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Abstract

Nowadays, recycling of water in an (energy) efficient way is a challenge that needs to be engaged. This
thesis provides a theoretical framework that can be used to build a physical model of a filtration device.
Additionally we developed some building blocks in COMSOL that can be used to build a numerical model
for such a device, based on the human kidney. Inspiration from the kidney is used because this is one of
the most efficient filtration devices. In our model we find that the ion concentration profiles are consistent
with the findings of Marbach and Bocquet [Phys. Rev. X 3, 031008 (2016)] . Based on this thesis one
could build a more complete model of a filtration device. Such a model could be used to build a filtration
device for small-scale water recycling or maybe even an artificial kidney.

Front page: Figure on the left is an overview of the human nephron, figure taken and edited from: https:

//socratic.org/questions/5708bab211ef6b107dd76e34. Figure on the right side is a schematic overview
of the model we tried to build. Yellow arrows indicate a flow of the fluid and solutes, blue arrows a flow of
fluid and green arrows a flow of ions.
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1 Introduction

Techniques used in the process of water recycling and filtration nowadays are based on reverse osmosis and
the use of semi-permeable membranes [1]. For reverse osmosis a (high) pressure gradient is applied to a
solution and as a result of this parts of the solution flows through a selective membrane, leaving behind
the unwanted substances. The high pressure required and the need for selectivity is a challenge in building
efficient filtration devices. It is also costly in terms of the energy needed for this process. State-of-the-art
seawater desalination plants that use reverse osmosis, consume 4-14 kJ for the production of one liter of fresh
water [1, 2]. There are recent developments in the field of nanoscale materials, e.g. the use of graphene,
nanotubes or advanced membranes [3–5]. These new materials and new techniques are promising in terms of
efficiecy. However, more steps need to be taken for making progress in this field.
In the paper Active Osmotic Exchanger for Efficient Nanofiltration Inspired by the Kidney, Marbach and
Bocquet argue that a necessary step to boost the efficiency of the separation processes requires out-of-the-
box ideas. They come up with the idea to mimic the process of filtration in the kidney. Biological processes
are able to fulfill the task of efficient filtration at low energy cost. From calculations in [6] it follows that the
thermodynamical limit in the human kidney is ∼ 0.2 kJ per liter of filtered blood. The calculation is based
on some assumptions, so this value is not determined exactly. But the important thing is that this value
is close to the real energy consumption in the human kidney of 0.5 kJ/L [7]. Standard dialytic filtration
systems, however, require 2 orders of magnitude more energy. For example the hemodialysis system of [8]
uses at least ∼ 200kJ/L to perform the filtration.
Per day, 200 L of water and 1.5 kg of salt are recycled in the human kidney. In this process ∼ 99% of the
water is reabsorbed. The kidney consists of about one million substructures, called nephrons, that perform
the actual filtration process [7, 9, 10]. One of the key features of the process is the U-shaped loop of Henle
in the nephron which acts as an active osmotic exchanger. Due to this geometry the kidney benefits very
efficiently from osmotic transport, lowering the energy cost of the filtration process. There are many studies
on the nephron from a biological or physiological point of view [11–16]. However, we will study the nephron
from a physical perspective.

Figure 1: Schematic overview of the
geometry used in Marbach’s model
[17] for the nephron, consisting of 3
different tubules: the descending tube
(D) with walls permeable to water,
the ascending tube (A) with active ion
pumps, and the collecting duct (CD)
again with walls permeable to water;
and an interstitium (I) surrounding
the tubules. Numbers of in- and out-
flow are realistic for humans, compo-
sition of in- and outflow is a simplified
version of reality. Figure taken from
[17].

Marbach and Bocquet built a 1D model of the kidney and found some important properties of the model,
including a typical reabsorption length lc and bounds for the water loss fraction η [17]. See Fig. 1 for a
schematic overview of the model of the nephron. We will try to build a 3D model (actually a 2D-axisymmetric
model) using the COMSOL software and study the properties of our model. We expect to find qualitatively
similar result for our 3D model as Marbach and Bocquet for their 1D model, but it is of interest to see
whether the 3D character will change the picture.
First we will give a description of the kidney and the nephron from a biological perspective. Secondly we
will explain the Michaelis-Menten kinetics that are used to described enzymatic processes, in our case the
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kinetics of the sodium pumps. Then we will discuss the physical theory that describes the flow of solutions
with electrolytes through small channels. After that we describe the model we built using COMSOL to solve
the problem numerically and compare our results with the results of Marbach and Bocquet.
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2 The kidney

Figure 2: Schematic overview of the kidney. Obtained from [18].

In this section we will discuss the structure and the function of (several parts of) the human kidney. In Fig.
2 a schematic overview is given with the names of relevant constituents.
The kidney is a bean-shaped organ that is approximately 11 cm long in adult humans [19]. The kidney plays
an essential role in the homeostasis, i.e. it maintains the stable state of an organism, by filtrating the blood
and excreting metabolic waste products (e.g. urea) and regulating several balances (e.g. the water balance).
Blood that needs to be filtered enters the kidney via the Renal artery and divides in a lot of small arteries
to the renal cortex. In the renal cortex the filtration of the blood starts in the functional units of the kidney.
These functional units are called nephrons and each kidney consists of approximately1 1 million nephrons
[9, 10, 20, 21]. The nephron will be elaborately discussed in section 2.1. The waste, called urine, that is
excreted during the filtration process is collected from the nephrons in a collecting duct, which transports
the urine to the pelvis of the ureter. The waste leaves the kidney via the ureter to the urinary bladder. The
filtrated blood leaves the kidney via the renal vein.
In section 2.1 we largely follow the discussion of Ch. 49-52 of [9] and Ch. 26-28 of [10].

2.1 The Nephron

Each nephron consists of two different parts, the renal corpuscle and the tubular portion. In Fig. 3 an
overview of the nephron is shown. In the following sections we will discuss the structure and functions of the
renal corpuscle and the tubular part of the nephron.

2.1.1 Structure of the renal corpuscle

The renal corpuscle consists of a glomerulus and the Bowman capsule. The glomerulus is a tuft of small
capillaries that is enclosed by the Bowman capsule. Via the afferent arteriole the blood enters the glomerulus

1The number of nephrons per kidney can vary widely, by at least tenfold, as can be found in [20].
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Figure 3: Schematic overview of the nephron. Obtained from:
http://platformedical.tumblr.com/post/159403130337

and via the efferent arteriole the filtered blood leaves the glomerulus. The filtrate enters the tubular part
of the nephron through the Bowman capsule. Between the glomerular capillaries and the Bowman capsule
there is a filtering membrane. This membrane is called the glomerular capillary membrane. It consists of a
basement membrane and cells fused on both sides of this membrane. Between those cells small pores exist
with a diameter of about 8 nm[10]. In addition the filtering membrane is also negatively charged, making it
less permeable to negatively charged ions.

2.1.2 Function of the renal corpuscle

The renal corpuscle performs the first step in the formation of urine. One of the main functions of the
glomerulus is to allow the filtration of small solutes and prevent (or at least restrict) the entrance of larger
molecules into the nephron. The characteristics of the membrane between the glomerular capillaries and the
Bowman capsule ensures that the filtrate contains no cellular elements (e.g. red blood cells) and essentially
no proteins (e.g. albumin). These substances are not in the filtrate because of their relatively large size and
for proteins also due to the negative charge of the molecules. All other substances are present in the filtrate.2

The glomerular filtration rate (GFR) and single nephron glomerular filtration rate (SNGFR) are a measure
of the total quantity of filtrate formed per unit of time in all nephrons together. The GFR and SNGFR can
be calculated as:

GFR = Kf ∗ pnet or GFR = RPF ∗ Ff (2.1)

SNGFR = SNKf ∗ pnet (2.2)

where Kf and SNKf are the capillary filtration coefficient for both kidneys and for a single nephron, respec-
tively, and Ff the filtration fraction. The filtration coefficient is the product of the permeability and filtering

2Examples of substances that are present in the filtrate under normal conditions are: Na+, Cl-, K+, HCO-
3, urea, glucose

etc.
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surface area of the capillaries. RPF is short for renal plasma flow, the total flow in the arteries measured in
ml/min. The net filtration pressure pnet, is the sum of the different hydrostatic and osmotic pressures in the
glomerulus and the Bowman capsule. The net pressure can be calculated as:

pnet = pH,G − pH,B − pO,G + pO,B , (2.3)

where pH,G is the hydrostatic pressure in the glomerulus, pH,B is the hydrostatic pressure in the Bowman
capsule, pO,G is the osmotic pressure in the glomerulus and pO,B is the osmotic pressure in the Bowman
capsule. Note that the osmotic pressure in the glomerulus opposes the filtration.
A recent study3 showed that the average GFR of the human kidney is 115 ml/min and the SNGFR is
80 nl/min [21]. Another study reported an average GFR of 104 ml/min [22]. This second study also
reported values for other variables, see table 1. For convenience let’s assume that GFR = 100 ml/min
and the number of nephrons is 1 million, resulting in a SNGFR of 100 nl/min. From the values in ta-
ble 1 we get that pnet = 40 - 24.9 ≈ 15 mmHg4. Note that pH,G - pH,B = 40 mmHg is an assump-
tion, because this has not been measured directly in humans. In other literature they use 10 mmHg,
11.3-12.5 mmHg and 15-20 mmHg [9–11]. For convenience we will use pnet = 10 mmHg. If we use
GFR = 100 ml/min and pnet = 10 mmHg to calculate the Kf from Eq. (2.1), we get Kf = 100/10 =
10 ml·min-1·mmHg-1. And for the single nephron Kf we get SNKf = 100/10 = 10 nl·min-1·mmHg-1.

