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Abstract

We discuss the ground state of the Heisenberg spin- 1
2

chain in one dimension, considering nearest neighbor
interactions. In the thermodynamic limit the energy is calculated analytically in several ways. We start
by applying the Bethe ansatz to calculate the exact ground state energy of the XXX Heisenberg model.
Next we study small perturbations of the system around ∆ = 0, the parameter for the interaction in the
z-direction for the XXZ model, by applying time-independent perturbation theory. In addition we expand
an exact integral expression of the energy of the XXZ model around ∆ = 0 in the thermodynamic limit.
The results are compared to numerical solutions, which are obtained by means of exact diagonalization
up to twelve lattice sites. We find that for ten or more lattice sites the numerics agree well with the
expectation from the analytical calculations. Finally the concept of integrability is discussed in the
context of the Heisenberg model.
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Notation

Symbol Explanation

E0 Ground state energy.
E∞ Ground state energy in the thermodynamic limit.
L Number of lattice sites.
N Number down spins.
~ In this entire thesis ~ = 1.
a Lattice spacing. Also a = 1 in this thesis.
xk+1 Denotes site k + 1. This is equal to xk + 1, as a = 1.
↑ An up spin.
↓ A down spin.
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1 Introduction

Magnetism is caused by processes that take place on a microscopic level. To understand how magnetism arises
we must therefore understand the structure of an atom [1]. An atom consists of a nucleus and electrons,
which are in orbitals around the nucleus. Electrons have a characteristic called spin, which is a form of
angular momentum. It is a property which has a magnitude and a direction. Because of the spin, electrons
possess a magnetic moment, resulting in a magnetic field. The spin of an electron is pointed either upwards
or downwards. It is therefore usually illustrated as an arrow, which points from the north pole to the south
pole of the magnetic field induced by the magnetic moment. The orbitals of an atom are filled by electrons
according to Hund’s rules. In an atom each orbital can carry up to two electrons. This is because of the
Pauli exclusion principle, which tells us that a specific state can never be occupied by more than one fermion.
Therefore, if two electrons are in a single orbital, one of their spins must be pointed upwards and the other
must be pointed downwards. This way they have different spin quantum numbers, and thus are in different
states. Because of this their magnetic fields exactly cancel each other out. However, there are materials
that have atoms with orbitals that are not completely filled, and thus contain unpaired electrons. If these
electrons have spins in the same direction, then the magnetic fields of these electrons are not cancelled out,
creating a net magnetization. These materials are magnets. More specifically, a material of which the spins
of the unpaired electrons are aligned, is called a ferromagnet. Some objects are only magnetic when they are
exposed to an external magnetic field. In the absence of an external magnetic field, the unpaired electrons
of such an object are orientated in such a way that the total magnetic field is cancelled out. This is the
case when there is no magnetic ordering, and thus the unpaired spins are all orientated in random directions.
This is called a paramagnet. Another possibility is that neighboring spins have opposite directions, cancelling
out the total field. In this case there is magnetic ordering, but no net magnetic field. These materials are
called antiferromagnets. However, when either of these materials is exposed to an external magnetic field,
the spins of the unpaired electrons are aligned due to the external field, resulting in a net magnetization. A
few different types of magnets are shown in Figure 1, where the arrows represent the direction and magnitude
of the spins of electrons.

(a) Ferromagnet. (b) Ferrimagnet. (c) Antiferromagnet.

Figure 1: Different types of magnets.

In a ferrimagnet there are both up and down spins, but the magnitude of the moment in one direction is
smaller than the other, resulting in a magnetization in the direction of the larger moment. This can for
example happen when an object consists of different materials. We see that the ferromagnet and ferrimagnet
both have a permanent magnetization, as opposed to the antiferromagnet, where the total magnetization is
cancelled out. Most everyday magnets are either ferromagnets or ferrimagnets.
The Hamiltonian describing a magnetic material is of the following form

H = Jxy
∑
j

[Sxj+1S
x
j + Syj+1S

y
j ] + Jz

∑
j

Szj+1S
z
j .

This is known as the Heisenberg model. The ~S are the spin- 1
2 operators, and J is a coupling term related to

the overlap of orbitals of neighboring atoms. More specifically, J is an exchange integral, which originates
from quantum mechanics and Coulomb interaction. It describes both the antisymmetric quantum mechanical
exchange interaction between electrons, and the electromagnetic Coulomb interaction between electrons.
In two and three dimensions the model can be studied using mean field theory. This theory approximates
an interacting many-body system by averaging the interactions. A single particle is then considered in this
average field, reducing it to a simple one-body system. Though this theory does not provide exact results, it
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is used often to study phase transitions. For example, in two and three dimensions mean field theory can be
used to study the behaviour of a material around its critical temperature, TC . This is the temperature above
which the magnetic ordering in a material is lost. In other words, above this temperature, a magnet becomes
paramagnetic. In Figure 2 an ordered (ferromagnetic) and disordered (paramagnetic) phase are shown. The
temperature dependence of magnetization is illustrated in Figure 3, together with the two phases.

(a) Ferromagnet, T < TC . (b) Paramagnet, T > TC .

Figure 2: There is magnetic ordering below the critical temperature, TC . Above the critical temperature
there is no longer magnetic ordering.

T

M

TC

FM PM

Figure 3: A sketch of magnetization as a function of temperature. At the critical temperature, TC , magnetic
ordering is lost. The ferromagnetic (FM) and paramagnetic (PM) phases are shown.

The critical temperature is called the Curie temperature for ferromagnets, and the Néel temperature for
antiferromagnets. Magnetic ordering, the critical temperature, and mean field theory are discussed in more
detail in Chapter 33 of Reference [2].
In this thesis we focus on one-dimensional spin chains. What makes the one-dimensional system interesting
is that, in contrast with two and three dimensions, the one-dimensional system can be solved exactly. This
will be discussed in Section 2 of this thesis. The method to exactly solve this system, the Bethe ansatz, was
discovered by the German-American physicist Hans Bethe [3]. He is mostly known for his contribution in
the field of nuclear physics. One of his biggest accomplishments is the discovery of the reactions which fuel
a star. For this work he was awarded the Nobel Prize in 1967. However, before his work in nuclear physics,
he also worked on solid-state physics. In 1931 Hans Bethe developed the Bethe ansatz. He used this method
to find the exact solution to the one-dimensional antiferromagnetic Heisenberg model. See Reference [4] for
his original paper. Bethe hoped to solve Heisenberg model in two and three dimensions as well by using this
method. However, the Bethe ansatz failed in these cases. Later it was discovered that this is because the
Heisenberg model is not an integrable system for dimensions higher than one. The concept of integrability
is discussed in Section 6.
We will discuss the one-dimensional spin- 1

2 Heisenberg model using different methods. First, in Section 2,
the exact ground state energy in the thermodynamic limit of the XXX model is calculated analytically using
the Bethe ansatz. Then in Sections 3 and 4 we do both a perturbation theory in ∆ and an integral expansion
to find the ground state energy of the XXZ model in the thermodynamic limit. Next we study the systems
from a numerical perspective in Section 5. We solve the system numerically using exact diagonalization. The
results are then compared to the expectations from the analytical calculations. Finally, the integrability of
the one-dimensional Heisenberg model is discussed in Section 6.
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2 The Bethe ansatz

This section closely follows the calculations from Chapter 5, pages 137–155, of the book Quantum Physics
in One Dimension by Thierry Giamarchi [5]. The Bethe ansatz is a method used to analytically find exact
solutions of one-dimensional quantum models. It can be used in so-called integrable systems, which are
discussed in Section 6. Here it will be used to find the exact energy of the ground state of the one-dimensional
antiferromagnetic spin- 1

2 XXZ Heisenberg model. The Hamiltonian of such a model is of the form

H = Jxy
∑
j

[Sxj+1S
x
j + Syj+1S

y
j ] + Jz

∑
j

Szj+1S
z
j ,

=
J

2

∑
j

[S+
j+1S

−
j + S−j+1S

+
j ] + ∆J

∑
j

Szj+1S
z
j , (1)

where J is the coupling constant, which is related to the overlap of the orbitals between neighboring sites.
The parametrization Jxy = J, Jz = ∆J is used. Each lattice site contains a spin- 1

2 particle. These particles
can either have spin up (↑), or spin down (↓). This way each site creates a two-dimensional Hilbert space.
The total Hilbert space for a spin- 1

2 chain with L sites is then the tensor product of these Hilbert spaces,

creating a 2L-dimensional space, H = C2L

. The spin- 1
2 operators acting on lattice site j are notated by ~Sj

and are defined as

~Sj =
~
2
~σj ,

where ~σj are the Pauli matrices. Furthermore, S± = Sx±iSy. The operators S± are the spin raising/lowering
operators. These operators change the direction of the spin on the lattice site they act on. The spin raising
operator S+ changes the spin to an up spin, while the spin lowering operator S− changes the spin to a down
spin. For example, S+

j+1S
−
j changes the spin on site j to a down spin, and the spin on site j + 1 to an up

spin. However, if the spin on a site is already in the direction of the spin operator acting on that site, it gives
zero. In short:

S+ |↑〉 = 0,

S+ |↓〉 = |↑〉 ,
S− |↑〉 = |↓〉 ,
S− |↓〉 = 0.

