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Abstract

In this thesis, we will introduce the notion of unbounded operators on a Hilbert space. We
will discuss the definition of the adjoint of an operator, and what it means for an operator
to be self-adjoint. After that, we will restrict ourselves to bounded operators and prove the
Spectral Theorem for normal bounded operators. The notion of a spectral measure will be
introduced as well. After that, we return to unbounded operators and we will consider the
Cayley-transform. With that and the Spectral Theorem for normal bounded operators, we prove
the Spectral Theorem for unbounded self-adjoint operators. Then we look into the situations
that two unbounded self-adjoint operators commute on a common domain. We then prove a
theorem of Nelson that gives some criteria which imply that the spectral measures of the two
operators commute. And finally we will consider two examples of unbounded operators that
play a role in Quantum Mechanics.
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1 INTRODUCTION 1

1 Introduction

A theorem often discussed in an introduction course in Linear Algebra, is that a symmetric matrix
can be diagonalized with the eigenvalues on the diagonal. This theorem is often called the Spectral
Theorem. In an introduction course in Functional Analysis, the same theorem is proven for a com-
pact, normal operator on a Hilbert space. In both these cases, both operators were bounded and the
spectrum of the operators are countable. So if we were to allow the operator to be unbounded on a
Hilbert space, and the spectrum be uncountable, does there still exist a spectral theorem for certain
operators?

The Spectral Theorem for unbounded self-adjoint operators answers that question with yes.
If A is a (possibly unbounded) operator and A is self-adjoint, then A can be written as a ’sum’
over the elements of the spectrum times a projection operator. In fact, this ’sum’ will be an integral
with respect to some projection valued measure. This also involves the notion of a spectral measure.

As we will see, spectral measures have interesting properties. If we can show that two spectral
measures commute, then any operator written as an integral over the first spectral measure com-
mutes with any operator that can be written as an integral over the second spectral measure. So we
wish to investigate the commutation of two spectral measures. The theorem of Nelson will give
us a way to characterize some situations in which two spectral measures, corresponding to two
self-adjoint operators, commute.

We will begin by studying unbounded operators on a Hilbert space, and adjoints of these oper-
ators. In particular we will look into the notion of self-adjointness for unbounded operators. Then
we will study spectral measures and the Spectral Theorem for normal bounded operators. Then we
will prove the Spectral Theorem for unbounded, self-adjoint operators. Next we will look at the
theorem of Nelson for self-adjoint operators, and finally we will consider an application in Quan-
tum Mechanics.

We assume the reader has at least a Bachelor level of understanding of Linear Algebra, Topol-
ogy, real Analysis, Measure Theory and Functional Analysis. We will also use some Distribution
Theory, but that will be explained in short.

Most of the definitions and results are based on the results in the book of John B. Conway ([[1]).
Most of the time we will follow the proofs given in the book. However, sometimes we will diverge
from the results given in the book.

Finally, I would like to thank my supervisor prof. dr. E. P. van den Ban for guiding me in
writing this thesis. Even though he is very busy, he always had a moment each week to discuss the
progress and helped me out when it was needed. It was a great experience! I also would like to
thank my family, girlfriend and friends for supporting me when it was necessary.
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2 Unbounded operators

In this thesis, we wish to investigate unbounded operators on a Hilbert space, and their spectral
resolutions in particular. The theorem of Nelson tells us that if we start with two self-adjoint
operators A and B, and A? + B? is essentially self-adjoint, then the spectral resolutions of A and
B commute. In order to discuss this theorem, we must first investigate unbounded operators and
self-adjointness. Unbounded linear operators are no longer continuous, so some theorems based on
continuity do not hold anymore. Although, as we continue down the line, a lot of the properties of
bounded operators still hold for arbitrary operators.

In this section we will prove some elementary properties of (unbounded) operators. We will
discuss the domain and closures of operators, symmetric, normal and self-adjoint operators and
essentially self-adjointness. The reader who is already familiar with these concepts, may read onto
the next section, Section 3]

2.1 Unbounded operators and some basic properties

Before we are ready to define what an unbounded operator is, we need to broaden our definition of
a linear operator. In this way, we do not have to speak of unbounded operators and if we want to
address them, we can do so without having the problem of a not well-defined operator on all of JZ".
For the rest of this thesis, all Hilbert spaces are assumed to be defined over C. So the inner product
is a sesquilinear mapping into C. Also, we assume that every Hilbert space is separable.

Definition 2.1.1. If 77, ¢ are Hilbert spaces, we define a linear operator A : 7 — % as a
function whose domain of definition is a linear subspace (not necessarily closed), Dom(A), in J#
and such that for any A\, u € C and z,y € Dom(A) we find A(Az + py) = NA(z) + pA(y). We
call A a bounded operator if there exists a ¢ > 0 such that | Az|| < ¢||z]| for all z € Dom(A). We
write || A := sup{||Az||| z € Dom(A), ||z|| < 1}

Remark 2.1.2. Before we continue, we want to note three things. First of all, whenever we say
A . A — X is a linear operator, we mean that A : Dom(A) — J# is a linear operator with
Dom(A) C 2. It might suggest that A is everywhere defined, but note the implicit assumption of
a domain which might not be the whole Hilbert space.

Secondly, we note that the notion of boundedness in the new definition of a linear operator, is
equivalent to the notion of boundedness for linear operators everywhere defined. Of course, if A is
bounded in the old definition, then A is defined on all of .77 and || A|| = sup{||Az||| ||z| < 1} =c.
Then it also is a bounded linear operator in the new definition, because Dom(A) = .. On the
other hand, if A is a bounded operator defined on Dom(A), then we can find a bounded operator A
such that ||Az|| < ¢/|z|| forall z € .

Lemma 2.1.3. Let A : 7 — & be bounded. Then there exists a unique bounded operator A’
with Dom(A") = Dom(A) such that A'x = Ax if v € Dom(A)

Proof. Let x € Dom(A). Then there exists a sequence (x,), € Dom(A) such that x,, — x as
n — 00. So (x,), is also a Cauchy sequence. Because x,, € Dom(A), we have || Az, || < c||z,||
for any n. Therefore (Ax,), is also a Cauchy sequence. Because a Hilbert space is complete,

lim,,_,o Ax,, exists. Define
Az .= lim Az,

n—o0
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We will show that this definition of A’z does not depend on the choice of the sequence (zy,),. For
let (y,), € Dom(A) be another sequence converging to . Then ||Az,, — Ay, || < ¢z, —ya| — 0
for both sequences converge to x. Therefore ||Az, — Ay,| — 0 and so they converge to the same
value. Therefore is A’z well-defined. We also see that Dom(A’) = Dom(A) and A" : 5 — £ is
a linear operator. Finally, we see that || A’|| = || A]| O

Unless otherwise specified we will always identify a bounded operator A : # — J# with
domain Dom(A) with the unique bounded extension A : % — % such that Dom(A) = # and
A = 0on Dom(A’)*, where A’ is as in previous Lemma. Note that ||A| = ||A]|.

On the other hand, if A is an unbounded operator in the old definition, we assumed A to be
defined everywhere and sup {||Az|| | ||z|| < 1} tends to go to infinity. In other words, we can find
x € A such that | Ax|| is arbitrary large. Therefore there must exist x € % such that Ax cannot
be well-defined. So the notion of a domain is needed in order to work with unbounded operators.

Example 2.1.4. Consider the Hilbert space L*(IR) with the inner product (f, g) = [, f(
Then consider the linear mapping Z : f — xf. It is not guaranteed that for every f € L (]R)
have 2 f € L. In fact, define the function f : R — R as

f(@:{éc else

<1
/ |f(z)|*dr = / —dr < o0
R 1z
So f € L?(R). Therefore, one might expect that Z(f) € L*(R). However, we have

[ias@par= [ L= o

Thus xf ¢ L*(R). Therefore we have that the operator & cannot be defined on the whole space
L?*(R). We need to specify a suitable domain for 2. Define Dom (%) = {f € L*(R)|xzf € L*(R)}.
This operator we defined is called the position operator, and plays an important role in Quantum
Mechanics. We will look at this specific operator in Section [§] @

Then we find that

Definition 2.1.5. If .77, ¢ are normed vector spaces, we denote by A (7, %) the set of bounded
operators from .7 into #". We define () to be the set of bounded operators on .77, and we
write ¢ for the set of bounded linear functionals A : 5# — C. Note that Z(.%, %) is a linear
space.

Definition 2.1.6. We say that A is densely defined, if Dom(A) lies dense in 7.

Note that if A is a linear operator from .7 to %, then A is also a linear operator from the
Hilbert space Dom(A) to #". Thus if we replace the Hilbert space 5 with Dom(A), then we
can arrange that A is densely defined. If A is densely defined with respect to 7, then we can
approximate any « € . by an element in Dom(A). This fact will be key to some of the definitions
later.
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Remark 2.1.7. With these definitions it is easy to see that, if A, B are linear operators from .7 into
, then A + B is defined on Dom(A + B) = Dom(A) N Dom(B). Additionally, if 7, %, ¥
are Hilbert spaces and A : 7 — %, B : & — £ are linear operators, then Dom(BA) =
A1 (Dom(B)).

Definition 2.1.8. If 7, % are Hilbert spaces and A, B are linear operators from .77 into 2, we
say B is an extension of A if

1. Dom(A) € Dom(B),
2. if z € Dom(A) then Az = Bz.
We write A C B if B is an extension of A.

We note that if A € (), then Dom(A) = %, and so the only extension of A is A itself.
Therefore the notion of extensions is only relevant for unbounded operators.

We remind ourselves of the definition of a graph. Now that the domain is not necessarily the
whole Hilbert space anymore, we need to refine the definition.

Definition 2.1.9. If A : JZ — 7 is a linear operator, the graph of A is defined as
gra(A) .= {(z, Az) € H x K '|x € Dom(A)}

Lemma 2.1.10. Let A : 5 — ¢ be a linear operator. Define the mapping || - ||, : Dom(A) — R
as

lellgr = \/lllZ + | Azl

This mapping is a norm on Dom(A). This norm is called the graph norm

Together with the previous definition, it is easy to see that B C A if and only if gra(B) C
gra(A).

One of the important theorems about graphs, is the Closed Graph Theorem. For completeness,
we will give the theorem here in the context of a Hilbert space and for a general linear mapping. A
proof of this theorem can be found in any Functional Analysis book, for example [7), p.123].

Theorem 2.1.11. (Closed Graph Theorem) Let 7€, % be Hilbert spaces, and T a linear operator
from F into & with Dom(T') = . If gra(T) is closed, then T' € B(H, X")

Definition 2.1.12. An operator A : J# — ¢ is called closed if its graph gra(A) is closed in
S x K . We call A closable if there exists a closed extension of A. We denote by €(.7, %) the
set of all closed, densely defined operators from .77 into .#". We denote € () = € (4, 7).

Lemma 2.1.13. /Il Prop X.1.4, p.304] Let 7, % be Hilbert spaces. A linear operator A : 7 —
A is closable if and only if gra(A) is the graph of a linear operator.

Proof. Let gra(A) be the graph of a linear operator. Then by definition there exists a linear operator

B : o — ¢ with gra(B) = gra(A). Since gra(A) C gra(A), we have that B is an extension of
A, and thus A is closable.
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Now, let A be a closable operator. In other words, A has a closed extension B : 77 — . Let
(0,z) € gra(A). Because gra(A) C gra(B) and gra(B) is closed, we have (0,z) € gra(B) and
thus © = B(0) = 0. Define

9 ={yeH|3ze X :(y,z2) €gra(A)}

If € Z and y1,y2 € # such that (z,ys), (x,y2) € gra(A) then (0,y; — y2) € gra(A). Thus by
the same argument, y; — y» = B(0) = 0 and so y; = y». So we have for every x € & a unique
y € J such that (x,y) € gra(A). Define T : 7 — ¥ with Dom(T) = & as Tz = y where

y is such that (z,y) € gra(A). We only need to show that this operator is a linear operator and
gra(T) = gra(A). It is easy to check that 7" is a linear operator, by using the fact that gra(A) is a
linear subspace. By construction we find gra(7) C gra(A). On the other hand, if (z,y) € gra(A)
then 7'z = y by definition, and so (z,y) = (z,Tz) € gra(T'). So gra(A) = gra(7T’), and so gra(A

is the graph of a linear operator.

o=

Definition 2.1.14. Let A be a closable operator as in Prop. [2.1.13] The operator whose graph is
gra(A) is called the closure of A. It is denoted by A.

2.2 The adjoint of an operator

For bounded operators, we know that the adjoint of an operator is defined as the unique operator
such that (Ax, y) = (x, A*y). For arbitrary linear operators, we cannot use this definition anymore.
It might be that Az is not defined, or the mapping = — (Ax,y) is not bounded for certain y € 7.
The latter was needed in the proof of uniqueness of the vector A*y, so if it is not bounded anymore,
uniqueness might not occur. Therefore, another definition is needed.

Definition 2.2.1. Let .77, % be Hilbert spaces. If A : 7 — % is densely defined, define the set:
Dom(A*) = {y € # |z — (Ax,y) »is a bounded linear functional on Dom(A)}

By (-, -).» we mean the inner product defined on %"

Remark 2.2.2. In order to introduce the adjoint of an operator, we consider y € Dom(A*). Then
the mapping f : x — (Az,y) » is a bounded linear functional on Dom(A). Because Dom(A) lies
dense in 7, by Remark it has a unique extension f that is defined on all of .. Because it is
a bounded linear functional, we can use the Riesz Representation Theorem to conclude that there
exists a unique z € J such that f(x) = (z, 2) » for every x € . Thus we find the equation for
z € Dom(A)

(Az,y) = (2, 2) (1)

Definition 2.2.3. Let A be a linear operator. For y € Dom(A*) we define A*y to be the unique
element z € ¢ determined by Remark By this definition, we find a linear operator A* :
A — A with domain Dom(A*), where A*y is defined in such a way that

(Az,y) = (z, A%) (v € Dom(A)) 2)
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Remark 2.2.4. We observe that this definition is an implicit definition of A*. It is in general very
hard to find an explicit formula for the domain, or for A* itself. In some cases, properties of A will
make an explicit formula possible (self-adjointness for example), but for most cases calculating A*
is hard to almost impossible.

Proposition 2.2.5. [I| Prop. X.1.6, p.305] Let 7, % be Hilbert spaces, and A : 7 — * be a
densely defined operator. Then:

1. A* is a closed linear operator.
2. A* is densely defined if and only if A is closable.
3. if Ais closable, then A = (A*)* := A**

Before we prove this lemma, we introduce another lemma to aid us in the proof of the above
lemma.

Lemma 2.2.6. If A : 5 — J be a densely defined operator, and J : 7 x K — K x F is
defined as J(x,y) = (—y, x), then J is an isometric isomorphism and

gra(A") = [J(gra(A))]" 3)

Proof. It should be clear that J is an isometric isomorphism. Thus the only real interesting part of
the lemma is the second part. Remember that the inner product (-, -) sz« on € x J is given by
(2, X), (v, Y)) oo = (x, )¢ + (X, Y ) p. If © € Dom(A) and 2" € Dom(A*), we have:

((J(x, Ax)), (2!, A*2")) o = ((—Az, ), (2, A*2")) oxr = —(Ax, 2") p + (2, A*2") 5 = 0

by Equation . Therefore gra(A*) C [J(Dom(A))]". On the other hand, if (z, y) € [J(gra(A))]",
then for any z € Dom(A) we have 0 = ((x,y), J(z, A2)) e = —(x, A2) ¢ + (y,2) . SO
(Az,x) = (z,y). So by definition we find x € Dom(A*) and A*z =y O

Proof of Proposition[2.2.3] 1) Since gra(A*) = [J(Dom(A))]*, we have gra(A*) is a closed set.
Therefore A* is a closed operator.

2) First assume Dom(A*) is dense in .#". Then (A*)* = A** is defined. Then by 1), A** is
a closed operator. We need to show A C A**. Let x € Dom(A). Define f : Dom(A*) — C
by f(y) = (A"y, ). We see that |f(y)| = [(A*y,z)| = [{y, Az)| < ||Ax][[|y|| by Remark [2.2.2]
Therefore we see that f is a bounded operator on Dom(A*), and thus x € Dom(A**). Additionally
we see that for any x € Dom(A),y € Dom(A*):

(Az,y) 0 = (@, A"y)or = (A2, 9y) 2

So ((A — A**)x,y) = 0. This is true for any y € Dom(A*). Since Dom(A*) lies dense in %, we
must have Az = A**x for any © € Dom(A). We conclude that A C A** and so A is closable.



2 UNBOUNDED OPERATORS 7

On the other hand, let A be a closable operator. Consider € [Dom(A*)]*. We wish to show
x = 0, because this shows that [Dom(A*)]" = (0), and so Dom(A*) lies dense in .#. Since
z € (Dom(A*))* we have that

(2,0) € (gra(A")* = [[J(gra(A))]*]" = T(gra(A))

Because J is is an isomorphism on .7 x %", we have J(gra(A)) = J(gra(A)). Therefore (z,0) €
J(gra(A)). So there exists a (y, z) € gra(A) such that J(y, z) = (—z,y) = (x,0). So —z = x and
y = 0. Thus (0, —z) € gra(A). But we know that A is closable, so gra(A) is a graph. So = = 0.
We conclude that A* is densely defined.

