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Abstract

In this thesis, we will introduce the notion of unbounded operators on a Hilbert space. We
will discuss the definition of the adjoint of an operator, and what it means for an operator
to be self-adjoint. After that, we will restrict ourselves to bounded operators and prove the
Spectral Theorem for normal bounded operators. The notion of a spectral measure will be
introduced as well. After that, we return to unbounded operators and we will consider the
Cayley-transform. With that and the Spectral Theorem for normal bounded operators, we prove
the Spectral Theorem for unbounded self-adjoint operators. Then we look into the situations
that two unbounded self-adjoint operators commute on a common domain. We then prove a
theorem of Nelson that gives some criteria which imply that the spectral measures of the two
operators commute. And finally we will consider two examples of unbounded operators that
play a role in Quantum Mechanics.
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1 INTRODUCTION 1

1 Introduction
A theorem often discussed in an introduction course in Linear Algebra, is that a symmetric matrix
can be diagonalized with the eigenvalues on the diagonal. This theorem is often called the Spectral
Theorem. In an introduction course in Functional Analysis, the same theorem is proven for a com-
pact, normal operator on a Hilbert space. In both these cases, both operators were bounded and the
spectrum of the operators are countable. So if we were to allow the operator to be unbounded on a
Hilbert space, and the spectrum be uncountable, does there still exist a spectral theorem for certain
operators?

The Spectral Theorem for unbounded self-adjoint operators answers that question with yes.
If A is a (possibly unbounded) operator and A is self-adjoint, then A can be written as a ’sum’
over the elements of the spectrum times a projection operator. In fact, this ’sum’ will be an integral
with respect to some projection valued measure. This also involves the notion of a spectral measure.

As we will see, spectral measures have interesting properties. If we can show that two spectral
measures commute, then any operator written as an integral over the first spectral measure com-
mutes with any operator that can be written as an integral over the second spectral measure. So we
wish to investigate the commutation of two spectral measures. The theorem of Nelson will give
us a way to characterize some situations in which two spectral measures, corresponding to two
self-adjoint operators, commute.

We will begin by studying unbounded operators on a Hilbert space, and adjoints of these oper-
ators. In particular we will look into the notion of self-adjointness for unbounded operators. Then
we will study spectral measures and the Spectral Theorem for normal bounded operators. Then we
will prove the Spectral Theorem for unbounded, self-adjoint operators. Next we will look at the
theorem of Nelson for self-adjoint operators, and finally we will consider an application in Quan-
tum Mechanics.

We assume the reader has at least a Bachelor level of understanding of Linear Algebra, Topol-
ogy, real Analysis, Measure Theory and Functional Analysis. We will also use some Distribution
Theory, but that will be explained in short.

Most of the definitions and results are based on the results in the book of John B. Conway ([1]).
Most of the time we will follow the proofs given in the book. However, sometimes we will diverge
from the results given in the book.

Finally, I would like to thank my supervisor prof. dr. E. P. van den Ban for guiding me in
writing this thesis. Even though he is very busy, he always had a moment each week to discuss the
progress and helped me out when it was needed. It was a great experience! I also would like to
thank my family, girlfriend and friends for supporting me when it was necessary.
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2 Unbounded operators
In this thesis, we wish to investigate unbounded operators on a Hilbert space, and their spectral
resolutions in particular. The theorem of Nelson tells us that if we start with two self-adjoint
operators A and B, and A2 + B2 is essentially self-adjoint, then the spectral resolutions of A and
B commute. In order to discuss this theorem, we must first investigate unbounded operators and
self-adjointness. Unbounded linear operators are no longer continuous, so some theorems based on
continuity do not hold anymore. Although, as we continue down the line, a lot of the properties of
bounded operators still hold for arbitrary operators.

In this section we will prove some elementary properties of (unbounded) operators. We will
discuss the domain and closures of operators, symmetric, normal and self-adjoint operators and
essentially self-adjointness. The reader who is already familiar with these concepts, may read onto
the next section, Section 3.

2.1 Unbounded operators and some basic properties
Before we are ready to define what an unbounded operator is, we need to broaden our definition of
a linear operator. In this way, we do not have to speak of unbounded operators and if we want to
address them, we can do so without having the problem of a not well-defined operator on all of H .
For the rest of this thesis, all Hilbert spaces are assumed to be defined over C. So the inner product
is a sesquilinear mapping into C. Also, we assume that every Hilbert space is separable.

Definition 2.1.1. If H ,K are Hilbert spaces, we define a linear operator A : H → K as a
function whose domain of definition is a linear subspace (not necessarily closed), Dom(A), in H
and such that for any λ, µ ∈ C and x, y ∈ Dom(A) we find A(λx + µy) = λA(x) + µA(y). We
call A a bounded operator if there exists a c > 0 such that ‖Ax‖ ≤ c‖x‖ for all x ∈ Dom(A). We
write ‖A‖ := sup{‖Ax‖| x ∈ Dom(A), ‖x‖ ≤ 1}

Remark 2.1.2. Before we continue, we want to note three things. First of all, whenever we say
A : H → K is a linear operator, we mean that A : Dom(A) → K is a linear operator with
Dom(A) ⊆H . It might suggest that A is everywhere defined, but note the implicit assumption of
a domain which might not be the whole Hilbert space.

Secondly, we note that the notion of boundedness in the new definition of a linear operator, is
equivalent to the notion of boundedness for linear operators everywhere defined. Of course, if A is
bounded in the old definition, then A is defined on all of H and ‖A‖ = sup{‖Ax‖| ‖x‖ ≤ 1} = c.
Then it also is a bounded linear operator in the new definition, because Dom(A) = H . On the
other hand, if A is a bounded operator defined on Dom(A), then we can find a bounded operator Ã
such that ‖Ãx‖ ≤ c‖x‖ for all x ∈H .

