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Abstract

Knowledge about sandbars in the surf zone of coastal seas (the zone where waves break),
is of great importance in order to preserve beach stability and therefore beach safety. In
channels between sandbars namely, strong seaward directed currents are observed: rip
currents. These currents arise due to alongshore variations in sea level, resulting from
differential intensities of wave breaking at sandbars and channels in between them.
In recent years, nonlinear hydrodynamic models have been developed to analyse the
formation of sandbars and rip currents, for different types of coast and wave forcing.
In these models, rips also drive the formation of sandbars, as they cause convergence
of sediment transport in bar areas. The characteristics of sandbars vary with the angle
of wave incidence and the use of periodically varying wave angles results in different
behaviour than the use of a constant wave angle. The main new aspect of the present
study is that this periodic wave forcing is not necessarily limited to a mean wave angle
normal to the coast.
Results show that for periodically varying wave forcing with on average normal wave
incidence, the mean height of the sandbars is not equal to that of sandbars for constant
normal incoming waves and moreover depends on the amplitude and period of the
time varying wave forcing. Overall, the response of the system depends on the rate of
change of wave angle, compared to the time at which the system adapts to a change
in wave angle. For periodically varying angles of wave incidence with non zero mean,
the response is more complex and not fully understood. The specific details therefore
deserve further attention in the near future.

Front page: Wave breaking pattern at the Dutch coast near Hoek van Holland. At the
coast line itself all waves break, but somewhat offshore, an irregular wave breaking pattern
appears, possibly due to the presence of rip channels. Photo taken on December 19th 2014,
own archive.
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Layman summary (Dutch)

In dit onderzoek is gekeken naar de formatie en het gedrag van zandbanken en stromingen
in de kustzone voor kusten vergelijkbaar met de Nederlandse Noordzeekust of the Franse
Atlantische kust nabij Biskaje. Vooral in de zomermaanden is het een punt van zorg dat
de kustafwaartse stromingen tussen de zandbanken de zwemveiligheid beperken. Door deze
muistromingen moeten reddingsbrigades in heel Nederland alleen al honderden keren uitrukken
voor zwemmers die hierdoor in problemen zijn gekomen. Het precieze gedrag van deze zand-
banken en muistromingen is dus van groot belang voor de veiligheid, maar ook voor de
stabiliteit van de kust. Echter, kennis over de grootte van deze zandbanken is slechts beperkt.

Modelstudies hebben het gedrag van zandbanken voor de kust onderzocht in gevallen dat
golven voor lange tijd loodrecht of juist met een schuine hoek het strand naderen. In realiteit
verandert de golfrichting van tijd tot tijd, waardoor een keuze voor een constante golfinval
niet altijd even realistisch is. Daarom is in dit onderzoek gekozen voor een variërende hoek
van inval. Het gemiddelde van deze variatie is niet alleen loodrecht op de kust gekozen, maar
ook zo dat gemiddeld over de tijd de golven schuin invallen. In de Noordzee bijvoorbeeld is
de dominerende golfrichting namelijk niet west-oost georiënteerd, maar komen de golven uit
het noord-of zuidwesten, ofwel, gemiddeld schuin ten opzichte van de kust.

Een belangrijk resultaat van deze studie is dat een afwijkend gedrag van de zandbanken gevon-
den is vergeleken met constante golfcondities. Het blijkt dat de zandbanken een bepaalde tijd
nodig hebben om zich aan te kunnen passen aan een nieuwe golfrichting. Als de golfrichting
snel verandert, dan hebben de zandbanken geen tijd om zich aan te passen en blijft het effect
van de variatie beperkt. Als variaties daarentegen zeer langzaam zijn, kan het systeem van
zandbanken zich aanpassen aan de nieuwe situatie en lijken de resultaten meer op resul-
taten van constante golfcondities. Als de aanpassingstijd van de zandbanken echter ongeveer
gelijk is met de tijd van de opgelegde verandering, kunnen zandbanken hoger worden dan bij
een constante hoek van inval het geval is. Daarnaast is in sommige gevallen zichtbaar dat
zandbanken hun maximale hoogte bereiken op het moment dat de golven schuin op de kust
afkomen, terwijl voor schuine invalshoeken juist lagere zandbanken ontstaan bij constante
schuine invalshoek. Deze effecten verschillen echter als de variatie in golfrichting niet gemid-
deld nul is en zijn complexer om te analyseren.

Voor vervolgonderzoek is het onder andere interessant om waargenomen golfcondities te ge-
bruiken. In dat geval kunnen ook de golfhoogte en de golfperiode veranderen in tijd en
hoeven veranderingen in niet altijd geleidelijk te verlopen.
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1 Introduction

1.1 Coastal zone

Since the first human civilisations, settlements often have been built along the coast, mostly
for strategic reasons such as defending mechanisms or trade opportunities. Nowadays, these
reasons still hold and in addition, recreational opportunities can be seen as another reason
that approximately half of the global population lives within 100 km of a coastline [Davis Jr.
and Fitzgerald , 2004]. Of the total amount of 440.000 km of the world’s coastline, 25% exists
of sandy beaches [Short , 1999]. Knowledge about the complex, dynamic behaviour of the
sandy beach systems therefore is important, e.g. to design engineering structures along the
coast. Secondly, beach safety for recreational purposes can be improved if the dynamics of
the beach are better understood. These sandy beach systems are morphological systems
in the so-called nearshore zone, which is the area from the shoreline to the offshore region
[Davis Jr. and Fitzgerald , 2004]. In this area, wave characteristics change because the waves
experience differences in depth (shoaling zone), they ultimately break (surf zone) and finally
they roll on to the beach (swash zone) [Garnier , 2006; Ribas et al., 2015]. The different zones
are shown in figure 1. The focus of this thesis is predominantly on features in the surf zone.

Figure 1: Overview of the coastal zone and different zones within. The focus of this thesis is
predominantly on features in the surf zone. Figure modified after Garnier [2006].

1.2 Observations

Examples of a surf zone bottom pattern is that of crescentic bars [Van Enckevort and
Ruessink , 2003], which consist of a periodic alongshore repetition of shoals and troughs.
Often, the shoals are shaped in a way such that they form an undulating pattern in the
horizontal plane. Since waves often break at these shoals, these patterns can be observed
on satellite images as in figure 2. Systems of crescentic bars are also known for their strong
offshore currents in the troughs, which bring swimmers into trouble and even cause sev-
eral deadly incidents during the summer months, up to 100 in the United States every year
[Leatherman, 2012]. These so-called rip currents make that the troughs in between sandbars
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Figure 2: Crescentic bar patterns in front of the coast of Truc Vert, France. The patterns
are recognised as the slightly lighter blue colour [CoastalWiki , 2017].

are called rip channels and often the entire system is called a rip channel system, instead
of a system of crescentic bars [Ribas et al., 2015]. The crescentic bars often form on top
of an existing sandbar parallel to the coast [Wright and Short , 1984; Garnier , 2006]. After
a storm event, at which all crescentic patterns vanish, it takes approximately 5-7 days for
crescentic bars to form again and are typically observed for several days to weeks. [Wright
and Short , 1984; Lippmann and Holman, 1990]. The most undulating patterns are found
for wave conditions where the wave incidence is normal to the coast, the pattern straightens
for more oblique angles of wave incidence. Besides, it is observed that the more oblique the
wave incidence, the faster the bars migrate along the coast, with typically 10 m day−1 up to
a maximum of 150 m day−1 [Van Enckevort and Ruessink , 2003].

