrable function f on G vanishes outside a � -compact set.

Proof. First we note that G has a � -compact open subgroup H . Indeed, one takes a symmetric
compact neighbourhood K of the identity and defines H WD

S
n2NK

n. It is clear that H is a
subgroup of G and open as any x 2 H has the neighbourhood xK contained in H . Since Kn is
compact (it is the image of K � � � � �K under multiplication),H is � -compact.

Recall from integration theory that every integrable function f vanishes outside a � -finite subset
of G. Hence there exists a collection of nonempty Borel subsets fAngn2N all of finite measure such
that f �1.C n f0g/ �

S
n2NAn. By outer regularity of �, we may assume that every An is open.

For n 2 N, let Pn � G be the subset consisting of the points x 2 G such that xH \ An ¤ ∅.
As xH \ An is open, it has positive measure (see Proposition 1.4.6). By additivity of the measure
it follows that

P
x2Pn

�.xH \ An/ � �.An/. This implies that Pn consists of countably many
elements, since otherwise we would have �.An/ D 1. We now set Bn WD

S
x2Pn

xH . Note that
Bn contains An and is � -compact since it is a countable union of � -compact sets. As f vanishes
outside

S
n2NBn, this concludes the proof.

Proof of Proposition 1.7.2. Note that the map f �g is B.G/˝B.G/-measurable, thus in particular
B.G � G/-measurable. Furthermore, the maps s W .x; y/ 7! .y; y�1x/ and the multiplication map
G � G ! G are B.G � G/-measurable as they are continuous. Hence the map h W .x; y/ 7!
f .y/g.y�1x/ is B.G �G/-measurable since it is the composition of multiplication, f � g and s.

Using Lemma 1.7.3 we find a � -compact subset A of G such that f and g vanish outside A. It
is readily verified that h vanishes outside A2 �A. By continuity of multiplication A2 is � -compact,
and hence the subset A2 � A is again � -compact. Thus h vanishes outside a � -compact subset of
G, and thus in particular outside a � -finite subset.

Using left-invariance of � we getZ
G

Z
G

jh.x; y/j d�.x/d�.y/ D

Z
G

jf .y/j

Z
G

jg.x/j d�.x/d�.y/ D kf k1 kgk1 <1:

It follows from Theorem 1.3.4(ii) that h is integrable w.r.t. ���. The assertions now readily follow
from Theorem 1.3.4(i).

Corollary 1.7.4. Let � be a left-invariant Haar measure on a locally compact group G. When
L1.�/ is endowed with convolution

� W L1.�/ � L1.�/ �! L1.�/ W .Œf �; Œg�/ 7! Œf � g�;
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it forms a Banach algebra.

Proof. One readily proves that f � g D f 0 � g0 for integrable functions f; g; f 0; g0 on G such that
f D f 0 a.e. and g D g0 a.e. Hence the convolution on L1.�/ is well-defined. One readily shows
that .L1.�/;�/ forms an associative algebra (it suffices to show the desired identities for compactly
supported functions on the strength of Proposition 1.7.2 and Proposition 1.2.8). As L1.�/ is
complete and we have kf � gk1 � kf k1kgk1 for all f; g 2 L1.�/, it follows that .L1.�/;�/ is a
Banach algebra.

Definition 1.7.5. Let � be a left-invariant Haar measure on a locally compact group G. A Dirac
function on G is a function � 2 CCc .G/ such that

(i) �.x/ D �.x�1/ for all x 2 G,
(ii) �.�/ D 1.

Proposition 1.7.6. Let � be a left-invariant Haar measure on a locally compact group G. Then for
every open U of the identity there exists a Dirac function � supported in U .

Proof. Let V be a symmetric neighbourhood of the identity such that V is contained in U (see
Proposition 1.1.3). Now choose a g 2 CCc .G/ such that g.1/ > 0 and supp g � V . Consider the
function f 2 CCc .G/ given by f .x/ WD g.x/Cg.x�1/. It is readily verified that � WD .1=�.f //f
is a Dirac function supported in U .

Lemma1.7.7. Let� be a left-invariantHaarmeasure on a locally compact groupG. Letf 2 L1.�/.
Then for every " > 0, there exists a neighbourhood U of the identity such that for all Dirac functions
� supported in U we have kf � � � f k1 < ".

Proof. In light of Proposition 1.7.2 and Proposition 1.2.8, it suffices to prove the theorem for
f 2 Cc.G/. Let U be a neighbourhood of the identity such that kRxf �f k1 < " for every x 2 U .
For any Dirac function � supported in U , we have

kf � � � f k1 �

Z
G

ˇ̌̌̌Z
G

f .y/�.y�1x/d�.y/ � f .x/

ˇ̌̌̌
d�.x/:

From symmetry of � and translation invariance of � it follows that
R
G �.y

�1x/d�.y/ D �.�/ D 1

for all x 2 G. Hence

kf � � � f k1 �

Z
G

Z
G

�.y�1x/ jf .y/ � f .x/j d�.y/d�.x/:

Using the theorem of Fubini twice and translation invariance, we obtain

kf � � � f k1 �

Z
G

Z
G

�.x/ jf .y/ � f .yx/j d�.y/d�.x/

�

Z
G

�.x/ kRxf � f k1 d�.x/ < ":



2. Representations

We follow the approach taken in [Ban10].

Definition 2.0.1. LetG be a topological group. A representation ofG is a pair .�; V / consisting of
a non-trivial complex Banach space V and a group homomorphism � W G ! Iso.V /, such that the
induced map

G � V �! V W .g; v/ 7! �.g/v

is continuous. If V is finite-dimensional, .�; V / is said to be a finite-dimensional representation. If
V is a Hilbert space, and �.G/ � U.V / D fT 2 B.V / j T is unitaryg, the representation .�; V / is
called unitary.

Lemma 2.0.2. Let G be a locally compact group and V a Banach space. Let � W G ! Iso.V / be
a homomorphism. Then � is a representation if and only if the map g 7! �.g/v is continuous at 1
for every v 2 V .

Proof. The implication ‘)’ is clear. Assume that the map g 7! �.g/v is continuous at 1 for
every v 2 V . Since � is a homomorphism, this implies that the map g 7! �.g/v is continuous
on the whole group G for every v 2 V . Fix a compact neighbourhood K of 1. Compactness
of K implies that supg2Kk�.g/vk < 1 for every v 2 V . Consequently, on the strength of the
uniform boundedness principle, we obtain C WD supg2Kk�.g/k <1. Let g 2 G and h 2 gK and
v;w 2 V , then we have

k�.h/w � �.g/vk � k�.g/k


�.g�1h/w � �.g�1h/v C �.g�1h/v � v



� k�.g/kC kw � vk C k�.g/k


�.g�1h/v � v

 :

From this inequality it now readily follows that .g; v/ 7! �.g/v is continuous.

Consider a locally compact group G and a left-invariant Haar measure � on G. Recall that for
every g 2 G, the map Lg on L2.�/ is a unitary operator (see Proposition 1.4.5). It follows from
Proposition 1.6.5 that the map

L W G �! U.L2.�// W g 7! Lg

is a representation of G. This is called the left regular representation of G. Similarly, we have the
right regular representation

R W G �! Iso.L2.�// W g 7! Rg :

24
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Definition 2.0.3. Let .�; V / be a representation of a topological groupG. A linear subspaceW � V
is an invariant subspace (w.r.t. �) of V whenever �.G/W � W . As W is again a Banach space,
the restriction

�jW W G �! Iso.W / W g 7! �.g/jW

of � to a non-trivial invariant subspace W gives rise to a representation .�jW ; W / of G. This is
called a subrepresentation of � . If the only invariant subspaces of � are either V or 0, then we say
that � is irreducible. A non-trivial invariant subspace W is said to be a irreducible subspace of V
whenever �jW is irreducible.

Example 2.0.4. Consider the group U.n/ D fA 2 M.n;C/ j AA� D 1g, the group of unitary
matrices. This group has a natural action on Cn (the identification of matrices with linear operators
w.r.t. the standard basis), inducing a unitary representation .�;Cn/ of U.n/. This representation is
irreducible. Indeed, let W � Cn be a non-trivial invariant subspace. Then there exists a v1 2 W
such that kv1k D 1. We can extend to an orthonormal basis fv1; v2; : : : ; vng of Cn. For every
permutation � of 1; : : : ; n, we have a unitary matrix A� satisfying A�vi D e�.i/ for all i . It follows
that Av1 D e�.1/ 2 W for every permutation � . Thus W D Cn.

Proposition 2.0.5. Let .�; V / be a unitary representation of a topological group G. If W � V is
an invariant subspace, then W ? is also an invariant subspace. In particular, V decomposes as the
direct sum of two invariant subspaces: V D W ˚W ?.

Proof. Note that W ? is again closed, and as W is closed we have V D W ˚W ?. Let w0 2 W ?.
Then for every w 2 W , we have h�.g/w0; wi D hw0; �.g�1/wi D 0. Here we used the unitary
property of � and the fact that W is invariant. Hence �.g/w0 2 W ?. Thus W ? is invariant.

Definition 2.0.6. Let .�; V�/, .�; V�/ be two representations of a topological group G. A bounded
operator T W V� ! V� is said to be intertwining (w.r.t. � and �) if the following diagram commutes
for every g 2 G.

V� V�

V� V�

T

�.g/

T

�.g/

The linear space of intertwining maps V� ! V� is denoted by BG.V� ; V�/. If there exists an
bijective intertwining operator, the representations of � and � are said to be equivalent and we write
� Š �.

Note that on the strength of the open mapping theorem, every bijective intertwining operator is
an isomorphism of normed spaces.

