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Abstract

In this thesis we investigate the physical properties of a Boron-Nitride NanoTube(BNNT), in partic-
ular the electric conductivity of the nanotube. The nanotube connects two reservoirs of different salt
concentration. We applied a concentration gradient of Na+ and Cl− in the nanotube and studied
whether we could compare the conductivity of the nanotube to the conductivity of a conducting wire.
The method of the research was a simulation with the finite element method in COMSOL. We found
a surface conductivity constant gs = 2.3 · 103 S/m2 and a bulk conductivity constant gb = −1.8 · 102

S/m for a BNNT with a regulated surface charge and a pH value of 5.5, in the regime where the
radius of the tube is larger then the Debye length. For a radius smaller then the Debye length gb was
varying too much to make a reliable prediction.
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1 Introduction

Due to the emission of greenhouse-gases and exploitation of the earth, we are currently dealing with climate
change. With the growing human population, the total energy demand is increasing. This energy has to
be produced from sustainable energy sources to stop the continued pollution of the environment. Most
commonly known sustainable energy sources are: sunlight, wind and energy from barrages. A relatively new
and unknown form of sustainable energy is ”blue” energy, which is currently tested in The Netherlands at
the Afsluitdijk, which is run by a company named REDstack[1]. Blue energy is energy that is produced by
tapping from the salinity gradient between seawater (with a high salt concentration) and river water (with
a lower salt concentration). This is done by using selective membranes that enable ions to move through
nanopores and thereby create a potential difference. This potential difference is used to produce energy. In
this research a single nanotube is studied in which ions are transported from a reservoir of seawater to a
reservoir of river water. The nanotube which is studied is made of Boron-Nitride which has a high surface
charge, this high surface charge causes a very effective ion transport[2]. To describe this surface charge
realisticly we used a charge regulation model, in which the surface charge depends on the ion concentration.
When blue energy is generated it is the goal of energy producing companies to maximize the efficiency. A
measure of the efficiency is the conductivity of the nanotube, because when the conductivity is maximized
the current and therefore the energy production are also maximized. In this thesis we study the conductivity
of the charge-regulated Boron-Nitride nanotube which is exposed to a salt concentration gradient and in-
vestigate whether we can compare it with a conducting wire. Thus the research question can be formulated
as: How does the radius of a Boron-Nitride nanotube affect the conductivity? To answer this question we
first discuss the relevant theory in Sec. 2, then we describe the way our simulations are done in Sec. 3.
Thereafter the results are given in Sec. 4. Section 5 concludes this thesis.

2 Theory

2.1 Blue energy

2.1.1 Water

Before we discuss what blue energy is we must first consider what the components are of the different kinds of
water we use. In Table 1 the components of seawater are shown[3]. We assume that river water consists only
of H2O, while it actually has a salt concentration which is about 25 times smaller then seawater, however for
these calculations we choose to neglect this (the other components of river water are negligible and do not
play a role for describing our system). Furthermore we assume that seawater only consists of a mixture of
H2O, Cl− and Na+ for practical purposes in this thesis. These assumptions are justified if one realises that
in Table 1 the concentration of other molecules and ions in the sea are an order in magnitude lower than
these three species. Moreover, the river water composition is very dependent on which river is concerned.
Therefore it is more practical to consider pure water and keeping in mind that for real applications the
outcomes of this research need to be considered as an approximation. In the following part of this thesis
river water will also be called fresh water, seawater will also be called the saline solution and after mixing
the term brackish water will be used for the mixed water.

Component Concentration (in mol/kg)
H2O 53.6
Cl− 0.549
Na+ 0.469
Mg2+ 0.0528

SO2−
4 0.0282

Ca2+ 0.0103
K+ 0.0102

Table 1: The composition of seawater[3].
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Volume fractions xH2O xCl− xNa+

Saline water 0.981 0.010 0.009
Fresh water 1 0 0
Brackish water 0.991 0.005 0.004

Table 2: The volume fractions of components of seawater and their respective entropy of mixing. Calculated
from Table 1.

2.1.2 The origin of blue energy

When saline water is mixed with fresh water the free energy of the system will decrease, this is a result
of the increased entropy. We are interested in the amount of energy that can be produced from mixing a
litre of sea water with a litre fresh water. Therefore we consider the Helmholtz free energy F = U − TS,
where U is the internal energy, T the temperature and S the entropy. We can write the S = kB log Ω, where
kB is the Boltzmann constant and Ω the number of microstates. The number of microstates Ω is equal to

N !

NH2O!NNa+ !NCl− !
, where N is the total number of particles and Ni is the number of particles of specie i.

Combining these formulas and using the Stirling approximation (log x! ≈ x log x− x) gives

F = U − kBT [N logN −N − (

3∑
i=1

Ni logNi −Ni)], (2.1)

= U +NkBT

3∑
i=1

xi log xi. (2.2)

In which xi = Ni
N is the particle fraction of species i. Thus when the entropy S, which is substituted in Eq.

(2.2) changes, the Helmholtz free energy F changes as well. In Fig. 1 a schematic overview of the mixing

Figure 1: Schematic overview of the mixing of river water with seawater, which results in brackish water.

process is given. Due to the fact that the total system, the fresh water system together with the sea water
system, has a constant internal energy U the change in Helmholtz free energy ∆F is written as

∆F = Fb − Fs − Ff, (2.3)

= (Ns +Nf )kBT

3∑
i=1,b

xi log xi −NskBT
3∑

i=1,s

xi log xi. (2.4)

Where we substituted Eq. (2.2) for each component. The subscripts b, s and f refer to brackish, sea and
fresh water respectively[5]. The quantities Ns = NH2O,A +NNa+ +NCl− and Nf = NH2O,B are the number
of particles in sea water and fresh water, respectively. Note that the sum over the fresh water components
vanishes because this has only one component. With Eq. (2.4) and Table 1 we can now calculate the
available energy per unit volume. We mix one litre of saline water with one litre of fresh water (pure H2O).
From this we calculate the work per unit volume for water of T = 283 degrees Kelvin (the average seawater
temperature in The Netherlands [6]) ⇒ ∆F/V ≈ 1 MJ m−3. How this energy is gained from this entropy
change will be explained in the following sections.
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Figure 2: Schematic
overview of pressure-
retarded osmosis. In
the membrane mod-
ule water molecules
travel through the semi-
permeable membrane
from the feed solu-
tion(fresh water with a
low salt concentration)
to the saline solution.
Due to this osmosis the
pressure in the upper
part of the module
increases. With the
turbine this pressure
difference is used to
produce electricity[7].

2.1.3 Pressure retarded osmosis

One way to produce energy by mixing salt water and fresh water is to use a membrane that connects two
reservoirs of different salinity. The reservoirs are connected with a semi-permeable membrane and therefore
the system undergoes osmosis, which means that there will be an induced water flow from the reservoir with
low salinity (river water) to the reservoir with the higher salinity (seawater)[7]. Hence the pressure of the
salt water increases due to the flow of H2O, because the volumes of the reservoirs remain the same. From
this pressure difference energy can be produced with a turbine. A schematic overview of this production
type is given in Fig. 2.

2.1.4 Reverse electro-dialysis

Another way to produce energy from the mixing of seawater and river water is reverse electro-dialysis, this
is logically the reversal of electro-dialysis. In electro-dialysis water is desalinated by applying an electric
field, where reverse electro-dialysis uses the mixing of ions to generate an electric field. This electric field is
generated by diffusion of ions through semi-permeable membranes. Due to the selective membranes at one
side of the membrane there will be a majority of negatively charged ions, while on the other side there will
be a majority of positively charged particles, see Fig. 3. Using redox-reactions electrons can move from the
anode in the negatively charged bath to the cathode in the positively charged bath. This current van be
used to produce energy, which we call blue energy.