1.3 Model studies

Not only observational studies have been done to the behaviour of such systems in the surf
zone. Models have been developed to investigate the initial growth of these sandy beach
systems [Ribas et al., 2015]. To investigate the behaviour of the developed, mature sand-
bars, nonlinear models have been developed [Garnier , 2006; Castelle and Ruessink , 2011].
In these models, the growth of the sandbars decays in the course of time and sandbars obtain
an almost constant height. The specific mechanisms causing this saturation have been inves-
tigated with these nonlinear models as well [Garnier et al., 2006, 2010]. Also, phenomena as
rip merging were observed [Garnier et al., 2008, 2013; Castelle and Ruessink , 2011].
Waves are the main driver of the system in these model studies. Due to inherent flow (cur-
rents and waves)-topography interactions, instabilities can grow from which sandbars form.
In most studies, this wave forcing has been held constant in time, either with a normal inci-
dence or a oblique incidence. An exception is the study of Castelle and Ruessink [2011], in
which periodic variations in wave height and wave period at normal incidence were imposed.
Also, the direction of the wave incidence itself was periodically varied for several periods
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and amplitudes of the variation, always with normal incidence on average. They showed
that, despite the wave incidence was normal on average, the rip spacing and the mean height
of the sandbars was affected, depending on the period and amplitude of the periodic variation.

1.4 Objective and outline

Obviously, in real physical situations, the average angle of wave incidence does not have
to be 0◦, i.e., normal to the coast [Rutten et al., 2017]. Therefore, in this study, the main
question to answer is: ”What are the characteristics of sandbar patterns under periodically
varying wave conditions, where on average the waves are not only normal, but also oblique
with respect to the coast?” Since both constant oblique wave incidence as well as periodic
changes were proven to have influence on the characteristics of bars and rip currents, it is
hypothesized that the combination of these two causes different characteristics as well.

In order to answer the main question, the main objective is to produce and analyse experi-
ments with periodically varying wave directions. To this end, the Morfo55 model developed
by Garnier [2006], based on the Morfo50 model developed by Caballeria et al. [2002], is
used, of which the details will be discussed in section 2. In section 3 the methodology to
achieve this objective will be discussed. Results will be presented in section 4, followed by a
discussion of these results in section 5 in which also the model limitations will be discussed
and an outlook for further studies will be given. Finally in section 6, the conclusions will be
formulated.
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2 Model

2.1 Domain

The model that is used is the Morfo55 nonlinear model. The model focusses on the simulation
of waves, currents and bottom evolution in the surf zone. Tides (an offshore feature) and
beach modifications (located in the swash zone) are not included.
The model uses a Cartesian frame of reference of which a schematic view is shown in figure 3.
The origin O is located at the coastline. The x-axis points in the offshore direction, with
a seaward boundary at x = Lx. The y-axis points in the longshore direction, bounded at
y = 0 and y = Ly. The z-axis is directed vertically upward, the height z = 0 is defined as
the height of the still water level [Garnier , 2006].

Figure 3: Schematic view of the study area. The vertical direction is represented by z, x and y
represent the horizontal in the offshore and longshore direction respectively. The boundaries
of the system are located at x = 0, y = 0, x = Lx and y = Ly. The mean depth D is defined
as the difference between zs (the mean sea level) and zb (the bed level). Furthermore, h is
the perturbation of the initial bed level z0b : h = zb − z0b . Waves propagate in the direction of

wave vector ~k, with an angle θ with respect to normal wave incidence. Figure modified after
Garnier [2006].
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2.2 Hydrodynamics

2.2.1 Currents

The model solves hydrodynamic equations, which are coupled with sediment equations to
finally calculate a new bed pattern that consequently is used as input for the hydrodynamics
in the next time step, see also figure 4. The hydrodynamics are governed by two parts. The
first contains the currents, satisfying the following equations:

∂D

∂t
+

∂

∂xj
(Dvj) = 0, (1)

∂vi
∂t

+ vj
∂vi
∂xj

= −g∂zs
∂xi
− 1

ρD

∂

∂xj
(S

′

ij − S
′′

ij)−
τbi
ρD

, (2)

namely the water mass conservations equation (1) and momentum balance equations (2),
together known as the phase averaged nonlinear shallow water equations [Mei , 1989]. Herein,
the Einstein notation is used, i.e., if an index appears twice in a term, a summation over
its values is assumed. In these equations, vi is the depth- and wave-averaged velocity in
direction i = (x, y), D the mean depth, defined as zs − zb (the mean sea level, the bed level
respectively), g is the gravity acceleration (9.8 m s−2), ρ the water density of 1024 kg m−3

and p the bed porosity, set to 0.4. Furthermore S
′

and S
′′

are stress tensors, named the wave
radiation and the Reynolds stress tensors, which describe transfer of momentum by waves
and turbulent eddies, respectively. The bed stress is represented by τbi, the components of
the bed stress vector. Through wave radiation stress S ′ and bed stress τb, the influence of
waves on currents is taken into account.

Figure 4: Schematic model overview of Morfo55.
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2.2.2 Waves

The second part of the hydrodynamics contains the waves. One of the governing equations
is the wave energy balance:

∂E

∂t
+

∂

∂xj
((vj + cgjE)) + S

′

ij

∂vj
∂xi

= −ε. (3)

Here, E = ρgH2
rms/8 is the wave energy density with Hrms(x, y, t) the root-mean-square wave

height. Furthermore, ε is the wave energy density dissipation due to breaking εbr [Thornton
and Guza, 1983] and bottom friction εfr [Horikawa, 1988]. The group velocity cgi can be
related to k, the wave number, by using the dispersion relation from linear wave theory:

σ2
ω = gk tanh kD, (4)

where σω is the intrinsic frequency (the frequency measured in a frame with the current
velocity vi). The absolute frequency ω is equal to σω+vjkj, where ki denotes the components
of the wave vector with i = (x, y) [Mei , 1989]. Moreover, ω is held constant. Together with
the law of refraction

∂kx
∂y

=
∂ky
∂x

, (5)

ki is determined. The waves are influenced by the currents through current refraction and
depth D.

2.3 Sediment transport and bottom evolution

Regarding morphodynamics, the bed evolution equation,

∂zb
∂t

+
1

1− p
∂qj
∂xj

= 0, (6)

is used, which follows from the conservation of sediment mass. In equation (6) the total load
sediment transport components are denoted as qi and can be calculated in several ways. Here
the Soulsby-Van Rijn formulation from Soulsby [1997] is chosen, so that

qi = α(vi − γub
∂h

∂xi
), (7)

with α the stirring factor, γ the bed slope coefficient and ub the root-mean-square wave or-
bital velocity amplitude at the bottom. Both α and ub are parametrised according to Soulsby
[1997]. In equation (7), γ is the bedslope parameter. The perturbation h(x, y, t) from the
original bed level z0b , is defined as zb − z0b .
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2.4 Boundary conditions

The following boundary conditions are imposed. At the lateral boundaries of the domain,
y = 0 and y = Ly, the variables D, u, v, Hrms, zb and its y-derivatives were imposed to be the
same (periodic boundary conditions). At the shore boundary, both velocity components and
the sediment transport component normal to the shore are zero. At the offshore boundary,
the velocity components exponentially decay, i.e. vi(x, y, t) = vi(Lx, y, t) exp Lx−x

κi
for Lx ≥ x,

where κ can be seen as a decay parameter. Moreover, at this boundary the root-mean-square
of the wave height is imposed, i.e. Hrms(Lx, y, t) = H0

rms. Likewise, at this boundary the
angle of wave incidence is prescribed, i.e. θ(Lx, y, t) = θ0. Finally, ω = 2π/T is set to a
constant value at this boundary.

