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Abstract

In this thesis, we study the behaviour of a fluid containing both positive and negative
charged ions, when this electrolyte is forced by an external electric field through a
conical nanopore with a negative charged wall, by solving the Poisson-Nernst-Planck-
Stokes (PNPS) equations numerically. We find that an external potential difference
over this nanopore causes ionic transport which creates an electric current. We find
the ion densities, total electric current. velocity and total potential as a function of the
potential difference over the nanopore by varying this quantity for two different length
scales of the geometry. We consider length scales such that in one of the geometries
the Debye layers, caused by the charged pore wall, do not overlap in the pore. In
the other geometry, we choose length scales such that these layers overlap in the pore.
We find that the asymmetry in the geometry causes asymmetries with respect to the
potential difference and that the length scale of the geometry has a huge impact on
these, quantitative, asymmetries. Furthermore, we surprisingly find that peaks in the
difference between the density of the positively and negatively charged ions do not shift
into the pore if we increase the half-angle α.
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1 INTRODUCTION 1

1 Introduction

Transport of ions on the nanoscale is a physical phenomenon which has been an intense topic
of research for over 20 years now. One of these researches is a recently released article from
Laetitia Jubin, Anthony Poggioli, Alessandro Siria and Lydrric Bocquet called “Dramatic
pressure-sensitive ion conduction in conical nanopores”[1]. In this article, the researchers
claim that they found “a counterintuitive and highly nonlinear coupling between electric and
pressure driven transport in a conical nanopore”[1](p. 1). The wall of this conical nanopore
is negatively charged. Besides that, the research group measured the current as a function of
a potential difference over this conical nanopore for a constant pressure. In the experiment,
the group uses a nanopore with a length of about 3 mm, a maximum radius of 250 µm and
a minimum radius of 165 ± 15 nm, from which follows that the so-called half angle, α, of
the cone is about 5◦[1] (p. 1). By varying the pressure-, ∆P, and potential difference, ∆V ,
between the inlet and outlet of the nanopore, Jubin et al. were able to find the electric
current I as a function of these differences.1

The aim of this thesis is to consider a similar case as the experiment of Jubin et al. by
determining aspects of the electrolyte flow numerically. We use a numerical model in COM-
SOL Multiphysics 5.2, which is described in Section 3 and which is based on the Poisson,
Nernst, Planck, Stokes-equations, as derived in Section 2. In their experiment, Jubin et
al. used a potassium chloride solution with a concentration of 1 mM at room temperature.
Therefore, the Debye length is about 10 nm, as derived in Section 3.3. The Debye length gives
a length scale for the width of the screening layer of the charged surface of the pore. Since the
minimal width of the nanopore in the experiment is an order of magnitude bigger than the
Debye length, there will be no overlap between the Debye screening layers in the nanopore,
which means that there will be a region in the pore where the ions are not influenced by the
charged pore wall. We deepen the experiment by varying the half angle α, but, in contrast
to the experiment, we do not include pressure differences. To do that we have to develop a
model with which we determine concentrations and the fluxes of these ions, which generate
currents. Because the physics takes place at a length scale of the same order of magnitude as
the Debye length, we choose the length scales of our model not to be much larger than these
Debye length, otherwise, the numerical calculation time would be very large. Therefore, we
choose our length scales such that the Debye screening layer would not overlap, since that is
also the case in the experiment of Jubin, Poggioli, Siria and Bocquet, in our pore and that
length of the pore is only two orders of magnitude larger than the Debye length. In addition
to that, we create a model with length scales such that the Debye layers overlap in the pore.

Besides varying the potential difference, we thus also vary α, to see what happens with
the current and ion densities when we change the shape of the conical pore. We vary α by
keeping the length of the pore and the minimal radius constant and by varying the maximal
radius. By varying both α and ∆V, we are able to give the current as a function of α and
∆V. Besides that, our model gives us the fluid velocity, total potential and density profiles
in our system.

1In general they found I(∆V) for fixed P and I(∆P) for fixed V
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The research gives an answer to the question.“What is the behaviour of an electrolyte forced
by a potential gradient through a negatively charged conical nanopore?” In order to answer
this question, we answer the following questions

• What are the density profiles of the different types of ions?

• What is the fluid velocity and the potential in the pore?

• What is the current through the pore?

To be able to solve these questions, we first derive the PNPS equations.
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2 Derivation of the PNPS equations

2.1 Continuity equation

The first equation of the PNPS equations is the continuity equation. This equation follows
from conservation of an extensive quantity. This quantity, with a density ρ, only changes
by in or outflow, i.e. flux, J. In integral form, the change of an extensive quantity q thus is
given by [2]

dq

dt
+

∫
A

J · ndA = δ (2.1)

d

dt

∫
V

ρdV +

∫
V

∇ · JdV = δ (2.2)∫
V

(
∂ρ

∂t
+∇ · J

)
dV = δ, (2.3)

where q is the extensive quantity, n the outward normal vector, δ the change of q, V the
volume of the volume element and A its area . If q is conserved, δ = 0, so

∂ρ

∂t
+∇ · J = 0. (2.4)

In the case that there are several species, labelled by indices i, which keep their identity, i.e.
no chemical reactions take place, the number of particles of each species is conserved, so the
continuity equation, as stated in (2.4), holds for all different species i and is given by

∂ρi(r, t)

∂t
+∇ · Ji(r, t) = 0, (2.5)

where Ji(r,t) is the particle flux of species i and ρi(r,t) its particle density.

2.2 Nernst-Planck equation

For the flux of a particle of species i, there are several contributions. First of all the diffusive
flux, which follows from Fick’s first law as Jdif = −D∇ρ, where D is the diffusivity (which
has the unit m2s−1).[3] If we again consider different particles, labelled by index i, Fick’s first
law reads

Jdifi = −Di∇ρi. (2.6)

Secondly, there could be a contribution from conduction. This flux follows from external
forces and friction. One could determine the conductive flux by Newton’s second law. Since
the Reynolds number is small, which will be proven in Section 3.3, the viscosity dominates
the flow. Hence, the acceleration of a particle is zero, so that a particle only has a velocity
when there is a force acting on it. The friction force on a particle is given by Stokes law[4],
Ffric = −γv, with γ the friction coefficient. For spherical particles, which we consider to be
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the case for our species, γ is given by 6πηai, with ai the hydrodynamic radius of species and
η the dynamic viscosity i[4]. Newton’s second law thus is given by

0 = Fext + Ffric (2.7)

= Fest − γv (2.8)

v =
Fext

γ
. (2.9)

Therefore, the velocity of a particle in an electric field, for which Fext = zieE, with zi the
valency of species i and e the unit charge, in a low Reynolds number flow is

vE =
zieE

6πηai
(2.10)

=
Di

kBT
zieE, (2.11)

where Di is, by the fluctuation-dissipation relation, determined to be Di = γikBT ,[5] such
that the conductive flux, density times velocity, from an electrical field is given by

Jcond,Ei = ρivE (2.12)

= ρi
Di

kBT
zieE. (2.13)

Another external force that could give particles velocity, is a forces that follows from a
potential Ui. This force thus is equal to F = -∇U, so that the velocity caused by this
potential is given by.

vU = − Di

kBT
∇Ui, (2.14)

such that the conductive flux from this potential is

Jcond,Ui = −ρi
Di

kBT
∇Ui. (2.15)

Finally there could be a flux caused by fluid flow. For different kinds of particles, this flux
will again be density times velocity, but now this velocity is equal to the velocity of the fluid
flow. So this convective flux will be

Jconvi = ρiu, (2.16)

where u(r,t) is the velocity of the fluid flow.