Table 1: Reported values in study [22]

RPF 576 ± 127
Filtration fraction 0.19 ± 0.04
Arterial pressure* 88.8 ± 8
2 Kf** 11.3 ± 4.9
pO,G 24.9 ± 2.5

*Arterial pressure and pH,G are not the
same. If the blood enters the glomeru-
lar capillaries there is a pressure drop
and therefore pH,G is lower than the ar-
terial pressure.
**The two-kidney filtration coefficient
is determined using pH,G - pH,B = 40
mmHg.

Another important function of the renal corpuscle is the reg-
ulation of the GFR. Under extreme conditions or acute dis-
turbances the GFR is influenced by the sympathetic nervous
system, hormones and vasoactive substances in the kidney.
Under normal conditions and small disturbances the GFR is
mostly influenced by the autoregulation system of the kidney.
This autoregulation system regulates the renal blood flow by
constriction and dilatation of the afferent and efferent ar-
teriole. The macula densa, located in the juxtaglomerular
apparatus, consists of cells that are sensitive to the concen-
tration of NaCl (in the distal convoluted tubule). When the
GFR increases, the concentration of NaCl in the filtrate also
increases. In the distal convoluted tubule the NaCl is deter-
mined almost entirely by the tubular flow rate. At low flow
rates, the tubular fluid is maximally dilute and Na+ and Cl−

concentrations are low. When flow increases, these concen-
trations rise; the physiological range is approximately 25-60
mM [24]. The increase in NaCl concentration causes the macula densa to release adenosine which causes
the constriction of the afferent arteriole. The decrease in blood supply, i.e. lower RPF, means a decrease in
GFR. This mechanism is also known as the tubuloglomerular feedback mechanism.

2.1.3 Structure of the tubular part

After the filtration of the blood by glomerular capillary membranes in the renal corpuscle the filtrate flows
into the tubular part of the nephron. It flows through the successive parts of the tubule in the following
order: the proximal tubule, the loop of Henle, the distal convoluted tubule (DCT), the connecting tubule
(CNT) and the collecting duct (CD). The proximal tubule consists of the proximal convoluted tubule (PCT)
and the proximal straight tubule5 (PST). The loop of Henle consists of the thin descending segment (LDS),
the thin ascending segment (LAS) and the thick ascending segment (TAS).

The proximal tubule is lined by a single layer of cuboidal epithelial cells6. These cells have an extensive

3This study is performed on 1388 living kidney donors, the official reported values are: mean GFR 115±24 ml/min and
SNGFR 80±40nl/min. The average number of nephrons per kidney was calculated to be 860,000±370,00.

4mmHg is defined as the pressure generated by a column of 1 mm of mercury. 1 mmHg = 133.322. . . Pa [23]
5Sometimes also calles the thick descending limb, as in Fig. 3.
6Epithelium is the tissue formed by epithelial cells and is one of the four primary tissues. One of the primary tasks of this

type of cell is the regulation and exchange of molecules.
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Figure 4: Schematic overview of the two different types of nephrons including the peritubular capillaries.
Obtained from [10].

brush border, this enlarges luminal surface area of the cells. The cells also have a large number of mitochon-
dria. A mithochondrion produces adenosine triphosphate (ATP), this is the most important chemical energy
carrier that is used in the kidney. This part of the nephron is highly permeable to most substance in the
filtrate, including water, and hardly permeable to metabolic waste products.
The loop of Henle consists of three segments. The LDS is highly permeable to water and moderately
permeable to most solutes. The LAS is virtually impermeable to water The TAS has cuboidal epithelial cells
that are capable of active reabsorption of sodium, chloride and potassium. The thin segments are made of
flattened epithelial cells and have a much lower reabsorptive capacity than the thick segment, LDS and LAS
do not reabsorb significant amounts of any of the solutes. The TAS is virtually impermeable to water.
The TAS empties into the DCT and has nearly the same properties of TAS. It strongly reabsorbs most of
the ions, but it is also virtually impermeable to water.
The CNT and CD have quite similar characteristics, but the are composed of different cell types which have
a different functions as will be discussed in the next section. The permeability of this part of the tubular
part depends on the concentration of the antidiuretic hormone which will be discussed below.

There are two different types of nephrons: the cortical and juxtamedullary nephrons. The renal corpus-
cle of the cortical nephrons lies in the outer cortex and the loop of Henle is short, penetrating only a short
distance into the medulla. On the contrary, the renal corpuscle of the juxtamedullary nephrons lies deep into
the cortex near the medulla. The loop of Henle of this type of nephron is also much longer and reaches deep
into the medulla. The functional difference of the two types of nephrons will be discussed in 2.1.4.
The tubular part of the nephron is surrounded by a network of peritubular capillaries. Those peritubular
capillaries are a continuation of the efferent arteriole. The peritubular parts of cortical and juxtamedullary
nephrons are different. Around the tubules of the cortical nephrons there is an extensive network of per-
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itubular capillaries that surrounds the entire tubular part. For the juxtamedullary nephrons, however, the
efferent arteriole extends from the glomerulus down into the outer medulla and from there continues as the
vasa recta. The vasa recta extends down into the medulla and is different from the ’normal’ peritubular
capillaries in the fact that they lie parallel to the loop of Henle. The network of peritubular capillaries is less
extensive than that of the cortical nephrons. See Fig. 4 for some clarification. The (hydrostatic) pressure
in these capillaries is very low ∼ 18 mmHg [10]. The functionality of these peritubular capillaries will be
discussed in 2.1.4.

Table 2: Size of different parts of the nephron [9]

Segment Length (mm) Outer diameter (µ)

Proximal convoluted
tubule

14 55

Thick descending limb 6 55
Thin descending segment,
hairpin bend and thin as-
cending segment

10-15 15

Thick ascending segment 9 30
Distal convoluted tubule 14.5-15 22-50
Collecting duct 20-22 40-200

We will now give an overview
of the typical size of the dif-
ferent segments of the nephron.
In table 2 the length and outer
diameter of the different parts
of the nephron are given. Be-
cause the size of the cells on the
outside of the tubules the inner
diameter is much less than the
outer diameter. The size of the
epithelial cells is ∼ 10 μm. But
this size varies for the different
portions of the tubules, due to
this the inner diameter is fairly
constant and ∼ 20− 30 μm.

2.1.4 Function of the tubular part

The function of the tubular part of the nephron is to reabsorb the solutes we need for our body (e.g. sodium,
glucose, amino acids) and to excrete the solutes that we have to get rid of (e.g. metabolic waste products).
The process of transporting substances from the tubular part of the nephron back to the blood is called
tubular reabsorption. If a fluid needs to be reabsorbed it has to be transported through the membranes
between the tubules and the interstitial fluid and through to membranes between the interstitial fluid and
the peritubular capillaries. Reabsorption of solutes from the tubular part to the interstitium can be done
by active or passive transport. Active transport is the movement of molecules against the electrochemical
gradient and therefore this form of transport needs energy. The energy is derived from ATP. Substances
that are reabsorbed actively include sodium, calcium, glucose and amino acids. This does not mean that
all transport of these substances is active, most substances are reabsorbed partially actively and partially
passively. Passive transport is the movement of molecules along the electrochemical gradient. This process
does not need energy. Substances that are transported passively are chloride and water. This transport
mechanisms will be discussed in more detail below.

Figure 5: Different routes of transport. Ob-
tained from [9].

The transport of substances from the tubular part into the in-
terstitial fluid occurs via two routes: the transcellular route and
the paracellular route.
We will now discuss the reabsorption of the different substances
along the different parts of the nephrons. We will mainly focus
on the transport of water, sodium and chloride. In the previous
section we discussed the properties of the different tubular parts
and now we will explain how this relates to the function of the
different parts. For an overview of all the parts of the nephron,
see Fig. 6.
The PCT and PST reabsorbs the largest part of the substances
due to its special cellular characteristics. About 65 percent of
the sodium and water is reabsorbed in the PCT and PST and
a slightly lower percentage of the chloride. The most important transport mechanism in this part of the
nephron is the sodium-potassium ATPase pump that actively reabsorbs sodium. These pumps are commonly
described by Michaelis-Menten kinetics [25, 26]. In section 3 we will give a derivation and discussion on this
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kinetics. In the PCT the most essential substances, like glucose and amino acids, are reabsorbed almost
completely. The reabsorption of these essential substances is done by the active co-transport with sodium.
In the PST the very little of the glucose and amino acids remain, and the sodium is now transported actively
mainly with chloride ions. Because of the higher concentration of chloride in the PST than in the PCT,
a part of the chloride also ends up in the interstitial fluid by diffusion. Because the active transport of
salts into the interstitial fluid the salt concentration in the interstitium increases and water will passively
follows by osmosis. The high permeability of the PCT and PST to water ensures that water reabsorption
by osmosis keeps pace with the sodium reabsorption. This keeps the osmolarity along the PCT and PST
virtually constant.

Figure 6: Overview of the names of the different parts of the nephron as described in Sec. 2.1.3.