2.5 Numerics

With these fully coupled equations and boundary conditions, the dynamical variables zs(x, y, t),
zb(x, y, t), both horizontal velocity components u and v in the x and y direction respectively,
the wave angle θ(x, y, t) and the wave energy density E(x, y, t) can be calculated. To this
end, the scalar- and vector fields are discretised in space and time. In space, a rectangu-
lar staggered grid is considered. Scalar variables are defined at the centre of each grid cell.
Vector components in the x-direction belonging to a vector at grid point (i, j), are calcu-
lated at (i − 1

2
, j − 1), vector components in the y-direction are calculated at (i − 1, j − 1

2
).

Time-integration of these equations is performed by a second order Adams-Bashforth scheme
after an initial integration using a forward Euler first order scheme, the spatial derivatives
are calculated by finite difference methods, using the central second order approximation.
[Garnier , 2006; Garnier et al., 2008].
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3 Methodology

3.1 Model setup

The model is run for a single barred beach, given by the profile of Yu and Slinn [2003], based
on the profile of the sandy beach of Duck, California:

z0b (x) = −a0 − a1(1−
β2
β1

) tanh [
β1x

a1
]− β2x+ a2 exp [−5(

x− xc
xc

)2], (8)

with the specific parameter values the same as in Garnier et al. [2008, 2010], in order to make
the results comparable: a0, the depth at the shore boundary is set to 0.25 m, a1 = 2.97 m,
β1, the shore slope coefficient close to the shore, has a value of 0.075 and β2 = 0.0064 the
offshore slope coefficient. Furthermore, the longshore bar is located at xc = 80 m, with an
amplitude of a2 = 1.5 m. This profile is morphologically steady.

symbol description value

Hydrodynamics
Currents:
ρ water density 1024 kg m−3

κ velocity decay parameter 3
Lx offshore domain length 250 m
Ly longshore domain length 2000 m

Waves:
H0
rms imposed wave height at x = Lx 1 m

T imposed wave period 6 s
θ0 imposed angle of wave incidence at x = Lx variable
γb wave breaker index 0.6
cd bottom friction coefficient 0.01
Sediment
h(t = 0) initial perturbation 0.02 m
z0 roughness length 0.06 m
d50 sediment size 0.00025 m
p bed porosity 0.4
s relative sediment density 2.65
γ bedslope parameter 5
Numerics
∆y grid size in longshore direction 10 m
∆x grid size in offshore direction 5 m
∆t time step 0.05 s
Moac morphological acceleration factor 90

Table 1: List of model parameters.
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Therefore, at the start of a model run, a random initial bottom perturbation with an ampli-
tude 0.02 m has been imposed over the entire domain in order to trigger growth of sandbars.
The domain is defined as 0 ≤ x ≤ Lx = 250 m and 0 ≤ y ≤ Ly = 2000 m, divided by grid
cells of (∆x,∆y) = (5,10) m. The time step is set to ∆t = 0.05 s, the morphodynamics
are accelerated with a factor 90. Every model run, a total of 6×106 time steps has been
executed, which equals 312.5 days of real time evolution. Furthermore, bedslope parameter
γ is given the value of 5 and wave breaker index γb that appears in the formulation of εbr
[Thornton and Guza, 1983], has been set to 0.6. The roughness length, a parameter in the
parametrisation of α [Soulsby , 1997], is chosen to be 0.06 m, all as in Garnier [2006]. For all
experiments, H0

rms = 1 m with a period T of 6 s.
An overview of all model parameters can be found in table 1.

3.2 Experiments

In order to finally be able to obtain the main objective, the following experiments have been
conducted of which the names can be found in table 2.

First of all, the basic state is analysed, i.e., the state at which the bottom evolution has been
turned off. This has been done for several constant angles of wave incidence, namely for nor-
mal wave incidence θ0 = 0◦ and oblique incidence, θ0 = 4◦, 10◦. This experiment is denoted
as ’case0’. From this experiment, it is possible to check the behaviour of the hydrodynamics.

In the reference case or ’case1’, θ0 = 0◦ (constant normal wave incidence) and bottom evolu-
tions are allowed. Together with ’case2’ in which constant oblique wave angles are imposed,
model results can be compared to results of Garnier et al. [2008] to verify the model setup.
Specifically, in ’case2i’ , θ0 has been set to values of -2◦, +1◦, 2◦, 3◦, 4◦, 5◦, 6◦, 7◦ and 8◦,
starting with small perturbations from the initial bed level.

Also in experiment ’case2m’, the angle of wave incidence is held constant in time. The runs
begin with sandbars that were formed for θ0 = 0◦. Constant oblique angles of wave incidence
of θ0 = -2◦, +2◦, 4◦, 6◦ and 8◦ are imposed. The main focus for this case is the time for
which the formed mature sandbars at θ0 = 0◦ adapt to the new angle of wave incidence.

This time will subsequently be used to estimate the period of the imposed periodically varying
wave angles in case3:

θ0 = θ0max sin(ωvart) + θ00, (9)

where θ0max denotes the amplitude of the variation, θ00 the average of the wave incidence and
ωvar = 2π/Tvar the angular frequency, with Tvar the period of the variation. In experiment
’case3Tj’ several runs will be done for Tvar = 7 days, 28 days, 56 days, 112 days and 224 days
with θ0max = 2◦. In experiment ’case3Aj’, Tvar will be held constant to 28 days with ampli-
tudes θ0max of 0.5◦, 1◦, 2◦,4◦,6◦ and 8◦. Here ’j’ denotes the mean angle of incidence: j = 0, 2
and 4, resembling θ00 = 0◦, 2◦ and 4◦. The analysis of this case will directly form the answer
to the objective of this study and therefore answer the main question.
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name of run description

case0 basic state: hydrodynamical model run for θ0 = 0◦, 4◦ and 10◦.

case1 reference case: constant normal wave incidence from initial perturbation

case2i constant oblique incidence from initial perturbation,
θ0 = -2◦, +1◦, 2◦, 3◦, 4◦, 5◦, 6◦, 7◦, 8◦.

case2m constant oblique incidence from mature bars,
θ0 = -2◦, +2◦, 4◦, 6◦, 8◦.

case3Tj periodically changing wave incidence from initial perturbation.
for θ00 = 0◦, 2◦, 4◦(denoted with j = 0, 2, 4 respectively),
forcing periods Tvar = 7, 28, 56, 112, 224 days are imposed,
all with an amplitude θ0max = 2◦.

case3Aj periodically changing wave incidence form initial perturbation.
for θ00 = 0◦, 2◦, 4◦(denoted with j = 0, 2, 4 respectively),
forcing amplitudes , θ0max = 0.5◦, 1◦, 2◦,4◦,6◦, 8◦ are imposed,
all for a period of Tvar = 28 days.

Table 2: List of model run names. Here θ0 is the imposed angle of wave incidence, Tvar
the period of the imposed angle of wave incidence in case of periodically changing θ0 with
amplitude θ0max. The mean angle of wave incidence is denoted as θ00 in these cases.