Combining these four fluxes and introducing the electric potential V with E = -∇V , which
we prove in Section 2.3, will give the total flux of species i as

Ji = −Di

(
∇ρi + ziρiβe∇V − ρi(r, t)β∇Ui

)
+ ρiu). (2.17)

This equation is called the Nernst-Planck equation.
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2.3 Poisson Equation

The Poisson equation could be derived from one of Maxwell’s equations. Gauss’ law (in a
linear material) reads ∇ ·E =

ρf
ε0ε

,[6] where ρf is the free charge density, ε the dimensionless
relative permittivity and ε0 the permittivity in vacuum. Now we assume that there will be
no time dependence of the magnetic field, since we consider steady states, then Faraday’s
law reads ∇× E = 0,[6] so E follows from a potential, or E = −∇V. We substitute this in
Gauss’s law and find that

∇ · (∇V ) = ∇2V = − ρ

ε0ε
(2.18)

ε0ε∇2V = −ρ = −

(
Qext + e

∑
i

ziρi

)
= −Qext − e

∑
i

ziρi, (2.19)

where ρ is the total free charge and ρi is free charge density of species i. Furthermore, Qext

is the external charge. We used that the total free charge density follows from an external
charge and the charge density of the different species.

2.4 (Navier)-Stokes equation

As shown in Section 2.1, the continuity equation follows from conservation of mass (or con-
servation of particles). Since momentum is also conserved, this conservation law will give
another continuity equation. Consider a fluid element with mass density ρ, volume V and
area A, which, since we are looking for a steady state solution, do not depend on time.
Newton’s second law then gives[2]

d

dt

∫
V

ρudV =

∫
V

ρgdV +

∫
A

fdA (2.20)∫
V

∂

∂t
(ρu)dV +

∫
A

ρu(u · n)dA =

∫
V

ρgdV +

∫
A

fdA, (2.21)

where Reynolds Transport Theorem is used to rewrite (2.20) as (2.21).[2]. In these equations
g is the body force per unit mass, f the surface force per area and u the velocity. Now use
tensor notation and the fact that fj(n,r,t) = niTij, with Tij the stress tensor which is equal
to Tij = −pδij + τij, with p the pressure and τij the stress from fluid-dynamics.[2] From this,
(2.21) becomes (by using Gauss’ theorem to write the surface integrals as volume integrals)∫

V

(
∂

∂t
(ρuj) +

∂

∂xi
(ρuiuj)− ρgj −

∂

∂xi
Tij

)
dV = 0, (2.22)

where gj is the jth-component of the total body force per unit mass. Now use that, for
Newtonian and incompressible fluids, the stress tensor could be written as[2]

Tij = −pδij + 2ηSij, (2.23)

with η the dynamic viscosity and Sij the strain rate tensor, which is defined as

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (2.24)
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Since (2.22) must hold for arbitrary volumes, the integrand from (2.22) should be zero.
Furthermore, we could write out the first to terms of the integrand as

∂

∂t
(ρuj) +

∂

∂xi
(ρuiuj) = ρ

∂uj
∂t

+ uj

[
∂ρ

∂t
+

∂

∂xi
(ρui)

]
+ ρui

∂uj
∂xi

= ρ
duj
dt
, (2.25)

an use that the term between the square brackets is zero by (2.4). Now we substitute (2.23)
and (2.25) into the integrand from (2.22) to find that

ρ
duj
dt
− ρgj −

∂

∂xi

[
−pδij + η

(
∂ui
∂xj

+
∂uj
∂xi

)]
= 0 (2.26)

ρ
duj
dt
− ρgj +

∂p

∂xj
− η

(
∂

∂xj

∂ui
∂xi

+
∂2uj
∂x2i

)
= 0 (2.27)

ρ
duj
dt
− ρgj +

∂p

∂xj
− η

(
∂

∂xj

∂ui
∂xi

+
∂2uj
∂x2i

)
= 0. (2.28)

Another property of an incompressible fluid is that the velocity is divergence free, or in tensor
notation ∂ui

∂xi
= 0. (2.28) then reduces to

ρ
duj
dt
− gj +

∂p

∂xj
− η

(
∂2uj
∂x2i

)
= 0, (2.29)

or

ρ
du

dt
= −∇p+ ρg + η∇2u, (2.30)

which is known as the Navier Stokes equation for incompressible flow. When a flow is very
viscous, the Reynolds number is very small. This tells that the advective terms are much
smaller than the viscous terms, so that this non linear equation could be written as the linear
equation

ρ
∂u

∂t
= −∇p+ ρg + η∇2u, (2.31)

which is the Navier Stokes equation without the advection term, also known as the Stokes
equation.

Finally, one could use that an example for a body force per volume follows from an elec-
tostatic potential. Then, ρg = -e∇ψ

∑
i ziρi. Substituting (2.19) and assuming that there

are no external charges then gives

ρ
∂u

∂t
= −∇p+ η∇2u + ε0ε(∇2V )∇V. (2.32)

We consider a two dimensional axisymmetrical systems with velocity vector u = (u, v, w)T ,
such that v, the angular velocity, is zero, which contains one species of positively and one
species of negatively charged ions. Therefore we find six differential equations for six variables
(ρ+, ρ−, u, w, V and p), which we state in Section 3.2. To solve these equations we use the
method that we describe next.
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3 Numerical model

The numerical program that we use to solve the PNPS equations, as derived in Section 2, is
COMSOL Multiphysics. In this program, which in general can be used to numerically solve
differential equations on a grid, several physical problems can be solved by using predefined
modules. In order to do that, we first build our geometry and grid. Besides, we implement
the physics into the model and define for which parameters we want to solve the physics.
But first of all, we note that we consider a steady state solution, to make the numerical work
a little bit easier.

3.1 Geometry and mesh

Figure 1: 2D representation of the
axisymmetric geometry. The pur-
ple axis is the symmetry axis around
which the whole system is rotation
symmetric, such that the reservoirs
are cylinders and the channel in con-
ical. The length of channel is L,
the minimum radius is R0 and the
maximum radius is R1, the reservoirs
have radius that is twice the channel
length.