Lemma 2.0.7. Let .�; V�/, .�; V�/ be two representations of a topological group G. Suppose that
T W V� ! V� is a intertwining operator. Then ker.T / is a invariant subspace of V� and the image
im.T / is an invariant subspace of V� whenever it is closed.

Proof. As ker.T / D T �1.0/, the kernel of T is closed. Let v 2 ker.T /, then T .�.g/v/ D
�.g/.T v/ D 0 for every g 2 G. Thus ker.T / is invariant. As T .�.g/v/ D �.g/.T v/ for all v 2 V1,
we see that im.T / is an invariant subspace if im.T / is closed.
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Proposition 2.0.8. Let .�; V�/ and .�; V�/ be two irreducible finite-dimensional representations of
a topological group G. If � © � then BG.V� ; V�/ D 0.

Proof. Indeed, assume that � © �. Let T W V� ! V� be an intertwining map. Then ker.T /
and im.T / are invariant subspaces by previous lemma (recall that every linear subspace of a finite-
dimensional space is closed). If ker.T / D 0 then im.T / ¤ 0 (as V� has dimension � 1). This
implies that im.T / D V�. Hence T is bijective, which contradicts the assumption that � and � are
not equivalent. Thus we must have that ker.T / ¤ 0. Hence ker.T / D V� , i.e. T is the trivial
map.

Recall that a finite-dimensional space is a Hilbert space, and every norm is equivalent on a
finite-dimensional space. Hence, it might occur that we can equip a finite-dimensional space with
a (Hermitian) inner product for which a representation is a unitary. This motivates the following
definition.

Definition 2.0.9. Let .�; V / be a finite-dimensional representation of a topological group G. Then
� is said to be unitarizable if there exists an inner product h � ; � iG on V for which the representation
� is unitary.

Lemma 2.0.10 (Schur’s lemma). Let .�; V / be a finite-dimensional representation of a topological
groupG. ThenBG.V / D CidV if� is irreducible. The converse statement holds if� is unitarizable.

Proof. Let T 2 BG.V /. Then there exists an eigenvalue � 2 C of T . Since ker.T � �idV / is
non-trivial and invariant in light of Lemma 2.0.7, we must have that ker.T � �idV / D V . Hence
T D �idV .

Next, suppose that � is unitarizable and let h � ; � iG be an inner product on V for which �
is unitary. We prove the last assertion. Assume that BG.V / D CidV . Let W be an invariant
subspace of V . We can decompose V as V D W ˚W ? (here the orthogonal complement is taken
w.r.t. h � ; � iG). This decomposition comes with a projection P W V ! W . As both W and W ?
are invariant on account of Proposition 2.0.5, P is intertwining. We interpret P as a intertwining
operator V ! V . It then follows that P D �idV for some � 2 C. Hence �V D W and thusW D 0
or W D V .

Let V1; V2 be two Banach spaces with respectively norms k � kV1 ; k � kV2 . Recall that we can
endow the (external) direct sum V1 ˚ V2 with the norm k � k D k � kV1 C k � kV2 . With this norm,
the direct sum is again a Banach space, and the topology induced by this norm coincides with the
product topology.

Definition 2.0.11. Let .V1; �1/, .V2; �2/ be two representations of a topological groupG. Then the
induced representation

�1 ˚ �2 W G �! Iso.V1 ˚ V2/ W g 7! �1.g/˚ �2.g/

is called the direct sum of �1 and �2.

Proposition 2.0.12. Let .�; V / be a representation of a topological group G. Suppose that V
decomposes into non-trivial invariant subspaces V1; : : : ; Vn, i.e. V D

Ln
iD1 Vi . Then

� Š

nM
iD1

�i ;
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where �i is the restriction of � to Vi .

Proof. One takes the identification of the internal and external direct sum of the Vi ’s as the desired
intertwining isomorphism.

Proposition 2.0.13. Every unitarizable finite-dimensional representation .�; V / of a topological
group G decomposes into irreducible representations. I.e., there exists a n 2 N such that

� Š

nM
iD1

�i ;

where each �i is an irreducible representation.

Proof. We proceed by induction on the dimension of V . If dim.V / D 1, we are done. Let
k 2 N be a positive number, and assume the statement holds for representations of dimension
� k. Consider a unitarizable representation .�; V / with dim.V / D k C 1. If � is irreducible,
we are done. Hence assume that � is not irreducible. Then there exists a non-trivial invariant
subspace W � V of minimal dimension. Recall that W ? (the orthogonal complement of W w.r.t.
h � ; � iG) is again invariant. Write �1 WD �jW and � 0 WD �jW? . Note that �1 is irreducible.
By the induction hypothesis, � 0 decomposes into irreducible representations �2; : : : ; �n. Hence
� Š �1 ˚ �

0 Š ˚niD1�i .

Using the terminology of Section A.2, we define the following.

Definition 2.0.14. Let f.�i ; Vi /gi2I be a family of unitary representations of a topological group
G. The unitary representation

bM
i2I

�i W G �! U

 
bM
i2I

Vi

!
W g 7!

bM
i2I

�i .g/

is called the Hilbert direct sum of f�igi2I .

Proposition 2.0.15. Let .�; V / be a unitary representation of a topological group G. Suppose that
V has a orthogonal decomposition into non-trivial invariant subspaces fVigi2I , i.e. V D

L
i2I Vi

and Vi ? Vj whenever i ¤ j 2 I . Then

� Š
bM
i2I

�i ;

where �i is the restriction of � to Vi .

Proof. Using the notation of Section A.2, we can take bQi2IPi W V ! cL
i2IVi as desired unitary

intertwining operator. Here Pi W V ! Vi denotes the projection onto Vi .



3. Representations of compact groups

We will now shift our attention to compact groups.

Troughout this chapter G will be a compact group.

As G is compact, there exists a left- and right-invariant Haar measure � on G which satisfies
�.G/ D 1. This is called the normalized Haar measure on G. Indeed, there exists a left-invariant
Haar measure �0 on G in account of Haar’s theorem. Since G is compact, it is unimodular and
hence �0 is also right-invariant. Note that �0.G/ <1, hence we can scale �0 by a factor 1=�0.G/
to obtain the desired normalized Haar measure �. Troughout this chapter, we will endow G with
this Haar measure �. We denote

Lp.G/ WD Lp.�/:

Proposition 3.0.1. Let .�; V / be a finite-dimensional representation of G. Every inner product
h � ; � i on V induces an inner product h � ; � iG on V given by

hv;wiG WD

Z
G

h�.x/v; �.x/wid�.x/ .v; w 2 V /:

When V is endowed with this inner product, .�; V / is a unitary representation. In particular, every
finite-dimensional representation of G is unitarizable.

Proof. Let v;w 2 V . Note that the map h � ; � iG is well-defined as the map x 7! h�.x/v; �.x/wi is
continuous (since � is a representation) and hence integrable over the compact group G. We claim
that this is an inner product on V for which � is invariant. Note that x 7! h�.x/v; �.x/vi is a
positive continuous function. Hence hv; viG � 0. Furthermore, on account of Proposition 1.4.6 we
get that hv; viG D 0 if and only if v D 0. Linearity in the first argument and conjugate symmetry
of h � ; � iG readily follow from the definition. Finally, one observes that � is unitary w.r.t. h � ; � iG
by right-invariance of the Haar integral.

Corollary 3.0.2. Every finite-dimensional representation of G decomposes into irreducible repre-
sentations.

From now on, we will equip every finite-dimensional representation with an associated inner
product h � ; � iG . This makes every finite-dimensional representation a unitary representation.

28
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3.1 Matrix coefficients and characters
Definition 3.1.1. For a unitary representation .�; V / of G, the (continuous) maps

m�v;w W G �! C W x 7! h�.x/v;wi .v; w 2 V /

are called the matrix coefficients of � . The linear subspace of C.G/ � L2.G/ spanned by these
matrix coefficients is denoted by C.G/� .

If it is clear from the context to which representation � a matrix coefficient m�v;w corresponds,
we leave out � in our notation, and consequently write mv;w WD m�v;w .

Lemma 3.1.2. Let V be a finite-dimensional vector space over a field K D R;C. Suppose that
h � ; � i is an inner product on V with orthonormal basis v1; : : : ; vn. Then for any A 2 End.V /, we
have

tr.A/ D
nX
iD1

hAvi ; vi i:

Proof. Let ˇ W V ! Kn be the coordinate map such that ˇ.vi / D ei for all i . Note that A has a
matrix Aˇ with respect to these coordinates satisfying ˇ�1Aˇˇ D A. By definition of the trace of
a linear map, we have

tr.A/ D
nX
iD1

.Aˇ /i i D

nX
iD1

.ˇ�1.Avi //i :

Note that for every v 2 V we can write v D
Pn
iD1 �ivi with scalars �i 2 K. Hence ˇ�1.v/i D

�i D hv; vi i. Combining this with the equation above, the assertion follows.

For a finite-dimensional representation of G, the linear map T� W End.V /! C.G/� given by

.T�A/.x/ WD tr.�.x/A/ .A 2 End.V /; x 2 G/

will be of importance. In fact, when� is irreducible and End.V / is endowedwith theHilbert-Schmidt
norm (see Section A.2), this map is unitary, as we will see shortly. As V is finite-dimensional, the
Hilbert-Schmidt norm is induced by the inner product

hA;BiHS D tr.AB�/:

Lemma 3.1.3. Let .�; V / be a finite-dimensional representation ofG. Then the map T� is surjective.

Proof. First we show that T� maps into C.G/� . Let v1; : : : ; vn be an orthonormal basis of V (w.r.t.
h � ; � iG). Let A 2 End.V /. Then for every x 2 G we have tr.�.x/A/ D

Pn
iD1h�.x/Avi ; vi iG DPn

iD1mAvi ;vi .x/: Thus x 7! tr.�.x/A/ indeed defines a function of C.G/� . Furthermore, it is
clear that T� is linear, due to linearity of the trace.