The goal is to find the exact energy of the ground state of a spin- 1
2 chain with L lattice sites of which N are

down spins at arbitrary locations. Let us first consider an easier problem to get an idea of what the system
looks like.

2.1 Zero, one, and two down spins

The polarized state is defined as the state where all spins are up. This state is an exact eigenstate, since
S+
j+1S

−
j |↑↑〉 = 0. It is easy to see that in this case there are L pairs of two up spins. All of these spin pairs

contribute an energy of ∆J/4, adding up to a total energy of E = L∆J/4 for the polarized state.
Now let us consider the state where there is one down spin. The energy of an ↑↑ pair is ∆J/4 as above.
However, the energy of an ↑↓ pair is −∆J/4 which is an energy difference of −∆J/2 compared to the ↑↑ pair.
Since for the state with one down spin there are two ↑↓ pairs instead of two ↑↑ pairs, there is a total energy
difference of δE = −∆J compared to the polarized state. This results in the following Schrödinger equation

Hψ(x) =
J

2
[ψ(x− 1) + ψ(x+ 1)] + (E0 −∆J)ψ(x), (2)

where ψ(x) has a down spin at lattice site x. The first term on the right hand side describes the hopping
of the down spin to its neighboring sites. This term follows from the spin raising/lowering operators in
expression (1). Furthermore, the −∆J term describes the energy difference compared to the polarized state
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due to the presence of a down spin, and E0 is the energy of the polarized state. The Hamiltonian from (2)
can be diagonalized via

ψ(x) =
1√
L
eikx. (3)

Substituting the wavefunction of (3) into (2) we find

Hψ(x) =
J

2
(eik + e−ik)ψ(x) + (E0 −∆J)ψ(x),

= J

[
cos(k) +

∆L

4
−∆

]
ψ(x),

= Eψ(x).

The quantization of the momentum can be calculated from periodic boundary conditions (ψ(x) = ψ(x+L))
and is k = 2πn/L with n an integer. The solution for the system with one down spin is

ψ(x) =
1√
L
eikx,

E = J [cos(k)−∆] +
∆JL

4
,

k =
2πn

L
, where n ∈ Z.

Next let us look at the state where there are two down spins. There are two ways the down spins can be
distributed. This is shown in Figure 4. If the down spins are on adjacent lattice sites they will interact.
However, if they are further away from each other they will not be able to interact, since only nearest neighbor
interaction is taken into account.

a)

b)

Figure 4: The two different cases in the presence of two down spins. a) the two down spins are far away from
each other. b) the two down spins are adjacent and therefore there are two up-down pairs instead of four.

When the down spins are not adjacent it is possible to describe the situation as two particles with momenta
k1 and k2 that scatter when they get close to each other. After scattering the particles are far away and
have momenta k3 and k4. From conservation of energy and momentum it follows that for two scattering
particles the momenta should either be conserved (k1 = k3, k2 = k4) or exchanged (k1 = k4, k2 = k3). The
wavefunction for two separated down spins is then

ψ(x1, x2) = αei(k1x1+k2x2) + βei(k1x2+k2x1). (4)

The allowed momenta can be determined by imposing periodic boundary conditions on this wavefunction as
follows

ψ(x1, x2) = ψ(x2, x1 + L),

α = βeik1L = βe−ik2L, (5)

k1 + k2 =
2πn

L
, where n ∈ Z.

Furthermore, this implies the condition that α/β = eik1L = e−ik2L. This shows that the parameter α/β has
an influence on how k1 and k2 are quantized. Since this is due to interactions between the two down spins,
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it shows that the presence of more down spins affects the allowed values of the momentum k.
In the case of two separated down spins their individual wavefunctions (4) will be a solution to the Schrödinger
equation in any case. This is true because we only take into account nearest neighbor interactions, so the
Hamiltonian H can act on the wavefunctions of both down spins independently. However, for two adjacent
down spins, as shown in Figure 4b, one must take into account the fact that the down spins cannot jump
onto one another. Also, since the two down spins are adjacent, there are two ↑↓ pairs and one ↓↓ pair due to
the presence of the down spins. The energy of a ↓↓ pair is the same as that of an ↑↑ pair, so the difference in
energy to the polarized state is δE = −∆J , the same as when there is only one spin down. The Schrödinger
equation is

Hψ(x, x+ 1) =
J

2
[ψ(x− 1, x+ 1) + ψ(x, x+ 2)] + (E0 −∆J)ψ(x, x+ 1). (6)

The first term describes the hopping of the down spin at position x to the left, and at position x+ 1 to the
right. The second is the energy difference to the polarized state. We want the Schrödinger equation to be
equal to the one for an individual down spin (2) for any positions x1 and x2 of the down spins. This is not
the case when the down spins are adjacent. Taking the difference between (6) and (2) gives the following
term

−J
2

[ψ(x, x) + ψ(x+ 1, x+ 1)] + ∆Jψ(x, x+ 1), (7)

where the term proportional to J/2 describes the hopping between two adjacent down spins. We want the
wavefunction of (4) to satisfy the Schrödinger equation regardless of the positions x1 and x2 of the down
spins. This can be accomplished by choosing α and β such that the difference term (7) is equal to zero.
Plugging the wavefunction (4) into the difference term (7) and setting equal to zero gives

J

2

[
αei(k1+k2)x + βei(k1+k2)x + αei(k1+k2)(x+1) + βei(k1+k2)(x+1)

]
= ∆J

[
αei(k1x+k2(x+1)) + βei(k1(x+1)+k2x)

]
,

Jei(k1+k2)x
[
(α+ β)

(
1 + ei(k1+k2)

)]
= 2∆Jei(k1+k2)x

[
αeik2 + βeik1

]
,

(α+ β)
(

1 + ei(k1+k2)
)

= 2∆
(
αeik2 + βeik1

)
,

α
(

1 + ei(k1+k2) − 2∆eik2

)
= β

(
2∆eik1 − ei(k1+k2) − 1

)
,

α

β
= −

2∆eik1 −
(
1 + ei(k1+k2)

)
2∆eik2 −

(
1 + ei(k1+k2)

) .
Using the relation 2 cos(θ) = eiθ + e−iθ this can be rewritten as

α

β
= −

∆ei(
k1−k2

2 ) − cos
(
k1+k2

2

)
∆ei(

k2−k1
2 ) − cos

(
k1+k2

2

) . (8)

Now we have found the value for α/β for which the wavefunction of (4) is the full wavefunction of the problem
with two down spins. For real k1 and k2 this can be written as a phase

α

β
= −eiΘ(k1,k2),

with

Θ(k1, k2) = 2 arctan

(
∆ sin

(
k1−k2

2

)
∆ cos

(
k1−k2

2

)
− cos

(
k1+k2

2

)) . (9)

By substituting α/β into the quantization of (5) we get

ei(k2L+Θ(k1,k2)) = −1,

ei(k1L−Θ(k1,k2)) = −1,
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which gives

Lk1 = 2πI1 + Θ(k1, k2), (10)

Lk2 = 2πI2 + Θ(k2, k1),

where we used Θ(k1, k2) = −Θ(k2, k1). Both I1 and I2 are half-integers. These relations show that due to
the presence of two down spins the allowed values for the momenta k1 and k2 are shifted. In particular we see
that the shift in the momentum of one spin depends on the momentum of the other spin through Θ(k1, k2).
By plugging the correct value for α/β into the wavefunction of (4) we can write the wavefunction as

ψ(x1, x2) = e
i
(

Θ(k1,k2)
2 +k1x1+k2x2

)
− ei

(
−Θ(k1,k2)

2 +k1x2+k2x1

)
.

For k1 = k2 we find Θ(k1, k2) = 0. This means that in this case the wavefunction ψ(x1, x2) = 0. Hence we
need k1 6= k2 to find a solution. From (9) it is easy to see that Θ(k1, k2) = 0 when ∆ = 0. Thus in this case,
if k1 6= k2, the solution is simply a plane wave with independent momenta.

2.2 N down spins

Now that these simpler cases have been discussed we are ready to move on to the general case. Let us
consider a system with N down spins at positions x1 < x2 < . . . < xN . As shown in Figure 5 we again make
a distinction between the case where there are no adjacent down spins, and the case where there are two
down spins adjacent. If the down spins are not adjacent it can be treated analogous to the case of only one
down spin, as there are only nearest neighbor interactions. Therefore, one can expect a Schrödinger equation
similar to that of (2), but generalized for N down spins.

a)

b)

xk xk+1

Figure 5: The loss of two up-down pairs due to the presence of a down-down pair. a) the system with
N non-adjacent down spins (antiferromagnetic case). b) two out of N down spins are adjacent, creating a
down-down pair while losing two up-down pairs.