After the proximal tubule the fluid enters the loop of Henle. The function of the LDS is allowing substances
to diffuse through its walls. Because of the high permeability to water, mainly water is reabsorbed by osmosis.
About 20 percent of the water is reabsorbed in this part of the nephron. The LAS and TAS are impermeably
to water and no therefore (almost) no reabsorption of water occurs. In the TAS sodium is reabsorb actively by
sodium-potassium ATPase pumps. About 25 percent of the sodium, chloride and potassium are reabsorbed
in the TAS. The LAS has a low reabsorptive capacity and does not reabsorb significant amounts of any of
the substances.
The DCT also is virtually impermeable to water and urea, and avidly reabsorbs most of the ions. The
transport of ions is done by the sodium-potassium ATPase pumps and the sodium-chloride co-transporter.
Approximately 5 percent of the sodium and chloride is reabsorbed in this part.
The CNT is almost completely impermeable to water and urea. The CNT reabsorbs sodium ions and the
rate of this reabsorption is controlled by hormones. The CNT also actively reabsorbs hydrogen ions by the
hydrogen-ATPase mechanism and this plays a key role in the acid-base regulation of the body fluids.
The CD reabsorbs less than 10 percent of the filtered water, however, it plays an important role in determining
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Figure 7: Normalized concentration of substances along the different parts of the nephron. A value of 1
corresponds to a concentration of the substance in the tubular fluid that is the same as the concentration of
the substance in the plasma. Obtained from [10].

the final urine output. The water permeability of the CD is controlled by the antidiuretic hormone (ADH).
If the level of ADH rises the water permeability of the CD increases and more water is reabsorbed into the
interstitial fluid, thereby concentrating the urine. The CD also plays a role in the regulation of the acid-base
balance, because it is capable of secreting hydrogen ions against large concentration gradients.
In Fig. 7 an overview of the concentrations of different substances along the different parts of the nephron
is given. The concentration of a substance is normalized by the concentration of the substance in the blood
plasma. When more water is reabsorbed than solute, the concentration of that solute increases and vice
versa. In the figure we see, e.g., that glucose and amino acids are (approximately) completely reabsorbed
in the proximal tubule. It is known that Inulin is not reabsorbed nor secreted along the tubular part, and
therefore the concentration of this substance is an indicator of amount of water present in the tubular fluid.
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3 Michaelis Menten kinetics

Figure 8: Concentration profiles of the different reaction participants of the reaction in Eq. (3) on a short
(B) and a long (A) timescale. Taken from [27].

The sodium pumps in the kidney are commonly described by Michaelis-Menten kinetics, as mentioned in
Sec. 2.1.4. In this section we will give a derivation of the Michaelis-Menten kinetics. In the original paper,
L. Michaelis and M. L. Menten introduced this type of kinetics in a sligthly different notation than is used
nowadays [28]. In the derivation we will use the notation used in [27] because we will largely follow the
derivation given in Sec. 8.4 of this book. In the derivation we will make some assumptions and remarks that
are applicable to the system we will study.
Consider a general system where an enzyme E forms an enzyme substrate complex ES with some kind of
substrate S. From this ES the original E and a product P are formed. Written as a chemical reaction:

E + S
k1−−⇀↽−−−
k−1

ES
k2−−⇀↽−−−
k−2

E + P,

where the ki’s are the reaction rates for the different reactions. Now we will consider the case where the
concentration of the substrate ([S]) is very high, so the concentration of the product ([P ]) is low compared
to [S]. In this case the reaction from the right hand side of Eq. (3) to ES is negligible.7 We can therefore
simplify the reaction equation to

E + S
k1−−⇀↽−−−
k−1

ES
k2→E + P · (3.1)

We want to get an expression of the rate of formation (V) of the product P. Because this rate of formation
is simply the reaction rate constant k times the concentration of the reactants, we can write

V = k2[ES]. (3.2)

Now we want to express [ES] in terms of known quantities, i.e., in terms of [S] and the total enzyme
concentration [E]tot = [E] + [ES]. We can write the rates of formation and breakdown of ES in the same
way as Eq. (3.2) this gives:

Formation rate ES = k1[E][S], (3.3)

Breakdown rate ES = (k−1 + k2)[ES]. (3.4)

7In the system we study, [S] remains at a high level because we have a flux going into the system with a high [S]. On the
other hand there is a flux of P out of the system and this keeps [P ] fairly low. In fact the chemical reaction given by Eq. (3)
will never reach its equilibrium concentrations because of these in and out fluxes.
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Now we will make an additional assumption, viz., the steady-state assumption. This means that the concen-
tration of the intermediate [ES] is presumed to be constant regardless of the other concentrations. In Fig.
8 we see that after some time the steady state is reached, here d[ES]/dt ≈ 0. If the reaction is in a steady
state it means that the formation and breakdown rate are equal. Setting Eqs. (3.3) and (3.4) equal:

k1[E][S] = (k−1 + k2)[ES] or

[E][S]

[ES]
=

(k−1 + k2)

k1
. (3.5)

We define the constant Km as8

Km =
(k−1 + k2)

k1
,

this constant is called the Michaelis constant. Plugging this constant into Eq. (3.5) and rewriting we arrive
at an expression for [ES]:

[ES] =
[E][S]

Km
. (3.6)

We can write the total concentration of E ([E]tot) as the sum of the concentrations of the free enzyme
and the concentration of the enzyme in the complex ES, viz., [E]tot = [E] + [ES]. We can write a similar
expression for the total concentration of S ([S]tot). The concentration [S], however, is much lager than [ES],
i.e., [S]tot ≈ [S]. Therefore we can use that [S]tot = [S]. Plugging this expression for [E]tot in Eq. (3.6) and
solving for [ES] yields

[ES] =
([E]tot − [ES])[S]

Km
,

=
[E]tot[S]/Km

1 + [S]/Km
,

= [E]tot
[S]

[S] +Km
. (3.7)

Substituting expression (3.7) into Eq. (3.2) gives

V = k2[E]tot
[S]

[S] + [K]
. (3.8)

When all the enzymes are in an enzyme substrate complex, i.e. when [ES] = [E]tot, the maximum rate of
formation (Vm) of P is attained. If we look at Eq. (3.2) we can easily see that Vm = k2[E]tot. Plugging this
definition of Vm in Eq. (3.7) we we get the well-known Michaelis-Menten equation:

V = Vm
[S]

[S] +Km
. (3.9)

In Fig. 9 a plot is shown of the [S]-dependence of rate V that obeys equation (3.9). In the plot we see that
for a concentration [S] = Km the reaction rate V = Vm/2, which can also obviously be seen form Eq. (3.9).
The sodium pumps in the kidney are commonly described by Michaelis-Menten kinetics [25, 26]. We will
therefore also use these kinetics to describe the sodium pumps in our model. In our model, the concentration
of sodium ions in the tube is equivalent to the substrate concentration [S], the ion pumps play the role of
the enzymes Etot, and the concentration of ions in the interstitium is equivalent to the concentration of the
product [P ]. Although the ions in both the tube and interstitium are sodium ions (no chemical reactions
take place) we can describe them in terms of a substrate and a product concentration. This is because the
sodium pumps can only pump ions from the tube to the interstitium and therefore are only dependent on
[S]. We will use Eq. (3.9) to define a flux from the tubule to the interstitium. Note that V (and Vm) has
units mol/(m3s), but we can also express Vm in mol/(m2s) to get a flux.9

8Km is an important characteristic of these type of equations and is independent of [E] and [S]. Km has unit of concentration.
9This is what Sophie Marbach used in her model [17] and what we will use in our model.
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Figure 9: Rate of formation (V) as a func-
tion of the substrate concentration [S] for
an enzyme that obeys Michaelis-Menten ki-
netics. Taken from [27]

Now, a pump may also pump multiple molecules at the same time. As shown by Garay and Garrahan the
above equation can be generalized to the case where n sites can be occupied/pumped on each pump unit
[25]:

V = nVm

(
[ion]A

Km + [ion]A

)n
, (3.10)

where Vm is the same as in Eq. (3.9) and the extra n comes from the fact that n molecules are pumped at
the same time.
Values for relevant parameters are chosen as follows: L = 1 mm, R = 10 m, η = 0.69 mPa·s and ∆p = 33
Pa
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4 Poisson-Nernst-Planck-Stokes equations

In this section we will give and discuss the equations that we need to describe a system of electrolytes flowing
through (small) canals with possibly charged surfaces. Here, we largely follow the discussion of section 9.3
of Ref. [29].

4.1 Continuity equation

We will only consider systems where no chemical reactions take place and hence the number of particles of
each species is conserved. Because every particle has a fixed mass, this quantity will also be conserved. The
conservation of mass (of each species) is describe by the continuity equation, in which the density ρi(r, t)
and flux Ji(r, t) of particles at position r and time t are related as follows

∂ρi(r, t)

∂t
+∇ · Ji(r, t) = 0, (4.1)

where label i indicates the different species. For a detailed derivation of the continuity equation see appendix
A.