3) Let A be closable. We know already by 2) that A** is a closed extension. We only need to
prove that gra(A**) = gra(A). Define J' : & x S — # x # by J'(z,y) = (—y,z). Note
that we only switched ¢ and J#". By 2), A* : J# — J¢ is densely defined and so by going
through the same proof as in Lemma [2.2.6| we find gra(A**) = [.J'(gra(A*))]". But we note that
JoJ(x,y) =J(—y,x) = —(x,y) forany x € 5 and y € J#". Therefore, J' o J = —I. By the
same calculations, J o J' = —I. Hence J’ = —.J~!. We know that .J is an isometric isomorphism,
thus J—! = J*. Therefore we conclude

J'(graA”) = J ' (gra(A)) = —J"(gra(A)) = J"(gra(A))

Hence we can conclude gra(A**) = [J*(gra(A*))]". Therefore

gra(A™) = [J* (gra(A")]* = [J* (J(gra(A)1)]*

Because .J is an isometric isomorphism on # x ¢, J* = J~! and J~! is continuous. Hence

gra(A™) = [J71 (J(gra(A)M)]" = [J " o J(gra(A))] " = gra(A)* = gra(A)
So A* = A. O

Corollary 2.2.7. [lI| Cor. X.1.8, p.305] Let 57, % be Hilbert spaces, and A € € (7, %"). Then
A* € € (K, ) and A = A*. Here is € (H, %) defined as in Definition|2.1.12

This corollary looks a lot like the case of bounded operators. Of course, if A is bounded, then
we can define it on all of .77, and then we can use the previous corollary to conclude that A** = A,
which is known for bounded operators.

Corollary 2.2.8. [, Prop. X.1.13, p.307] If A : 5 — & is a densely defined linear operator,
then

(ran(A))* = ker(A*) 4)
If A is also closed, then

(ran(A*))* = ker(A) ®)

Proof. 1) if x € (ran(A))*, then for any y € Dom(A) we have 0 = (Ay, z). So z € Dom(A*)
and A*x = 0. The other inclusion is clear.

2) if Ais closed, A € €(s¢, ). Thus by Corollary we have A** = A, and we use
Equation () to conclude Equation (). 0
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2.3 Inverse of an operator and the spectrum

In order to define an inverse of a linear operator, we remember Remark IfA: 0 — 7%
is a linear operator, and B : .# — . is a bounded linear operator, we see that Dom(AB) =
B~'(Dom(A)) and Dom(BA) = Dom(A) because B is defined on all of ¢

Definition 2.3.1. Let 77, % be Hilbert spaces, and A : 7 — % be a linear operator with domain
Dom(A). We say A is boundedly invertible if there exists a bounded linear operator B : % — 7
such that AB = [, and BA C [,». We call B a (bounded) inverse of A. In light of the following
proposition part 2, we denote B = A1,

Note that if A is boundedly invertible, then BA C [, and therefore is BA bounded on its
domain. Therefore it is possible to extend is, as noted in Remark@

For any bounded operator it was enough to be bijective, in order to have a bounded inverse (by
the Open Mapping Theorem). For any arbitrary operator, we do not have the advantage of having

¢ as a domain. However, the following proposition ensures that we can find a bounded inverse of
Aif A: Dom(A) — £ is bijective, and the graph of A is closed.

Proposition 2.3.2. [} Prop. X.1.14, p. 307] Let 7, % be Hilbert spaces, and A : 7 — K be
a linear operator. Then

1. A is bounded invertible if and only if ker(A) = (0), ran(A) = # and the graph of A is
closed.

2. If A is boundedly invertible, its inverse is uniquely defined.

Proof. 1) First let A be boundedly invertible. Let B € A(.# , ) be an inverse of A. Then
Dom(B) = # . Let x € ker(A). Since BA C [,», we have 0 = B(0) = BA(z) = Ly(z) = x.
So ker(A) = (0). Additionally, if y € %, we see thaty = [, (y) = AB(y) = A(B(y)). So
y € ran(A). Soran(A) = . Also, note

gra(A) = {(x, Ax) € A x H'|xr € Dom(A)} = {(Bx,z) € H x K '|x € X}

Because B is a bounded operator, gra(A) is closed.

Now let ker(A) = (0), ran(A) = # and assume gra(A) is closed. Because of the first two
properties, A is a bijective operator on its domain. Therefore Bz := A~'x is well defined for any
x € . Because gra(A) is closed, the same holds for gra(B). By The Closed Graph Theorem,
Theorem[2.1.11]we find B € B(H , ).

2). Let A be boundedly invertible, and assume B; and B, are bounded inverses of A. Thus
ABy = ABy = Iy and so A(By — By)xz = 0 for any € #. So A(Byz — Byz) = 0, and so
Byx — Box € ker(A). But because A is boundedly invertible, ker(A) = (0). So Byx — Byzr = 0
and so Byx = Byx for any x € JZ. Therefore B; = Bs. l

Definition 2.3.3. Let 27 be a Hilbert space, and A : 7 — J¢ be a linear operator. Define the
resolvent set p(A) by p(A) := {\ € C|A — A is boundedly invertible}. The spectrum of A is
defined to be the set o(A) := C \ p(A). (Most of the times, we will omit the /, and just write
A — )\). We also define the point spectrum as 0,(A) := {\ € 0(A)|A — X is not injective}.
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This definition is exactly the same as the definition for the spectrum for any bounded operator.
The only subtlety about this definition, lies with the domain of A. It should therefore be no sur-
prise that the following proposition holds for an arbitrary operator. For a proof, see for example
[10, Prop. 2.7, p. 29].

Proposition 2.3.4. Let A : 7 — I be a linear operator.
1. If X € C, then gra(A) is closed if and only if gra(A — \) is closed.
2. If A € €(), then o(A*) = {\|\ € a(A)}. Additionally if X € p(A) we have

(A= 27" = [(A=»7

2.4 Symmetric, normal and self-adjoint operators

Now that we have defined what the adjoint of an arbitrary linear operator is, we can continue to
define what symmetric operators and self-adjoint operators are. These are the operators we will be
considering most of the times in this thesis.

In linear algebra, a linear transformation M : R" — R™ is called symmetric whenever (Mx, y) =
(x, My) for any z,y € R"™. In functional analysis, when we have a bounded operator A : 7 —
A, we call A self-adjoint whenever (Ax,y) = (x, Ay) for all z,y € . In conclusion, these
two names seem to represent the same operation in some sense. However, for unbounded operators
there is an important difference between symmetric and self-adjoint operators.

Definition 2.4.1. If .77 is a Hilbert space, and A : 5 — JZ a linear operator, then we say A is
symmetric if A is densely defined, and for all x,y € Dom(A) we have:

(Az,y) = (v, Ay)

Definition 2.4.2. Let 77 be a Hilbert space. A densely defined operator A : 57 — ¢ is said to
be self-adjoint it A = A*.

Remark 2.4.3. We note that Definition[2.4.2]implicitely claims that A is symmetric, and Dom(A) =
Dom(A*). So in other words, we cannot define the adjoint on any other vector other than the vec-
tors in Dom(A). For bounded operators, Dom(A) = J#, so automatically if A is symmetric, it is
self-adjoint.

However, for unbounded operators these terms are not quite the same. There exist symmetric
operators on L?(IR), that are not self-adjoint. See for example [I, p. 306].

Remark 2.4.4. Proposition tells us that any self-adjoint operator A must have a closed graph.

Proposition 2.4.5. If A : 5 — € is densely defined, then the following statements are equiva-
lent:

1. Ais symmetric.

2. forany x € Dom(A) we have (Az,z) € R.
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3. AC A~

Proof. 1) = 2) : Let A be symmetric. Then for any z,y € Dom(A) we find (Ax,y) = (z, Ay).
So especially (Az, x) = (x, Ax) = (Ax,x) for any x € Dom(A). So (Ax,z) € R.

2) = 1) : Let x € Dom(A), and consider (Az,x) € R. Then (Az,z) = (z, Az) = (z, Ax).
Therefore, let z, y € Dom(A). We find then

(A(x £ y),x +y) — (Al Fy),z Fy) = £2(Az,y) £ 2(Ay, x)
Therefore it follows that

(Al +y),z+y) — (Alz —y), z — y) + i(Alz + iy), x + iy) — i(A(z — iy), z — iy)
= 2(Az,y) + 2(Ay, x) +i(—i{Azx,y) + i(Ay, z) — i(Ax,y) + i(Ay, x)) = 4(Ax,y)

Because (Az, z) = (z, Az) for any z € Dom(A), we find

- y),l‘ - y)
+i(A(z +iy), x +iy) — i(A(x —iy), z — iy))

= i((w +y, Al +y)) — (x —y, Az — y))

+ iz + iy, Az +iy)) — iz — iy, Alz — iy))) = (z, Ay)

(Az,9) = (A + )7 +9) — (Ala

Therefore, we see that A is symmetric.

1) = 3) : Let A be symmetric, and consider x € Dom(A). Then for any y € Dom(A) we have
[(Ay, x)| = [(y, Az)| < ||ly||||Az||, so y — (Ay, z) is bounded, and thus x € Dom(A*), and we
see A*z = Ax for any z € Dom(A). So A C A*.

3)=1):If A C A*, we have A*z = Az for x € Dom(A). Hence, for any y € Dom(A) we
see that (Ay, ) = (y, A*z) = (y, Ax). So A is symmetric. O

Lemma 2.4.6. Let A : 7€ — € be a symmetric linear operator. If B is a symmetric extension of
A, then
ACBCB"CA” (6)

Proof. Let B be a symmetric extension of A. The first inclusion is by definition, and the second by
Proposition For the third inclusion, consider y € Dom(B*). We then have (Bz,y) = (Ax,y)
for any x € Dom(A). Therefore y € Dom(A*) and we find B*y = A*y. So A* is an extension of
B*. N

Another type of operator which is important in Operator Theory, is a normal linear operator. For
a bounded operators A, we say A is normal if A*A = AA*, so A and A* commute. For arbitrary
operators, we have a similar definition, with the subtlety of defining the domains in the proper way.

Definition 2.4.7. Let .7 be a Hilbert space. A linear operator A on ¢ is normal if A is a closed,
densely defined operator and A*A = AA*.
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Remark 2.4.8. Note that the equation A*A = AA* implicitly carries the condition Dom(A*A) =
Dom(AA*), where we define Dom(AA*) as in Remark [2.1.7] It does not say anything about the
domain of A or A* itself. Apart from that, it is the same definition as for bounded operators on a
Hilbert space.

Also note, that if A is a self-adjoint operator, then A is a normal operator.

In light of the theorem of Nelson, we need to introduce another definition, which is almost the
same as self-adjointness. In short, we only need to take the closure in order to find an self-adjoint
operator.

Definition 2.4.9. Let /7 be a Hilbert space. A linear operator A : /" — A is called essentially
self-adjoint, if A is closable and its closure A is self-adjoint. In other words A = A

For the rest of this chapter, we will have a look at the spectral properties of symmetric operators.
We will need them in order to prove the Spectral Theorem, which will be used in the theorem of
Nelson. A lot of properties of the spectrum for bounded self-adjoint operators still hold, especially
the lemma which states that the spectrum of a self-adjoint operator is a subset of the real line.

Additionally, we will see that there is an interesting way of concluding that a symmetric operator
is self-adjoint. We will use this characterization later on to prove that some operators are self-
adjoint.

Lemma 2.4.10. Let A be a symmetric operator on a Hilbert space 7, and let A € C be given as
A=a+ifwitha, € R. Then

1. Forevery x € Dom(A) we have ||[(A — \)z|* = ||[(A — a)z||* + 82||=|]?
2. If B # 0 we have ker(A — \) = (0)
3. If Ais closed and 3 # 0, then ran(A — \) is closed

Proof. 1): We note that for any x € Dom(A)

I(A = Nz [* = (A = a)z||* + [|ifz||* — 2Re({(A — a)z, iBz))
I(A = a)a||* + B%||=[|* + 2Re(i{(A — )z, Bz))
I(A

(A—a)z|® + B*[lz]” + 2Re(i(B{Az, 2) + a(z,z)))

Since A is symmetric, (Az,z) € R and so part 1) follows.
2): Since || (A—N)z||? = ||(A—a)z||*+8?||z||* > B?||x|]?, if B # 0, we have ker(A—\) = (0).
3): Let A be closed and § # 0. Take a sequence (y,), C ran(A — \) such that y,, — y
as n — oo. We wish to show y € ran(A — \). Because y,, € ran(A — \), there exists z,, €
Dom(A — \) such that y,, = (A — \)z,,. Notice that ||z, || < ||[(A— \)z,|| and so (x,,), is a Cauchy

sequence, and thus has a limit in 7. Define x := lim,,_, x,. Since (z,,y,) € gra(A — \),
we have (z,,y,) — (z,y). Because A is a closed operator we have gra(A — \) is closed. Thus
(x,y) € gra(A — ). Therefore y € ran(A — \). O

Theorem 2.4.11. [lI, Cor. X.2.9, p. 311] If A is a closed, symmetric linear operator on F€, then
the following statements are equivalent.
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1. A is self-adjoint
2. 0(A)CR
3. ker(A* —i) = ker(A* +1i) =0

Proof. 1) = 2): Let A be a self-adjoint operator. If x € ker(A — \) then Az = Az. Then
A|z||? = (Ax,z) = (Az,x) which is a real number. Therefore A € R. Let Im(\) # 0. Then
we can conclude ker(A — \) = ker(A* — A\) = (0). So A — X is injective. It is easy to see that
Dom(A) = Dom(A — \), so A — \is densely defined. Additionally (A — \)* = A* =X = A — \.
Then by Corollary we find

[ran(A — \)]" = ker((A — \)*) = ker(4A — X) = (0)

Therefore ran(A — \) is dense. By Lemma A — X has closed range, and so A — X is
surjective. Therefore by Proposition we have A — ) is boundedly invertible, and so A € p(A).
Therefore o(A) C R.

2) = 3): By Corollary [2.2.8 we have ker(A* + i) = [ran(A F i)]*. Since 0 (A) C R, A+ is
boundedly invertible, and so [ran(A F i) = £+ = (0). So 3) follows.

3) = 1): If 3) holds, we have by Corollary that ran(A + i) is dense, and by Lemma
we have A + i is surjective. So if z € Dom(A*), there exists y € Dom(A) such that
(A+ 1)y = (A" + i)x. But since A is symmetric, A*y = Ay and so (A* + i)y = (A* + )z and
thus y = =z € Dom(A). So A = A*. O

As it seems, the dimension of ker(A 4 ¢) seem to play an important role in showing whether A
is self-adjoint or not. It is convenient to give them names, for we will need them again.

Definition 2.4.12. Suppose that A is a closed symmetric operator on a Hilbert space .77. Let

£, = ker(A* — i) = [ran(A 4 i)]* (7)
£ = ker(A* +1i) = [ran(A — i)]" (8)

Z, and Z_ are called the deficiency subspaces of A. The pair of numbers ny := dim(.%,) are
called the deficiency indices of A.

Remark 2.4.13. We remark that for an arbitrary linear operator A, it is possible for the deficiency
indices to be any pair of nonnegative integers. It is also possible that n. or n_ (or both) are co. See
for example [0, p. 138].

Definition 2.4.14. A partial isometry is a linear operator W on a Hilbert space .7 with Dom(W) =
A such that for z € [ker(W)]", ||[Wx|| = ||lz||. We define [ker(W)]" the initial space of W, and
ran(W) is defined as the final space of W.

The following theorem gives a one-to-one correspondence between closed symmetric exten-
sions of a symmetric operator, and partial isometries. We will not prove this theorem. The reader
who is interested in the proof, may read [1, p. 313 — 315] or [6, p. 138 — 140].
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Theorem 2.4.15. [, Thm. X.2.17, p. 314] Let A be a closed symmetric operator on a Hilbert
space €. If W is a partial isometry with initial space in £, and final space £, define

Dw = {x+y+ Wyl|r € Dom(A),y € initial(W)}
and define Ay, on Dy by
Aw(x +y+Wy) = Az + 1y —iWy

Then Ay is a closed symmetric extension of A. Conversely, if B is a closed symmetric extension of
A, then there exists a unique partial isometry W such that B = Ay with Ay defined as above.

The following lemma is just a recap of the results of some of the theorems, but gives an efficient
way of showing whether an operator is self-adjoint or has self-adjoint extensions.

Lemma 2.4.16. Let A be a closed symmetric operator with deficiency indices n... Then
1. A s self-adjoint if and only ifn, =n_ =0

2. A has a self-adjoint extension if and only if n,. = n_. In this case the set of self-adjoint
extensions is in a natural correspondence with the set of unitary isomorphisms of £, onto

z

Proof. The proof of 1) is just a rephrasing of [2.4.11
For 2), we first note that %, are closed linear subspaces, and thus Hilbert spaces. Additionally

note that n, = n_ means that dim(.%,) = dim(.Z_). We assumed that all of our Hilbert spaces
are separable, so the equality n, = n_ is true if and only if .Z, and .Z_ are isomorphic. But saying
that the two are isomorphic, is equivalent to saying there is a partial isometry W with initial space
Z, and final space .Z_. O]

3 Spectral theorem for bounded normal operators

If we want to understand the theorem of Nelson, we need to understand what a spectral measure
is. A spectral measure is a function that sends every measurable subset of a set X to a projection
operator in a Hilbert space 7. It follows that we can ‘diagonalize’ any unbounded self-adjoint
operator A as an ‘integral’ over the spectrum of A. This is known as the spectral theorem for
unbounded self-adjoint operators. In order to prove the spectral Theorem for unbounded self-
adjoint operators, we need the spectral theorem for bounded normal operators. Thus we will study
this first. Readers already familiar with the Spectral Theorem for bounded operators, may skip
Section

3.1 (*-algebras and representations

The spectral theorem for bounded normal operators is a corollary of a more general theorem, which
states that there exists an one-to-one correspondence between spectral measures and representations
of certain C*-algebras. In order to state this more general theorem, we need to know what spectral
measures and representations of C'*-algebras are. In this section, we will shortly introduce C*-
algebras and representations. We assume K as either one of the fields R or C.
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Definition 3.1.1. An algebra <f over K, is a vector space <7 over K that also has a multiplication
defined on it that makes it into a ring such that if A € Kand z,y € &/ then A\(zy) = (Az)y = x(A\y).