In the N non-adjacent down spins case there are 2N ↑↓ pairs. This is an energy difference of δE = −∆NJ
compared to the polarized state. The kinetic term, describing the hopping of down spins, can be extended
to the general case by introducing the finite difference operator δi as

δiψ(. . . , xi, . . .) = ψ(. . . , xi − 1, . . .) + ψ(. . . , xi + 1, . . .),

and using the notation {xi} = x1, x2, . . . , xN for the locations of the down spins. The term describing the
hopping of the spins then becomes

J

2

N∑
i=1

δiψ({xi}).

The Schrödinger equation now is

Hψ({xi}) = J

[
1

2

N∑
i=1

δiψ({xi})−
(

∆N − ∆L

4

)
ψ({xi})

]
= Eψ({xi}).
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Setting J = 1 to lighten notation and swapping terms this becomes

εψ({xi}) =
1

2

N∑
i=1

δiψ({xi}), (11)

where ε = E + ∆
(
N − L

4

)
. The ∆L/4 term is the energy of the polarized state and E is the eigenvalue for

the energy.
We have now found an expression for the Schrödinger equation for N separated down spins. Our goal is now
to tweak this expression so that it holds for arbitrary locations of the down spins. To do so, let us again first
consider a simpler case. Namely where only 2 out of N spins are adjacent on positions xk and xk+1, as shown
in Figure 5b. Similar to the case of two adjacent down spins, this will give rise to two differences compared
to the state without any adjacent down spins. Firstly, the energy difference compared to the polarized state
will be different due to the presence of a ↓↓ pair. Secondly, the neighboring down spins impose a restriction
in movement of the spins, as down spins can not move to one another.
We begin by discussing the change in energy. When two down spins are adjacent both of them have a ↓↓
bond with one another, and thus both lose an ↑↓ pair. This means that there is now one ↓↓ pair and only
2N − 2 ↑↓ pairs instead of 2N ↑↓ pairs, as shown in Figure 5. The energy of a ↓↓ pair is the same as that of
an ↑↑ pair. So, relative to the polarized state where all spins are up, the ↓↓ has no contribution to the energy
difference. From before, the energy difference between an ↑↓ pair and an ↑↑ pair is −∆J/2. This means that
the total energy difference compared to the polarized state is δE = (−∆J/2)(2N − 2) = −∆NJ + ∆J .
The restriction in movement of the spins is represented by an extra kinetic term describing the displacement
of the adjacent down spins.
Similar to the case where there are only two down spins, we find

εψ(. . . , xk, xk + 1, . . .) =
1

2

N∑
i 6=k,k+1

δiψ(. . . , xi, xi + 1, . . .) (12)

+
1

2
[ψ(. . . , xk − 1, xk + 1, . . .) + ψ(. . . , xk, xk + 2, . . .)] + ∆ψ(. . . , xk, xk + 1, . . .).

Recall that the −∆N part of the energy difference term is already included in ε. From this we learn that
whenever a spin down has a neighbor which is a spin down, the term describing the displacement to that site
disappears, and an interaction term is gained. This gives an understanding of what the Schrödinger equation
looks like when there are more adjacent down spins.
We will now generalize the wavefunction of (4) for two down spins to the case of N down spins by looking
for a wavefunction of the form

ψ(x1, . . . , xN ) =
∑
P

AP exp

i N∑
j=1

kPjxj

 , (13)

where P are all permutations of the index N of the down spins and AP are coefficients (similar to α and β).
In the exponent the momenta are permuted amongst the down spins. Looking for such a wavefunction is the
actual ansatz of the Bethe ansatz. Just like in the earlier case of two down spins, we have two Schödinger
equations. One for seperated spins (11), and one where there are two adjacent down spins (12). And again we
can determine the coefficients (now AP ) such that the two Schrödinger equations become identical. Namely
by setting the difference between the two equations to zero. This gives

2∆ψ(. . . , xk, xk + 1, . . .) = ψ(. . . , xk + 1, xk + 1, . . .) + ψ(. . . , xk, xk, . . .), (14)

where the terms on the right hand side describe the hopping between two adjacent down spins. To solve this
it is useful to define another permutation P ′ which only differs from P by exchanging two adjacent elements,
meaning P ′(k) = P (k + 1).
Now we fill in (x1, . . . , xl + m,xl + n, . . . , xN ) in (13) as arbitrary positions of down spins, with m and n
some integer. This gives

ψ(. . . , xl +m,xl + n, . . .) =
∑
P

AP exp

i N∑
j 6=l,l+1

kPjxj + kPl(xl +m) + kPl+1(xl + n)

 ,
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which can be rewritten using P ′(k) = P (k + 1) to

ψ(. . . , xl +m,xl + n, . . .) =
∑
P

AP exp

i N∑
j 6=l,l+1

kPjxj

 ei(kPl+kP ′l)xlei(mkPl+nkP ′l).

Using the fact that P and P ′ differ only by one transposition this can be written as

ψ(. . . , xl +m,xl + n, . . .) =
∑
P

′
exp

i N∑
j 6=l,l+1

kPjxj

 ei(kPl+kP ′l)xl (15)

×
(
AP e

i(mkPl+nkP ′l) +AP ′e
i(mkP ′l+nkPl)

)
,

where
∑′

P is a summation over half of the permutations. The other half of the permutations is included in
the extra term proportional to AP ′ .
It is now possible to determine the coefficients AP for which the difference term (14) is zero by plugging in
our expression for the wavefunction (15). Note that the left hand side term of (14) requires m = 0, n = 1
while the terms on the right hand side require m = n = 1 and m = n = 0 respectively. This gives

2∆
(
AP e

ikP ′k +AP ′ e
ikPk

)
= (AP +AP ′)

(
ei(kPk+kP ′k) + 1

)
.

By separating terms this is easily rewritten to

AP
AP ′

= − 1 + ei(kPk+kP ′k) − 2∆eikPk

1 + ei(kPk+kP ′k) − 2∆eikP ′k
= −e−iΘ(kPk,kP ′k), (16)

with Θ(kPk, kP ′k) as defined in (9). To determine the coefficients AP from this we fix the permutation
P ′ = (12 . . . N). Next we use the fact that any permutation can be written as a product of adjacent
transpositions (permutations of two adjacent elements). Each of the transpositions of which P consists
contributes one factor of (16). We obtain

AP
A12...N

= (−1)ηP ei
∑

Θ(kj ,kl),

where ηP is the number of transpositions of which permutation P is composed, and the summation is over
these transpositions. Note that the minus sign in the exponent is gone. This is because the sequence of
transpositions is not important due to the antisymmetry of Θ(kj , kl). Next we calculate the allowed values
of the momenta k from the periodic boundary condition

ψ(x1, x2, . . . , xN ) = ψ(x2, . . . , xN , x1 + L).

Plugging this into the wavefunction of (13) we obtain(
AP
AP ′

)
eikP ′1L = 1. (17)

Here P ′ is a permutation that follows from shifting all elements of permutation P one place to the right:

(P ′1, P ′2, . . . , P ′N − 1, P ′N) = (PN,P1, P2, . . . , PN − 1).

The ratio AP /AP ′ can now be obtained by permuting PN to the right such that (PN,P1, P2, . . . , PN−1) 7→
(P1, P2, . . . , PN − 1, PN). This corresponds to the permutation (123 . . . N), which can be decomposed into
(12)(23) . . . (N − 1 N). This consists of N − 1 transpositions of adjacent elements. Using this together with
(16) we find

AP
AP ′

= (−1)N−1 exp
(
i
∑

Θ(kPk, kP ′k)
)
.
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Together with (17) this gives

(−1)N−1 exp

i N∑
j=1

Θ(kj , kl)

× exp (ikPlL) = 1.

Note that there are two different cases for even and odd N . Solving this equation gives

Lkl +

N∑
j=1

Θ(kj , kl) = 2πIl.

After renaming l 7→ i and using the antisymmetry condition Θ(ki, kj) = −Θ(kj , ki) this results in

Lki = 2πIi +

N∑
j=1

Θ(ki, kj), (18)

where Ii is integer when N is odd, and Ii is half-integer when N is even. Only solutions with ki 6= kj are
allowed, as the wavefunction of (15) is equal to zero when ki = kj . Looking back at the results for two down
spins, it is clear that (18) is a generalization of the simpler case. Furthermore the energy is given by

E =
∆JL

4
+ J

∑
j

[cos(kj)−∆]. (19)

We now have found the equations to describe the system of L lattice sites with N down spins on arbitrary
locations.

2.3 Parametrization of the functions

To simplify the following calculation, we set ∆ = 1. Now we are going to calculate the exact energy of the
ground state of the isotropic antiferromagnetic case, the XXX model. To do so we use the parametrization

k = k̄ + π,

λ = −1

2
tan
(
k̄/2
)
.