We turn to the main content of the lemma. Let v;w 2 V and consider the matrix coefficient
mv;w . Write v D

Pn
iD1 �ivi and w D

Pn
iD1 �ivi , with �i ; �i 2 C. Let A be the endomorphism

such that Avi D
Pn
jD1 �j�ivj . It is readily verified that T�A D mv;w .

Proposition 3.1.4. Let .�; V�/ and .�; V�/ be two equivalent finite-dimensional representations of
G. Then C.G/� D C.G/�.
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Proof. As � Š �, there exists a linear isomorphism T W V� ! V� such that T�.x/T �1 D �.x/

for every x 2 G. Consider the surjective linear maps T� and T� as in Lemma 3.1.3. As T is an
isomorphism, it induces a linear isomorphism T� W End.V�/ ! End.V�/ W A 7! T �1AT . It is
readily verified that T� ı T� D T� (use the fact that tr.CD/ D tr.DC/ for linear maps C;D). By
previous lemma all occuring maps in this composition are surjective, hence the desired equality
follows.

Lemma 3.1.5. Let V;W be two complex finite-dimensional vector spaces. Suppose that L W
V �W ! C is a map which satisfiesL.vCv0; wCw0/ D L.v;w/CL.v;w0/CL.v0; w/CL.v;w0/
and L.�v; �w/ D ��L.v;w/ for all v; v0 2 V , w;w0 2 W and �;� 2 C. Then for any inner
product on W , there exists a unique linear map A W V ! W such that

hAv;wi D L.v;w/

for all v 2 V and w 2 W .

Proof. We fix inner products on V;W . Let v1; : : : ; vn 2 V and w1; : : : ; wm 2 W be orthonormal
bases of V andW . Let A W V ! W be the unique linear map such that Avi D

Pm
jD1L.vi ; wj /wj

for every 1 � i � n (note that any linear map satisfying the desired relation meets this condition).
One readily verifies that this is the desired map.

Theorem 3.1.6 (Schur orthogonality relations). Let .�; V�/ and .�; V�/ be irreducible finite-
dimensional representations of G. The following statements are true.

(i) If � © � then C.G/� ? C.G/� in L2.G/.
(ii) For v;w; v0; w0 2 V� we have

hmv;w ; mv0;w 0i D
1

dim.V�/
hv; v0iGhw;w0iG :

Proof. We prove assertion (i). Let w 2 V� and w0 2 V�. Using Lemma 3.1.5 one readily verifies
that there exists a linear map Iw;w 0 W V� ! V� such that

hIw;w 0v; v
0
iG D hm

�
v;w ; m

�
v0;w 0i D

Z
G

h�.x/v;wiGh�.x/v0; w0iG d�.x/ (3.1)

for every v; v0 2 V . Note that due to right-invariance

hIw;w 0.�.g/v/; v
0
iG D

Z
G

h�.x/v;wiGh�.xg�1/v0; w0iG d�.x/

D hIw;w 0v; �.g
�1/v0iG D h�.g/.Iw;w 0v/; v

0
iG

for every g 2 G. From this it follows that Iw;w 0 is intertwining. Thus if � © � then, by Proposition
2.0.8, we must have Iw;w 0 D 0. From (3.1) it follows that C.G/� ? C.G/�.

We turn to assertion (ii). On account of the above, we have intertwining maps Jw;w 0 W V� ! V�
such that hJw;w 0v; v0iG D hmv;w ; mv0;w 0i for all v;w; v0; w0 2 V� . On the strength of Schurs
lemma (see Lemma 2.0.10), we have Jw;w 0 D �idV� for some � 2 C. Set n WD dim.V�/ and fix an
orthonormal basis v1; : : : ; vn of V� . One now observes that

tr.Jw;w 0/ D
nX
iD1

hJw;w 0vi ; vi iG D n� D

Z
G

nX
iD1

h�.x/vi ; wiGh�.x/vi ; w0iG d�.x/
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and that
Pn
iD1h�.x/vi ; wiGh�.x/vi ; w

0iG D h�.x
�1/w0; �.x�1/wiG D hw;w0iG for all x 2 G.

It follows that � D hw;w0iG=n. As hmv;w ; mv0;w 0i D hJw;w 0v; v0iG D �hv; v0iG , the result
follows.

Corollary 3.1.7. Let .�; V / an irreducible finite-dimensional representation of G. Thenp
dim.V /T� W End.V / �! C.G/�

is a unitary operator (here End.V / is endowed with the Hilbert-Schmidt norm).

Proof. Indeed, letA 2 End.V /. Fix a orthonormal basisv1; : : : ; vn ofV . AsT�A D
Pn
iD1mAvi ;vi ,

we obtain from the Schur orthogonality relations that

kT�Ak
2
2 D

1

dim.V /

nX
i;jD1

hmAvi ;vi ; mAvj ;vj i D
1

dim.V /

nX
iD1

hAvi ; Avi iG D
1

dim.V /
kAk2HS :

We already showed that T� is surjective, thus the desired result follows.

Definition 3.1.8. Let .�; V / be a finite-dimensional representation of G. The map

�� W G �! C W x 7! tr.�.x//

is called the character of � .

Let �; � be two finite-dimensional representations. It readily follows from the definition that
�� D �� whenever � Š �. We will prove a stronger result below. In the rest of the text we say
that a function f W G ! C is conjugation invariant or a class function if for all x; y 2 G we have
f .yxy�1/ D f .x/.

Proposition 3.1.9. Let � be an irreducible finite-dimensional representation of G. Suppose that
f 2 C.G/� . Then f is conjugation invariant and we have kf k2 D 1 if and only if f 2 S1�� .

Proof. It is readily verified that �� is conjugation invariant. Furthermore, since �� D T� idV , we
obtain from Corollary 3.1.7 that k��k2 D 1. Thus it follows that f is conjugation invariant and
kf k2 D 1 whenever f 2 S1�� .

Conversely, assume that f is conjugation invariant and kf k2 D 1. On account of Corollary 3.1.7
we get f D T�A for some A 2 End.V / with kAk2HS D dim.V /. Using the conjugation invariance
of f , we deduce that T�.�.g�1/A�.g// D T�A for all g 2 G. HenceA 2 BG.V /. Schur’s lemma
now implies that A D �idV for some � 2 C. Thus we obtain kAk2HS D j�j

2 dim.V / D dim.V /,
hence � 2 S1. As f D T�A D �T� idV D ��� , we deduce that f 2 S1�� as desired.

The following readily follows from the Schur orthogonality relations and the proposition above.

Proposition 3.1.10. Let �; � be two irreducible finite-dimensional representations of G. Then

h�� ; ��i D

(
1 if � Š �;
0 if � © �:
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Proposition 3.1.11. Let � be a finite-dimensional representation of G. Then there exists pairwise
non-equivalent, irreducible finite-dimensional representations �1; : : : ; �n of G, such that we have a
decomposition

� Š

nM
iD1

�
˚mi
i ;

where mi D h�� ; ��i i. Here �
˚mi
i denotes the map �i ˚ � � � ˚ �i (mi -fold).

Proof. As � is a finite-dimensional representation, � completely decomposes into irreducible
representations. Thus there exists irreducible representations �1; : : : ; �m of G such that � ŠLm
jD1 �j . We select a subset of representations �1; : : : ; �n of �1; : : : ; �m such that �i © �j if

i ¤ j and such that every �j is equivalent to one of the �1; : : : ; �n. Consider the number

mi WD
ˇ̌
f1 � j � m j �j Š �ig

ˇ̌
:

Then we have � Š
Lm
jD1 �j Š

Ln
iD1 �

˚mi
i . In light of Proposition 3.1.10, we obtain

h�� ; ��i i D h�
Lm
jD1 �j

; ��i i D

mX
jD1

h��j ; ��i i D
ˇ̌
f1 � j � m j �j Š �ig

ˇ̌
D mi

for all i .

This proposition has the following two corollaries; we omit the proofs as the results readily
follow from the above.

Corollary 3.1.12. Let �; � be two finite-dimensional representations of G. Then �� D �� if and
only if � Š �.

Corollary 3.1.13. Let � be a finite-dimensional representation of G. Then � is irreducible if and
only if k��k2 D 1.

3.2 The Peter-Weyl theorem

In the following, an enumeration of representation of G is a set OG containing all distinct irreducible
finite-dimensional representations of G up to equivalence. I.e., for every two distinct �; � 2 OG
we have � © �, and OG is such that for every irreducible finite-dimensional representations � of G
there exists a � 2 OG such that � Š �. It is readily shown that there exists such a set. Indeed,
one takes Rn WD f� W G ! Cn j � is an irreducible representation of Gg= Š, and uses the axiom
of choice to choose a system of representatives Sn of the equivalence classes in Rn. We then set
OG WD

S
n�1 Sn. In the following discussion, we fix such an enumeration OG. With abuse of notation,

we will sometimes write ‘let .�; V / 2 OG’, meaning we consider an element � 2 OG with V being
the associated finite-dimensional vector space on which the representation acts.

In the following the discussion, the representation

R � L W G �G �! U.L2.G// W .g; h/ 7! RgLh D LhRg

will be of interest. It is readily verified that this is a map is indeed a homomorphism. It is shown,
similarly as Proposition 1.6.5, that this map is indeed continuous in the sense of Lemma 2.0.2 by
using the following lemma.
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Lemma 3.2.1. For f 2 C.G/, the map G �G ! C.G/ W .g; h/ 7! RgLhf is continuous.