Remark 3.1.2. Note that having an identity element in the algebra is not included in the definition.
It is therefore not needed for any algebra to have an identity.

Definition 3.1.3. We define a Banach algebra as an algebra <7 over K with a norm || - || such that
</, equipped with this norm, is a Banach space and such that for any z,y € <7,

[yl < [l=[llyll
If o7 has an identity element 1, it is assumed ||1|| = 1

Example 3.1.4. Let X be a Banach space, and put &/ = Z(X). If multiplication is defined as
composition, ./ becomes a Banach algebra with identity. %)

Now that we have a notion of an algebra, we can define what a C*-algebra is. In short, we add
an additional operation on our algebra, that looks a lot like the conjugation operation in C. But
in more general setiings, the conjugation operation is not necessarily abelian. In other words, if
x,y € o/ we might have (xy)* # (yx)*.

Definition 3.1.5. We define an involution on a Banach algebra <7 as the map = +— z* of <7 into o/
in such a way that the following properties hold for any z,y € o/ and A € K

° (I'*>* =71
o (zy)" =y
o (\z+y) =" +y"

Definition 3.1.6. A C*-algebra over K is a Banach algebra .7 over K with an involution such that
for every x € &/ we have
"] = [|=[|*

Example 3.1.7. C is a C"*-algebra, if we consider the conjugation defined on C as the involution.
Also M, (C), the space of complex-valued n x n matrices, is a C*-algebra if we consider the
complex conjugate as the involution %)

Example 3.1.8. Let .7# be a Hilbert space. We already know that (.%) is a Banach algebra. If
we define the involution operation * as A*= the operator’s adjoint, then this defines an involution,
and so A(.) is a C*-algebra. %)

In Group Theory, one often encounters homomorphisms and isomorphism. Such mappings
conserve the structure of the group. For algebras, we have a similar notion of homomorphisms and
isomorphisms.

Definition 3.1.9. Let <7}, o7 be C*-algebras over K, and h : o/} — of5. We call h a homomorphism
of a C*-algebra if h(xy) = h(z)h(y) and h(x+Ay) = h(xz)+Ah(y) forevery x,y € <7 and A € K.
We call h an isomorphism if h is bijective. We call h a *-homomorphism if h is a homomorphism,
and in addition h(z*) = h(x)* is true for any x € . We call h a *-isomorphism if h is an
isomorphism and a *-homomorphism.
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Definition 3.1.10. Let o be a C*-algebra over K. A representation of a C*-algebra is a pair
(A, ) where 5 is a Hilbert space and 7 : &/ — Z(H) a *-homomorphism, where Z ()
is as usual the space of bounded operators on .7. If o/ has an identity, it is assumed 7(1) = I,
the identity operator. Often the mention of .7 is omitted and say 7 is a representation of the
(C'*-algebra.

3.2 Spectral measures

Next, we wish to define a spectral measure. This will turn out to be a projection operator on a
Hilbert space .7#” which is dependent upon the Borel subsets of C. In this way, it will give a sort of
"weight’ to each Borel subset of C, and therefore we can integrate over this spectral measure. We
will look into all of these items in this section.

Definition 3.2.1. Let 7 be a Hilbert space. An idempotent on 7 is a bounded, linear operator
E : A — 5 such that E? = E. A projection is an idempotent E such that ker(E) = ran(E)*.

Lemma 3.2.2. Let ¢ be a Hilbert space. If E is an idempotent on 7€, then ker(E) = ran(l — E)
and ker(I — E) = ran(FE).

Proof. If x € ker(E) then Ex = 0,and so (I — F)z = x — Fx = x,s0 x € ran(] — E). On the
other hand if € ran(/ — FE) then there exists a y € . such that (I — E)y = z. So

(I-Ex=(I-EPy=(I-2E+E)y=I-Ey=x

Thus z — Fx = z and we conclude x € ker(FE). So the first part is proven. The proof for the
second equality goes in a similar way, so we will omit it. [

Lemma 3.2.3. [l Thm. 11.3.3, p. 37] Let 5 be a Hilbert space, E an idempotent on 7 and
E # 0. Then the following statements are equivalent:

1. FE is a projection.
2. FE is a self-adjoint operator.
3. E is a normal operator.
4. |E|| =1
5. (Ex,x) > 0 forany v € J.
Proof. 1) = 2) : Assume E to be a projection. Let z,y € 7. Then z = x1 + x2 and y = y1 + 4o

with 71,91 € ker(E) = (ran(E))* and 79,9, € (ker(E))* = ran(E). Therefore if 2, € ker(E)*,
we can find a sequence (z,,), C ¢ such that Ex, — x5 as n — oo. Then we find that

(Ba,y) = (Ers,y) = lim (EEr,,y) = i (Ery, ) = T (B, ) + (B, 92)

n—oo

Because y; € ran(E)*, we find that (Ex,,,y;) = 0. Therefore we conclude

(Ex,y) = lim (Ewn,ya) = (2, 42)
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We could do the same reasoning for y, and we see that (z, Ey) = (x2,y2). Sowe find (Ex,y) =
(x, By) for z,y € . Therefore, F is self-adjoint.

2) = 3) : There should be no surprises here, it is true by definition.

3) = 1) : Let E be a normal operator. Note that for any = € .7 we have

|Ez|? = (Ez, Bx) = (E*Ex,z) = (EE*x,x) = (E*r, E*x) = ||E* x|

So ker(E) = ker(E*). By Corollary2.2.8| we have ker(E*) = ran(FE)*, and so F is a projection.

1) = 4) : If z € 5 we have ||Ez||> = (Fz,FEz) = (FEz,z) < ||Exl|/||z| because F is
self-adjoint. So ||Ez| < ||z| for z € . On the other hand, if y € ran(F), then there exists a
z € ¢ such that y = Ez. Then

1Byl = |EE)] = [|E2] = [yl

So this concludes that || E|| = 1.

4) = 1) : Letx € (ker(E))*. Because ker(E) = ran(I — E), we have * — Ex € ker(E). This
means that 0 = (x — Ex,z) = ||z]|* — (Fz,z) and thus ||z||* = (Fz,z) < |[|[Ex|/||z] < ||z|*
Therefore the inequality signs must be an equality sign. So we conclude that for any = € (ker(E))*
we have ||Ex||? = ||x||> = (Ex, z). But then we can conclude that

lo — Bz|* = ||2]* + | E2[|* — 2Re({Ez,z)) = 0

Thus we find = € ker(I — F) = ran(E) and so (ker(E))* C ran(F).

On the other hand, let y € ran(E). So we can write y = y; + yo with y; € ker(E) and
yo € (ker(E))t. Then y, € ran(E), and so Ey; = y». Soy = Ey = Ey, = y and so
y € (ker(E))*. So E is a projection.

1) = 5) : Let E be a projection. Then by previous statements £/ = E*, and thus is

0 < ||Ez|® = (Ex, Ex) = (E*z,2) = (Ev,7)

forany z € . So (Ez,x) > 0

5) = 1) : Letz € ran(F) and y € ker(F). Then 0 < (E(x +y),z +y) = (x,x) + (z,y).
Thus —||z||?> < (z,y). Assume there exists z and y such that (x,y) = X\ # 0. Then certainly if
z = py for p € C\ {0} gives (x,2) = T '(x,y) # 0. Thus, define 4 = —2\~1||z||?, we find
(x,y) = =227Y|z|*\ = —2||z||?, and thus we find ||z||*> < —2||z||* which is a contradiction. Thus
(xz,y) = 0forany z € ran(F) and y € ker(F). Hence F is a projection.

]

For our definition of a spectral measure, we first need to introduce some topologies defined on

B(A).

Definition 3.2.4. If 77 is a Hilbert space, we define the weak operator topology (WOT) on B ()
as the locally convex topology given by the seminorms {p, , |,y € '} where p, ,(A) = [(Az,y)|.
The strong operator topology (SOT) is the topology defined on Z(.7) by the family of seminorms
{pz|x € H}, where p,(A) = ||Az||.

The next proposition gives some properties of these topologies. Because they do not give a lot
of insight in the problem we are working with, we will omit the proof.
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Proposition 3.2.5. Let 5 be a Hilbert space, and (A;); a sequence in H(7 ). Then
1. A; — A(WOT) if and only if (A;z,y) — (Ax,y) for any x,y € H

2. Ifsup{||4;||} < oo and &7 C I a subset such that span(a/) = €, then A; — A (WOT)
if and only if (A;x,y) — (Ax,y) forany x,y € &

3. A; — A(SOT) if and only if ||Ajx — Ax|| — 0 for any v € H°

4. If sup{||4;||} < oo and o/ C € such that span(a/) = H, then A; — A (SOT) if and only
if ||Ajz — Az|| — 0 forany x € of

5. If S is separable, then the WOT and SOT are metrizable on bounded subsets of B(H)

With all the previous definitions, we can finally define a spectral measure. Remember that a
o-algebra <7 of a set X, is a collection of subsets of X such that ) € o7, if A € &/ then X\ A € &7,
and finally if (Aj)j ¢ € &/ is acountable sequence of sets, then | J;.; A; € /. If X is a topological
space, then the Borel o-algebra is defined as the o-algebra generated by all open subsets of X.

Definition 3.2.6. Let X be a set, o/ a o-algebra of X, and 7# a Hilbert space. We define a spectral
measure for (X, o/, ) as a function E : o7 — () such that:

1. For any set A € ./ we have E(A) is a projection.
2. E(0)=0and F(X) = I.
3. If A, B € o/ then E(AN B) = E(A)E(B).

4. If (Aj)j is a pairwise disjoint sequence of sets in .7, then
j=1 j=1

Remark 3.2.7. We need to say a few things about the last part of the definition. It is not a priori
clear that the sum of part 4 of the definition converges at all. We will show that the sum does
converge with respect to the strong operator. First we note that if A, B are disjoint, we have that
AN B = () and so by part 2 and 3, we see that 0 = F(A)E(B) = E(AN B) = E(B)E(A), and
so the projections have orthogonal ranges. With the following claim we can conclude that part 4 of
the definition is unambiguous, if (E(A,)), is a sequence of projections with orthogonal ranges.

Claim 1. For any sequence of projections (E;); with pairwise orthogonal ranges, we have that
> i1 En — E (SOT) where E is the projection with ran(E) = @jenran(E};). We write E =
Z;il Ej'
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Proof. Let 0 # x € S be given. First we show that the sum converges (SOT). We do this by
constructing a orthonormal set, and then use the identity of Parseval. Define

{H |||j€Nand||Ex||7£0}

We claim A is an orthonormal set. For take any 3,z € A, then there exists j, k& € N such that
(y,z) = W<E x, Eyx). Since Ej is a projection, it is self adjoint. But £; and Ej have
orthogonal ranges, so <E]x, Exz) = 0. So A is an orthogonal set. It should be clear that any vector
in A has norm 1. Therefore A is an orthonormal system, and thus we can extend A such that it
becomes a orthonormal basis, call it A’. Then by Parseval’s Identity, we see

1 o0
lall® =D 1) 2 > Haw) =3 e Bl = 3|1 Byl
A J j=1

yeA’ yeA

by using that Ej; is self-adjoint and idempotent. So we see that 32 || E;z||* < ||=||*.

We note that || 77, E;z|* = Y77, || E;||* because of the orthogonality of ran(E;). There-
fore we see that || 377, Ejx|* = 3772, | Ejz||* < ||lz||* and so the series ) ; E; converges (SOT)
to a unique operator. We also proved that Z;’il E; is a bounded operator, and linear. Note that
the range of this operator is Gran(E;). Also E,;E, = EyE; = 0 for any j # k, and therefore
we conclude (377, Fj)* = >0 Ef = 377 Ej, and so ) ° | F; is idempotent. Finally, since
i1 Ej is self adjoint, and (-, -) is continuous, we have that » > | E; is self adjoint, and thus a
projection. 0

Example 3.2.8. Let X be a compact space, .7 the Borel o-algebra, and 7 = L*(X, i) where p
is a Borel measure. Then define £ : &/ — Z() by E(A) = x4, the characteristic function on
A. Then FE is a spectral measure on (X, .7, L*(X, u)). @

Example 3.2.9. Let X be any set, & = &?(X): the power set of X, and .7 is a separable Hilbert
space. Because # is separable, we can find a countable orthonormal basis (e;),. Fix a sequence

(xy,), in X. For any A € 7, define E(A) as the projection upon span{e;|z; € A}. Then E'is a
spectral measure. %)

Definition 3.2.10. Let X be any set, and .o/ be a o-algebra on X. If i is a measure on (X, .<7) and
A € o/, we define the variation of i, denoted |u|, by

|| (A) = sup {Z |u(E 'is a measurable partition of A} )

We define the fotal variation of 1 as ||| = |u|(X)

The name spectral measure suggests that this operator is some sort of measure. Indeed, the
spectral measure gives rise to a measure, as the following lemma shows.

Lemma 3.2.11. If E is a spectral measure for (X, o/, 7) and x,y € H, then
Ery(A) = (E(A)z,y) (10)

Euyll < llllllyll-

defines a (complex-valued) measure on <. Additionally,
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Proof. Of course, E, () = (0,y) = 0. Next, take a countable sequence (4;) ., C </ of pairwise
disjoint sets. Then we have

Eyy (U Aj) = <E (U Aj) $’y> = <Z E(Aj)$ay> = Z (E(Aj)z,y) = ZEx,y(Aj)

So E,, is a measure. Next, if A, Ay, ..., A, are pairwise disjoint sets in 7, let a; € C such that
laj| = 1and [(E(A;)z, y)| = a;(E(A;)z,y). Then

Z | By (Aj)] = ZGJ<E(AJ)CE,Z/> = <Z E(Aj)ajl“ay> <

But note that the set {E(A;)a;z| 1 < j < n} is a finite set of orthogonal vectors, because
(E(A,)) is a sequence of pairwise orthogonal projections. Thus

Iyl

Z E(Aj)a;x
j=1

2 2

= < |

= > IEA)a) = |

ZE(Aj)ajm ZE(AJ)I'

Hence > [Eqy(A))] < ||z[l[[yll. So [|Ewyll < llz[l[lyll B

E(U Aj)x

Now that we know that there exists a measure, we can use the tools of Measure Theory. Espe-
cially, we can integrate functions with respect to this measure. This will help us define the integral
over the spectral measure itself. It turns out that if we integrate a bounded function with respect
to this measure, we can find a bounded linear operator such that the inner product of this bounded
linear operator can be described as the integral over this function. In order to prove this, we need a
lemma.

Definition 3.2.12. If 77, J# are Hilbert spaces, a function f : 77 x.# — Kis called a sesquilinear
formifforx,y € €, ¢, € # and o, f € K,

1. flax + By, ¢) = af(x,¢) + Bf(y, o)
2. f(z,a¢+ Bo) =af(x,¢) + Bf(z,v)

We say f is bounded, if sup|, 4<1{llf (%, ¢)||} = M < oc. The constant M is called a bound of
f

Lemma 3.2.13. Let 5, % be Hilbert spaces. If f : 7 x # — K is a bounded sesquilinear form
with bound M, then there exist unique operators A € B(H, # ) and B € B( A, H’) such that

f(z,0) = (Az, ¢) = (z, Bo)
forall x € A and ¢ € . Additionally | A||, || B|| < M.

Proof. We will only prove the existence of A. The existence of A is showed in a similar way.
Let ¢ € #. Then f, : & — K,z — f(z,¢) is a bounded linear functional. By the Riesz
Representation Theorem, there exists a unique y € % such that fs;(x) = (x,y). Define the
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operator B : % — by B¢ = y. So fu(x) = (x, B$). By uniqueness of y, we have a well-
defined operator. Additionally, by uniqueness of the Riesz Representation Theorem, B is a linear

operator. Finally, the Riesz Representation Theorem also tells us that || f|| = ||y|| and thus:
IBll = sup [[Bo|| = sup [[fsll = sup |[fs(x)]| =M
loll<1 ell<t =l l¢ll<1

So B e B(A, ) and ||B|| < M.

Next, assume there is another By € (% ,.7) which has these properties. Then f(z,¢) =
(x, B¢) = (x, Bag), so (x, (B — Bz)¢) = 0. This is true for any x € S so (B — By)¢ = 0. This
again is true for any ¢ € ¥ and so B = B,. So B is unique. ]

Proposition 3.2.14. If E is a spectral measure for (X, o/ ,7) and ¢ : X — C is a bounded
of -measurable function, then there is a unique operator 1(p) € HB(H) such that if € > 0 and
{A1,..., A} is an of -partition of X with sup{|¢(x) — ¢(2)| |x,2" € Ar} < efor1 <k <mn,
then for any x), € Ay we have

11(¢ Zgzﬁxk (Ap)|| < €

Proof. Define B(z,y) = [ ¢(z) z)z,y) for z,y € . By Lemma|3.2.11} we can see that B
3.2.13

(E(2)
is a sesquilinear form with | B(z, y)\ < H¢HOOHJJH |ly||. Thus by Lemma there exists a unique
operator I(¢) such that B(x,y) = (I(¢)x,
Next, let {A;,..., A, } bean o/ - partltlon satisfying the requirements. If y, z € 7 and x, € Ay,
for 1 < k < n then

[(1()y, 2) — ¢(xk)<E(Ak)y7Z>|=|Z/4 (0(x) = ¢(zr)) d(E(x)y, 2)]

k=1 k=1 Ak
<Y [ 160) - el di(E()y. )
k=1 " Ak
<> [ @@y <yl
k=1 " Ak
This is true for any y, z € ., thus we see that ||1(¢) — > 7_, ¢(zr) E(Ax)]| < e N

The operator /(¢) obtained in the previous proposition, is called the integral of ¢ with respect
10 the spectral measure E and is denoted as (¢) = [ « @dE. The given proof given of Proposition
3.2.14]also implies for y, z € 7 and ¢ a bounded .«7-measurable function, that

([ 08 )21 = [ o) e = [ o) at,.(o) (a1
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3.3 Spectral measure and representation of bounded measurable functions

Now that we introduced integrating with respect to a spectral measure, we prove that there is a 1-1
corespondence between spectral measures and representations of the set of bounded measurable
functions. And as it turns out, the spectral theorem for bounded, normal operators is a consequence
of this correspondence.