3.3 Global analysis

In order to analyse the results of the experiments described in section 3.1, global analysis of
bottom perturbation h is used, following Garnier [2006]:

||h|| = ( h2 )1/2. (10)

This is the root-mean-square height of the bottom perturbation or mean deviation from the
initial bed level, 1

2
||h||2 is consequently defined as the potential energy density as in Vis-Star

et al. [2008]; Garnier et al. [2010]; Castelle and Ruessink [2011]. In equation 10, h2 is the
domain wide averaged square of h, calculated as

h2 =
1

LxLy

∫ Lx

0

∫ Ly

0

h2 dxdy. (11)

It is also convenient to define

σ =
1

||h||2
d

dt
(
1

2
||h||2), (12)

which represents the global growth rate of the bottom perturbations.
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3.4 Fourier transformation

To analyse the typical spacing of the sandbars, further analysis of h is applied. For each time
t an alongshore transect of h at x = 50 m is taken, analysed by means of a discrete Fourier
transform:

H(kl) =

Ny∑
j=1

h(50, yj) exp(−i 2π
Ny

(j − 1)(l − 1)). (13)

In this expression, H(kl) is the Fourier coefficient corresponding to wave number kl = 2π(l−1)
Ly

,

Ny = Ly/∆y and yj = j∆y, where j, l = 1, 2, 3, ..., Ny. The absolute value of H(kl), |H(kl)|,
is interpreted as the height of the sandbars corresponding to kl. The wave number kl corre-
sponds with wave length λl by λl = 2π/kl, where λl = Ly/(l− 1), the wave length of mode l
[Garnier , 2006].
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4 Results

4.1 Basic state properties

The basic state is defined as the state of the system without any initial perturbation. This
state is morphologically steady, i.e., no bed level deviations occur. Furthermore, this state
gives insight in currents and wave behaviour of the model and is longshore uniform. In
figure 5, the behaviour of hydrodynamic quantities in the offshore direction are shown after
the model has been spun up for angle of wave incidence of θ0 = 0◦ (blue), θ0 = 4◦ (orange)
and θ0 = 10◦ (green). The figure for zb clearly denotes the existence of the longshore bar at
x = 80 m. At this bar, waves decrease in height (see Hrms), since their wave energy is lost
due to breaking and friction revealed by a local maximum of ε = εbr + εfr, the wave energy
dissipation rate. Besides, the water level rises at the longshore bar and near the coast, as zs
denotes. For normal wave incidence, the wave direction θ is not influenced by the existence
of the longshore bar, however, refraction is noticed for 4◦ and 10◦. Moreover, for these non
zero wave angles, a longshore current v is observed, highest values of 0.3 m s−1 for θ0 = 10◦

at the longshore bar and near the coast, where the wave height decreases to 0 m.

Figure 5: Dependence of basic state variables on cross-shore distance x of a single barred
beach with a longshore bar at x = 80 m. Here, no bed level deviations are taken into account.
In the left column, from top to down: Hrms, the significant wave height, v, the current in
the y−direction, and θ, the wave angle. At the right hand side: zs, the mean sea level, zb,
the bed level and ε, the wave energy dissipation due to wave breaking and friction near the
bottom. Wave refraction (declining θ) and dissipation (declining Hrms) at the longshore bar
are clearly observed.
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Figure 6: Pattern of bed level deviations h [m] in filled contours with on top, shown as the
white arrows, the currents for the equilibrium situation of the reference case at t = 312.5 days.
After 80 days of modelled time, these patterns were observed to be constant for the rest of
the model run. Strongest offshore currents are observed for the most negative values of h
(rips), which is characteristic for rip current systems.

4.2 Reference case: normal incidence

In case of normal wave incidence with allowed bed level deviations h, h (the filled contours)
is shown in figure 6 after 312.5 days of modelled time together with characteristic currents
(white arrows). The biggest offshore currents are observed at locations for most negative
values of h, i.e., rips, while onshore currents are mostly present for the most positive values
of h (shoals). In figure 7, the evolution of ||h||, the mean deviation from the initial bed level,
in time is shown. As ||h|| starts to increase, the global growth rate σ is positive and forms
a maximum in time, which is called the linear regime as in Garnier et al. [2010]. Hereafter,
nonlinear effects cause a reduction of the growth rate, and saturation of the sandbars takes
place: ||h|| grows until a new dynamical equilibrium is reached: the saturated state. In terms
of σ, the state is called saturated when σ(t) ' 0 for the first time after the linear regime.
When σ = 0 for all times, the state is denoted as the equilibrium state. The time ti is the
time at which the saturated state is reached and is equal to 21 days for constant normal wave
incidence, the equilibrium situation is reached after 80 days of modelled time.

The wave length of the dominant mode, which is the mode for which |H(kl)| has a maximum,
is denoted by l = m. Explicitly to mention is λm, the dominant wave length or the dominant
longshore spacing between shoals. In the saturated state, the bars reach their dominant
spacing λm of 200 m, but still are not in a steady equilibrium: ||h|| still varies (figure 7).
Moreover, sandbars still have not been adapted to a final shape, the entire system has still
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Figure 7: Results for constant normal wave incidence, the reference case. (a) Global growth
rate σ of the bottom perturbations versus time. The maximum of σ denotes the linear regime
of the system. The saturation process is the process in which the growth decreases. The first
time σ becomes 0 after initial growth, the system reaches its saturated state. For σ(t) = 0
constant in time, the system is in equilibrium [Garnier et al., 2010]. (b) Time series of ||h||,
the mean deviation from the initial bed level.

dynamical features. To visualise this, h(x = 50 m, y, t) is shown in figure 8. After t ≈ 20 days,
bars arise at x = 50 m for every y. A total of 11 bars has been formed then, but their height
varies slightly in time which can be seen from the occasional more yellow parts for individual
rips in time. Around t = 50 days, y = 1000 m, it appears that two rips form a single new
rip for the shoal in between has been vanished. After the system is adapted to this new
situation of 10 bars within the domain, h(x = 50 m, y, t) keeps more or less constant in
time: the equilibrium state. Up to small differences due the use of a slightly different initial
perturbation, these results are similar to the results of Garnier et al. [2008].
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Figure 8: Filled contour plot for h(x = 50 m, y, t) [m] for constant normal wave incidence, the
reference case. At every t, a transect at x = 50 m is taken for h. Marked are the beginning of
the saturated state (left white line) and the equilibrium state (right white line), as in figure 7.
Within the saturated state, two rip channels merge and the shoal in between vanishes. In
the equilibrium state, no changes occur.

4.3 Case 2: constant forcing with oblique incidence

4.3.1 Case2i: from initial perturbation

Time series of ||h||, the mean deviation from the initial bed level, for different offshore angles
of wave incidence θ0 are shown in figure 9a. In particular, results for θ0 = 2◦, 4◦, 6◦ and 8◦

are shown and will be discussed in detail. The more oblique the wave incidence, the longer
it takes to reach the saturated state. For 2◦ (green line, black is the reference case), it is
reached after 24 days and for 4◦ (blue) after 39 days. For θ0 = 6◦ (red), σ does not reach zero
after the growth has started within the modelled time, for 8◦(orange) no bar development is
observed at all. The bars that do develop, migrate along the shore with a speed that increases
with increasing θ0: c = 11 m day−1 for 2◦, c ≈ 20 m day−1 for 4◦ and c ≈ 33 m day−1 for
6◦ at the end of the model run. The dominant spacing λm increases with increasing θ0 with
λm = 200 m, λm = 250 m and λm ≈ 285 m for θ0 = 2◦, 4◦, 6◦ respectively. In contrast to
normal wave incidence, for oblique incidence, the equilibrium state is never reached. As can
be seen for 4◦ in figure 9b, (but this also holds for 2◦), during the entire model run, the bars
widen and narrow. Even after 300 days of modelled time, at y ≈ 1000 m, a bar vanishes
and two rips merge. In general, the shoals are skewed in the direction of the current and are
narrower in the y-direction compared to the reference case.