Lemma 2.1.3. Let A : H → K be bounded. Then there exists a unique bounded operator A′

with Dom(A′) = Dom(A) such that A′x = Ax if x ∈ Dom(A)

Proof. Let x ∈ Dom(A). Then there exists a sequence (xn)n ⊆ Dom(A) such that xn → x as
n → ∞. So (xn)n is also a Cauchy sequence. Because xn ∈ Dom(A), we have ‖Axn‖ ≤ c‖xn‖
for any n. Therefore (Axn)n is also a Cauchy sequence. Because a Hilbert space is complete,
limn→∞Axn exists. Define

A′x := lim
n→∞

Axn
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We will show that this definition of A′x does not depend on the choice of the sequence (xn)n. For
let (yn)n ⊆ Dom(A) be another sequence converging to x. Then ‖Axn−Ayn‖ ≤ c‖xn− yn‖ → 0
for both sequences converge to x. Therefore ‖Axn − Ayn‖ → 0 and so they converge to the same
value. Therefore is A′x well-defined. We also see that Dom(A′) = Dom(A) and A′ : H → K is
a linear operator. Finally, we see that ‖A′‖ = ‖A‖

Unless otherwise specified we will always identify a bounded operator A : H → K with
domain Dom(A) with the unique bounded extension Ã : H → K such that Dom(Ã) = H and
Ã = 0 on Dom(A′)⊥, where A′ is as in previous Lemma. Note that ‖Ã‖ = ‖A‖.

On the other hand, if A is an unbounded operator in the old definition, we assumed A to be
defined everywhere and sup {‖Ax‖ | ‖x‖ ≤ 1} tends to go to infinity. In other words, we can find
x ∈ H such that ‖Ax‖ is arbitrary large. Therefore there must exist x ∈ H such that Ax cannot
be well-defined. So the notion of a domain is needed in order to work with unbounded operators.

Example 2.1.4. Consider the Hilbert space L2(R) with the inner product 〈f, g〉 =
∫
R f(x)g(x)dx.

Then consider the linear mapping x̂ : f 7→ xf . It is not guaranteed that for every f ∈ L2(R) we
have xf ∈ L2. In fact, define the function f : R→ R as

f(x) =

{
1

x3/2
x ≥ 1

0 else

Then we find that ∫
R
|f(x)|2dx =

∫ ∞
1

1

x3
dx <∞

So f ∈ L2(R). Therefore, one might expect that x̂(f) ∈ L2(R). However, we have∫
R
|xf(x)|2dx =

∫ ∞
1

1

x
dx =∞

Thus xf /∈ L2(R). Therefore we have that the operator x̂ cannot be defined on the whole space
L2(R). We need to specify a suitable domain for x̂. Define Dom(x̂) = {f ∈ L2(R)|xf ∈ L2(R)}.
This operator we defined is called the position operator, and plays an important role in Quantum
Mechanics. We will look at this specific operator in Section 6 �

Definition 2.1.5. If H ,K are normed vector spaces, we denote by B(H ,K ) the set of bounded
operators from H into K . We define B(H ) to be the set of bounded operators on H , and we
write H ′ for the set of bounded linear functionals A : H → C. Note that B(H ,K ) is a linear
space.

Definition 2.1.6. We say that A is densely defined, if Dom(A) lies dense in H .

Note that if A is a linear operator from H to K , then A is also a linear operator from the
Hilbert space Dom(A) to K . Thus if we replace the Hilbert space H with Dom(A), then we
can arrange that A is densely defined. If A is densely defined with respect to H , then we can
approximate any x ∈H by an element in Dom(A). This fact will be key to some of the definitions
later.
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Remark 2.1.7. With these definitions it is easy to see that, ifA,B are linear operators from H into
K , then A + B is defined on Dom(A + B) = Dom(A) ∩ Dom(B). Additionally, if H ,K ,L
are Hilbert spaces and A : H → K , B : K → L are linear operators, then Dom(BA) =
A−1(Dom(B)).

Definition 2.1.8. If H ,K are Hilbert spaces and A,B are linear operators from H into K , we
say B is an extension of A if

1. Dom(A) ⊆ Dom(B),

2. if x ∈ Dom(A) then Ax = Bx.

We write A ⊆ B if B is an extension of A.

We note that if A ∈ B(H ), then Dom(A) = H , and so the only extension of A is A itself.
Therefore the notion of extensions is only relevant for unbounded operators.

We remind ourselves of the definition of a graph. Now that the domain is not necessarily the
whole Hilbert space anymore, we need to refine the definition.

Definition 2.1.9. If A : H → K is a linear operator, the graph of A is defined as

gra(A) := {(x,Ax) ∈H ×K |x ∈ Dom(A)}

Lemma 2.1.10. Let A : H → K be a linear operator. Define the mapping ‖ ·‖gr : Dom(A)→ R
as

‖x‖gr =
√
‖x‖2

H + ‖Ax‖2
K

This mapping is a norm on Dom(A). This norm is called the graph norm

Together with the previous definition, it is easy to see that B ⊆ A if and only if gra(B) ⊆
gra(A).

One of the important theorems about graphs, is the Closed Graph Theorem. For completeness,
we will give the theorem here in the context of a Hilbert space and for a general linear mapping. A
proof of this theorem can be found in any Functional Analysis book, for example [7, p.123].