Proof. Consider .g0; h0/ 2 G � G, and let " > 0. In light of Lemma 1.1.7, there exists a
neighbourhood U of 1 such that jf .x/ � f .y/j < " whenever y 2 Ux. Note that x 7! h�10 x2h0
is continuous, hence we have a neighbourhood V of the identity such that h�10 V 2h0 � U . Next,
consider the continuous map c W .x; y/ 7! xyx�1. Since G � f1g � c�1.V /, there exists a
neighbourhood V 0 of the identity such that G � V 0 D c�1.V / on account of the tube lemma. It
follows that xV 0x�1 � V for all x 2 G. Now, consider .g; h/ 2 V 0g0 � V �1h0, then for x 2 G we
have

h�1xg 2 h�10 VxV 0g0 � h
�1
0 V 2xg0 � Uh

�1
0 xg0;

hence jf .h�1xg/ � f .h�10 xg0/j < ". Thus kRgLhf �Rg0Lh0f k1 � ".

Definition 3.2.2. Let W � L2.G/. If W is an invariant subspace for the R or L representation,
we will call W , respectively, a right- or left-invariant subspace of L2.G/. If W is left- and right-
invariant we callW bi-invariant. Note thatW is an invariant subspace for the representation R �L
representation in this case.

Proposition 3.2.3. Let .�; V / 2 OG. Then the space C.G/� is bi-invariant. A fortiori, C.G/� is an
irreducible subspace w.r.t. the R � L representation of G �G.

Proof. Bi-invariance of C.G/� is readily verified. Let ı denote the restriction of R �L to C.G/� .
In light of Corollary 3.1.13, it suffices to show k�ık2 D 1. Fix an orthonormal basis v1; : : : ; vn of
V . On account of Corollary 3.1.7, the functions fn1=2mvi ;vj gi;jD1;:::;n form an orthonormal basis
of C.G/� . Thus, for x; y 2 G we obtain

�ı.x; y/ D n

nX
i;jD1

hı.x; y/mvi ;vj ; mvi ;vj i D n

nX
i;jD1

hm�.x/vi ;�.y/vj ; mvi ;vj i:

Here we used the fact that � is unitary. Using the Schur orthogonality relations, we get

�ı.x; y/ D

 
nX
iD1

h�.x/vi ; vi iG

!
�

0@ nX
jD1

h�.y/vj ; vj iG

1A D ��.x/��.y/:
Recall that the product measure � � � is again a Haar measure on G �G (see Corollary 1.4.9). In
fact, this measure is the normalized Haar measure as .� � �/.G � G/ D

R
G

R
G 1d�d� D 1 on

account of Fubini’s theorem. Thus, again using Fubini, we obtain

k�ık
2
2 D

Z
G�G

j��.x/j
2
j��.y/j

2 d.� � �/.x; y/ D k��k
4
2 D 1:

Theorem 3.2.4 (Peter-Weyl theorem). The space L2.G/ decomposes canonically as

L2.G/ Š
bM
�2 OG

C.G/� ;

and each subspace C.G/� � L2.G/ is irreducible (w.r.t the R � L representation).
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We will follow the approach of [Tao14] to prove this theorem. We first present three lemma’s.

Lemma 3.2.5. Suppose that K 2 L2.G/ is conjugation invariant and K.x/ D K.x�1/ for all
x 2 G. Then the map

TK W L
2.G/ �! L2.G/ W Œf � 7! Œf �K�

is a self-adjoint Hilbert-Schmidt operator (see Section A.2) which interwines with the left and right
regular representation.

Proof. We first show that the map TK is well-defined. Indeed, as L2.G/ � L1.G/ we have
f �K 2 L1.G/. It remains to show that f �K 2 L2.G/. This is readily verified, as

kf �Kk22 D

Z
A

ˇ̌̌̌Z
G

f .y/K.y�1x/d�.y/

ˇ̌̌̌2
d�.x/ �

Z
A

kf k22


LxK

22 d�.x/ D kf k22 kKk22 ;

where A is some Borel set with G n A negligible. Here we used the Cauchy-Schwarz inequality.
Using the theorem of Fubini it is readily verified that TK is indeed self-adjoint. It remains to

show that TK is a Hilbert-Schmidt operator. Indeed, let A be an orthonormal basis of L2.G/ then

kTKk
2
HS D

X
f 2A

hf �K; f �Ki D
X
f 2A

Z
G

ˇ̌
hf;LxKi

ˇ̌2
d�.x/ D

Z
G

X
f 2A

ˇ̌
hf;LxKi

ˇ̌2
d�.x/

D

Z
G



LxK

2 d�.x/ D kKk22 <1:
Here we used the theorem of Fubini again.

We have in general that Lg.f1 � f2/ D Lgf1 � f2 for all f1; f2 2 L1.G/ and g 2 G. Thus
follows that Lg ı TK D TK ı Lg . One readily verifies that TK intertwines the right regular
representation; this follows from the conjugation invariance of K.

Lemma 3.2.6. LetU be an open neighbourhood of the identity ofG. Then there exists a conjugation
invariant Dirac function � 2 CC.G/ supported in U .

Proof. Let V be a symmetric compact neighbourhood of the identity contained in U . The map
c W .x; y/ 7! yxy�1 is continuous and f1g � G � c�1.V /, thus we find a neighbourhood V 0 of 1
such that V 0 � G � c�1.V /. It follows that yV 0y�1 � V for all y 2 G. Let f 2 CC.G/ be such
that f .1/ > 0 and supp f � V 0. Consider the map  W G ! C given by

 .x/ WD

Z
G

.f ı c/.x; y/d�.y/ D

Z
G

f .yxy�1/d�.y/:

One readily verifies that this map is continuous by using Lemma 1.3.1 and the fact that f ı c is
continuous. Hence  2 CC.G/ and as  .1/ D f .1/,  does not vanish everywhere. Furthermore,
it is readily verified that this  is conjugation invariant. Let x 2 G n V , then it follows that
x … yV 0y�1 for all y 2 G. Hence yxy�1 … V 0 for all y 2 G. As supp f � V 0, this implies that
 .x/ D 0. Hence supp  � V since V is closed.

Now consider the continuous map h 2 CC.G/ given by h.x/ WD  .x/C  .x�1/. This map
does not vanish everywhere, and by symmetry of V we have supp h � V � U . Thus � WD 1=�.h/h
is the desired Dirac function.
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In the following discussion we denote

M.G/ WD
M
�2 OG

C.G/� :

Lemma3.2.7. Every finite-dimensional right-invariant subspaceV ofL2.G/ is contained inM.G/.

Proof. As .LjV ; V / is a unitary finite-dimensional representation,LjV completely decomposes into
a finite number of irreducible subrepresentations. Hence, we might as well assume that .LjV ; V /
is irreducible. Then there exists some .�; V�/ 2 OG such that LjV Š � . But this implies that there
exists an injective bounded operator

� W V� ,��! L2.G/;

whose image equals V and Lg ı � D � ı �.g/ for all g 2 G.
Let U be an arbitrary open neighbourhood of the identity and suppose that � 2 CC.G/ is a

conjugation invariant Dirac function supported in U . Let v 2 V� and write �.v/ D Œf � for some
f 2 L2.G/. It follows that

.f � �/.x/ D

Z
G

f .y/�.y�1x/d�.y/ D

Z
G

f .yx/�.y/d�.y/ D hRxf; �i:

for almost every x 2 G. Hence

.f � �/.x/ D hRx.�.v//; �i D h�.�.x/v/; �i D h�.x/v; �
��iG D m

�
v;���.x/

for almost every x 2 G. Hence Œf � �� 2 C.G/� . From Lemma 1.7.7 and the fact that C.G/� is
finite-dimensional, we get �.v/ D Œf � 2 C.G/� as desired. Since �.V�/ D V the result follows.

Proof of Theorem 3.2.4. The latter part of the theorem has already been shown. We turn to the main
content of the theorem. It suffices to show that L2.G/ DM.G/, as M.G/ is canonically unitarily
isomorphic to cL

�2 OG
C.G/� (this follows from Theorem 3.1.6). As L2.G/ DM.G/˚M.G/?,

this amounts to showing that M.G/? D 0. Assume to the contrary that there exists a non-trivial
Œf � 2 L2.G/ orthogonal toM.G/.

Let U be an arbitrary open neighbourhood of the identity and � 2 CC.G/ a conjugation
invariant Dirac function supported in U . Consider T� W L2.G/! L2.G/ as in Lemma 3.2.5. Then
T� is a self-adjoint compact operator (see Proposition A.2.1) which intertwines the right regular
representation. On the strength of the spectral theorem (see Theorem A.1.2), we have an orthogonal
decomposition

L2.G/ D ker.T�/˚
M
n

En

where each En is a finite-dimensional eigenspace of T� corresponding to an eigenvalue �n 2 C�
(in fact �n is real as T� is self-adjoint). Note that each eigenspace En is right-invariant since
T� intertwines the right regular representation. On account of Lemma 3.2.7, this implies that
En � M.G/, and hence Œf � is orthogonal to all eigenspaces En of T� . But this implies that
Œf � 2 ker.T�/, hence Œf � �� D 0. As this holds for every conjugation invariant Dirac function �
supported in an arbitrary open neighbourhood of 1, we get Œf � D 0 on account of Lemma 1.7.7, a
contradiction.
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Using the theorem of Peter-Weyl, we can prove a generalization of Proposition 2.0.13 for compact
groups. In the proof, the role of induction in the proof of Proposition 2.0.13 will be replaced by the
Zorn’s lemma.

Proposition 3.2.8. Let .�; V / be a unitary representation of G. The following statements are true.