Interestingly, ||h|| is bigger for 2◦ than for 0◦ whereas ||h|| is smaller for 4◦. Using all
experiments, the dependence of ||h|| with respect to θ0 is plotted in figure 10 (solid black
line): ||h|| has a maximum for θ0 = 3◦, which is in agreement with Garnier et al. [2008].
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(a) (b)

Figure 9: Results for case2i, constant forcing with oblique angle of wave incidence θ0. (a) Evo-
lution in time of ||h||, the mean deviation from the initial bed level. Black denotes the ref-
erence case (θ0= 0◦). In green: θ0 = 2◦, blue: θ0 = 4◦, red: θ0 = 6◦ and in orange θ0 = 8◦.
For θ0 = 6◦ it takes much longer to reached a saturated state, for θ0 = 8◦ no sandbars are
observed at all. (b) Filled contour plot for h(x = 50 m, y, t) [m] for θ0 = 4◦. Bars migrate
alongshore and change in form through time.

Figure 10: Dependence of ||h|| for different values of constant angle of wave incidence θ0 for
case2i (growth from initial perturbation, solid black) and case2m (growth from existing bar
patterns, dashed black). As in Garnier et al. [2008], the maximum of ||h|| is observed at
θ0 = 3◦ in case2i.

4.3.2 Case2m: from mature sandbars

Figure 11a shows time series of ||h|| for different θ0. In each case, the initial state is a pattern
of mature sandbars that resulted from normal wave incidence. For every non zero θ0, directly
after the change the bars decrease compared to the reference case (dashed black line). For
2◦(green), growth of ||h|| takes over within 3 days and eventually ||h|| becomes higher than
the reference case. This is also the case for 4◦(blue). For 6◦(red) it takes much longer for
the growth to overtake the initial decrease of ||h||, for 8◦(orange) no growth is observed at
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all. The mean heights ||h|| of the sandbars in equilibrium are shown in figure 10 (dashed
line). Since this behaviour directly after the start of the model run in ||h|| and so in σ, is
different than for a model run from initial perturbation, the typical time scale ti cannot be
used. In order to provide insight in the time it takes the system to adapt to a new angle of
wave incidence, an adjustment time ta is used instead and is defined as the time at which σ
has a minimum after its global maximum.

For θ0 = 2◦, ta is equal to 15 days, for 4◦, ta = 26 days, ta = 73 days for 6◦ and for 8◦, no
adjustment time is found since only decay is observed. For 2◦ and 4◦, the bars keep steady in
time for the entire model run (figure 11b). The bars migrate longshore with c = 9 m day−1,
23 m day−1 for 2◦ and 4◦ respectively and 32 m day−1 for θ0 = 6◦, so both ta and c increase
with increasing θ0. Regarding the preferred wavelength λm, it turns out that λ = 200 m for
both θ0 = 2◦ and θ0 = 4◦. For θ0 = 6◦, λ ≈ 285 m as it was for 6◦ from initial perturbation.

(a) (b)

Figure 11: Results for case2m. For the first 150 days, constant normal forcing was used
and sandbar patterns formed. After that, a constant oblique angle of wave incidence θ0 was
imposed. (a) Time evolution of ||h||. The dashed black line denotes the reference case for
the first 150 days. The different constant angles of wave incidence which were imposed after
150 days are denoted by the solid lines with in green: change to θ0 = 2◦ , blue: θ0 = 4◦,
red: θ0 = 6◦ and in orange θ0 = 8◦. For θ0 = 8◦, existing bars break fully down. (b) Filled
contour plot for h(x = 50 m, y, t) [m] after the change of wave angle to 4◦. Bars migrate
alongshore but remain their shape in time.
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(a) θ00 = 0◦, θ0max = 2◦ (b) θ00 = 4◦, θ0max = 2◦

Figure 12: Results for case3T, periodic forcing with several periods Tvar. Upper images show
the time evolution of ||h||. Middle images show the time evolution of the longshore migration
c. Lowest images show the imposed angle of wave incidence θ0 at the offshore boundary. In
green: Tvar = 7 days, blue: Tvar = 56 days and Tvar = 224 days (red). Amplitudes of the
variation θ0max= 2◦ with in case of (a): a mean wave direction of 0 ◦ (black) and (b) a mean
of 4◦ (black). Specific behaviour of ||h|| depends on Tvar and θ00.

4.4 Case 3: time dependent periodic forcing

4.4.1 Case3T: varying the forcing period

For case3T, a sinusoidally varying angle of wave incidence θ0 was imposed. This was done with
an amplitude of the variation of θ0max = 2◦, for on average normal incidence (θ00 = 0◦; case3T0),
for θ00 = 2◦(case3T2), and for θ00 = 4◦(case3T4). For every case, several periods of the varia-
tion were imposed: Tvar = 7 days, 28 days, 56 days, 112 days and 224 days. For case3T0 and
case3T4, typical results of the time evolution of ||h||, the mean deviation from the initial bed
level and time evolution of the longshore migration c, for short (Tvar= 7 days, green), middle
(Tvar= 56 days, blue) and long (Tvar= 224 days, red) periods are shown in figure 12. The
solid black line denotes the constant forcing corresponding to the mean of the periodic forcing.
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(a) (b)

(c)

Figure 13: Analysis of the properties of ||h|| after initial growth as function of forcing period
Tvar based on experiments with different mean values of variation in angle of wave incidence
θ00 (case3T). In black, θ00 = 0◦, green: θ00 = 2◦ and blue: θ00 = 4◦. (a) The difference between
the average value of ||h|| as result of time varying forcing and the average value of ||h|| from
constant wave forcing (case2i) is shown as function of Tvar. (b) For several Tvar, the difference
between the maximum observed value of ||h|| in case3T and the maximum expected value of
||h|| based on case2i is shown. (c) The difference between the highest and lowest observed
value of ||h|| after initial growth for case3T. For different values of θ00, the properties of ||h||
behave differently.

In case of θ00 = 0◦, values of ||h|| are on average roughly the same as the reference case for
which the wave incidence was constantly held normal to the coast. The longshore migration
of the bars varies sinusoidally with a maximum of c = 11 m day−1, the same value as for
constant forcing with θ0 = 2◦. For Tvar = 112 days, 224 days this does not hold: the variation
in c is not purely sinusoidally and the amplitude declines with larger Tvar.

For variations with a non zero mean, so for θ00= 2◦ (case3T2), 4◦ (case3T4), c varies±20 m day−1,
±34 m day−1 respectively for all Tvar, with exception of Tvar = 7 days for θ00= 4◦. In that
particular case, the variation is relatively small with c = ±28 m day−1 as is shown in fig-
ure 12b.

