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Introduction

In this bachelor thesis, we will give an exposition of the basic representation theory of locally
compact groups. Locally compact groups are groups endowed with a topological structure that
is compatible with the group structure, and the topology on these groups satisfy two regularity
conditions: the Hausdorff property and the local compactness property. A concrete discussion of
these groups can be found in Chapter 1. The first chapter is mainly devoted to introducing the main
machinery for doing analysis on these type of groups. The theory developed during this chapter is
of importance during the rest of the thesis.

Chapters 2 and 3 are devoted to representation theory. In Chapter 2 we will present the basic
notions of representation theory and prove a handful of useful results. We shift our attention to
compact groups in Chapter 3. The compact case will turn out to be easier to understand. The
main result of Chapter 3 is the Peter-Weyl theorem. After proving this, we will continue to prove
some interesting corollaries. For instance, we will prove the Gleason-Yamabe theorem for compact
groups using the theorem of Peter-Weyl. Afterwards, we will introduce a generalization of the
Fourier transform on compact groups. We conclude Chapter 3 by determining all unitary irreducible
representations of SU(2) and U(2).

The reader of this text should be familiar with the basics of topology, measure theory and
functional analysis. Some material which is usually not covered during the introductory course on
functional analysis taught at Utrecht University, is included in the appendix.

I will take this opportunity to expand on the notation used in this thesis. Throughout this
thesis, we consider 0 a natural number, and consequently write N := {n € Z | n > 0}. Let X
be a topological space. Then we will let C(X) denote the vector space of continuous function
X — C. The subspace of C(X) consisting of all compactly supported continuous functions X — C
is denoted by C.(X). Suppose that V, W are normed vector spaces. An operator V — W will
always mean a linear map V' — W. The set of bounded operators V' — W is denoted by B(V, W),
and we denote B(V) := B(V, V). Whenever a bijective bounded operator 7 : V — W has a
bounded inverse, we say that 7" is an isomorphism. The set of isomorphisms V' — W is denoted by
Iso(V, W). Again, we denote Iso(V') := Iso(V, V).



1. Integration on groups

We start by introducing the concept of topological groups, and especially (locally) compact groups.
We then proceed to introduce the main tool for doing analysis on locally compact groups, the Haar
measure. This measure is compatible with both the topology and the group structure of a topological
group. We will follow the approach taken in [[Coh13]] and [DE14].

1.1 Topological groups

Definition 1.1.1. A group G equipped with a topology is said to be a topological group if the
multiplication and inversion maps,

GxG—G:(x,y)~ xy,

G—G:x—x 1L

are continuous. Such a group is said to be a (locally) compact group if the underlying topology is
Hausdorff and (locally) compact.

For topological groups, the requirement to be Hausdorff is more subtle, as we will show shortly.
We start by stating some important properties of topological groups. First, recall the tube lemma
from topology.

Lemma 1.1.2 (Tube lemma). Let X, Y be topological spaces and suppose that X is compact. Let
U C X xY be an open subset. Suppose that U contains the slice X x {y} for some y € Y. Then
there exists a neighbourhood V of y such that X xV C U.

We will use the lemma above multiple times. For example in the following proposition. For a
group G, we will denote the identity element by 1. We say that a subset A C G is symmetric if
A~! = A. Here A~! denotes the set {x~! | x € A}. Furthermore, we denote gA := {ga | a € A},
Ag:=1{ag|ae€ Ayand AB :={ab |a € A,b € B} for g € G and subsets A, B of G.

Proposition 1.1.3. Let G be a topological group.

(i) For every neighbourhood U of the identity, there exists a neighbourhood V of the identity
such that V> = VV C U.
(ii) The identity has a basis of symmetric neighbourhoods.
(iii) For every open subset U C G containing a compact set K, there exists a neighbourhood V
of the identity such that KV C U.
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Proof. We start by proving (i). Let U be a neighbourhood of 1. By continuity of multiplication, we
have neighbourhoods V1, V5 of 1 such that V1V, = U. Then V := V; N V5, is a neighbourhood of
1 satisfying V2 C U, as desired.

We show (ii). Let U be an arbitrary neighbourhood of 1. By continuity of inversion, U ! is a
neighbourhood of 1. Now V := U N U~! is a symmetric neighbourhood of 1 contained in U.

We turn to assertion (iii). Let U be an open subset of G and K C G compact such that K C U.
Note that the slice K x {1} is contained in the preimage of U under the multiplication map. As this
preimage is open, the tube lemma implies that there exists a neighbourhood V of 1 such that K x V'
is contained in this preimage. Thus KV C U. O

Proposition 1.1.4. Let H be a normal subgroup of a topological group G. Then G/H (equipped
with the quotient topology) is again a topological group, and the projection map G — G/H is open.

Proof. Letw : G — G/H be the projection map. Note thatfor U C G open, wehave 7~ 1 (7 (U)) =
Upeg hU. Since g — hg is a homeomorphism for every & € H, we get that 7(U) is open. Hence
m is an open map. To show that G/H is a topological group, it suffices to show that the map
f:G/H xG/H — G/H : (x,y) — xy~!is continuous. Let x, y € G and U a neighbourhood
of xy~"VH. Then 7~1(U) is a neighbourhood of xy~!. Hence we find open neighbourhoods V7, V>
of respectively x and y, such that V; V2_1 C 7~ Y(U). Since 7 is a homeomorphism, we get that
x(V1) - w(Vo)~! C U. Note that (V) and 7(V,) are open neighbourhoods of respectively x H
and yH . Hence f is continuous, as desired. O

Proposition 1.1.5. Let G be a topological group, and H a normal subgroup of G. Then G/H is
Hausdorff if and only if H is closed.

Proof. First, assume that H is closed. We show that G/H is Hausdorff. Consider two elements
xH,yH € G/H such that xH # yH. The latter is equivalent to saying that xy~! ¢ H. Since H
is closed, we find an open neighbourhood U of xy~! such that U N H = @. Moreover, since G is a
topological group, we find open neighbourhoods V7, V5 inside G of respectively x and y such that
|41 Vz_l C U C G\ H. The images of these two neighbourhoods in G/H are open neighbourhoods
of xH and yH by |Pr0position 1.1.4[ The fact that V; V2_1 C G \ H now translates to the fact that
these images in G/H are disjoint. Hence G/H is Hausdorff.

Coversely, assume that G/H is Hausdorff. For any element x € G \ H, we have xH # H.
Thus, by Hausdorffness, we find an open U C G/H such that H ¢ U. Now, the preimage of U
under the natural projection is an open set which is disjoint from H. Hence H is closed. O

Using the proposition above, we obtain the following result.
Corollary 1.1.6. Let G be a topological group. Then the following are equivalent:

1. G is Hausdorff,
2. G has the T-property (i.e. every singleton is closed),
3. {1} is closed inside G.

We see that the Hausdorff condition can be translated to a condition in the neighbourhood of the
identity. This is an import principle in general, and we will see more examples of this. For example,
it is readily verified that the topology on a topological group is locally compact if and only if the
identity element has a compact neighbourhood.
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As preparation, we will prove some statements about the continuous functions with compact
support on a topological space.

Lemma 1.1.7. Let G be a topological group and f € C.(G). Then for every ¢ > 0, there exists a
neighbourhood U of the identity such that | f(x) — f(y)| < &€ whenever y € xU ory € Ux for all
x,y €G.

Proof. For every x € supp f, we choose an open neighbourhood Vy of x such that for all y € Vy
we have | f(y) — f(x)| < &/2. By|Proposition 1.1.3] we find an open neighbourhood Uy of 1 such
that U2 C x~ V. This yields an open cover {xUy} xesupp £ Of the (compact) support of f. Hence
there exists X1, ..., X, € supp f such that supp f C |J7_; xi Uy, . Using Proposition 1.1.3|again,
we find a symmetric neighbourhood U’ of 1 such that U’ C ﬂ,’;l Uy, . We show that for x, y € G,
we have | f(x) — f(y)| < € whenever y € xU’.

Indeed, the inequality holds if x, y ¢ supp f. Hence assume that at least one of the elements
X,y is contained in the support of f. Consider the case that x € supp f, then there exists an
index i such that x € x;Uy,. This implies that y € Vy, as xU’ C x; Ufi C Vyx; and x € Vy; as
xiUyx;, C x,-U)gl_ C Vy,;. Itfollows that | f(x) — f(V)| < [ f(x) = f(xi)| + [ fCx) — f()] < e If
x ¢ supp f, then we have y € supp f. Since y = xu for some u € U’, we get that yu~! = x.
Because U’ is symmetric, we conclude that x € yU’. Now, interchanging x and y in the reasoning
of previous case, we obtain the inequality as well.

Applying the same reasoning to the map x — f(x~1) (which is again compactly supported), we
find a symmetric neighbourhood U” of 1 such thatforall x, y € U” wehave | f(x ") — f(y™1)| < ¢
whenever y € xU”. As U” is symmetric, we get x~! € y~1U"” whenever x € U"y, and hence
| f(x) — f(y)|] < e. We find the desired neighbourhood U by intersecting U’ and U”. O

For a topological group G, we endow C.(G) with the supremum-norm || - || o0, making C.(G) a
normed vector space. Note that G acts on C.(G) as follows. We have homomorphisms

L:G— B(C:(G)):g—~Lg, R:G— B(Cc(G)): g Rg,
such that for g € G we have,

Lgf(x):= f(g~'x) and Ry f(x) := f(xg). (f € Cc(G))
In fact, Lg and Ry are surjective isometries.

Proposition 1.1.8. Let G be a topological group and f € C¢(G). Then and g — Lgf and
g — Rg [ are continuous maps from G to C.(G).

Proof. Fix an element ¢ € G. On the strength of we find a neighbourhood U
of the identity such that | f(x) — f(¥)| < & whenever y € Ux for all x,y € G. Consider the
neighbourhood V := gU~!. Leth € V. Then for all x € G, we have h~'x € Ug~'x thus
| f(g7x)— f(h~1x)| < &. It follows that | Ly, f — Lg f |lco < &€ wheneverh € V. Thus g > Lg f
is continuous. Continuity of g = R, f is shown in a similar way. O
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1.2 Radon measures

We now introduce a notion of a Borel measure on a general topological space, which is compatible
with the topology in the following sense. We denote the o-algebra of Borel sets of a topological
space X by B(X).

Definition 1.2.1. A Radon measure on a topological space X is a measure u : B(X) — [0, oo] such
that

(i) the measure u is outer regular on all Borel subsets, i.e.
uw(A) = inf{u(U) | A C U with U open}

for all A € B(X),
(ii) the measure u is inner regular on all open sets, i.e.

w(U) = sup{u(K) | K C U with K compact}

for all open subsets U of X,
(iii) the measure p is finite on all compact subsets of X .

Example 1.2.2. The following are examples of Radon measures.

e The trivial measure on an arbitrary topological space which assigns zero to each Borel subset.
e Let X be a Hausdorff space and x € X. Then the Dirac measure Jy, i.e. the measure that

assigns 1 to Borel subsets containing x and assigns O to Borel subsets which do not contain x.
e The Lebesgue measure on R” restricted to the Borel subsets.

Using the following proposition, one can readily come up with a large arsenal of Radon measures
on topological manifolds. We will not prove this here, instead we refer to the proof found in [[Coh13,
Proposition 7.2.3].

Proposition 1.2.3. Let X be a second countable, locally compact Hausdorff space. Then every
measure | : B(X) — [0, oo] which is finite on compact subsets of X, is a Radon measure on X.

For a Radon measure i on a topological space X, we write

mm:wa

for an integrable function f. It is readily verified that f + w(f) defines a complex-valued linear
functional on C.(X). Note that on the set of positive compactly supported functions,

CH(X):=1{f € Ce(X) | f =0},

the function f +— w(f) is positive. Le., f — w(f) is a positive linear functional. In fact, when
X is locally compact Hausdorff, every Radon measure arises as a positive linear functional. This is
the content of the representation theorem of Riesz. We state this theorem below; a full proof may be
found in [[Coh13} Theorem 7.2.8] or [DE14), Theorem B.2.2].
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Theorem 1.2.4 (Riesz representation theorem). Let X be a locally compact Hausdorff space and
I be a positive linear functional on C.(X). Then there exists a unique Radon measure | such that

1(f) = n(f) forevery f € Ce(X).

We will prove the uniqueness assertion of the theorem here.

Lemma 1.2.5. Let X be a locally compact Hausdorff space. Let K C X be compact and suppose
that U is an open neighbourhood of U. Then there exists a compactly supported continuous function
f:X —[0,1] such that f = 1on K and supp f C U.

Proof. We find an open subset V such that K C V C U such that V is compact (we can achieve
this by covering K with finitely many relatively compact neighbourhoods of points in K). On the
strength of Urysohn’s lemma, there exists a continuous function f V — [0, 1] such that f =1
on K and f =0onV \ V. We extend f to a continuous function f* defined on the whole space
X by setting f = fonV and f = 0on X \ V. Note that f is well-defined and continuous as
it is the combination of two continuous maps defined on closed subsets of X, which agree on the
intersection of these closed subsets. The support of the resulting map f is contained in the compact
V, hence f has compact support. 0

Lemma 1.2.6. Let i be a Radon measure on a topological space X. Suppose that F C CV(X) is
a family of functions such that for every f,g € F there exists a h € F such that h > max{f, g}.
Then

pu(sup f) = sup u(f).

feF feF

Proof. Write g for the measurable function sup sz f. Itis clear that sup rc r (f) < pn(g). We
show the converse inequality. Consider a simple function ¢ < f (recall that a simple function is
a linear combination of characteristic functions of finite measure with positive coefficients). Let
& > 0. Then ¢ can be written as ¢ = Z;Ll a;jly; witha; > 0 and A; € B(G) of finite measure
for all ;. Without loss of generality we may assume that the A;’s are disjoint. By inner regularity
we find compact sets Ky, ..., K, such that K; C A; and u(A4;) —¢/(na;) < u(K;) for every i.
Setting ¥ := Y ;_, ailk;, we obtain another simple function ¥ < g for which u(¢) < u(¥) + e.
Let 1 <i < n. Forevery x € K;, we have {(x) = a; < g(x). Hence we find a f, € F
such that @; < fy(x). Thus the subset Uy := £, 1(](1 — &)a;, oo]) is an open neighbourhood of x.
As K; is compact, there exists points xp, ..., X, € K; such that U'}Ll Ux, D Ki. Next, choose
f® e F greater or equal to max{ fx,,..., fx,, } everywhere. Then O >1-¢a; 1k, . Finally,
we choose a f € F such that £ > max{f®,..., f®}. It follows that / > (1 — &)y. Hence,

1 1
/¢dﬂ§/l//dﬂ+8§_/ fdu+e< sup u(f) +e.
X X l—eJx l—¢ fer

As this holds for any ¢ > 0 and any simple function ¢p < g, the desired result follows. O

Corollary 1.2.7 (Uniqueness assertion of [Theorem 1.2.4). Let X be a locally compact Hausdor{f
space. Then for a Radon measure |t on X we have for every open subset U C X

w(U) =sup{u(f) | f € Co(X) such that 0 < f <1 and supp f C U},

and in particular every Radon measure on X is completely determined by how it acts on Cc"' (X).
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Proof. We prove the first assertion. Let U C X be open. Taking F := {f € C.(X) |0 < f <
1 and supp f C U}, we see that sup = f = 1y on account of The desired equality
now follows

We turn to the second assertion. Let v be another Radon measure on X such that u(f) = v(f)
for every f € C;F(X). Then we get from the above that 1 and v equal on the open subsets of X.
Hence, it follows from outer regularity that v = p. O

For a measure space (X, A, u) we will denote £ (1), for the p-th power integrable functions
X > C,1 < p<oo. If p=ocowe will define £°(u) to be the space of essentially bounded
measurable functions X — C. We denote || - || , for the L?-norm when 1 < p < co. The L*°-norm
(i.e. the essential supremum norm) will be denoted with || - |less . Endowed with these norms,
LP (11) becomes a semi-normed space. The null space N of the L?-norms is exactly the space of
measurable functions that vanish almost everywhere. The quotient L? (u) := £ (u)/N (a quotient
of vector spaces) with the norm induced by the || - ||, norm (which we will again denote by || - || »)
forms a Banach space. Recall from integration theory that in the case of p = 2, this is a Hilbert
space. The equivalence class of a function f € L£P(u) (w.r.t. the quotient map L? (i) — L?(uw))
will be denoted by f + N = [f].