First of all, we build our geometry, which consists
of a conical channel with length L, minimal radius
R0 and maximal radius R1 and which is shown in
Fig. 1, in COMSOL. By defining these length scales,
we find that the so-called half angle, α of the coni-
cal channel is calculated by tan(α) = (R1 − R0)/L,
which follows quite easily from Fig. 1. Above and
beyond the channel, we build two cylindrical reser-
voirs, with a radius which is twice the pore length.
We use these reservoirs to properly define boundary
conditions, since, for example, the ground potential
should be defined far away from the system. The pur-
ple axis in Fig. 1 is the symmetry axis of the system,
around which the whole system is rotationally sym-
metric, such that the reservoirs are cylinders and the
channel is conical. The connections between the chan-
nel wall and the reservoirs are circular corners, with
a radius of R0/4. In order to solve the PNPS equa-
tions numerically, we use three predefined modules in
COMSOL; Transport of diluted species (TDS), Elec-
trostatics (ES) and Creeping Flow (CF). The modules
contain all physical aspects that we need to solve the
PNPS equations. Besides that, we define a grid, or as
it is called in COMSOL, a mesh. This mesh is very
important for the model in order to solve the equa-
tions defined in the modules. Since an extremely fine
mesh means that the time that is needed for the cal-
culations will be quite large, we define this mesh in a
smart way. We define the mesh in the reservoir quite
coarse, since the physics does not takes place in the
reservoirs. We use the physical settings from COM-
SOL to form triangles with a size that COMSOL bases
on physical settings. In these “physical settings” we



3 NUMERICAL MODEL 8

define the mesh to be “normal”. Since the actual physics happens in the conical channel, the
mesh in the channel has to be very fine. We use again triangles to mesh the system, but now
the sizes of the triangles are way smaller than the sizes in the reservoirs. Since the length
scales at which the physics takes place are one order of magnitude smaller than the minimal
radius of the channel, which we derive in Section 3.3, we choose the maximal size of the
triangles to be R0/20 in the case that we deal with non overlapping Debye layers and R0/10
in the case that we considered overlapping Debye layers. To now solve the PNPS equations,
we define these equations in the way we want to solve them in the predefined modules. In
principle, these modules already contain the standard form of the PNPS equations, but we
modify them that we solve exactly the equations we want to solve.

3.2 Modifying physical modules

In the first module, TDS, we define that the system contains KCl, so we have one species
of positively charged ions, with a valency of 1, and one species of negatively charged ions,
with a valency of -1. The diffusion coefficient of both ions is about 10−9 m2s−1. Besides that,
we define that the ions move by the fluid flow generated in CF and the electric potential
defined in ES. Furthermore, we have to define the boundary conditions for the denisty of the
potassium, ρ+, and chloride, ρ−, ions. At the green walls, shown in Fig. 1, we define the
densities to have a fixed value of 1 mM. By using this boundary condition, we numerically
define the reservoirs to be infinitely large. We also define a no-flux boundary condition for
the black, orange and blue walls.

The ES module has to be modified too. First of all, we define charge conservation in the
whole system. Also, the fluid which contains the potassium and chloride ions is water, which
has, at room temperature, a relative permeability of ε = 78.2 [7]. At the black walls of the
geometry shown in Fig. 1, we define zero charge, at the blue wall we define a constant charge
density of -eσ, with σ = 0.05 nm−2 the electron density at the surface, and at the orange
walls we define the density to linearly decrease from -eσ at the connection point with the
channel wall to 0 halfway the reservoir. At the green walls we define the boundary conditions
for the potential. In the lower reservoir, the potential is grounded and in the upper reservoir,
the potential is set to a variable value ∆V. Furthermore, since a density difference between
potassium and chloride gives a volume charge density which is equal to (ρ+ − ρ−)Nae, with
Na the Avogadro number, we define this volume charge density in the whole system.

Finally, we define boundary conditions and external force terms to the CF module. First of
all, we neglect the advective term in the Navier-Stokes equation, as stated in (2.30), since
we consider a flow on nanoscale so the viscosity dominates the flow, which gives that the
Reynolds number is very small, as we derive in Section 3.3. Furthermore, we define that
we have to deal with an incompressible flow. Besides, we define that water is the fluid that
flows, with a density of about 1000 kg m−3 and a dynamic viscosity of about 10−3 Pa s. At
the black, orange and blue walls we define a no slip boundary condition and at the green
walls we define the boundary conditions for the pressure, which is equal to the reference
pressure (1 atm) in both the upper and lower reservoir. Finally, we have to add a volume
force to the Stokes equation, as stated in (2.31). The external force is generated the electric
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field, such that we replace ρg in (2.31) by -Nae(ρ+−ρ−)∇V , which is derived in Appendix A.

By modifying the physical modules, we let COMSOL solve the following equations

Ji = −Di

(
∇ρi + ziρiβe∇V

)
+ ρiu, (3.1)

∇ · Ji = 0, (3.2)

ε0ε∇2V = −e(ρ+ − ρ−)i, (3.3)

0 = −∇p+ η∇2u− eNa(ρ+ − ρ−)∇V, (3.4)

∇ · u = 0, (3.5)

where (3.1) follows from the Nernst-Planck equation (2.17) without a non electric potential,
(3.2) from the continuity equation (2.4) in steady state, (3.3) from the Poisson equation
(2.19) without an external charge distribution and where the ionic charge is the free charge,
(3.4) from the Stokes-equation (2.31) in steady state and (3.5) from the continuity equation
(2.4) since the density of water is constant and we consider a steady state.

Now that we defined our model and the physics that we add, we define our parameters
and state what we do to obtain results.

3.3 Settings and execution

In order to be able to solve the PNPS equations numerically, we have to define the parameters
for which we solve these equation. The chosen parameters are shown in Table 1, in which
ρ±,r is the density in the reservoir for the positively and negatively charged ions. Since we
define the surface charge of the channel to be -eσ, as stated in Section 3.2, the pore wall is
negatively charged.

Table 1: Chosen values and their unit for the different, but constant, parameters. Here, ρ±,r
is the density of the positively or negatively charged particles in the reservoirs and σ is the
electron density at the pore wall.

Parameter Value Unit
ρ+,r 1 mol m−3

ρ−,r 1 mol m−3

σ 0.05 nm−2

From these values, we could determine some important features of our model. First of all
the Debye length, which is, in water, defined as[8]

λd =

(
εwε0kBT

e2
∑

i ρiz
2
i

)1/2

=

(
εwε0kBT

e2(ρ+ + ρ−)

)1/2

, (3.6)

which gives that the Debye length for our system, which is at room temperature, by substi-
tuting the parameters from Table 1 and the known physical constants, is about 10 nm. In
the remaining, we consider two cases. First of all, we define a geometry where the Debye
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layers do not overlap. Since the Debye length gives the length scale at which the potential
caused by a charged surface decreases by a factor of e, there will be a region in the pore
where the potential from the charged wall is negligible. If we chose the minimal width one
order of magnitude larger than the Debye length, it is possible for the negatively charged
ions to relatively easily move through the pore, despite the fact that the wall of the channel
is negatively charged too, since in the middle of the pore, they do not feel the potential by
the charged wall.[8] For the second case, we consider a minimal width of the channel which is
of the same order of magnitude as the Debye length. Then, it would be way more difficult for
the negatively charged particles to move through the pore, because the effects of the charged
pore wall are present throughout the pore. For the two different cases, the values for R0 and
L are stated in Table 2

Table 2: Chosen values and their unit for the length scales of our system. Here, R9 is the
minimal width of the pore and L its length.

Parameter Value (no overlap) Value (overlap) Unit
R0 100 15 nm
L 1000 100 nm

Since we are interested in the current and density profiles as a function of the potential differ-
ence over the two reservoir, we vary ∆V from -400 to 400 mV in steps of 100 mV. We are also
interested in the influence of the geometry of the nanopore on the behaviour of the ions, so
we varied the angle α from 0 to 10 degrees in steps of 2 degrees. We varied α by keeping the
minimal width, R0, and length ,L, of the pore constant and by varying the maximal width
R1. We let COMSOL solve the PNPS equation, as stated in Section 3.2 for all combinations
of the different parameters.