The equations (18) and (19) now become

2πĪi = 2L arctan(2λi)−
∑
j

2 arctan(λ− λj),

E0 =
L|J |

4
− |J |

∑
j

[1 + cos
(
k̄
)
],

where Īi is integer if L and N have opposite parities, and half-integer if L and N have the same parity. The
parity of an integer is the property of being either even or odd. Furthermore, we use the absolute value of
J . This is because this parametrization works not only for the isotropic antiferromagnet (J > 0), but also
for the isotropic ferromagnet (J < 0). To solve the equation we define the function

φ(λ) = 2L arctan(2λi)−
∑
j

2 arctan(λ− λj),

where φ(λ) is an increasing function of λ. Since the range of the arctangent is [−π2 ,
π
2 ], we see that the

function φ(λ) varies between −φ0 and φ0, where φ0 = π[L−N ]. This means that the equation φ(λi) = 2πĪ
has L−N solutions, as it goes through 2π[L−N ] values (from −φ0 to φ0) with steps of 2π times a
(half-)integer. Of these solutions, only N are occupied. The rest are called holes. If there are any holes
present, they are ordered in such a way that the total energy of the system is minimal. Let us now consider
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a chain where there are no holes present. Also we assume zero net magnetization, hence N↑ = N↓ = L/2.
Note that this requires L to be even. As the solutions of φ(λi) = 2πĪ are regularly spaced, it is possible to
define a density of states

ρ(λ) =
1

2π

dφ

dλ
. (20)

One can now rewrite φ(λ) in the thermodynamic limit

φ(λ) = 2L arctan(2λ)− 2

∫ +∞

−∞
ρ(λ′) arctan(λ− λ′)dλ′.

Taking the derivative with respect to λ gives

2πρ(λ) =
4L

1 + 4λ2
− 2

∫ +∞

−∞
ρ(λ′)

dλ′

1 + (λ− λ′)2
. (21)

This integral can be solved by using the Fourier transform. It is useful to notice that the integral is a
convolution, so it is possible to apply the convolution theorem which is discussed in Appendix A. The integrals
from the Fourier transforms can be done by using the Residue theorem. The derivation and application of
the Residue theorem are discussed in more detail in Appendix B. Applying it here gives

ρ(λ) =
L

4π

∫ +∞

−∞

e−iωλ

cosh(ω/2)
dω.

We again apply the Residue theorem to find the value for the density of states

ρ(λ) =
L

2 cosh(πλ)
. (22)

Now that we have an expression for the density of states, it is possible to calculate the total energy of the
ground state. By using the parametrization k̄ = −2 arctan(2λ) we can rewrite our expression for the energy
from before as

E0 =
L|J |

4
− |J |

∑
j

2

1 + 4λ2
j

.

In the thermodynamic limit this is

E∞ =
L|J |

4
− |J |

∫
ρ(λ)

2

1 + 4λ2
dλ,

where we use the notation E∞ for the energy in the thermodynamic limit. Using the expression from (22)
we can solve this integral using the Residue theorem to find

E∞
L|J |

=

[
1

4
− ln(2)

]
≈ −0.44, (23)

where the sum over infinite poles which appears is calculated using Reference [6]. Now we have found an
expression for the exact energy per lattice site of the ground state of the XXX Heisenberg model. In Section
5 this result is compared to the numerical calculation of the system.
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3 Perturbation to the ground state

In the previous section we have determined the exact energy of the ground state of the XXX Heisenberg
model, so with ∆ = 1. Next we will discuss the XXZ model. Recall that the Hamiltonian of this system is

H =
J

2

∑
j

[S+
j+1S

−
j + S−j+1S

+
j ] + ∆J

∑
j

Szj+1S
z
j .

To avoid having to work with spin operators too much we will start by transforming the Hamiltonian.

3.1 Jordan-Wigner transformation

In order to discuss this model, we first map the spin operators in the Hamiltonian onto fermionic operators
by applying the Jordan-Wigner transformation. This transformation is discussed in more detail in
Appendix C. It is defined by

S+
i 7→ c†i e

iπ
∑i−1

j=−∞ c†jcj ,

S−i 7→ ci e
−iπ

∑i−1
j=−∞ c†jcj ,

Szi = c†i ci −
1

2
.

By applying this mapping the Hamiltonian becomes

H =
J

2

∑
j

[c†j+1cj + cj+1c
†
j ] + ∆J

∑
j

(
c†j+1cj+1 −

1

2

)(
c†jcj −

1

2

)
, (24)

where c† and c are the fermionic creation and annihilation operators, respectively. A spin down now corre-
sponds to a lattice site occupied by a fermion, while a spin up corresponds to a free site. These fermionic
operators create or annihilate a fermion on a specific site. For example, c†j creates a fermion on site j, while
cj annihilates a fermion on site j. Following this logic we can understand the first term of the Hamiltonian of
equation (24) effectively moves a fermion from site j to site j+1. The fermionic operators obey the following
algebra {

ci, cj
}

= 0,{
c†i , c

†
j

}
= 0,{

ci, c
†
j

}
= δij ,

which implies that if the creation operator works on a site which is already occupied it gives zero, c†jc
†
j = 0.

In other words, these anticommutation relations ensure that the Pauli exclusion principle is obeyed.

3.2 Perturbation theory

Now that we have expressed the Hamiltonian in terms of fermionic operators we are ready to discuss the
system. We will again consider a chain of L lattice sites, and assume there to be no magnetic field. This
effectively means that < Sz >= 0. In other words, half of all spins will be up, and half will be down. Or, in
terms of fermions, L/2 sites will be empty and L/2 sites will be occupied by fermions. Because of this L is
required to be even. We will discuss the system by applying time-independent perturbation theory in ∆ to
the ground state. In perturbation theory one considers an unperturbed Hamiltonian H0, to which one adds
a small perturbation, ∆H1. The whole Hamiltonian can then be expressed as

H = H0 + ∆H1,
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where ∆ is a parameter. Note that for ∆ = 0 one has the unperturbed case, which corresponds to the XX
Heisenberg model. In the case of the Hamiltonian from equation (24) it is easy to see that

H0 =
J

2

∑
j

[c†j+1cj + cj+1c
†
j ]

H1 = J
∑
j

(
c†j+1cj+1 −

1

2

)(
c†jcj −

1

2

)
.

We will start by calculating the ground state energy of the unperturbed Hamiltonian. To do so we first write
H0 in momentum representation by Fourier transforming it using the following identities

cj =
1√
L

∑
k

ake
ikxj ,

c†j =
1√
L

∑
k

a†ke
−ikxj ,

where a†k and ak are the fermionic creation and annihilation operators for momentum k, respectively. Similar
to the fermionic operators in real space, they obey the following algebra

{ak, ak′} = 0,{
a†k, a

†
k′

}
= 0,{

ak, a
†
k

}
= δkk′ .

Together with the identity for the Kronecker Delta,

δmn =
1

L

L∑
k=1

exp

(
2πik

L
(m− n)

)
,

the expression of H0 simplifies to

H0 = −J
∑
k

cos(k)a†kak,

where the sum is over all allowed momenta k. Let us first define the ground state as follows

|ψ0〉 =
∏
q

a†q |0〉 ,

where q = k1, k2, . . . , kL/2, and |0〉 is the vacuum. We take |ki| ≤ π/2. This creates exactly L/2 fermions
with the allowed momenta in the lowest energy states. We assume the momenta to be ordered, meaning
k1 < k2 < . . . < kL/2. To calculate the ground state energy of the unperturbed Hamiltonian we let it act on
the ground state

H0 |ψ0〉 = −J
∑
k

cos(k)a†kak
∏
q

a†q |0〉 .

We calculate this by commuting the annihilation operator ak through the string of L/2 creation operators
from the ground state, making use of the fermionic anticommutation relation

aka
†
q = δkq − a†qak.

As an annihilation operator acting on the vacuum gives zero, ak |0〉 = 0, one can see that what remains after
L/2 commutations is a sum of L/2 Kronecker deltas. Due to the fact that fermions obey anticommutation
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E(k)
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−π π

Figure 6: The dispersion of a single particle. In the ground state exactly the part from -π/2 to π/2 will be
occupied by fermions.

relations, the deltas have alternating signs. It follows that

H0 |ψ0〉 = −J
∑
k

cos(k)a†k

L/2∑
p=1

δkp(−1)p−1

∏
q 6=p

a†q |0〉 ,

= −J
L/2∑
p=1

cos(p)(−1)p−1a†p
∏
q 6=p

a†q |0〉 .

Note that the product of creation operators on the right is missing the a†p operator, which is in front of the
product. In order to rewrite the product of creation operators as the ground state we require the momenta
to be ordered. From the relation a†pa

†
q = −a†qa†p it is easy to see that placing a†p back in the correct order, one

gets an extra factor of (−1)p−1. This exactly cancels the minus signs from the anticommutation relations,
resulting in

H0 |ψ0〉 = −J
L/2∑
p=1

cos(p) |Ψ0〉 ,

E0 = −J
L/2∑
i=1

cos(ki). (25)

Changing the sum into an integral by taking the thermodynamic limit1 yields

E0 = −JL
2π

∫ π/2

−π/2
cos(k)dk,

= −JL
π
.