2.2 Nanotube

In the previous section we explained how reverse electro-dialysis works. Now we are zooming in on the
semi-permeable membrane for positively charged ions. This membrane consists of a lot of nanopores, where
Na+-ions travel through. The system of a nanotube with transported ions is shown and explained in Fig.
4. In this thesis we will discuss the physical properties of a single nanotube. This is slightly different from
a nanopore due to the fact that the nanotube has a smaller radius than the average radius of nanopores in
membranes which are commonly used. The nanotube connects two reservoirs(baths), one with seawater and
one with river water as we have seen in Fig. 3. The surface of the nanotube is negatively charged, therefore
only Na+-ions can travel through. When this nanotube is made of Boron-Nitride the surface charge can be
relatively high (1 Cm−2) for certain values of pH[2].
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Figure 3: Schematic
overview of reverse
electro-dialysis. From
the saline solution
(High Concentration of
salts(HC)), the salts
diffuse through selective
membranes to the dilute
water (Low Concentra-
tion of salts(LC)). Due
to the selectivity of the
membranes an electric
potential is induced
between the anode and
the cathode. With
reduction-oxidation
reactions electrons are
absorbed at the anode
and emitted at the
cathode, due to these
reactions a current is
generated. This current
can be used for power
devices[7].
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Figure 4: In this figure a schematic overview of the geometry is shown. The geometry
consists of 3 parts: Bath A, bath C and the nanotube B. Note that the entire geometry
has to be rotated in order to get an axis-symmetric 3D-volume.
The capitals in the figure correspond to the volume in which the capital is located.
Bath A is filled with seawater, which consists of H2O, Na+ and Cl−, see Sec. 2.1.1.
Bath C is filled with river water, which consist only of H2O. The nanotube B is the
tube through which the ions diffuse from A to C, this tube has a length(L) of 400 nm
and a radius(R) of 40 nm.
The numbers in the figure correspond to the edge nearby. Edge 1 is responsible for the
inlet of seawater, we define that at this edge the concentration of Na+ and Cl− remains
constant, because we assume that this bath is infinite. Edge 3 is responsible for the
outlet of the flow. Edge 2 is the surface of the nanotube, due to charge generation
processes the surface of the nanotube becomes charged, we define σ to be the surface
charge density.
The curved lines that divide parts A and B & B and C, are the boundaries of the
mesh for each region. The mesh is split into regions, because the nanotube needs
more meshpoints (points where the differential equations are solved).
The coordinate axes indicate the radial(r) and axial(z) direction.

2.3 Equations to describe the fluid

2.3.1 Navier-Stokes equation

The Navier-Stokes equation is obtained by applying Newton’s second law to a small volume. We use Newtons
second law, ma =

∑
F, where m is the mass of the volume, a is the acceleration and

∑
F is the sum of all

the forces. This can be rewritten as ρa =
∑

f, where ρ is the mass density and f is the sum of all the forces
per unit volume. Using the material derivative (F.15) derived in App. F.2, the continuity equation, which is

derived in App. F.1 for an incompressible fluid(
∂ρ

∂t
= 0) and knowledge of which forces work on the volume

the following equations are obtained. For a complete derivation of the force terms in the Navier-Stokes
equation we recommend Ref. [8], that we follow closely here. We write

ρ(
∂u

∂t
+ u · ∇u) = −∇p+ η∇2u + f; ∇ · u = 0. (2.5)

In this equation −∇p is the pressure gradient, η∇2u is the friction force due to velocity gradients with η
the viscosity and f all remaining body forces. If the friction term is very high compared to the inertia term
ρu · ∇u, the inertia term can be neglected. To check whether this assumption is accurate the Reynolds

number is introduced: Re =
|ρu · ∇u|
|η∇2u|

=
ρUL

η
, where U is the typical velocity and L the typical length

scale. The condition ∇·u = 0 indicates that the fluid is incompressible. For Re� 1 the inertia term can be
neglected. When describing a fluid at nano-scales often Re� 1, therefore the inertia term can be neglected.
Hence the Navier-Stokes equation (2.5) reduces to the Stokes equation,

ρ
∂u

∂t
= −∇p+ η∇2u + f; ∇ · u = 0. (2.6)

The Stokes equation describes the motion of a fluid for small Reynolds number.

2.3.2 Equation fluid nanotube

The relevant equation for describing the flow of the fluid is the Stokes equation (2.6), where we add and

subtract some terms. If the flow is stationary, we can say
∂u

∂t
= 0. We will assume a stationary state

throughout the thesis. Here we will focus on a solution of charged particles which are not locally neutral
throughout space, because the surface charge generates an electric field in the nanotube, therefore f = QE =
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−ε0εr(∇2ψ)∇ψ, where in this case the Q is the charge, note that we used the Poisson equation (2.8). Due
to these two implementations the Stokes equation (2.6) becomes

η∇2u = ∇p+ ε0εr(∇2ψ)∇ψ; ∇ · u = 0. (2.7)

This equation is solved by iterations in COMSOL, the program that we use to solve the differential equations
of flow together with the equations that apply the movement of ions in the fluid, which will be discussed in
the following section.

2.4 Equations to describe the ions in the fluid

2.4.1 Poisson equation

To describe the electrostatics, of the by approximation homogeneous dielectric medium, we derive the Poisson
equation. We use Gauss’s Law: ∇ ·D = Qf , where D is the electric displacement and Qf is the free charge
density. The equation for the electric displacement is: D = εE, where ε is the dielectric constant. When we

substitute this in Gauss’s Law we find that: ∇·E =
Q

ε
. From Maxwell’s equation∇×E = 0 together with the

vector identity ∇×∇V = 0, for an arbitrary scalar V , we derive that E = −∇ψ, with ψ the potential. From

the two derived equations in this paragraph we can derive the Poisson equation [9] ∇ · ∇ψ = ∇2ψ = −Q
ε

.

When we write the potential ψ and the charge Q as explicit functions of position we get the Poisson equation.

∇2ψ(r) = −Q(r)/ε. (2.8)

Here Q(r) = eσ(r)δ(|r| −R) + e
∑
i ziρi(r), where e is the elementary charge, zi and ρi are the valency and

density of particles of specie i and eσ is the surface charge of the nanotube. The total charge density Q(r),
is the external surface charge density plus the total ionic charge density.
Furthermore the boundary condition for ψ can be derived from Gauss’s Law in integral form,∮

E · dA =
Qext(r)

ε
(2.9)

−
∮
∇ψ(r) · n dr =

∮
eσ(r)

ε
. (2.10)

The boundary condition for the potential then becomes:

n · ∇ψ(r) = −eσ(r)/ε (2.11)

In this equation n is the normal to the surface and eσ(r) is the surface charge density.

2.4.2 Continuity and particle flux

The continuity equation (F.8) derived in App. F.1 is applicable to all the ion species that move through the
fluid. Now we explicitly define the density ρi(r, t) and flux Ji(r, t) from Eq. (F.8) as a function of position
r and time t, which satisfy

∂ρi(r, t)

∂t
+∇ · Ji(r, t) = 0, (2.12)

where i stands for the ion species(Cl−, Na+).
There are three different contributions to the flux[10].

(i) The diffusive flux: Jdiffi = −Di∇ρi, with Di the diffusion coefficient of species i. This term is also known
as Fick’s law. The particles flow from a high density to a low density.
(ii) The conductive flux: Jcondi = ρivi, where we define the ”drift velocity” vi = zieE/6πηai in which E is the
electric field, η the solvent viscosity and ai is the ionic radius of species i. Due to the fluctuation-dissipation
relation(Di = kBT/6πηai)[11], we can write Jcondi = (Di/kBT )zieρiE, where kB is the Boltzmann constant
and T the temperature.