A further look into the behaviour of ||h|| is given in figure 13. In figure 13a, the difference
between the average value of ||h|| as result of time varying forcing and the average value of
||h|| from constant wave forcing (case2i) is shown as function of Tvar. Figure 13b shows the
difference between the maximum value of ||h|| for time varying forcing and the theoretical
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maximum value expected based on constant forcing as in figure 10. For example, for wave
angles varying with 2◦ around 4◦, it is expected that the maximum value of ||h|| is the value
of ||h||(θ0 = 3◦) from constant forcing, since for this angle of wave incidence, the highest bars
were observed. Figure 13c shows the difference between the minimum and the maximum
value of ||h|| after initial growth.
Furthermore, not only the mean, maximum and amplitude are analysed, also the phase of
the oscillation in ||h|| with respect to the forcing oscillation is analysed: in figure 14, the
response of ||h|| with respect to angle of wave incidence θ0 is shown with time t as parameter
for the case with zero mean. For figures of the other cases with non zero means, see figure 19
and figure 20 in appendix A.

(a) Tvar= 7 days (b) Tvar= 28 days

(c) Tvar= 56 days (d) Tvar= 112 days

Figure 14: Response of ||h|| with respect to the forcing with angle of wave incidence θ0 with
time t as parameter for the case with zero mean (θ00= 0◦, amplitude θ0max= 2◦) and different
forcing periods: Tvar = 7 days, 28 days, 56 days and 112 days. The blue dashes denote a
time interval of 2.5 days. Maximum values of ||h|| are observed at different θ0 for different
Tvar.

In figure 13 is shown in case of zero mean (black lines; case3T0), that for small Tvar, ||h|| is
on average slightly larger than the reference case, the maximum value is lower and the am-
plitude relatively small. From figure 14, the minimum values of ||h|| are observed at θ0 = 0◦

and the maximum values for θ0 = 2◦, which is the same as expected from constant forcing.
For Tvar = 28 days, 56 days, the mean of the variation is considerably higher than for con-
stant normal forcing, the maximum in ||h|| is higher than the theoretical maximum and the
variation in ||h|| has a bigger amplitude than for shorter Tvar. The maximum of ||h|| is ap-
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proximately observed at θ0 = 0◦ instead of at 2◦ as one would expect from constant forcing.
For longer periods, the mean of ||h|| compared to Tvar = 28 days, 56 days is lower, as is the
maximum of ||h||. However, the amplitudes of ||h|| are bigger. The maxima are however
observed near θ0 = 2◦, as expected.

For case3T2 (green lines), the mean ||h|| of this variation is slightly lower than ||h|| for
constant θ0 = 2◦ at Tvar = 7 days, 28 days, 56 days. The maximum exceeds the expected
maximum in this range. The amplitude of the variation is the biggest for a period of 28 days.
In case of Tvar = 7 days, the maximum is around 2◦-3◦, consistent with constant normal wave
incidence, for Tvar = 28 days, 56 days, the maximum is however observed at θ0 = 0.5◦, 1.5◦

respectively.
For Tvar = 112 days, 224 days, the mean of the oscillation is higher than for 28 days, 56 days,
but the maximum value of ||h|| and the amplitude are lower. The maximum is observed
again between θ0= 2◦ and 3◦.
In case3T4 (blue lines), these features are approximately the same, however magnified and
for Tvar = 56 days, 112 days, the mean of the oscillation in ||h|| is higher the mean of the con-
stant forcing of 4◦. Thereby, the maximum of ||h|| is observed is at 6◦ in case of Tvar = 7 days
instead of the expected 3◦. Also for Tvar = 28 days, the maximum is not located near 3◦ but
near 2◦. For Tvar of 56 days and 112 days, the maximum tends to 3◦ again.

For the longshore migration c the biggest longshore migrations speeds occur for most oblique
angles of wave incidence θ0, which is expected based on the finding that c scales with θ0 for
constant oblique wave incidences. Plots for c versus θ0 are shown in figure 21 in appendix A
for case3T0. Since this behaviour is equal for non zero mean angles of wave incidence, these
cases are not explicitly shown.

4.4.2 Case3A: varying of the amplitude

In case3A, time varying angles of wave incidence were imposed with amplitudes of θ0max of
0.5◦, 1◦, 2◦, 4◦, 6◦ and 8◦ for averages of the variation of θ00 = 0◦, 2◦ and 4◦. Period of the
variation Tvar is 28 days for all runs. Part of the results are shown in figure 15. The solid
black lines denote the constant mean of 0◦, 4◦ respectively. Green denotes θ0max = 1◦, blue
θ0max = 4◦, red θ0max = 8◦. The bigger the amplitudes in forcing, the bigger the amplitudes in
||h|| but not for too big amplitudes, for θ0max = 8◦ on top of θ00 = 4◦, no growth is observed
at all. The longshore migration speed c scales with θ0max as well. For zero mean variations in
angle of wave incidence, c varies with ±10 m day−1 for θ0max = 2◦, ±20 m day−1 for θ0max = 4◦

up to ±40 m day−1 for θ0max = 8◦. In case of non zero mean, c is observed up to ±53 m day−1

in case of θ00 = 2◦, θ0max = 8◦ and ± 56 m day−1 for θ00 = 4◦, θ0max = 6◦.

As in figure 13 for case3T, the characteristics of ||h|| in case3A are further shown in figure 16.
Analysis of the response of ||h|| with respect to the variation in θ0 is shown in figure 17. For
variations with zero mean, for amplitudes θ0max = 0.5◦, 1◦, the mean of ||h|| after the initial
growth is similar to constant normal forcing. The maximum is lower than the expected max-
imum value of ||h||, the amplitude is relatively small. The maximum value of ||h|| is found
at time the wave forcing angle is normal to the coast.
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(a) θ00 = 0◦, Tvar= 28 days (b) θ00 = 4◦, Tvar= 28 days

Figure 15: Results for case3A, periodic forcing with different amplitudes (θ0max) of the angle
of wave incidence for averages of θ00 = 0◦(a) and θ00 = 4◦ (b). The upper figures are evolution
in time of ||h||, the mean deviation from the initial bed level. The solid black lines denote the
constant mean of 0◦, 4◦ respectively. Green denotes θ0max = 1◦, blue θ0max = 4◦, red θ0max =
8◦. The bigger the amplitudes in forcing, the bigger the amplitudes in ||h||. For θ0max = 8◦

on top of θ00 = 4◦ however, no growth is observed at all.

For amplitudes θ0max = 2◦, 4◦, the mean is higher and the maximum exceeds the expected
value from constant forcing. For an amplitude of 4◦, the maximum value is found between 2◦

and 3◦ as expected. This is also true for θ0max = 6◦, but at θ0max = 8◦ the maximum is found
at θ0 = 5◦. For both amplitudes, the mean is lower than the mean for constant normal wave
incidence and also the maximum value of ||h|| is lower, however the amplitude of the varying
response in ||h|| keeps growing.

In case of variations around a non zero mean, for every amplitude, the mean of the variation
in ||h|| is lower than the constant forcing in the case of a mean of 2◦. Only for θ00 = 4◦, in the
case of θx = 0.5◦, 1◦, the mean is higher than constant forcing. The bigger the amplitude in
the wave direction, the lower the mean of ||h|| is. The maximum keeps below the theoretical
maximum is case of a mean wave direction of 2◦ with amplitudes of 6◦ and 8◦ and for a mean
of 4◦ with amplitudes of 4◦ and 6◦.
The response of ||h|| with respect to the variation in θ0 as figure 17 for non zero means, is
shown in figure 22 and figure 23 in appendix A. For amplitude changing around θ00 = 2◦, for
amplitudes of θ0max = 0.5◦, 1◦, 2◦, the maximum of ||h|| is around 1◦ and for an amplitude
of 4◦, around −1◦. Expected however are maximum values at θ0 = 3◦ based on results for
constant wave forcing. Also for larger amplitudes differences from what is expected are ob-
served, e.g. θ0max = 6◦, the maximum is around θ0 = 2◦. Most remarkable is the case for
θ0max = 8◦, in which the maximum of ||h|| is located at θ0 = 7◦. For the constant forcing
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case, not any value of ||h|| was found at 7◦. The same is true for case4A4, where for variation
of 6◦ was found at θ0 = 7◦. For bigger variations, no value of ||h|| was found, which is in
agreement with the constant forcing case. For the other variations, all maximum values of
||h|| were found at lowest values of θ0.