Definition 3.3.1. Let X and Y be two sets, and o7, 2 be two c-algebras on X, Y respectively.
If f: X — Y is a function, we say f is measurable if f~1(B) € o for every B € %. We call
a function f : X — C o/-measurable if f is measurable with respect to the spaces X and C,
equipped with <7 and the Borel o-algebra respectively.

Definition 3.3.2. Let .o/ be a o-algebra defined on some set X. We define B(.X, /) as the set of
bounded <f -measurable functions f : X — C.

Remark 3.3.3. If we equip B(X, &) with the norm || || = sup{|f(z)| |x € X}, then B(X, <)
becomes a Banach algebra. If we additionally define the mapping f*(z) := f(x) then B(X, <)
becomes a C'*-algebra.

Note that the integral with respect to a spectral measure F is a mapping from B(X, o) into
AB(°). This raises the question whether the integral over a spectral measure is a representation.
And indeed, it is, as we will prove in the following theorem:

Theorem 3.3.4. [[I| Prop. IX.1.12, p. 258] If E is a spectral measure for (X, o/, ) and p :
B(X, o) — B(H) is defined as p(¢p) = [ ¢dE, then p is a representation of the C*— algebra
B(X, o) and p(¢) is a bounded normal operator for every ¢ € B(X, of).

Proof. First of all, we see that p is linear, for let ¢, ¢ € B(X, &), then p(¢+ 1)) = [, (¢ +1)d
Let A € Cand x,y € 7. Then

([ @4 a) o) = [ 061+ a2 dEG)0)

/¢ :cy+A/w )

(p(P)x,y) + (Ap(¥)z,

This is true for all =,y € ¢, and so we can conclude that p is linear.
Next, let ¢ € B(X, o). Then for z,y € 5 we find

(p(o) x,y) = (x, p(d)y) = {p(d)y, x) =/X¢(2)d<E(Z)y,$> Z/XWCKE(Z)%@/) = (p(®)z,y)

because F is a self-adjoint operator. This again is true for any =,y € 7, so p(¢)* = p(o).
Finally, we need to prove that p is multiplicative. Let ¢,1 € B(X, 7). Let ¢ > 0 and choose
an o7 -partition {Ay, ..., A,} of X such that sup{|f(z) — f(2')| |x,2" € Ay} <eforl <k <n
and [ = ¢, or ¢1).
We claim that such a partition always exists. Because ¢ is bounded, we can find » > 0 such
that ¢p(X) C B(0,r) := {z € C| |z| < r}. Consider the collection of sets { B(z,¢) | = € ¢(X)}.
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This is an open cover of B(0,r). Because B(0, ) is compact, there exists a finite subcover of this
collection. So there exists finitely many points 1, . ..,z such that B(0,r) C U'_, B(x;,€). By
construction of this cover, it holds that if ¢(y1), ¢(y2) € B(z;,€) then |¢(y1) — ¢(y2)| < €. Define

the set i
B; := B(xj,€) \ ( U B(ZEZ',E)>

i=1,i#j
Then we note that B; is a Borel set, in other words B; is an element of the Borel o-algebra.
Additionally, define the sets

Cij = B(z,€) N B(zj,€) i £

Then Cj; is a Borel set as well, and so we see that the collection
(g¢ = {Bl, ey Bk, 011, . Olk; ceey C(k—l)k}

is a partition of Borel sets of B(0, ). Rename all the sets such that €, = {U, ..., U,,} for some
m € N. Because ¢ is «/-measurable, ¢~ (U;) € o for 1 < i < m. Then for any z,y € ¢~ (U;)
we find |¢(z) — ¢(y)| < e. Also note that the collection B, := {¢~'(U1),...,¢ " (Uy)} is an
o -partition of X . So we found our partition. We can do this for ¢ and ¢ as well, and choose the
common refinement of the associated partitions %, %, and B,

Hence if © € Ay, for 1 < k < n, by Proposition [3.2.14}

for f = ¢, or ). Thus, using the triangle inequality, we find:

[ ovar~ ([ oar) ([ vir) H -
N ggb(xk)w(xk)E(Ak) - (; ¢(%)E<Ai>> <é¢(xj)E(Aj))“

+ (2;: ¢(a:i)E(Ai)) (]Z:w(xj)E(Aj)> -~ (/}(qde) (/}(quE) ‘

Note that the first term on the right is smaller than e. Additionally, £(A;)E(A;) = E(A;NA;) and
{A1,..., A,} is a partition, so A, N A; = (). Therefore, the middle term is zero, and we are left
with

<€

/Xf dE — Zf(ifk)E(Ak)

/X GvdE — 3" olar) () E(Ay)
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foowtz= ([ o) ([ oz

<ex (gqs(xi)E(Ai)) (gwxmw) ~([oae) ([ wdE)H
<ev (gqs(zi)E(Ai)) (gmww— / M) '
+ ‘(ggb(ximmi)— / cde) ([ wir)| < e+ to+ 1) < e

Here M = (14 ||¢|| + ||2/]|)- Since € is arbitrary, we find that

plov) = [ ovdE - ( / ¢dE) ( / wdE) — p(B)p(®)

We conclude that p is a representation of B(X, 7). The fact that p(¢) is a normal operator imme-
diately follows from earlier computations. 0

Corollary 3.3.5. If X is a compact Hausdorff space and F is a spectral measure defined on the
Borel subsets of X, then p : C(X) — B(H) defined as p(u) = [udE is a representation of the
C*-algebra C(X).

So if we have a spectral measure and the set of continuous functions on X, we know that
integration with respect to this spectral measure will give us a representation. Is the converse also
true? If we start with a representation of the continuous functions, that this will give us a spectral
measure? The answer is yes, and we will use the rest of this section to prove this theorem. But
before we do this, we need a version of the Riesz Representation Theorem. We will not prove this
version, for it will be a long proof that would not give us any insights in how spectral measures
work.

Definition 3.3.6. Let X be a locally compact space equipped with the Borel o-algebra «/. A
regular Borel measure is a mapping j : &/ — C such that:

1. The mapping p is a complex-valued measure.

2. Lete > 0 and let A € o/. Then there exists a compact set X' C A and anopenset U O A
such that |u|(U \ K) < e.

We write M (X)) for the space of all regular Borel measures on X.

We note that if we equip M (X') with the norm ||u|| = |x|(X) then M (X') becomes a normed
space.

Theorem 3.3.7. (Variant of the Riesz-Representation Theorem)[I, Thm. C.18, p. 383] Let X be a
locally compact Hausdorff space, and ;1 € M (X). Define F,, : Co(X) — C by

Fif) = [ £

Then F,, € Co(X)' and the mapping v — F,, is an isometric isomorphism of M (X) onto Cy(X)'.
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In this theorem, C(X) is the space of continuous functions f : X — C such that f vanishes at
infinty. In other words, the space K = {z € X | |f(z)| > €} is compact for every ¢ > 0. We also
note that C{(X) is the dual space of Cp(X).

Definition 3.3.8. If V' is a normed space, we define the weak* topology on V' as the topology
defined by the seminorms {p,|x € V'} where

Here V" is the dual space of V'

Lemma 3.3.9. [I| Prop. V4.1, p. 131], Prop.V.4.1, pg.131) If V is a normed space, then the unit
ball in'V is weak* dense in the unit ball in V".

For a proof, we refer to [1, Prop. V.4.1,p. 131]. Finally we can state, and prove, the other
inclusion we already mentioned.

Theorem 3.3.10. [} Thm. IX.1.14, p. 259] Let X be a compact Hausdorff space. If p : C(X) —
PB(IH) is a representation, there exists a unique spectral measure F defined on the Borel subsets
of X such that for all x,y € F the measure (E(-)x,y) = E,, is a regular measure and

o) = / u dE (12)

foreveryu € C(X).

Proof. First we note that X is compact. Therefore C(X) = Cy(X). Let x,y € 5. Then the
mapping u +— (p(u)z,y) is a bounded linear operator on C'(X') with norm < ||z||||ly||. Thus by
Theorem [3.3.7] there exists a unique measure y, , € M (X) such that

(p(w)z,y) = / u dfig (13)
X
for all u € Cy(X). Because i, is uniquely defined, we see that the mapping (z,y) — fiz, is
a sesquilinear mapping. Also ||z,,| < |lz]/||y]|. Let o/ be the Borel o-algebra of X, and let
¢ € B(X, ) be fixed. Define the map [z,y] := [ ¢ dp,. Then [-,] is a sesquilinear mapping
and

|, 9]l < M@ ool tay | < 18]l [y

Hence by Lemma [3.2.13] there exists a unique operator A such that [z, y] = (Az,y) with ||A] <
|6]lcc- We write A = p(¢). Then p : B(X, /) — B(H) is a well-defined function with
1p(D) |l < ||¢|loo- Thus, by definition of [-, -] we have for x,y €

(p(@)r,y) = /X b dpigy (14)

Next, we want to prove that this  is a representation of B(.X, .o7). First we note that p|c(x) =
p by comparing Equations and . Next, it is easy to see that p is linear, by Equation
(14)). Next, if ¢ € B(X, <), we can consider ¢ € M(X)'(= C”(X)), with the correspondence
p— [ ¢ du. By LemmaB.3.9] the set {u € C(X) [||lu]| < [|¢||} lies weak* dense in the set
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{L € (M(X)) |||L]]| < ||¢]l}. Thus there exists a sequence (u;); in C'(X) such that ||u;|| < ||¢||
for all w; and [w; du — [ ¢ dp for every p € M(X). If v € B(X, o) and p € M(X) then
Yu € M(X). So [un)p dp — [ ¢np dforany ¢ € B(X, o) and pp € M(X). Thus, by Lemma
B.2.5 we have [ ;v du — [ ¢ dp (WOT) for all ¢ € B(X, «). In particular, for ¢ € B(X, <)
and ¢ € C'(X) we find

ple) = lim  plup) = lim  pua))

WOT,j—oo WOT,j—o0
= waim  p(ui)p(v) = | lim - p(ui)p(¥) = p(6)p(v)

Hence p(u;1) = p(u;)p() for any ¢ € B(X, o) and u; € C(X). Since p(u;) — p(¢) (WOT)
and p(u;1)) — p(py) (WOT), it implies

ple) = p(9)p(¥)

for ¢, € B(X, o).

To prove that 5(¢)* = j(¢), consider ¢ € B(X,.o7) and let (u;); be the sequence obtained in
previous paragraph. If ;o € M(X) we define the measure 1 as fi(A) := u(A). Because p(u;) —
p(¢) (WOT) we find p(u;)* — p(¢)* (WOT). So

U_idﬂz/uidﬁ_)/¢dﬁ:/5dﬂ

is true for any measure p. Therefore we can conclude that p(w;) — p(¢). We know that p is a
representation, so p(%;) = p(u;)*. Hence p(u;)* = p(@) — p(¢). Because the weak operator
topology is Hausdorff, limits are unique. So 5(4)* = j(¢). So / is a representation.

For any Borel subset A of X define the operator F(A) := p(x4), where x 4 is the characteristic
function on A. We show that F is a spectral measure. Let A be some Borel subset of X. Then
E(A)? = p(xa)p(xa) = p(xa) = E(A). So E(A) is a idempotent on .. Additionally, F(A)* =
p(xa)* = p(xa) = E(A), so E(A) is self-adjoint. So by Lemma 3.2.3] E(A) is a projection for A
a Borel subset of X.

Additionally, because yp = 0 and xx = [ we have E(()) = 0 and F(X) = I. Nextlet A, B be
Borel subsets. Then E(AN B) = p(xans) = p(xaxs) = E(A)E(B). And finally, let (A;); be a
pairwise disjoint sequence of Borel sets and set A, = ;- +1 Ay Because p is a representation,
we use induction to see that F is finitely additive. Thus, for x € 77, we find

2

= (E(An)z, E(An)z)

E(J Az =) E(Ay)x
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The last sum clearly goes to 0 as n — oo. Therefore, F is a spectral measure.

Now that we have constructed a spectral measure, we need to prove p(u) = [u dE. If p(¢) =
[ ¢ dE for any ¢ € B(X, <), then surely it is true for u € C(X). Fix ¢ € B(X, <) and € > 0.
If {A,..., A,} is any Borel partition of X such that sup{|o(z) — ¢(2)| |x,2" € Ay} < e for
1 < k < n. Then we find [|[¢ — > _, &(xk)Xa,llc < € for any choice of z € Aj. Because
15 = 1, we have ||p(¢) — >-r_, d(zr) E(AL)|| < e. We use Proposition to conclude
p(¢) = [ ¢ dE forany ¢ € B(X, o).

The only thing left, is to show that E is the unique measure such that p(u) = [u dE for
¢ € C(X). First we proof the uniqueness of E for p. Assume there exists another spectral measure
F such that p(¢) = [¢ dF. Then [¢ dE = [¢ dF. Let A be some Borel subset. Then
E(A)= [xadE = [ xadF = F(A). So E(A) = F(A) for any Borel subset, so E = F.

Now consider any spectral measure G such that p(u) = [ u dG foru € C(X). Consider a Borel
set A. By previous paragraph, there exists a sequence (u;); in C(X) such that [u; du — [ xa du
for every ;1 € M(X). So surely for the measures £, , and G, for x,y € . This results in

ey = [ xAdE) 2) = [ @) dlEGI ) = tin [ o) G

1—00 X

= lim [ w; d(G(2)z,y) :/XXA dG(2)x,y) = <(/X XA dG) z,y) = (G(A)z,y)

1—00 X

This is true for any z,y € % and thus E(A) = G(A). So it is uniquely determined. ]

3.4 The spectral theorem for bounded normal operators

With Theorem [3.3.10] we can give the proof of the spectral theorem in the bounded case. We
consider a specific C*-algebra with a specific representation and apply the previous theorem, and
we find the spectral theorem.

Before we prove the spectral theorem, we give some theorems regarding C*-algebras. These
theorems are needed for the proof of the spectral theorem. We will not prove these theorems
however, because they do not give much insight in the proof of the spectral theorem itself.

Definition 3.4.1. If .o/ be a C*-algebra over K and a € <7, we define the C*-algebra generated by
a as

C*(a) :={p(a,a*)|p(z,Z) is a polynomial }

Example 3.4.2. Let o/ be a C*-algebra, and let a € &/ a normal element (in other words, aa* =
a*a). Then C*(a) is an abelian C*-algebra. For example, if &/ = Z(s¢) for some Hilbert space
H,and N € B(H) is a normal operator, then C*(NV) is an abelian C*-algebra. @

Definition 3.4.3. Let ./ be a C*-algebra over K with identity and a € o#. We say a is invertible,
if there exists z,y € &7 such that za = 1 = ay.
We also define the spectrum of a, denoted o/ (a), as

ou(a) == {X € K|(a — A1) is not invertible in <7}

Proposition 3.4.4. [II, Prop. VIII.1.4, p. 235] Let </ and 9 be C*-algebras over K with a common
identity and norm such that 8 C /. If a € P then 0.,(a) = o4(a).
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Theorem 3.4.5. (The Stone-Weierstrafs Theorem)[1, Thm. V.8.1, p. 145] If X is compact and <7 is
a closed subalgebra of C(X) such that

1. Id € «,
2. Ifx,y € X and x # vy, then there is an [ € o/ such that f(x) # f(y),
3. Iff € of then f € o,

then of = C(X).

We also need another tool called the functional calculus. In order to introduce the functional
calculus, we introduce the notion of a maximal ideal space.

Definition 3.4.6. Let </ be an abelian C*-algebra over K. Let
¥ = {h: &/ — C| his a non-zero homomorphism}

If we equip X with the smallest topology such that for every b € &7 the mapping ev;, : ¥ — C,
h +— h(b) is continuous, we call ¥ the maximal ideal space.

Maximal ideal spaces have some interesting properties. One of these properties is the following
theorem.

Theorem 3.4.7. [lI, Thm. VIIL2.1, p. 236] Let <f is a C*-algebra, and let a € </ be a normal
element (so aa* = a*a). Consider C*(a), and ¥ the maximal ideal space of C*(a). Then the
mapping v : C*(a) — C(X) given by x +— ev,, is an isometric *-isomorphism.

So we see that C*(a) is isomorphic to C'(¥). Additionally, the have another theorem which
tells us that we can construct a homeomorphism between 3 and o¢«(4)(a).

Proposition 3.4.8. [lI, Prop. VIIL.2.3, p. 237] Let </ be a C*-algebra, and let a € &/ be a normal
element. If 8 := C*(a), and 3 the maximal ideal space of C*(a), then the map ev, : ¥ — oz(a)
given by ev,(h) = h(a) is a homeomorphism. Additionally, if p(z,Z) is a polynomial in z and Z
and~ : B — C(X) is as in Theorem[3.4.7) then v(p(a, a*)) = p o ev,.