2 THEORY 7

(iii) The advective flux: Jadvi = ρiu, where u(r, t) is the velocity of the fluid flow.
By adding the four contributions and substituting β ≡ 1/kBT , the result is

Ji = −Di(∇ρi + ziρiβe∇ψ) + ρiu. (2.13)

This equation for the flux is useful to determine the number of particles that move through the nanotube.
Equations (2.6), (2.8), (2.12) and (2.13) form the Poisson-Nernst-Planck-Stokes (PNPS) equations.
A dimensionless number that characterises the relative importnace of the the advective flux and the diffusive
flux is the Péclet number Pe = advective flux

diffusive flux = LU
D [12], where L and U are typical length and velocity scales

respectively. For Pe� 1 we can neglect the advective flux and the Equation of the fluxes (2.13) reduces to

Ji = −Di(∇ρi + ziρiβe∇ψ). (2.14)

This simpler equation will be used as an approximation for systems where the fluid velocity is relatively low
(for example systems where a low voltage drop is applied as a driving force).

2.4.3 Poisson-Boltzmann distribution

From the flux equation (2.13), we can derive the Poisson-Boltzmann (PB) distribution, an equilibrium
distribution of the particle densities weighted by Boltzmann factors. In equilibrium Ji = 0 and u = 0, so
that Eq. (2.13) reduces to

∇ρi = −ziρiβe∇ψ, (2.15)

∇ ln ρi =
∇ρi
ρi

= −ziβe∇ψ, (2.16)

ρi(r) = ρi,b exp[−βzieψ(r)]. (2.17)

Here ρi,b is the bulk density of species i, i.e. the density at a position where ui = 0 and ψ = 0. Equation
(2.17) is the Poisson-Boltzmann distribution and can be used to compare the particle distributions in the
system with their equilibrium distributions.

2.5 Electric double layer

In the inside of the nanotube we consider a solvent near a charged surface. How this surface charge is
generated will be explained in Sec. 2.6. The charged surface of the tube attracts counter-ions by Coulomb
attraction. This produces a layer of counter-ions screening the surface, this layer of counter-ions together
with the surface charge is called the Electric Double Layer (EDL). When we view the EDL as a single layer of
counter-ions, this layer is called the Helmholtz Layer, this is seen in Fig. 5(a). If we also consider the thermal
fluctuations of the ions we get a diffuse layer of counter-ions screening the surface, this model is called the
Gouy-Chapman model and is shown in Fig. 5(b). In reality there are both a sort of Helmholtz layer (now
called the Stern layer) and a diffuse layer, this model is shown in Fig. 5(c). In our calculations we use the
Gouy-Chapman model, because this simplifies the relevant equations, this is an accurate approximation.
For the EDL these quantities are of interest:

• Zeta potential, ζ. This is the potential at the inner surface, in Fig. 5 it is drawn as Ψ0.

• Bjerrum length, λB =
e2

4πεkBT
.

The Bjerrum length is a property of the solvent and is equal to the length where the Coulomb interaction
potential between two charges e equals kBT . The Bjerrum length indicates the strength of the Coulomb
interaction and equals 0.72 nm for water (εw=78.3) at room temperature.

• Debye length, κ−1 =
1√

4πλBρs
.

The Debye length is the length over which charge imbalances exist, in the 1-10 nm regime for ρs ≈
1− 100 mM in water.

Here ε is the permittivity of the solvent and 2ρs the bulk concentration of the solvent far away from the
surface. These quantities together with the Poisson-Boltzmann theory described in Sec. 2.4.3 are relevant
to calculate and describe the ion distributions.



2 THEORY 8

Figure 5: (a) The Helmholtz layer, where the charged surface is completely screened by a single charged
layer of counter-ions. (b) The Diffuse layer of the Gouy-Chapman Model, in the Gouy-Chapman model
the counter-ions that screen the charged surface are spread out within a diffuse layer. The fact that the
counter-ions separate from the surface is due to thermal fluctuations. (c) This modern way of describing
the EDL, uses an empirically improvement (this model corresponds better with experimental results) of the
Gouy-Chapman model with the Stern layer. This model has a stern layer with fixed counter-ions at the
surface. After the Stern layer the diffuse layer begins. IHP refers to the Inner Helmholtz Plane, this is
the plane of closest approach to the surface and OHP refers to the Outer Helmholtz Plane, this is where
the Stern layer ends and the Diffuse layer begins. Note that in this figure the surface is positively charged
while a Boron-Nitride NanoTube(BNNT) is negatively charged and therefore the counter-ions that screen
the surface are positive for a BNNT.
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Figure 6: Schematic overview of the nanotube,
this tube has a length(L) of 400 nm and a
radius(R) of 40 nm. The coordinate axes indi-
cate the radial(r) and axial(z) direction.

2.6 Surface charge and charge regulation

In this section the charged surface of the nanotube will be discussed. In Fig. 6 the tube is shown and the
directions of the axes are given. The tube is made of Boron-Nitride which has some interesting physical
properties. The Boron-Nitride surface has a hexagonal structure and a hardness comparable to graphite[13].
Furthermore the ionic structure of h-BN (h stand for hexagonal) decreases the electrical conductivity through
the material. The surface charge of h-BN becomes very high, 1 C/m2, for high pH[2]. In most models the
surface charge is taken to be homogeneously or the surface is described with a constant potential. However in
this section and the rest of this thesis we will use a regulated charge distribution, because this gives a better
representation of reality. This charge regulation comes from the fact that flow induces the concentrations of
the ion-species to vary along the tube. Surface charge is produced by chemical reactions of the ion species.
Therefore the surface charge varies over the tube. First we need to consider how the surface charge is
generated, this is roughly speaking possible by four different reactions which can take place at the surface.
These reactions involve adsorption and desorption of cat- or anions (positively charged or negatively charged
ions, respectively). Here we discuss the desorption of an anion, namely the H+−ion, because this is the most
common reaction in a Boron-Nitride nanotube [2].

BN3 + H2O � BN3-OH− + H+ with K =
[BN3-OH−][H+]

[BN3]
. (2.18)

All reactions take place at discrete surface sites, the number of chargeable sites is: [BN3]+[BN3 − OH−] =
m(z). Furthermore [H+] = ρH+ , the surface charge density σ = [BN3−OH−] and we assume that m(z) = m

due to translational invariance. Hence the expression for K becomes K =
σρH+ (z)

m−σ , where ρH+ is now only
dependent of the z-coordinate due to the fact that the surface is axially symmetric and has a well defined
radius. Therefore the surface charge density takes the form

σ(z) =
m

1 +
ρH+ (z,r=R)

K

. (2.19)

This equation is used as a boundary condition in our numerical calculations for the surface charge. The
value of K is given to be 10−5.5 mM and m = 18 nm−2 for a BNNT surface [2]. Note that since we
introduced the regulated surface charge we now have another ion specie(H+) which needs to be considered
in our calculations.

2.6.1 Conductivity

The conductivity G, not to be confused with the Gibbs free energy, is a measure in how well a wire or in our
case the nanotube conducts a current. We consider a system where a concentration gradient is the driving
force for the current. In the linear response regime the current is linearly dependent of the concentration
drop, I ∝ ∆ρ, for ∆ψ = 0 and ∆p = 0. This relation can also be written as, Ii = Gi∇µi, where µi is the
chemical potential for specie i, µi = kBT log(ρi). Combining those two equations gives

I = GkBT∇ log(ρ) = GkBT
∇ρ
ρ
. (2.20)

We can write G as a sum of the conductivity of the surface plus the conductivity of the bulk, G = Gb +Gs,
where Gb is the bulk conductivity and Gs is the surface conductivity. These contributions to the conductivity
are inversely proportional to the length of the tube, a longer length means more resistance and thus a smaller
current. There is also a dependence on the radius of the tube, when the radius is very small, there will be
less ions able to move through the tube. The bulk conductivity will be proportional to the cross-cut of
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the tube and the surface conductivity will be proportional to the circumference. Therefore we expect that

Gb = πR2

L gb and Gs = 2πR
L gs, where gb and gs are the bulk and surface conductivity constant respectively.