COMSOL solves the six differential equations as stated in Section 3.2, for the seven vari-
ables in these equations, which we stated in Section 2.2 With these values, we determine
some other physical aspects like the density (difference) profiles and the total electric current
through the channel. To determine the density difference profile (ρ+ − ρ−), we average the
density difference over r and look what these profiles are as a function of z. To do this, we
use the linear projection operator (linproj) in COMSOL. In Appendix B we specify how to
properly define the linear projection operator in COMSOL. Shortly said, the operator inte-
grates the argument over r, such that linproj(x) =

∫
drx,3 so the mean density, as a function

of z is given by

〈ρ±〉(z) =
1

π(R(z))2

∫ R(z)

0

dr2πrρ±(r, z) =

∫ R(z)

0
dr2πrρ±(r, z)∫ R(z)

0
dr2πr

, (3.7)

=
linproj(2πrρ±)

linproj(2πr)
. (3.8)

2There are eight equations given in Section 3.2, but COMSOL solves these combining (3.1) and (3.2)
3Note that COMSOL does not include the Jacobian and the integration over the angle (around which is

the whole system is symmetric)
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Since COMSOL also computes the total flux of both particles, we calculate the total current
through the pore. We use the internal molecular flux as defined in COMSOL to determine
the total current, I, through the channel by

I(z) =

∫ R(z)

0

dr2πr(J+ − J−)Nae = Nae · linproj(2πr(J+,z − J−.z)), (3.9)

with J+,z and J−,z the flux in z-direction of the potassium and chloride ions respectively.

Besides these variations in z direction, we also want to show what the behaviour of the
fluid with ions is in the r direction. Therefore, we make representations of the velocity,
potential and density difference as a function of r at z = 0. To show more details of the
velocity and potential, we use the in COMSOL generated 2D representations for the velocity
and potential. In case of the velocity profiles, it is useful to determine the Reynolds number,
which is a motionlessness number that gives the ratio between the inertial forces and the
viscous term in the Navier-Stokes equation (2.30). The Reynolds number is found by making
this equation dimensionless and it is defined as Re = ρuL/η. Since we consider the nanoscale,
we expect the velocity to be in the order of cm/s maximally. In both our geometries, the
chosen L is in the order of µm, so by substituting ρ = 1000 kg/m3 and η = 10−3 Pa s, we
find that the Reynolds number is about 10−2, so the inertial forces are much smaller than
the viscous terms, so (2.30) reduces to the Stokes equation (2.31)

By considering the density profiles, velocity, potential and current, we think we could give a
good description of the behaviour of the fluid in the pore.
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4 Results

In the Results section, we distinguish between the two different geometries. We also comment
on the results for the individual pore-geometries and we will compare these observations in
Section 5. We will first start by describing and interpreting the results for length scales,
R0 = 100 nm and L = 1000 nm (such that we consider this geometry to be the large pore
geometry), where there is no overlap of the Debye layers in the pore.

4.1 Large pore-geometry

As described in Section 3.3, we want to find the density, velocity and potential profiles.
Besides we determine the electric current through the pore. We vary the potential difference
∆V from -400 to 400 mV in steps of 100 mV and α from 0 to 10 degrees in steps of 2 degrees,
such that we get a set of six geometries for which we calculate the stated properties. In this
section we will show the results for the pore with length scales such that the Debye layers do
not overlap. We will first show the density profiles.

4.1.1 Density profiles

First of all, we need to give a definition for what we mean with “density profile”. Because the
system has a charged pore wall, we are interested in the difference between the density of the
positively and negatively charged particles, so by “density profile” we mean ρ+(r, z)−ρ−(r, z).
For these density profiles, we find, for the case that α = 0◦, that the density profiles are sym-
metric in the z = 0 plane for ∆V = 0. This is expected, since the geometry is symmetric
for these parameters. The case that ∆V = 0 is the state that the system is not forced by
any external force, so this is called the equilibrium state. We show the density profiles with
respect to the equilibrium state, because the shape of the profile does not change a lot by
varying ∆V , but by subtracting the equilibrium state, we are able to show that the profiles
change if we vary ∆V .

Figure 2: Over r averaged density profile (ρ+− ρ−) with respect to equilibrium (∆V = 0) for
∆V = ±200 mV and α = 0. We see that figure is antisymmetric with respect to the potential
difference ∆V .
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In Fig 2, we show this density profile as a function of z, where we averaged over the radial
coordinate r. In this figure, we show the over r averaged density difference, 〈ρ+− ρ−〉(z), for
∆V = ±200 mV minus the density difference in equilibrium (∆V = 0) for α = 0. We clearly
see that the figure is antisymmetric with respect to the potential difference. If we change the
sign of the potential difference, the location of the maximum and minimum changes location
but keeps the same value for the averaged density difference. This is what is expected, since
α = 0◦ means a cylindrical pore, such that the ions do not feel the charged pore wall more
if they are forced to move into the pore from the one or other side. Also the location of the
peaks shown in Fig. 2 makes sense since, for general α, we expect that the positively and
negatively charged ions are forced to move in opposite directions by an external potential
difference. For ∆V > 0 we expect the negatively charged ions to move in positive z direction
and the positively charged ions in negative z direction. For negative ∆V we expect them to
move in the opposite direction. Therefore, we expect a density difference (ρ+− ρ−) averaged
over r with respect to equilibrium (∆V = 0) between the upper and lower reservoir if we ap-
ply an external potential difference. For positive ∆V we expect this difference to be negative
in the upper reservoir and positive in the lower reservoir and for negative ∆V we expect this
the other way around, which we see in Fig. 2.

Figure 3: Difference between the maximum and minimum of the density difference (ρ+− ρ−)
with respect to equilibrium for all evaluated values of α. The asymmetry between positive and
negative ∆V is discovered.

However, we see that there is a difference between the maxima and minima in the density
profile with respect to equilibrium. We show this difference in Fig, 3 for all values of α as a
function of the potential difference. In Fig. 3 we see that the difference between the maximum
and minimum of the density difference with respect to equilibrium increases by increasing
|∆V |. This makes sense, since the magnitude of electric force, as stated in Section 2, goes
linearly with E and thus, by E = -∇V , increases with increasing |∆V |. Therefore the ions
are forced to separate more, such that difference between the maxima and minima of the
density profile increases with increasing |∆V |, which we see in Fig. 3. In this figure, we also
see the symmetry with respect to the potential for the case that α = 0◦, i.e. we see that the
difference between the maximum and minimum of the over r averaged density difference is
the same for, for example, ∆V = ±200 mV. For the case that α 6= 0◦, we see an asymmetry
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with respect to ∆V . This asymmetry in the potential difference for α 6= 0 follows from the
fact that the pore in this case is conical and thus no longer symmetric in the z = 0 plane.