Theorem 2.1.11. (Closed Graph Theorem) Let H ,K be Hilbert spaces, and T a linear operator
from H into K with Dom(T ) = H . If gra(T ) is closed, then T ∈ B(H ,K )

Definition 2.1.12. An operator A : H → K is called closed if its graph gra(A) is closed in
H ×K . We call A closable if there exists a closed extension of A. We denote by C (H ,K ) the
set of all closed, densely defined operators from H into K . We denote C (H ) = C (H ,H ).

Lemma 2.1.13. [1, Prop X.1.4, p.304] Let H ,K be Hilbert spaces. A linear operator A : H →
K is closable if and only if gra(A) is the graph of a linear operator.

Proof. Let gra(A) be the graph of a linear operator. Then by definition there exists a linear operator
B : H → K with gra(B) = gra(A). Since gra(A) ⊆ gra(A), we have that B is an extension of
A, and thus A is closable.
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Now, let A be a closable operator. In other words, A has a closed extension B : H → K . Let
(0, x) ∈ gra(A). Because gra(A) ⊆ gra(B) and gra(B) is closed, we have (0, x) ∈ gra(B) and
thus x = B(0) = 0. Define

D = {y ∈H |∃z ∈ K : (y, z) ∈ gra(A)}

If x ∈ D and y1, y2 ∈ K such that (x, y2), (x, y2) ∈ gra(A) then (0, y1 − y2) ∈ gra(A). Thus by
the same argument, y1 − y2 = B(0) = 0 and so y1 = y2. So we have for every x ∈ D a unique
y ∈ K such that (x, y) ∈ gra(A). Define T : H → K with Dom(T ) = D as Tx = y where
y is such that (x, y) ∈ gra(A). We only need to show that this operator is a linear operator and
gra(T ) = gra(A). It is easy to check that T is a linear operator, by using the fact that gra(A) is a
linear subspace. By construction we find gra(T ) ⊆ gra(A). On the other hand, if (x, y) ∈ gra(A)
then Tx = y by definition, and so (x, y) = (x, Tx) ∈ gra(T ). So gra(A) = gra(T ), and so gra(A)
is the graph of a linear operator.

Definition 2.1.14. Let A be a closable operator as in Prop. 2.1.13. The operator whose graph is
gra(A) is called the closure of A. It is denoted by A.

2.2 The adjoint of an operator
For bounded operators, we know that the adjoint of an operator is defined as the unique operator
such that 〈Ax, y〉 = 〈x,A∗y〉. For arbitrary linear operators, we cannot use this definition anymore.
It might be that Ax is not defined, or the mapping x 7→ 〈Ax, y〉 is not bounded for certain y ∈H .
The latter was needed in the proof of uniqueness of the vector A∗y, so if it is not bounded anymore,
uniqueness might not occur. Therefore, another definition is needed.

Definition 2.2.1. Let H ,K be Hilbert spaces. If A : H → K is densely defined, define the set:

Dom(A∗) = {y ∈ K |x 7→ 〈Ax, y〉K is a bounded linear functional on Dom(A)}

By 〈·, ·〉K we mean the inner product defined on K .

Remark 2.2.2. In order to introduce the adjoint of an operator, we consider y ∈ Dom(A∗). Then
the mapping f : x 7→ 〈Ax, y〉K is a bounded linear functional on Dom(A). Because Dom(A) lies
dense in H , by Remark 2.1.2 it has a unique extension f̃ that is defined on all of H . Because it is
a bounded linear functional, we can use the Riesz Representation Theorem to conclude that there
exists a unique z ∈ H such that f(x) = 〈x, z〉H for every x ∈ H . Thus we find the equation for
x ∈ Dom(A)

〈Ax, y〉K = 〈x, z〉H (1)

Definition 2.2.3. Let A be a linear operator. For y ∈ Dom(A∗) we define A∗y to be the unique
element z ∈ H determined by Remark 2.2.2. By this definition, we find a linear operator A∗ :
K →H with domain Dom(A∗), where A∗y is defined in such a way that

〈Ax, y〉 = 〈x,A∗y〉 (x ∈ Dom(A)) (2)



2 UNBOUNDED OPERATORS 6

Remark 2.2.4. We observe that this definition is an implicit definition of A∗. It is in general very
hard to find an explicit formula for the domain, or for A∗ itself. In some cases, properties of A will
make an explicit formula possible (self-adjointness for example), but for most cases calculating A∗

is hard to almost impossible.

Proposition 2.2.5. [1, Prop. X.1.6, p.305] Let H ,K be Hilbert spaces, and A : H → K be a
densely defined operator. Then:

1. A∗ is a closed linear operator.

2. A∗ is densely defined if and only if A is closable.

3. if A is closable, then A = (A∗)∗ := A∗∗

Before we prove this lemma, we introduce another lemma to aid us in the proof of the above
lemma.

Lemma 2.2.6. If A : H → K be a densely defined operator, and J : H ×K → K ×H is
defined as J(x, y) = (−y, x), then J is an isometric isomorphism and

gra(A∗) = [J(gra(A))]⊥ (3)

Proof. It should be clear that J is an isometric isomorphism. Thus the only real interesting part of
the lemma is the second part. Remember that the inner product 〈·, ·〉H ×K on H ×K is given by
〈(x,X), (y, Y )〉H ×K = 〈x, y〉H + 〈X, Y 〉K . If x ∈ Dom(A) and x′ ∈ Dom(A∗), we have:

〈(J(x,Ax)), (x′, A∗x′)〉H ×K = 〈(−Ax, x), (x′, A∗x′)〉H ×K = −〈Ax, x′〉H + 〈x,A∗x′〉K = 0

by Equation (1). Therefore gra(A∗) ⊆ [J(Dom(A))]⊥. On the other hand, if (x, y) ∈ [J(gra(A))]⊥,
then for any z ∈ Dom(A) we have 0 = 〈(x, y), J(z, Az)〉H ×K = −〈x,Az〉H + 〈y, z〉K . So
〈Az, x〉 = 〈z, y〉. So by definition we find x ∈ Dom(A∗) and A∗x = y

Proof of Proposition 2.2.5. 1) Since gra(A∗) = [J(Dom(A))]⊥, we have gra(A∗) is a closed set.
Therefore A∗ is a closed operator.