Now, we note that if ev,, : ¥ — 0,,(a) is defined as in Proposition [3.4.8] we can define (ev,)* :
C(oy(a)) = C(X) by (evy)*(f) = f o ev,. Then this is an isometric *-isomorphism because ev,
is a homeomorphism. Therefore, by the last part of previous proposition, y(p(a, a*)) = (ev,)*(p).
Of course, any polynomial is just a function on o(a), and therefore we can define the mapping
p:Cloy(a)) = C*(a) by p =~ o (ev,)*, such that the following diagram commutes.

(a)) —— O
A)*

C(oy
/|
C*(a)

Note that if p € C(0¢+(e)(a)) is a polynomial in z and Z, then p(p(z,%)) = p(a,a*). In
particular, p(z) = a.

%)
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Definition 3.4.9. Let o7 be a C*-algebra over K with identity, and let @ € <7 be a normal element.
Define p : C'(0(a) — C*(a) as in the previous diagram. If f € C(o(a)) we define

f(a) = p(f)
The mapping f — f(a) of C(0(a)) — < is called the functional calculus for a.

Theorem 3.4.10. [I| Thm. VIIL.2.6, p. 238] Let p be the functional calculus of a. Then p :
C(oc(a)(a)) = C*(a) is an isometric *-isomorphism.

Finally, we can state and prove the spectral theorem for bounded, normal operators.

Theorem 3.4.11 (The spectral theorem for bounded, normal operators). [/, Thm IX.2.2, p. 263]
Let ¢ be a Hilbert space, and N € () be a normal operator. Then there exists a unique
regular spectral measure E on the Borel subsets of o(N) (here o(N) is defined as in Definition

2.3.3)) such that:
1. N = fU(N)z dE(z).

2. If A is a nonempty relatively open subset of o(N ), E(A) # 0.

3. IfT € B(H), then TN = NT and TN* = N*T ifand only if TE(A) = E(A)T for every
Borel subset A of o(N).

Proof. 1): We consider the set &/ = C*(N), the C*-algebra generated by N. In other words,
o/ is the closure of the set of all polynomials in N and N*. Then, by Theorem there exists
an isometric *-isomorphism p : C(o,(N)) — o/ C HB(s) ‘given by p(u) = u(N). Here
o(N) = {X € C|(N — \)is not invertible in C*(N)}. So this is a representation of C'(c(N)).
Because I € C*(N) and I € (), we use Proposition [3.4.4]to conclude that o, (N) = o(N)
where o(N) is the spectrum of N as defined in Definition Sop: C(e(N)) — & isa
representation.

Since N is bounded, o(N) is compact, and so we conclude by Theorem that there
exists a unique regular spectral measure £ defined on the Borel subsets of o (V) such that p(u) =
fU(N) u dE for all u € C(o(N)). In particular, it holds for u(z) = 2. Then

N :/ z dE(z)
o(N)

2): Next, let A be some nonempty relatively open subset of (V). Then we can find a nonzero
continuous function u on o (V) such that 0 < u < y 4. It follows then that || E(A)| = ||p(xa)| >

|p(w)]] > 0. The last inequality is because p is a *-isomorphism. So E(A) # 0.
3) =:LetT € #(H) suchthat TN = NT and TN* = N*T. Consider the set

% = {u e Clo(N)) |Tp(u) = p(u)T}

Then it easily follows that Tp(N, N*) = p(N, N*)T for any polynomial p € C[z,Z]. So the
set of polynomials is a subset of 4. Because the polynomials are point-separating, we find by
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Theorem [3.4.5)that {p(z,2)} = C(o(N)). But we just concluded {p(z,%)} C %, so C(a(N)) =
{p(2,2)} €€ C C(o(N)). Therefore ¢ = C(c(N)). So we conclude that T'p(u) = p(u)T for
any u € C(o(N)). In other words Tu(N) = u(N)T.

Define the following set
2 :={ACo(N)| AisaBorel setand TE(A) = E(A)T'}

It follows quite easily from the definition of a spectral measure that <7 is a o-algebra.

If G is an open set in o(/V), then there exists a sequence (u,,),, of positive continuous functions
on o(N) such that u,(2) T xg(z) as n — oo pointwise for all z € ¢(N). This means that for
x,y € I:

(TE(G)z,y) = (E(G)z, T*y) = / yo(2) d{E()z, T*)

= nh_{go . un(z) d{E(2)x, T"y)
= lim (u,(N)z, T*y) = lim (Tu,(N)z,y) = lim (u,(N)Tz,y)

n—o0 n—00 n—oo

= lim un(2) d(E(2)Tx,y) = (E(G)Tz,y)

n—o0 O’(N)

Here we used the Lebesgue Dominated Convergence Theorem, to move the limit out of the integral.
This is true for any =,y € 7, and so G € &. But this means that every open subset is in &, and
thus .« is the Borel o-algebra. Therefore if A is a Borel subset, E(A)T = T E(A).

3) «<: Assume that for every Borel subset A of o(/N), we have E(A)T = TE(A). Then we
have (E(A)Tz,y) = (TE(A)z,y) = (E(A)x, T*y). In other words we have that

(NTz,y) =/

. 2 d(E(2)Tx,y) = / 2 d(E(2)x, T"y) = (Nz, T*y) = (I'Nz,y)

o(N)

This is true for any =,y € 5, so NT = T N. We can do the same trick to see N*T" = T'N*. This
concludes part 3. [

The spectral measure £ obtained by the spectral theorem, is called the spectral measure for
N. It is also common to say: Let N = fa( n A dE (A) be the spectral decomposition of N. We
indirectly use Theorem|3.4.11|to find this F.

Remark 3.4.12. If we look at Theorem [3.4.11] it seems like this theorem tells us that N can be
‘diagonalized’, in a sense that /V is an ‘infinite dimensional matrix’ with the ‘eigenvalues’ on its
diagonal. Intuitively it feels correct, in the finite dimensional case the spectral theorem reduces to
this exact case.

Example 3.4.13. Consider a finite dimensional Hilbert space /¢, say dim(.#°) = n. Let N €
P () be a normal operator, so with respect to some orthonormal basis is N some matrix with
complex coefficients such that N*N = NN*. Because 7 is of dimension n, we have that
|o(N)| < n. Therefore, we can enumerate the eigenvalues of A, say o(N) = {A1, Ao, ..., A}
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with k& := |o(N)| < n. We can use Theorem [3.4.11|to gain the spectral measure £ of N. There-
fore, we find that for any x,y € ¢

<Nw,y>=/(N)Ad<E(A)w,y>=Z (E({Ai})z, y) = ZAE{A}wy} (z,y € )

Therefore N = Y% | M E({\;}), with E({)\;}) some projection operator.

But what is E({)\;}) exactly? We know it is a projection operator. Since N is normal, we
have NN* = N*N, and so by part 3 of Theorem [3.4.11} E({\;})N = NE({\;}). Next, consider
x € JC. Then

E({\Dz = BN Nz = E({\}) (Z NE{NY ) = E{MHAME{A Dz = ME({N )2

because F is a spectral measure. So we see that ran(E({)\;})) C E,,, where E), is the eigenspace
of the eigenvalue );. On the other hand, if x € F,,, then No = A\;z. Thusfor1 < j <n

E({\ Nz = E({}) (Z AME({A}) ) v =NE{N}z
= ME({A Dz

Soif A\; # A, then we must have E({\;})z = 0. If \; = \;, then we see that No = \,E({\;})z =
iz, so z € ran(FE({\;})). Therefore we see that F()\;) is the projection onto the eigenspace F},.
So in short, we see that NV is diagonalized into projections onto the eigenspace of each eigen-
vectors. We knew already that this was possible from linear algebra, but it is good to see that the
spectral theorem gives the same result as we would have expect it would give. %)

The next theorem and corollary seem innocent, yet are important. We will consider the conse-
quences of this corollary in Section [5

Theorem 3.4.14 (Theorem of Fuglede). [3| p. 35] Let A, B € B(.) be two normal operators. If
AB = BA then BA* = A*B.

Corollary 3.4.15. (Corollary of Theorem|3.4.11) Let A, B € B(F) be two normal operators, and
let E4, Eg be the spectral measures for A, B respectively. If AB = BA, then for any two Borel
sets U,V we have Eo(U)Ep(V) = Eg(V)EA(U).

Proof. Let A, B € #(). By previous Theorem, we see that if AB = BA, then A*B = BA*
and AB* = B*A. Also A*B* = B*A*. Because AB = BA and A*B = BA*, we use part 3) of
Theorem [3.4.11] to conclude that for any Borel set U we have E4(U)B = BE4(U). Additionally,
E4(U) is a projection, thus self-adjoint. So

Es(U)B" = Ea(U)"B" = (BEA(U))" = (Ea(U)B)" = B"EA(U)" = B"Ea(U)

By the same theorem, we see that for any Borel set V', we have E4(U)Eg(V) = Eg(V)EA(U).
0
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4 Spectral Theorem for unbounded self-adjoint operators

We return to general operators. For self-adjoint operators, a similar spectral theorem exists for
unbounded operators. We will prove this in this section. We start with a useful tool to prove the
spectral theorem for self-adjoint operators: the Cayley transform. After that, we will prove the
spectral theorem for unbounded, self-adjoint operators. The reader who is already familiar with
the spectral theorem for self-adjoint operators, can read on to the theorem of Nelson which will be
discussed in Section[3l

4.1 The Cayley transform
To introduce the Cayley transform, we define the function f : R — C by

zZ—1
f(z) = 1 (15)
Itis clear f(0) = —1 and f(1) = —i. In fact, f(R) =S\ {1} where S := {z € C| |z| = 1}.
The inverse of fis givenby g : S\ {1} = R

z+1
z—1

g(z) =i (16)

So, if A is a self-adjoint operator we have 0(A) C R, so f(o(A)) € S\ {1}. We know that a
bounded, unitary operator U has the property that o(U) C S. So this raises the question, is f(A) a
bounded, unitary operator? The answer is yes, and f(A) is called the Cayley transform.

Theorem 4.1.1 (The Cayley transform). [lI, Thm. X.3.1, p. 317]

1. If A is a closed densely defined symmetric operator with deficiency subspaces £, and if
U : 7 — I is defined by letting U = 0 on £, and

U:=(A—i)(A+4)™" (17)

on LL, then U is a partial isometry with initial space £, final space £+ and such that
(I = U)(ZL5) is dense in A

2. IfU is a partial isometry with initial space ./ and final space .V, and such that (I —U ) ()
is dense in F€, then
A=i(I+U)I-U)" (18)

is a densely defined closed symmetric operator with deficiency subspaces £, = M+ and
L=

3. If Ais given as in 1) and U is defined by Equation , then A and U satisfy Equation .
If U is given as in 2) and A is defined by Equation , then A and U satisfy Equation .
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Proof. 1): Let A as in the theorem. By Lemma[2.4.10|part 3), we have ran(A =+ 1) is closed. Hence
L+ = ran(A 4 i). By the same Lemma, we also have ker(A +i) = (0), and therefore (A +4)~!is
well defined on .. Note that (4 + i)' (%;) C Dom(A). In this way, the operator in Equation
1} makes sense and is well-defined. If y € £, then there exists a unique x € Dom(A) such

that y = (A + i)x. Then we get, by Lemma|2.4.10

1Ty = (A = dal* = [|Az]]* + ||z [|* = [|(A + D)z]|* = [|y[|*
Therefore we conclude that U is a partial isometry, with initial space .Z f and final space
ran(U) = ran(A — i) = £+

The only thing we need to show, is that (I — U)(.Z}) is dense in JZ. If y € £, there exists a
unique z € Dom(A) such that y = (A + ¢)z. Hence

[-Uy=y—(A—i)z=(A+i)x — (A—i)x =2ix

So (I — U)(Z+) = Dom(A). Because A is densely defined, (I — U)(£}) is dense in 7.

2): Now assume U is the partial isometry as in the theorem. Let x € ker(/ — U), then Uz = =
and so ||[Uz|| = ||z||. Hence z € 4 = (ker(U))*. Itis easy to see that U*U is a projection upon
the initial space of U, in this case .# . Therefore, we see that

z=U"Ux=U"zx

Therefore we have z € ker(I — U*). So we see z € ker(I — U*) = [ran(] — U)]* C
(I = U)(.#)]* = (0) by assumption. Therefore z = 0 and I — U is injective.

Define 9 := (I — U)(.#). Then I — U is bijective on & and so (I — U)~! can be defined on
9. Because [ — U is bounded on .#, we have gra((I — U)| ) is closed and so gra((I — U)™!) is
closed. Hence, if we define the linear operator A := (1 + U)(I — U)~" we find A is closed and
densely defined, with domain 2.

To prove that A is symmetric, consider ¢,1) € 2. Then there exist z,y € .# such that
¢ = —U)xrandy = (I —U)y. Hence we find

(A, v) = (i(I + Uz, (I = U)y) =i ({z,y) + ({Uz,y) — (&, Uy) — (Uz,Uy))

Next we note that x,y € .#, so (Uz,Uy) = (x,y). So we find (A¢,¢) = i((Ux,y) — (x,Uy)).
If we consider (¢, Av) we get

(0, A) = ((I = U)z,i(I + U)y) = =i ({z,y) — (Uz,y) + (x,Uy) — Uz, Uy)) = (Ad, 1))

So A is symmetric.

Finally, we need to prove that &, = .#~* and ¥ = 4. It is sufficient to show .#Z =
ran(A + i) and 4 = ran(A — i) because A is closed and symmetric. Consider x € .#, and
define y = (I — U)x. Then (A + i)y = Ay +iy = i({ + U)x + i(I — U)x = 2iz. Therefore
x € ran(A + 7). On the other hand if ¢ € ran(A + i), then there exists ¢ € Z such that
¢ = (A +1i)y. Since ¢ € P there exists a ¢ € .4 such that v = (I — U)yp. This results in
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dp=AV+ iy =i(I+U)p+i(I —U)p = 2ip. So ¢ € A . Thus .# = ran(A + i) By changing
the plus into a minus at A + 4, we see that ran(A — i) = ran(U) = .A4".

3): If Ais given as in 1) and U as in Equation . Lety € (I — U)(Z}). Itis equivalent
to say that there exists € £} such that y = (I — U)z. Because z € £ = ran(A + i) it is
equivalent to say that there exists z € Dom(A) such that z = (A + 7)z. Therefore, we find

y=x—Uxr=(A+1)z—(A—1i)z =2iz
Hence z = o-y. Therefore Dom(A) = Dom(i( + U)(I — U)™'). Next we see that

i(I+U)I-U) Yy =il +U)xr =iz +iUx
W(A+10)z+i(A—i)z =2iAz = Ay

SoA=i(I+U)I-U)™"

Now assume U is given as in 2) and A as in Equation (|18). If ¢ € ran(A + 4) there exists a
1 € Dom(A) such that ¢ = (A + 4)1. Since Dom(A) = (I — U)(.#), it is equivalent to say that
there exists ¢ € .# such that ¢» = (I — U ). Therefore

p=(A+i=Ap+ip =i(I+U)p+i(I—U)p = 2ip
Thus we see ¢ = 2ip. So we find for ¢ € ran(A + 1):
(A=) A+i) " o=(A+i)p=Av+iy = (i(I+U)p) +i(l —U)p=2iUp=Up
Hence U = (A —i)(A+i)~L. O

Definition 4.1.2. If A is a densely defined closed symmetric operator, the partial isometry U defined
in Theorem [4.1.1]is called the Cayley transform of A.

Corollary 4.1.3. If A is a self-adjoint operator and U is its Cayley transform, then U is a unitary
operator with ker(I — U) = (0) and (I — U)(H) lies dense in 7. Conversely, if U is a unitary
operator such that 1 ¢ o,(U) and (I — U)(FC) lies dense in 5, then the operator A defined by

Theorem is self-adjoint.

Proof. Note that A is self-adjoint if and only if .ZL = 0. A partial isometry is a unitary operator
if and only if its initial space and its final space are 7. Therefore if A is self-adjoint, then U is a
unitary operator such that (I — U)(.¢) lies dense in .77 By the first part of the proof of part 2) of
Theorem {4.1.1] we find that ker(1 — U) = (0).

If U is a unitary operator such that ker(/ — U) = (0) and (I — U)(5) lies dense, we can
immediately use the second part of Theorem [4.1.1]to conclude the second part. [

4.2 The spectral theorem for unbounded self-adjoint operators

The main goal of this section, is to give the spectral theorem for self-adjoint operators. In short, we
know that if A is a self-adjoint operator, and therefore we can transform it to a bounded, unitary
operator U by the Cayley transform. Since U is a bounded, normal operator, we know that there
exists a unique spectral measure Ey; such that U = [ A dEy(A). Then we transform back to find
the unique spectral measure for A.
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But before we give the spectral theorem for self-adjoint operators, we wish to know how to
integrate any measurable function with respect to a spectral measure. The reason why we wish to
know this, is that the function f : 0(A) — C given by f(z) = z may not be bounded anymore, and
so Proposition does not hold anymore.

Proposition 4.2.1. [4, Prop. 10.1, p. 202] Let E be a spectral measure for (X, o/, 7) and let
f X — C be an o/ -measurable function (so not necessarily bounded). Define the subspace
Wf C J by

Wy = {se ) [ OPaE)) < o] (19

Then there exists a unique (not necessarily bounded) operator A on 7 with domain Wy, with the
property that

(Az,x) = /Xf(/\) d{E(N)x,x) (20)

for all x € W;. This unique operator will be denoted as [ « [ dE and has domain Wy. Sometimes
we will write W; = Dom( [ « [ dE). This operator also satisfies the following equation for all

X

Remark 4.2.2. It should be noted that if f is a bounded function, Wy = .7 and this coincides with
our definition of | f dE and so the only case we need to consider is when f is not bounded.