4.2 Flux equation

The next equation we need to describe the system, is a relation between the flux and the different forces
that acts on our system. We consider four different contributions to the flux: (i) the diffusive flux Jdifi =

−Di∇ρi due to local density gradients, (ii) the conductive flux Jcondi = ρivi that stems from the electric
force experienced by a paticle in an electric field E(r, t) and (Stokesian) friction, this can be rewritten as

Jcondi = (Di/kBT )zieρiE (ii) the conductive flux Jcond
′

i = −(Di/kBT )ρi∇Ui due to a non-electric external
potential Ui(r), (iv) the convective flux Jconvi = ρiu simply from the fact that a fluid may flow with velocity
u. Below we will comment on each contribution.
(i) For a detailed derivation see B. Note that this relation is different for every particle species and therefore
the index i is introduced.
(ii) + (iii) In general we can describe the acceleration vi of a particle by Newton’s law F i = mv̇i. However,
the inertia term can be omitted if we consider a system with a small length scale L, i.e. Re = muL/η < 1,
where m is the mass density of the fluid, L the length scale of the system and η the viscosity of the fluid.10

If we omit this inertia term we are left with F i = 0. This means that a particle will only move if we exert a
force on it. The forces that may act on a (charged) paticle are:
The electric force is given by F el

i = zieE, where the valency zi takes positive values for positively charged
particles and negative values for negatively charged particles. This guarantees that the sign of F el

i is correct.
The next force is a force that may be present in our system due to any external potential, in general this
force is given by F ext

i = −∇Ui, where Ui can be any non-electric external potential that acts on particle
species i.
A particle experiences a friction force if it has a speed relative to the flow of the solvent. We will use the
Stokes friction for the particles in our system F Stokes

i = −6πηaivi, where η is the solvent viscosity ai is
the (hydrodynamic) radius of ionic species i. For a derivation of this Stokes friction see section 7.2 of [30].
Note that in this section the assumption is that the particles are spherical, which is also applicable to our
system because we will mostly only consider particles like Na+, K+ and Cl-, which can be approximated to
be spherical.
Putting together all force contributions and using F = 0 we get

6πηaivi = zieE −∇Ui. (4.2)

Rewriting this to get an expression for the force in terms of all other quantities in our system results in

vi =
zieE

6πηai
− ∇Ui

6πηai
. (4.3)

10A typical value for Re in the model we will build is Re ≈ 103 ∗ 10−4 ∗ 10−3/10−3 = 0.1. See Note 13 in Sec. 4.4 for more
information of the Reynolds number.
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Define vi = vcondi + vcond
′

i , where vcondi denotes the contribution to the relative speed of particle species

i due to the electrical force and vcond
′

i the contribution due to non-electrical forces. In general the flux is
defined as J i = ρivi and therefore we can write the conductive fluxes in terms of the velocities defined above.

This result in Jcondi = ρi
zieE
6πηai

and Jcond
′

i = −ρi ∇Ui

6πηai
. Using the Stokes-Einstein relation Di = kBT

6πηai
, 11 the

equations for the fluxes can be rewritten in terms of the diffusion constant Di as

Jcondi =
Di

kBT
ρizieE and Jcond

′

i = − Di

kBT
ρi∇Ui (4.4)

(iv) The fluid flow is a flow of all the particles, i.e. solvent plus solutes, together with a velocity u and from
this there is an advective contribution to the flux of every particle that is simply given by the density times
this velocity u.

Putting together all terms that contributes to the flux gives us the next equation:

Ji = −Di(∇ρi + ziρiβe∇ψ + ρiβ∇Ui) + ρiu. (4.5)

4.3 Poisson equation

Because in our system we are dealing with charged particles (ions) we need an additional equation that
describes the electrostatics of those particles. We also see that Eq. (4.5) is in terms of the unknown
electrostatic potential ψ. The additional relation we need, that describes the electrostatics of our system, is
the Poisson equation

ε0ε∇2ψ = −Qext − e
∑
i

ziρi, (4.6)

where ε0 and ε are the absolute permittivity of vacuum and of the dielectric medium of our system, respec-
tively, and Qext(r, t) is the (non-ionic) external charge. The external charge can be incorporated as in the
equation above.
This equation describes a system where the dielectric medium is homogeneous, i.e. ε is a constant. A detailed
derivation of this equation can be found in Ref. [31]

4.4 Stokes equation

In Eq. (4.5) we still have an unknown flow velocity u. This velocity can be calculated by solving the
Navier-Stokes equation. For an incompressible isotropic fluid this equation is

m
∂u

∂t
+m(u · ∇)u = −∇p+ η∇2u + f ; ∇ · u = 0, (4.7)

where m is the (constant) mass density, p(r, t) the local pressure, and f(r, t) an additional body force. A
detailed derivation of the Navier-Stokes equation can be found in Ch. 6 of [30]. We will almost always
only consider electrostatic forces. In this case the force is given by Coulomb’s law and thus f(r, t) =
−e
∑
i ziρi(r, t)∇ψ(r, t). 12 The relation ∇ · u = 0 is known as the incompressibility condition and is

actually a conservation law. Below we will derive this incompressibility condition.
The requirement for a fluid to be incompressible means that ρ is constant within a small volume element
which moves at the flow velocity u. We start from the continuity equation 4.1 and use that the flux is related
to the flow velocity by J = ρu. This gives us the following equation:

∂ρ

∂t
+∇ · (ρu) =

∂ρ

∂t
+∇ρ · u + ρ(∇u) = 0. (4.8)

11For a detailed derivation of this equation see section 4.1-4.3 of [29]
12Start from Coulomb’s law F = ke

Qq
|r|2 r̂, where F is the force between a charge Q and another charge q at a distance r.

Make a superposition for all (charged) particles, i.e. F = F1 + F2 + . . . = Q
(
keq1
|r1|2

r̂1 + keq2
|r2|2

r̂2 + . . .
)

. Now the electric field is

E =
∑
i
keqi
|ri|2

r̂i, and define the potential E = −∇ψ. This together results in F = −Q∇ψ, to get the desired result set Q = eziρi

and sum over all particle species.
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Now, instead of the rate of change of ρ on a fixed position, we calculate the rate of change of ρ ’following the
fluid’. This can be calculated using the total derivative, or material derivative which we denote Df

Dt and this
is define as

Dρ

Dt
=
∂ρ

∂t
+
∂ρ

∂x

dx

dt
+
∂ρ

∂y

dy

dt
+
∂ρ

∂z

dz

dt
.

Now the change of x(t), y(t) and z(t) ’following the fluid’ is equal to the local flow velocity u = (u, v, w):

dx

dt
= u,

dy

dt
= v,

dz

dt
= w.

So if we follow a volume element that is moving with the fluid flow, the total derivative is

Dρ

Dt
=
∂ρ

∂t
+∇ρ · u.

Using Eq. (4.8) we can rewrite this expression to

Dρ

Dt
= −ρ(∇ · u)‘.

Now because we only consider incompressible fluids the change in density over time needs to be zero (if it
is not zero the fluid is compressed or expanded). This means that the material derivative of the density
vanishes and therefore also the divergence of the flow velocity. This results in the incompressibility condition
of Eq. (4.7)
Eq. (4.7) can be simplified in most of our cases of interest. Because in the systems we will study, the viscous
forces will be strong and therefore the velocities are small. To determine which terms in Eq. (4.7) are
relevant, if we are in a system with strong viscous forces, we use the Reynolds number Re = muL/η. 13 In
the case that Re � 1 the inertia-term can be omitted and this results in the incompressible Stokes equation

m
∂u

∂t
= −∇p+ η∇2u− e

∑
i
ziρi∇ψ

= −∇p+ η∇2u + ε0ε(∇2ψ)∇ψ; ∇ · u = 0, (4.9)

where we rewrote the first line using the Poisson equation (Eq. (4.6)).
The equations (4.1), (4.5), (4.6), (4.9) form the Poisson-Nernst-Planck-Stokes equations.

4.5 Example: Poiseuille flow

We will give one example of the above theory, because we will use this quiet often in our model. Consider
a cylindrical tube of length L and radius R (L� R) and an applied pressure drop ∆p between the top and
bottom of the cylinder, see Fig. 10. For convenience we will use cylindrical coordinates. The fluid in the tube
is solute-free and is pushed through the tube by this applied pressure. We are interested in the stationary
situation and there are no other forces acting on the system, so the resulting Stokes equation14 is:

η∇2u(r)−∇p(r) = 0, ∇ · u(r) = 0. (4.10)

The geometry is rotational symmetric, so we expect no flow in the φ-direction and also no dependence on
the φ-direction. Because L� R we can ignore inlet and outlet effects and then it follows by symmetry that
u(r) = (0, 0, uz(r, z)). From the incompressibility condition ∇ · u = ∂uz/∂z = 0 it follows that there is no
z-dependence. So the Stokes equation 4.10 of our problem reduces to:

η
1

r

∂

∂r

(
r
∂uz(r)

∂r

)
− ∂p(z)

∂z
= 0, (4.11)

13The inertia term (mu · ∇)u is of order O(mu2/L) and the viscous term η∇2u of order O(ηu/L2) and the ratio of those
terms inertia/viscous is of order O((mu2/L)/(ηu/L2)) = O(Re). [30]

14we are implicitly assuming that the Reynolds number Re� 1
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Figure 10: Cylindrical tube filled
with fluid. On the top of the
cylinder is a higher pressure, re-
sulting in a pressure gradient
of ∆p between top and bottom.
The blue arrows indicates the re-
sulting Poiseuille flow.

where we have written the Laplacian in cylindrical coordinates. If we take the derivative of this equation
w.r.t. z we get ∂2p(z)/∂z2 = 0, which means that ∂p(z)/∂z = constant = ∆p/L. To solve Eq. (4.11) we
need boundary conditions. The boundary conditions of our system are given by a no-slip condition on the
wall and a condition of axial symmetry on r = 0.

uz(r = R) = 0,
∂uz(r)

∂r

∣∣∣∣
r=0

= 0. (4.12)

We solve Eq. (4.11) in the following steps:

η

r

∂

∂r

(
r
∂uz(r)

∂r

)
=
∂p(z)

∂z
,

∂

∂r

(
r
∂uz(r)

∂r

)
=
r

η

∂p(z)

∂z
,

Integrate both sides w.r.t. r,

r
∂uz(r)

∂r
=
r2

2η

∂p(z)

∂z
+ C1,

∂uz(r)

∂r
=

r

2η

∂p(z)

∂z
+
C1

r
,

Integrate both sides w.r.t. r,

uz(r) =
r2

4η

∂p(z)

∂z
+ C1 ln r + C2. (4.13)

Now apply the condition of axial symmetry to the above equation and get:

∂uz(r)

∂r

∣∣∣∣
r=0

=

[
r

2η

∂p(z)

∂z
+ C1

1

r

]
r=0

= 0.