2) First assume Dom(A∗) is dense in K . Then (A∗)∗ = A∗∗ is defined. Then by 1), A∗∗ is
a closed operator. We need to show A ⊆ A∗∗. Let x ∈ Dom(A). Define f : Dom(A∗) → C
by f(y) = 〈A∗y, x〉. We see that |f(y)| = |〈A∗y, x〉| = |〈y, Ax〉| ≤ ‖Ax‖‖y‖ by Remark 2.2.2.
Therefore we see that f is a bounded operator on Dom(A∗), and thus x ∈ Dom(A∗∗). Additionally
we see that for any x ∈ Dom(A), y ∈ Dom(A∗):

〈Ax, y〉K = 〈x,A∗y〉H = 〈A∗∗x, y〉K

So 〈(A− A∗∗)x, y〉 = 0. This is true for any y ∈ Dom(A∗). Since Dom(A∗) lies dense in K , we
must have Ax = A∗∗x for any x ∈ Dom(A). We conclude that A ⊆ A∗∗ and so A is closable.
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On the other hand, let A be a closable operator. Consider x ∈ [Dom(A∗)]⊥. We wish to show
x = 0, because this shows that [Dom(A∗)]⊥ = (0), and so Dom(A∗) lies dense in K . Since
x ∈ (Dom(A∗))⊥ we have that

(x, 0) ∈ (gra(A∗))⊥ =
[
[J(gra(A))]⊥

]⊥
= J(gra(A))

Because J is is an isomorphism on H ×K , we have J(gra(A)) = J(gra(A)). Therefore (x, 0) ∈
J(gra(A)). So there exists a (y, z) ∈ gra(A) such that J(y, z) = (−z, y) = (x, 0). So −z = x and
y = 0. Thus (0,−x) ∈ gra(A). But we know that A is closable, so gra(A) is a graph. So x = 0.
We conclude that A∗ is densely defined.

3) Let A be closable. We know already by 2) that A∗∗ is a closed extension. We only need to
prove that gra(A∗∗) = gra(A). Define J ′ : K ×H → H ×K by J ′(x, y) = (−y, x). Note
that we only switched H and K . By 2), A∗ : K → H is densely defined and so by going
through the same proof as in Lemma 2.2.6 we find gra(A∗∗) = [J ′(gra(A∗))]⊥. But we note that
J ′ ◦ J(x, y) = J ′(−y, x) = −(x, y) for any x ∈ H and y ∈ K . Therefore, J ′ ◦ J = −I . By the
same calculations, J ◦ J ′ = −I . Hence J ′ = −J−1. We know that J is an isometric isomorphism,
thus J−1 = J∗. Therefore we conclude

J ′(graA∗) = J−1(gra(A)) = −J∗(gra(A)) = J∗(gra(A))

Hence we can conclude gra(A∗∗) = [J∗(gra(A∗))]⊥. Therefore

gra(A∗∗) = [J∗(gra(A∗))]⊥ =
[
J∗
(
J(gra(A))⊥

)]⊥
Because J is an isometric isomorphism on H ×K , J∗ = J−1 and J−1 is continuous. Hence

gra(A∗∗) =
[
J−1

(
J(gra(A))⊥

)]⊥
=
[
J−1 ◦ J(gra(A)⊥)

]⊥
= gra(A)⊥⊥ = gra(A)

So A∗∗ = A.

Corollary 2.2.7. [1, Cor. X.1.8, p.305] Let H ,K be Hilbert spaces, and A ∈ C (H ,K ). Then
A∗ ∈ C (K ,H ) and A = A∗∗. Here is C (H ,K ) defined as in Definition 2.1.12.

This corollary looks a lot like the case of bounded operators. Of course, if A is bounded, then
we can define it on all of H , and then we can use the previous corollary to conclude that A∗∗ = A,
which is known for bounded operators.

Corollary 2.2.8. [1, Prop. X.1.13, p.307] If A : H → K is a densely defined linear operator,
then

(ran(A))⊥ = ker(A∗) (4)

If A is also closed, then
(ran(A∗))⊥ = ker(A) (5)

Proof. 1) if x ∈ (ran(A))⊥, then for any y ∈ Dom(A) we have 0 = 〈Ay, x〉. So x ∈ Dom(A∗)
and A∗x = 0. The other inclusion is clear.

2) if A is closed, A ∈ C (H ,K ). Thus by Corollary 2.2.7 we have A∗∗ = A, and we use
Equation (4) to conclude Equation (5).
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2.3 Inverse of an operator and the spectrum
In order to define an inverse of a linear operator, we remember Remark 2.1.7. If A : H → K
is a linear operator, and B : K → H is a bounded linear operator, we see that Dom(AB) =
B−1(Dom(A)) and Dom(BA) = Dom(A) because B is defined on all of K .

Definition 2.3.1. Let H ,K be Hilbert spaces, andA : H → K be a linear operator with domain
Dom(A). We say A is boundedly invertible if there exists a bounded linear operator B : K →H
such that AB = IK and BA ⊆ IH . We call B a (bounded) inverse of A. In light of the following
proposition part 2, we denote B = A−1.