=Auﬁ»amwxw 1)

In order to prove Proposition 4.2.1, we consider another proposition. After this proposition is
proved, the previous Proposition immediately follows.

Proposition 4.2.3. [4, Prop. 10.2, p. 203] Let E be a spectral measure on (X, o, ), f : X — C
be an o/ -measurable function and Wy as in Equation Then

1. The space Wy is a dense linear subspace of 7, and the mapping Qs : W; — C given by

Qmw=Ade@MM@

is a mapping such that Q;(A\x) = |\?Q(z) for v € W; and \ € C, and such that the
mapping Ly : Wy x Wy — C defined by

Li(y.7) o= 5@+ 9) ~ Qo) — Q) + (@ + 1) — Qo) — Q)

is a sesquilinear form.

2. If v,y € Wy we have

Ly ()] < IIyII\//X [FVP d(E(N)z, x) (22)
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3. For each © € Wy there is a unique z € F such that L;(y,z) = (y, z) for all y € Wy.
Additionally, the mapping x v~ z is linear and for all y € W we have

22 = /X PP d(EN )z, )

Proof. 1): We note that if f is a bounded measurable function, then Wy = ¢ because of Theorem
3.3.4|and therefore | f dE is a bounded operator. Then the rest of part 1) is automatically true.

Next let f be unbounded. First we prove that 1} is a dense linear subspace of 7. It is clear that
if z € Wy, then for p € Cwe find [, |f(N)|* d(E(N)pa, px) = |p|* [ [F(N)]? d(E(N)z, ) < oo.
So px € Wy. Next, if z,y € Wy then we get that, since for any set A € .o/ we have E(A) is a
projection. So we find

(E(A) (@ +y),z+y) = [[EA) (@ +y)* < (1EA)z] + | E(A)y])*
< 2| E(A)z]* + [ E(A)y|I*) = 2{E(A)z, z) + 2(E(A)y, y)

So the measure (E(-)(z + y), (x + y)) can be bounded by the other two measures. Therefore we

J PO dEN @+ 9o+ 9y <2 [ FOF dEWe.2) +2 [ 1FOF dEN.0)

So x +y € Wy, and so Wy is a linear subspace of .77

Next we prove that W lies dense in 7. Consider the sets A,, = {x € X| |f(z)| < n}. Then
if x € ran(E(A,)) there exists y € # such that z = E(A,)y. It follows then that 0 = E(0)y =
E(X\A,)NA,)y=FEX\A,)zand thus is (E£(X \ A,)x,z) = 0. Therefore we find

/X 1f(2)]? d{E(2)r,z) = /A 1f(2)|? d(E(2)x,2) < n*(E(A,)r,z) < o0 (23)

So x € Wy. Thus ran(E(A,)) C W;. Because U,enA, = X, we see that the union of the ranges
of E(A,) are dense in .7, and for each A,, the range is contained in W;. So W lies dense in .JZ.

Define the function f,, := xa,f where x4, is the characteristic function on A,,. Then f, is
a bounded function on X, and f,.1 > f,. Therefore, using Lebesgue dominated convergence
theorem

tin [ 1R dEE) = [l [4G)E dEE = [ 11EF dEE.)

or in other words lim,,_,o @, (¥) = Q¢(x). Therefore
Q(x) = lim Qy,(\a) = AP lim Qy, () = [\*Qy ()

The other part of 1) is analogous.
2): First, let f be bounded. Then we know for z,y € A that L;(y,z) = (y, ([ f(\) dE) z)

and thus
|Lf<x,y>|s||y||H( [ o aee) o =||y||-\/ 10 atE ) z)
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Next, let f be unbounded and z,y € W;. We note that L;(y,z) = lim,_,~ Ly, (v, x) because
Qs(2) = lim, o Qy,(2) for all z € W;. Therefore we see, again using Lebesgue dominated
convergence theorem:

Iyl

st = i 125,000 = i (o ([ 52 a8) )| < i | ([ 5,00 a8 ) o

= lim [ly] - \/ 150 aEQ)e.2)

- uyu\/ /X PO BNz, 2)

For the last inequality sign is because of Equation and continuity of the square root. So we
see that part 2 is also true.

3): First, let f be bounded. Then we already found a unique operator which does exactly this,
see Proposition Therefore the only interesting part is f unbounded. Because Equation
is true for any x € Wy, we conclude that if we consider x € W} to be fixed, we have that the
mapping L, : y — L(y,z) is bounded and linear. By Remark we can extend this operator
to a bounded operator L, (y) such that L,(y) = L(y,z) for y € W;. Because L, is a bounded
functional, we find by the Riesz Representation Theorem that there exists a unique z € ¢ such
that L, = (-, 2). If y € W; we find:

L(y, ) = La(y) = (. 2)
We note that f,, is bounded, so [ « fn dE is abounded operator. Therefore we find for n, m € N:

/andEx—/Xfdex

| ‘

/X fon— fm dEx
_ /X Fal2) — fonl2)] B2z, 2)

Because [, |f(2)]* d{E(z)z,z) < co we get by Lebesgue dominated theorem

tim [ 1£.(:)P d{E (), 7) = /X F) dE )z, 2)

n—o0

and so ([ « fn dEx), is a Cauchy sequence. Therefore the series converges. Define the vector
£ :=1limy o [y fn dEz. W find then

{y. &) = lim (y, / fudBz) = lim Ly (y,2) = Ly(y, 2) = (y, 2)
n—oo X n—oo
Because y € Wy, and Wy lies dense in 77, we find that z = lim,,_,, f « Jn dEz. Then we find
ol = Jim || [ g bl = lim [ 15,)P d(E()2.)
- [ @l aEe)

Therefore [|z]|* = [, |f(2)| d(E(2)x, x). O
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By construction, we see that we get the same result as for the bounded case, only with a domain
we need to take into account. Forif f : X — Candx € Wy andy € JZ, we find

([ £a)an)= [ 1) atE@an

Theorem 4.2.4. [4, Thm. 10.30, p. 223] Let g as in Equation If A is a self-adjoint operator on
A, and U is its Cayley transform, define for the set U C o(A) the operator

Ea(U) = Ey(g~'(U))
Then E 4 is a spectral measure and
A= / AdEy
o(A)
Here Ey is the spectral measure of the bounded operator U.

Proof. Define for any Borel set B of o(A) the mapping E4(B) := Ey(g~'(B)). We must show
that this is indeed a spectral measure. Let B be a Borel set of o(A). Observe g : S\ {1} — Ris
a homeomorphism. Hence, g preserves the Borel sets. Therefore, g is a measurable function and
g~ 1(B) is a Borel set of o(U). Therefore E4(B) is a spectral measure, because Ey(g~*(B)) is a
spectral measure.

For any x € Dom(A) and y € S, let B4 be a Borel set in 0(A) and By be a Borel set in o (U).
Then define the measures

Ep,(Ba) = (Ea(Ba)z,y) = (Bu(g~"(Ba))z.y) Ey,(By) = (Ey(Bu)z,y)

We see that £ (B4) = EU (97'(Ba)). By the abstract change of coordinates, we find for any
measurable function u : 0(A) — C

/ udE, = / uogdEY, (24)
o(4) o(U)

For a proof of the abstract change of coordinates, we refer to 8, p. 154]. We know that

) = oWy = [ o) a0 = [ 1o g a0

and so using Equation (24) we find that

e - [ L) = / RECIEVE (/ x IEA) ) 1)

This again is true for any y € ¢, and so we find

Az = ( / A dEA()\)> . (z € Dom(A)) (25)

Thus the equality holds. 0
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Theorem 4.2.5 (The spectral theorem for unbounded self-adjoint operators). ([4, Thm. 10.4, p.
205] Let A be a self-adjoint operator on 7. Then there exists a unique spectral measure E 4 on
the Borel subsets of o(A) such that:

1A= [ o AdEa(N)

2. If B is a Borel set of R, and B N o(A) = () then E4(B) = 0. Additionally if B is an open
subset of R and BN o(A) # () then Eo(B) # 0

3. LetT € B(AH). If TAC AT thenT([ ¢ dE4) C ([ ¢ dEA)T for any Borel measurable
function ¢.

Proof. 1): By Theorem we found a measure such that A = [ A dE4(\). The only thing
we need to prove, is uniqueness. Let /4 be the spectral measure found in Theorem and Ey
the spectral measure of the Cayley transform of A, denoted U. Let P be another spectral measure
such that A = [,/ A dP(\). Then we define Py(B) := P(f~'(B)) for B a Borel setin S\ {1},
where f is defined as in Equation (I5). Then by the same argument as in previous theorem, Py is
a spectral measure on S \ {1}. Also, we see that

U= s = [ 5 dPoy
o(4)
Letz,y € 7, B4 aBorel set of 0(A) and By a Borel set of o(U). Define the following measures

P, (Ba) = (P(Ba)z,y) Py, (By) = (Py(Bu)z,y) = (P(f~(Bu))z,y)

We note again that P/ (By) = P2, (f~*(By)), and so again, we find for any measurable function
u:o(U)—C:

/ u(A) dP, = / uo f dP}, (26)
o(U) o(4)

And so, by the same reasoning as in Theorem , we conclude that U = [,z dPy(z). But

we know, by Theorem that there exists a unique spectral measure such that U = [ z dEy.
Therefore Py = Ey. Transforming back gives us that £y = P. So E, is the unique spectral
measure.

2): Let B be a Borel set of R such that BNo(A) = (). Then g1 (B)No(U) = g~ (BNo(A)) =
g 1(0) = (. Therefore we can conclude

Ex(B) = Ey(9~(B)) = Ev(g9~'(¢(U) N B)) = Ey(B) = 0

On the other hand, if B is open and B N o (A) # 0, then g~'(B) is open and g~ (B) N o (U) # 0.
Therefore E4(B) = Ey(g~*(B)) # 0 by Theorem [3.4.11]

3)LetT € B(H). If TAC AT then TA = AT on Dom(A). Therefore we have (A + )T =
T(A=+i) on Dom(A). Thus we can conclude (A+i)"'T = T(A+4)~!, and thus we have TU = UT
where U is given by Equation (L7). Because U* = U~' = (A + i)(A — i)~!, we also conclude
TU* = U*T by the same argument. By Theorem we have Ey(B)T = TEy(B) for any
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Borel subset of o(U). Thus E4(C)T = TE4(C) for any Borel subset C' of o(A), by construction
of F/4. Therefore we get, for any x,y € -

(EA(C)Tz,y) = (TEA(C)x,y) = (Ea(C)z, T"y)

Consider any measurable function ¢ : o(A) — C, and define the operator Z, := [ ¢ dE,.
This operator is well defined by Proposition [#.2.1] with domain W,. Therefore consider x € W
and y € J¢. We find

(Z,Te,y) = / P HBACT )

o

= /( )gb(z) d(Es(z)x, T y) = (Zyx, T"y) = (TZpz,y)
o(A
This is true for any y € .77, and therefore we find Z,Tv = T'Z,x for v € W;. We conclude that
T(f & dE) C ([ ¢ dE)T. 0

If we combine the spectral theorem and Theorem |4.2.1] we find that we can integrate any
measurable function over the spectral measure of A. Therefore, if ¢ : 0(A) — C is a measurable
function, and A is a self-adjoint operator with spectral measure 4, we define

$(A) == [ $() dEA(N) 27)
o(A)

In fact, the mapping ¢ — [ ¢ dE4 has a lot of properties we already know for the bounded variant.
The following lemma sums them up. Because the proof is just some computations, and would not
give a lot of insight, we omit the proof. For a proof, see for example [10, p. 78].

Lemma 4.2.6. [I, Thm. 4.10, p. 323] If (X, <) is a measurable space, 7 a Hilbert space, and F
is a spectral measure for (X, o | 7€), let (X, o) be the algebra of all <7 -measurable functions
¢ : X — C. Then for ¢, € (X, o):

1. the operator | @ dE is closed,
2. (fX ¢ dE)* - fxa dE,

3. (fngdE) (fw dE) C fX(bz/J dE and Dom((fX¢dE) (fw dE)) = Wy N Wy, with
Wy, Wy, as in Equation

4. If  is bounded, ([, ¢ dE) ([, ¢ dE) = ([y ¥ dE) ([ ¢ dE) = [, o0 dE,
5. (fX¢ dE)* (fx¢ dE) - fX |6 dE.
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5 Theorem of Nelson

5.1 The theorem of Nelson

Now we have the tools to start working on the theorem of Nelson. The theorem of Nelson is es-
pecially interesting, because it tells us that if two self-adjoint operators A and B commute on a
special dense linear subset, and when some operator is essentially self-adjoint, then for any mea-
surable functions f and g we have f(A) and g(B) also commute. In Nelson’s paper, Nelson was
inspired by analytic vectors and Lie-theory to prove this theorem [, Cor. 9.2, p. 603]. We will
however prove it by using elementary analysis. But first we need a definition of commuting.

Definition 5.1.1. Let A, B be two linear operators on a Hilbert space .7Z°. We say A and B commute
if ABx = BAx for every x € Dom(AB) N Dom(BA). If A and B are self-adjoint, we say A and
B commute strongly if the spectral measures £ 4 and Ez, of A and B respectively, commute.

It appears commutation of the spectral measures seem to imply something, for the term strongly
commuting suggests that this form of commutation is stronger than normal commutation. And
in fact, if the spectral measures commute, then all possible operators created by integrating two
measurable functions with respect to these measures also commute. The following proposition and
its proof are my own work and have not been taken from the literature.

Proposition 5.1.2. Let (X, &7) and (Y, B) be two measurable spaces, and 7 a Hilbert space. Let
Ex be a spectral measure for (X, o/, 7) and Ey a spectral measure for (Y, B, 7).

If Ex(U) and Ey (V') commute for any U € of and V € 9B, then for any <f -measurable
function f : X — C and any %-measurable function g : Y — C we have

(forams) (Lo )= (Loam) ([ )+

for any x € Dom( [ f dEx [, g dEy) N Dom( [, g dEy [, f dEx). In other words, [, f dEx
and fy g dEy commute.

Proof. We start with a claim.

Claim 1. [, g dEy commutes with Ex(U) for any U € </ on Dom( [, g dEy).
Proof. Take x € Dom( [, g dEy ). Then we find that forany V' € Zand y € -
(By(V)Ex(U)z,y) = (Ex(U)Ey(V)z,y) = (Ey(V)z, Ex(U)y)
Therefore we immediately find that
e ( [ adme) o = (( gﬂ%)xﬂdmw
Y
[ 96) By ) Exvy

| 9 4B () Ex()2.0)

- <E/Yg dEy) Ex(U)z,y)

>~<
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Since this is true for any y € #, we have that ([, g dEy) Ex(U) = Ex(U) ([, g dEy) on
Dom( [, g dEy). O

Next, we want to do this for f and g. We work in a similar way as in the previous claim. Let
z € Dom( [, f dEx [, g dEy) N Dom( [, g dEy [ f dEx), and y € Dom(([ g dEy)*). Then
for any U € % we find the equation

(50 () )= (o) 03
<EX(U)96, (/Yg dEy) y>

And so we find that the following holds

(orams) (L)) = foai adests ([oam) o)

This is only true for any y € Dom(( [, g dEy)*). Because Ey is a spectral measure, by Lemma

we have that ([, g dEy)* = [, g dEy. By Proposition we find that the domain of
v g dEy lies dense in 2.
So let y € 7. Then there exists a sequence (y,,), € Dom( [, g dEy) such that y, — v.
Because the inner product is continuous, we find:

() ([0 2) - 9 (f 55 )
-t {(fosm) ([ )
(o) ([ )3

Again, this is true for any y € .77. And therefore we conclude that

(forams) (foam)e=(foam) ([rom)-

for any « € Dom( [, f dEx [ g dEy) N Dom(f, g dEy [ f dEx) O
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This result looks promising. If we consider two strongly commuting self-adjoint operators A
and B, then not only do these operators commute, we also find that A" and B™ commute for any
n € N, and the operators et and B? — B commute. So if the spectral measures commute, we
see that a lot of operators commute. Therefore, we wish to investigate whether two self-adjoint
operators strongly commute.

Because of Corollary [3.4.15|and the spectral theorem for bounded operators (Theorem [3.4.1T)),
we see that the spectral measures of two bounded self-adjoint operators A and B commute if and
only if A and B commute. Therefore, if A and B commute, then they automatically commute
strongly.

Additionally, if A is a self-adjoint operator, and B is a bounded self-adjoint operator, they
strongly commute as well.

Lemma 5.1.3. Let A be a self-adjoint operator and let B be a bounded self-adjoint operator. If A
and B commute on Dom(A), then A and B strongly commute

Proof. Since A and B commute on Dom(A), then by the spectral theorem for unbounded operators
(Theorem we find that B and ([ ¢ dE4) commute. Taking ¢ = x for any Borel subset
U C o(A) we see this immediately tells us that F4(U)B = BFE4(U). Then using the spectral
theorem for bounded, normal operators, we see that the spectral measures commute. In other
words, A and B commute strongly. [

But when both A and B are unbounded, this correspondence does not need to hold anymore.
However, Nelson’s theorem will give us one criterium to show that two self-adjoint operators
strongly commute. The rest of this section will be dedicated to stating the theorem of Nelson
and proving it.

Definition 5.1.4. Let A be a linear operator on .77, and let Z be a subset of Dom(A). We say &
is a core of A if 7 lies dense in Dom(A) with respect to the graph norm, where the graph norm is

given as in Lemma

Remark 5.1.5. Note that if A is closable, we find that if & is a core of A, then A_\_@ = A IfAis
closed, then it tells us A|4 = A. If A is self-adjoint, then A| is essentially self-adjoint.