Proposition 1.2.8. Let X be a locally compact Hausdorff space and i a Radon measure on X.
Then C.(X) is dense LP (i) for 1 < p < oo (here we identify C.(X) with its image under the
natural inclusion Co(X) < LP(u)).

Proof. Recall that the complex simple functions (i.e. the C-linear combinations of characteristic
functions of finite measure) are dense in L?(X). Hence, it suffices to show that the characteristic
functions of the Borel sets of X with finite measure sit inside the closure of C.(X).

Indeed, let A be a Borel set of X of finite measure. Let ¢ > 0. There exists an open subset U
containing A such that u(U) < u(A) + e. Furthermore, there exists a compact subset K C A such
that u(A) — e < u(K). Hence u(U) — u(K) < 2¢. Let f € C.(X) such that f = 1 on K and
supp f C U. Then

[a=riran= [ - 2w g <20t
X U\K

Thus 14 can be approximated by continuous compactly supported functions. O

Proposition 1.2.9. Let X be a topological space equipped with a Radon measure [i. Then, for a
homeomorphism f : X — X, we have f(A) € B(X) for every A € B(X), and

i BX) — [0,00] 1 A > (o £)(4)
defines again a Radon measure.

Proof. For a subset C of the power set of X, denote f«(C) := {f(A) | A € C}. Itis readily verified
that when C is a o-algebra, its image fx(C) is again a o-algebra. Denoting the topology on X by
T, we get fx(T) C f«(B(X)) = f«(a(T)). Since f is a homeomorphism, fx(7) = T. As
f+(B(G)) is a o-algebra, we have B(X) C f«(B(X)). We get the reverse inclusion by replacing f
with its inverse £ ! in the reasoning above. Hence fi(B(X)) = B(X).

Checking that u s satisfies the regularity conditions of is a straight-forward
procedure; it follows from the fact that A — f(A) restricts to bijections between the open and
compact sets of X. O
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1.3 Products of Radon measures

We finish this digression into Radon measures by proving a theorem of Fubini for Radon measures on
locally compact spaces. The reader might be aware of this theorem in the context of o-finite measure
spaces. However, generally, not every Radon measure on a locally compact space is o-finite.

Lemma 1.3.1. Let X,Y be topological spaces, and Z a metric space. Suppose that K C Y is
compact. Let f : X x Y — Z be a continuous map. Then, for each ¢ > 0 and § € X, there exists
a neighbourhood U of & such that for all (x,y) € U x K, we have d(f(x,y), f(&,y)) <e.

Proof. Consider the subset V := {(x,y) € X xY | d(f(x,y), f(§,y)) <&} C X x Y. This
set is open due to continuity of the map (x, y) — d(f(x,y), f(§,y)). Since V contains the slice
{&€} x K, the tube lemma implies that there exists a neighbourhood U of ¢ suchthat U x K C V. O

Lemma 1.3.2. Let X and Y be locally compact Hausdorff spaces, with respectively Radon measures
p and v. Then for every map f € Cc(X x Y), we have that x — [y f(x,y)dv(y) € Cc(X) and

y =[x f(x,p)dp(x) € Ce(Y) and

/X/Yf(X,y)dv(y)du(x) Z/II[Xf(x,y)d/L(x)dv(y),

Proof. Let K1 C X and K, C Y be, respectively, the projection of supp f onto X and Y. Then
K1 and K are both compact by continuity of the projections and supp f C K; x K. It follows
that for every y € Y the map /7 : x — f(x, y) vanishes outside K;. Likewise, for every x € X,
the map fx : ¥y — f(x,y) vanishes outside K,. Thus for all (x, y) € X x Y we get that the maps
fx and f7 are integrable.

A fortiori, the mapping x > | y Jx dpu is continuous with compact support. Indeed, consider
£ € X and let £ > 0. On account of there exists a neighbourhood U of & such that
| f(x,y)— f(&,y)| <eforevery (x,y) € U x K. It follows that for x € U, we have

‘/;’fxdv—/yfgdv

As ¢ is an arbitrary constant greater than zero, and v(K>) is finite, this implies that the mapping
x > [y fxdv is continuous. It has compact support, since it vanishes outside K1. Applying the
same reasoning to ¥, we getthat y +— [y f, du is continuous with compact support. In particular,
all integrals in the statement of the theorem exist.

The main content of the proof remains to show. Let e > 0. Forevery £ € K1, there exists an open
neighbourhood Ug of & such that for all x € U, | fx — f¢| < & on K3, by[Lemma 1.3.1} This defines
an open cover of K1, thus there exists &1, ..., &, such that U?=1 Ug; O K. Set Ay := Ug, N Ky
and A; := Ug; \ U;-_:ll Ug;, N Ky fori > 1. Note that the collection {A;}7_, consists of Borel
subsets partioning K. Consider the function

5/ !fx—fg‘dv=/ ‘fx—fg}dvfsv(l(z).
Y K>

g:X XY —C:(x,y) > Y fE )4 x).
i=1

Forevery x € X, the mapping gx : y — g(x, y)is Borel measurable and integrable with fY gxdv =
> fY fGi,y)dv(y)l4,(x). Asthe A;’s are Borel subsets, the function x > fY gxdu is a
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simple function. It is integrable since p(A4;) < co and

/X/yg(x’y)d”(y)du(x):/X/Ygxd‘)d“(x):éﬁf@ivﬂd”(ﬁ#(flﬂ-

Similarly, for y € Y, the mapping g” : x — g(x, y) is integrable and the function y — f x & du
is integrable, yielding

/Y/Xg(x’y)d“(x)dv(y):/Y/ngd“d"(y):i/Yf(Ei’y)dV(y)u(Ai).

i=1
Thus the iterated integrals over g agree.

Now, note that

=

'/X /Y S y)dv(y) dp () = /X/Yg(X,y)dv(y)d/L(x)

;/Ai /K2 (e y) = fE )] dv(p) dp(x) < ev(K2) Y u(di) = epn(K1)v(Ka).

i=1

Similarly, we deduce that

‘ / / £y du(x) dv(y) — / f g (. y) dp(0) dv(y)| < ep(K)v(Ko).
YJX YJX

From this, and the fact that the iterated integrals over g agree, we get

‘ f / £y dv(y) du(x) — / / £ ) dp(0) dv(y)| < 26K V(K.
X JY YJX

As this holds for arbitrary ¢ > 0, the iterated integrals agree. O

Using the representation theorem of Riesz (see [Theorem 1.2.4), we come to the following
definition.

Definition 1.3.3. Let X and Y be two locally compact Hausdorff spaces with, respectively, Radon
measures (1 and v. Then the product measure 4 X v : B(X x Y) — [0, oo] of  and v is the unique
Radon measure such that

(1 x )(f) = /X /Y £ ) dv(y) dp(x) = /Y /X £ ) dp() dv(y)

forall f € Co.(X x7Y).

Theorem 1.3.4 (Fubini’s theorem). Let X and Y be two locally compact Hausdor{f spaces with,
respectively, Radon measures |t and v. Suppose that f : X x Y — Cis a B(X x Y)-measurable
function. The following statements are true.
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(i) If f is integrable (w.r.t. X v)then x — [y f(x,y)dv(y), y = [y f(x,y)dup(x) are
integrable a.e. and

fXnyd(MX”) =/Axfyf(x,y)dv(y)du(x) =[Ayfxf(x,y)du(x)dv(y),

where Ax € B(X) and Ay € B(Y) are the sets where the integrand is defined.
(ii) If f vanishes outside a o-finite set and

/Y/X|f(x,y)|du(x)dv<x><oo or fxfy|f(x,y)|dv<x>du(x)<oo

then f is integrable.

Proof. We start by proving assertion (i). We start by showing the equality for the characteristic
functions 14 with A € B(X) of finite measure.

Consider the case that A is open. Consider the family F := {f € C.(X xY) | 0 < f <
1 and supp f C A}. Using|Corollary 1.2.7|and [Lemma 1.3.2| we obtain

(0 x0)(A) = sup (e x ) () = sup [ [ Fe)dv(r)duco.
feF feFJ/X JY
We now define G := {x — [} f(x,y)dv(y) | f € F}. ThenG C C;(X) on account of
[I.3.2]and meets the condition of as F has this property. It follows that

(1o X V)(A) = sup [X gdp = /X sup g dju = /X sup [Y Fxoy) dv () du ().

geg geg fEF

Finally, applying [Lemma 1.2.6]to the family {y — f(x,y) | f € F} we get
G = [ [ s renamae= [ 1aenavodue

If A is compact, then we can choose a relatively compact open neighbourhood U of A. Thus
14 = 1y — 1y\ 4, a linear combination of characteristic functions of opens with finite measure
(hence each characteristic function is integrable). It now directly follows from the above and linearity
of the integral that (u x v)(A) = [y [y La(x,y)dv(y)du(x).

Next, let A be an arbitrary Borel subset of A with finite measure. Using inner regularity of the
product measure, we find a collection { K, },en of compact subsets of A such that (u x v)(A4) —
(W xVv)(Ky) < 1/(n+1)forall n € N. The sets K := (J,cy Kn and N := A\ K partition
A. Note that 1, — 1k pointwise as n — oo. Using the monotone convergence theorem and
the above, we obtain (u x v)(K) = [y [y 1x(x,y)dv(y)du(x). As N is negligible, we can
find an open neighbourhood U of N such that (u x v)(U) < ¢ for every ¢ > 0. It follows
that [y [y In(x,y)dv(y)du(x) < [y [y lu(x,y)dv(y)du(x) = (u x v)(U) < e. As this
holds for any ¢ > 0, we deduce that u(N) = [y [y In(x,y)dv(y)du(x) = 0. Hence, also
u(A) = p(K) + n(N) = [y [y Lalx, y)dv(y)dp(x).

Now, consider a positive measurable function f > 0. Then there exists a sequence (¢, )nen of
simple functions such that ¢, — ¢ pointwise monotone as n — oo. It follows from the monotone
convergence theorem and the above that

/ Fd(uxv) = lim / / bn (. ) dv(y) dpu(x).
XxY n—oo Jx Jy
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Applying the monotone convergence theorem applied to the measurable sections y +— f y Pn(x.y)dv(y),
x € X, we get

[ rawso = [ im [ ginave)

Using the monotone convergence theorem again, we conclude that the sections x — [y, f(x, y) dv(y)
are measurable and

/nyfd(MX”) = /X/Yf(x’y)d‘)(y)du(x).

Reversing the roles of X and Y in the reasoning above, we also get that [ xxy Jd(pxv) =
Jy Jx f(x.p)dp(x) dv(y).

Now let f be a real valued integrable function. Then we decompose f into its positive part f T
and its negative part f~ such that f = f+ — . From the above we have Sxxy fEd(pxv) =
Iy Jy fE(x,»)dv(y)du(x) < co. Hence x +— [y fE(x,y)dv(y) is finite on a Borel subset
A)i( such that u(X \ A§) = 0. Define Ay := A} N Ay . Note that the complement of Ay
is again negligible. It follows that for x € Ay the section y — f(x,y) is v-integrable and
x — [y f(x,y)dv(y) is integrable on Ay such that

_ + _ -
/A ) /Y £y dv(y) dp(x) = /A ) ( /Y £+ ) dv(y) /Y 7 (x,y)dv(y)) dp(x)

- f+d</«exv>—/Xny—dwxv)= Fduxo)

XxY X x

The iterated integral with X and Y reversed can be treated in the same way. If f is a complex valued
integrable function, then the resired result follows after considering the real and imaginary parts of
f and using the above. This finishes the proof of assertion (i).

We turn to assertion (ii). Assume that f is measurable and f~1(C \ {0}) is contained in a
o-finite subset of X x Y. Without loss of generality, we may assume that

c:=/}(ﬁ|f(x,y)|dv(y)du(x)mo.

By assumption there exists an increasing sequence of Borel subsets of finite measure { A, },en such
that f~1(C\ {0}) C US2, An. This induces a sequence of measurable functions (| f |n)nen given
by | fln := |f|la,. Note that |f|, — |f| pointwise monotone as n — oo. It follows from
assertion (i) that

/ 1 d(MXV)=/ f La, o) £ (x| dv () du(x) < C.
XxY XJY

Using the monotone convergence theorem, we conclude that

/ | fld(uxv)<C <oo. O
XxY
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1.4 Haar measures

We now introduce the notion of a Haar measure, as promised. First, note that for any Borel subset
A of a topological group G and group element g € G, the translations gA and Ag are again Borel
subsets of G on account of [Proposition 1.2.9]and continuity of multiplication.

Definition 1.4.1. A left-invariant Haar measure (resp. right-invariant Haar measure) on a topo-
logical group G is a non-trivial Radon measure u : B(G) — [0, 00] such that u(gA) = n(A)
(resp. u(Ag) = (A)) holds for every Borel subset A C G. Right-invariant and left-invariant Haar
measures are both called Haar measures.

Note that the Lebesgue measure, restricted to the Borel subsets, is a Haar measure on R”. The
following proposition follows from [Proposition 1.2.9] and should be clear.

Proposition 1.4.2. Every left-invariant Haar measure [ on a topological group G induces a right-
invariant Haar measure fi on G such that ji(A) = u(A™") for every A € B(G). The map i — ji
defines a bijection between the left- and right-invariant Haar measures on G.

Example 1.4.3. If G is a discrete group, i.e. a topological group with the discrete topology, we can
readily classify all Haar measures on G. Note that B(G) = P(G) in this case. Every multiple of
the counting measure defines a left- and right-invariant Haar measure. Indeed, consider the map

1 BG) — [0.00] : A 1> c|A| if Ais finite
00 if A is infinite,

where ¢ € ]0, oo[. Since the compact sets in the discrete topology are precisely the finite sets, we get

inner regularity on all finite subsets of G. Since ¢ > 0, we also have inner regularity on the infinite

subsets. Outer regularity on the subsets follows immediately. Clearly, u is finite on compact sets

since ¢ < oo. It is readily verified that p is left- and right-invariant.