For the response of longshore migration c with respect to θ0, no other behaviour is found than
for experiment case3T. To summarise all results, whether the period of the varying angle of
wave incidence or the amplitude is changed, the resulting response of ||h|| is different than
expected based on the results of the constant forcing cases, either in height of the sandbars
or in corresponding wave direction at which the highest bars arise.

(a) (b)

(c)

Figure 16: Features of ||h|| resulting from case3A in which different amplitudes of varying
angles of wave incidence θ0 are investigated, with a period of Tvar= 28 days and mean values
of θ0 of 0◦, 2◦ and 4◦. The same features of ||h|| as in figure 13 are shown, however, now
the different features of ||h|| are shown as functions of the amplitude. Again, for different θ0,
different behaviour of the features of ||h|| is observed.
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(a) θ0max = 0.5◦ (b) θ0max = 1◦

(c) θ0max = 2◦ (d) θ0max = 4◦

(e) θ0max = 6◦ (f) θ0max = 8◦

Figure 17: Response of ||h|| with respect to the forcing with angle θ0 with time t as parameter
for the case with zero mean (θ00= 0◦), period Tvar= 28 days with different amplitudes. The
blue dashes denote a time interval of 2.5 days. Maximum values of ||h|| are observed at
different θ0 for different θ0max.
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5 Discussion and outlook

5.1 Choice of forcing periods

For the experiments with sinusoidally varying angles of wave incidence, the results of case2m
were used. Case2m was the case in which a change to another constant angle of wave inci-
dence was imposed after 150 days of normal wave incidence. Results showed that for a change
from a constant wave forcing of 0◦ to 2◦, an adaptation time ta of approximately 15 days
was found. In a sinusoid oscillation of θ0 with an amplitude of 2◦ and a period of Tvar, after
every Tvar/4, θ0 changes 2◦. Therefore the default value of the period Tvar,d was chosen to
be approximately 4ta with 56 days, because of the convenient fact that in the limit of faster
oscillations, Tvar,d/2 would be 28 days (monthly scale) and Tvar,d/8 = 7days, the weekly scale
on which crescentic bar patterns typically are observed [Lippmann and Holman, 1990]. The
limit of slow variations was consistently chosen for 2Tvar,d and 4Tvar,d respectively for more
theoretical insight.

Figure 18: Covariance (α2 + β2)1/2 with α and β covariances of the cosine of the wave data
and cos(ωt), sin(ωt) respectively, for different values of T = 2π/ω. Here, ω is the angular
frequency of measured angles of wave incidence. No significant peak is seen, so no typical
recurrence period for events of certain wave angles is found.

In order to estimate whether the imposed time scales for the wave forcing are comparable
to real situations, wave observational data for the North Sea have been used of the period
2003-2015. From this data, a selection has been made for wave directions belonging to wave
heights of 0.5 m - 1.5 m and wave periods of 4 s - 8 s, since this range is chosen in the
experiments.
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The directions were weighted with sine and cosine functions and averaged over time, via

α =
1

T

∫ T

0

cos(θ) cos(ωt)dt, (14)

β =
1

T

∫ T

0

cos(θ) sin(ωt)dt, (15)

where T here is the total time of the selected data and θ the wave directions from the dataset.
From these coefficients, the covariance is calculated as (α2 + β2)1/2 for several values of ω,
in order to investigate whether a certain ω corresponds to a typical recurrence frequency
of certain wave directions θ. Results of this analysis for ω corresponding to periods up to
T = 2π/ω = 50 days are shown in figure 18, the range in time for which crescentic bar systems
typically are observed. The maximal signal for T = 20 days is however not significant, so no
typical recurrence period for events of certain wave angles is found. In order to obtain a more
natural situation for simulating these systems, a real dataset as input can be used, including
storm events and variations in the significant wave height and period, which in present study
were held constant.

5.2 Differences with Castelle and Ruessink [2011]

The results of the experiments where the angle of wave incidence was varied around normal
wave incidence with different periods Tvar (case3T0) or different amplitudes θ0max (case3A0),
can be compared the study of Castelle and Ruessink [2011], since in that study the same
experiments were done- however with another model. In the present study, different results
were found. First of all, in case3T0, the values for ||h||, the mean deviation from the initial
bed level, all lie around ||h|| of the case with constant normal wave forcing. However, in
Castelle and Ruessink [2011], ||h|| is consistently lower for any periodical of wave forcing.
In case3A0, the amplitude of the response in ||h||| increases with larger forcing amplitudes
θ0max. In Castelle and Ruessink [2011], only the mean of ||h|| is affected.

To explain the differences, the differences in model setup have been identified. One difference
is the bathymetry of both studies. Morfo55 does not take the swash zone into account
(rigid coastline), where the model of Castelle and Ruessink [2011] has a variable coast line
implemented. Moreover, their basic bathymetry is shallower than the specific profile of Yu
and Slinn [2003], which is used in the present study. In order to match the profile of Castelle
and Ruessink [2011] the most, equation (8) has been modified to

z0b (x) = −a0 − β2x+ a2 exp [−10(
x− xc
xc

)2], (16)

with a0 = 0.25 m in order to prevent model overflow at the coast and β2 = 0.02 so that at
x = 500 m, the depth is 10.6 m. In Castelle and Ruessink [2011] the bar is located 90 m from
the level z0b = 0 m, which corresponds in equation (16) with xc = 77.5 m and an amplitude of
a2 = 1 m so that the bar depth is equal to 0.8 m. The grid size has been set to 10 x 10 m, over
the domain of 2000 m in y up to 500 m in x. The process was morphologically accelerated
by a factor 45, γ was set to 20.4 to prevent model instabilities. However, when variations
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in angle of wave incidence for several periods Tvar were imposed with this bathymetry, no
behaviour as in Castelle and Ruessink [2011] was found.

A second difference concerns the formulation of the sediment transport. In the present study
the sediment formulation of Soulsby [1997] is employed, but in Castelle and Ruessink [2011]
a formulation based on Bailard [1981] was used:

qi = αcr(|uBi|3uBi − γcrub
∂h

∂xi
), (17)

with uBi the total velocity at the bottom (consisting of the mean current vi at the bottom
and ub, the root-mean square orbital velocity at the bottom). In this expression, αcr and γcr
are called the stirring factor and the bed slope coefficient according to Castelle and Ruessink
[2011], however, dimensions differ with their counterparts α and γ in the present study.
Within equation (7), [α] = m and γ dimensionless, where [αcr] =s3 m−2, [γcr] = m3 s−3 in
order to match with the dimensions of qi: m2 s−1. Within the formulation of Soulsby [1997],
stirring coefficient α is variable or zero, depending on whether the total velocity at the bot-
tom is more than a certain critical current velocity, ucrit [Garnier , 2006]. In the formulation
of Castelle and Ruessink [2011], no critical velocity exists. Therefore it was checked whether
the absence of ucrit would affect the dependence of the equilibrium value of ||h|| for certain
constant oblique angles of wave incidence θ0, by turning ucrit = 0 within Morfo55. However
a same dependence of ||h|| on θ0 was found as in figure 10 i.e., as in the case with non zero
ucrit. First attempts to program the same sediment formulation of Castelle and Ruessink
[2011] into Morfo55 have not been succeed.