Note that if A is boundedly invertible, then BA ⊆ IK , and therefore is BA bounded on its
domain. Therefore it is possible to extend is, as noted in Remark 2.1.2.

For any bounded operator it was enough to be bijective, in order to have a bounded inverse (by
the Open Mapping Theorem). For any arbitrary operator, we do not have the advantage of having
H as a domain. However, the following proposition ensures that we can find a bounded inverse of
A if A : Dom(A)→ K is bijective, and the graph of A is closed.

Proposition 2.3.2. [1, Prop. X.1.14, p. 307] Let H ,K be Hilbert spaces, and A : H → K be
a linear operator. Then

1. A is bounded invertible if and only if ker(A) = (0), ran(A) = K and the graph of A is
closed.

2. If A is boundedly invertible, its inverse is uniquely defined.

Proof. 1) First let A be boundedly invertible. Let B ∈ B(K ,H ) be an inverse of A. Then
Dom(B) = K . Let x ∈ ker(A). Since BA ⊆ IH , we have 0 = B(0) = BA(x) = IH (x) = x.
So ker(A) = (0). Additionally, if y ∈ K , we see that y = IK (y) = AB(y) = A(B(y)). So
y ∈ ran(A). So ran(A) = K . Also, note

gra(A) = {(x,Ax) ∈H ×K |x ∈ Dom(A)} = {(Bx, x) ∈H ×K |x ∈ K }

Because B is a bounded operator, gra(A) is closed.
Now let ker(A) = (0), ran(A) = K and assume gra(A) is closed. Because of the first two

properties, A is a bijective operator on its domain. Therefore Bx := A−1x is well defined for any
x ∈ K . Because gra(A) is closed, the same holds for gra(B). By The Closed Graph Theorem,
Theorem 2.1.11 we find B ∈ B(K ,H ).

2). Let A be boundedly invertible, and assume B1 and B2 are bounded inverses of A. Thus
AB1 = AB2 = IK and so A(B1 − B2)x = 0 for any x ∈ K . So A(B1x − B2x) = 0, and so
B1x − B2x ∈ ker(A). But because A is boundedly invertible, ker(A) = (0). So B1x − B2x = 0
and so B1x = B2x for any x ∈ K . Therefore B1 = B2.

Definition 2.3.3. Let H be a Hilbert space, and A : H → H be a linear operator. Define the
resolvent set ρ(A) by ρ(A) := {λ ∈ C|A − λI is boundedly invertible}. The spectrum of A is
defined to be the set σ(A) := C \ ρ(A). (Most of the times, we will omit the I , and just write
A− λ). We also define the point spectrum as σp(A) := {λ ∈ σ(A)|A− λ is not injective}.



2 UNBOUNDED OPERATORS 9

This definition is exactly the same as the definition for the spectrum for any bounded operator.
The only subtlety about this definition, lies with the domain of A. It should therefore be no sur-
prise that the following proposition holds for an arbitrary operator. For a proof, see for example
[10, P rop. 2.7, p. 29].

Proposition 2.3.4. Let A : H →H be a linear operator.

1. If λ ∈ C, then gra(A) is closed if and only if gra(A− λ) is closed.

2. If A ∈ C (H ), then σ(A∗) = {λ|λ ∈ σ(A)}. Additionally if λ ∈ ρ(A) we have

[(A− λ)∗]−1 =
[
(A− λ)−1

]∗
2.4 Symmetric, normal and self-adjoint operators
Now that we have defined what the adjoint of an arbitrary linear operator is, we can continue to
define what symmetric operators and self-adjoint operators are. These are the operators we will be
considering most of the times in this thesis.

In linear algebra, a linear transformationM : Rn → Rn is called symmetric whenever 〈Mx, y〉 =
〈x,My〉 for any x, y ∈ Rn. In functional analysis, when we have a bounded operator A : H →
H , we call A self-adjoint whenever 〈Ax, y〉 = 〈x,Ay〉 for all x, y ∈ H . In conclusion, these
two names seem to represent the same operation in some sense. However, for unbounded operators
there is an important difference between symmetric and self-adjoint operators.

Definition 2.4.1. If H is a Hilbert space, and A : H → H a linear operator, then we say A is
symmetric if A is densely defined, and for all x, y ∈ Dom(A) we have:

〈Ax, y〉 = 〈x,Ay〉

Definition 2.4.2. Let H be a Hilbert space. A densely defined operator A : H → H is said to
be self-adjoint if A = A∗.

Remark 2.4.3. We note that Definition 2.4.2 implicitely claims thatA is symmetric, and Dom(A) =
Dom(A∗). So in other words, we cannot define the adjoint on any other vector other than the vec-
tors in Dom(A). For bounded operators, Dom(A) = H , so automatically if A is symmetric, it is
self-adjoint.

However, for unbounded operators these terms are not quite the same. There exist symmetric
operators on L2(R), that are not self-adjoint. See for example [1, p. 306].

Remark 2.4.4. Proposition 2.2.5 tells us that any self-adjoint operator A must have a closed graph.

Proposition 2.4.5. If A : H → H is densely defined, then the following statements are equiva-
lent:

1. A is symmetric.

2. for any x ∈ Dom(A) we have 〈Ax, x〉 ∈ R.
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3. A ⊆ A∗.