We show that every Haar measure p on G is a (finite and non-zero) multiple of the counting
measure. Define ¢ := u({1}). Note that ¢ is finite, since u is finite on compact sets. Using
translation invariance, we get that ({g}) = c for every g € G. Thus, if A C G is finite, we get
w(d) = de 4 1({g}) = c|A|. As the compact sets of G are exactly the finite sets, this implies
that ¢ # 0. Indeed, if ¢ were zero, all subsets of A would be negligible by inner regularity, and p
would be the trivial measure. Now, for an infinite subset of A, we get u(A) = oo. Indeed, choose
any injection f : N — A, then u(f(N)) = def(N),u({g}) = o0 < u(A). We conclude that
W = c - counting measure on G.

Remark 1.4.4. Not every group has a Haar measure. Consider the rationals (with addition) equipped
with the topology inherited from R. Assume that pu is a left-invariant Haar measure on Q, and set
¢ := u({0}). As Q is countable, ¢ uniquely determines p. Note that ¢ > 0 as u is not trivial. For
every open neighbourhood U of 0, we have that there exists some € > 0 such that |—¢,e[NQ C U.
As ]—e, g[ contains infinitely many rational numbers, we have that u(]—e, e[ N Q) = oo. Hence,

w(U) = oo. Using outer regularity, we get that ¢ = oo, which violates [Definition 1.2.1

Note that the invariance of the Haar measures imply the following for the integral.
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Proposition 1.4.5. Let G be topological group. Suppose that w is a left-invariant Haar measure
(resp. right-invariant Haar measure) on G. Then a Borel measurable function f : G — C is
integrable if and only if Lg f (resp. Rg f) is integrable, and in this case we have [5 Lg f dp =

Jo fdu(resp. [ Rg fdp= [g fdp).

Proof. Suppose that p is left-invariant; the case that p is right-invariant is shown similarly. If
f is a characteristic function of a Borel subset of G, then we have [; Lg fdi = [5 fdu by
left-invariance. Thus this equality continues to hold whenever f is a simple function. If f
is a positive and Borel measurable, then we can find a sequence of pointwise monotone simple
functions convering to f pointwise (this is a result used in basic integration theory). The monotone
convergence theorem implies that the equality holds for f. Considering the positive and negative
part of a real Borel measurable function f, we see that f is integrable precisely when L f is
integrable and [; Ly f diu = [ f dj. The result now readily follows for complex-valued Borel
measurable functions. O

Furthermore, the Haar integral has the following properties.

Proposition 1.4.6. Let u be a Haar measure on a topological group G. The following statements
are true.

(i) If A is a Borel set of G with non-empty interior, then A has positive measure.

(ii) If f € CT(G) then u(f) = 0 ifand only if f = 0.

Proof. We prove (i). Assume to the contrary that there exists a Borel set A € B(G) with non-empty
interior such that u(A4) = 0. As A # &, we can cover every compact subset of G with finitely many
translates of A (which are again negligible). But this implies that every compact subset of G is
negligible. Regularity of the measure then implies that y = 0, a contradiction since u is non-trivial.

We turn to assertion (ii). Clearly, u(f) = 0 whenever f = 0. Assume that f € CT(G) and
f #0. Then U := £~1(]0, 0o[) is a non-empty open subset of G. It follows from assertion (i)
that u(U) > 0. Since u(U) > 0, we can find a compact set K C U such that u(K) > 0 as u
is inner regular on opens. By compactness of K we have m := infycg f(x) > 0. Now note that

u(f) = [gmdu = mu(K) > 0. O

In case of a left-invariant Haar measure on a topological group G, the integral over R, f* where
f is an integrable function, might fail to be constant as g € G varies. We still have the following
result.

Proposition 1.4.7. Let . be a Radon measure on a locally compact group G and f € C.(G). Then
the maps

G—><C:g'—>M(Lgf)=/GLgfdu, G—><C:g'—>u(Rgf)=/GRgfdu
are continuous.

Proof. We show continuity of the first map. Continuity of the second map is treated similarly. Let
g € G and ¢ > 0. Fix a compact neighbourhood N of g. Note that N - supp f is again a compact
set (since it is the image of the compact set N x supp f under multiplication) and hence has finite
measure. We find a neighbourhood U C N of g suchthat | Ly f—Lg f||co < &/(u(N-supp f)+1)
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whenever & € U by [Proposition 1.1.8] Consider an element 2 € U. Then if x ¢ N - supp f, we
have g71x, i 1x ¢ supp f and thus f(g~'x) = f(h~!x) = 0. It follows that supp(Lj, f — Lg f)
is contained in NV - supp f. It follows that

|n(Lg f) = Ly f)| < /G \Lgf —Lpf|du < ||Lnf —Lg f| o (N -supp f) <e.

This implies continuity of the map g — u(Lg f). O

Lemma 1.4.8. Let i be a non-trivial Radon measure on a locally compact group G. Suppose that
u(Lg f) = u(f)forall f € CH(G)andg € G, then  is a left-invariant Haar measure.

Proof. Let g € G. For f € C;(G) we have supp Ly f = g - supp f. Thus in light of |Corollary
1.2.7] we obtain u(U) < u(gU), and hence, u(U) = u(gU), for all open subsets U of G. Using

the outer regularity of w, we deduce that u is left-invariant. As u is not trivial, this implies that u
is a left-invariant Haar measure. O

Corollary 1.4.9. Let u, v be left-invariant Haar measures on, respectively, locally compact groups
G and H. Then the product measure [ X v is a left-invariant Haar measure on G x H.

We deduce from and Riesz representation theorem (see [Theorem 1.2.4) that we

can characterize Haar measures using positive linear functionals.

Corollary 1.4.10. Let G be a locally compact group. Suppose that I : C.(G) — C is a positive
linear functional such that I(Lg ) = I(f) for all f € CF(G) and I # 0. Then there exists a
unique left-invariant Haar measure . on G such that u(f) = I1(f) forall f € C.(G).

Example 1.4.11. Consider the circle group S' = {z € C | |z| = 1}. It is readily verified that the
functional
1 2w )
[:C(SYY—>C:fr>— fe't)dt
2 0

is positive. This functional is also left-invariant, as we will show. Let z € S and write z = ¢
for some angle ¢ € R. Then I(L,f) = 1/(2m) fozn F( ) dr = 1/(2n) f¢2n+¢ fett)dt.
Consider the C'-map F : R — C : s fos f(e'")dt. One readily verifies that the map s
F(2m +s)— F(s) is constant by calculating its derivative. Hence I(L, ) = FQn + ¢)— F(¢p) =
FQ2nr)— F(0) = 02 T f(e'ydt = I(f). Thus |C0rollary 1.4.10| implies that there exists a Haar
measure p on S! for which u(f) = I(f) forall f € C(ST). Note that this measure is left- and
right-invariant as S! is abelian.

We now present another way of constructing this measure. Consider the continuous map g :
[0,277] — S!: ¢+ e, Let A9 denote the restriction of the Lebesgue measure to the Borel subsets
of the interval [0, 27]. As g is in particular measurable, we can consider the pushforward measure
g+ho 1 B(S1) — [0,00] : A = Ao(g~'(A)). Note that g«1o(S!) = A¢([0,27]) = 27 < oo.
Hence [Proposition 1.2.3|implies that g«A¢ is a Radon measure. Thus ' := 1/(27)g«Ao is again a
Radon measure. Note that for A € B(S') we have

1 2 1 2 .
W)= o [ emn®dr =5 [ e ar
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Using a standard argument (similar to the proof of [Proposition 1.4.5} we first consider simple
functions, then positive functions and use the monotone convergence theorem), we obtain the
integral formula

1
b4

On the strength of [Corollary 1.2.7, we now deduce that u = p'.

2 )
/ Faw = o [ reitan (f e £y
Sl 0

1.5 Haar’s theorem

If we consider groups that are locally compact, we obtain the following result. This section is
devoted to proving this result. There are multiple known ways to prove this theorem; we will follow
the proof in [Coh13|].

Theorem 1.5.1 (Haar’s theorem). Let G be a locally compact group, then there exists left-invariant
Haar measure on G. Furthermore, every other left-invariant Haar measure is a positive multiple
this measure.

Consider a topological group G. Let K C G be compact, and U C G be a non-empty subset.
Then we define

#(K : U) := min{n € N | there exists g1, ..., gn such that K C | J/_; giU}.

This is called the covering number of U over K. Note that this quantity is well-defined the translates
of U forms an open cover of the subset K, and hence there exists finitely many translates of U
covering K.

Lemma 1.5.2. Let G be a topological group. Let K1, Ko C G be compact subsets of G, let and
U C G be a non-empty open subset. Then the following statements are true.

(i) If K» # @ then #(K1 : U) < #(K1 : K2)#(K2 : U).
(ii) Forevery g € G we have #(gK1 : U) = #(K1 : U).
(iii) If K1 C Ky then#(K1 : U) < #(K, : U).
(iv) We have #(K1 UKy : U) < #(K1 : U)+#(K5 : U), with equality if K ;U ' N K,U™! = 2.

Proof. The assertions (i)-(iii) are readily verified. We turn to assertion (iv). The inequality is
clear, hence we prove the last part of the assertion. Assume that K;U ™! N K,U™! = @. Set
n:=#Ky UK, :U)andlet gq,...,gn € G be the elements such that K1 U K, C U?:l giU.
For j = 1,2 wedefine I; := {1 <i <n | gUNK; # &}. By minimality of n, we have
I,...,n € I1 U I,. We show that /1 and I, are disjoint. Indeed, assume to the contrary that there
exists an index i € I1 N I. Then g;U N Ky # @ and g;U N K, # &, but this implies that
gi € K{U™! N K,U™!, which is a contradiction. Thus /; and I, partition the indices 1,...,n. It
follows that #(K1 U K» : U) = n = |I1| + | 12| = #(K1 : U) + #(K» : U). O

Lemma 1.5.3. Let G be a locally compact group G. Denote the collection of compact subsets of G
by C. Then there exists a non-zero map m : C — [0, oo[ which satisfies

(i) m(2) =0,
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(it) m(gK) = m(K) forall g € G,
(iii) m(K1) < m(K2) if K1 C Ka,
(iv) m(K1 U K3) <m(Ky) + m(K»), with equality if K1 N Ky = &,

forall K, K>, K> € C.

Proof. Fix a compact neighbourhood C of 1. Let B be a basis of open neighbourhoods of 1. For
U € B, we define a map my : C — [0, oo[ given by my (K) := #(K : U)/#(C : U) for ever
K € C. As C has non-empty interior, we have my (K) € [0, #(K : ¢ )] on account of
The space
P = []lo.#k : &)
KeC

(equipped with the product topology) is compact on account of Tikhonov’s theorem. Note that
my € P forevery U € B. For a neighbourhood V' of the identity, we define

MWV):={my |U e B,UCV}CP.

We now set

M= () M©V).

VeB

The space M is not empty. Indeed, assume to the contrary that M is empty. Then {P \ M(V)}yvepB
covers P. As P is compact, there exists V1,...,V, € B such that P C U;;l P\ M(V;). This
implies that (17—, M(V;) = @. However, there exists a U € B with U C ()/—, V;. This leads to a
contradiction as my € M (V;) for all indices i. We conclude that M is non-empty. Therefore, fix a
map m € M. We show that this m satisfies (i)-(iv).

Claim. Let Ky,...,K, € C, r1,...,r, € Rand let S C R be closed. If there exists a neigh-
bourhood V' of the identity, such that Z:;l rimy(K;) € S forevery U € B with U C V, then
I rim(Ki)€S.
Proof of the claim. Note that the for every i, the evaluation mape¢; : P — R : f — f(K;) is
continuous, by definition of the product topology. Hence the map s := Y ;_, ri€; is continuous. It
now follows that

{my |U e B,UCVYyc MYV)cCs 1S),

as S is closed. Thus in particular, we have that s(m) = >/, rim(K;) € S. o

Since my (@) = 0 and my(C) = 1 for every U € B, we get m(2) = 0 and m(C) = 1 by
the previous claim. In particular, m is non-zero. Similarly, (ii) follows from [Lemma 1.5.2]ii) and
previous claim. Now, if K;, K, C C and Ky C K>3, then my (K1) — my (Kz) € ]—o00,0] for all
U € B. Thus previous claim implies that m(K1) < m(K>). Finally, we show (iv). Clearly, the
inquality ‘<’ follows again from the previous claim and lemma. Assume that K1 N K, = &. As G
is Hausdorff, we find disjoint open neighbourhoods Uy, U, of respectively K, K». It follows from
[Proposition 1.1.3|that there exists neighbourhoods V71, V5 such that K1V C Uy and K Vo C Us.
Thus V = V1_1 N Vz_1 has the property that for all open subsets U € B contained in V', we have

my (K1 U K3) = my (K1) + my (K3) by[Lemma 1.5.2(iv). From the previous claim it follows that
we have the same equality for the map m. O
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Lemma 1.5.4. Let G be a locally compact group. Denote the collection of subsets of G again by
C. Suppose there exists a map m : C — [0, oo[ satisfying conditions (i)-(iv) of Then

there exists a left-invariant Haar measure on G.

Proof. We construct an outer measure u* : P(G) — [0, oc] as follows, for U C G open, we set
w*(U) := sup{m(K) | K compact, K C U}.
For an arbitrary subset A of G, we define
w*(A) ;== inf{u*(U) | U open, A C U}.

It is readily verified that this is well-defined (i.e. the latter definition agrees with the first on the open
subsets) and that ©* is monotone. Condition (i) implies that ©*(&) = 0. To conclude that u* is
indeed an outer measure, it remains to show subadditivity of u*.

Let Uy, U be open subsets of G. Let K C Uy U Us be compact. Then K \ U; and K \ U, are
disjoint compact sets, hence there exists disjoint open neighbourhoods V7, V5 of respectively K \ U;
and K \ U,. Notethat K\ V7 C Uy and K \ V2 C U, are compacts sets, and K \ V1 U K\ V5 = K.
Hence, it follows from condition (iv) that m(K) < m(K \ V1) + m(K \ V) < u*(Uy) + u*(Us).
As K C Uy U U, was arbitrary, we conclude that

pw*(Uy U Uz) < pu*(Uy) + p*(Uz).

Next, consider a collection {U; }ien of open subsets of G. Let K C U;?io U; be compact. By
compactness, there exists an € N such that K C (J;_, U;. By successively applying the inequality
we proved above, we obtain

n

m(K) < p* (U Ui) < ZIL*(Ui) < ZM*(Ui)-
i=0 i i=0

—0

Thus it follows that u*((;eo Ui) < Y joo #*(Ui). Finally, consider a collection {4;}ien of

arbitrary subsets of G. Let ¢ > 0. For every i € N we find an open subset U; D A; such that
w*(U;) < w*(A;) + &/28 1. It now follows that

o0 o0 o0 o0 o0 e o
Ty (U Ai) <p* (U Ul-) <D WU =Y A+ Y s =) HT(A) + e
i=0 i=0 i=0 i=0 i=0 i=0

As ¢ > 0 was arbitrary, the desired inequality follows.

On strength of the Carathéodory’s theorem (see [Coh13, Theorem 1.3.6]), u* restricted to the
o-algebra A of sets that meet the Carathéodory criterion, is a measure. We show that 5(G) C A.
It suffices to show that every open subset U of G obeys the Carathéodory condition. First, consider
an open set V. Let K; C U NV compact. For every compact set Ko C V \ K; we have
m(Ky) + m(Kz) = m(Ky U Kz) < u*(V) by condition (iv). Because this holds for every
compactum K, C V \ K1, we get m(Kq) + u*(V \ K1) < u*(V). Note that V\ U C V \ K;.
As K1 C U NV was an arbitrary compact set, we obtain u*(V NU) + u*(V \ U) < u*(K).
Now, consider a subset A of G. Let ¢ > 0. Then there exists an open subset V' O A such that
w*(V) < u*(A) + e. It follows that

prANU) +p*(A\NU) = p*(VNU) +p*(V\U) < u*(V) < u*(4) +e.
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Hence U € A. Thus we conclude that B(G) C A.