A third difference between the two models concerns the description of waves. Castelle and
Ruessink [2011] use the spectral wave model SWAN, which accounts for random waves with
multiple frequencies and directions. In contrast, Morfo55 assumes waves to have a narrow
spectrum with only one frequency and only one direction of propagation. However, imple-
mentation of the SWAN model into Morfo55 is not feasible.

To summarise, possible reasons for the different behaviour of the models are: the exclusion
of the swash zone in Morfo55, the different sediment transport formulation and a different
wave model. These reasons can be subject for research in the near future.

5.3 Physical interpretation for periodic forcing

To explain why in case of periodically changed angles of wave incidence θ0, the response
of the mean deviation from the initial bed level or mean height of the sandbars ||h|| does
not correspond with what is expected based on constant forcing, and moreover depends on
the period Tvar and amplitude θ0max of the varying forcing, it is important to consider the
adjustment time scale ta as determined in case2m (constant oblique wave angles on a mature
sandbar pattern from normal wave incidence), with respect to Tvar.
In particular, the behaviour of ||h|| in case of varying wave angles around θ0= 0◦ for sev-
eral Tvar (case3T0) is examined. Since in sinusoidal variation after Tvar/4 the maximum is
reached, τ , which is called is called the ’relative forcing period’, is defined as Tvar/4ta. Here τ
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explains the behaviour of the amplitude, the phase and the maximum value in the response
of ||h|||.

For small τ , the system and therefore ||h|| is too inert to keep up the fast variations in forc-
ing, hence the small amplitudes and the fact that the expected maximum based on constant
oblique forcing is not reached in case of Tvar = 7 days, for which τ ' 0.1.
For large τ , so Tvar >> ta, the system is capable to adapt to the changing forcing and ||h||
follows the changes in θ0, as if at any time t a constant forcing-situation exists. However, in
the particular cases of Tvar = 112 days, 224 days, ||h|| − θ0 plots of figure 14 do not show
exactly the same behaviour for constant forcing. However, τ is probably not big enough for
this limit to be fully applicable.
For intermediate values of τ , the period of the forcing variations is too long to have no
influence at all, but the variations are fast enough to prevent the sandbars to fully adapt.
Sandbars continue to grow even when the forcing is changed in the mean time, and ||h||
becomes higher than at constant forcing. In other words, phase differences occur between
the periodical behaviour in ||h|| and the forcing for Tvar = 28 days, 56 days: for certain
periodical forcing, observed values of ||h|| do not correspond to the actual forcing on specific
time t, but correspond to the forcing of earlier in phase.
This role of τ implies that depending the specific proportionality between the ability of adapt-
ing and the rate of change of the forcing, not all bar height controlling mechanisms come to
light as actual manifestations of certain bar heights, or with a certain delay.

For case3T2 (on average wave directions of 2◦), the same physical interpretation can be
found as for case3T0, since observations in figure 19 show the same behaviour as case3T0
in figure 14. For case3T4, observations were different. Also for amplitude variations, more
research is needed, since only for certain combinations of mean variations and amplitudes,
the system act as one would expect based on the value of τ .

Besides, this interpretation does not explain why even for the lowest or highest values of
Tvar, the mean of the variation in ||h|| is different from the value of ||h|| in case of constant
forcing and that the mean differs for different values of Tvar. This might be ascribed to the
nonlinearity of the terms that cause growth or decay of ||h||, which also can be subject for
further research.

5.4 Model limitations

As a remark to all of the above discussion on results, one has to bear in mind that all results
have been obtained by using a model, which has several limitations as Garnier [2006] has
pointed out, some of these already mentioned in section 5.2. In addition to these, the model
is highly dependent on the chosen value of γb and γ, for slightly other choices the model
became unstable. Refraction of wave incidence due to the new bed level topography was not
taken into account as well. Finally, the existence of a certain critical angle for above which
no growth of sandbars is observed, is not consistent with observations [Garnier et al., 2008].
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6 Conclusions

The main objective was to investigate the behaviour of the periodically changes in angle of
wave incidence not only with zero mean, but also with non zero mean, in order to answer
the research question.

For periodically variations in wave angle with zero mean, other features of the mean height
of the sandbars were found than in the study of Castelle and Ruessink [2011]. Since several
possible reasons have been investigated, the different behaviour of the two models might be
described to the exclusion of the swash zone in Morfo55, the difference in sediment descrip-
tion and the difference in the used wave model.

For periodically variations in wave angle, bars migrate in phase with the time-variant forcing,
but their mean height behaves differently than expected based on findings for constant wave
forcing. Mainly for variations with zero mean, it is found that the ratio of the time the system
needs to adapt to new types of wave forcing and the rate of change of the wave forcing can
explain most of these differences. For non zero mean, the specific behaviour is more complex
than for mean normal wave incidence and in some cases the expected behaviour based on
the ratio of adaptation time and forcing time was not observed, for which an explanation is
beyond the scope of this research.
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A Figures

(a) Tvar = 7 days (b) Tvar = 28 days

(c) Tvar = 56 days (d) Tvar = 112 days

Figure 19: Response of ||h||, the mean deviation from the initial bed level, with respect to
the forcing with angle θ0 with time t as parameter for non zero mean (θ00= 2◦, amplitude
θ0max= 2◦) and different forcing periods. The blue dashes denote a time interval of 2.5 days.
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(a) Tvar = 7 days (b) Tvar = 28 days

(c) Tvar = 56 days (d) Tvar = 112 days

Figure 20: Response of ||h|| with respect to the forcing with angle θ0 with time t as parameter
for non zero mean (θ00= 4◦, amplitude θ0max= 2◦) and different forcing periods. The blue
dashes denote a time interval of 2.5 days.
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(a) Tvar = 7 days (b) Tvar = 28 days

(c) Tvar = 56 days (d) Tvar = 112 days

Figure 21: Response of longshore current c with respect to the forcing with angle θ0 with
time t as parameter for the case with zero mean (θ00= 0◦, amplitude θ0max= 2◦) and different
forcing periods. The blue dashes denote a time interval of 2.5 days. The starting point of
these figures is at t = 2.5 days and is denoted with the blue dot.



A FIGURES IV

(a) θ0max = 0.5◦ (b) θ0max = 1◦

(c) θ0max = 2◦ (d) θ0max = 4◦

(e) θ0max = 6◦ (f) θ0max = 8◦

Figure 22: Response of ||h|| with respect to the forcing with angle θ0 with time t as parameter
for non zero mean (θ00= 2◦, period Tvar= 28 days) with different amplitudes. The blue dashes
denote a time interval of 2.5 days



A FIGURES V

(a) θ0max = 0.5◦ (b) θ0max = 1◦

(c) θ0max = 2◦ (d) θ0max = 4◦

(e) θ0max = 6◦ (f) θ0max = 8◦

Figure 23: Response of ||h|| with respect to the forcing with angle θ0 with time t as parameter
for non zero mean (θ00= 4◦, period Tvar= 28 days) with different amplitudes. The blue dashes
denote a time interval of 2.5 days.
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