Cores can be useful, because some of the properties of an operator can be seen if we only look
at a core. So we can find some properties of the operator, without using the whole domain. We
will be using cores as well to prove the theorem of Nelson. First we note an interesting result that
characterizes whenever two self-adjoint operators strongly commute. The proof is also not based
on literature.

Lemma 5.1.6. Let 57 be a Hilbert space, and A, B be self-adjoint operators on €. Then the
following assertions are equivalent:

1. A and B strongly commute,
2. Forall z € C\ R the operator (A + z)~' commutes with B,

3. The operators (A + 1)~ and (A — 1)~! commute with B.
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Proof. 1) = 2): Assume that A and B commute strongly. We note that (A + 2)~! = f(A) with
f:0(A) — Cis given by f(z) = . Since 0(A) C Rand z € C\ R, we have that f(z) is a
continuous function, and therefore measurable. We use Propositionmto conclude that (A+2)~*
and B commutes for z € C \ R.

2) = 3): If (A + 2)~! and B commute for any z € C \ R, then it is surely true for z = +i.

3) = 1): Let (A +4)~! and B commute. So (A +i)"'B C B(A 4+ 1i)"!. Because A is a
self-adjoint operator, we have (A + z')‘ is a bounded operator Therefore, by the spectral theorem
for unbounded operators, Theorem | we find that (A+i) ™ ([ ¢ dEB) C ([ ¢ dEg) (A+i)™!
for any Borel measurable function ¢. We note that if V - (C is a Borel set, then

BaV)(a i) = ([ din) (407 = (4207 [0 dEn ) = (407 BaV)

Therefore we see that Eg(V)z = (A — i) ' Eg(V)(A — i)z for any z € Dom(A). Hence we
can conclude

(A=) (A+9) " Ep(V) = (A=) Ep(V)(A+1i) " = (A=) Ep(V)(A— i) (A —i)(A+i)~"
=(A—i)(A—i) " Ep(V)(A—i)(A
= Ep(V)(A—i)(A+1i)"

—~
+
.
~—
—

Hence we can conclude that E5(V) commutes with U; the Cayley transform of A. We can do
the same trick to prove that Ez(V) commutes with U*. Because U is a bounded operator, we
use the spectral theorem for bounded operators, Theorem [3.4.11] to conclude that for any Borel set
W C Cthat Eg(V)Ey(W) = Ey(W)Eg(V) where Ey is the spectral measure for U. Because the
spectral measure of A is defined as E4(W) = Ey (g~ '(WW)), we immediately see E4(W)Eg(V) =
Eg(V)E4(W). So A and B commute strongly. O

Next, we will prove two theorems. These theorems are the core of the proof of Nelson’s theo-
rem, and if we have proven these two, then the theorem of Nelson will follow directly.

Remark 5.1.7. We want to adress the notion that the two upcoming lemmas are based on [9, Lm.
1, p. 365], but is slightly changed. In our version, we do not need Dom(B) C Dom(A), but instead
assume that the linear subspace 2 has the additional property that 2 C Dom(A) N Dom(B). The
proof of these lemmas will also differ slightly.

Lemma 5.1.8. /9 Lm. I, p. 365] Let A be a self-adjoint operator, and B a symmetric operator.
Suppose that there exists a linear subspace 9 C Dom(AB) N Dom(BA) N Dom(A) N Dom(B)
such that

1. ABx = BAx forany x € 9,
2. D is acore for A and B,
3. || Bzl < M|(A+ i)z|| for all x € 9 and some X > 0.
Then B is essentially self-adjoint and B and A strongly commute.

Proof. We start the proof with a claim:
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Claim 1. There exists a C' € #(.#) such that Bx = C(A +i)x forz € 9.

Proof. We note that i ¢ o(A), so A + i is boundedly invertible. Define the subspace 77 :=
(A +1i)(2). Thus for any = € 2 there exists ay € % such that x = (A + ¢)~'y. Thus we have

1Bz|| = [ B(A+i)""yl < M(A+)(A+i) "yl = Allyll

because of the assumption. Define C' := B(A +4)~! on 4, then |Cy|| < A||y|| for all y € 4.
So C' is a bounded operator on 7;. By Remark we can extend C' in such a way that C'
becomes a bounded operator on 7 with C' = B(A + i)~ on %. We conclude that if x € Z then
Br = B(A+i) Y (A+i)z=C(A+i)z. O

So we have Bx = C'(A + i)z for any © € Z. Because Z is a core of B, we have B* = (B|y)*
where B|4 denotes the operator B with domain &. We then find

B* = (Bls)" = (C(A+i)|5)" = (C(A+1)* = (A= i)C”

Define the operator |A — i| := ((A — i)*(A — 4))"/2. In other words,

]A—i]:/(A)\/()\qu')()\—z') dE()\):/\/)\2+1dE(>\)

where F is the spectral measure of A. We note that Dom( fo( A) \//\;ﬁ dE) = . Because
VA2 + 1> 1forany A € R, we find for z € 72,

/U(A)

Therefore Dom( [

il

Fi1 d{E(\)z,x) < / Ld(E(N)z,r) = (z, 1)

o(A)

x5 AE) = . Additionally, we find

1
—— dF
H</J(A)v>\2+1 )I

Therefore we see that |[A — 1|1 := fg( A) \/%H dE is a bounded operator defined on # with

norm |||A — i|7!|| < 1. Also note by Lemmal4.2.6] that

2

1
= d{E(\ < 2
[, 3 e < el

1 - 1
oy ([ a) <[ oy
( ) o(4) VAZ + 1 o) VA2 + 1 | |

So |A — i|~! is a bounded, self-adjoint operator.
Next consider (A — 7)|A — i|~!. Then we find for z € #

MA—QM—ﬂ*MF=H(Am;%%%dEMOx

A—1 A+ / )
= . d{E(N)x,x) = 1d(E(Nx,x) = ||x
/U'(A) \/)\2_'_1 \/)\Z—I—l < ( ) > o(4) < ( ) > || ||

2
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Thus ||(A —4)]A —4|7'|| = 1 and so (A —4)|A — 4|~! is a bounded operator.
Define F' := (A — i)|A — i|~'C*. Then note that F is a bounded operator. Additionally, by
Lemma we see that (Ax1) = [, A+ idE()) and |A —i[~" commute. Therefore we see

|A —i|F = |A—i|(A—d)|A—i| 'C* = |A —i||A —i| (A —4)C*
=(A—-1)C"=B"
Because B is a symmetric operator, we have B C B*, and so for any z € Dom(B) we have
Br = B*r =|A—i|Fx
Therefore, if x € & we find:
(A+i)Bx = (A+i)|A—ilFz = |A—i||A—i| " (A+i)|A—i|Fz = |A—i|(A+i)Fx (28)
We assumed Abz = BAx for z € . So we find for x € &
(A+i)Bx=B(A+i)z=|A—i|F(A+i)x (29)

Comparing and (29), we see that (A + i)Fz = F(A + i)z for z € 2. Since 7 is a core
for A, (A +1)(2) lies dense in JZ. Therefore, if y € ¢, there exists a sequence (y,,), C Z such
that (A + i)y, — y. Theny, = (A+1) ' (A+ 1)y, — (A +14)"'y. And so we find

(A+i)"Fy = lim (A+i) 'F(A+d)y, = lim (A+i) " (A+i)Fy,
n—oo n—oo
= lim Fy, = F(A+i) 'y
n—oo

Therefore we find that F and (A + i)' commute. Taking adjoints, we see that F* and (A — ¢)~!
commute. Hence F™* commute with |A — i|.

Since F' = (A —i)|A —i|'C*, we find F* = C((A —i)|A —4|™1)* = C(A+i)|A —i| ™"
Remember B = C'(A+1) on Z and B is symmetric. Therefore if x € &, we see that the following
holds

Br = C(A+i)|A—i| A —i|lr = F*|A —i|lv = |A —i|F*z
=B'r=|A—ilFx

So I'* = F on Z. Since Z is dense in . and F' is bounded, we find F* = F.

Now that we know that F is self-adjoint, we prove that B is self-adjoint. It is sufficient to show
that the deficiency indices are 0. Suppose that B*x = zz with z = +i for some x € Dom(B*).
Because B* = |A — i|F, we find Fx = 2|A — i|'z. Then

(Fr,z) = 2(|A —i| o, x) = 2[||A — i| x|
Because F' is self-adjoint, the left side of the equation is real. Because z = =i we conclude

|A — |22 = 0Oand soz = 0. Therefore n, = n_ = 0. So B* is self-adjoint, or equivalently
B* = B*™ = B. So B is essentially self-adjoint.
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Because B = B* = |A — i|F and F commutes with (A + i)™, we find
(A+i) " B=(A+i) A—i|lF = |A—i|F(A+4i) ' = B(A+4)™"

on Dom(B*) = Dom(B). We also know that F* and (A—i)~! commutes, and F' = F*. Therefore,
F and (A —i)~" commute, and thus by the same calculation we conclude that (A —i)~" and B
commute on Dom(5). By Lemma we have that A and B are strongly commuting. [

Lemma 5.1.9. [[9, Lm. 2, p. 366] Let A be a self-adjoint operator, and assume B1, By are symmet-
ric operators. Suppose that

1. There exist linear subspaces 9; C Dom(AB;) N Dom(B;A) N Dom(A) N Dom(B;) for
i = 1,2 such that AB;x = B;Ax for all x € 9; and such that 9; is a core of A and B; for
i=1,2

2. There exists a linear subspace %15 C Dom(B;By) N Dom(ByBy) with Y15 C 21 N Py
such that BiBsx = ByBix for all x € 949, such that 915 is a core for A and such that
B1(%12) C Py and Bo(Z12) C D1

3. || Bix|| < A|[(A + i)z for some X\ > 0 and for all x € P); fori =1,2.
Then B, and B are strongly commuting self-adjoint operators.

Proof. The fact that B; are self-adjoint, is a consequence of Lemma Thus we only need to
prove B; and B; commute strongly. We use the same notation as in previous proof.
By Lemma/5.1.8] we know that B; = |A — i| F; on ; with i = 1,2. Then we get for z € 25

where we used that ' = F* commutes with |A — i|. Because ker |A — i| = (0), the previous
calculations implies FyFy|A — ilx = FyF)|A — i|z for any x € Z5. Since % is a core of A,
|A — i|(Z12) lies dense in 2#. Thus we can conclude that [} F, = F,F). Then we consider B;.
Because B; = |A — i|F} we get for y € Dom(B,):

because, again Fy = F3 commutes with [A — 4[. Therefore F3 and B, commute on Dom(B)).
Because Iy € B(), F, commutes with (B + i)~'. Therefore, it holds that

By(Bi+i)" = |A—ilFo(B +0) " = (Bi + i) A~ il = (Bl +4) ' B,

By Lemma we have that B; and B, strongly commute.
[

Now we are ready for the theorem of Nelson. The theorem we are discussing here is slightly
adapted from the one Nelson proved. He proved it for symmetric operators with an dense linear
subset contained in a lot of different domains. We will only be considering self-adjoint operators,
and a slightly different set.
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Theorem 5.1.10 (Theorem of Nelson). /5, Cor. 9.2, p. 603] Let By, By be two self-adjoint opera-
tors on a Hilbert space 7, and let 9 be a dense linear subspace of 7 such that:

1. P is contained in Dom(B;) fori = 1,2,
2. Bi(2)C P fori=1,2
3. P isacoreof By and By
4. B1Byx = ByByx forall x € 9.
If (B} + B2)|y is essentially self-adjoint, then B, and By strongly commute.

Proof. We wish to use Lemma|[5.1.9]to prove this theorem. Let B; and B, be as in Lemma[5.1.9]
Define A := B? + B2|4. Then A is self-adjoint, by assumption. To show that the first requirement
holds, note that 2 C Dom(B;) and B(Z2) C 2. Therefore 2 C Dom(B?). By the same
reasoning we find 2 C Dom(B3). Hence 2 C Dom(B} + B3) C Dom(A). Additionally, we
see that A(2) = (B} + B3)(2) C 2, and therefore 2 C Dom(B;A) and 2 C Dom(AB;) for
j = 1, 2. Therefore we see that

2 C Dom(AB;) N Dom(B;A) N Dom(A) N Dom(B,)
for j = 1, 2. By assumption we also know that B, Box = By By, and so

Finally, because (B? + B3)|4 is essentially self-adjoint, & is a core of B? + B3 and so it is a
core of A. By assumption, & is a core of By and By. Therefore the first requirement of Lemma
[b.1.9holds for 7, = 2, = 2.

Because B1(Z2) C & and 2 C Dom(Bs), we find 2 C Dom(B;B,). By the same reasoning,
2 C Dom(ByBy). Therefore 2 C Dom(B;By) N Dom(ByB;). We conclude that if we define
P15 := 9, we also see that the second requirement of Lemmaholds.

Finally, we need to show that || B;z| < ||(A + 4)z|| for i = 1,2 and for all x € 2. If we can
show this to be true, then we can use Lemma and we are done. We will prove the inequality
for B;. We note that if x € & we get

(A + )| = |[(Bf + B3 +4)z|”

= ((B} + B3 + i)z, (B} + B +i) z)
I(BY + i)a||* + || Biz||* + 2Re({(B} + i)z, B3z))
> ||(B? 4 4)z||* + 2Re({Bix, Bix) + i(x, Bix))

Because By(Z) C 2 we have BlBSm = B%le, and thus we can conclude

I(A+d)z]* =]
= |l
= |l
= |l

12 + 2Re((Byx, By B2x) + i(Bsyz, Byx:))

i)
i)z||* + 2Re({ByBix, By Bix) + i{Byw, Box))
)
)z

B} +
B} +
Bf + i)z|* + 2Re(|| B2 Byx||* + i|| Box||?)
Bf + i)z|? + || BeBiz||* > ||(Bf + i)z |)?

1

/\/\/‘\/\
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So we found ||(A + i)z|| > ||(B? +i)x|| for z € 2. If we can prove ||(B? + i)z|| > ||Biz| for
x € 9, we are done. Note that B; is a self-adjoint operator, so B; = fR A dEy where E is the

spectral measure of B;. Thus
By = Bj_11) + B

where Bi_1y) = [_, ;A dEyand Bos = [ 5\ 4 A dE1. Because [—1, 1] and o(By) \ [-1, 1]
are disjoint sets, we get that for any Borel set U C [—1, 1] and any Borel set V' C o(By) \ [—1, 1]
that £, (U)E, (V) = Ey(V)E(U) = 0. Therefore is B|_1 1]Bs = BooBj_11] = 0. Hence

Bf = B[2—1,1] + Bc2>o

Additionally, we note that for any set K’ C R wehave [, A dE(\) = [
we see that

(By) XEA dE()\). Therefore

BF—Ll] = / X[—1,1]>\ dE(/\) = / X[—l,l})‘ dE(/\) = B[—l,l]
o(B1) o(B1)

Bl = / Xo(B\[-1,)A dE = / Xo(B\[-1,)A dE = By,
o(B1) o(B1)

Thus B|_; ;) and B are self-adjoint. Therefore we get for v € &

|Buall? = || By + || Booc|]? = /

[7171]

N d(E;( Nz, x) + / A2 d(Ey (N, z)

R\[-1,1]
< swp A} (Bu((=1, 1)), 2) + / NHE (N, )
Ae[—1,1] R\[-1,1]
— By~ 1 ) a) + | Bl < [Eu([—1 )| + | B2
(P 1BR2]? < ol + | BRal? + B2y ll? = (B2 + B2 + i)z

The last equality sign is because B = B} | |, + B3, is symmetric, so ||(B} +i)z||> = || Biz|* +
i%||||?. If we read the whole equation, we see that || B,x||? < ||(B? +1i)x||? for z € 2. Same holds
for B, if we swap the 1 for a 2. So we can use Lemma to conclude that B; and B, strongly
commute. [

In conclusion, if we can find that we can apply Nelson’s theorem for any two self-adjoint
operators A and B, we know by Proposition that for any two Borel measurable functions
f:0(A) - Candg: o(B) — C we have that f(A) and g(B) commute. We will consider two
examples to apply this to.

6 Position and momentum operators

In this section, we consider two examples. The reader might be familiar with these concepts, for
these operators are being used in Quantum Mechanics.
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6.1 Tempered distributions

Before we formulate the examples, we give the notion of a distribution. Distributions turn out to
be necessary for these examples, because we wish to differentiate functions which are not differen-
tiable by definition. Because the focus of this thesis is not distribution theory, we will prove only
a few theorems. The reference to the proofs is within brackets after the theorem for those who are
interested. The reader who are already familiar with distribution theory and Fourier analysis on
distributions, can continue reading Section

Definition 6.1.1. Let X C R". We define Z(X) := C3°(X); the space of infinitely differentiable
¢ : X — C with compact support. A sequence (¢;); € Z(X) is said to converges to ¢ in 7(X),
if:

1. there exists a compact X' C X such that supp(¢,) C K for every j
2. for every multi-index o € N” the sequence (0°¢;), converges uniformly on X to 0%¢
Definition 6.1.2. Let Z(X) as in Defintion We define a distribution on X as a linear map

u: P(X) — C, such that if lim;_, ¢; = ¢ in Z(X) then lim;_,o u(¢) = u(¢). We write the
space of distributions as 2'(X).

Lemma 6.1.3. [2] p. 37] Let f € Li,.(X). So f : X — C is locally integrable. Then f can be
interpreted as a distribution via the mapping test- : Lj,.(X) — 2'(X) defined by

(testf)(¢) = - f(@)¢(z)dz

Most of the times we will omit the test, and say [ is a distribution.

Since L?(R") C Li,.(R™), we know that if u € L*(R"™) then u € 2'(R"). But does a distribu-
tion come from a function?