We have found the ground state energy of the unperturbed Hamiltonian in the thermodynamic limit. In
Figure 6 a single particle dispersion is plotted. In our case of the ground state, the L/2 fermions will occupy
the states in the domain [−π/2, π/2]. The next step is to calculate the first order energy shift, which is
E1 = 〈ψ0|H1 |ψ0〉. Similar to the unperturbed case, we first express H1, the Hamiltonian describing the
perturbation, in momentum representation

H1 = J

 1

L

∑
k1

∑
k2

∑
k3

∑
k4

ei(k4−k3)δk2+k4−k1−k3
a†k1

ak2
a†k3

ak4
− 1

2

∑
k5

a†k5
ak5
− 1

2

∑
k6

a†k6
ak6

+

L/2∑
i=1

1

4

 .
One can immediately recognize the second and third term as number operators with a prefactor. A number
operator counts how many particles there are in each state. Since we are working with fermions, this can

1In one dimension one can rewrite a sum into an integral in the thermodynamic limit as follows:
∑
k
L→∞−−−−→ L

2π

∫
dk



3 PERTURBATION TO THE GROUND STATE 15

only be either 0 or 1 for each site. As we know there are a total of L/2 fermions in the ground state, these
terms will both give L/2. Taking their prefactors into account they both are −L/4. Furthermore, the fourth
term has no operators and thus will simply be L/4. The first term, however, is more interesting. Let us
discuss this term separately by letting it act on the ground state. First we only take into account the four
operators, as they are the only interacting parts.

〈ψ0| a†k1
ak2

a†k3
ak4
|ψ0〉 = 〈0|

∏
q′

aq′
(
a†k1

ak2
a†k3

ak4

)∏
q

a†q |0〉 ,

= −〈0|
∏
q′

aq′
(
a†k1

a†k3
ak2

ak4

)∏
q

a†q |0〉+ δk2k3
〈0|
∏
q′

aq′
(
a†k1

ak4

)∏
q

a†q |0〉 .

This expression can be treated similar to the case of the unperturbed Hamiltonian. It quickly follows that
the second term is equal to zero. The main difference in the first term compared to the unperturbed case
is that this time there are two creation and annihilation operators. Commuting both annihilation operators
results in two summations of L/2 deltas, the second of which is restricted by the first. Important to note is
that we must make a distinction between two cases. Namely the cases where k1 < k3 and where k1 > k3.
The difference between them is that in the first case a†k3

commutes one time less when commuting it back
into the string of creation operators, resulting in a minus sign. Taking this into account, one finds

〈ψ0| a†k1
ak2

a†k3
ak4
|ψ0〉 = δk1k2

δk3k4
− δk1k4

δk2k3
.

Combining this result with the rest of the term gives

J

L

∑
k1

∑
k2

∑
k3

∑
k4

ei(k4−k3)δk2+k4−k1−k3 〈ψ0| a†k1
ak2

a†k3
ak4
|ψ0〉 ,

=
J

L

∑
k1

∑
k2

∑
k3

∑
k4

ei(k4−k3)δk2+k4−k1−k3
(δk1k2

δk3k4
− δk1k4

δk2k3
) ,

=
J

L

∑
k1

∑
k3

−J
L

∑
k1

∑
k2

ei(k1−k2),

=
JL

4π2

∫∫ π/2

−π/2
dk1dk3 −

JL

4π2

∫∫ π/2

−π/2
ei(k1−k2)dk1dk2,

=
JL

4
− JL

π2
,

where we changed the sums into integrals using the thermodynamic limit. Recall that we already concluded
the second and third term of H1 to contribute −L/4, and the fourth to contribute L/4. Adding all terms we
can find the first order energy shift in the thermodynamic limit.

E1 = 〈ψ0|H1 |ψ0〉 ,

= J

[
L

4
− L

π2
− L

4
− L

4
+
L

4

]
,

= −JL
π2

.

Combining this result with the one from the unperturbed case gives us the energy of the ground state per
lattice site in the thermodynamic limit

E∞
LJ

=
E0 + ∆E1

LJ
= − 1

π
− ∆

π2
.

Note that for ∆ = 0 we have E∞/LJ = −1/π as expected.
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4 Expansion around ∆ = 0

From [7] we have the following exact expression for the ground state energy of the XXZ Heisenberg model in
the thermodynamic limit

E∞
LJ

=
∆

4
− 1

4

sin2(2η)

π − 2η

∫ ∞
−∞

dλ

cosh
(

πλ
π−2η

)
cosh (λ+ iη) cosh (λ− iη)

, (26)

where ∆ = − cos(2η). To get an initial feel for how the ground state energy per lattice site depends on
the parameter ∆ we will do a first order Taylor expansion around ∆ = 0. Expressing η in terms of ∆ we
find η = 1

2 arccos(−∆). Expanding this around ∆ = 0 gives η = π/4 + ∆/2 + O(∆2). This means that
expanding to first order around ∆ = 0 is equivalent to expanding around η = π/4 + ∆/2. In order to find the
expansion of expression (26) we first expand the term in front of the integral around η = π/4 + ∆/2. This
gives 2/π + 4∆/π2 +O(∆2). Next we take the expansion of the integrand, also around η = π/4 + ∆/2, and
integrate it from −∞ to ∞. This yields 2 − 2∆/π + π∆/2. Combining the results and keeping only terms
up to first order in ∆

E∞
LJ

=
∆

4
− 1

4

(
2

π
+

4∆

π2

)(
2− 2∆

π
+
π∆

2

)
,

=
∆

4
− 1

π
+

∆

π2
− ∆

4
− 2∆

π2
,

= − 1

π
− ∆

π2
.

The intermediate steps of the expansion are mostly skipped as the expansion of the integrand is quite
complicated and does not provide much insight in the calculation. Note that the result of the expansion is
the same result as we obtained from the perturbation theory.

5 Numerical solutions

In Section 2 we analytically solved the XXX Heisenberg model. Then in Sections 3 and 4 we analytically
made approximations for the XXZ model. Next, we will consider the Heisenberg model from a numerical
perspective. To solve the system numerically we use exact diagonalization. The goal of exact diagonalization
is to find the eigenvalues of the Hamiltonian by simply diagonalizing it. This method is straightforward and
easy to use. A complication, however, is the fact that for a chain of spin- 1

2 particles with L sites the Hilbert
space is 2L-dimensional, and thus the Hamiltonian is a matrix of size 2L×2L. This means that diagonalizing
the Hamiltonian grows more complicated very quickly with increasing number of sites. However, as we only
consider nearest neighbor interactions, most of the terms in the matrix are equal to zero. This significantly
reduces the amount of input, allowing us to diagonalize the Hamiltonian for a reasonable amount of sites.

5.1 Exact diagonalization

5.1.1 XXX model

In Figure 7 the ground state energies obtained from exact diagonalization of the XXX model are plotted as
a function of L. Furthermore, the exact ground state energy from the analytics is shown twice. One only
taking into account first order corrections, and one taking into account corrections up to second order to the
thermodynamic limit [7]. We can see that for L = 4 the error is relatively big. However, for larger L the error
decreases rapidly and for L ≥ 10 the data from exact diagonalization is already in good agreement with the
analytical results. Furthermore it clearly shows that the larger L, the more the values grow to our analytical
result obtained from the Bethe ansatz in the thermodynamic limit (23).
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Figure 7: Ground state energies, E0, per lattice site in units of J for different number of lattice sites. The
results of the exact diagonalization (blue) are plotted. In addition the exact results in the thermodynamic
limit, E∞, are plotted with corrections up to first (red) and second (green) order taken from [7]. Note that
the dots are the results, and they are connected with lines as a guide to the eye. Furthermore the exact
energy of the ground state per lattice site in the thermodynamic limit is shown (black line).

Another representation of the data is shown in Figure 8. Plotted here is the difference between the result
from the analytics and the exact diagonalization for the same values of L as in Figure 7. Note that it is
plotted against 1/L2, meaning that L increases from right to left. One can see that as L increases, the results
from the exact diagonalization grow closer to what is expected from the analytics. From the corrections
to the thermodynamic limit of Reference [7] one would expect the slope of the fit to be π2/12 ≈ 0.822467.
However, the slope we find is 0.897516. This is a difference of almost 8.4%. Most likely this difference is
caused by the results for the lower numbers of L, as in Figure 7 we see that the results for L = 4, 6, 8 deviate
a lot from the exact results, compared to the results for L = 10 or higher. Taking into account only the
results for L = 10, 12 the slope of the fit is 0.838363. This is already much closer to the expected slope of
π2/12, confirming that the results for higher L are more accurate.
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Figure 8: Difference between the exact result in the thermodynamic limit, E∞, from Bethe ansatz and the
results from exact diagonalization, E0, with a fit through the points.
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5.1.2 XXZ model

For this model we plot the ground state energy obtained from exact diagonalization against ∆. We do this
for L = 12, which is the highest number of lattice sites our code can reach with reasonable computing time.
The results are shown in Figure 9, together with the exact values from the integral expression of (26).
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-0.50

-0.45

-0.40

-0.35

-0.30

Figure 9: Ground state energy as a function of ∆ obtained from exact diagonalization for L = 12 (blue dots),
and the values from the integral expression (26) of the ground state energy in the thermodynamic limit [7]
(red dots).