(i) The space V contains an irreducible finite-dimensional subspace.
(ii) A fortiori, � decomposes into irreducible finite-dimensional representations. I.e., there exists

irreducible finite-dimensional representations f�igi2I of G such that

� Š
bM
i2I

�i :

Proof. We first prove assertion (i). Fix a non-zero vector v 2 V . Consider the operator T W
V ! L2.G/ W w 7! Œmv;w �. Note that T v ¤ 0 and hence T ¤ 0. Using Cauchy-Schwarz, one
readily verifies that T is bounded and in particular, kT k � kvk. Furthermore, T is intertwining
w.r.t. the representations .�; V / and .L;L2.G//. On account of Peter-Weyl’s theorem, there exists
a � 2 OG such that PT ¤ 0 where P W L2.G/ ! C.G/� denotes the projection. Note that
again PT 2 BG.V; C.G/�/ (with the L representation acting on C.G/�). As .L; C.G/�/ is a
finite-dimensional representation, we have a decomposition LjC.G/� Š

Ln
iD1 �i into irreducible

finite-dimensional representations .�i ; Xi /. Thus there exists some 1 � j � n such that for the
projection S W C.G/� ! Xj we have A WD SPT ¤ 0. As S 2 BG.C.G/�; Xj /, we conclude
that A 2 BG.V;Xj /. Consider the subspace W WD ker.A/? � V . Note that W is invariant on
account of Lemma 2.0.7 and Proposition 2.0.5. Furthermore, W ¤ 0 as A ¤ 0. The restriction
A W W ! Xj is intertwining and injective. Thus im.A/ ¤ 0 is invariant, and hence im.A/ D Xj .
ThusA is an intertwining isomorphism and hence �jW is equivalent to the irreducible representation
�j . Hence W is an irreducible finite-dimensional subspace of V .

We turn to assertion (ii). On account of Proposition 2.0.15, it suffices to show that V DL
W 2W W D

L
W , whereW is a collection of orthogonal irreducible finite-dimensional subspaces

of V . Consider the set

P WD fW 2 P.V / jW consists of orthogonal irreducible finite-dimensional subspaces of V g:

Here P.V / denotes the power set of V . Note that .P;�/ forms a poset. Furthermore, P is non-
empty in light of assertion (i). Every non-empty chainC � P has the upper bound

S
C inP , hence

Zorn’s lemma asserts that P has a maximal element W 2 P . We claim that
L

W D V . Indeed,
assume to the contrary thatW WD .

L
W/? ¤ 0. Note that

L
W is invariant, henceW is invariant

(see Proposition 2.0.5). Applying assertion (i) to the unitary representation .�jW ; W /, we conclude
that W contains an irreducible finite-dimensional representation; this contradicts the maximality of
W .

Corollary 3.2.9. Every irreducible unitary representation of G is finite-dimensional.

3.3 Corollary: The Gleason-Yamabe theorem
Definition 3.3.1. In the following, a linear group will be a topological group which is isomorphic
(isomorphic as topological groups, i.e. homeomorphic and group isomorphic) to a closed subgroup
of GL.n;R/ for some n � 0.
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It follows that linear groups can be given the structure of a Lie group (see [Ban10, Theorem
9.1]) which is compatible with the topology of the group. The next theorem asserts that the compact
group G can be approximated by a linear groups in the following sense.

Theorem 3.3.2 (Gleason-Yamabe theorem for compact groups). For every neighbourhood U of the
identity there exists a closed normal subgroup H of G contained in U such that G=H is a linear
group.

Lemma 3.3.3. LetV be a finite-dimensional vector space and� W G ! Iso.V / be a homomorphism.
Then � is a representation if and only if � is continuous.

Proof. It is is clear that � is a representation whenever � is continuous. This readily follows from
Lemma 2.0.2. Thus we show the converse implication. Suppose that � is a representation. Fix a
inner product h � ; � i on V and let v1; : : : ; vn be an orthonormal basis for V . Then for g; h 2 G we
have k�.g/ � �.h/k �

Pn
iD1k.�.g/ � �.h//vik as one readily verifies (use Cauchy-Schwarz). It

follows directly from this inequality that � is continuous.

Proof of Theorem 3.3.2. For every g 2 G n U we find a finite-dimensional bi-invariant subspace
Vg � L

2.G/ such that Lg is not the identity on Vg . Indeed, if this were not the case it would follow
from the theorem of Peter-Weyl thatLg D idL2.G/. But this leads to a contradiction, as one can find
a f 2 C.G/ with f .1/ > 0 and supp f � G n fg�1g and for this f , Lgf .1/ D f .g�1/ ¤ f .1/

hence kLgf � f k2 ¤ 0 (see Proposition 1.4.6). Let �g denote the restriction L W G ! Iso.Vg/.
On account of Lemma 3.3.3, �g is continuous. Hence Ug WD ��1g .Iso.Vg/ n fidVgg/ is an open
neighbourhood of g on which �g is not the identity operator.

Using compactness of G n U , we find g1; : : : ; gn 2 G n U such that G n U �
Sn
iD1 Ugi . We

have a composition

G

Ln
iD1 �gi
���! Iso

 
nM
iD1

Vgi

!
Š
���! GL.m;C/

Š
���! GL.2m;R/

here the latter two maps are the natural linear isomorphisms (the latter being only R-linear) and
the integer m equals the sum of the dimensions of Vg1 ; : : : ; Vgn . Let ˆ W G ! GL.2m;R/ denote
this composition. Clearly, ˆ is again continuous. Consider the normal subgroup H WD ker.ˆ/ D
ker.

Ln
iD1 �gi /. As every �gi is not the identity on Ugi , we haveH � U . The universal properties

of the quotient group and -topology (recall that G=H is again a topological group; see Proposition
1.1.4), now induces a continuous injective homomorphism G=H ! GL.2m;R/. This induces a
continuous isomorphism of groups G=H ! ˆ.G/. As G=H is compact and ˆ.G/ Hausdorff, we
deduce that G=H Š ˆ.G/ as topological groups. The subgroup ˆ.G/ � GL.2m;R/ is compact,
thus G=H is a linear group.

Example 3.3.4. Consider the infinite torus

T ! WD
Y
n2N

S1:

Endowed with the product topology, this is a compact group on account of Tikhonov’s theorem.
Let U be a neighbourhood of the identity. By definition of the product topology, we find a family
fUngn2N of open neighbourhoods of the identity in S1 such that

Q
Un � U and Un D S1 for all
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but finitely many indices n 2 N. Next, consider the normal subgroupH WD
Q
Hn whereHn D S1

whenever Un D S1 andHn is trivial whenever Un ¤ S1. ThenH �
Q
Un � U and

T !=H Š .S1/m

where m is the number of indices n 2 N such thatHn D f1g.

The Gleason-Yamabe theorem has the following corollary.

Corollary 3.3.5. If G has no small subgroups, i.e. there exists some neighbourhood of the identity
which contains no subgroups but the trivial subgroup, then G is a linear group.

Remark 3.3.6. We presented here a special case of the more general Gleason-Yamabe theorem for
locally compact groups. This theorem is used to give an answer to Hilbert’s fifth problem: is every
locally euclidean group a Lie group? For a complete discussion of this problem, we refer to [Tao14].

Using the terminology of projective limits (for a definition of projective limits, see for instance
[DE14, p. 42]), we can formulate the Gleason-Yamabe theorem as follows.

Corollary 3.3.7. Let B be a basis of neighbourhoods of the identity. Then we have an isomorphism

G Š lim
 �
U2B

GU

where each GU , U 2 B , is a linear group (here B is endowed with � to form a poset).

3.4 Non-abelian Fourier analysis
The Peter-Weyl decomposition will enable us to define a (generalized) Fourier transform on the
compact group G. We first define the integral over a family of linear maps. Consider the following
scenario. Let .X;A; �/ be a measure space and let V be some finite-dimensional complex vector
spacewith inner product h�; �i. Suppose thatL W X ! End.V / is such thatx 7! hL.x/v;wi 2 L1.�/
for all v;w 2 V . On account of Lemma 3.1.5, there exists a unique linear map A 2 End.V / such
that hAv;wi D

R
X hL.x/v;wid�.x/ for all v;w 2 V . We will denoteZ

X

L.x/d�.x/ WD A:

For .�; V / 2 OG, we consider the map S� W C.G/� ! End.V / given by

S�f WD

Z
G

f .x/�.x/� d�.x/ D

Z
G

f .x/�.x�1/d�.x/:

To simplify formulas in the following discussion, we will endow End.V / with the dilated Hilbert-
Schmidt norm

k � kDHS WD
p
dim.V / k � kHS :

This norm is induced by the inner product h � ; � iDHS WD dim.V /h � ; � iHS. It follows from Corollary
3.1.7 that the operator dim.V /T� W End.V / �! C.G/� is unitary with respect to the dilated
Hilbert-Schmidt norm.
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Lemma 3.4.1. Let .�; V / 2 OG. The map S� is the inverse of the map dim.V /T� (see Corollary
3.1.7). In particular, S� is unitary (w.r.t. the dilated Hilbert-Schmidt norm).

Proof. As dim.V /T� is unitary, it suffices to show that dim.V /T �� D S� . Fix an orthonormal basis
v1; : : : ; vn of V . Let A 2 End.V / and f 2 C.G/� . We have

hS�f;AiDHS D dim.V /tr..S�f /A�/ D dim.V /
nX
iD1

h.S�f /vi ; Avi iG

D dim.V /
nX
iD1

Z
G

f .x/h�.x�1/vi ; Avi iG d�.x/

D dim.V /
Z
G

f .x/

nX
iD1

h�.x/Avi ; vi iG d�.x/ D hf; dim.V /T�Ai:

As this holds for every A 2 End.V / we deduce that dim.V /T �� D S� , as desired.