Denote p for the restriction of ©* to B(G). This is a measure on account of what we showed
above. From the definition of ©* and condition (ii) on m, it readily follows that p* is invariant under
left-translations. Hence p is left-invariant. Furthermore, it directly follows from the definition
of w* that it is outer regular on the Borel sets. Again using the definition, and observing that
m(K) < pu*(K) for all compact subsets K, we deduce that y is inner regular on the open sets. Note
that u is not the trivial measure, as m is non-zero. It remains to show that y is finite on compact sets.
Indeed, let K be compact. Then we can cover K with finitely many relatively compact open subsets
Ui, ..., Up. It follows that u(K) < Y7, w(U;) < Y7 m(U;) < oo (here we used condition
(iii)). We conclude that p is a left-invariant Haar measure. L]

Proof of[Theorem 1.5.1] Combining [Lemma 1.5.3|and [Lemma 1.5.4] we conclude that there exists
a left-invariant Haar measure @ on G. We turn to the second assertion of the theorem. Let v be
another left-invariant Haar measure on G. For f € C.(G) with u(f) # 0 we define

V(Rx f)
n(f)

On the strength of [Proposition 1.4.7|this map is continuous. Using left-translation invariance of v
(see [Proposition 1.4.3), we get for g € C.(G),

W(F)v(e) = /G /G £ ) dv () du ().

Invoking the theorem of Fubini (see[Theorem 1.3.4), using left-translation of y and applying Fubini’s
theorem again, we obtain

Df:G—>(C:x|—>

1 3
() = = [G /G FO08Y) du(x) dv(y)

_ . _ B
a M(f)/c;/cf(yx)g(x )dv(y)d(x) /GDf(X)g(x ) dp(x).

Thus we have

/G(Df(X) —Dy(x)gx Hdu(x) =0

forevery f, f’ € Cc(G) with u(f), u(f”) # 0. Substitutingx > ¢(x~1)(D f(x~1) — D p/(x~1))
for g, where ¢ € C;F(G) is arbitrary, we deduce that ¢| D r—D f/|2 = 0 using |Proposition 1.4.6[
It follows from [Lemma 1.2.5|that D s = D ss. Setting ¢ := v(f)/u(f) = D s(1), we obtain that
v(f")/u(f") = Dy/(1) = c for every other ' € C.(G) with u(f’) # 0. Thus in particular, we

have v(f') = cu(f’) forevery f’ € C;F(G). On account of |Corollary 1.2.7|we get v = cpu. [

1.6 Modular functions

Note that for a locally compact group G with a left-invariant Haar measure p, the map px : A —
1(Ax), x € G, is again a Radon measure on account of [Proposition 1.2.9] It is readily verified that
Wx is left-invariant again. Thus @ must be a multiple of  on account of Haar’s theorem. Thus
there exists a ¢ > 0 such that tx = cpu. This number ¢ does not depend on p. Indeed, for another
left-invariant Haar measure v, we have v = ¢’ for some ¢’ > 0. Hence vy = ¢’y = cc’u = cv.
This motivates the following definition.
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Definition 1.6.1. Let G be a locally compact group with a left-invariant Haar measure . Then
the unique function A : G — ]0, oo[ such that uy = A(x)u for all x € G, is called the modular
Sfunction of G. The group G is said to be unimodular if A = 1 everywhere.

Itis readily verified that if a group is unimodular, its left-invariant Haar measures concide with its
right-invariant Haar measures. The following proposition is proven in the same way as

Proposition 1.6.2. Let u be a left-invariant Haar measure on a locally compact group G. Let
g € G. Then a Borel measurable function f : G — Cis integrable if and only if Rg f is integrable,
and in this case we have

W(Rg f) = AlgHr(f).

Proposition 1.6.3. The modular function A on a locally compact group G is a continuous homo-
morphism of groups (with multiplication on 0, col).

Proof. 1t is readily verified that A is a group homomorphism. We show that it is continuous. Let
u be a left-invariant Haar measure on G. Fix amap f € C.(G) with u(f) # 0. Then we obtain
A(x) = u(R,—1 f)/p(f) in light of [Proposition 1.6.2] Continuity of A now directly follows from
[Proposition 1.4.7] O

Corollary 1.6.4. Every compact group is unimodular.

Proof. The image of a compact group under its modular function is a compact subgroup of 0, oo|
in light of [Proposition 1.6.3| There is only one such subgroup: {1}. 0

We are now ready to formulate a generalization of [Proposition 1.4.7|in case of Haar measures.

Proposition 1.6.5. Let w be a left-invariant Haar measure on a locally compact group G. Suppose
that f € L?(u) for some 1 < p < 0o. Then the maps

G— LP(uw):g—[Lgf]l. G— LP(n):g [Rgf]
are continuous.

Proof. It is clear that the maps above are well defined, since the maps G — LP(u) : g = Lg f
and G — LP(u) : g = Rg f factor through the quotient map £? (i) — L? (1) as consequence of
[Proposition 1.4.5|and [Proposition 1.6.2]

We show continuity of the map g +— [Rg f]. Let g € G and ¢ > 0. We fix an compact
neighbourhood N of g. On account of [Proposition 1.2.8| there exists a ¢ € C.(G) such that
| f—ollp < ¢!/P_ Similarly as in the proof of |Proposition 1.4.7L we find an open neighbourhood
U C N of g such that || Rp$ — Rgd|loo < min{l, e/ u(supp(¢) - N~1)} and supp(Rp¢p — Rg¢p) C
supp(¢) - N~ whenever h € U. It follows that for h € U

RS = Ref 5= [ 1R = Rugl? dit [ [Rup = Reol” dia+ [ |Rro—Ref|” d
< (M) + A IS — 817 +& < (AG™) + MG + De.

Here we used [Proposition 1.6.2| Note that A is bounded on N ~! since A is continuous. Hence it
follows from inequality above that g — [R f] is continuous.

The proof of the continuity of g + [Lg f] is similar, but one exploits the left-invariance of the
Haar integral in this case instead of using [Proposition 1.6.2] O
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1.7 Convolutions

Definition 1.7.1. Let u be a left-invariant Haar measure on a locally compact group G. Let f, g be
integrable functions on G. Then the convolution of f and g is the map

Jo fOe(y ' x)du(y) ify— f(y)g(y~'x) is integrable

fxg:G—C:x—
0 otherwise.

Proposition 1.7.2. Let i be a left-invariant Haar measure on a locally compact group G. Let f, g
be integrable functions on G. Then the convolution f * g is integrable and || f * gll1 < || fl1llgll1-

We will need the following lemma to prove this proposition.

Lemma 1.7.3. Let i be a left-invariant Haar measure on a locally compact group G. Then every
integrable function f on G vanishes outside a o-compact set.

Proof. First we note that G has a o-compact open subgroup H. Indeed, one takes a symmetric
compact neighbourhood K of the identity and defines H := |,y K”. It is clear that H is a
subgroup of G and open as any x € H has the neighbourhood xK contained in H. Since K" is
compact (it is the image of K x --- x K under multiplication), H is o-compact.

Recall from integration theory that every integrable function f* vanishes outside a o-finite subset
of G. Hence there exists a collection of nonempty Borel subsets { A, }»en all of finite measure such
that f~1(C\ {0}) C U, ey 4n- By outer regularity of x, we may assume that every Ay is open.

Forn € N, let P, C G be the subset consisting of the points x € G such that xH N A4, # &.
As xH N Ay is open, it has positive measure (see [Proposition 1.4.6). By additivity of the measure
it follows that 3 cp w(xH N Ay) < j1(An). This implies that P, consists of countably many
elements, since otherwise we would have (1(A4,) = co. We now set B, := |, p, XH . Note that
By, contains A, and is o-compact since it is a countable union of o-compact sets. As f vanishes
outside | J,,cry Bn, this concludes the proof. O

Proof of [Proposition 1.7.2] Note that the map f x g is B(G) ® B(G)-measurable, thus in particular
B(G x G)-measurable. Furthermore, the maps s : (x, y) — (», ¥y~ 1x) and the multiplication map
G x G — G are B(G x G)-measurable as they are continuous. Hence the map % : (x,y) —
f(»)g(y~1x) is B(G x G)-measurable since it is the composition of multiplication, f x g and s.

Using[Lemma 1.7.3|we find a o-compact subset 4 of G such that f and g vanish outside A. It
is readily verified that / vanishes outside A% x A. By continuity of multiplication A2 is o-compact,
and hence the subset A% x A is again o-compact. Thus 4 vanishes outside a o-compact subset of
G, and thus in particular outside a o-finite subset.

Using left-invariance of u we get

f / hGe, )] dp() dp(y) = [ £ [ 18] dp) diy) = £ 111 lglly < oo.
GJG G G

It follows from[Theorem 1.3.4(ii) that % is integrable w.r.t. @ x @. The assertions now readily follow
from [Theorem T340 0

Corollary 1.7.4. Let u be a left-invariant Haar measure on a locally compact group G. When
LY(w) is endowed with convolution

w1 L) x L' (w) — L' (w) : ([f1. [gD) — [f * gl
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it forms a Banach algebra.

Proof. One readily proves that f x g = f’ x g’ for integrable functions f, g, f/, ¢’ on G such that
f = f'ae. and g = g’ a.e. Hence the convolution on L'(x) is well-defined. One readily shows
that (L' (i), *) forms an associative algebra (it suffices to show the desired identities for compactly
supported functions on the strength of [Proposition 1.7.2| and [Proposition 1.2.8). As L'(u) is
complete and we have || f * g|l1 < || f|l1llgll1 forall £,g € £ (w), it follows that (L1(u), %) is a
Banach algebra. 0

Definition 1.7.5. Let p be a left-invariant Haar measure on a locally compact group G. A Dirac
function on G is a function ¢ € C;F(G) such that

() ¢(x) =p(xV)forallx € G,
(i) pu(¢) = 1.

Proposition 1.7.6. Let u be a left-invariant Haar measure on a locally compact group G. Then for
every open U of the identity there exists a Dirac function ¢ supported in U.

Proof. Let V be a symmetric neighbourhood of the identity such that V' is contained in U (see
|Pr0position 1.1.3[). Now choose a g € C;F(G) such that g(1) > 0 and supp g C V. Consider the
function f € C;F(G) givenby f(x) := g(x) + g(x~1). Itis readily verified that ¢ := (1/u(f)) f
is a Dirac function supported in U . 0

Lemma 1.7.7. Let j1 be a left-invariant Haar measure on a locally compact group G. Let f € L' ().
Then for every & > 0, there exists a neighbourhood U of the identity such that for all Dirac functions
¢ supportedin U we have || f *¢p — f|1 < e.

Proof. In light of [Proposition 1.7.2] and [Proposition 1.2.8] it suffices to prove the theorem for
f € Cc(G). Let U be a neighbourhood of the identity such that | Ry f — f |1 < e forevery x € U.
For any Dirac function ¢ supported in U, we have

If ¢ —fl S/G‘/Gf(yW(y_IX)d/«L(y)—f(X) dju(x).

From symmetry of ¢ and translation invariance of it follows that [ dO ) du(y) = u(¢) =1
for all x € G. Hence

1+ = 11 = [ [ 0701700~ £ diatr) dpto.
GJG
Using the theorem of Fubini twice and translation invariance, we obtain
ILf *¢—flly S/ [ ¢(xX) | f(y) = fyx)| du(y) du(x)
GJG
< [ 0@ RS = Fll dut) <. =



2. Representations

We follow the approach taken in [Ban10].

Definition 2.0.1. Let G be a topological group. A representation of G is a pair (;r, V') consisting of
a non-trivial complex Banach space V' and a group homomorphism 7 : G — Iso(V), such that the
induced map

GxV —V:(gv)— a(gv

is continuous. If V' is finite-dimensional, (7, V') is said to be a finite-dimensional representation. 1f
V is a Hilbert space, and 7 (G) C U(V) = {T € B(V) | T is unitary}, the representation (7, V) is
called unitary.

Lemma 2.0.2. Let G be a locally compact group and V a Banach space. Let 7 : G — Iso(V') be
a homomorphism. Then 1 is a representation if and only if the map g — m(g)v is continuous at 1
for everyv € V.

Proof. The implication ‘=" is clear. Assume that the map g — m(g)v is continuous at 1 for
every v € V. Since 7 is a homomorphism, this implies that the map g — m(g)v is continuous
on the whole group G for every v € V. Fix a compact neighbourhood K of 1. Compactness
of K implies that supgcg || 7(g)v| < oo for every v € V. Consequently, on the strength of the
uniform boundedness principle, we obtain C := supg g ||7(g)|| < 0o. Letg € G and i € gK and
v,w € V, then we have

I(hyw — 7@ < (@)l (g™ hyw — w (g by + (g hyw — v
< 7@ € w = vl + ()] | (g™ hyv —v] .

From this inequality it now readily follows that (g, v) + m(g)v is continuous. O

Consider a locally compact group G and a left-invariant Haar measure u on G. Recall that for
every g € G, the map Lg on L?(p) is a unitary operator (see |Proposition 1.4.5[). It follows from
[Proposition 1.6.5|that the map

LZG—)U(LZ(;L)):gI—)Lg

is a representation of G. This is called the left regular representation of G. Similarly, we have the
right regular representation

R:G— ISO(LZ(/L)) 18— Rg.

24
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Definition 2.0.3. Let (7, V') be a representation of a topological group G. A linear subspace W C V
is an invariant subspace (w.r.t. ) of V whenever 7(G)W C W. As W is again a Banach space,
the restriction

wlw: G —Iso(W): g+ n(g)|lw

of 7 to a non-trivial invariant subspace W gives rise to a representation (|, W) of G. This is
called a subrepresentation of w. If the only invariant subspaces of & are either V' or 0, then we say
that 7 is irreducible. A non-trivial invariant subspace W is said to be a irreducible subspace of V
whenever 7 | is irreducible.

Example 2.0.4. Consider the group U(n) = {A € M(n,C) | AA* = 1}, the group of unitary
matrices. This group has a natural action on C" (the identification of matrices with linear operators
w.r.t. the standard basis), inducing a unitary representation (;r, C") of U(n). This representation is
irreducible. Indeed, let W C C” be a non-trivial invariant subspace. Then there exists a v; € W
such that ||vi|| = 1. We can extend to an orthonormal basis {v{, vs,...,v,} of C*. For every
permutation o of 1, ..., n, we have a unitary matrix A% satisfying A%v; = e, ;) for all . It follows
that Avy = eg (1) € W for every permutation 0. Thus W = C".

Proposition 2.0.5. Let (7, V') be a unitary representation of a topological group G. If W C V is
an invariant subspace, then W is also an invariant subspace. In particular, V decomposes as the
direct sum of two invariant subspaces: V.= W @& W.