Proof. 1) ⇒ 2) : Let A be symmetric. Then for any x, y ∈ Dom(A) we find 〈Ax, y〉 = 〈x,Ay〉.
So especially 〈Ax, x〉 = 〈x,Ax〉 = 〈Ax, x〉 for any x ∈ Dom(A). So 〈Ax, x〉 ∈ R.

2) ⇒ 1) : Let x ∈ Dom(A), and consider 〈Ax, x〉 ∈ R. Then 〈Ax, x〉 = 〈x,Ax〉 = 〈x,Ax〉.
Therefore, let x, y ∈ Dom(A). We find then

〈A(x± y), x± y〉 − 〈A(x∓ y), x∓ y〉 = ±2〈Ax, y〉 ± 2〈Ay, x〉

Therefore it follows that

〈A(x+ y), x+ y〉 − 〈A(x− y), x− y〉+ i〈A(x+ iy), x+ iy〉 − i〈A(x− iy), x− iy〉
= 2〈Ax, y〉+ 2〈Ay, x〉+ i(−i〈Ax, y〉+ i〈Ay, x〉 − i〈Ax, y〉+ i〈Ay, x〉) = 4〈Ax, y〉

Because 〈Az, z〉 = 〈z, Az〉 for any z ∈ Dom(A), we find

〈Ax, y〉 =
1

4
(〈A(x+ y), x+ y〉 − 〈A(x− y), x− y〉

+ i〈A(x+ iy), x+ iy〉 − i〈A(x− iy), x− iy〉)

=
1

4
(〈x+ y, A(x+ y)〉 − 〈x− y, A(x− y)〉

+ i〈x+ iy, A(x+ iy)〉 − i〈x− iy, A(x− iy)〉) = 〈x,Ay〉

Therefore, we see that A is symmetric.
1)⇒ 3) : Let A be symmetric, and consider x ∈ Dom(A). Then for any y ∈ Dom(A) we have

|〈Ay, x〉| = |〈y, Ax〉| ≤ ‖y‖‖Ax‖, so y 7→ 〈Ay, x〉 is bounded, and thus x ∈ Dom(A∗), and we
see A∗x = Ax for any x ∈ Dom(A). So A ⊆ A∗.

3) ⇒ 1) : If A ⊆ A∗, we have A∗x = Ax for x ∈ Dom(A). Hence, for any y ∈ Dom(A) we
see that 〈Ay, x〉 = 〈y, A∗x〉 = 〈y, Ax〉. So A is symmetric.

Lemma 2.4.6. Let A : H →H be a symmetric linear operator. If B is a symmetric extension of
A, then

A ⊆ B ⊆ B∗ ⊆ A∗ (6)

Proof. Let B be a symmetric extension of A. The first inclusion is by definition, and the second by
Proposition 2.4.5. For the third inclusion, consider y ∈ Dom(B∗). We then have 〈Bx, y〉 = 〈Ax, y〉
for any x ∈ Dom(A). Therefore y ∈ Dom(A∗) and we find B∗y = A∗y. So A∗ is an extension of
B∗.

Another type of operator which is important in Operator Theory, is a normal linear operator. For
a bounded operators A, we say A is normal if A∗A = AA∗, so A and A∗ commute. For arbitrary
operators, we have a similar definition, with the subtlety of defining the domains in the proper way.

Definition 2.4.7. Let H be a Hilbert space. A linear operator A on H is normal if A is a closed,
densely defined operator and A∗A = AA∗.
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Remark 2.4.8. Note that the equation A∗A = AA∗ implicitly carries the condition Dom(A∗A) =
Dom(AA∗), where we define Dom(AA∗) as in Remark 2.1.7. It does not say anything about the
domain of A or A∗ itself. Apart from that, it is the same definition as for bounded operators on a
Hilbert space.

Also note, that if A is a self-adjoint operator, then A is a normal operator.

In light of the theorem of Nelson, we need to introduce another definition, which is almost the
same as self-adjointness. In short, we only need to take the closure in order to find an self-adjoint
operator.

Definition 2.4.9. Let H be a Hilbert space. A linear operator A : H → H is called essentially
self-adjoint, if A is closable and its closure A is self-adjoint. In other words A = A

∗
.

For the rest of this chapter, we will have a look at the spectral properties of symmetric operators.
We will need them in order to prove the Spectral Theorem, which will be used in the theorem of
Nelson. A lot of properties of the spectrum for bounded self-adjoint operators still hold, especially
the lemma which states that the spectrum of a self-adjoint operator is a subset of the real line.

Additionally, we will see that there is an interesting way of concluding that a symmetric operator
is self-adjoint. We will use this characterization later on to prove that some operators are self-
adjoint.

Lemma 2.4.10. Let A be a symmetric operator on a Hilbert space H , and let λ ∈ C be given as
λ = α + iβ with α, β ∈ R. Then

1. For every x ∈ Dom(A) we have ‖(A− λ)x‖2 = ‖(A− α)x‖2 + β2‖x‖2

2. If β 6= 0 we have ker(A− λ) = (0)

3. If A is closed and β 6= 0, then ran(A− λ) is closed

Proof. 1): We note that for any x ∈ Dom(A)

‖(A− λ)x‖2 = ‖(A− α)x‖2 + ‖iβx‖2 − 2Re(〈(A− α)x, iβx〉)
= ‖(A− α)x‖2 + β2‖x‖2 + 2Re(i〈(A− α)x, βx〉)
= ‖(A− α)x‖2 + β2‖x‖2 + 2Re(i(β〈Ax, x〉+ αβ〈x, x〉))

Since A is symmetric, 〈Ax, x〉 ∈ R and so part 1) follows.
2): Since ‖(A−λ)x‖2 = ‖(A−α)x‖2+β2‖x‖2 ≥ β2‖x‖2, if β 6= 0, we have ker(A−λ) = (0).
3): Let A be closed and β 6= 0. Take a sequence (yn)n ⊆ ran(A − λ) such that yn → y

as n → ∞. We wish to show y ∈ ran(A − λ). Because yn ∈ ran(A − λ), there exists xn ∈
Dom(A−λ) such that yn = (A−λ)xn. Notice that ‖xn‖ ≤ ‖(A−λ)xn‖ and so (xn)n is a Cauchy
sequence, and thus has a limit in H . Define x := limn→∞ xn. Since (xn, yn) ∈ gra(A − λ),
we have (xn, yn) → (x, y). Because A is a closed operator we have gra(A − λ) is closed. Thus
(x, y) ∈ gra(A− λ). Therefore y ∈ ran(A− λ).