Let P� denote the projection L2.G/! C.G/� . The Peter-Weyl theorem asserts that the map

T WD
bY
�2 OG

P� W L
2.G/ �!

bM
�2 OG

C.G/�

is a unitary isomorphism (here we use the notation introduced in Section A.3). On account of
Lemma 3.4.1, we have a unitary isomorphismS WDcL

�2 OG
S� WcL�2 OG

C.G/� !cL
�2 OG

End.V�/.
Composing these two maps, we obtain a unitary isomorphism

F WD ST W L2.G/ �! bM
�2 OG

End.V�/ W Œf � 7! Of :

This is called the Fourier transform.

Theorem 3.4.2 (Plancherel theorem). The Fourier transform F W L2.G/ ! cL
�2 OG

End.V�/ is a
unitary operator given by

.F Œf �/� D Of� D

Z
G

f .x/�.x�1/d�.x/: .Œf � 2 L2.G// (3.2)

The Fourier inversion formula is given by

.F�1 Of /.x/ D
X
�2 OG

dim.V�/tr.�.x/ Of�/ . Of 2
bM

�2 OG
End.V�// (3.3)

where the series converges in the L2-sense.

Proof. The first assertion has already been covered in the discussion above. Let Œf � 2 L2.G/. On
account of the Peter-Weyl theorem, we have f D

P
�2 OG

P�f . Let � 2 OG, and let v;w 2 V� then
we have Z

G

f .x/h�.x�1/v; wiG d�.x/ D hf;m
�
w;vi D

X
�2 OG

hP�f;m
�
w;vi:
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In light of the Schur orthogonality relations, we deduce thatZ
G

f .x/h�.x�1/v; wiG d�.x/ D hP�f;m
�
w;vi D h.S�P�f /v;wiG D h.Ff /�v;wiG :

As this holds for every v;w 2 V , we conclude that (3.2) holds. Since the inverse of S is given bycL
�2 OG

dim.V�/T� , and the inverse of T is given by g 7!
P
�2 OG

g� , we obtain

OF�1 Of D
X
�2 OG

dim.V�/T� Of� ;

for every Of 2cL
�2 OG

End.V�/; this is the Fourier inversion formula (3.3).

Proposition 3.4.3. Let f; g 2 L2.G/ then

.1f � g/� D Og� Of�
for all � 2 OG.

Proof. This is a straight forward calculation. Let v;w 2 V� . Then using Fubini and translation
invariance, we obtain

h.1f � g/�v;wiG D
Z
G

.f � g/.x/h�.x�1/v; wiG d�.x/

D

Z
G

Z
G

f .y/g.y�1x/h�.x�1/v; wiG d�.y/d�.x/

D

Z
G

Z
G

f .y/g.x/h�.x�1/�.y�1/v; wiG d�.x/d�.y/

D

Z
G

f .y/h�.y�1/v; Og��wiG d�.y/ D h
Of�v; Og

�
�wiG D h Og�

Of�v;wiG :

As this holds for any v;w 2 V� , the result follows.

We now investigate the case when G is abelian. We will see shortly that the Plancherel theorem
assumes a simpler form when the group is commutative. We denote the center ofG byZ.G/. Recall
that Z.G/ consists of the elements of G that commute with every group element of G. Endowed
with the subspace topology, the normal subgroup Z.G/ of G is again a topological group.

Lemma 3.4.4. The following statements are true.

(i) Let .�; V / be an irreducible finite-dimensional representation of G, then for every x 2 Z.G/
we have �.x/ D dim.V /�1��.x/idV . Furthermore, the map

ı W Z.G/! S1 W x 7! dim.V /�1��.x/

is a continuous homomorphism.
(ii) Suppose that G is abelian. Then every irreducible finite-dimensional representation of G is

1-dimensional, and we have a bijection

OG �! fı W G ! S1 j ı is a continuous homomorphismg W � 7! �� : (3.4)
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Proof. We start by proving assertion (i). As x 2 Z.G/ we have �.x/�.g/ D �.xg/ D �.gx/ D

�.g/�.x/ for all g 2 G. I.e., �.x/ 2 BG.V /. Schur’s lemma now implies that �.x/ D �idV
for some � 2 C. Taking the trace of both sides, we obtain ��.x/ D � dim.V /. Hence �.x/ D
dim.V /�1��.x/idV D ı.x/idV . From this it follows that ı.1/ D 1 and ı.xy/ D ı.x/ı.y/ for
all x; y 2 G. We show that ı maps indeed into S1. Indeed, let v 2 V be of norm 1 then
ı.x/ D h�.x/v; viG D hv; �.x

�1/viG D ı.x�1/. Continuity of ı follows from continuity of
�� 2 C.G/� .

We turn to assertion (ii). We suppose that G is abelian. Let .�; V / 2 OG. Assertion (i) then
implies that �.x/ D dim.V /�1��.x/idV for all x 2 Z.G/ D G. Thus every one dimensional
subspace of V is invariant and as � is irreducible, this immediately implies that dim.V / D 1. It
follows from assertion (i) that �� W G ! S1 is a continuous homomorphism. Thus the map (3.4) is
well-defined. Note that every continuous homomorphism ı W G ! S1 gives rise to a representation
� W G ! Iso.C/ W x 7! ı.x/idC for which �ı D ı (we might as well assume that � 2 OG). Thus
the mapping (3.4) is surjective. Injectivity of this map is a consequence of Corollary 3.1.12.

Remark 3.4.5. The set

fı W G ! S1 j ı is a continuous homomorphismg

is also called the Pontryagin dual (or dual group) of the group G. This set can be given a group
structure using pointwise multiplication as group operation. In fact, it can be made into a topological
group using the compact-open topology. The dual group plays an important role in the representation
theory of locally compact abelian group. For further reading, we refer to [DE14, Chapter 3].

Example 3.4.6. We can now readily verify all irreducible finite-dimensional representations of the
n-dimensional torus

T n WD .S1/n:

By previous lemma, this is equivalent to determining the dual group of T n. First, we determine the
dual group of .R;C/. Consider ı in the dual of R. As ı.0/ D 1, we find some (small) constant
c > 0 such that � WD

R c
0 ı.�/d� ¤ 0. Then �ı.t/ D

R cCt
t ı.�/d� D

R cCt
0 ı.�/d� �

R t
0 ı.�/d� for

all t 2 R. Thus ı is differentiable and ı0.t/ D .ı.c C t /� ı.t//=� D .ı.c/� 1/=� � ı.t/. It follows
that ı.t/ D eCt for all t 2 R, where C D .ı.c/ � 1/=� 2 C. Note that C is purely imaginary.
Conversely, every function t 7! eiat with a 2 R is inside the dual group of R. Hence we have a
bijection

R �! fı W R! S1 j ı is a continuous homomorphismg W a 7! .t 7! eiat /:

Consider the covering map exp W R! S1 W t 7! e2�it . For ı in the dual of S1 we then obtain a
map Qı WD ı ı exp in the dual of .R;C/. Hence Qı.t/ D eiat for all t 2 R where a 2 R. As Qı.1/ D 1,
we deduce that a D 2�k for some k 2 Z. It follows that ı.z/ D zk for all z 2 S1. Thus the dual of
S1 consists of all maps z 7! zk , k 2 Z.

We now treat the general case. Consider the torus T n. Let ı be in the dual of T n. For
.z1; : : : ; zn/ 2 T

n we then obtain

ı.z1; : : : ; zn/ D ı.z1; 1; : : : ; 1/ � � � ı.1; : : : ; 1; zn/ D ı1.z1/ � � � ın.zn/;
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where ıi denotes the map S1 ! S1 W z 7! ı.1; : : : ; 1; z; 1; : : : ; 1/ (the z on the i -th place). Note
that ıi 2 cS1, hence ıi .z/ D zki for some integer ki 2 Z. We conclude that

ı.z1; : : : ; zn/ D z
k1
1 � � � z

kn
n :

Conversely, every such map sits inside the dual of T n.

Corollary 3.4.7 (Plancherel theorem for abelian compact groups). Suppose thatG is abelian. Then
there exists a unitary isomorphismcL

�2 OG
End.V�/ Š `2. OG/. Under this isomorphism, the Fourier

transform becomes a unitary isomorphism,

F W L2.G/ �! `2. OG/

with the following Fourier formulas

.F Œf �/� D Of� D hf; ��i; .Œf � 2 L2.G//

F�1 Of D
X
�2 OG

Of��� : . Of 2 `2. OG//

Example 3.4.8. In light of Example 3.4.6 and (3.4), we have a bijection Zn ! cT n mapping a tuple
.k1; : : : ; kn/ 2 Zn to a representation with character .z1; : : : ; zn/ 7! z

k1
1 � � � z

kn
n . This bijection

induces a unitary isomorphism `2.cT n/ Š `2.Zn/. Under this isomorphism, the Fourier transform
is a unitary operator F W L2.T n/! `2.Zn/ given by

Of.k1;:::;kn/ D

Z
T n
f .z1; : : : ; zn/z

�k1
1 � � � z�knn d�T n.z1; : : : ; zn/:

for Œf � 2 L2.T n/. Here �Tn denotes the normalized Haar measure on T n. Using Corollary 1.4.9
and Example 1.4.11 we find an explicit Fourier formula,

Of.k1;:::;kn/ D .2�/
�n

Z 2�

0

: : :

Z 2�

0

f .eit1 ; : : : ; eitn/e�i
Pn
iD1 ki ti dt1 : : : dtn:

The inverse formula is given by,

.F�1 Of /.z1; : : : ; zn/ D
X

.k1;:::;kn/2Zn

Of.k1;:::;kn/z
k1
1 � � � z

kn
n ;

for Of 2 `2.Zn/. The series converges in the L2-sense.