From the perturbation theory discussed before, we have an expectation of the ground state energy in the
thermodynamic limit for the ∆ = 0 case. This is E∞/LJ = −1/π. Furthermore, from the Bethe ansatz,
we have an analytically calculated expectation in the thermodynamic limit of the case where ∆ = 1. Recall
from (23) that this is E∞/LJ = 1/4− ln(2). In the following table we show for several values of ∆ both the
values of the exact diagonalization, E0, and the exact values from the integral expression from [7], E∞.

∆ E0/LJ E∞/LJ
0 -0.321975 -0.318310
0.25 -0.349413 -0.345180
0.50 -0.379773 -0.375000
0.75 -0.412955 -0.407659
1 -0.448949 -0.443147

One can see that already for L = 12 the results from exact diagonalization are close to the expectations
obtained from analytics.

5.2 Approximations

In Sections 3 and 4 we made two different approximations of the system. First we studied perturbations in
∆ in the thermodynamic limit. Then we did a first order expansion of the integral expression of the ground
state energy in the thermodynamic limit. Both of these approximations yielded the same result, namely

E∞
LJ

= − 1

π
− ∆

π2
.

In Figure 10 the values of the integral expression from (26) are plotted against ∆, together with the result from
the approximations. We immediately see that the error increases as ∆ increases, and that the approximations
are most accurate for ∆ close to zero. The relative error between the perturbation theory and the exact result
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Figure 10: Values from the integral expression (26) of the ground state energy in the thermodynamic limit
[7] (blue dots) plotted with the results from the first order expansion and perturbation theory (solid red line).

is plotted in Figure 11. One can see that the error roughly grows quadratically. This can be understood
from the fact that we only took into account factors of ∆ up to first order. Because of this the error is
expected to be of second order, so quadratic. For small ∆ (up to around ∆ = 0.1) the approximations are
most accurate. For larger ∆, however, the accuracy quickly decreases significantly. This is no surprise, as
perturbation theory is best applicable to systems with small perturbations only. However, even though the
error increases, there error is still only a little over 5% for ∆ = 1.
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Figure 11: A plot of the relative error. Calculated by taking the difference between the exact result and the
perturbation theory, and divide it by the exact result.
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6 Integrability of the system

In Section 2 we analytically solved the Heisenberg model using the Bethe ansatz. As mentioned in Section 1,
the reason this method works on this system is that the one-dimensional Heisenberg model is an integrable
system. A quantum system is said to be integrable if it has infinitely many non-trivial, mutually commuting,
conserved charges. This means that the one-dimensional Heisenberg model has infinitely many conserved
charges. In this section we discuss a heuristic technique to construct some of these higher order conserved
charges for the one-dimensional Heisenberg model, following the steps of Reference [8]. This method makes
use of a Boost operator B, which acts on the conserved charges as

[B,Hn] = Hn+1,

where H2 is the Hamiltonian of the Heisenberg model. The Hamiltonian and Boost operator then take the
form

H2 =
∑
j

hj,j+1,

B =
∑
j

jhj,j+1.

For example, in the case of the XXX Heisenberg model hj,j+1 = SjSj+1. However, for the moment we will
use the general expression of hj,j+1. We can now construct the first higher order conserved charge as follows

H3 = [B,H2] =
∑
i,j

i [hi,i+1, hj,j+1] .

As spins on different sites commute, one can see that this is only non-zero in the cases i = j−1 and i = j+1.
This gives

H3 =
∑
j

(
(j − 1) [hj−1,j , hj,j+1] + (j + 1) [hj+1,j+2, hj,j+1]

)
.

Next we rename j to j + 1 in the first term. This is allowed because the system is translationally invariant,
as we are discussing a lattice with periodic boundary conditions. Furthermore, we use the relation
[AB,CD] = − [CD,AB] in the second term.

H3 =
∑
j

(
j [hj,j+1, hj+1,j+2]− (j + 1) [hj,j+1, hj+1,j+2]

)
,

= −
∑
j

[hj,j+1, hj+1,j+2] .

As H3 is a conserved charge, it must commute with H2. This implies

[H3, H2] = −
∑
i,j

[
[hi,i+1, hi+1,i+2] , hj,j+1

]
= 0.

With a similar reasoning as before, one can see that this has non-zero terms for the cases i = j − 2,
i = j − 1, i = j, i = j + 1. This gives the following four terms∑

j

([
[hj−2,j−1, hj−1,j ] , hj,j+1

]
+
[

[hj−1,j , hj,j+1] , hj,j+1

]
+
[

[hj,j+1, hj+1,j+2] , hj,j+1

]
+
[

[hj+1,j+2, hj+2,j+3] , hj,j+1

])
= 0. (27)
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We can use the Jacobi identity2 to rewrite the first term as follows∑
j

[
[hj−2,j−1, hj−1,j ] , hj,j+1

]
= −

∑
j

([
[hj−1,j , hj,j+1] , hj−2,j−1

]
+
[

[hj,j+1, hj−2,j−1] , hj−1,j

])
,

where the last term is zero because spins on different sites commute. Shifting j to j + 1 in the other term,
we get

−
∑
j

[
[hj+1,j+2, hj+2,j+3] , hj,j+1

]
.

This exactly cancels the last term in expression (27). Finally, replacing j by j+ 1 in the second term of (27),
we get ∑

j

([
[hj,j+1, hj+1,j+2] , hj+1,j+2

]
+
[

[hj,j+1, hj+1,j+2] , hj,j+1

])
= 0.

Adding them together we obtain the following condition of commutativity

[H3, H2] =
∑
j

[
[hj,j+1, hj+1,j+2] , hj,j+1 + hj+1,j+2

]
= 0.

If this condition is satisfied, it means that H3 is a non-trivial conserved charge. Using hj,j+1 = SjSj+1 one
can easily show that this condition is satisfied for the XXX Heisenberg model. And thus for the XXZ model
as well, as the parameter ∆ does not influence the commutations. Furthermore we can prove the existence
of the next higher order conserved charge H4 = [B,H3] as follows

[H4, H2] =
[

[B,H3] , H2

]
.

Using the Jacobi identity again, we can write

[H4, H2] = −
[

[H3, H2] , B
]
−
[

[H2, B] , H3

]
= 0,

where we used the commutativity of H3 and H2, and the fact that [H2, B] = −H3. This shows that there
exists another conserved charge H4 which commutes with H2. Thus for the Heisenberg model we have found
the first higher order conserved charge H3, and following from the commutativity of H2 and H3 we have
proven the existence of the second higher order conserved charge H4. This already suggests that the one-
dimensional Heisenberg model might be an integrable system, which is of course known to be true. Though
we have not proven the existence of infinitely many conserved charges, this method does supply a quick and
relatively easy way to suggest the possible integrability of a system. Thus for the one-dimensional Heisenberg
model with nearest neighbor interactions we have shown that there are more conservation laws than just those
of momentum and energy. We will illustrate the significance of this by discussing an example. Consider a
two-particle scattering. Assuming both energy and momentum are conserved, one can solve this problem, as
you have two conservation laws and two unknowns. However, if it is a three-particle scattering, and there
are only two conservation laws, one cannot solve it. Thus to solve an N -particle scattering, one requires N
conservation laws. This explains why the Bethe ansatz only works for integrable systems. To be able to
solve an infinite spin- 1

2 chain with N down spins one needs infinitely many conservation laws, requiring the
system to be integrable. What one does by applying the Bethe ansatz, is taking these conservation laws, and
combining them into the Bethe equations to solve the system.

2
[
[A,B] , C

]
+

[
[B,C] , A

]
+

[
[C,A] , B

]
= 0
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7 Summary

We have discussed several properties of the one-dimensional spin- 1
2 Heisenberg model. First we analytically

calculated the exact ground state energy in the thermodynamic limit by using the Bethe ansatz. Then we
solved the XXZ model in the thermodynamic limit by studying small perturbations in ∆. In addition we
did an expansion of the integral expression of the energy in the thermodynamic limit of the XXZ model.
Both these methods yielded the same result. We solved the Heisenberg model numerically using exact
diagonalization. The results are discussed and compared to the different analytical results. We found that
for L = 10 and higher the numerical results agree well with the analytical results in the thermodynamic
limit. The accuracy of the perturbation theory and the expansion is discussed in a relative error plot. This
plot describes how well the perturbation theory and the expansion agree with the exact integral expression
from [7], as a function of ∆. We found that the error roughly grows quadratically, as expected in first
order perturbation theory. However, the error is still only slightly above 5% for ∆ = 1. Furthermore the
integrability of the one-dimensional Heisenberg model is discussed. A heuristic method to construct some of
the higher order conserved charges is discussed and applied, giving an initial feel of the integrability of the
one-dimensional Heisenberg model.