Theorem 2.4.11. [1, Cor. X.2.9, p. 311] If A is a closed, symmetric linear operator on H , then
the following statements are equivalent.
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1. A is self-adjoint

2. σ(A) ⊆ R

3. ker(A∗ − i) = ker(A∗ + i) = 0

Proof. 1) ⇒ 2): Let A be a self-adjoint operator. If x ∈ ker(A − λ) then Ax = λx. Then
λ‖x‖2 = 〈λx, x〉 = 〈Ax, x〉 which is a real number. Therefore λ ∈ R. Let Im(λ) 6= 0. Then
we can conclude ker(A − λ) = ker(A∗ − λ) = (0). So A − λ is injective. It is easy to see that
Dom(A) = Dom(A− λ), so A− λ is densely defined. Additionally (A− λ)∗ = A∗ − λ = A− λ.
Then by Corollary 2.2.8 we find

[ran(A− λ)]⊥ = ker((A− λ)∗) = ker(A− λ) = (0)

Therefore ran(A − λ) is dense. By Lemma 2.4.10, A − λ has closed range, and so A − λ is
surjective. Therefore by Proposition 2.3.2 we have A−λ is boundedly invertible, and so λ ∈ ρ(A).
Therefore σ(A) ⊆ R.

2)⇒ 3): By Corollary 2.2.8, we have ker(A∗ ± i) = [ran(A∓ i)]⊥. Since σ(A) ⊆ R, A± i is
boundedly invertible, and so [ran(A∓ i)]⊥ = H ⊥ = (0). So 3) follows.

3) ⇒ 1): If 3) holds, we have by Corollary 2.2.8 that ran(A + i) is dense, and by Lemma
2.4.10 we have A + i is surjective. So if x ∈ Dom(A∗), there exists y ∈ Dom(A) such that
(A + i)y = (A∗ + i)x. But since A is symmetric, A∗y = Ay and so (A∗ + i)y = (A∗ + i)x and
thus y = x ∈ Dom(A). So A = A∗.

As it seems, the dimension of ker(A± i) seem to play an important role in showing whether A
is self-adjoint or not. It is convenient to give them names, for we will need them again.

Definition 2.4.12. Suppose that A is a closed symmetric operator on a Hilbert space H . Let

L+ := ker(A∗ − i) = [ran(A+ i)]⊥ (7)

L− := ker(A∗ + i) = [ran(A− i)]⊥ (8)

L+ and L− are called the deficiency subspaces of A. The pair of numbers n± := dim(L±) are
called the deficiency indices of A.

Remark 2.4.13. We remark that for an arbitrary linear operator A, it is possible for the deficiency
indices to be any pair of nonnegative integers. It is also possible that n+ or n− (or both) are∞. See
for example [6, p. 138].

Definition 2.4.14. A partial isometry is a linear operatorW on a Hilbert space H with Dom(W ) =
H such that for x ∈ [ker(W )]⊥, ‖Wx‖ = ‖x‖. We define [ker(W )]⊥ the initial space of W , and
ran(W ) is defined as the final space of W .

The following theorem gives a one-to-one correspondence between closed symmetric exten-
sions of a symmetric operator, and partial isometries. We will not prove this theorem. The reader
who is interested in the proof, may read [1, p. 313− 315] or [6, p. 138− 140].
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Theorem 2.4.15. [1, Thm. X.2.17, p. 314] Let A be a closed symmetric operator on a Hilbert
space H . If W is a partial isometry with initial space in L+ and final space L−, define

DW := {x+ y +Wy|x ∈ Dom(A), y ∈ initial(W )}

and define AW on DW by

AW (x+ y +Wy) = Ax+ iy − iWy

Then AW is a closed symmetric extension of A. Conversely, if B is a closed symmetric extension of
A, then there exists a unique partial isometry W such that B = AW with AW defined as above.

The following lemma is just a recap of the results of some of the theorems, but gives an efficient
way of showing whether an operator is self-adjoint or has self-adjoint extensions.

Lemma 2.4.16. Let A be a closed symmetric operator with deficiency indices n±. Then

1. A is self-adjoint if and only if n+ = n− = 0

2. A has a self-adjoint extension if and only if n+ = n−. In this case the set of self-adjoint
extensions is in a natural correspondence with the set of unitary isomorphisms of L+ onto
L−

Proof. The proof of 1) is just a rephrasing of 2.4.11.
For 2), we first note that L± are closed linear subspaces, and thus Hilbert spaces. Additionally

note that n+ = n− means that dim(L+) = dim(L−). We assumed that all of our Hilbert spaces
are separable, so the equality n+ = n− is true if and only if L+ and L− are isomorphic. But saying
that the two are isomorphic, is equivalent to saying there is a partial isometry W with initial space
L+ and final space L−.