Because of the asymmetry in the geometry, the influence of the charged wall in the up-
per reservoir differs from the influence in the lower reservoir. Therefore, we do not expect
symmetries with respect to ∆V any more, which we see in Fig. 3. We see that, for negative
∆V , the difference between the maximum and minimum of the density difference with re-
spect to equilibrium is about the same for all evaluated values of α. This is because for this
geometry the minimal radius of the conical pore is the same as the radius of the cylindrical
one. Therefore, the influence of the charged pore wall at the connection with the upper
reservoir is the same for all values of α and thus, the negatively charged ions, which are
forced to move in negative z direction, flow into the pore in the same way for all values of
α. Because of that, the charge in the pore is the same, since the positively charged ions are
not blocked by the pore when they move in positive z direction. Therefore the difference
between the maximum and minimum of the density difference with respect to equilibrium
will be about the same for all values of α. In Fig. 3 we also see that the differences between
the minimum and the maximum increases by increasing α for positive ∆V . A larger value of
α means that the influence of the charged pore wall at the connection with the lower reservoir
is smeller. Therefore, the force of the pore wall, which repels the negatively charged particles,
is, averaged over the channel width, smaller for larger values of α. Therefore, there will be
more negatively charged ions in the channel. At the connection with the upper reservoir, the
physics is not changed by increasing α, since the radius of the pore is fixed at that point. But
since there are more negatively charged ions in the pore for larger values of α, the force that
attracts the positively charged ions in the pore, is larger for larger values of α. Because of
this effect, the difference between the densities of the positively and negatively charged ions
in the upper reservoir is larger, for larger values of α and therefore, the difference between
the maximum and minimum of the density profile with respect to equilibrium in the steady
state increases by increasing α, which we see in Fig. 3.

Figure 4: Position of the minimum and maximum of the density difference (ρ+ − ρ−) with
respect to equilibrium (∆V = 0) as a function of the density difference ∆V for all evaluated
values of α. We see that the positions of the maximum and minimum do not change if we
charge α.
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We also determine the position of the peaks, showed in Fig. 2 for the case that ∆V = ±200
mV, for the different values of ∆V and α, which results in Fig. 4. In this figure, we see that
the location of the peaks does not change for different values of α and ∆V (only for ∆V = 0
we see that there are no peaks and thus no location of the peaks, since we look at the density
difference with respect to equilibrium). We see that the position of the peaks is at z = 525
nm for all values of α., which is where the reservoirs start, since at z = ±500 nm there is a
circular corner with a radius of 25 nm. This is a quite surprising results, because for larger
values of α the influence of the charged pore wall becomes less at the connection of the pore
with the lower reservoir. Therefore, we expected the position of the minimum and maximum
to shift inside the pore for larger values of α, but Fig. 4 shows that this does not happen.
Since we consider a large pore such that the Debye layers do not overlap in the pore, the
influence of the charged pore wall is not present near the main axis of the pore. Therefore,
increasing α does not influence the system as much as it will do in the case of the small pore,
because in that case it will change the influence of the charged pore wall on the main axis of
the pore. This is one of the reasons why we consider this geometry too.

For the large pore, we also determine the density difference as a function of r in the middle
of the channel, which results in Fig.5.

Figure 5: Density difference between the the positively and negatively charged ions as a func-
tion of the distance from the wall of the pore for different values of ∆V evaluated at z = 0
for the large pore with α = 4◦.

In this figure, we see that the influence of the negatively charged pore vanishes at the main
axis of the pore, since the minimal radius of the pore is about one order of magnitude larger
than the Debye length. We conclude this since the density difference (ρ+ − ρ−)|z=0 vanishes
after about four Debye lengths away from the charged pore wall. We see that the density
difference is affected a little bit by the potential difference, but that these differences are mi-
nor. We see that the structure of the density difference profile is determined by the charged
pore wall, since the external potential difference does not change the shape of the profile.

With these findings, we complete the description of the density profile in the nanopore.
We will now give the results concerning the total electric current and discuss these results.
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4.1.2 Electric current

We determine the total electric current in z direction as a function of the potential difference
and show it in Fig. 6a for different values of α. In this figure the asymmetry for positive
and negative ∆V , that we see in the density difference, is not discernible. To show this
asymmetry, we calculate the difference between the current for ∆V = −400 mV and the
absolute value of the current for ∆V = 400 mV and we make this dimensionless by dividing
by the sum of both to show the relative magnitude of this asymmetry. The results are shown,
as a function of α, in Fig. 6b.

(a) (b)

Figure 6: a) The total current, as calculated by (3.9), as a function of the potential difference
∆V for different values of α for the large pore-geometry. b) The difference between the current
for ∆V = −400 mV and the absolute value of the current for ∆V = 400 mV divided by the
sum of both as a function of α for the large pore geometry.

We see that the current, for constant ∆V increases by increasing α. This makes sense, since
the density difference gradient in z direction for the density difference becomes larger if α
increases, as shown in Fig. 3. Since the peaks in the density difference remain at the same
position, but the difference increases by increasing α, the density difference gradient will
increase by increasing α, such that the total current will also increase. At equilibrium, we
notice that the current is zero, which makes sense, since ions do not move in equilibrium. We
also see a small asymmetry in the current for positive and negative ∆V for α 6= 0◦, which is
shown in Fig. 6b. We besides see that the absolute value of the current for positive ∆V is
larger than it is for negative ∆V . Note that we show the difference between the currents for
∆V = ±400 mV, because by increasing the potential difference, we expect the difference in
the currents to be larger, such that we could see any relations between α and the asymmetry
with respect to ∆V in the current faster. We see that the difference increases by increasing
α, which makes sense, since the asymmetry in the pore is more present at larger values
of α. Interestingly, it seems like the asymmetry in the current will reach an asymptote if
we increase α further. This makes sense, since the force by the charged pore wall is, for all
evaluated values of α, small in on the main axis of the pore, since the potential is constant for
r & 4λd. The force at the connection with the lower reservoir becomes smaller by increasing
α, but for some value of α the force is already so small that the ions are not affected any
more in the middle of the channel, such that the total electric current does not become more
asymmetric. We have to note that this asymmetry is relatively small compared to the electric
current itself, as shown in Fig. 6b. This is expected, since there are, for all values of α regions
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in the pore where there is no influence of the charged pore wall, because the minimal radius
of the pore is one order of magnitude larger than the Debye length.