8 Outlook

There are several directions a further study could follow. In this thesis only nearest neighbor interactions
are discussed. In the future the interaction can be extended to next-nearest neighbor interactions. The
Hamiltonian can be extended to include next-nearest neighbor interactions as follows

H = J1

∑
j

~Sj+1
~Sj + J2

∑
j

~Sj+2
~Sj ,

where the term proportional to J2 describes the next-nearest neighbor interactions. One can look into how a
longer range interaction influences the interactions between spins. The entanglement of the spin-1

2 Heisenberg
model with next-nearest neighbor interaction is discussed in Reference [9]. Furthermore one can look into
the effect of next-nearest neighbor interactions on the integrability of the system. One will find that this
system is not integrable.
One can generalize the system by studying the anisotropic XYZ model, where all directions have different
interactions, Jx 6= Jy 6= Jz. In addition, one can introduce an external magnetic field. This adds an extra
term to the Hamiltonian, proportional to the external field h.
The numerical calculations in Section 5 are done up to number of lattice sites L = 12. Even though these
results were already close to the analytic results in the thermodynamic limit, the Mathematica code used for
the exact diagonalization can definitely be improved so that higher numbers of lattice sites can be reached.
This way the numerics will agree even more with the analytic results. One can also try a different numerical
approach, such as DMRG. This is a numerical method mostly used to solve one-dimensional many-body
quantum systems, and it can reach much higher numbers of lattice sites.
Furthermore, one can study the dynamics of the system. For example, what happens if you introduce a
perturbation on a specific site. An example of a technique to describe such a perturbation is spin wave
theory. This theory studies spin waves, which are disturbances that propagate through the lattice. More
information on the dynamics of the Heisenberg antiferromagnetic chain can be found in Reference [10].
Another possibility is to look at the Heisenberg model at finite temperature. This is known as the thermo-
dynamic Bethe ansatz. This way one introduces temperature dependence into the equations, making them
more complicated. Then, for example, the temperature dependence of observables such as the heat capacity
and the magnetic susceptibility can be studied.
One can also look further into the integrability. For example by constructing more higher order conserved
charges. Or, as mentioned before, one could work out the condition of commutativity in the case of next-
nearest neighbor interactions. In addition, one could study the proof of the existence of infinitely many
conserved charges. However, this involves the algebraic Bethe ansatz, which is rather complicated.
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A Fourier theory

For this appendix Chapters 14 and 15 of Reference [11] are used.
In physics one often works with motions that are periodic in time, such as oscillating objects. Fourier series
are a useful way to describe such motions. A Fourier series is the expansion of a function as a series of sines
and cosines.

f(x) =
a0

2
+

∞∑
n=1

an cosnx+

∞∑
n=1

bn sinnx,

where an and bn (n = 0, 1, 2, . . .) are coefficients defined by

an =
1

π

∫ 2π

0

f(x) cos (nx)dx,

bn =
1

π

∫ 2π

0

f(x) sin (nx)dx.

There are many different ways to describe a function. An advantage of using a Fourier series is that it can
also describe discontinuous functions.
As mentioned before, Fourier series are particularly useful in representing periodic functions. A function f(x)
with a period of 2π for example, can be expanded in series of functions with periods 2π/n with n = 0, 1, 2, . . ..
Furthermore, Fourier series can be used to solve both ordinary and partial differential equations, such as
motions induced by a periodic driving force. Using the Fourier series to expand the driving force gives a
fundamental term plus a series of harmonics. This is useful because one can now solve the differential equation
for each harmonic individually.
A disadvantage of Fourier series is that they require periodicity of the system to be useful. There is, however,
an extension of the Fourier series which can describe non-periodic functions over an infinite interval. This is
known as the Fourier transform and it is defined as

f̂(ω) =
1√
2π

∫ +∞

−∞
f(x)eiωxdx,

f(x) =
1√
2π

∫ +∞

−∞
f̂(ω)e−iωxdω,

where f̂(ω) is the Fourier transform of f(x), and ω is the variable in ω-space. The first expression is the
Fourier transform and the second is its inverse transformation. Important to note is that this transformation
works for a function of any variable. Position, x, is chosen as an example here. Just like the Fourier series,
the Fourier transform is a very useful tool to solve both ordinary and partial differential equations. This can
be demonstrated by considering the Fourier transform of the derivative

f̂1(ω) =
1√
2π

∫ +∞

−∞

df(x)

dx
eiωxdx, (28)

where the subscript indicates the order of the derivative. Integrating by parts and assuming that f(x) goes
to zero as x→ ±∞ gives

f̂1(ω) = (−iω)f̂(ω).

This result shows that the Fourier transform of the derivative of f(x) is equal to (−iω) times the Fourier
transform of the original function f(x). For higher order derivatives this generalizes to

f̂n(ω) = (−iω)nf̂(ω). (29)

Exactly this is the reason why Fourier transformation is useful to solve differential equations. By taking the
Fourier transform of an equation one can replace derivatives in the original space by a simple multiplication in
the transformed ω-space. This way it is possible to reduce partial differential equations to ordinary differential
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equations which are much easier to solve. The solution in the original space is then found by applying the
inverse Fourier transformation to the solution in ω-space.
To illustrate how this works, let us study the wave equation in one dimension using Fourier transform. This
is a partial differential equation describing the motion of waves. The equation is

∂2f(x, t)

∂x2
=

1

v2

∂2f(x, t)

∂t2
,

where x and t are position and time, respectively. And f(x, t) is a function of both of them. We Fourier
transform both sides, transforming from x-space to ω-space. This gives

1√
2π

∫ +∞

−∞

∂2f(x, t)

∂x2
eiωxdx =

1

v2

1√
2π

∫ +∞

−∞

∂2f(x, t)

∂t2
eiωxdx.

The left hand side is of the form of equation (28), but with a second order derivative. This means we can
simplify it using (29) for the second order. The right hand side is just the second order derivative with respect
to time of the Fourier transform of f(x, t). Together this simplifies to

(−iω)2f̂(ω, t) =
1

v2

∂2f̂(ω, t)

∂t2
,

where f̂(ω, t) is the Fourier transform of f(x, t). Note that we started with a partial differential equation
in x-space. By Fourier transforming we have reduced the problem to an ordinary differential equation in
ω-space. One can now solve the differential equation in ω-space using initial conditions, and then use the
inverse Fourier transform to find the solution in x-space.
Next we will discuss the derivation of another useful result following from the Fourier transform, the con-
volution theorem. Consider two functions f(x) and g(x) and their Fourier transforms f̂(ω) and ĝ(ω). The
convolution of f(x) and g(x) is defined as

f ∗ g ≡ 1√
2π

∫ +∞

−∞
g(y)f(x− y)dy.

We substitute the definition of the inverse Fourier transform for f(x− y) to find

f ∗ g =
1√
2π

∫ +∞

−∞
g(y)

[
1√
2π

∫ +∞

−∞
f̂(ω)e−iω(x−y)dω

]
dy.

Interchanging the order of integration yields

f ∗ g =
1√
2π

∫ +∞

−∞
f̂(ω)e−iωx

[
1√
2π

∫ +∞

−∞
g(y)eiωydy

]
dω.

Note that the part between brackets is the definition of the Fourier transform. We can write

f ∗ g =
1√
2π

∫ +∞

−∞
f̂(ω)ĝ(ω)e−iωxdω.

This result is known as the convolution theorem. It tells us that the Fourier transform of a convolution of
two functions is equal to the product of the Fourier transforms of the individual functions. This theorem is
applied in Section 2 to solve equation (21).
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B Complex analysis

The derivation of the Residue theorem is done following Chapters 6 and 7 of Reference [11].
The study of functions of complex numbers is called complex analysis. Though it has its roots in mathematics,
there are many applications which are extremely useful in physics. One of these is the Residue theorem, which
is a very effective method for solving difficult integrals. Not only in this thesis, but in physics in general
it is commonly used and therefore a derivation of the theorem will be supplied in this appendix. It is a
generalization of Cauchy’s integral formula, so this will be proven first.
A function f(z) is analytic at z = z0 if the function is differentiable at z = z0 and in a small region around
z0, where z0 is some point in the interior of the contour C. However, if the derivative of f(z) at z0 does not
exist, we call z0 a singularity or a singular point of f(z).
Let us consider a function f(z) which is analytic both in the interior and on the edge of a closed contour C
in the complex plane. We will now prove Cauchy’s integral formula, which is∮

C

f(z)

z − z0
dz = 2πif(z0).

Note that the integrand is not analytic if z = z0 unless f(z0) = 0. To fix this we can deform the contour
C in such a way that the singular point z0 is excluded by a second circular contour C2. We can now apply
Cauchy’s integral theorem, which in this case states∮

C

f(z)

z − z0
dz −

∮
C2

f(z)

z − z0
dz = 0.

Now we can express the integral over C2 in polar coordinates since this contour is circular. Writing
z = z0 + reiθ and dz = ireiθdθ yields∮

C

f(z)

z − z0
dz −

∮
C2

if(z0 + reiθ)dθ = 0.

Taking the limit r → 0 gives ∮
C

f(z)

z − z0
dz = if(z0)

∮
C2

dθ = 2πif(z0).