Proof. Note that W is again closed, and as W is closed we have V = W @ W=. Let w’ € W+.
Then for every w € W, we have (r(g)w’,w) = (w’,7(g"!)w) = 0. Here we used the unitary
property of 7 and the fact that W is invariant. Hence 7 (g)w’ € W-. Thus W+ is invariant. O

Definition 2.0.6. Let (7, V), (p, V)) be two representations of a topological group G. A bounded
operator T : V, — V), is said to be intertwining (w.r.t. 7 and p) if the following diagram commutes
forevery g € G.

v, n(g) s

|r
o(g)
The linear space of intertwining maps V; — V), is denoted by B (Vr,V)). If there exists an
bijective intertwining operator, the representations of 7 and p are said to be equivalent and we write

TP,

Note that on the strength of the open mapping theorem, every bijective intertwining operator is
an isomorphism of normed spaces.

Lemma 2.0.7. Let (7, V), (p, V)) be two representations of a topological group G. Suppose that
T : Vi — Vp, is a intertwining operator. Then ker(T) is a invariant subspace of Vy and the image
im(T') is an invariant subspace of V,, whenever it is closed.

Proof. As ker(T) = T71(0), the kernel of T is closed. Let v € ker(T), then T (7 (g)v) =
p(g)(Tv) = Oforevery g € G. Thus ker(T) is invariant. As T((g)v) = p(g)(Tv) forallv € V7,
we see that im(7") is an invariant subspace if im(7) is closed. O
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Proposition 2.0.8. Let (rr, V) and (p, V) be two irreducible finite-dimensional representations of
a topological group G. If w % p then BG (V. V),) = 0.

Proof. Indeed, assume that w ¢ p. Let T : Vz — V), be an intertwining map. Then ker(7")
and im(7') are invariant subspaces by previous lemma (recall that every linear subspace of a finite-
dimensional space is closed). If ker(7") = 0 then im(7") # O (as V), has dimension > 1). This
implies that im(7") = V). Hence T is bijective, which contradicts the assumption that 7 and p are
not equivalent. Thus we must have that ker(7) # 0. Hence ker(T) = Vg, i.e. T is the trivial
map. O

Recall that a finite-dimensional space is a Hilbert space, and every norm is equivalent on a
finite-dimensional space. Hence, it might occur that we can equip a finite-dimensional space with
a (Hermitian) inner product for which a representation is a unitary. This motivates the following
definition.

Definition 2.0.9. Let (7, V') be a finite-dimensional representation of a topological group G. Then
7t is said to be unitarizable if there exists an inner product (-, - )G on V for which the representation
7T iS unitary.

Lemma 2.0.10 (Schur’s lemma). Let (7, V) be a finite-dimensional representation of a topological
group G. Then Bg (V') = Cidy if w is irreducible. The converse statement holds if v is unitarizable.

Proof. Let T € Bg(V). Then there exists an eigenvalue A € C of T. Since ker(T — Aidy) is
non-trivial and invariant in light of we must have that ker(7" — Aidy) = V. Hence
T = Aidy.

Next, suppose that 7 is unitarizable and let { - , - )G be an inner product on V' for which 7
is unitary. We prove the last assertion. Assume that Bg(V) = Cidy. Let W be an invariant
subspace of V. We can decompose V as V = W @ W (here the orthogonal complement is taken
w.rt. (-, -)g). This decomposition comes with a projection P : V — W. As both W and W+
are invariant on account of |[Proposition 2.0.5| P is intertwining. We interpret P as a intertwining
operator V' — V. It then follows that P = Aidy for some A € C. Hence AV = W and thus W =0

or W =1V. O
Let V1, V3 be two Banach spaces with respectively norms || - ||y,. || - ||v,. Recall that we can
endow the (external) direct sum V; @ V5 with the norm || - || = || - |y, + || - [|v,. With this norm,

the direct sum is again a Banach space, and the topology induced by this norm coincides with the
product topology.

Definition 2.0.11. Let (V1, 1), (V2, m2) be two representations of a topological group G. Then the
induced representation

T @G —Iso(Vi ® V) : g+ m1(g) ® ma(g)
is called the direct sum of 71 and 5.

Proposition 2.0.12. Let (7, V) be a representation of a topological group G. Suppose that V
decomposes into non-trivial invariant subspaces Vi,...,Vy,, ie. V = @?:1 Vi. Then

n
=@

i=1
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where 1; is the restriction of w to V.

Proof. One takes the identification of the internal and external direct sum of the V;’s as the desired
intertwining isomorphism. O

Proposition 2.0.13. Every unitarizable finite-dimensional representation (7w, V') of a topological
group G decomposes into irreducible representations. l.e., there exists an € N such that

n
=B

i=1
where each m; is an irreducible representation.

Proof. We proceed by induction on the dimension of V. If dim(V) = 1, we are done. Let
k € N be a positive number, and assume the statement holds for representations of dimension
< k. Consider a unitarizable representation (s, V') with dim(V) = k 4+ 1. If & is irreducible,
we are done. Hence assume that 7 is not irreducible. Then there exists a non-trivial invariant
subspace W C V of minimal dimension. Recall that W (the orthogonal complement of W w.r..

(-, - )) is again invariant. Write r; := 7|y and 7’ := 7|p1. Note that m; is irreducible.
By the induction hypothesis, 7" decomposes into irreducible representations 5, ..., m,. Hence
T=m @ =@ m. O

Using the terminology of we define the following.

Definition 2.0.14. Let {(r;, V;)}ics be a family of unitary representations of a topological group
G. The unitary representation

D6 U (@v) o> B
iel i€l iel
is called the Hilbert direct sum of {rm;}iey.

Proposition 2.0.15. Let (7, V') be a unitary representation of a topological group G. Suppose that
V' has a orthogonal decomposition into non-trivial invariant subspaces {V; }iey, i.e. V. = @, c; Vi
and V; L Vi wheneveri # j € I. Then

= @J‘[i,
iel
where 1 is the restriction of 7 to V;.

Proof. Using the notation of |Section A.2} we can take [ [ie; P; : V — ies Vi as desired unitary

intertwining operator. Here P; : V' — V; denotes the projection onto V;. O



3. Representations of compact groups

We will now shift our attention to compact groups.

Troughout this chapter G will be a compact group.

As G is compact, there exists a left- and right-invariant Haar measure @ on G which satisfies
u(G) = 1. This is called the normalized Haar measure on G. Indeed, there exists a left-invariant
Haar measure 1’ on G in account of Haar’s theorem. Since G is compact, it is unimodular and
hence p is also right-invariant. Note that u/(G) < oo, hence we can scale u’ by a factor 1/u’(G)
to obtain the desired normalized Haar measure w. Troughout this chapter, we will endow G with
this Haar measure . We denote

LP(G) := LP ().

Proposition 3.0.1. Letr (7, V) be a finite-dimensional representation of G. Every inner product
(-, -)onV induces an inner product { -, - Yg on V given by

(v,w)g := /G(n(x)v,n(x)w)du(x) (v,weV).

When V is endowed with this inner product, (7, V') is a unitary representation. In particular, every
finite-dimensional representation of G is unitarizable.

Proof. Letv, w € V. Note that the map (-, - )¢ is well-defined as the map x +— (7 (x)v, w(x)w) is
continuous (since  is a representation) and hence integrable over the compact group G. We claim
that this is an inner product on V for which m is invariant. Note that x +— (7 (x)v, w(x)v) is a
positive continuous function. Hence (v, v)g > 0. Furthermore, on account of [Proposition 1.4.6|we
get that (v, v)g = 0 if and only if v = 0. Linearity in the first argument and conjugate symmetry
of (-, - )g readily follow from the definition. Finally, one observes that r is unitary w.r.t. (-, - )g
by right-invariance of the Haar integral. 0

Corollary 3.0.2. Every finite-dimensional representation of G decomposes into irreducible repre-
sentations.

From now on, we will equip every finite-dimensional representation with an associated inner
product { -, - }g. This makes every finite-dimensional representation a unitary representation.

28
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3.1 Matrix coefficients and characters
Definition 3.1.1. For a unitary representation (7, V') of G, the (continuous) maps
my ., G — C:ix > (r(x)v,w) (v,weV)

are called the matrix coefficients of . The linear subspace of C(G) C L?(G) spanned by these
matrix coefficients is denoted by C(G).

If it is clear from the context to which representation 7 a matrix coeflicient m7 ,, corresponds,

. . . N
we leave out 7 in our notation, and consequently write my,yy 1= my .

Lemma 3.1.2. Let V be a finite-dimensional vector space over a field K = R, C. Suppose that
(-, -) is an inner product on V with orthonormal basis v1, ..., v,. Then for any A € End(V), we

have
n

tr(A) = Y (Avi, ;).
i=1
Proof. Let B : V — K" be the coordinate map such that 8(v;) = e; for all i. Note that A has a

matrix Ag with respect to these coordinates satisfying 8 14 gB = A. By definition of the trace of
a linear map, we have

tr(A) =Y (Ap)ii = Y (B~ (Av)))i.

i=1 i=1

Note that for every v € V we can write v = > /_; A;v; with scalars A; € K. Hence B~ L) =
Ai = (v, v;). Combining this with the equation above, the assertion follows. O

For a finite-dimensional representation of G, the linear map 75 : End(V) — C(G), given by
(TzA)(x) :=tr(w(x)A) (A €End(V),x € G)

will be of importance. In fact, when 7 is irreducible and End(V) is endowed with theHilbert-Schmidt

norm (see[Section A.2)), this map is unitary, as we will see shortly. As V' is finite-dimensional, the
Hilbert-Schmidt norm is induced by the inner product

(A, B)us = tI’(AB*).
Lemma 3.1.3. Let (1, V) be a finite-dimensional representation of G. Then the map Ty, is surjective.

Proof. First we show that T;; maps into C(G),. Let vy, ..., v, be an orthonormal basis of V (w.r.t.
(-, -)g)- Let A € End(V). Then for every x € G we have tr(m(x)A) = Y7 (w(x)Avi, vi)g =
> My, v, (x). Thus x > tr(7w(x)A) indeed defines a function of C(G)y. Furthermore, it is
clear that 77 is linear, due to linearity of the trace.

We turn to the main content of the lemma. Let v, w € V and consider the matrix coeflicient
Myw. Writev = > 7 Ajv; and w = Y 7_; ivi, with A;, u; € C. Let A be the endomorphism
such that Av; = Y"1 _; A;[iv;. Ttis readily verified that Ty A = my,yp. O

Proposition 3.1.4. Let (1, V) and (p, V,) be two equivalent finite-dimensional representations of
G. Then C(G)r = C(G)p.
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Proof. As m = p, there exists a linear isomorphism 7" : V; — V), such that Tr(x)T~! = p(x)
for every x € G. Consider the surjective linear maps 7 and T} as in[Lemma 3.1.3] As T is an
isomorphism, it induces a linear isomorphism 7% : End(V,) — End(Vz) : A — T—YAT. Ttis
readily verified that T;; o Tx = T, (use the fact that tr(CD) = tr(DC) for linear maps C, D). By
previous lemma all occuring maps in this composition are surjective, hence the desired equality
follows. O

Lemma 3.1.5. Let V,W be two complex finite-dimensional vector spaces. Suppose that L
V xW — Cis amap which satisfies L(v+v',w+w’") = L(v,w)+ L, w’ )+ L', w)+L(v,w’)
and L(Av, pw) = AuL(v,w) for all v,v' € V, w,w’ € W and A,u € C. Then for any inner
product on W, there exists a unique linear map A : V. — W such that

(Av,w) = L(v, w)
forallveVandw e W.

Proof. We fix inner products on V, W. Let vy,...,v, € V and wy, ..., w, € W be orthonormal
bases of IV and W. Let A : V' — W be the unique linear map such that Av; = ZTZI L(vi,wj)w;
for every 1 < i < n (note that any linear map satisfying the desired relation meets this condition).
One readily verifies that this is the desired map. O

Theorem 3.1.6 (Schur orthogonality relations). Let (m,Vz) and (p,V,) be irreducible finite-
dimensional representations of G. The following statements are true.

(i) If m % pthen C(G)r L C(G)pin LZ(G).

(ii) Forv,w,v’,w’ € Vg we have

_ 1

~ dim(Vy)

Proof. We prove assertion (i). Let w € Vz and w’ € V,. Using|Lemma 3.1.5|one readily verifies
that there exists a linear map [y, : Vz — V), such that

(mv,wsmv’,w/> (v,v/)G(w,w/)G.

(Lo V)G = (Ml y.mPs ) = /G (e W) P Wgdu(x) (D)

for every v, v’ € V. Note that due to right-invariance

(Tww (m(g)v), v)c =/G<JT(X)v,w)G<p(xg‘1)v’, w')G dj(x)

= (]w,w/v’P(g_l)v/>G = (p(g) L, wv), UI)G

for every ¢ € G. From this it follows that Iy, - is intertwining. Thus if 7 2 p then, by [Proposition|
2.0.8] we must have Iy = 0. From|[(3.1)]it follows that C(G), L C(G),.

We turn to assertion (ii). On account of the above, we have intertwining maps Jy, v’ : V@ — Vx
such that (Jy v,V )g = (Myw, My ) for all v,w,v’,w’ € Vz. On the strength of Schurs
lemma (see[Lemma 2.0.10), we have Jy, 4 = Aidy, for some A € C. Setn := dim(Vy) and fix an
orthonormal basis vq, ..., v, of V;. One now observes that

n n
W) = Y Uwavnetide =k = [ 3 rCove,w)a rmn, wh dia)

i=1 i=1
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and that Y 7_ | (m(x)vi, w)g (T (x)vi, w')g = (r(x"Hw', 7 (x " Hw)g = (w,w')¢ forall x € G.
It follows that A = (w,w’)g/n. As (myw. My w) = (Juuwv,v)g = A{v,v")g, the result
follows. O

Corollary 3.1.7. Let (7, V) an irreducible finite-dimensional representation of G. Then
Vdim(V)T; : End(V) — C(G)x
is a unitary operator (here End(V) is endowed with the Hilbert-Schmidt norm).

Proof. Indeed,let A € End(V). Fix aorthonormal basis vy, ..., v, of V. AsTr A = Y 7| My, v;»
we obtain from the Schur orthogonality relations that

1 " 1 " 1

T A2 = ——— oY= Av;, Av))g = —— || Al A< .
1T A3 dim(V)i;(mAv,,v, vy} = G ;< vi, Avi)g = g Illis
We already showed that T}, is surjective, thus the desired result follows. O

Definition 3.1.8. Let (7, V') be a finite-dimensional representation of G. The map
Yz :G— C:x tr(mw(x))
is called the character of .

Let x, p be two finite-dimensional representations. It readily follows from the definition that
Xrx = Xp Whenever m == p. We will prove a stronger result below. In the rest of the text we say
that a function f : G — C is conjugation invariant or a class function if for all x, y € G we have

fxy™ = fx).

Proposition 3.1.9. Let w be an irreducible finite-dimensional representation of G. Suppose that
f € C(G)y. Then f is conjugation invariant and we have || f |2 = 1 ifand only if f € S yx.

Proof. 1t is readily verified that y, is conjugation invariant. Furthermore, since y, = Tridy, we

obtain from [Corollary 3.1.7| that || x> = 1. Thus it follows that f is conjugation invariant and
[ fll2 =1 whenever f € S'y,.