4.1.3 Velocity and potential profile

As mentioned in Section 3.3, we also generate results regarding the velocity and the potential
profile. We use the by COMSOL generated 2D representations of the velocity and potential
to show the profile of both quantities in the pore. The results for the velocity are shown
in Figure 7 for ∆V = −300 mV and ∆V = 300 mV for α = 8◦. We also give the velocity
in z direction for α = 4◦ as a function of r at z = 0 for all evaluated potential differences.
The results are shown in Fig. 8a. In Fig. 8a, we see that, for all potentials, the boundary

(a) (b)

Figure 7: Velocity in the pore for α = 8◦ for the large pore. The white arrows show the
normalised velocity field. a) shows the velocity for ∆V = −300 mV and b) shows it for
∆V = 300 mV.

condition, that the velocity at the charged wall is zero, is satisfied. Furthermore, we see that
the velocity profiles for the different potentials look equal in shape. This shape is a strong
growth in the velocity in the Debye layer (which has a width of about 4 Debye lengths)
and that the velocity outside the Debye layer decays a little bit towards a constant, which
depends on the potential difference. We notice that in equilibrium, ∆V = 0, there is no
velocity as expected. Furthermore, we see that the (average) velocity is larger if we increase
|∆V |, which makes sense since then the potential gradient (in z direction) will increase and,
by (3.4), the Laplacian of the velocity will become large and therefore the velocity itself
becomes larger. In Fig. 7 we see for the velocity at α = 4◦ that the direction of the velocity
changes by changing the sign of ∆V , which we can explain by considering (3.4). Since we do
not apply a pressure gradient, we expect this term does not dominate the equation, such that
the velocity is fully determined by the potential gradient, so if the gradient changes direction,
the velocity will too. Furthermore, we see that the velocity is largest at the minimal width of
the pore, this is because of the divergence free character of the stationary flow, so this result
is also explainable by the physics of the system.
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(a) (b)

Figure 8: a) The velocity of the flow in z direction for the large-pore geometry with α = 4◦ as
a function of r, the distance from the pore wall evaluated at z = 0 for all evaluated potential
differences ∆V . b) The total potential as a function of r at z = 0 for the large pore-geometry
with α = 4◦ for all evaluated ∆V .

The 2D representation of the potential is shown in Fig. 9 for ∆V = ±300 mV for α = 8◦ and
the potential as a function of r at z = is shown in Fig. 8b. In this figure we see, for ∆V = 0,
the characteristics of the Debye layer. As discussed in Section 3.3, we see that the potential
goes to zero within a couple of Debye lengths. Furthermore, an external potential gradient
only shifts the potential by a constant. This is, because in absence of a charged pore wall, the
potential will increase (or decrease) linearly over the pore. Therefore, in the middle of the
pore, the potential is about half of the value of ∆V. We see this shift in the total potential,
because the width between the lines for different potential are about 50 mV apart, which
is half of the step sizes between the imposed external potential difference. Fig. 8b is shown
for α = 4 degrees, but we see that qualitatively nothing changes if we change α. This could
be expected, since α does not influence the Debye layer and potential difference and does
therefore not influence the total potential. If we now consider the 2D representation of the
potential, for α = 8◦ and ∆V = ±300 mV, as shown in Fig. 9, we see that the direction of
the electric field changes if we change the sign of ∆V , which makes sense, since the external
potential is the only potential difference in z direction. If we look closely at the pore wall, we
see that the potential is negative, which follows from the negatively charged pore wall. Also,
for ∆V = 300 mV, we see that this negative potential almost disappears at the minimal
width of the channel, so that the negatived charged ions are not affected by the negative
charged wall there, which we stated earlier in this section. We also see that the potential
decreases linearly as a function of z throughout the pore.

With the results and discussion for the velocity and total potential of the system, we have
given a description of the system for the large pore. In the next section, we will give a
description for the small pore, in which the Debye layers overlap to see what the influence is
of the length scale of the geometry on the physical results.
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(a) (b)

Figure 9: Potential in the pore for α = 8◦ for the large pore. The white arrows show the
normalised electric field. a) shows the potential for ∆V = −300 mV and b) shows it for
∆V = 300 mV.

4.2 Small pore-geometry

For the length scale of the pore at which the Debye layers overlap, R0 = 15 nm and L = 100
nm (such that we consider this to be the small pore), we again varied ∆V from -400 to 400
mV in steps of 100 mV and α from 0 to 10 degrees in steps of 2 degrees. To be able to
compare this results with the results for a pore where the Debye layers do not overlap, we
again determine the density profile, total electric current, the velocity and potential profile.

4.2.1 Density profiles

Figure 10: Over r averaged density profile (ρ+−ρ−) with respect to equilibrium (∆V = 0) for
∆V = ±200 for the small-pore geometry with α = 0. We see that the figure is antisymmetric
with respect to the potential difference ∆V
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We determine the over r averaged density profile as a function of ∆V and z, again with
respect to equilibrium (∆V = 0). The results for ∆V = ±200 mV and α = 0◦ are shown in
Fig. 10. We again notice the symmetry with respect to ∆V in this figure, which we expected
by the symmetry in the geometry. We do again see an asymmetry with respect to z, which
is because of the charged channel wall. In this figure, we see that the difference between
the densities of the ions (with respect to equilibrium) is again zero for α = 0◦ in the pore.
However, we see that the peaks are about one order of magnitude larger than they are for the
large pore and that the peaks are relatively wide and not sharply peaked. In order to see the
asymmetries with respect to ∆V for α 6= 0, we again determined the difference between the
peaks of averaged over r density profile with respect to equilibrium and show this in Fig. 11.
In this figure, we again see that the case that α = 0 corresponds to a symmetry with respect
to ∆V in the difference between the two peaks with respect to ∆V , which is expected by the
symmetry in the geometry.

Figure 11: Difference between the maximum and minimum of the density difference (ρ+−ρ−)
with respect to equilibrium (∆V = 0) for the small pore for all evaluated values of α. The
asymmetry between positive and negative ∆V is discovered.

For α 6= 0◦ we see that there is some asymmetry with respect to ∆V in the difference between
the maxima and minima of the density profile with respect to equilibrium. Interestingly, we
now see that the difference does not change much for positive ∆V , but it does change for
negative values of ∆V . For all values of α that we evaluated, we see a difference from the
case that α = 0◦, but we also see that the difference looks quite the same for α is 4, 6, 8 and
10 degrees. This could be explained by the overlapping Debye layers in this pore-geometry.
Since the force of the charge wall is in this case not small on the main axis of the pore,
it is very hard for the negatively charged ions to travel through the minimal width of the
pore, because the overlap of the Debye layers at that z coordinate is maximal. Also the
positively charged ions are affected by this Debye layer, because they are attracted by the
wall. Therefore, for positive potential differences, it is very hard for the negatively charged
particles to move in positive z direction, because the Debye layers will overlap more and more
by increasing z for α 6= 0◦. The overlap is maximal at the minimum width of the pore, at
which the overlap is the same as it is for the case that α = 0◦. Therefore, the density profiles
will not change a lot for positive ∆V , because of the block that is formed by the overlapping
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Debye layers at the connection with the upper reservoir. This block will be cancelled by the
external potential more and more if this potential increases. The difference between the maxi-
mum and minimum in the density difference profiles thus becomes larger with increasing ∆V .

The drop in the difference in the peaks for negative ∆V for increasing α is a bit harder
to explain. For negative ∆V , the negatively charged particles are forced to move in negative
z direction, but since the Debye layers overlap at the connection between the upper reservoir
and the pore, there movement is countered. On the other hand, the positively charged ions
are forced to move in the positive z-direction and are attracted by the pore wall. Because of
the fact that the external potential is more negative than the potential by the charged wall,
the positively charged ions will move in positive z direction. If α increases, the effect of the
charged wall on the positively charged ions at the connection with the lower reservoir is less
than it is for the case that α = 0◦. Therefore, the peak in the lower reservoir will decrease,
so the difference between the two peaks will decrease as well. We think that this could be
the explanation for the behaviour of the fluid which is shown in Fig. 11, but further studies
will probably give better insight.