Lemma 6.1.4. Let u € 2'(R"). Then u € L*(R™) <= there exists a C > 0 such that |u(¢)| <
Cll¢l r2n) for any ¢ € D(R")

Proof. Let u € L*(R™). So [, [u(z)[?dz < co. Let ¢ € Z(R"), then there exists a compact set
K C R"™ such that supp(¢) C K. We claim that ¢ € L?(R"). We see that

. |p()|*dx = /K |p()|2dx < ilgl}}?ﬂgb(a:)ﬁ} /Kda: < 00

because |¢|? is a continuous function on K, so it is bounded on K. So ¢ € L*(R™). Then we use
Holder’s inequality to conclude

/ u(@)o(x)da

This is true for any ¢ € Z'(R™), so the first part is proven.

u(¢)] =

< / u(z)p()|dr = [[ug reny < [JullL2@m 0]l 2@n)
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Next, let [u(¢)| < C||@|| 2mn for all ¢ € Z(R™). Because Z(R") is dense in L*(R™), it is
possible to extend v to a bounded functional @ on L?*(R"™). Hence by the Riesz Representation
Theorem, there exists a unique g € L*(R") such that & = (-, g). So for ¢ € Z(R") we have

a(¢) = u(@) = (#,9) = | le)gle)dw = (test §)(9)

So u = test g, and thus u € L*(R"). O

If f is a continuously differentiable function on X C R", then

o 4 g 00

(testd; f)(p) = N o, dr = —(test f)(0;¢)

because the boundary term is absent, as ¢(x) = 0 for sufficiently large . Motivated by this, we
define a differentiation for distributions:

Definition 6.1.5. If X C R", we define for an arbitrary distribution u on X:
dju(¢) = —u(8;0)  (1<j<n,¢e X))
Here 0; := %, the differential operator with respect to the jth component.

With this notion any distribution, and thus any locally integrable function, is infinitely differ-
entiable. This definition of differentiable is consistent with our regular definition of differentiation
on functions; in other words, if f is continuously differentiable, then test(0;f) = 0;(testf) for
1<j<n.

6.2 Fourier transform

Now that we have introduced the basics of distribution theory, we can talk about Fourier transforms.
In order to do so, we first introduce the space on which Fourier transform acts.

Definition 6.2.1. A function ¢ on R" is said to be rapidly decreasing if for every multi-index
B € N the function = +— 2°¢(z) is bounded on R". We define ./ = .#(IR") as the space of all
¢ € C*(R™) such that 0*¢ is rapidly decreasing for every multi-index «.. This space is called the
space of Schwartz-functions.

If (¢,); is a sequence in . and ¢ € .77, then ¢; is said to converge to ¢ in . if for all multi-
indices «, [ the sequence of functions (335 6%5])]. converges uniformly on all of R" to 2°0%¢.

Definition 6.2.2. We define a fempered distribution as a linear mapping v : . (R™) — C in such
a way that if lim, . ¢, = ¢ in .7 (R”) then lim,, o u(¢,) = u(¢p). The space of tempered
distributions is denoted by .#/(R"™) =

We say that a sequence (u;); C .%* (R”) converges to uin /' (R"), denoted lim;_,, u; = u, if
u e ' (R") and lim;_, o, u;(¢) = u(¢) for every ¢ € .(R"). In other words, if (u;),; converges
pointwise to u € . (R").
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With this new definition, we have Z(R") C (R") C C*>°(R™). Since Z(R) lies dense
in C*°(R"), we have that ./(R") lies dense in C'*°(R™). Also note that the identity mapping
Id : 2(R") — .7 is continuous. Additionally, we have the continuous inclusion ./ C Z'(R")
(see |2, p. 189] for example).

Definition 6.2.3. On . we define the Fourier transform .% : . (R") — ./ (R"), by
(0O = [ e

n

where (£, 2)grn = Y, &, the standard inner product on R™.

Since ¢ is a rapidly decreasing function, this integral is well defined for any £ € R™. One of the
more promising features of the Fourier transform is that differential operators are transformed into
polynomial operators and the other way around, as the following lemma shows. We define:

Then we can use this definition to state the lemma.

Lemma 6.2.4. [2] p. 183] The Fourier transform ¥ : u — Fu defines a continuous linear
mapping from ./ (R™) to /' (R™). Forevery1 < j <n, ¢ € ./ (R") and £, a € R™ we have

F(D;9)(§) = &F(9)(€) F(2;0)(€) = =D; 7 (9)(£)

Example 6.2.5. For a € C with Re(a) > 0 we define u,(z) = e %"/2 for z € R. Then surely,
u, € L (R). Thus Zu, € ./ (R). Note that Du,, = iazu,, and so taking the Fourier transform on
both sides gives:

1 1
DFu, = F(—zu,) = F(i—Du,) = 1—EF u,
a a

This is an ordinary differential equation, and thus we get % u, = A(a)u1 with A(a) = (Fu,)(0) =

2
Jg ta(x)dz = /2. So in conclusion .F u, (&) = /%we—g?
By this, we see that, if we apply .% again, we get

F(Fu,) = F(Ala)ur) = Ala)Fur = Aa)B(a)u,
with B(a) = [, ui(x)de = [, ¢~%: = \/2ma. So we see that F Fu, = 27U, %)

Note that for this example, we got the inverse of this particular Fourier transform. But the
example is not unique, as the following theorem states

Theorem 6.2.6. [2, Thm. 14.13, p. 185] The Fourier transform % : ./(R") — Z(R") is
bijective, with inverse ' = (2r)™S o .F = (21) " F o S, where S : S (R") — S (R"),
S(¢)(x) = ¢(—x). This can be written as, for ¢ € . (R") and x € R"™:

1

_ WEx)rn g
o) = gz [ e Foleye a1
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Now that we have some theorems about the Fourier transforms on ., we continue to define the
Fourier transform on .%".

Definition 6.2.7. If u € ., we define its Fourier transform .#u € . as, for ¢ € .,

Fu(¢) = u(F9¢)

Note that this definition coincides with the definition we gave for ¢ € . C %’ in Definition
For if we consider ¢ € .% as a distribution, we have

(F )W) = o(Fo) = - ¢(§)-FP(§)dg

= [ o) [ e ptaydnds

= [ Lot = [ (Fo@mis

As it happens a lot in the theory of distributions, many theorems that hold for functions, also apply
(although slightly adjusted) for distributions. The most important in case of Fourier theory is the
next theorem.

Theorem 6.2.8. [2| Thm. 14.14, p. 191] For every u € (R"™) we have Fu € /'(R"). The
mapping ¥ : u — Fu is a continuous linear mapping from %' (R") to ' (R"™) . Also, for every
u € " (R") and 1 < j < n we have

ﬁ(DJIO = fjﬁu
Fl(xju) =—D;Fu

Finally, 7 : ./'(R") — '(R"™) is bijective with inverse equal to (2r) "% o S' = (2m) "S5 o F
where 5" : /" — " by §'(u) = uwo S with S as in Lemma6.2.6]

Lemma 6.2.9. [2| p. 190] We have the following inclusions:
9(R") C #(R") C [A(R") € (R")

These inclusions are also continuous, or in other words, convergence in one space includes con-
vergence in the bigger space.

Fourier Theory turns out to be useful to study L?(R"). In fact, with the notion of distributions
we get that the Fourier transform is a unitary isomorphism.

Theorem 6.2.10. [2 Thm. 14.32, p. 196] If u belongs to L*(R™), then Fu € L*(R"). Also, if
¢, € L*(R") then

(F &, FY)r2mny = (&, V) L2mn)
It follows that the restriction of F = (2m)"/2.F to L*(R™) defines a unitary isomorphism on
L2(R).

Corollary 6.2.11. Let u € L*(R").
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1. If rju € L*(R™), then D;(.F(u)) € L*(R").
2. If Dju € L2(R™), then x;.% (u) € L2(R).
Proof. 1): Let 1 : LA(R") — .%”(R™) be the inclusion mapping. Then
U(F(20) = F ((eju)) = F(aj0(u)) = Dy F (1(u) = —Dyu(F(u) = o ~D; F (u))

Therefore we can conclude (% (zu)) = «(—D;.# (u)) in . (R"). Therefore, F (x;u) = —D.% (u)
in L2. So D;.% (u) € L*(R).
2): Let ¢ be the inclusion map again. Then we see

UF (Dju)) = F((Dju)) = F(D;(1(w))) = 2;:7 (((u)) = z;u(F (v) = v(z;F (u))

So «(F (Dju)) = v(x;F (u)) in '(R™). Therefore, # (Dju) = ;% (u) and z;.F (u) € LQ(R’%

6.3 Position and momentum operators

After quite some distribution theory, we finally consider the two examples. These operators are
important in the quantum mechanics.

First, we consider the Hilbert space % = L?*(R"). Consider f € . In the classical sense,
the derivative of f may or may not exist. For example, let B := B(0,r) be an open ball of R"
of radius r centered around the origin. Then xp € L?*(R™) but the derivative is not well defined
everywhere. Nevertheless, the derivative does exist if we consider x5 in a distributional sense, by
Definition [6.1.5] The only problem with this way of doing it, is that the derivative might not be a
function itself, but rather a distribution. And if it is a function, this function might not be square
integrable. Thus the operator 9; : L*(R™) — L?(R™) has a certain domain on which it is defined.
We are now ready for the definition of the momentum and position operators in L*(R™). First we
consider n = 1:

Definition 6.3.1. Let 2 = L*(R), and define the linear operator p : # — . by p(u) = i-Lu.
The domain on which this operator is defined is

d
Dom(p) = {f € L*(R)| id—f € L*(R) in the distributional sense}
x

This operator is called the momentum operator.
By Example we also need a domain for the operator that is defined as .

Definition 6.3.2. Let »# = L?(R). Define the linear operator & : # — J by #(u) = xu. The
domain on which this operator is defined is Dom(%) = {f € L?*(R)|zf € L*(R)}.

Our first goal is to show that both 2 and p are self-adjoint. We start with the operator 2.

Lemma 6.3.3. The operator % is a self-adjoint operator
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Proof. First, we must show that Dom(z) lies dense in L?(R). Note that Z(R) C Dom(#) C
L*(R). Since Z(R) lies dense in L?(R) we have that Dom(z) lies dense in L*(R).
Next, we note that if f, g € Dom(), we have

@(f), ) = / o (x)g(@)d = / f(@)zg(@)ds = (f,#(g)

So Z is symmetric. Thus the only thing left to show is Dom(Z) = Dom(z*). Since Z is symmetric,
we know by Lemma-that & C &*. Therefore Dom(z) C Dom(Z*).

On the other hand, given f € Dom(z*), we have that the mapping ¢ — (&(¢), f) is a bounded
linear functional op Dom(z). Thus, there exists a C' > 0 such that for any ¢ € Dom(z) we
have [(z(¢), )| < C||@||lr2r). This is surely true for ¢ € Z(R). Also note that f € L*(R), so
fof € Lioe(R), and thus xf € Lj,.(R). And so the distribution test(xf) = xf is well defined.
Thus

- / o(z)(xf)(x)dz = /R zp(x) f(x)dz = (2(¢), f)

Therefore, |2 f(¢)| = [(Z(¢), f)| < C||}||z2. Then, by Lemma|6.1.4|we find that z.f € L?(R). But
this means that f € Dom(z). So Dom(z) = Dom(z*), and thus is Z self-adjoint O

Next, we look at the linear operator p.
Lemma 6.3.4. p is self-adjoint.
Proof. We consider the following claim.
Claim 1. . (Dom(2)) = Dom(p).

Proof. Consider f € Dom(Z). Then zf € L?(R) and thus Z (zf) € L*(R). By Lemma[6.2.4]
we see Z(zf) = —D.F(f). So —iLZ(f) € L*(R) and so Z(f) € Dom(p). For the other
inclusion, we follow the same reasoning, only now backwards. L]

First we prove that p is symmetric. C0n31der f,g € Dom(p). Then there exists h € Dom(z)
such that .# (h) = f. Then, by Corollary [6.2.11]

(B(f), 9) = (B(Fh), g) = (F((h)),g)
= (z(h), Z'g) = (h,2(F 'g))
= (h,to0SoFg))=(h,—SoxoF(g))
= (h, Z71(D(9))) = (F (h),p(9)) = (f.(9))

So p is symmetric. Next, let f € Dom(p*). Then the mapping g — (p(g), f) is bounded for
g € Dom(p). Because g € Dom(p), there is a h € Dom(z) such that .7 (h) = g. Therefore it is
equivalent to say that h — (p(.Z# h), f) is bounded for A € Dom(z). But note that

(p(Fh), f) = (F(&(h)), ) = (&(h), F )

So the mapping h + (#(h), % ' f) is bounded on Dom(#). Therefore we can conclude # ' f €
Dom(z*) = Dom(z). But now, f € .#(Dom(z)) = Dom(p). So p is self-adjoint.
[l
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One might ask whether we can generalize this to R"™. In fact, we can. Before we do so, we
generalize the operators we are discussing to L?*(R™).

Definition 6.3.5. Let 77 = L*(R™), and define the linear operator p; : Dom(p;) — L*(R") by
p;j(u) =i0ju for j = 1,...,n. The domain on which this operator is defined is

Dom(p;) = {f € L?|i0,;f € L? in the distributional sense }

This operator is called the momentum operator in the j-th direction.
Also define #; : Dom(#;) — L*(R™) by #;(u) = x;u where x; : R" — R, (z1,...,2,) — ;.
The domain on which this operator is defined, is given by

Dom(z;) = {f € L*(R")| =, f € L*}
This operator is called the position operator in the j-th direction.
Lemma 6.3.6. The operator & is self-adjoint for j = 1,... n.
Proof. Change R to R" in the proof of Lemma |6.3.3 U
Corollary 6.3.7. The operator p; is a self-adjoint operator for j = 1,..., n.

Proof. By changing R to R" in Lemmal6.3.4]and using Lemma [6.2.4] we see that it easily follows
from these two lemmas. ]

Now that we know of Z; and p; are self-adjoint, we know they have a unique spectral measure.
In fact, we can easily see what the spectral measure for Z is.

Lemma 6.3.8. Equip R with the Borel o-algebra, denoted <7. Define the operator E : o/ —
B(L*(R)) by E(A)(f) = xaf where x4 is the characteristic function of the set A. Then E is a

spectral measure, and
/ NAE(QN) = &
o(R)

Proof. We first prove that E is a spectral measure. Let A C R be a Borel set. If f € L*(R") we
have E(A)E(A)f = xaxaf = xaf = E(A)f. Thus E(A)? = E(A). Next we note that for any
f e L?wehave (E(A)f, f) = [ xa(@)|f(z)Pde = [,|f(z)Pdz > 0. By Lemma 3.2.3 we have
that £/(A) is a projection for any Borel set A C R.

Next, E(0) = 0 and E(R) = I. Next, if A, B are Borel sets, then E(AN B)f = xansf =
xaxsf = E(A)E(B)f for any f € L*(R). And finally, if {A,}, is a collection of pairwise
disjoint sets, then £(U,A,) f = Xu,a,f = (Xa, + Xa, + -+ )f = 222, xa,f because the A; are
pairwise disjoint. Therefore, £ is a spectral measure.

Next, note that for any Borel set A we have (E(A)f,g) = [, f(z)g(z)dx. Therefore, we see
that if f € Dom(%) and g € L*(R) we have

(#(f),g) = / 2f(2)g(@) de = / v d(E(2) . g)

Because 1 is self-adjoint, there exists only one spectral measure such that this is true. Thus we see
that F is the spectral measure for Z. 0
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We see that if we consider L?(R"), the spectral measure of & is E;(A)f = Xri-1 x Axgn—i f- It
is easy to check that these spectral measures commute. Therefore Z; and z; strongly commute for
1 <17,7 < n. However, we wish to show this using Nelson’s theorem.

Corollary 6.3.9. Consider L*>(R"). Then the operators 1 ; and &, commute strongly for all j, k.
Proof. Let 1, j be given. We start with a claim
Claim 1. 27 + 27 is self-adjoint on L*(R").

Proof. The proof is the exact same proof as the proof of the self-adjointness of Z in Lemma [6.3.3]
where we replace by :i“? + 2%, and R by R". [

Next, we note that Z(R") lies dense in L*(R"), and Z(R") C Dom(z3 + 23). Hence Z(R")
lies dense in Dom(& 4 Z7). Therefore we have that Z(R") is a core of 7 + 23. Also note that
T (2(R™)) C 2(R") forl = j, k. On Z(R™), we have that

Tjipd(z) = Tj0(7) = BZi0(x) (¢ € Z(R))

Because @2 + @2 is self-adjoint, we have that (f? + 22)|#(rn) is essentially self-adjoint. Therefore
we can use the theorem of Nelson to conclude that Z; and Z;, strongly commute. 0

Finally, we consider p;, and try to find if the same holds as well.
Corollary 6.3.10. Consider L*(R"). Then p; and py, commute strongly for all i, j.

Proof. First we prove that ﬁ? + p? is self-adjoint. This proof is analogous to the proof of Lemma
6.3.4, so we will omit it. We replace & and p with #7 + &7 and p7 + p;, and note that the Fourier
transform is linear.

Next, we use the same reasoning as in previous corollary to conclude that p; and p;, strongly
commute. [

Remember that strongly commuting of two operators resulted in the commutation of two mea-
surable functions f and g as in Proposition

Example 6.3.11. Define the functions f : o(#;) — C by f(x) = ¢* and g : o(Z2) — C by
g(y) = |z|. Because Z; and 75 commute strongly, we find that f(#;) = e® and g(iy) = |2
commute. %

Example 6.3.12. The same can be done for p; and p,, because they strongly commute as well. So
for example, the operators €' and sin(id,) commute. @
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