We can rewrite this as

G =
πR2gb + 2πRgs

L
. (2.21)

Our goal is to find the conductivity constants for the nanotube, so that we can answer our research question.
The conductivity constants are a measure of how the conductivity is affected by the radius. However therefore
we first need to calculate G for a single system.

3 Measurement method

In this section we describe how the measurements of our research are done. The research was not done
experimentally, it was however done by calculations in COMSOL (https://www.comsol.com). The geometry
in which the physical background is explained is shown in Sec. 2.2. COMSOL uses the Finite-Element
Method to calculate several quantities, the fluid velocity, the pressure, the electric potential and the densities
of all ion species.
COMSOL has a large number of physical modules, these modules consists of bulk equations and boundary
conditions (b.c.’s). In this thesis we use three modules: Electrostatics, Transport of Diluted Species and
Creeping Flow. These modules are applied on the geometry shown in Fig. 7, where the nanotube connects
two infinite reservoirs.

• Electrostatics,
On the complete volume of the nanotube we define a charge conservation module and a charge density
of NA · e · (ρH+ + ρNa+ − ρCl−), where NA is the Avogadro constant and ρi are the ion densities in
mol/m3, note that the units of ρi are changed from 1/m3 to mol/m3. Also we define a relative permit-
tivity of water εw, where ε = εwε0 in which ε0 is the dielectric constant. On the boundaries we define
a grounding potential ψ = 0 on the far edges of the baths, a zero charge b.c. (n · E = 0) on the edge
of the bath facing the nanotube and on the tube itself we use the charge regulation model described
in Sec. 2.6, σ(z) = m

1+
ρ
H+(z,r=R)

K

.

• Transport of Diluted Species,
On the volume we define the diffusion constant of each specie Di and the fixed and homogeneous
temperature T . On the boundaries of the baths we define a concentration Cmax = ρNa+,u = ρCl−,u in
the upper bath and a concentration Cmin = ρNa+,d = ρCl−,d on the lower bath, where u and d refer to
up and down, respectively. The boundary condition for the concentration ρH+ is applied on the upper
bath as well as on the lower bath and is taken as ρH+ = 10−pH. Also a no-flux b.c. (n · Ji = 0) is
applied to the tube and edges of the baths facing the nanotube. Note that there will be a definite flux
through the boundaries of the reservoirs.

• Creeping Flow,
On the volume we defined the viscosity η and the mass density of water ρw, we chose to neglect the
inertia term in the Navier-Stokes equation and defined a volume force on the charged particles f. On
the boundaries we applied a no-slip b.c. (u(R) = 0). Only on the far edges of the baths have a
no-stress b.c. ([p1 + η(∇u + (∇u)T )] · n = 0) to be able to have a fluid flow which is not affected by
these boundaries.

The standard values of the defined input parameters are given in Table 3. To have a clear view which
boundary conditions are applied where, we made a schematic overview in Fig. 7.
The equations that are applied on the volume are shown in Equations (3.1) to (3.4).

https://www.comsol.com
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Figure 7: Axis-symmetric representation of a nanotube separating two reservoirs. All
boundaries are numbered and their boundary conditions (b.c.’s) are given in this caption.
The Electrostatics b.c.’s are: ψ = 0 for (1,2,6,7), zero charge for (3,5) and charge
regulation (Sec. 2.6) for (4).
The Transport of Diluted Species b.c.’s are: concentration Cmax for (1,2), concentration
Cmin for (6,7) and no-flux for (3-5).
The Creeping Flow b.c.’s are: no-slip for (3-5) and no-stress for (1,2,6,7).

η∇2u = ∇p− (eσ(r) + e
∑
i

ziρi(r))∇ψ; ∇ · u = 0, (3.1)

0 =
∂ρi(r, t)

∂t
+∇ · Ji(r, t), (3.2)

Ji = −Di(∇ρi + ziρiβe∇ψ) + ρiu, (3.3)

∇2ψ(r) = −e
∑
i

ziρi(r)/(εwε0); ∇ψ · n̂ = − eσ

εwε0
. (3.4)

These equations are evaluated in predefined points, e.g. the mesh-points. We used a specific type of meshing
for our geometry, the mesh we used for determining the conductivity is shown in Fig. 8. The data from all
these mesh-points is processed in Mathematica and thereafter presented in the following section.

4 Results

4.1 Concentration gradient and diffusio-osmotic current

In this section we report the results from the simulations where we applied a concentration gradient over the
nanotube. At first we consider the cylinder described in Sec. 2.2. We apply a concentration drop between
the two baths and vary the surface charge of the tube, then we measure the electric current through the
tube. The so called diffusio-osmotic current from Ref. [2] is written as

IDO =
2πRσ

L

kBT

ηλB
∆ log(ρs), where ∆ log(ρs) = log(

Cmax
Cmin

). (4.1)

Parameter Value and unit
εw 78.3
T 283 K

D+
H 8.17 · 10−9 m2/s

D+
Na 1.13 · 10−9 m2/s

D−Cl 1.71 · 10−9 m2 s−1

η 9.54 · 10−4 kg m−1 s−1

ρw 9.98 · 102 kg m−3

Cmin 1 mol m−3

m 18 nm−2

K 10−5.5 mol m−3

Table 3: The standard parameter values for the nanotube in COMSOL.
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Figure 8: In this figure we show the mesh we use in
our study. The part where we zoomed in has a dif-
ferent meshing from the rest of the geometry. This
was made in such a way that the high electric forces,
which are perpendicular to the charged surface, on the
fluid are relatively easily cancelled by the pressure gra-
dient. Note that the geometry is radially symmetric
and is rotated around the z-axis (red). Therefore the
actual geometry is a 3D system.

The derivation of this equation is given in the supplementary information of Ref. [2].
When we first tried to reproduce the results given in Ref. [2] we encountered large numerical errors. They
were caused by spurious flows, these flows are induced by the large volume forces in equilibrium, stemming
from the huge osmotic pressure differences that were not compensated by th ehydrostatic pressure.

4.1.1 Reducing spurious flow in equilibrium

To reduce this spurious flow we need to consider the forces acting on the fluid in equilibrium. The Stokes
equation (2.6) reduces in equilibrium to,

∇p = −f = ε0εr(∇2ψ)∇ψ =
∑
i

zieρi∇ψ; ∇ · u = 0, (4.2)

because u = 0 in equilibrium, therefore the pressure gradient needs to cancel the electric force due to the
ions in the EDL. In the EDL this electric force is so large that small numerical errors can lead to large
spurious flows. The velocity u and the pressure p are unknowns, p needs to be chosen in such a way that
the solution for the velocity field u also fulfils the incompressibility constraint. For appropriately chosen
boundary conditions, the solutions for u and p are unique (apart from a constant offset of p). Therefore any
gradient field ∇ω to the force density can be added[14].

∇(p′ − ω) =
∑
i

zieρi∇ψ; ∇ · u = 0, (4.3)

We want to reduce the pressure gradient, therefore we need to find a gradient field that exactly cancels the
electric force. To find ∇ω we consider the flux equation (2.13), which in equilibrium reduces to

kbT∇ρi = −ziρie∇ψ. (4.4)

Due to the fact that in equilibrium u = 0 and Ji = 0. When we use ω =
∑
i kbTρi the Stokes equation

reduces to ∇p = 0 in equilibrium. Therefore the new volume force density f becomes

f = −
∑
i

(kbT∇ρi + ziρie∇ψ). (4.5)

This is the volume force we will use in our calculations.