Besides, we look at the positions of this maximum and minimum. Surprisingly, as shown in
Tables 3 and 4, which are stated in Appendix C, the positions of the maximum and minimum
do not shift much if we increase α, but they keep their positions around z = ± 50 nm, the
beginning of the reservoir. We make a table of this results, because the shifts are very small
and therefore not good discernible in a figure. We see that the positions of the maxima
and minima do shift, but that these shifts are very small. We see that these largest (but
still small) shifts take place at the largest potential difference and α = 10◦. This suggests
that there might be a relation between the location of the peaks and the half angle of the
conical nanopore. However, we have to note that the shifts of the peaks are minor, since we
determined averaged over r density profile on a grid, such that the shifts of the peaks is only
one or two grid points. We thus think that these shifts are rather a numerical error than
an actual shift. To make sure our thoughts, we suggest further research, i.e. making the
potential difference and α larger, on the location of the peaks, but for now we consider that
the peaks do not shift by increasing α. This is, in our opinion, the most interesting result
of this thesis, since we expected that the position of the maxima and minima in the lower
reservoir would shift into the pore if we increase α.

Finally, we determine the density difference with respect to r at z = 0 for α = 4◦ and
show this in Fig. 12. In this figure, we see that, as for the large pore, the potential does not
influence the shape of the density profile at z = 0. We see, in the case of the small pore, the
density difference does not go to zero on the main axis on the pore, but it drop to a constant.
This is because of the overlapping Debye layers, such that the influence of the charged pore
wall is present throughout the pore.

With these findings, we have been able to give an insight in the density profiles of the
ions in teh small pore-geometry.
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Figure 12: Density difference between the the positively and negatively charged ions as a
function of the distance from the wall of the pore for different values of ∆V for the small
pore with α = 4◦.

4.2.2 Electric current

(a) (b)

Figure 13: a) The total current, as calculated by (3.9), as a function of the potential difference
∆V for different values of α for the small pore-geometry. b) The difference between the
current for ∆V = −400 mV and the absolute value of the current for ∆V = 400 mV divided
by the sum of both as a function of α for the small pore-geometry.

We also determine the total current through the pore. The current as a function of the
potential difference is shown in Fig. 13a for different values of α. We see that the total
current is three times smaller than it is for the geometry with the large pore. However, the
shape of the current profile for the small pore is quite the same as it is for the large one,
since we again see that this current is positive for negative values of ∆V , zero in equilibrium
and negative for positive values of ∆V . We also see that the difference between the curves
for different values of α is smaller than is was for the large pore. However, if we determine
the difference between the current for ∆V = -400 mV and the absolute value of the current
for ∆V = 400 mV and divide this by the sum of both to make the expression dimensionless,
as shown in Fig. 13b, we find an asymmetry with respect to the potential difference. This
asymmetry becomes larger by increasing α, which follows from the fact that the system is
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more and more asymmetric for increasing α. Interesting is the fact that the current for
∆V = −400 mV is now larger than the absolute value of the current for ∆V = 400 mV,
which we will discuss in Section 5.

4.2.3 Velocity and potential profile

Finally, for the small pore we also determine the velocity and potential. We again use the by
COMSOL generated 2D representations for the velocity, which we show in Fig. 14 for α = 8◦

and ∆V = ±300 mV.

(a) (b)

Figure 14: Velocity in the pore for α = 8◦ for the small pore. The white arrows show the
normalised velocity field. a) shows the velocity for ∆V = −300 mV and b) shows it for
∆V = 300 mV.

If we look at the velocity profiles, we see that the z component of the velocity at z = 0,
increases towards an asymptote if we move away from the charged wall for all potential dif-
ferences, which we show in Fig. 8a. This means that the velocity increases within the Debye
layer, which is the same as in the case that we considered the large pore. If we look at the
2D representations of the velocity, that are shown in Fig. 14, we see that again the veloc-
ity has a maximum at the minimal width of the pore and changes direction if ∆V changes
sign. We thus observe the same properties for the velocity as we did earlier for the large pore.

The potential, however, does change if we change the pore-geometry. In Fig. 15b we see
that the potential for ∆V = 0 is negative throughout the width of the pore. This is be-
cause of the fact that the Debye layer is throughout the pore, so the potential will always be
negative in equilibrium. We see that the spacing between the different potential differences
is not constant. This is because of the fact that a negative potential difference strengthens
the Debye layer and a positive potential difference cancels it. This difference that the Debye
layer overlap occurs is also discernible in the 2D representation of the potential at α = 8◦,
which is shown in Fig. 16. We see that the cancellation of the Debye layer is the same, but
we also see that the charged pore wall has influence near the main axis of the pore. The
latter is also clear from the density difference, which is shown in Fig. 12.
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(a) (b)

Figure 15: a) The velocity of the flow in z direction for the small pore-geometry with α = 4◦

as a function of the distance from the pore wall, r, evaluated at z = 0. b) The total potential
a a function of r at z = 0 for the small pore-geometry with α = 4◦.

(a) (b)

Figure 16: Potential in the pore for α = 8◦ for the small pore. The white arrows show the
normalised electric field. a) shows the potential for ∆V = −300 mV and b) shows it for
∆V = 300 mV.

With these figures we have completed our results and discussing of the individual pore-
geometries. In the next section we will discuss the differences and similarities between both
geometries..
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5 Discussion and outlook

First of all, we see that the density profiles change a lot by changing the geometry. We see
that the density difference in pore becomes larger in the small pore-geometry than it is in
the large one. This makes sense, because in the Debye layer, the negatively charged particles
are repelled, and the positively charged ions are attracted, such that the difference between
the density of the two kinds is the greatest in the Debye layer. In both pore-geometries,
the density distribution with respect to equilibrium gives two peaks which are located just
outside the pore. For both pore-geometries, these peaks do not shift in position if we change
α, which is, especially in the case that we considered the small pore, not expected. Because
increasing α means that the negatively charged ions go easier into or out of the pore in the
lower reservoir than they do in the upper reservoir. For the large pore, the charged pore wall
already does not influence the electrolyte in the middle of the pore, such that the influence
of α is considered smaller.
The asymmetry in the difference between the maximum and minimum of the density differ-
ence profile is different for the two pore-geometries. For the large pore, the difference of the
peaks does not change significantly as a function of α for negative ∆V , where the difference
of the peaks in the small pore does not change for positive ∆V . This is a quite surprising
result, since the physics of both settings are the same. Therefore we can conclude that the
length scale of the system changes the physics, so that it matters a lot for flows on nanoscale
what the exact length scale is.

For the total electric current, we also find a difference between the two pore-geometries.
In the large pore the absolute value of the current is larger for positive ∆V , but for the small
pore, the current is larger for negative ∆V . We think that there might be some analogy
between this and the change in the asymmetry of the density profile.

In case of the velocity, potential and density profiles as a function of r, we see that qualita-
tively the same things happen for both pore-geometries. We see that the velocity increases
in the Debye layer and then goes to a constant value in both geometries. The potential
is affected by both the external potential and the potential of the charge wall. Therefore,
the potential in the small pore is different from the potential in the large one, because the
influence of the charged pore wall changes if we consider another pore-geometry. The density
profiles as a function of r are as expected, since they decay within the Debye layer to zero in
the large pore and to a constant value in the small pore, since in the latter, the Debye layer
from the other side of the pore influences the potential and thus the density profile in the
middle of the pore as well.