This result is Cauchy’s integral formula. It shows that the value of f(z) at some point z0 in the interior of
C can be calculated if the boundaries of the contour are known.
Next we will deduce the Laurent series. To do this we start by applying Cauchy’s integral formula. This
time we consider a circular contour, centered around z0, with radius R with a hole in it with a smaller
radius r. To connect the boundary of the inner circle to that of the outer one we draw two more circular
contours in the interior and connect these. We label these C1 and C2 with radii r1 and r2 respectively, where
r < r2 < r1 < R. A sketch of the contours is given in Figure 12. By drawing these contours we have created
one simply connected region and this allows us to apply Cauchy’s integral formula

f(z) =
1

2πi

∮
C1

f(z′)

z′ − z
dz′ − 1

2πi

∮
C2

f(z′)

z′ − z
dz′,

where z is some point in the interior of the contours, and z′ are points on the contours C1 and C2, and f(z)
is again an analytic function in and on the domain. Next we rewrite the denominators as follows

f(z) =
1

2πi

∮
C1

f(z′)

(z′ − z0)− (z − z0)
dz′ − 1

2πi

∮
C2

f(z′)

(z′ − z0)− (z − z0)
dz′.

Now we can use the geometric series 1/(1− x) =
∑∞
n=0 x

n (for |x| < 1) to rewrite the integrals. To do so we
take out a factor of z′ − z0 in the denominator in the integral over C1. However, for C2 it holds that z′ < z,
so to be able to use the geometric series in this integral we take out a factor of z − z0 in the denominator.

f(z) =
1

2πi

∮
C1

f(z′)

(z′ − z0) [1− (z − z0)/(z′ − z0)]
dz′ − 1

2πi

∮
C2

f(z′)

(z − z0) [(z′ − z0)/(z − z0)− 1]
dz′.
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C2C1
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r1

r2

r

z
z′(C2)

z′(C1)

z0

Figure 12: Sketch of the contours C1 and C2, creating a simply connected region.

Applying the geometric series in both integrals we get

f(z) =
1

2πi

∞∑
n=0

(z − z0)n
∮
C1

(z′ − z0)−n−1f(z′)dz′ +
1

2πi

∞∑
n=0

(z − z0)−n−1

∮
C2

(z′ − z0)nf(z′)dz′.

The next step is shifting the summation by replacing n with n− 1 in the second term, which results in

f(z) =
1

2πi

∞∑
n=0

(z − z0)n
∮
C1

(z′ − z0)−n−1f(z′)dz′ +
1

2πi

∞∑
n=1

(z − z0)−n
∮
C2

(z′ − z0)n−1f(z′)dz′.

Finally we change n to −n in the second series so we can add the two terms together to find

f(z) =

+∞∑
n=−∞

an(z − z0)n,

where z0 are singular points and the coefficients an are

an =
1

2πi

∮
C

f(z′)

(z′ − z0)n+1
dz′.

This is known as the Laurent expansion of f(z). Laurent expansions are generalizations of Taylor expansions
in the presence of singularities. The Residue theorem can be found by integrating over the terms of a Laurent
expansion. Consider a Laurent expansion of some function f(z) =

∑+∞
n=−∞ an(z − z0)n. We integrate over a

closed contour which contains a singular point z0 of f(z). For each term except for n = −1 this gives

an

∮
(z′ − z0)ndz′ = an

(z′ − z0)n+1

n+ 1

∣∣∣∣z
z

= 0.

However, if n = −1 the integral yields

a−1z0

∮
(z′ − z0)−1dz′ = a−1z0

∮
idθ = 2πia−1z0

,
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Figure 13: Sketch of contour C.

where we again used the polar coordinates z′ = z0 + reiθ, dz′ = ireiθdθ to rewrite the integral. Combining
the two gives the full expression for the integral of f(z)∮

f(z)dz = 2πia−1z0
.

The coefficient a−1z0
is called the residue of f(z) at z0. This can be done for any singular point zj enclosed

by a contour C. Generalizing for any number of singular points enclosed by some contour C we get∮
C

f(z)dz = 2πi
(
a−1z0

+ a−1z1
+ a−1z2

+ . . .
)

= 2πi
∑
j

a−1zj
. (30)

This result is the Residue theorem. It tells us that the integral of f(z) over some contour C is equal to
2πi times the sum of the residues enclosed by the contour. This is a remarkable expression as it simplifies
performing contour integrals to calculating the value of the residues of the function at the isolated points.
Even though it appears to be a theorem for complex functions, the theorem can also be used for real integrals.
One then extends the real integral to the complex plane and chooses an appropriate contour in the complex
plane. Sometimes one can choose the contour in such a way that the integral in the complex plane has no
contribution, as we will do in the example below. After this it is just a matter of applying the theorem.
To show how the Residue theorem is applied, we will work out an example. In the Fourier transformation of
equation (21) in Section 2 an integral of the following form is encountered∫ ∞

−∞

1

1 + x2
eiωx dx.

To be able to apply the Residue theorem we extend the integral to the complex plane, creating a closed
contour C. This contour goes from from −∞ to ∞ along the real axis, and then back to −∞ along a
semicircle through i∞ on the complex axis in a counterclockwise fashion. A sketch of C is shown in
Figure 13. One could also take the negative semicircle, going through −i∞. In this case the extra minus sign
is cancelled as in this case the contour is of a clockwise fashion, giving the same result in the end. We can
write the integral over contour C as the sum of two integrals, one along the real axis and one in the complex
plane. ∫

C

1

1 + z2
eiωz dz =

∫
R

1

1 + x2
eiωx dx+

∫
C

1

1 + z2
eiωz dz,

where z is a complex number. Note, however, that the complex integral has no contribution as the integrand
is zero along the integral by our convenient choice of contour C. Applying the Residue theorem from (30)
gives ∫

C

1

1 + z2
eiωz dz =

∫
R

1

1 + x2
eiωx dx = 2πi

∑
j

a−1zj
, (31)
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where the sum is over all residues enclosed by contour C. To solve the integral we have to calculate the
residues enclosed by C. Note that eiωz is defined for all z, and thus has no singularities. However, 1/1 + z2

has a singularity for z = ±i. Of these points only z = i is enclosed by our contour. The residue of a function
f(z) at a singularity z0 is calculated as follows

Res (f(z), z0) = lim
z→z0

(z − z0)f(z).

Using this to calculate the residue at z = i gives

Res

(
1

1 + z2
eiωz, i

)
= lim
z→i

(z − i) 1

1 + z2
eiωz,

= lim
z→i

(z − i) 1

(z − i)(z + i)
eiωz,

= lim
z→i

1

(z + i)
eiωz,

=
1

2i
e−ω

Filling this into equation (31) we find ∫
R

1

1 + x2
eiωx dx = πe−ω

Thus we successfully calculated the integral using the Residue theorem. This theorem is used several times
to calculate integrals in Section 2. The most convenient choice of the contour depends on the integral one
wants to calculate.
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C Jordan-Wigner transformation

Chapter 6, pages 160–163, of Reference [5] is used for this appendix on the Jordan-Wigner transformation.
In many quantum systems one deals with spin particles. However, in many-body systems for example, the
spin operators are not very pleasant to work with. In the case of spin- 1

2 particles one can avoid having
to use the spin operators by using a mapping, which replaces the spin operators by fermionic creation and
annihilation operators. It makes use of the analogy between spin- 1

2 particles and fermions in the sense that
the spin up state can be seen as an empty lattice site, whereas the spin down state can be seen as a site
occupied by a single fermion. This gives rise to the following notation

Sx + iSy = S+ 7→ c†,

Sx − iSy = S− 7→ c,

Sz = c†c− 1

2
,

where c are the fermionic operators. With this notation, the commutation relations for the spin operators
are obeyed. There is still a problem, however, as the fermionic operators obey the following algebra{

ci, cj
}

= 0,{
c†i , c

†
j

}
= 0,{

ci, c
†
j

}
= δij .

We see that the fermionic operators on different sites anticommute, whereas spin operators on different sites
commute. This means the mapping must be altered in such a way that the spins also anticommute on
different sites. This is known as the Jordan-Wigner transformation and it is as follows

S+
i 7→ c†i e

iπ
∑i−1

j=−∞ c†jcj ,

S−i 7→ ci e
−iπ

∑i−1
j=−∞ c†jcj ,

Szi = c†i ci −
1

2
,

where the exponents are phase factors. The term in the sum in the exponent, c†jcj , is the number operator,
which in this case counts the number of fermions on the left of site i. Depending on whether this is even or
odd, the exponent is ±1. To illustrate how this phase factor works, let us take a look at a term which arises
in the Heisenberg Hamiltonian.

S+
i+1S

−
i = c†i+1 e

iπ
∑i

j=−∞ c†jcj ci e
−iπ

∑i−1
j=−∞ c†jcj ,

= c†i+1 e
iπc†i ci ci,

= c†i+1ci,

where eiπc
†
i ci ci = ci. This is because ci annihilates a fermion on site i, and therefore the number operator

c†i ci = 0 in the exponent. By using this transformation all commutation relations are obeyed, and one can
successfully describe spin-1

2 particles in terms of fermionic operators.
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