Conversely, assume that f* is conjugation invariantand || f || = 1. On account of[Corollary 3.1.7]
we get f = T A for some A € End(V') with ||A||12{s = dim(V'). Using the conjugation invariance
of f, we deduce that T (7(g 1) An(g)) = Ty Aforallg € G. Hence A € Bg(V). Schur’s lemma
now implies that A = Aidy for some A € C. Thus we obtain ||A||12{s = |A|2dim(V) = dim(V),
hence A € S'. As f = Ty A = ATridy = Ay, we deduce that f € S!y, as desired. O

The following readily follows from the Schur orthogonality relations and the proposition above.

Proposition 3.1.10. Let , p be two irreducible finite-dimensional representations of G. Then

1 ifn =p,

(s Xp) = 0 i o,
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Proposition 3.1.11. Let 7w be a finite-dimensional representation of G. Then there exists pairwise
non-equivalent, irreducible finite-dimensional representations w1, . .., 7y of G, such that we have a

decomposition
n
T @ niEBmf,
i=1
where m; = ()x, Xx;). Here ni@mi denotes the map w; @ --- @ mw; (m;-fold).

Proof. As m is a finite-dimensional representation, 7 completely decomposes into irreducible

representations. Thus there exists irreducible representations p1,..., 0, of G such that 7 =
@?’:1 pj. We select a subset of representations 71, ..., 7w, of p1,..., pm such that 7; % m;j if
i # j and such that every p; is equivalent to one of the 71, ..., m,. Consider the number

m; Z=|{1§j §m|pj %ni}}.

Then we have 7 = B, p; = B, 2™ In light of |Proposition 3.1.10|, we obtain

m
s X)) = (@, oo ) = D (hoyo dm) = {1 < j <m | pj = i} = m
j=1
forall i. O

This proposition has the following two corollaries; we omit the proofs as the results readily
follow from the above.

Corollary 3.1.12. Let 7, p be two finite-dimensional representations of G. Then xn = ), if and
only if m == p.

Corollary 3.1.13. Let w be a finite-dimensional representation of G. Then 1 is irreducible if and
only if | xzll2 = 1.

3.2 The Peter-Weyl theorem

In the following, an enumeration of representation of G is a set G containing all distinct irreducible
finite-dimensional representations of G up to equivalence. lL.e., for every two distinct w, p € G
we have w 2% p, and G is such that for every irreducible finite-dimensional representations p of G
there exists a 7 € G such that 7 =~ p. It is readily shown that there exists such a set. Indeed,
one takes R, := {w : G — C" | x is an irreducible representation of G}/ =, and uses the axiom
of choice to choose a system of representatives S, of the equivalence classes in R,. We then set

S

G = Unzl S5. In the following discussion, we fix such an enumeration G. With abuse of notation,

we will sometimes write ‘let (7, V) € G, meaning we consider an element & € G with V being
the associated finite-dimensional vector space on which the representation acts.
In the following the discussion, the representation

RxL:GxG—UL*G)):(g.h) — RgLj = LRy

will be of interest. It is readily verified that this is a map is indeed a homomorphism. It is shown,
similarly as [Proposition 1.6.3] that this map is indeed continuous in the sense of by
using the following lemma.
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Lemma 3.2.1. For f € C(G), themap G x G — C(G) : (g, h) — Rg Ly f is continuous.

Proof. Consider (go,ho) € G x G, and let ¢ > 0. In light of [Lemma 1.1.7} there exists a
neighbourhood U of 1 such that | f(x) — f(y)| < & whenever y € Ux. Note that x — hglxzho

is continuous, hence we have a neighbourhood V' of the identity such that hal V2hoy C U. Next,
consider the continuous map ¢ : (x,y) — xyx~'. Since G x {1} C ¢~ 1(V), there exists a
neighbourhood V'’ of the identity such that G x ¥V’ = ¢~ !(V) on account of the tube lemma. It
follows that xV/x~1 C V forall x € G. Now, consider (g, %) € V’'go x V"1hg, then for x € G we
have

hlxg € hy'VxV'go C hy'V2xgo C Uhy'xgo,

hence | f(h~1xg) — f(halxg0)| <e Thus ||[RgLp f — RgoLpy flloo < &. O

Definition 3.2.2. Let W C L2(G). If W is an invariant subspace for the R or L representation,
we will call W, respectively, a right- or left-invariant subspace of L?(G). If W is left- and right-
invariant we call W bi-invariant. Note that W is an invariant subspace for the representation R x L
representation in this case.

Proposition 3.2.3. Let (7,V) € G. Then the space C(G)y is bi-invariant. A fortiori, C(G)y is an
irreducible subspace w.r.t. the R x L representation of G x G.

Proof. Bi-invariance of C(G)y is readily verified. Let § denote the restriction of R x L to C(G)y.
In light of [Corollary 3.1.13| it suffices to show || ys|2 = 1. Fix an orthonormal basis vy, ..., v, of
V. On account of |Corollary 3.1.7[, the functions {nl/ zmvi,v ; }i,j=1,...,n form an orthonormal basis
of C(G)y. Thus, for x, y € G we obtain

.....

n

n
xs(x,y)=n Z (8(x, y)my, ;. my;0;) =n Z (M (xyv; 7wy Mo )-
i,j=1 i,j=1

Here we used the fact that 7 is unitary. Using the Schur orthogonality relations, we get

xs(x.y) = (Zm(x)vi,vnc) : (Z(n(y)vj,vﬂo = Xx () xx ().

i=1 Jj=1

Recall that the product measure i x u is again a Haar measure on G x G (see[Corollary 1.4.9). In
fact, this measure is the normalized Haar measure as (u x u)(G x G) = fG fG ldudu = 1on

account of Fubini’s theorem. Thus, again using Fubini, we obtain

xsll3 =/G ; O [tz 1 d(ie x ) (x, ) = | x=l5 = 1. O
X

Theorem 3.2.4 (Peter-Weyl theorem). The space L?(G) decomposes canonically as

L2(6) = @)C(G)r.
neG

and each subspace C(G)r C L*(G) is irreducible (w.r.t the R x L representation).
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We will follow the approach of [Taol4] to prove this theorem. We first present three lemma’s.

Lemma 3.2.5. Suppose that K € L*(G) is conjugation invariant and K(x) = K(x~1) for all
x € G. Then the map
Tk : L*(G) — L*(G) : [f] = [f * K]

is a self-adjoint Hilbert-Schmidt operator (see which interwines with the left and right
regular representation.

Proof. We first show that the map Tk is well-defined. Indeed, as L?(G) C L'(G) we have
f % K € £L1(G). It remains to show that f % K € £2(G). This is readily verified, as

2
If * K|2 = /A ' /G FOIKG™ 0 du()| duw) < /A 112 TR dio) = 1£12 1K2.

where A is some Borel set with G \ A negligible. Here we used the Cauchy-Schwarz inequality.
Using the theorem of Fubini it is readily verified that Tx is indeed self-adjoint. It remains to
show that T is a Hilbert-Schmidt operator. Indeed, let A be an orthonormal basis of L?(G) then

ITklZs = S U < K.+ K) = Z/G\wx_mf du(x)=/G S (AR dux)

feA feA feA

=/G\|_Lx1<uzdu(x>= IKI3 < .

Here we used the theorem of Fubini again.

We have in general that Lg(f1 * f2) = Lg f1 * f> forall f1, f» € £L1(G) and g € G. Thus
follows that Lg o Tk = Tk o Lg. One readily verifies that Tk intertwines the right regular
representation; this follows from the conjugation invariance of K. O

Lemma 3.2.6. Let U be an open neighbourhood of the identity of G. Then there exists a conjugation
invariant Dirac function ¢ € C T (G) supported in U.

Proof. Let V be a symmetric compact neighbourhood of the identity contained in U. The map
¢ (x,y) — yxy~liscontinuous and {1} x G C ¢~1(V), thus we find a neighbourhood V"’ of 1
such that V/ x G C ¢~ (V). It follows that yV’y~! C V forall y € G. Let f € C*(G) be such
that /(1) > 0 and supp f C V'. Consider the map ¥ : G — C given by

) = /G (f 0 ). ) du(y) = [G Foxy ™ du(y).

One readily verifies that this map is continuous by using and the fact that f o ¢ is
continuous. Hence ¥ € C*(G) and as ¥/ (1) = f(1), ¥ does not vanish everywhere. Furthermore,
it is readily verified that this i is conjugation invariant. Let x € G \ V, then it follows that
x ¢ yV'y lforall y € G. Hence yxy~! ¢ V' forall y € G. As supp f C V', this implies that
¥(x) = 0. Hence supp ¥ C V since V is closed.

Now consider the continuous map & € C T (G) given by h(x) := ¥ (x) + ¥ (x~!). This map
does not vanish everywhere, and by symmetry of V we have supp 2 C V C U. Thus ¢ := 1/u(h)h
is the desired Dirac function. O
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In the following discussion we denote
M(G) := P C(G)s.
neG
Lemma 3.2.7. Every finite-dimensional right-invariant subspace V of L*>(G) is contained in M(G).

Proof. As (L|y, V) is a unitary finite-dimensional representation, L|y completely decomposes into
a finite number of irreducible subrepresentations. Hence, we might as well assume that (L|y, V)
is irreducible. Then there exists some (7, Vi) € G such that L|y =~ m. But this implies that there
exists an injective bounded operator

L: Vg — L%(G),

whose image equals V and Lg ot = tom(g) forall g € G.

Let U be an arbitrary open neighbourhood of the identity and suppose that ¢ € CT(G) is a
conjugation invariant Dirac function supported in U. Let v € V; and write ((v) = [f] for some
f € L2(G). It follows that

(f *$)(x) = / FOBO 0 du(y) = / FOOS)du() = (Re f. ).
G G
for almost every x € G. Hence
(f % D)) = (Re(t(0)). §) = (x(x)v). 8) = (T, *B)G = M7 1y (3)

for almost every x € G. Hence [f * ¢] € C(G),. From and the fact that C(G)y is
finite-dimensional, we get t(v) = [ f] € C(G)y as desired. Since t(V;) = V the result follows. [

Proof of] The latter part of the theorem has already been shown. We turn to the main
content of the theorem. It suffices to show that in G i = Mi G), as M(G) is canonically unitarily

isomorphic to (P_ .5 C(G)y (this follows from . As L2(G) = M(G) @ M(G)*,
this amounts to showing that M(G)+ = 0. Assume to the contrary that there exists a non-trivial
[f] € L?(G) orthogonal to M(G).

Let U be an arbitrary open neighbourhood of the identity and ¢ € C*(G) a conjugation
invariant Dirac function supported in U. Consider Ty : L?(G) — L*(G) as in Then
Ty is a self-adjoint compact operator (see [Proposition A.2.1) which intertwines the right regular
representation. On the strength of the spectral theorem (see[Theorem A.1.2)), we have an orthogonal
decomposition

L*(G) = ker(Ty) & @ En

where each Ej is a finite-dimensional eigenspace of Ty corresponding to an eigenvalue A, € C*
(in fact A, is real as Ty is self-adjoint). Note that each eigenspace E, is right-invariant since
Ty intertwines the right regular representation. On account of this implies that
E, C M(G), and hence [f] is orthogonal to all eigenspaces E, of Ty. But this implies that
[f] € ker(Ty), hence [ f * ¢] = 0. As this holds for every conjugation invariant Dirac function ¢

supported in an arbitrary open neighbourhood of 1, we get [ f] = 0 on account of [Lemma 1.7.7, a
contradiction. O
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Using the theorem of Peter-Weyl, we can prove a generalization of[Proposition 2.0.13|for compact
groups. In the proof, the role of induction in the proof of [Proposition 2.0.13| will be replaced by the
Zorn’s lemma.

Proposition 3.2.8. Let (i, V') be a unitary representation of G. The following statements are true.

(i) The space V contains an irreducible finite-dimensional subspace.
(ii) A fortiori, w decomposes into irreducible finite-dimensional representations. lLe., there exists
irreducible finite-dimensional representations {7; }iey of G such that

= @JT,'.
iel

Proof. We first prove assertion (i). Fix a non-zero vector v € V. Consider the operator T :
V — L*(G) : w +> [my,y]. Note that Tv # 0 and hence T # 0. Using Cauchy-Schwarz, one
readily verifies that T is bounded and in particular, | 7| < ||v|. Furthermore, T is intertwining
w.r.t. the representations (7, V) and (L, L?(G)). On account of Peter-Weyl’s theorem, there exists
ape G such that PT # 0 where P : L?(G) — C(G), denotes the projection. Note that
again PT € Bg(V,C(G),) (with the L representation acting on C(G),). As (L,C(G),) is a
finite-dimensional representation, we have a decomposition L|c(g), = P7_, & into irreducible
finite-dimensional representations (&;, X;). Thus there exists some 1 < j < n such that for the
projection § : C(G)p, — X; we have A := SPT # 0. As S € Bg(C(G),, X;), we conclude
that A € Bg(V, X;). Consider the subspace W := ker(A)+ C V. Note that W is invariant on
account of [Lemma 2.0.7| and [Proposition 2.0.5| Furthermore, W # 0 as A # 0. The restriction
A: W — X;j is intertwining and injective. Thus im(A4) # 0 is invariant, and hence im(4) = X;.
Thus A is an intertwining isomorphism and hence 7 | is equivalent to the irreducible representation
;. Hence W is an irreducible finite-dimensional subspace of V.

We turn to assertion (ii). On account of [Proposition 2.0.15] it suffices to show that V =
Dwey W = @ W, where Wis a collection of orthogonal irreducible finite-dimensional subspaces
of V. Consider the set

P :={W e P(V) | W consists of orthogonal irreducible finite-dimensional subspaces of V'}.

Here P(V) denotes the power set of V. Note that (P, C) forms a poset. Furthermore, P is non-
empty in light of assertion (i). Every non-empty chain C C P has the upper bound | J C in P, hence
Zorn’s lemma asserts that P has a maximal element ¥V € P. We claim that @ W = V. Indeed,
assume to the contrary that W := (@) W)=+ # 0. Note that W is invariant, hence W is invariant
(see[Proposition 2.0.5). Applying assertion (i) to the unitary representation (7 |y, W), we conclude
that W contains an irreducible finite-dimensional representation; this contradicts the maximality of
W. O

Corollary 3.2.9. Every irreducible unitary representation of G is finite-dimensional.

3.3 Corollary: The Gleason-Yamabe theorem

Definition 3.3.1. In the following, a linear group will be a topological group which is isomorphic
(isomorphic as topological groups, i.e. homeomorphic and group isomorphic) to a closed subgroup
of GL(n, R) for some n > 0.
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It follows that linear groups can be given the structure of a Lie group (see [Banl0, Theorem
9.1]) which is compatible with the topology of the group. The next theorem asserts that the compact
group G can be approximated by a linear groups in the following sense.

Theorem 3.3.2 (Gleason-Yamabe theorem for compact groups). For every neighbourhood U of the
identity there exists a closed normal subgroup H of G contained in U such that G/H is a linear

group.

Lemma 3.3.3. Let V be afinite-dimensional vector space and w . G — Iso(V') be a homomorphism.
Then 1 is a representation if and only if 7 is continuous.