There are also some quantitative differences between the two pore-geometries. First of all,
the total electric current is about three times bigger in the large pore, but because in that
case the radius of the pore is one order of magnitude larger than the radius of the small pore,
the current per area would be about two orders of magnitude smaller in the large pore than it
is in the small pore. This is expected, since the selectivity of a pore with overlapping Debye
layers is bigger than it is for a pore with non overlapping Debye layers. Besides, the velocity
of the fluid is one order of magnitude bigger in the small pore, but that could be expected,
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since the radius of this pore is an order of magnitude smaller than it is in the case for the
large pore, so, in order to keep the divergence free character of the velocity, the velocity is
larger in the small pore.

With these observations, we think that we can give a good view of the behaviour of an
electrolyte forced by an external electric field on the nanoscale.
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6 Conclusion

By applying an electric potential difference over a nanopore with a charged pore wall, we are
able to find the behaviour of an electrolyte that is forced to move through this nanopore.
By varying the potential difference and the shape of the cone (from cylindrical to conical
by changing the so-called half angle α) for two different length scales of our geometry, we
find a density profile (the difference between the densities of the positively and negatively
charged ions) which contains two peaks if we compare this profile to equilibrium (∆V = 0).
These two peaks are located just above and beyond the pore in both pore-geometries. We
find that these peaks do not move inside the channel if we increase α, which we expected to
happen in case of the pore-geometry with length scales such that the Debye layers overlap in
the pore, as explained in Section 5. We find the asymmetries in the difference between this
peaks as a function of the potential difference over the system for α 6= 0◦. When α = 0◦, the
pore-geometries are symmetric in the z = 0 plane such that aspects like the density profile
and total electric current are symmetric with respect to ∆V . In case that α 6= 0, we find
asymmetries with respect to ∆V in both the peak difference and the total electric current,
which is shown in Section 4. The asymmetries change if we change the length scales of the
pore. If we choose the length scales such that the Debye lengths overlap in the pore (this case
we call small pore), we find that the peak difference is different from the case that α = 0◦

for positive ∆V . However, the peak difference for the pore-geometry for which the Debye
layers do not overlap in the pore (which we call the large pore) is different from the case that
α = 0◦ for negative ∆V .

In case of the total electric current, the asymmetry also changes when we change the pore-
geometry. For the large pore, the current for positive ∆V is larger than it was for negative
∆V , but in the small pore we find that this is the other way around. Because of the fact that
the change of geometry changes the behaviour of the current en density profiles qualitatively,
we first of all conclude that the asymmetric aspects of the fluid on the nanoscale is heavily
depending on the fact if the Debye layers overlap in the nanopore or not.

Besides, we find that the velocity of the fluid and the potential of the system qualitatively
are as expected, as explained in Section 5. We see that in both pore-geometries, the velocity
in z direction, at fixed z, increases in the Debye layer and then goes to a constant. We find
that the potential is negative at the charged wall of the pore and that this potential goes to
zero within a couple of Debye lengths if we do not apply an external potential difference ∆V
in case of the large pore. Besides, for the small pore we find that the potential caused by the
charged pore wall goes to a non-zero constant in middle of the pore, which is because of the
shape of the pore. We see that an external potential difference changes the total potential
as expected qualitatively.

With the in Section 4 given density profiles, fluid velocity, electric potential and current
we manage to give an insight in the aspects of a flowing electrolyte on the nanoscale. We
find asymmetries in the current and density profiles if we consider a conical nanopore, which
do depend on the length scale of the pore. Furthermore, we see that the peaks of the density
profile with respect to equilibrium are located just outside the pore for all values of α. This
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is a surprising result, especially for the small pore geometry, because increasing α means less
influence of the charged pore wall. We recommend further research on this behaviour, by
increasing the half-angle α, such that the influence of the charged pore at the connection
with the lower reservoir wall will decrease more and more.
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A Derivation volume force term in Creeping Flow mod-

ule

The external force term in the CF module has two terms. The ∇V term follows from the
Lorentz force law without an electric field: F = qE, with q the charge and E the electric
field. The force per volume therefore is g = -ρq∇V, where ρq is the charge density and where
E = -∇V is substituted. The charge density is equal to the sum over the densities of particles
times their charge, or ρq =

∑
i zieρi. In our case, we consider one species of positively charged

particles and one species of negatively charged particles, so ρq = Nae(ρ+ − ρ−), where the
factor Na is encountered because COMSOL gives us densities in mol m−3 and we need a
density in m−3.

B Linear Projection Operator

For the Linear Projection Operator in COMSOL, which in principal projects our 2D rotational
symmetric system on a line. To properly do that, first select the domain at which the operator
has to work. Then we define source en destination vertices in operator. Source vertex 1 is
the starting point of integration, we define this on the symmetry axis at the beginning of
the channel in the upper reservoir. Source vertex 2 is the end point of integration, so we
define this vertex on the symmetry axis at the beginning of the channel in the lower reservoir.
Source vertex 3 is the direction of integration, so we define this vertex at the channel wall,
at the beginning of the channel in the upper reservoir. We have to define two destination
vertices too, these are the same as Source vertex 1 and 2. To learn more about the Linear
Projection Operator for a pipe flow, one could read an article by Clemens Ruhl.[9]

C Tables

Table 3: Position of the maxima in the density difference (ρ+−ρ−) with respect to equilibrium
for the small pore, such that the Debye layers overlap in the pore, for all evaluated values of
potential difference ∆V and half-angle α. Note that a value -1 corresponds to the connection
with the lower reservoir and 1 corresponds to the connection with the upper reservoir.

∆V (in mV) z coordinate (divided by L/2) for different α
0 2 4 6 8 10

-400 1.05 1.05 1.05 1.05 1.05 1.05
-300 1.05 1.05 1.05 1.05 1.05 1.05
-200 1.05 1.05 1.05 1.05 1.05 1.05
-100 1.05 1.05 1.05 1.05 1.05 1.05
100 -1.05 -1.05 -1.075 -1.075 -1.075 -1.075
200 -1.05 -1.075 -1.075 -1.075 -1.075 -1.075
300 -1.05 -1.075 -1.075 -1.075 -1.075 -1.075
400 -1.05 -1.075 -1.075 -1.075 -1.075 -1.075
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Table 4: Position of the minima in the density difference (ρ+−ρ−) with respect to equilibrium
for the small pore, such that the Debye layers overlap in the pore, for all evaluated values of
potential difference ∆V and half-angle α. Note that a value -1 corresponds to the connection
with the lower reservoir and 1 corresponds to the connection with the upper reservoir.

∆V (in mV ) z coordinate (divided by L/2) for different α
0 2 4 6 8 10

-400 -1 -1 -1 -1.075 -1.075 -1.075
-300 -1 -1 -1 -1.075 -1.075 -1.075
-200 -1.05 -1.05 -1.075 -1.075 -1.075 -1.075
-100 -1.05 -1.05 -1.075 -1.075 -1.075 -1.075
100 1.05 1.05 1.05 1.05 1.05 1.05
200 1.05 1.05 1.05 1.05 1.05 1.05
300 1 1 1 1 1 1
400 1 1 0.925 0.925 0.925 0.925
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