4.1.2 Results with the adapted volume force

The results of these simulations are given in App. D. Those are not presented in the thesis itself, because
we noticed that the fluid velocities were absurdly high for a nanotube (in the order of magnitude of m/s).
We expect the fluid velocity to go to zero as we approach the system without surface charge, due to the
fact that there will be no driving force for a fluid velocity since ∇ψ = 0, because there is no excess charge.
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Data points for adapted volume force
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(a) For the adapted volume force to reduce spurious flows.
For small surface charge σ there is no velocity dependence.
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(b) For the initial volume force, with improved mesh to
reduce spurious flows. The fit (blue) through the data
is in good correspondence with the data.

Figure 9: Surface charge dependence of the axial velocity in a tube of length L = 1250 nm and radius
R = 40 nm, for an applied concentration drop of 0.999 M (Cmax = 1M and Cmin = 1mM), with viscosity
η = 9.544 · 10−4 Pa s. The velocity is measured in the mid-center of the nanotube. Figure (a) and (b)
correspond to different volume forces.

When we let the surface charge approach zero, we want to test whether the fluid flow velocity approaches
zero as well. In the test we used a concentration drop of 0.999 M in our standard geometry and we varied
the surface charge from 10−10 to 10−1 e nm−2. The result of this test is given in Fig. 9a.
As we can see in Fig. 9a the axial velocity does certainly not approach zero, therefore there must be another
driving force, which will probably be the ∇ω term which we added to reduce the spurious flow. In conclusion
we cannot use the adapted volume force for systems which undergo a concentration drop. This is however
the system we wanted to describe, thus we need to work with the initial volume force. To still reduce the
spurious flows we need to refine the mesh, so that we have more points where the equations are evaluated.
This is done for the results in the following section.

4.1.3 Calculations without spurious flow reducing volume force

The same test was used in the system with the improved mesh and the initial volume force. The result of
this test is given in Fig. 9b. As we can see in Fig. 9b the velocity in the center of the tube goes to zero as
vz ∝ σ2. Therefore the model describes the system well in this scenario. Since the model is now expected to
be working according to our expectations we are able to calculate the diffusio-osmotic current as a function
of the concentration drop. We investigate the linear response regime, where I ∝ ∆ρ. This is the regime in
which the variations of the concentration are relatively small. We also did some calculations in the nonlinear
regime, those results are given in App. E.
In this linear response regime we can investigate the nanotube as if it were a conducting wire, which has
a conductivity that depends on the radius R of the tube, this is done in the following section. However
therefore we first need to investigate where the linear response regime breaks down. We used the same
settings as in the previous calculation only now we took more datapoints in the range of CmaxCmin

= [1, 10]. The
results of these calculations are shown in Fig. 10. From Fig. 10 we conclude that the linear response regime
breaks down for Cmax

Cmin
> 2, we therefore chose the regime in which 1 ≤ Cmax

Cmin
≥ 1.1. In this regime we will

study the radius dependence of the conductivity.

4.2 Conductivity

The conductivity is calculated for our standard geometry (see Fig. 4), we used a tube with length L = 400
nm. We varied the concentration drop from 0 to 0.1 mM, with a bulk concentration(Cmin) of 1 mM. The
nanotube is charged with the charge regulation model described in Sec. 2.6, with m = 18 nm−2 and pH = 5.5.
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Figure 10: Total current as a
result of a concentration drop
in a tube of length L = 1250
nm and radius of R = 40 nm,
with viscosity η = 9.544 ·10−4

Pa s. With diffusion coeffi-
cients DNa = 1.1·10−9, DCl =
1.7 · 10−9 and DH = 8.2 · 10−9

all in m2/s. For a regulated
surface charge as in Eq. 2.19
for m = 18 nm−2. As con-
cluded from the figure the lin-
ear response regime seems to
break down for Cmax

Cmin
> 2.

From Fig. 11 we can determine the conductivity, by multiplying the slope with a factor L
kBT

(see Eq. (2.20)).
We did this for all calculated data points (For R = 1−15, 20, 30, 40, 60, 80, 150 nm). After determining G(R),
we can show this result and derive the conductivity constants for this system.
To extract the conductivity constants (from Eq. (2.21)) from our data we can fit three formulas to the data.
(i) To the unmodified data, where G is a function of R we can use the fit y = C1x

2 +C2x, because this has
the same form as Eq. (2.21).
(ii) We can also modify our data by multiplying G with a factor L

πR , Eq. (2.21) then takes the form

G∗ ≡ LG
πR = Rgb + 2gs, therefore the fit we can use is y = C1x+ C2.

(iii) Another way to modify our data is by multiplying G with a factor L
πR2 , Eq. (2.21) then takes the form

G∗∗ ≡ LG
πR = gb + 2gs

1
R , therefore the fit we can use is y = C1 + C2

1
x .

In Fig. 12 the results for the unmodified data and fit (i) are given. Form this figure we can conclude that the
fit is in good correspondence with the data for R > κ−1, where κ−1 is the Debye length discussed in Sec. 2.5.
However for R < κ−1 the data seems to differ from our hypothesis, therefore we now modify our data from
G to G∗, this is shown in Fig. 13. From Fig. 13 we conclude that our hypothesis is not in correspondence
with the data. Namely the bulk conductivity constant gb seems to be dependent on the radius. In the regime
where R < κ−1, G increases as R increases, this is due to the fact that the current is principally induced
in the EDL(R < κ−1). As R increases, while R < κ−1 is true, more area becomes available for the ions to
move through and therefore the conductivity increases. However in the regime R > κ−1 the conductivity
decreases for increasing R, we think this is accrue from the fact that the ions which now move through the
middle of the tube are less affected by the surface charge and therefore the current of the Na+-ions cancels
the current from the Cl−-ions. This effect increases for increasing R. Furthermore we can conclude from
Fig. 13 that the modified conductivity G∗ is maximal for R = 13 nm.
It is clear that we cannot fit the straight line from (ii) through Fig. 13, however if we only look at the regime
where R > κ−1 we get the data shown in Fig. 14. For this data it is possible to fit a straight line through
the data and therefore determine the conductivity constants. For the fit through (i) and (iii) we decided to
also neglect the data with R < κ−1. The results for these fits are shown in Figures 15 and 16. In the regime
where R < κ−1 the bulk conductivity constant is not constant enough to approximate the data with a linear
expression. From the fits through Figures 14 to 16 we derive the conductivity constant of the bulk and
the surface for R > κ−1, these results are shown in Table 4. The bulk conductivity constant we find for the
BNNT in the R > κ−1 regime gb = (−1.84± 0.07) · 1010 S/m2 and the surface conductivity gs = 2326± 16
S/m. The standard deviations in the results are both within 5 % of the values and therefore we consider the
results as reliable.
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(b) Total current for nanotubes with R = [6 − 10] nm.
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(c) Total current for nanotubes with R = [11 − 15] nm.
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(d) Total current for nanotubes with R =
20, 30, 40, 60, 80 and 150 nm.

Figure 11: Total electric current as a result of a concentration drop in a tube of length L = 400 nm and a
radius R = [1− 150] nm, with viscosity η = 9.544 · 10−4 Pa s. With diffusion coefficients DNa = 1.1 · 10−9,
DCl = 1.7 · 10−9 and DH = 8.2 · 10−9 all in m2/s. For a regulated surface charge as in Eq. (2.19). The
conductivity G, which is linearly dependent of the slope, is proportional to the radius and increases as R
increases.
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(a) Conductivity (unmodified) as a function of the radius.
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(b) Deviation of the data w.r.t. the fit, this
is calculated by dividing the values of the
data by the value of the fit. For κR > 1 the
deviation is small.