Proof. It is is clear that 7 is a representation whenever 7 is continuous. This readily follows from
Thus we show the converse implication. Suppose that 7 is a representation. Fix a
inner product (-, -) on V and let vy, ..., v, be an orthonormal basis for V. Then for g,h € G we
have || (g) — w(h)| < Y7_;Il((g) — w(h))v;i| as one readily verifies (use Cauchy-Schwarz). It
follows directly from this inequality that 7 is continuous. O

Proof of[Theorem 3.3.2] For every g € G \ U we find a finite-dimensional bi-invariant subspace
Vg C L?(G) such that L ¢ is not the identity on V. Indeed, if this were not the case it would follow

from the theorem of Peter-Weyl that Ly = idy2(). But this leads to a contradiction, as one can find
a f € C(G) with (1) > 0and supp f C G \ {g~!} and for this f, Lg f(1) = f(g™1) # f(1)
hence ||Lg f — fl2 # O (see|[Proposition 1.4.6). Let g denote the restriction L : G — Iso(Vy).
On account of [Lemma 3.3.3| 7, is continuous. Hence U, := ngl(lso(Vg) \ {idy, }) is an open
neighbourhood of g on which 4 is not the identity operator.

Using compactness of G \ U, we find g1,...,8, € G \ U such that G \ U C |J/_; Ug;. We
have a composition

GB?=1 Tg;

n
G ' Iso (EB Vgi) —— GL(m,C) — GL(2m,R)

i=1

here the latter two maps are the natural linear isomorphisms (the latter being only R-linear) and
the integer m equals the sum of the dimensions of Vg, ..., Vg,. Let ® : G — GL(2m, R) denote
this composition. Clearly, ® is again continuous. Consider the normal subgroup H := ker(®) =
ker(ED}_, 7g;)- As every mg, is not the identity on Ug,, we have H C U. The universal properties
of the quotient group and -topology (recall that G/H is again a topological group; see
[1.1.4), now induces a continuous injective homomorphism G/H — GL(2m,R). This induces a
continuous isomorphism of groups G/H — ®(G). As G/H is compact and ®(G) Hausdorff, we
deduce that G/H =~ ®(G) as topological groups. The subgroup ®(G) C GL(2m, R) is compact,
thus G/H is a linear group. O

Example 3.3.4. Consider the infinite torus
T? = 1_[ st
neN

Endowed with the product topology, this is a compact group on account of Tikhonov’s theorem.
Let U be a neighbourhood of the identity. By definition of the product topology, we find a family
{Upn}nen of open neighbourhoods of the identity in S! such that [JU, C U and U, = S! for all
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but finitely many indices n € N. Next, consider the normal subgroup H := [] H,, where H,, = S!
whenever U, = S! and H,, is trivial whenever U, %S 1 Then H C [TU, C U and

T®/H =~ (SH™
where m is the number of indices n € N such that H, = {1}.
The Gleason-Yamabe theorem has the following corollary.

Corollary 3.3.5. If G has no small subgroups, i.e. there exists some neighbourhood of the identity
which contains no subgroups but the trivial subgroup, then G is a linear group.

Remark 3.3.6. We presented here a special case of the more general Gleason-Yamabe theorem for
locally compact groups. This theorem is used to give an answer to Hilbert’s fifth problem: is every
locally euclidean group a Lie group? For a complete discussion of this problem, we refer to [Tao14].

Using the terminology of projective limits (for a definition of projective limits, see for instance
[DE14] p. 42]), we can formulate the Gleason-Yamabe theorem as follows.

Corollary 3.3.7. Let B be a basis of neighbourhoods of the identity. Then we have an isomorphism

G = lim Gy
UeB

where each Gy, U € B, is a linear group (here B is endowed with C to form a poset).

3.4 Non-abelian Fourier analysis

The Peter-Weyl decomposition will enable us to define a (generalized) Fourier transform on the
compact group G. We first define the integral over a family of linear maps. Consider the following
scenario. Let (X, .4, v) be a measure space and let V' be some finite-dimensional complex vector
space with inner product (-, -). Suppose that L : X — End(V) is suchthatx — (L(x)v,w) € L (v)
for all v, w € V. On account of there exists a unique linear map A € End(}V) such
that (Av, w) = [y (L(x)v,w)dv(x) forall v, w € V. We will denote

/ L(x)dv(x) := A.
X
For (, V) € G, we consider the map Sy : C(G)r — End(V) given by
S 1= [ S0 duo) = [ fem) dpo,
G G

To simplify formulas in the following discussion, we will endow End(V') with the dilated Hilbert-

Schmidt norm
[ Ipns := vdim(V) || - ||gs -

This norm is induced by the inner product (-, - )pus := dim(V)(-, - )us. It follows from|Corollary|
that the operator dim(V)7T; : End(V) —> C(G), is unitary with respect to the dilated
Hilbert-Schmidt norm.
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Lemma 3.4.1. Let (n,V) € G. The map Sy is the inverse of the map dim(V) Ty, (see|Corollary
[3.1.7). In particular, Sy is unitary (w.r.t. the dilated Hilbert-Schmidt norm).

Proof. As dim(V)Ty is unitary, it suffices to show that dim(V)7} = Sy. Fix an orthonormal basis
V1,...,vpof V. Let A € End(V) and f € C(G);. We have

(Sx f A)pus = dim(V)u((Sx f)A*) = dim(V) Y (S f)vi, Avi)G

i=1

= dim(V)Z/Gf(x)(n(x_l)vi,Avi)G dpu(x)

i=1
n
= dim(V) [ £ 3 T Ao il di(x) = {fodim(V) T )
i=1
As this holds for every A € End(V') we deduce that dim(V)T,} = Sy, as desired. O

Let P, denote the projection L2(G) — C(G)y. The Peter-Weyl theorem asserts that the map

T:=[]Px:L*G) — PCG)
nel el
is a unitary isomorphism (here we use the notation introduced in [Section A.3). On account of
Lemma 3.4.1} we have a unitary isomorphism S := P 457 : D ,5C(G)r — D, aEnd(Vz).
Composing these two maps, we obtain a unitary isomorphism

F:=S8T:L*G) — @End(v,,) f1— .
re6

This is called the Fourier transform.

Theorem 3.4.2 (Plancherel theorem). The Fourier transform F : L*(G) — @ﬂ cgEnd(Vr) is a
unitary operator given by

(FIfDx = fo = /G SOrENdpx). (1€ L*6)) (3.2)
The Fourier inversion formula is given by
FHm = Y din(Vou0 fe) (f € @D, caEnd(Ve) (33)
el

where the series converges in the L?-sense.

Proof. The first assertion has already been covered in the discussion above. Let [f] € L2(G). On
account of the Peter-Weyl theorem, we have f = ) P,f.Letwr € G,and let v, w € Vy then
we have

peG

peG

/G FO) RGN, g dp(x) = (fim® ) = S (Pofom® ).
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In light of the Schur orthogonality relations, we deduce that

/Gf(X)(ﬂ(x_l)v»W)G du(x) = (Px f.my, ) = ((Sx Pr f)v, w)e = ((F [)zv, w)g.

As this holds for every v, w € V, we conclude that[(3.2)| holds. Since the inverse of S is given by
P _ s dim(Vy) Ty, and the inverse of T is given by g > >

el gx, we obtain

neG

F7Uf =" dim(Va)Tr fa.

neG
for every f € @n c éEnd(V,,); this is the Fourier inversion formula O
Proposition 3.4.3. Let f. g € L*(G) then
(f *&)x = &/
forall € G.

Proof. This is a straight forward calculation. Let v, w € V5. Then using Fubini and translation
invariance, we obtain

«f?zhvnwe::l;f*gMM@nx*wanduu)
5[/fmaf%wmﬂwwmwwwmm
GJG
- / / £ (™. w)6 du(x) du(y)
GJG
=1Lfbdwofhmé?waduw)=Lﬂuﬁ?MG::@mﬂmwk;

As this holds for any v, w € Vg, the result follows. O

We now investigate the case when G is abelian. We will see shortly that the Plancherel theorem
assumes a simpler form when the group is commutative. We denote the center of G by Z(G). Recall
that Z(G) consists of the elements of G that commute with every group element of G. Endowed
with the subspace topology, the normal subgroup Z(G) of G is again a topological group.

Lemma 3.4.4. The following statements are true.

(i) Let (, V) be an irreducible finite-dimensional representation of G, then for every x € Z(G)
we have m(x) = dim(V) ™y, (x)idy. Furthermore, the map

§:Z(G)— St : x> dim(V) Ly (x)

is a continuous homomorphism.
(ii) Suppose that G is abelian. Then every irreducible finite-dimensional representation of G is
I-dimensional, and we have a bijection

G — {8 : G — S| § is a continuous homomorphism} : 7 > Y. (3.4
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Proof. We start by proving assertion (i). As x € Z(G) we have 7(x)n(g) = n(xg) = n(gx) =
w(g)m(x) forall g € G. le., 7(x) € Bg(V). Schur’s lemma now implies that w(x) = Aidy
for some A € C. Taking the trace of both sides, we obtain y(x) = Adim(V). Hence n(x) =
dim(V) !y (x)idy = §(x)idy. From this it follows that §(1) = 1 and §(xy) = 8(x)8(y) for
all x,y € G. We show that § maps indeed into S!. Indeed, let v € V be of norm 1 then
8(x) = (m(x)v,v)g = (v, 7(x"Hv)g = §(x~1). Continuity of § follows from continuity of
Xn € C(G)g.

We turn to assertion (ii). We suppose that G is abelian. Let (7, V) € G. Assertion (i) then
implies that 7(x) = dim(V)™ !y, (x)idy for all x € Z(G) = G. Thus every one dimensional
subspace of V is invariant and as 7 is irreducible, this immediately implies that dim(V) = 1. It
follows from assertion (i) that y, : G — S is a continuous homomorphism. Thus the mapis
well-defined. Note that every continuous homomorphism § : G — S! gives rise to a representation
A : G — Iso(C) : x — §(x)idc for which ys = & (we might as well assume that A € G). Thus

the mapping|[(3.4)]is surjective. Injectivity of this map is a consequence of [Corollary 3.1.12] O

Remark 3.4.5. The set
{8 : G — S!|§is acontinuous homomorphism}

is also called the Pontryagin dual (or dual group) of the group G. This set can be given a group
structure using pointwise multiplication as group operation. In fact, it can be made into a topological
group using the compact-open topology. The dual group plays an important role in the representation
theory of locally compact abelian group. For further reading, we refer to [DE14, Chapter 3].

Example 3.4.6. We can now readily verify all irreducible finite-dimensional representations of the
n-dimensional torus

T" := (SH".

By previous lemma, this is equivalent to determining the dual group of T”. First, we determine the
dual group of (R, +). Consider § in the dual of R. As §(0) = 1, we find some (small) constant
¢ > Osuchthat X := [3 8(£)dE # 0. Then A8(1) = [T 8(8)de = [T 8(6)dE— [ 8(€) d for
all 7 € R. Thus § is differentiable and §'(t) = (8(c + 1) —8(¢))/A = (8(c) — 1)/A - 8(¢). 1t follows
that §(t) = ¢€? for all t € R, where C = (§(c) — 1)/A € C. Note that C is purely imaginary.
Conversely, every function # > e'?’ with a € R is inside the dual group of R. Hence we have a
bijection
R —> {§: R — S| § is a continuous homomorphism} : a > (f > €'%?).

Consider the covering map exp : R — S! : ¢ — ¢2™%_ For § in the dual of S! we then obtain a
mapg := § oexp in the dual of (R, +). Hence g(t) = ¢'% forallt € R wherea € R. As 3(1) =1,
we deduce that ¢ = 27k for some k € Z. It follows that §(z) = z* forall z € S'. Thus the dual of
S consists of all maps z > zX, k € Z.

We now treat the general case. Consider the torus 7". Let § be in the dual of 7". For
(z1,...,zy) € T™ we then obtain

8(z1,....zn) = 8(z1,1,...,1)---8(1,...,1,25) = 81(21) -+ 8n(zn),
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where §; denotes the map St — St:zw68(1,...,1,2z,1,...,1) (the z on the i-th place). Note
that §; € S, hence §; (z) = z¥i for some integer k; € Z. We conclude that

8(z1,....2n) =Z]1cl ---Zif”.

Conversely, every such map sits inside the dual of T".

Corollary 3.4.7 (Plancherel theorem for abelian compact groups). Suppose that G is abelian. Then
there exists a unitary isomorphism @n c éEnd(Vn) = Ez(é). Under this isomorphism, the Fourier
transform becomes a unitary isomorphism,

F: L3(G) — £%(G)
with the following Fourier formulas

(FUfDr = fo = (fi2z)s  (1f] € LXG))
FU =" farn (f €(G)

neG

Example 3.4.8. In light of |Example 3.4.6| and |(3.4)[, we have a bijection Z" — " mapping a tuple

n

(k1,...,kn) € Z" to a representation with character (zy,...,z,) — Z’fl Z,’f . This bijection

induces a unitary isomorphism Ez(ﬁ) = (2(Z"). Under this isomorphism, the Fourier transform
is a unitary operator F : L2(T") — £?(Z") given by

for [f] € L2(T™). Here ur, denotes the normalized Haar measure on T". Using [Corollary 1.4.9
and [Example T.4.TT| we find an explicit Fourier formula,

A

2n 2n ) ) n
f(kls-“sk}’l) = (2]‘[)_’1/ / f(e’t‘,...,e””)e_’ Li=1kiti dtl... dtn.
0 0
The inverse formula is given by,

FIHC1 oz = Y fkm Pt ez,

(kl ----- kn)EZ”

for f € {%2(Z"). The series converges in the L2-sense.

3.5 Representations of SU(2)

We will now calculate all irreducible representations of the matrix group SU2) = {4 € U(2) |
det(A) = 1}. It is readily verified that every matrix A in SU(2) can be written as

=G )
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where «, B € C are such that |a|?> 4 |8]?> = 1. In particular, it now readily follows that SU(2) is
compact.

Consider the vector space P, C C[X, Y] of homogeneous polynomials of degree n. We let A
act on a polynomial f € Py, by setting A - f := f(A(X,Y)) = f(aX — BY,BX + aY). One
readily verifiesthat A- f € P,,1- f = f andthat (AB)- f = A-(B- f) forall A, B € SU(2).
Thus we have defined an action of SU(2) on P,. This yields a representation r;,, of SU(2) on P,,
given by

(A f =4 f.

It remains to show that this is continuous in the sense of It can easily be calculated
that the absolute values of the coefficients of the polynomials A- XY "™ 0 < m < n are bounded
by ||A||*. Taking the £!'-norm on the coefficients of the polynomials of P, as the norm for P,, we
then conclude that A — A - XY "™ is continuous. We will show that {7, }, e is an enumeration
of representations of SU(2). In the following, we will denote y;, for the character of 7.

Observe that there is a natural embedding of topological groups (i.e. a homomorphism of groups
which is also a topological embedding)

gl . z 0
t: S ‘—)SU(2).Zl—>(O 2).

This embedding induces a restriction
r: C(SUQ2))class — C(Sl) : f = f oL.

Here C(SU(2))class denotes the set of continuous class functions (i.e. continuous conjugation
invariant functions) on SU(2).

Lemma 3.5.1. The restriction r is an isometry (w.r.t. the sup-norms).

Proof. Note that every element A € SU(2) is a conjugate of (z) for some z € S!. Indeed,
as A € SU(2) we find eigenvectors z,w € S! (by the spectral theorem, and the fact that A is
unitary). It follows that det(4A) = zw = 1, thus w = Z. Taking some non-zero eigenvector (c, )
corresponding to the eigenvalue z with || +| 8|2 = 1, we verify that A(—f, &) = Z(—f, @). Taking
these two eigenvectors as columns of U, we get a matrix U € SU(2) for which A = U~ 1i(2)U.