From this it follows that C1 = 0. And last but not least we apply the no-slip boundary condition to the
resulting equation above.
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Figure 11: Poiseuille flow velocity pro-
file (solid blue line) and correspond-
ing average velocity (dashed blue line).
Values for relevant parameters are
chosen as follows: L = 1 mm, R = 10
μm, η = 0.69 mPa·s and ∆p = 33 Pa.
All parameters are in the order of mag-
nitude of the model that we are going
to build.

uz(r)

∣∣∣∣
r=R

=

[
r2

4η

∂p(z)

∂z
+ C2

]
r=R

=
R2

4η

∂p(z)

∂z
+ C2,

from this we conclude that C2 = −R
2

4η
∂p(z)
∂z . Plugging this C2 in Eq. (4.13) yields the so-called Poiseuille flow

profile:

uz(r) = − (R2 − r2)

4η

∂p(z)

∂z
. (4.14)

The average velocity can be obtained by integrating Eq. (4.14) over the surface of cross-section of the tube
and divide this by the surface area.

uavg =
1

πR2

∫ R

0

∫ 2π

0

uz(r)r dφdr, (4.15)

=
2π

πR2

∫ R

0

(
− (R2 − r2)

4η

∂p(z)

∂z
(r)r

)
dr,

= − 2

R2

[(
R2r2

8η
− r4

16η

)
∂p(z)

∂z

]r=R
r=0

,

= − 2

R2

(
R4

16η

∂p(z)

∂z

)
,

= −R
2

8η

∂p(z)

∂z
. (4.16)

In the description of the model we will use the Poiseuille flow profile and average Poiseuille flow velocity.
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5 Building blocks for kidney model

Figure 12: Geometry used in [17], consist-
ing of 3 different tubules: descending tube
(D), ascending tube (A) and collecting duct
(CD). The interstitium (I) surrounds all
tubules. Arrows indicate the direction of
the flux of the fluid. Note that the proper-
ties of D and CD are exactly the same in
the model.

In this section we describe the building blocks we made for a 3D
model of the kidney. In Sec. 2 we gave a detailed description of
the kidney. In the model we use a simplified geometry compared
to the real (human) kidney that we will explain first. We are
using a geometry consisting of 3 parallel tubes with the same
length and diameter, which are connected as in Fig. 12. Note
that this geometry is also shown in the introduction (Sec. 1).
Between the tubes there is something called the interstitium
(I), in this part the fluid and solutes can flow freely. In our
model I is open at the top and closed at the bottom, so the
fluid and solutes can only flow out of I at the top. The first
tube is called the descending tube (D) and the cells lining this
tube are permeable to water and impermeable to solutes. The
second tube is the ascending tube (A) and the cells of this
tube can actively pump water from the tube, but the cells are
impermeable to water. The last tube is called collecting duct
(CD), this tube has the same properties as D.
We assume that the tubes are rotational symmetric (symmetric
in the φ-direction), so we can do the numerical calculations in
a 2D-axisymmetric geometry instead of a fully 3D geometry.
The advantages of this are that the numeric calculations are a
lot faster and that the solutions are indeed axisymmetric. If we
would use a fully 3D model, the numerical calculations could,
due to numerical errors, also result in small effects in the φ-direction that should not be present. We study
the steady state of the system, i.e. (∂x)/(∂t) = 0 for every quantity x, and do not include any chemical
reaction.
Below we will discuss how we modelled tube D (and CD15) and tube A in COMSOL and show the results
of numerical calculations. In both sections we will start with some physical considerations. Then we give a
description of the geometry and some COMSOL-specific aspects. After that we discuss the set of equations
and boundary conditions we solved. And at the end we show the results of the numerical calculations.
We also tried to connect the different tubes to get a complete model of the kidney. But we did not have much
time for this step and we have encountered several problems by doing this. Therefore we do not discuss this
here, but we will give a short explanation in the discussion (Sec. 6.2).

5.1 Descending tube

The descending tube (same for CD) is permeable to water and impermeable to all the solutes. So in this
tube the solution gets increasingly concentrated. The geometry we use to model D can be found in Fig. 13.

5.1.1 Physical considerations

Marbach and Bocquet use the hydraulic conductivity Pf (unit: m/s) in their model to described the permeable
wall. We use a porous media domain in COMSOL which is characterized by a porosity εp and a permeability
κ. The porosity is the fraction of the volume of voids (or empty spaces) over the total volume. The relation
between Pf and κ is given by:

κ = Pf
µ

ρg
, (5.1)

where µ is the (dynamic) viscosity, ρ the density and g the acceleration due to gravity. The value for the
hydraulic conductiviy used by Marbach and Bocquet is Pf = 2500 μm/s [6]. If use this value for Pf and
the following values for the other parameters: µ = 1 mPa·s, ρ = 998 kg/m3 and g = 9.81 m/s2 we get

15In our discussion in Sec. 5.1 we will only talk about tube D. But for tube CD the same model applies.
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Figure 13: Geometry used in the nu-
merical calculations for the water per-
meable wall. The blue arrows indicate
in- and outflux of water. D stands for
descending tube, C for the cells lin-
ing this tube and I for the intersti-
tium around this tube. Domain C is
permeable to water, but not to ions.
Note that this is a shortened version
(real length is in the order of 1 mm)
of the real geometry as indicated by
the jagged line.

κ = 2.6 · 10−12 m2. All parameters values used above are values that are also used in our model.
We also include ions in the descending tube and expect to get the same flux of ions going in and out the
tube because the semi-permeable wall of this tube is impermeable to ions. The ions are necessary to include,
because the fluid flow from the descending tube to the interstitium is driven by osmosis. The process of
osmosis depends on the concentration difference between the tube and the interstitium.

5.1.2 COMSOL

To model the fluid flow and the permeable wall in D we use the Creeping Flow module in COMSOL. For
domain C we define a domain of porous media (Fluid and Matrix Properties in COMSOL) and use this, to
certain extend, as a black box. We control the parameters εp and κ that characterizes this domain, but we
are not to much concerned with the exact equations that are being solved. Therefore we do not give any
set of equations for domain C in the section below. In the discussion (Sec. 6.2) we will comment on this
choice. To also include ions in the descending tube we use the Transport of Diluted Species module. We first
solve the Creeping Flow module and use the results as input for the calculations in the Transport of Diluted
Species module.

5.1.3 Equations and boundary conditions

We will now give, and where necessary explain, the equations and boundary conditions we will solve. We
solve the Creeping Flow module, which means that we solve the following equations for domain A and I:

−∇p+ η∇2u = 0,

∇ · u = 0.
(5.2)
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The boundary conditions are:

a) Inlet pressure pin,

d, f) Either a pressure condition pout, or an open boundary (no normal stress) fn = 0,

other boundaries) All other boundaries are hard walls (no normal flux) with a no-slip boundary condition.
(5.3)

Note that wall b and c are no boundaries in this model, because domain C is connected to A and I. As
mentioned above we will not write down the equations for domain C. This domain is characterized by εp and
κ, where

√
κ is a characteristic length scale for the system.

After we solve the Creeping Flow module, we solve the Transport of Diluted Species module and use the
calculated velocity profile as an input for this module. We solve the following set of equations:

J ion = −Dion∇ρion + uρion,

∇ · J ion = 0.
(5.4)

Note that we only solve these equations in domain D, because the boundary between D and C is impermeable
to water and we only want to calculate the concentration profiles of the ions in D. The boundary conditions
of this system are:

a) initial concentration ρion0 ,

d) no diffusive flux n ·Dion∇ρion,
other boundaries) All other boundaries are hard walls with a no-flux boundary condition.

(5.5)

The no-flux boundary condition (on d) can be applied because J ion
adv � J ion

dif as shown in Sec. 5.2.1. The

normal vector to any boundary is n and Dion is the diffusion coefficient of ions in water.