3.5 Representations of SU(2)
We will now calculate all irreducible representations of the matrix group SU.2/ D fA 2 U.2/ j
det.A/ D 1g. It is readily verified that every matrix A in SU.2/ can be written as

A D

�
˛ � Ň

ˇ N̨

�
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where ˛; ˇ 2 C are such that j˛j2 C jˇj2 D 1. In particular, it now readily follows that SU.2/ is
compact.

Consider the vector space Pn � CŒX; Y � of homogeneous polynomials of degree n. We let A
act on a polynomial f 2 Pn, by setting A � f WD f .A.X; Y // D f .˛X � ŇY; ˇX C N̨Y /. One
readily verifies that A � f 2 Pn, 1 � f D f and that .AB/ � f D A � .B � f / for all A;B 2 SU.2/.
Thus we have defined an action of SU.2/ on Pn. This yields a representation �n of SU.2/ on Pn,
given by

�n.A/f WD A � f:

It remains to show that this is continuous in the sense of Lemma 2.0.2. It can easily be calculated
that the absolute values of the coefficients of the polynomialsA �XmY n�m, 0 � m � n are bounded
by kAkn. Taking the `1-norm on the coefficients of the polynomials of Pn as the norm for Pn, we
then conclude that A 7! A �XmY n�m is continuous. We will show that f�ngn2N is an enumeration
of representations of SU.2/. In the following, we will denote �n for the character of �n.

Observe that there is a natural embedding of topological groups (i.e. a homomorphism of groups
which is also a topological embedding)

� W S1 ,! SU.2/ W z 7!
�
z 0

0 Nz

�
:

This embedding induces a restriction

r W C.SU.2//class �! C.S1/ W f 7! f ı �:

Here C.SU.2//class denotes the set of continuous class functions (i.e. continuous conjugation
invariant functions) on SU.2/.

Lemma 3.5.1. The restriction r is an isometry (w.r.t. the sup-norms).

Proof. Note that every element A 2 SU.2/ is a conjugate of �.z/ for some z 2 S1. Indeed,
as A 2 SU.2/ we find eigenvectors z; w 2 S1 (by the spectral theorem, and the fact that A is
unitary). It follows that det.A/ D zw D 1, thus w D Nz. Taking some non-zero eigenvector .˛; ˇ/
corresponding to the eigenvalue zwith j˛j2Cjˇj2 D 1, we verify thatA.� Ň; N̨ / D Nz.� Ň; N̨ /. Taking
these two eigenvectors as columns of U , we get a matrix U 2 SU.2/ for which A D U�1�.z/U .

It follows from the above that kf k1 D kf k�.S1/ D kr.f /k1 for every class function f 2
C.SU.2//class. Thus r is indeed an isometry.

We will use this map to prove the following.

Lemma 3.5.2. The characters f�ngn2N are dense in C.SU.2//class.

Recall the theorem of Stone-Weierstrass.

Theorem 3.5.3 (Stone-Weierstrass theorem). LetX be a compact Hausdorff space. Suppose thatA
is a point-seperating, unital �-subalgebra of C.X/. ThenA is dense in C.X/ (w.r.t. the sup-norm).

Proof of Lemma 3.5.2. Let Q�n denote r.�n/. On account of the theorem of Stone-Weierstrass and
the fact that r is an isometry, it suffices to show that

A WD spanf Q�n j n 2 Ng
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is a point-seperating, unital �-subalgebra of C.S1/.
For z 2 S1 we have �n.�.z//.XmY n�m/ D .zX/m. NzY /n�m D z2m�nXmY n�m. As the

polynomials XmY n�m, 0 � m � n, form a basis for Pn, we conclude that Q�n.z/ D tr.�.�.z/// DPn
mD0 z

2m�n for all n 2 N. One now readily verifies that

Q�2n.z/ D 1C

nX
mD1

.z2m C z�2m/; Q�2nC1.z/ D

nC1X
mD1

z2m�1 C z�.2m�1/

for all n. It follows that
A D spanfz 7! zm C z�m j m 2 Ng:

Using this description of A, it is readily verified that A is a point-seperating, unital �-subalgebra of
C.S1/.

Proposition 3.5.4. The set f�ngn2N is an enumeration of representations of G.

Proof. Suppose to the contrary that there exists an irreducible finite-dimensional representation �
of G such that � © �n for all n 2 N. On account of Lemma 3.5.2, there exists a sequence of
numbers .nk/k2N such that �� D limk!1 �nk (w.r.t. the sup-norm). As the inclusion .C.G/; k �
k1/ ,! .L2.G/; k � k2/ is bounded, it follows that �� D limk!1 �nk w.r.t. the L2-norm. Hence
k��k

2
2 D limk!1h��; �nk i D 0 (here we used Proposition 3.1.10). This contradicts Proposition

3.1.9.

We are can now readily determine an enumerations of representations for U.2/.

Lemma 3.5.5. The map

� W S1 � SU.2/ �! U.2/ W .z; A/ 7! zA

is a surjective homomorphism (i.e. a continuous group homomorphism) with ker.�/ D f˙1g. Hence
� descends to an isomorphism .S1 � SU.2//=f˙1g ! U.2/. Thus � is a quotient map.

Proof. It is readily verified that � is well-defined (i.e. its maps into U.2/) and that it is continuous.
We show surjectivity. Let B 2 U.2/. Then w WD det.B/ 2 S1 since B is unitary. Choosing
a z 2 S1 such that z2 D w, we obtain det.B=z/ D det.B/=w D 1 hence B=z 2 SU.2/. As
�.z; B=z/ D B , we conclude that � is surjective. It remains to show that ker.�/ D f˙1g. Consider
.z; A/ 2 ker.�/. Then it follows that A D Nz1. As det.A/ D Nz2 D 1, we deduce that z D ˙1
hence .z; A/ D ˙.1; 1/. The latter follows from the fact that � descends to a continuous bijection
.S1 � SU.2//=f˙1g ! U.2/, as .S1 � SU.2//=f˙1g is compact and U.2/ is Hausdorff, the result
follows.

For .k; n/ 2 Z � N, we consider the following representation

�k;n W S
1
� SU.2/ �! Iso.Pn/ W .z; A/ 7! zk�n.A/:

of S1 � SU.2/.

Proposition 3.5.6. Let � the quotient map defined in Lemma 3.5.5. Consider the set of numbers
S WD f.k; n/ 2 Z � N j k C n 2 2Zg. The representation �k;n factors through � if and only if
.k; n/ 2 S . A fortiori, the representations f�k;ng.k;n/2S descend to an enumeration f Q�k;ng.k;n/2S
of representations of U.2/.
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Proof. The first assertion of the proposition is readily verified. We turn to the main content of the
proposition. Let .�; V / be an irreducible finite-dimensional representation of U.2/. Denote the
irreducible representation � ı� of S1�SU.2/ by Q� . Since S1�f1g lies in the center of S1�SU.2/,
Lemma 3.4.4(i) implies that the map ı W S1 ! S1 W z 7! dim.V /�1� Q�.z; 1/ D dim.V /�1��.z1/
sits inside the dual of S1. We now get from Example 3.4.6 that there exists an integer k 2 Z such
that ı.z/ D zk for all z 2 S1. Using Lemma 3.4.4(i) once again, we obtain

Q�.z; A/ D Q�.z; 1/ Q�.1; A/ D ı.z/ Q�.1; A/ D zk Q�.1; A/ D zk�.A/

for all z 2 S1 and A 2 SU.2/. From this it follows that �jSU.2/ W A 7! �.A/ is an irreducible
representation of SU.2/ because Q� is irreducible. Hence �jSU.2/ Š �n for some n 2 N. Let
T W V ! Pn be the corresponding intertwining isomorphism. Then we conclude that �.�.z; A// D
Q�.z; A/ D zkT �1�n.A/T D T�k;n.z; A/T

�1. Hence we have .k; n/ 2 S and � Š Q�k;n. Thus
f Q�k;ng.k;n/2S are all finite-dimensional irreducible representations of U.2/ up to equivalence. From
the above we can also deduce that Q�k;n © Q�k0;n0 whenever .k; n/ ¤ .k0; n0/ 2 S (compare how the
two characters acts on S1 � 1 � U.2/ and then compare the restrictions of the two representations to
SU.2/).



A. Topics from functional analysis

This appendix contains some preliminary material on functional analysis. The theory presented in
the first two sections of this appendix can be found in [DE14].

A.1 Compact operators
Recall that an linear map T W X ! Y between two normed spaces X; Y over a field K D R;C
is called compact operator if the image T .B.0I 1// is relatively compact in Y . In particular, this
implies that T .B.0I 1// is bounded, hence T 2 B.X; Y /.

If T W X ! Y is a linear map such that dim.imT / < 1, then we say that T is finite rank. As
this implies that imT is Banach space, this implies that T is a compact operator.

Lemma A.1.1. LetH;H 0 be two Hilbert spaces. Suppose that T W H ! H 0 is a bounded operator.
Then the following are equivalent.

(i) The operator T is compact.
(ii) If .en/n2N is an orthonormal sequence in H , the image .Ten/n2N has a convergent subse-

quence.
(iii) If .en/n2N is an orthonormal sequence inH then Ten ! 0 as n!1.
(iv) The operator T can be approximated by operator of finite rank. I.e., there exists a sequence

.Fn/n2N of finite rank operators H ! H 0 such that Fn ! T as n!1 (w.r.t. the operator
norm k � k).