Figure 12: Conductivity from a concentration drop in a tube of length L = 400 nm and a radius R = [1−80]
nm, with viscosity η = 9.544 · 10−4 Pa s and with diffusion coefficients DNa = 1.1 · 10−9, DCl = 1.7 · 10−9

and DH = 8.2 · 10−9 all in m2/s. For a regulated surface charge as in Eq. (2.19).
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Figure 13: Modified conduc-
tivity G∗ (G multiplied by a
factor L

πR ) from a concentra-
tion drop in a tube of length
L = 400 nm and a radius
R = [1−80] nm, with viscosity
η = 9.544 ·10−4 Pa s and with
diffusion coefficients DNa =
1.1·10−9, DCl = 1.7·10−9 and
DH = 8.2 · 10−9 all in m2/s.
For a regulated surface charge
as in Eq. (2.19). The mod-
ified conductivity is maximal
for R ≈ κ−1.
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(a) Modified conductivity G∗ as a function of the radius.
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(b) Deviation of the data w.r.t. the fit, this is
calculated by dividing the values of the data
by the value of the fit. From this figure we
conclude that the fit from Fig. 14 (a) is in
good correspondence with the data.

Figure 14: Modified conductivity G∗ (G multiplied by a factor L
πR ) from a concentration drop in a tube of

length L = 400 nm and a radius R = [10 − 80] nm, with viscosity η = 9.544 · 10−4 Pa s and with diffusion
coefficients DNa = 1.1 · 10−9, DCl = 1.7 · 10−9 and DH = 8.2 · 10−9 all in m2/s. For a regulated surface
charge as in Eq. (2.19).
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(a) Conductivity (unmodified) as a function of the radius.
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(b) Deviation of the data w.r.t. the fit, this is
calculated by dividing the values of the data
by the value of the fit. From this figure we
conclude that the fit from Fig. 15 (a) is in
good correspondence with the data.

Figure 15: Conductivity from a concentration drop in a tube of length L = 400 nm and a radius R = [10−80]
nm, with viscosity η = 9.544 · 10−4 Pa s and with diffusion coefficients DNa = 1.1 · 10−9, DCl = 1.7 · 10−9

and DH = 8.2 · 10−9 all in m2/s. For a regulated surface charge as in Eq. 2.19.
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(a) Modified conductivity G∗∗ as a function of the radius.
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(b) Deviation of the data w.r.t. the fit, this is
calculated by dividing the values of the data
by the value of the fit. From this figure we
conclude that the fit from Fig. 16 (a) is in
good correspondence with the data.

Figure 16: Modified conductivity G∗∗ (G multiplied by a factor L
πR2 ) from a concentration drop in a tube

of length L = 400 nm and a radius R = [10− 80] nm, with viscosity η = 9.544 · 10−4 Pa s and with diffusion
coefficients DNa = 1.1 · 10−9, DCl = 1.7 · 10−9 and DH = 8.2 · 10−9 all in m2/s. For a regulated surface
charge as in Eq. (2.19).

Fit/constant gb (S/m2) gs (S/m2)
(i) -1.81·1010 2309
(ii) -1.92·1010 2340
(iii) -1.80·1010 2329
Average (-1.84±0.07)·1010 2326±16

Table 4: Bulk and surface conductivity constants for a tube of length L = 400 nm and a radius R = [10−80]
nm (R > κ−1), with viscosity η = 9.544 · 10−4 Pa s and with diffusion coefficients DNa = 1.1 · 10−9,

DCl = 1.7 · 10−9 and DH = 8.2 · 10−9 all in m2/s. For a regulated surface charge σ(z) =
m

1 +
ρH+ (z,r=R)

K

as

derived in Sec. 2.6.

5 Conclusion

In this thesis we studied a Boron-Nitride nanotube with a regulated surface charge and we investigated the
conductivity when the nanotube connects two baths with different ion concentrations, e.g. fresh water and
sea water. Before focussing on the conductivity of the nanotube we tried to reproduce the results found in
Ref. [2]. However, we encountered several problems during the calculations. At first we had to deal with
spurious flows, flows induced by numerical errors. To reduce these numerical errors we tried to alter the
volume force to get smaller pressure gradients. This worked for systems where there was no concentration
gradient, the spurious flows had reduced, when we however turned back to our system with a concentration
gradient a large non-physical driving force was found. This caused us to return to our initial volume force,
with spurious flows. We had to reduce these spurious flows in another way, to accomplish this we refined
the mesh at cost of our calculation time. Now we were ready to reproduce the results from Ref. [2]. When
we analysed the data we found that the current was sign-dependent of the concentration ratio, this was very
surprising. We chose to study the linear response regime where I ∝ (CmaxCmin

− 1), because this was more
insightful, the regime where this linear response is broken is an interesting continuation of this research.
For the linear response regime we compared the results for the conductivity to a conducting wire, which
has a surface and bulk contribution to the conductivity. We found that in the regime where the radius R
is smaller than the Debye length κ−1 (so R < κ−1) the bulk conductivity constant is positive, while in the
regime R > κ−1 the bulk conductivity constant is negative. We were able to find the bulk conductivity
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constant and the surface conductivity constant in the R > κ−1 regime the results of the analysis are given
in Table 4. The results of different methods of fitting agree with each other and therefore we consider
the results as reliable. Further research is needed to get a better understanding of the phenomenon which
induce the diffusio-osmotic current in the high concentration gradient limit. Furthermore we suggest that
the conductivity constants can be determined for larger pH values, because in Ref. [2] the diffusio-osmotic
current was larger for increasing pH values. This might result in a more efficient way of generating blue
energy.
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Figure 17: Left: We consider a tube of length L = 100 nm and radius R = 10 nm connecting two baths
with concentration ρ1 = [0, 6] mM and ρ2 = 0 for bath 1 and bath 2 respectively. In this figure the flux
through the middle of the tube is given as a function of concentration difference. The data shows that there
is less flux then expected from the analytical expression. This is because the concentration difference already
decreased in the baths.
Right: To check whether the deviation from the left figure was accrue from the decrease in concentration
difference between the baths. The analytic expression in this part takes the concentration difference between
the upper and lower part of the tube. From this figure it is shown that the data perfectly corresponds to
what is expected from the analytical expression.

A Basic physics to test model

In this appendix we discuss some basic physical theories which we tested on our model in COMSOL. The
results of these calculations are shown in several figures.

A.1 Fick’s law

In this section we discuss the transport of diluted species through the cylindrical nanotube, with Length
L = 100 nm and radius R = 10 nm (see Fig. 4). We applied a concentration gradient between the edge(1)
of Bath A end edge(3) of Bath C. There was no pressure gradient and there were no electric charges.
Therefore Eq. 2.13 reduces to Fick’s law: J = −D∇ρ. In COMSOL we varied the concentration gradient
from 0 to 6 mM and measured the flux through the z = 0 plane, which is the plane in the middle of the
nanotube. The results of these calculations are shown in Fig. 17. When we calculate an analytical expression

J = −D∇ρ⇒ J = −D∆ρ

L
, where we assumed that the concentration only varies in the nanotube with length

L. As we can see in the left figure of Fig. 17 the flux that is analytically expected is higher. Therefore we
checked what the concentrations were between the upper part of the tube an the lower part. From this we
saw that the concentration gradient decreased a little in the baths. Therefore we show in right part of Fig.
17 the analytic expression for the effective concentration difference. Therefore we conclude that the data
perfectly corresponds to this analytic expression.

A.2 Poiseuille flow

In this section we discuss the Poiseuille flow through the nanotube. Poiseuille flow is a pressure-induced
flow. We discuss the Poiseuille flow for a cylindrical system (the nanotube, again with L = 100 and R = 10
nm). In this section there will be no diluted species nor charge therefore the Stokes equation 2.6 reduces to
η∇2u = −∇p; ∇·u = 0. Solving these equations for cylindrical coordinates and no-slip boundary conditions,

where the pressure is applied at Bath A (the upper Bath), gives the velocity profile: vz(r) = −∂p
∂z

1

2η
r(R−r)

[10], where vz(r) is the velocity in the z-direction, r the distance to the z-axis and R the radius of the
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Figure 18: Radial dependence of
the axial velocity vz(r) in a tube
of length L = 100 nm and radius
R = 10 nm, for an applied pressure
drop of ∆p = 10 Pa, with viscosity
η = 9.544 · 10−4 Pa s. The ana-
lytic expression (blue)[10], is valid
for the assumption that the pres-
sure only changes inside the tube,
while the expression for the effec-
tive pressure use the actual pressure
drop measured in the tube (cyan).
The profile of vz(r) is seen to be
in good correspondence with the
expression which uses the effective
pressure.

nanotube as we can see in Fig. 4. The results of the calculations together with the analytical expression are
shown in Fig. 18.