5.1.4 Results

The way we built the model for the descending tube turned out to be not the right way and therefore we will
only shortly show some results. The reason why this way of modeling the descending tube is not the right
way, is that the flux of ions is not conserved along the tube. This problem will be discussed more extensive
in the discussion (Sec. 6.2). Also, the flux going out of the interstitium (light orange line in Fig. 14) is to
high; this will be discussed below.
In Fig. 14 we see the resulting normalized fluxes of the model for an applied pressure pin = 1000 Pa on the
inlet of the descending tube (D) and open boundaries at the outlet of the tube and the interstitium. In our
model RT = 10 μm is the radius of the tube, RC = 20 μm the diameter of the cells (domain C in Fig. 13)
and RI = 12 μm the diameter of I. The values for m, η and Dion can be found in Tab. 3 in Sec. 5.2.4. In
Fig. 14 we see that the normalized flux going out of I is significantly higher for the 3D geometry than for the
2D geometry. in Fig. 14 we see that for κ = 2.6 · 10−12 m2 the normalized flux going out of I (light orange)
is almost 1. However, in the calculations of Marbach and Bocquet this values is ∼ 0.9, this means that the
flux that follows from out calculations is to high. This is due to the fact that the pressure difference between
the inlet of D and outlet of I is to high, we therefore applied a lower pressure pin but the results from this
calculations were not significantly different from the results in Fig. 14. We think the problem is due to the
fact that we only applied a hydrostatic pressure and no osmotic pressure. The reason why we did not use a
(proper) osmotic pressure in our model will be discussed in Sec. 6.2.
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Figure 14: Normalized fluxes going out of the descending tube (D) of length L = 0.5 mm and radius RT = 10
μm and out of the interstitium (I) of length L and radius RI = 50 μm for a 2D and 3D geometry. Fluid flow
is forced by an applied pressure of pin = 1000 Pa on the inlet of D. The fluxes are normalized on the flux
going into the descending tube. For the 2D geometry the normalized flux going out of I (light blue) is lower
than this flux for the 3D geometry (light orange). The normalized flux going out of D for the 2D geometry
(dark blue) is higher than this flux for the 3D geometry (dark orange).
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5.2 Ascending tube

The ascending tube is the middle tube of Fig. 12 and this one contains the ion pumps. The ions are pumped
actively from A to I, the water can not flow from A to I, so the solution is increasingly diluted along A. The
geometry we use to model A can be found in Fig. 15.

5.2.1 Physical considerations

We want to build a model that only takes the sodium and chloride into account. We do not take into account
the other ions that are also present in the kidney, because the concentrations of sodium and chloride are at
least one order of magnitude larger than that of the other ions [11, 12]. In addition, we want to make a model
that resembles the kidney, but not necessarily a model that is as realistic (and complicated) as possible. The
sodium ions are pumped actively from the ascending tube to the interstitium, the kinetics for these pumps
are described in Sec. 3. The chloride ions follows through the cell walls and diffuses to keep the system
electroneutral [17, 32]. We will therefore only consider one type of ions in the system (the sodium ions) that
do not have any charge.

Figure 15: Geometry used in the
numerical calculations for the ion-
pumps. The green arrows indicate in-
and outflux of ions. A stands for as-
cending tube, C for the cells lining this
tube and I for the interstitium around
this tube. The red arrows indicate
the direction of the active ion pump-
ing. The lowercase letters are used for
the boundary conditions in Sec. 5.2.3.
Note that this is a shortened version
(real length is in the order of 1 mm)
of the real geometry as indicated by
the jagged line.

One may ask: how are the ions transported through the system? We already know that in domain C there
are pumps, actively pumping the ions from A to I. In the other domains (A & I) the ions are transported by
diffusion and convection. We calculate the contribution to the flux of both the diffusive and convective term.
First we consider the flux in the direction parallel to the symmetry axis (the z-direction). The advective
flux is given by J ion

adv = ρionu and the diffusive flux by J ion
dif = −Dion∇ρion, see also Sec. 4.2. We will now

estimate the order of magnitude of both flux terms. The density of the ions ρion in our system is ∼ 102

mol/m3 and the flow velocity u ∼ 10−4 m/s, so J ion
adv ∼ 10−2 mol/(m2s). The diffusion coefficient Dion of

the ions in water is ∼ 10−9 m2/s and the concentration gradient16 ∇ρion ∼ 105 mol/m4, so J ion
dif ∼ 10−4

16The concentration gradient can be estimated by ∆ρion
L
∼ 102

10−3 = 10−5 mol/m4.
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mol/(m2s). We see that J ion
adv � J ion

dif and therefore the driving force of the solute transport through the
tubes is the fluid flow.
We also want a fluid flow in I to transport all the ions, that are actively pumped, out of the system. That
means that we have to solve Eqs. 5.6 in domains A and I. If we do not, then the concentration of ions ρion

would go to infinity because the ion pumps are only dependent of ρion in tube A.
In the direction perpendicular to the symmetry axis (r-direction) there is no pressure gradient and therefore
diffusion in this direction is important. The timescale of this diffusion is tdif ≈ R2/(6D) = 10−10/(6 ·10−9) ≈
10−2 sec, the timescale of the advection of the particles through the tube is tadv = L/uavg ≈ 10−3/10−4 = 10
sec. We see that tdif � tconv, this means that the concentration of ions in the r-direction is approximately
constant. In the results we also see this, as will be discussed below.

5.2.2 COMSOL

To model the ion-pumps17 we used the geometry shown in Fig. 15. We use the modules Creeping Flow and
Transport of Diluted Species to model the ascending tube. We need the module Creeping Flow to model
the fluid flow that transports the solutes through the different tubes of the nephron. This is because the
convective term of the flux (J ion

conv) is much larger than the diffusive term (J ion
dif ) as shown in Sec. 5.2.1.18

We perform the calculations in two steps: first we search for a stationary solution for the fluid, i.e. doing a
stationary study in COMSOL that solves for the equations and boundary conditions of the Creeping Flow
module. The result of this calculation is then given as input for the next step. In this next step we let
COMSOL search for a stationary solution of the Transport of Diluted Species module.

5.2.3 Equations and boundary conditions

We will now give, and where necessary explain, the equations and boundary conditions we will solve. First
we solve the Creeping Flow module, which means that we solve the following equations:

−∇p+ η∇2u = 0,

∇ · u = 0.
(5.6)

Note that we only solve these equations in domain A and I, because C is impermeable to water. The boundary
conditions of the system are:

pair a+d) Either two pressures p0 + ∆pT and p0 or a velocity and an open boundary19

(no normal stress) uT and fn = 0,

pair e+f) Either two pressures p0 + ∆pI and p0 or a velocity and an open boundary

(no normal stress) uI and fn = 0,

other boundaries) All other boundaries are hard walls with a no-slip boundary condition.

(5.7)

We will now explain every parameter used in the above set of boundary conditions. The pressure p0 is just
a background pressure on the whole system, a possible choice for this pressure is p0 = 0. The ∆pT is an
(extra) applied pressure on the inlet of A to force a Poiseuille flow in tube A, the ∆pI an applied pressure
on e to get a Poiseuille flow in the interstitium I. Instead of an applied pressure we can also define a velocity
uT of the fluid going into A and a velocity uI of the fluid going into I. Note that these velocities only have a
component perpendicular to the boundary. The normal force on the fluid at the boundary is given by fn.
If we use the pressure ∆pt, we can calculate the pressure needed to get a certain average flow by rewriting
the average Poiseuille flow from Eq. (4.16) to:

∆pT = −uavg
8η∆x

RT
, (5.8)

where ∆x = L is the length of the tube and RT is the radius of the tube. If we also want to study whether
the reabsorption length of our model corresponds with the length lc in Eq. (3) of Ref. [17], we can calculate
the velocity or pressure that is needed to get L = lc as below.

17Or more specific: sodium pumps, because the pumping of sodium is by far the biggest part of the active pumping of ions.
18Note that those two flux terms are the only terms contributing to the flux of the ions.
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uinavg =
2VmnL

RT ρion0

, (5.9)

∆pT =
16VmηL

2

R3
T ρ

ion
0

, (5.10)

where ρion0 is the initial concentration of the ions. Note that this means that if we apply this velocity or
pressure as a boundary condition on the system, we should find that ρion ≈ 0 at the end of the tube. A
derivation of the above equations can be found in appendix C.
After we solve the Creeping Flow module, we solve the Transport of Diluted Species module and use the
calculated velocity profile as an input for this module. We solve the following set of equations:

J ion = −Dion∇ρion + uρion,

∇ · J ion = 0.
(5.11)

Note that we only solve these equations in domain A and I, because we define a flux through C and we are
not interested what happens exactly in domain C. The boundary conditions of this system are:

a) initial concentration ρion0 ,

b) a flux according to Eq. (3.10) J ionb = nVm

(
ρionA

Km + ρionA

)n
,

c) a linear extrusion of the flux on boundary b: J ionc =
RT

RT +RC
J ionb ,

d) no diffusive flux n ·Dion∇ρion,
f) no diffusive flux n ·Dion∇ρion,

other boundaries) All other boundaries are hard walls with a no-flux boundary condition.

(5.12)

The no-flux boundary condition (on d and f) can be applied because J ion
adv � J ion

dif as shown in Sec. 5.2.1.

In Eqs. (5.12) ρion0 is the initial concentration, ρionA the concentration in tube A and n the number of ions
pumped at the same time. The values for the maximal pumping speed Vm = 20 nmol/(cm2s) and the
Michaelis constant Km = 30 mmol/L are the same as used in [6, 25]. These values will be used throughout
whole this thesis. The scaling factor RT /(RT +RC) is introduced because the surface area between C and I
is bigger than between C and A, here RC is the diameter of the cells (domain C). The normal vector to any
boundary is n and Dion is the diffusion coefficient of ions in water.