It follows from the above that || f|lec = [|.f|l,(s1) = Ir(f)llco for every class function f €
C(SU(2))class- Thus r is indeed an isometry. O

We will use this map to prove the following.
Lemma 3.5.2. The characters {)n }nen are dense in C(SU(2))class-
Recall the theorem of Stone-Weierstrass.

Theorem 3.5.3 (Stone-Weierstrass theorem). Let X be a compact Hausdorff space. Suppose that A
is a point-seperating, unital *-subalgebra of C(X). Then A is dense in C(X) (w.r.t. the sup-norm,).

Proof of| Let jy, denote r()y,). On account of the theorem of Stone-Weierstrass and
the fact that r is an isometry, it suffices to show that

A = span{j, | n € N}
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is a point-seperating, unital x-subalgebra of C(S1).

For z € S! we have m,(t(z))(X™Y"™™) = (zX)"(ZY)"™™ = z2MmnX™MYy" M  As the
polynomials XY "™ (0 < m < n, form a basis for P,, we conclude that y,(z) = tr(w(:(2))) =
S o z2™ " forall n € N. One now readily verifies that

m=0
n n+1
Tan(@) =1+ D "+, Jonga(z) = ) 227747 @m7D
m=1 m=1

for all n. It follows that
A =span{z > z"" + z7™ | m € N}.

Using this description of A4, it is readily verified that A is a point-seperating, unital x-subalgebra of
C(Sh. O
Proposition 3.5.4. The set {7, }nen is an enumeration of representations of G.

Proof. Suppose to the contrary that there exists an irreducible finite-dimensional representation p
of G such that p 2 m, for all n € N. On account of [Lemma 3.5.2} there exists a sequence of
numbers (nx)ken such that y, = limg_, o0 xn, (W.I.t. the sup-norm). As the inclusion (C(G), || -

lloo) <> (L?(G), | - |l2) is bounded, it follows that y, = limg_,o0 xn, W.I.t. the L2-norm. Hence
”Xp”% = limg o0 (Xp, xni) = 0 (here we used |Proposition 3.1.10[). This contradicts
O

We are can now readily determine an enumerations of representations for U(2).

Lemma 3.5.5. The map
¢: S xSUQR) — UQR): (z,4) — zA

is a surjective homomorphism (i.e. a continuous group homomorphism) withker(¢) = {+1}. Hence
¢ descends to an isomorphism (S' x SU(2))/{%1} — U(2). Thus ¢ is a quotient map.

Proof. 1Tt is readily verified that ¢ is well-defined (i.e. its maps into U(2)) and that it is continuous.
We show surjectivity. Let B € U(2). Then w := det(B) € S! since B is unitary. Choosing
az € S! such that z2 = w, we obtain det(B/z) = det(B)/w = 1 hence B/z € SU(2). As
¢(z, B/z) = B, we conclude that ¢ is surjective. It remains to show that ker(¢) = {£1}. Consider
(z,A) € ker(¢p). Then it follows that A = Z1. As det(4) = 7% = 1, we deduce that z = +1
hence (z, A) = (1, 1). The latter follows from the fact that ¢ descends to a continuous bijection
(S x SUQ))/{x1} — U(2), as (S! x SU(2))/{=%1} is compact and U(2) is Hausdorff, the result
follows. O

For (k,n) € Z x N, we consider the following representation
Pk.n ST x SUQ2) —> Iso(Py) : (z, A) — zknn(A).
of S x SU(2).

Proposition 3.5.6. Let ¢ the quotient map defined in Consider the set of numbers
S :={(k,n) € ZxN | k +n € 2Z}. The representation pi  factors through ¢ if and only if
(k.,n) € S. A fortiori, the representations {pk , }(k,n)es descend to an enumeration {pg n}(k.n)eS
of representations of U(2).
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Proof. The first assertion of the proposition is readily verified. We turn to the main content of the
proposition. Let (77, V) be an irreducible finite-dimensional representation of U(2). Denote the
irreducible representation 77 o ¢ of S x SU(2) by 7. Since S x {1} lies in the center of S x SU(2),
[Lemma 3.4.4(i) implies that the map § : ST — S : z > dim(V) " yz(z, 1) = dim(V) ™!y (z1)
sits inside the dual of S!. We now get from [Example 3.4.6|that there exists an integer k € Z such
that §(z) = z¥ forall z € S1. Using |[Lemma 3.4.4k i) once again, we obtain

7(z, A) = 7(z, DR(1, A) = §(2)7 (1, A) = X7 (1, A) = % (4)

forall z € S' and A € SU(2). From this it follows that 7lsu(z) : A + m(A) is an irreducible
representation of SU(2) because 7 is irreducible. Hence m|gy@) = m, for some n € N. Let
T : V — Py be the corresponding intertwining isomorphism. Then we conclude that 7 (¢ (z, A)) =
Az, A) = KT, (AT = Tpk’n(Z,A)T_l. Hence we have (k,n) € S and 7 = pg ,. Thus
{0k,n}(k,n)es are all finite-dimensional irreducible representations of U(2) up to equivalence. From
the above we can also deduce that pg , % px,,» Whenever (k,n) # (k’,n’) € S (compare how the
two characters acts on S! - 1 C U(2) and then compare the restrictions of the two representations to
SU(2)). O



A. Topics from functional analysis

This appendix contains some preliminary material on functional analysis. The theory presented in
the first two sections of this appendix can be found in [DE14].

A.1 Compact operators

Recall that an linear map 7" : X — Y between two normed spaces X, Y over a field K = R,C
is called compact operator if the image T (B(0; 1)) is relatively compact in Y. In particular, this
implies that 7 (B(0; 1)) is bounded, hence T € B(X,Y).

If T : X — Y is a linear map such that dim(im 7') < oo, then we say that T is finite rank. As
this implies that im 7" is Banach space, this implies that T is a compact operator.

Lemma A.1.1. Let H, H' be two Hilbert spaces. Suppose that T : H — H' is a bounded operator.
Then the following are equivalent.

(i) The operator T is compact.
(ii) If (en)nen is an orthonormal sequence in H, the image (Tey)nen has a convergent subse-
quence.
(iii) If (en)nen is an orthonormal sequence in H then Te, — 0 asn — oo.
(iv) The operator T can be approximated by operator of finite rank. l.e., there exists a sequence
(Fp)nen of finite rank operators H — H' such that F, — T as n — oo (w.r.t. the operator
norm || - ||).

Proof. Note that (i) = (ii) follows immediately from the definition (first-countable compact spaces
are in particular sequentially compact). We prove the implication (ii) = (iii). Let (e;) be an
orthornomal sequence in H. Assume to the contrary that || Te, || does not converge to 0 as n — oo.
Then we extract a subsequence (7'ey, ) such that

| Ten | = ¢ (A.1)

for all k € N for some ¢ > 0. By assumption, there exists a subsequence (Tenk,-) such that
Tenk,; — v asi — oo for some v € H'. To simplify notation, set v; := eng, - As the v;’s
are orthonormal, we have > 5 ) [(T*v,v;)|? < |[T*v||* < oo hence in particular (T*v, v;) — 0
as i — oo. Thus there exists some index i € N such that | Tv; — v| < &2/2|T*| + 2) and
[(T*v,v;)| < &%/2. It follows that

ITvi[I> < {T*(Tvi —v).vi)| + [(T*v.vi)| < &2,

46
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which contradicts This proves (ii) = (iii).

We turn to the implication (iii) = (iv). If T has finite rank, we are done. Hence assume
that im 7" has infinite dimension. We construct a orthonormal sequence (e,) inductively. First,
choose eg € dB(0; 1) such that |[Teo|| > [|T[|/2 = 1/2 - supyepp(o;1) I T V|- Assume {eo, ..., en}
have been constructed. Denote P, for the projection onto V, := span{egp,...,e,}. Note that
T({idyg — Py) # 0. Indeed, otherwise we would have im T = T'(V,, & VnJ-) = T(Vy),ie. T has
finite rank. Hence there exists a v € dB(0; 1) such that |T(idg — Pp)v| > |T(idg — Pn)|/2.
Consider w := (idg — P,)v. Then ||w| 7% 0. We now set e, 1 := w/|w]. Tt is readily verified
that ||w|| > 1, hence ||Ten+1| > ||Tw| > |T(idg — Py)||/2. Setting Fy, := TP,, we get our
desired sequence of finite rank operators since

IT — Full = TG(dg — Pu)ll <2\ Tentall,

and hence |T — Fy|| — 0 as n — oo by assumption.

Finally we prove (iv) = (i). It suffices to show that for a bounded sequence (x,) in H, the
sequence (7T x,) has a converging subsequence. Let (F;) be a sequence of finite rank operators
such that F;, — T as n — oo. Inductively, we can find a collection of sequences of subsequences
(Xn; xJken of (xn), i € N, such that (F; (xp; , )) converges and (xp, ., , ) is a subsequence of (xp, ;)
for all ;. We show that (T'xp, , )xey is Cauchy. By completeness of H’, this implies that we have
found a desired converging subsequence. Let ¢ > O and i € N such that ||T — F;|| <e. Let N € N
be such that || F; (xn; , — Xn; ;)|| whenever k, j > N. Then for every k, j > max{N, i} we have

17 Conese =5y =0T = Fall sn | 4+ L D+ [ FnCone =)
< (|xnes || + [xn,, | + De.

As (xp,) is bounded, this completes the proof. O

Recall the famous spectral theorem from functional analysis. Most introductory texts on func-
tional analysis will contain a proof of this theorem. For instance, a proof may be found [Taol4,
Theorem 1.4.11] or [DE14l Theorem 5.2.2].

Theorem A.1.2 (Spectral theorem). Let T be a compact self-adjoint operator on a Hilbert space H .
Then there exists a countable sequence of non-zero eigenvalues (A,) which tends to zero, yielding
an orthogonal decomposition

H =ker(T) & P En
n

where Ey = ker(T — Ayidg) is the eigenspace associated to the eigenvalue A, for all n. Further-
more, all eigenspaces Ey, are finite dimensional.

A.2 Hilbert-Schmidt operators

Throughout this section, let H be a Hilbert space. For an orthonormal basis A of H, consider the
map || - ||us,4 : End(H) — [0, oo] such that

ITIfs,.a =Y _ ITv|*. (T €End(H))
veA
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We claim that this quantity does not depend on the chosen orthonormal basis. Let B be another
orthonormal basis of H and 7' € End(H ), then

”T”éS,A = Z(TU,TU) = Z Z (Tv,w)(w, Tv) = Z Z(Tv,w)(w,Tv).
vEA veA weB weB veAd
Here we used the theorem of Tonelli. It follows that

1T IEs.4 = Z Z(T*w,v)(v,T*w) = Z HT*WHZ = HT*Hils,B‘

weB veA wEeB

It follows that ”T”%IS,A = ||T*||%IS’A = ||T**||%IS’B = ||T||%IS’B. Hence, we denote

I lls == Il lls, 4 -

We say that T is a Hilbert-Schmidt operator whenever ||T ||gs < oo. Consider the subset of
Hilbert-Schmidt operators

HS(H) := {T € End(H) | |T||ys < oo}.

It is readily verified that this is a linear space and that | - ||gs restricted to this space is a norm (one
can use the properties of the £2-norm to show this).

Proposition A.2.1. Every operator T € HS(H) is compact.

Proof. On the strength of it suffices to show that for every orthonormal sequence
(en) C H, wehave Te, — 0asn — oo. This is indeed the case. One can expand this orthonormal
sequence to an orthonormal basis 4 of H. As

o0
doITel® < Y ITvl? = [Tl < oo,

i=0 veEA

this implies that || Te; || — 0 as n — o0, as desired. O

A.3 Hilbert direct sums

Let / be an index set and { H; };e7 a collection of Hilbert spaces over a fixed field K = R, C. Then
we can consider the (algebraic) direct sum @, .; H;. We endow this direct sum with the inner
product
(v,w) = Z(vi, wi). (v,w e @H,-)
i€l iel
This makes the direct sum an inner product space, as one readily checks. However, in general, this
space might not be complete again. We will construct an explicit completion of this space.
Consider the set

H::@Hi =Jve[Hi | llvl*<ooy.

iel iel iel
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It is readily verified that this set is a linear space over K. We now try to put an inner product on this
space. For v, w € H, we claim that ) ;. (v;, w;) exists (i.e. we have unconditional convergence).
Indeed, a fortiori, this sum convergence absolutely as D ;7 [(vi, wi)| < ;¢ llvillllwi || < co. The
latter follows from the fact that (||v; )iz, (|wil)ier € £>(I).

It is now readily verified that

(v, w) = Z(vi,wi), (v,w e H)

iel

defines an inner product on H. Endowed with this inner product, H = @ie 1 H; is called the Hilbert
direct sum of {H;}; ;. We claim that H is the completion of the algebraic direct sum P, ; H;.

It is clear that @D;; H; is dense in H. Indeed, if v € H then J := {i € I | v; # 0} is
countable. If J is finite, then we are done. Otherwise, we choose a bijection N — J : k + ij. For
n € N, let v” be the unique element of @, .; H; such that vfk = vj; for0 <k <nand v} = 0 for
the other indices i. Then we deduce that |[v — v"||? = Z,ﬁinﬂ i > — 0asn — 0.

It remains to show that H is complete. Let (v"),en be a Cauchy sequence in H. Tt follows
that for every i € I, (v})nen is a Cauchy sequence in H;. Hence we find a v € [[;c; H; such
that v!' — v; asn — oo forevery i € I. Now, let 0 < ¢ < 1. Then we find a N € N such that
[v" —v™||* < & whenever n/m > N. We claim that ) ;c;[|v} — v;||* < 4¢ forn > N. Indeed,
let FF C I be a finite subset. Choose am > N such that [[v]* —v;|| < &/(|F|+ 1) foralli € F.
We now obtain

S for v = Dl = o]+ o — i)

ieF ieF
<o = o™+ 237 ol — o o =i + D o — v
ieF ieF
<e+2> g/(Fl+ D)+ ) &/(IF|+1) < 4e.
ieF ieF

As this holds for any finite subset F' C I, we get D ;7l[v} — v; |2 < 4e. Using this, one now
readily checks that v € H and v"* — v asn — oo.

We finish this discussion of Hilbert direct sums by stating the following properties; these results
are readily verified.

Proposition A.3.1. Let V be a vector space. Suppose that for every i € I we have a linear map
T; : V — H; suchthaty ;|| Tiv||* < oo forall v € V. Then there exists a unique linear map

ﬁﬂ:V—)@Hi

iel iel

such that the following diagram commutes for all j € I.

lie Ty
y Hier T Dier Hi

X lpj

Hj

Here Pj denotes the projection @;er H; — Hj.
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Proposition A.3.2. Let {V;}ier be another collection of Hilbert spaces. Suppose that for every
i € I we have a unitary operator T; : Vi — H;. Then there exists a unique unitary operator

B i B

iel iel iel

such that the following diagram commutes for all j € I.

DierVi EBZL]) Dier H;

lS J . lP_i

Vj—j>Hj

Here Pj, S; denote, respectively, the projections @ie 1H; — Hj and @ie Vi —>Vj.
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