For the analytic expression we estimated
∂p

∂z
to be constant and equal to

∆p

L
. When we improved the

analytic expression by measuring the effective pressure difference we used
∂p

∂z
=

∆peff
L

. The results of the

comparison of the data with the improved analytic solution are also shown in Fig. 18. We can see that the
data is in accordance with the analytical expression.
After recovering the analytical result for the Poiseuille flow we wanted to determine the influence of the
length of the tube and the influence of rounding the edges of the nanotube. First we considered the influence
of rounded edges, because rounded edges give rise to a more continuous flow which is easier to calculate. We
varied the edges from a radius of 1 nm to a radius of 15 nm, the radius of the rounded corner will be called
Rc. We used the same settings as in the first calculations of the poiseuille flow and got the results that are
shown in Fig. 19.
As we can see in Fig. 19 the radius of the corner gives rise to a relatively small error. We calculated this
error to be 5.5 % for Rc = 5 nm, with respect to the system where the radius Rc of the curvature of the
corner of the tube is 0. This error is 18.6 % for a Rc = 15 nm. Because the solution converges easier for
Rc = 5 nm, we will use this for our standard geometry. Secondly we wanted to investigate the influence of
the length of the nanotube. We used the same settings as in the previous calculations of the poiseuille flow
only now we took L = 1000 nm. Again we varied Rc for this length, the results are shown in Fig. 20.
As we can see in Fig. 20 the radius of the corner gives rise to a very small error with respect to the situation
where the corners are not rounded. We calculated this error to be 0.5 % for a Rc of 5 nm and 2.1 % for a
Rc of 15 nm. These errors are thus much smaller for a longer tube. Also we conclude from the results that
for a long nanotube the effective pressure is as good as equal to the pressure difference that was applied.
This we can conclude from the fact that the data is in accordance with the analytical expression in Fig. 20.
The observant reader might have noticed that the maximum velocity in Fig. 20 is lower by a factor of 10,
this is a result of the fact that the pressure gradient is now spread over a longer distance (a 10 times longer
distance).

B Poisson-Boltzmann distributions

B.1 Poisson-Boltzmann for a charged plane

In this section we calculate the potential with Poisson Boltzmann theory. The system we describe is a
homogeneously charged surface in the z = 0 plane. In the region above the plane (z > 0) there is a
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Figure 19: Radial dependence of the axial velocity vz(r) in a tube of length L = 100 nm and radius R = 10
nm, for an applied pressure drop of ∆p = 10 Pa, with viscosity η = 9.544 · 10−4 Pa s. The profile of vz(r) is
seen to be dependent on the radius of the curvature Rc at the corners of the tube.
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Figure 20: Radial dependence of the axial velocity vz(r) in a tube of length L = 1000 nm and radius R = 10
nm, for an applied pressure drop of ∆p = 10 Pa, with viscosity η = 9.544 · 10−4 Pa s. The profile of vz(r) is
seen to be only weakly dependent on the radius of the curvature Rc at the corners of the tube.
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Figure 21: The dimensionless potential φ(z) as a
function of the distance from a charged infinite
plane, for a surface charge of σ = 0.01enm−2 and
viscosity η = 9.544 · 10−4 Pa s. As seen in the fig-
ure the calculated values almost perfectly match the
analytic solution.
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Figure 22: The concentration of the cations (red)
and anions (orange) as a function of the distance
from the charged infinite plane, for a surface charge
of σ = 0.01enm−2 and viscosity η = 9.544 · 10−4 Pa
s. As seen in the figure the calculated values almost
perfectly match the analytic solution.

solvent, namely water. The other half space (z < 0) is a dielectric. The solution for the potential can be
found by solving the Poisson equation 2.8 and using the Poisson-Boltzmann distribution ??. With some
hard mathematics the analytic solution B.1 is found (See the dictate Soft Condensed Matter Theory for a
derivation [10]):

φ(z) = 2 ln
1 + γ exp[−κz]
1− γ exp[−κz]

, (B.1)

where φ(z) = βeψ(z) is the dimensionless potential and κ is the inverse Debye length as discussed in Sec.

2.5. γ =

√
1 + (y/2)2 − 1

y/2
, where y =

4πλBσ

κ
, with λB the Bjerrum length which was also discussed in

Sec.2.5 and σ the surface charge.
The dimensionless potential was calculated for σ = 0.01 e nm−2 and plotted together with the analytic
solution B.1, this is shown in Fig. 21. From this result we verified that our data analysis for PB-theory was
correctly done due to the fact that the data is in accordance with the analytic solution.

B.2 Poisson-Boltzmann for outside a charged sphere

In this section we calculate the potential with Poisson Boltzmann theory. The system we describe is a
homogeneously charged sphere in a solvent (water). The solution for the potential around the charged
sphere can be found by solving the Poisson equation 2.8 and using the Poisson-Boltzmann distribution ??.
With some hard mathematics the analytic solution B.2 is found (See the dictate Soft Condensed Matter
Theory for a derivation [10])

φ(r) = 4πa2σλB
exp(κa)

1 + κa

exp(−κr)
r

, (B.2)

In which a is the spheres radius, σe is the charge density, λB is the Bjerrum length and κ is the Debye length
which are discussed in Sec. 2.5.
For a surface charge of σ = 0.0001e nm−2 we simulated the ion distributions and the potential, these results
are shown in Figures 23 and 24. As seen in the figures the calculated values almost perfectly match the
analytic solutions.
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Figure 23: The dimensionless potential φ(r) as a
function of the distance from a charged sphere, for
a surface charge of σ = 0.0001e nm−2 and viscosity
η = 9.544 · 10−4 Pa s. As seen in the figure the cal-
culated values almost perfectly match the analytic
solution described in App. B.2.
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Figure 24: The concentration of the cations (red)
and anions (orange) as a function of the distance
from the charged sphere, for a surface charge of
σ = 0.0001e nm−2 and viscosity η = 9.544 · 10−4

Pa s. As seen in the figure the calculated values al-
most perfectly match the analytic solution, which is
described in Sec. 2.4.3.

C Smoluchowski

In this section we consider a positively charged spherical particle in a solvent. We apply an electric field over
the solvent, therefore the anions which are attracted to the surface will move against the electric field, this
will induce a fluid flow. We calculate the velocity of the particle as a function of the applied voltage drop.
We consider a particle with a Radius of 25 nm in a solvent with an ion concentration of 1 mM. The electric
field over the solvent comes from the voltage drop over a distance of 1 µm. We take the surface charge to be
0.01 elementary charges per nm squared, because then we are still in the linear PB regime. From the dictate
of soft condensed matter [10] we know that w = − εζη E, where ζ is the zeta potential which we defined in
Sec. 2.5 and w is the velocity in the z-direction. Due to the fact we are in the linear regime, we can use
ζ = ZλB

(1+
√

1+κR)R
from the same dictate. The results are shown in Fig. 25. As we can see in the figure,

the data is in good correspondence with the analytic expression (which makes use of Henry’s Function[15]),
therefore we can conclude that the physics used to describe this model are sufficient.