5.2.4 Results

Below we will discuss the results of the numerical calculations, the values of all relevant parameters can be
found in Tab. 3. These values are used in the numerical calculations, unless stated differently.
The numerical solution of Eqs. 5.6 with boundary conditions given by Eqs. 5.7 is a Poiseuille flow. We
choose the value of either ∆pT or uT in a way that we expect to find for the average velocity uavgT = 0.6
mm/s. That means that the solution is given by Eq. 4.14 and the velocity profile looks like Fig. 11. After
we find this Poiseuille flow profile we solve the Transport of Diluted Species module. We will now show and
discuss the results of this calculation.
In Fig. 16 we see the resulting concentration profiles for two different initial concentrations ρ0 = 50 mmol/L
and ρ0 = 150 mmol/L. All other relevant parameters have values given by Tab. 3. We also calculate an-
alytically an absolute lower bound for the concentration, by assuming that the ion pumps are pumping at
maximum speed irrespective of the ion concentration in the tube. We expect that for high ion concentrations,
i.e. ρion � Km, the numerical and analytical lower bound are approximately the same. In Fig. 16 we see
that for the initial value ρion = 150 mmol/L the numerical solution is, indeed, much closer to the analytical
solution than for the initial value of ρion = 50 mmol/L. We also study whether there are inlet and outlet
effects on the concentration profiles, by adding half a tube length at the beginning and end of the tube. This
extra length of the tube had no effect on the final results.
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Table 3: Values of parameters used in model of the ascending
tube

Parameter Notation Value

Radius of tube RT 10 μm
Diameter of cells RC 20 μm
Diameter of interstitium* RI 15 μm
Length of tube L 1 mm
Temperature T 293.15 K
Viscosity of water** η 1 mPa·s
Mass density of water m 998 kg/m3

Maximal pumping speed Vm 20 nmol/(cm2s)
Michaelis constant Km 30 mmol/L
Number of pumpsites*** n 1
Diffusion coefficient ions Dion 10−9 m2/s

* Note that the exact diameter of the
interstitium is not that relevant for a
single tube, because all the physics is
independent of RI . However, for a
complete model consisting of 3 tubules
the exact value of RI is significant.
** Viscosity of water at 20 ◦C.
*** Although n = 3 for sodium pumps
in human cells [25], we we will use
n = 1 for simplicity in most of the
calculations.

In Fig. 17 we see the different fluxes going in and out of the system as a function of the initial concentration
ρ0. Because we are pumping ions out of tube A with a pumping speed defined by Eq. 3.10, we expect the flux
going out of the interstitium I to go asymptotically to a maximum V = nVm. This means that the yellow line
in Fig. 17 asymptotically approaches the yellow dashed line, we see that the flux going out of I behaves like
this. Note that for the higher concentrations the flux going out of the tube (blue line) is much larger than the
flux going out of I (yellow line). This means that only a small amount of the ions is pumped from the tube
to I, this is due to the fact that we force the fluid flow that transports the ions through the system to have
an average velocity of uavgT = 0.6 mm/s. This fluid velocity is way to high for the pumps to be able to pump
almost all the ions from the tube to I. We can also see this in Fig. 16, the concentration at the end of the
tube is still about 1/3 of the initial concentration ρ0 for an initial concentration of ρ0 = 150 mmol/L. Below
we will discuss the results of the model is we choose the average velocity of the fluid in such a way that the
length of the system L is the same as the characteristic length scale lc published by Marbach and Bocquet [17].

We will now look at the results where we used different settings for the first step in the calculations. The
first step solves Eqs. 5.6 with boundary conditions given by Eqs. 5.7. Above we forced the system to have
an average fluid velocity uavgT = 0.6 mm/s. Instead of using this velocity we will now apply a pressure on the
system to get L = lc where L is the length of the tube and lc the length scale of reabsorption as calculated
by Marbach and Bocquet (Eq. (3) of Ref. [17]). The pressure ∆pT that is needed can be calculates using
Eq. (5.10). All relevant parameters to calculate this ∆pT can be found in Tab. 3. We again find a Poiseuille
flow (qualitatively similar to that in Fig. 11) and after this we solve the Transport of Diluted Species module.
In Fig. 18 we see the resulting concentration profiles at two different positions in the tube r = 0 and
r = 0.9 · RT for an initial concentration of ρ0 = 900 mmol/L. We see that after a length lc, indeed, the
biggest part of the ions is reabsorbed. In the inset of Fig. 18 we can also see that the differences in the ion
concentration at different radial positions r are negligible compared to the ion concentration.
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Figure 16: Concentration profiles of ions in the ascending tube of length L = 1 mm and radius RT = 10 μm
with an initial concentration at the inlet of the tube of ρ0 = 150 mmol/L (dark blue) and ρ0 = 50 mmol/L
(dark yellow). The ions are transported through the tube by a Poiseuille flow with an average velocity
uavg = 0.6 mm/s and are pumped out of the tube by pumps that are described by the Michaelis-Menten
kinetics as described in Sec. 3. An absolute lower bound is calculated analytically assuming maximum
pumping speed V = nVm and is plotted for both initial concentrations ρ0 = 150 mmol/L (light blue) and
ρ0 = 50 mmol/L (light yellow).
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Figure 17: Fluxes going in and out the ascending tube of length L = 1 mm and radius RT = 10 μm as a
function of the initial concentration ρ0. Again, the ions are transported through the tube by a Poiseuille flow
with an average velocity uavg = 0.6 mm/s and are pumped out of the tube by pumps that are described by
the Michaelis-Menten kinetics as described in Sec. 3. The flux going into the (orange), the flux going out
of the tube (blue) and the flux going out of the interstitium (yellow) are plotted as well as an upper bound
for the flux going out of the interstitium (yellow dashed). Note that the flux going out of the interstitium
asymptotically goes to this upper bound.
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Figure 18: Concentration profiles of ions in the ascending tube of length L = 1 mm and radius RT = 10 μm
at two different positions r = 0 (light blue) and r = 0.9 · RT (dark blue). The initial ion concentration is
ρ0 = 900 mmol/L and the ions are pumped out of the tube by pumps that are described by the Michaelis-
Menten kinetics as described in Sec. 3. The applied pressure ∆pT is chosen such that L = lc, where lc is the
length scale of reabsorption as calculated by Marbach and Bocquet (Eq. (3) of Ref. [17]). An absolute lower
bound is calculated analytically assuming maximum pumping speed V = nVm and is plotted (yellow) for the
same values of all other parameters. Note that at different positions (r = 0 and r = 0.9 ·RT ) perpendicular
to the symmetry axis the concentrations are almost equal due to fast diffusion in this direction.
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6 Conclusion, Discussion and Outlook

6.1 Conclusion

We have given a comprehensive description of the kidney in Sec. 2 that can be used as a basis to build
a physical model of the kidney. We also built a theoretical physical framework in Sec. 4 and Sec. 3 that
one needs to build a physical model of the kidney. With this description of the kidney and the theoretical
framework we have tried to build a (numerical) model of the kidney in COMSOL. Unfortunately we were
are not able to build a completely working model of the kidney. However, we built some useful building
blocks that one can use to build a model of the kidney. The part of the ascending limb is complete and also
consistent with the findings of Marbach and Bocquet in [17]. We set up our model in a way that we expect
to find that the length of the tube equals the characteristic length of ion reabsorption (L = lc), we find that
this is indeed true. However, the way we tried to model the descending limb (and collecting duct) turned
out to be non-optimal. This is because using a porous media domain in the model, results in a small flux
of ions from the descending tube to the interstitium, that should not be present. So we can conclude that
one has to incorporate the semi-permeable wall of these tubes in another way than we did, in the discussion
below we will give a suggestion. Our (short) attempt for the connection of the different tubes has not been
successful. Partly due to the fact that the flux of ions going in and out of the first tube (descending tube)
was not the same, because our model of the semi-permeable wall is not correct. The other reason why the
connection of the tubes was not successful will be discussed below.