Proof. Note that (i)) (ii) follows immediately from the definition (first-countable compact spaces
are in particular sequentially compact). We prove the implication (ii) ) (iii). Let .en/ be an
orthornomal sequence inH . Assume to the contrary that kTenk does not converge to 0 as n!1.
Then we extract a subsequence .Tenk / such that

Tenk

 � " (A.1)

for all k 2 N for some " > 0. By assumption, there exists a subsequence .Tenki / such that
Tenki

! v as i ! 1 for some v 2 H 0. To simplify notation, set vi WD enki
. As the vi ’s

are orthonormal, we have
P1
iD0 jhT

�v; vi ij
2 � kT �vk2 < 1 hence in particular hT �v; vi i ! 0

as i ! 1. Thus there exists some index i 2 N such that kT vi � vk < "2=.2kT �k C 2/ and
jhT �v; vi ij < "

2=2. It follows that

kT vik
2
�
ˇ̌
hT �.T vi � v/; vi i

ˇ̌
C
ˇ̌
hT �v; vi i

ˇ̌
< "2;
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which contradicts (A.1). This proves (ii)) (iii).
We turn to the implication (iii) ) (iv). If T has finite rank, we are done. Hence assume

that imT has infinite dimension. We construct a orthonormal sequence .en/ inductively. First,
choose e0 2 @B.0I 1/ such that kTe0k > kT k=2 D 1=2 � supv2@B.0I1/kT vk. Assume fe0; : : : ; eng
have been constructed. Denote Pn for the projection onto Vn WD spanfe0; : : : ; eng. Note that
T .idH � Pn/ ¤ 0. Indeed, otherwise we would have imT D T .Vn ˚ V

?
n / D T .Vn/, i.e. T has

finite rank. Hence there exists a v 2 @B.0I 1/ such that kT .idH � Pn/vk > kT .idH � Pn/k=2.
Consider w WD .idH � Pn/v. Then kwk ¤ 0. We now set enC1 WD w=kwk. It is readily verified
that kwk � 1, hence kTenC1k � kTwk > kT .idH � Pn/k=2. Setting Fn WD TPn, we get our
desired sequence of finite rank operators since

kT � Fnk D kT .idH � Pn/k < 2 kTenC1k ;

and hence kT � Fnk ! 0 as n!1 by assumption.
Finally we prove (iv) ) (i). It suffices to show that for a bounded sequence .xn/ in H , the

sequence .T xn/ has a converging subsequence. Let .Fn/ be a sequence of finite rank operators
such that Fn ! T as n ! 1. Inductively, we can find a collection of sequences of subsequences
.xni;k /k2N of .xn/, i 2 N, such that .Fi .xni;k // converges and .xniC1;k / is a subsequence of .xni;k /
for all i . We show that .T xnk;k /k2N is Cauchy. By completeness of H 0, this implies that we have
found a desired converging subsequence. Let " > 0 and i 2 N such that kT � Fik < ". Let N 2 N
be such that kFi .xni;k � xni;j /k whenever k; j � N . Then for every k; j � maxfN; ig we have

T .xnk;k � xnj;j /

 � kT � Fnk .

xnk;k

C 

xnj;j 

/C 

Fn.xnk;k � xnj;j /



< .


xnk;k

C 

xnj;j 

C 1/":

As .xn/ is bounded, this completes the proof.

Recall the famous spectral theorem from functional analysis. Most introductory texts on func-
tional analysis will contain a proof of this theorem. For instance, a proof may be found [Tao14,
Theorem 1.4.11] or [DE14, Theorem 5.2.2].

TheoremA.1.2 (Spectral theorem). Let T be a compact self-adjoint operator on a Hilbert spaceH .
Then there exists a countable sequence of non-zero eigenvalues .�n/ which tends to zero, yielding
an orthogonal decomposition

H D ker.T /˚
M
n

En

where En WD ker.T � �nidH / is the eigenspace associated to the eigenvalue �n for all n. Further-
more, all eigenspaces En are finite dimensional.

A.2 Hilbert-Schmidt operators
Throughout this section, let H be a Hilbert space. For an orthonormal basis A of H , consider the
map k � kHS;A W End.H/! Œ0;1� such that

kT k2HS;A D
X
v2A

kT vk2 : .T 2 End.H//
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We claim that this quantity does not depend on the chosen orthonormal basis. Let B be another
orthonormal basis ofH and T 2 End.H/, then

kT k2HS;A D
X
v2A

hT v; T vi D
X
v2A

X
w2B

hT v;wihw; T vi D
X
w2B

X
v2A

hT v;wihw; T vi:

Here we used the theorem of Tonelli. It follows that

kT k2HS;A D
X
w2B

X
v2A

hT �w; vihv; T �wi D
X
w2B



T �w

2 D 

T �

2HS;B :
It follows that kT k2HS;A D kT

�k2HS;A D kT
��k2HS;B D kT k

2
HS;B . Hence, we denote

k � kHS WD k � kHS;A :

We say that T is a Hilbert-Schmidt operator whenever kT kHS < 1. Consider the subset of
Hilbert-Schmidt operators

HS.H/ WD fT 2 End.H/ j kT kHS <1g:

It is readily verified that this is a linear space and that k � kHS restricted to this space is a norm (one
can use the properties of the `2-norm to show this).

Proposition A.2.1. Every operator T 2 HS.H/ is compact.

Proof. On the strength of Lemma A.1.1, it suffices to show that for every orthonormal sequence
.en/ � H , we have Ten ! 0 as n!1. This is indeed the case. One can expand this orthonormal
sequence to an orthonormal basis A ofH . As

1X
iD0

kTeik
2
�

X
v2A

kT vk2 D kT k2HS <1;

this implies that kTeik ! 0 as n!1, as desired.

A.3 Hilbert direct sums
Let I be an index set and fHigi2I a collection of Hilbert spaces over a fixed field K D R;C. Then
we can consider the (algebraic) direct sum

L
i2I Hi . We endow this direct sum with the inner

product
hv;wi D

X
i2I

hvi ; wi i: .v; w 2
M
i2I

Hi /

This makes the direct sum an inner product space, as one readily checks. However, in general, this
space might not be complete again. We will construct an explicit completion of this space.

Consider the set

H WD
bM
i2I

Hi WD

(
v 2

Y
i2I

Hi j
X
i2I

kvik
2 <1

)
:
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It is readily verified that this set is a linear space over K. We now try to put an inner product on this
space. For v;w 2 H , we claim that

P
i2I hvi ; wi i exists (i.e. we have unconditional convergence).

Indeed, a fortiori, this sum convergence absolutely as
P
i2I jhvi ; wi ij �

P
i2Ikvikkwik <1. The

latter follows from the fact that .kvik/i2I ; .kwik/i2I 2 `2.I /.
It is now readily verified that

hv;wi D
X
i2I

hvi ; wi i; .v; w 2 H/

defines an inner product onH . Endowedwith this inner product,H DcL
i2IHi is called theHilbert

direct sum of fHigi2I . We claim thatH is the completion of the algebraic direct sum
L
i2I Hi .

It is clear that
L
i2I Hi is dense in H . Indeed, if v 2 H then J WD fi 2 I j vi ¤ 0g is

countable. If J is finite, then we are done. Otherwise, we choose a bijection N! J W k 7! ik . For
n 2 N, let vn be the unique element of

L
i2I Hi such that vnik D vik for 0 � k � n and vni D 0 for

the other indices i . Then we deduce that kv � vnk2 D
P1
kDnC1kvikk

2 ! 0 as n! 0.
It remains to show that H is complete. Let .vn/n2N be a Cauchy sequence in H . It follows

that for every i 2 I , .vni /n2N is a Cauchy sequence in Hi . Hence we find a v 2
Q
i2I Hi such

that vni ! vi as n ! 1 for every i 2 I . Now, let 0 < " < 1. Then we find a N 2 N such that
kvn � vmk2 < " whenever n=m � N . We claim that

P
i2Ikv

n
i � vik

2 � 4" for n � N . Indeed,
let F � I be a finite subset. Choose a m � N such that kvmi � vik < "=.jF j C 1/ for all i 2 F .
We now obtainX

i2F



vni � vi

2 �X
i2F

.


vni � vmi 

C 

vmi � vi

/2

� kvn � vmk
2
C 2

X
i2F



vni � vmi 

 

vmi � vi

CX
i2F



vmi � vi

2
< "C 2

X
i2F

"=.jF j C 1/C
X
i2F

"=.jF j C 1/ � 4":

As this holds for any finite subset F � I , we get
P
i2Ikv

n
i � vik

2 � 4". Using this, one now
readily checks that v 2 H and vn ! v as n!1.

We finish this discussion of Hilbert direct sums by stating the following properties; these results
are readily verified.

Proposition A.3.1. Let V be a vector space. Suppose that for every i 2 I we have a linear map
Ti W V ! Hi such that

P
i2IkTivk

2 <1 for all v 2 V . Then there exists a unique linear mapcY
i2I

Ti W V !
bM
i2I

Hi

such that the following diagram commutes for all j 2 I .

V cL
i2IHi

Hj

bQ
i2ITi

Tj
Pj

Here Pj denotes the projectioncLi2IHi ! Hj .
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Proposition A.3.2. Let fVigi2I be another collection of Hilbert spaces. Suppose that for every
i 2 I we have a unitary operator Ti W Vi ! Hi . Then there exists a unique unitary operator

bM
i2I

Ti W
bM
i2I

Vi !
bM
i2I

Hi

such that the following diagram commutes for all j 2 I .

cL
i2IVi cL

i2IHi

Vj Hj

cL
i2ITi

Sj Pj

Tj

Here Pj ; Sj denote, respectively, the projectionscLi2IHi ! Hj andcLi2IVi ! Vj .
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