D Results with the adapted volume force

We applied a concentration drop of 0.1 mM with a reference density of 0.1 mM over the tube. We used
a regulated surface charge with 18 chargeable sites nm−2, the radius and length are 40 nm and 1250 nm
respectively. With these conditions we calculated the velocity profile in the middle of the tube, the results
are shown in Fig. 26. From this figure we conclude that the velocity profile is the same along the z-direction
of the tube, not taking into account the effects at the inlet and outlet of the tube.
The charge density inside the tube and the densities of all individual ion species are shown in Figures 27
to 30. From these figures we can conclude that the surface charge has a large impact on the ion distributions,
which also can be derived by considering the PB-distributions for the EDL. Unfortunately we cannot use
the results, where we calculated the diffusio-osmotic current due to the fact that the velocity of the fluid was
caused by a non-physical driving force.
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Figure 25: Velocity w of a charged
spherical particle of radius R =
25 nm and surface charge σ =
0.01e nm−2 in a solvent in an elec-
tric field. The applied voltage drop
V = [0, 1] V is applied over a dis-
tance ∆x = 1 µm. The concentra-
tion of the ions in the solvent ρs = 1
mM. Therefore κR = 2.67. The
Hückel-limit is valid for κR � 1
and the Smoluchowski-limit is valid
for κR � 1. The Henry’s Func-
tion is used for giving the analytic
expression for the interval between
the two limits [15]. As seen in the
figure the data is in good correspon-
dence with the analytical expres-
sion.
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Figure 26: Axial veloc-
ity in a tube of length
L = 1250 m and radius
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plied concentration drop
of 0.1 mM, with viscos-
ity η = 9.544 · 10−4 Pa
s. The velocity is mea-
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Figure 27: Charge density in a tube of length
L = 1250 m and radius R = 40 nm, for an ap-
plied concentration drop of 0.1 mM, with viscosity
η = 9.544 · 10−4 Pa s. The surface is charged ac-
cording to the charge regulation model described in
Sec. 2.6.
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Figure 28: Density of Na+-ions in a tube of length
L = 1250 m and radius R = 40 nm, for an applied
concentration drop of 0.1 mM, with viscosity η =
9.544 · 10−4 Pa s. The surface is charged according
to the charge regulation model described in Sec. 2.6.
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Figure 29: Density of Cl−-ions in a tube of length
L = 1250 m and radius R = 40 nm, for an applied
concentration drop of 0.1 mM, with viscosity η =
9.544 · 10−4 Pa s. The surface is charged according
to the charge regulation model described in Sec. 2.6.
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Figure 30: Density of H+-ions in a tube of length
L = 1250 m and radius R = 40 nm, for an applied
concentration drop of 0.1 mM, with viscosity η =
9.544 · 10−4 Pa s. The surface is charged according
to the charge regulation model described in Sec. 2.6.
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E Electric current in the non-linear regime

We applied a concentration drop of [0-999] mM with a reference density of 0.1 mM over the tube. We
used a regulated surface charge described in Sec. 2.6. The radius R and length L are 40 nm and 1250
nm respectively. We calculated the electric current for a variety of concentration drops. We expected the
current to behave as given in Eq. (4.1). The results of the calculations are given for two meshes in Fig. 31
(the second mesh has an improved number of mesh-points by a factor 10). From Fig. 31 we can see that
it is hard to analyse the current in this regime of concentration drops, due to the fact that the current is
sign-dependent of the concentration drop. When we calculate the total electric current Itot = INa + ICl + IH
we can neglect IH, because this current is several orders of magnitude smaller than the currents due to Na+

and Cl−. The current which arises from the transport of Cl− is positive, because these ions are negative and
the current is measured in the negative z-direction. We expected the current to be in the same direction as
the concentration gradient(negative I), due to the fact that the Na+-ions would more easily move through
the negatively charged nanotube. This is the case for most concentration drops, however for concentration
drops around 1 M this is not true. This is an interesting result, which we sadly cannot investigate further
due to time restrictions, we concluded from Fig. 31 that this result is not accrue from the mesh, because the
changes of the results only slightly depend on the mesh, and if it completely arose from the meshing their
would have been more changing results.

F Derivations

F.1 Derivation continuity equation

To derive the continuity equation we first derive the mass continuity equation and afterwards we can gen-
eralize this equation. We consider an infinitesimal cube, the mass-flux inward minus the mass-flux outward

is equal to the derivative of mass with respect to time: ṁin − ṁout =
∂m

∂t
, where the dot represents a flux.

The sides of the cube are dx, dy and dz, one corner of the cube has position (x,y,z). If we take the flow,
with velocity u = (u, v, w) coming inward from the three planes which touch the corner (x,y,z). The other
planes of the cube have an outgoing mass-flux. Then one can write

ṁin =ρuxdydz + ρvydxdz + ρwzdxdy, (F.1)

ṁout =ρux+dxdydz + ρvy+dydxdz + ρwz+dzdxdy, (F.2)

∂m

∂t
=
∂

∂t
(ρdxdydz) =

∂ρ

∂t
dxdydz. (F.3)

(F.4)

Substituting this in ṁin − ṁout =
∂m

∂t
and dividing both sides by dxdydz. gives

ρux − ρux+dx

dx
+
ρvy − ρvy+dy

dy
+
ρwz − ρwz+dz

dz
=
∂ρ

∂t
, (F.5)

∂(ρu)

∂x
+
∂(ρv)

∂y
+
∂(ρw)

∂z
+
∂ρ

∂t
= 0, (F.6)

∇ · (ρu) +
∂ρ

∂t
= 0. (F.7)

From this calculations we derived the mass continuity equation:

∂ρ

∂t
+∇ · J = 0. (F.8)

The mass continuity equation can also be used for other conserved quantities like particle density and particle
flux or energy density and energy flux. Therefore we will call it the continuity equation.
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(b) Total I, improved mesh.
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(c) I(Cl−), normal mesh.
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(d) I(Cl−), improved mesh.
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(e) I(Na+), normal mesh.
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(f) I(Na+), improved mesh.
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(g) I(H+), normal mesh.
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(h) I(H+), improved mesh.

Figure 31: Current components for all ion species as a result of a concentration drop in a tube of length
L = 1250 nm and radius of R = 40 nm, with viscosity η = 9.544 · 10−4 Pa s. With diffusion coefficients
DNa = 1.1 · 10−9, DCl = 1.7 · 10−9 and DH = 8.2 · 10−9 all in m2/s. For a regulated surface charge as in Eq.
(2.19) for m = 18 nm−2. Note that the Na+-ions give rise to a negative current, this is due to the direction
of the ion-flow, which is in the negative z-direction.



F DERIVATIONS XI

F.2 Derivation material derivative

For describing the Navier-Stokes equation it is useful to introduce the material derivative, also called the

total derivative. The material derivative
D

Dt
=

∂

∂t
+ u · ∇, where u is the velocity vector. In the material

derivative the first term is the local derivative, also called the Eulerian derivative and the second term comes
from the movement of the fluid.[16] To derive the material derivative we consider the vector field v(x,t) at
two different times: t (at position x) and t + ∆t (at x + ∆x), because the quantity of a particle we want
to consider has moved by ∆x during ∆t. Hence

∆v = v(x + ∆x, t+ ∆t)− v(x, t) (F.9)

= v(x + ∆x, t+ ∆t)− v(x, t+ ∆t) + v(x, t+ ∆t)− v(x, t) (F.10)

=
v(x + ∆x, t+ ∆t)− v(x, t+ ∆t)

∆t
∆t+

v(x, t+ ∆t)− v(x, t)

∆x
∆x (F.11)

=
∂v

∂t
∆t+

3∑
i=1

∂v

∂xi
∆xi. (F.12)

If we divide both sides by ∆t this results in

∆v

∆t
=
∂v

∂t
+

3∑
i=1

∂v

∂xi
ui, (F.13)

where ui =
∆xi
∆t

. In the limit of an infinitesimal time difference it takes the form

Dv

Dt
=
∂v

∂t
+ u · ∇v. (F.14)

Therefore the material derivative is:

D

Dt
=

∂

∂t
+ u · ∇. (F.15)
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