6.2 Discussion

We are able to build a model of the ascending limb that is consistent with the model published by Marbach
and Bocquet [17]. The results of this model and a short discussion can be found in 5.2.4. However, our
attempt to build a correct model for the descending limb did not succeed, nor has our attempt for the
connection of the different tubes. Below we will discuss the problems we have encountered and give some
suggestions to improve the model.
One of the main issues is that we were not able to build a proper numerical model for the descending limb.
In other words, we could not make a model in COMSOL that consists of a tube with a wall that is permeable
to water and impermeable to solutes, where the solutes are transported by the water (i.e. the solute flux is
mostly due to advection). A typical plot of the streamlines of the resulting flow of the model described in
Sec. 5.1 can be found in Fig. 19. The problem with this result is that we do not expect a (significant) flow
in the longitudinal direction in the cells (domain C). And even worse, we found that the flux of ions from
the tube (domain D) to the cells (domain C) is greater than zero. But the wall is defined to be impermeable
to the ions. Apparently this is not the way to go to model the descending limb in COMSOL.
We thought about a solution to this problem, but did not have the time to implement it in our model. It
might be better to approach the descending limb in the same way as the ascending limb, i.e. by not concerning
what happens in the cells lining the tube, but only solve the equations in the tube and in the interstitium.
One way this could be done is by using the Starling equation to define a flux (boundary condition) of water
out of the tube and after that project this flux to the other side of the cells (boundary between C and I).
The Starling equation (obtained from: https://en.wikipedia.org/wiki/Starling_equation)20 :

Jwater = LpS((pH,T − pH,I)− σ(pO,T − pO,I)), (6.1)

where S is the surface area of filtration, pH,T and pH,I are the hydrostatic pressure in the tube and the
interstitium, respectively, pO,T and pO,I the osmotic pressure in the tube and the interstitium, respectively,
and σ the Staverman’s reflection coefficient (dimensionless). Because it is not our aim to study how the water
flows in this region, this may be a good alternative. We thought it was the best way to use a permeable
region in our model, but apparently it is not the case. This is possibly because it is a lot more difficult (for
COMSOL) to numerically solve the equations for a permeable region than a simple flux condition. If you
use this flux boundary condition described above you can also define an osmotic pressure term on the wall

20You have to change the definition of the hydraulic conductivity (Pf ) from Pf → Pf/Pa to get the right units (of flux).
Compare the factor in front of the pressure difference in the third line of Eq. (1) in [6] with the definition in the above link.

https://en.wikipedia.org/wiki/Starling_equation
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Figure 19: Typical
plot of streamlines
of the fluid using the
model as described
in Sec. 5.1

between the cells and the interstitium (boundary between C and I in Fig. 19). Before, this was not possible
(in COMSOL you can’t define a pressure on a internal boundary).
If one succeeds in building a model of the descending tube one of the problems for the connection of the tubes
is solved, but there is still one issue with the connection of the tubes. We used a 2D-axisymmetric geometry
where every tube has ”his own interstitium”, but we want the interstitium that is around each tube to be
the same (or at least connected in a correct way). To avoid this problem one could build a fully 3D-model,
but this will increase the computation time drastically and therefore is not preferred. Instead of each tube
having ”his own interstitium” it might be better to treat the interstitium as a separate (extra) tube in which
all other tubes can dump fluid or ions. If you use a separate tube for the interstitium you have to think
carefully about how and where the fluid an ions enters the interstitium. In COMSOL you can project a flux
boundary condition on a tube (e.g. the ascending limb) to a boundary of the interstitium using a linear
extrusion (or general extrusion) operator.
The last problem we will discuss is the fact that we were not sure about how to incorporate the osmotic
pressure pO. As a first attempt we used the van ’t Hoff law:

pO = iρionRT, (6.2)

where i is the van ’t Hoff index (dimensionless), ρion the molar concentration of the ions, R the ideal gas
constant and T the temperature. But this definition of the pressure resulted in very high pressures in our
system, causing unwanted backflows etc. However, if the permeable region is defined in the way described
above this may be solved, because in this way there is more freedom to define pressures on boundaries. The
osmotic pressure is important to include in the model, because osmosis is the driving force of the (passive)
water transport from the tubes to the interstitium.

6.3 Outlook

The most favorable case is that, using the theoretical framework and numerical building blocks we provide
in this thesis, one could build a complete model for a filtration device. There are still a few challenges in
building a complete model. Most important is the development of a numerical model for a tube with a wall
that is permeable to water, but not to the solutes. In the discussion we already provided some ideas for the
development of this building block for the model. After that there is the challenge of linking the different
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tubes together and dumping the reabsorbed substances in the same interstitium. If these building blocks are
made and connected to form a complete model, this model can be used to do numerical calculations on a
small filtration devices with a geometry similar to the human nephron. These calculations may be used for
the development of water filtration devices or maybe even an artificial kidney.
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A Derivation of continuity equation

Figure 20: Infinitesimal volume element, the
arrows represent mass fluxes in and out this
volume element.

In this section we will derive the continuity equation in 3 di-
mensions. Consider an infinitesimal volume element as in fig-
ure 20 of volume dxdydz and an arbitrary fluid flow. We will
write down the mass flux through every surface of this volume
and thereafter set the difference between the total mass flux
into and out of the volume equal to the total change of mass
in the volume. Because the volume element is infinitesimal
small the derivative of the flux ∂ρva/∂a is a constant over
the distance da. The mass fluxes through every surface of the
volume are

1)ρvx 2)ρvx+
∂ρvx
∂x

dx 3)ρvy 4)ρvy+
∂ρvy
∂y

dy 5)ρvz 6)ρvz+
∂ρvz
∂z

dz,

where ρ is the density of the fluid and vi the components of
the velocity of the fluid.
The total mass flux in and out of the volume are

min = ρvxdydz + ρvydxdz + ρvzdxdy

mout =

(
ρvx +

∂ρvx
∂x

dx

)
dydz +

(
ρvy +

∂ρvy
∂y

dy

)
dxdz +

(
ρvz +

∂ρvz
∂z

dz

)
dxdy.

Because the difference between the mass that flows into the
volume and out of the volume needs to be equal to the change of the density in the volume this results in

∂ρ

∂t
dxdydz = min −mout

= ρvxdydz + ρvydxdz + ρvzdxdy −
(
ρvx +

∂ρvx
∂x

dx

)
dydz −

(
ρvy +

∂ρvy
∂y

dy

)
dxdz

−
(
ρvz +

∂ρvz
∂z

dz

)
dxdy.

Dividing both sides by dxdydz and collecting terms gives

∂ρ

∂t
=
ρvx
dx

+
ρvy
dy

+
ρvz
dz
−
(
ρvx
dx

+
∂ρvx
∂x

)
−
(
ρvy
dy

+
∂ρvy
∂y

)
−
(
ρvz
dz

+
∂ρvz
∂z

)
,

= −∂ρvx
∂x
− ∂ρvy

∂y
− ∂ρvz

∂z
.

Using the definition of the gradient and the definition of flux gives us the desired result

∂ρ

∂t
+∇ · J = 0.
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B Fick’s law

Figure 21: Infinitesimal volume
element, the arrows represent
particle fluxes in and out this vol-
ume element.

In this section we will derive Fick’s law. If we have a system with many
gas particles (e.g. water vapour) that have a kinetic energy, i.e. the
temperature T > 0, these particles have a kinetic energy. Due to this
kinetic energy the particles will move around and collide with each other.
Because the particles typically collide every few nanoseconds and because
there is no preference direction of this collision, the trajectory of a particle
can be seen as a random walk.
Consider a system of particles performing random walks in 1 dimension
with typical length scale dx and time scale dt and a volume element dx
as in figure 21. Let N(x, t) be the number of particles at position x and
time t. At a timestep dt half of the particles at x will move to the right
and half of the particles at x + dx will move to the left. So the number
of particle moving to the right at 1 and to the left at 2 are

1)
1

2
N(x, t) 2)

1

2
N(x+ dx, t).

So the total particle movement to the right in a volume element dx a time
step dt is

−1

2
(N(x+ dx, t)−N(x, t)).

The flux J is defined as the net particle movement per area A per time and thus

J = −1

2

(
N(x+ dx, t)−N(x, t)

Adt

)
= −dx

2

2dt

(
N(x+ dx, t)−N(x, t)

Adx2

)
.

The density is defined as ρ(x, t) = N(x, t)/Adx and we can rewrite the equation above as

J = −dx
2

2dt

(
ρ(x+ dx, t)− ρ(x, t)

dx

)
= −D

(
ρ(x+ dx, t)− ρ(x, t)

dx

)
,

where we defined the diffusion constant in 1 dimension D = dx2/2dt. Now if we take the limit of infinitesimal
small dx, the term in parentheses is by definition the derivative of the density with respect to x and this
gives us

J = −D∂ρ(x, t)

∂x
.

This can be generalized to 3 dimensions and this gives us the desired result

J(r, t) = −D∇ρ(r, t)

NB the diffusion constant is dependent on the type of particles.
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C Boundary conditions for tube A

We will give a short derivation of Eqs. (5.9) and (5.10) that are used in the model description. These two
boundary conditions are chosen such that L = lc, where L is the length of the tube and lc is the reabsorption
length from Eq. (3) as calculated by Marbach and Bocquet [17]. We start from the definition given by
Marbach and Bocquet:

lc =
J ionin

2πRtVmn
, (C.1)

where Rt is the radius of the tube and Vm and n are parameters from the Michaelis-Menten kinetics as
defined in Sec. 3. J ionin is the ingoing flux of ions, this flux can be calculated as follows:

J ionin = πR2
tu
in
avgρ

ion
0 , (C.2)

where uinavg is the average flow velocity of the ingoing flow and ρ0 the initial ion concentration. Plugging this

definition of J ionin in Eq. (C.1) and setting lc equal to L we obtain:

L =
πR2

tu
in
avgρ

ion
0

2πRtVmn
, (C.3)

rewritting this to an expression for uinavg gives

uinavg =
2πRtVmnL

πR2
tρ
ion
0

,

uinavg =
2VmnL

Rtρion0

. (C.4)

We see that Eq. (C.4) and the velocity boundary condition in Eq. (5.9) are identical.
For the pressure boundary condition we start from Eq. (C.3) and use that the average flow in the tube is
given by the average Poiseuille flow as in Eq. (4.16).

L =
Rtρ

ion
0

2Vmn

(
R2
t

8η

∆p

L

)
,

rewritting this to an expression for ∆p gives

∆p =
2VmnL

Rtρion0

8ηL

R2
t

,

∆p =
16VmnηL

2

R3
tρ
ion
0

. (C.5)

We see that Eq. (C.5) and the pressure boundary condition in Eq. (5.10) are identical.
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