3 Spectral theorem for bounded normal operators
If we want to understand the theorem of Nelson, we need to understand what a spectral measure
is. A spectral measure is a function that sends every measurable subset of a set X to a projection
operator in a Hilbert space H . It follows that we can ‘diagonalize’ any unbounded self-adjoint
operator A as an ‘integral’ over the spectrum of A. This is known as the spectral theorem for
unbounded self-adjoint operators. In order to prove the spectral Theorem for unbounded self-
adjoint operators, we need the spectral theorem for bounded normal operators. Thus we will study
this first. Readers already familiar with the Spectral Theorem for bounded operators, may skip
Section 4.

3.1 C∗-algebras and representations
The spectral theorem for bounded normal operators is a corollary of a more general theorem, which
states that there exists an one-to-one correspondence between spectral measures and representations
of certain C∗-algebras. In order to state this more general theorem, we need to know what spectral
measures and representations of C∗-algebras are. In this section, we will shortly introduce C∗-
algebras and representations. We assume K as either one of the fields R or C.
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Definition 3.1.1. An algebra A over K, is a vector space A over K that also has a multiplication
defined on it that makes it into a ring such that if λ ∈ K and x, y ∈ A then λ(xy) = (λx)y = x(λy).

Remark 3.1.2. Note that having an identity element in the algebra is not included in the definition.
It is therefore not needed for any algebra to have an identity.

Definition 3.1.3. We define a Banach algebra as an algebra A over K with a norm ‖ · ‖ such that
A , equipped with this norm, is a Banach space and such that for any x, y ∈ A ,

‖xy‖ ≤ ‖x‖‖y‖

If A has an identity element 1, it is assumed ‖1‖ = 1

Example 3.1.4. Let X be a Banach space, and put A = B(X). If multiplication is defined as
composition, A becomes a Banach algebra with identity. �

Now that we have a notion of an algebra, we can define what a C∗-algebra is. In short, we add
an additional operation on our algebra, that looks a lot like the conjugation operation in C. But
in more general setiings, the conjugation operation is not necessarily abelian. In other words, if
x, y ∈ A we might have (xy)∗ 6= (yx)∗.

Definition 3.1.5. We define an involution on a Banach algebra A as the map x 7→ x∗ of A into A
in such a way that the following properties hold for any x, y ∈ A and λ ∈ K

• (x∗)∗ = x

• (xy)∗ = y∗x∗

• (λx+ y)∗ = λx∗ + y∗

Definition 3.1.6. A C∗-algebra over K is a Banach algebra A over K with an involution such that
for every x ∈ A we have

‖x∗x‖ = ‖x‖2

Example 3.1.7. C is a C∗-algebra, if we consider the conjugation defined on C as the involution.
Also Mn(C), the space of complex-valued n × n matrices, is a C∗-algebra if we consider the
complex conjugate as the involution �

Example 3.1.8. Let H be a Hilbert space. We already know that B(H ) is a Banach algebra. If
we define the involution operation ∗ as A∗= the operator’s adjoint, then this defines an involution,
and so B(H ) is a C∗-algebra. �

In Group Theory, one often encounters homomorphisms and isomorphism. Such mappings
conserve the structure of the group. For algebras, we have a similar notion of homomorphisms and
isomorphisms.

Definition 3.1.9. Let A1,A2 beC∗-algebras over K, and h : A1 → A2. We call h a homomorphism
of aC∗-algebra if h(xy) = h(x)h(y) and h(x+λy) = h(x)+λh(y) for every x, y ∈ A1 and λ ∈ K.
We call h an isomorphism if h is bijective. We call h a ∗-homomorphism if h is a homomorphism,
and in addition h(x∗) = h(x)∗ is true for any x ∈ A1. We call h a ∗-isomorphism if h is an
isomorphism and a ∗-homomorphism.
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Definition 3.1.10. Let A be a C∗-algebra over K. A representation of a C∗-algebra is a pair
(H , π) where H is a Hilbert space and π : A → B(H ) a ∗-homomorphism, where B(H )
is as usual the space of bounded operators on H . If A has an identity, it is assumed π(1) = I ,
the identity operator. Often the mention of H is omitted and say π is a representation of the
C∗-algebra.

3.2 Spectral measures
Next, we wish to define a spectral measure. This will turn out to be a projection operator on a
Hilbert space H which is dependent upon the Borel subsets of C. In this way, it will give a sort of
’weight’ to each Borel subset of C, and therefore we can integrate over this spectral measure. We
will look into all of these items in this section.

Definition 3.2.1. Let H be a Hilbert space. An idempotent on H is a bounded, linear operator
E : H →H such that E2 = E. A projection is an idempotent E such that ker(E) = ran(E)⊥.

Lemma 3.2.2. Let H be a Hilbert space. If E is an idempotent on H , then ker(E) = ran(I −E)
and ker(I − E) = ran(E).

Proof. If x ∈ ker(E) then Ex = 0, and so (I − E)x = x − Ex = x, so x ∈ ran(I − E). On the
other hand if x ∈ ran(I − E) then there exists a y ∈H such that (I − E)y = x. So

(I − E)x = (I − E)2y = (I − 2E + E2)y = (I − E)y = x

Thus x − Ex = x and we conclude x ∈ ker(E). So the first part is proven. The proof for the
second equality goes in a similar way, so we will omit it.

Lemma 3.2.3. [1, Thm. II.3.3, p. 37] Let H be a Hilbert space, E an idempotent on H and
E 6= 0. Then the following statements are equivalent:

1. E is a projection.

2. E is a self-adjoint operator.

3. E is a normal operator.

4. ‖E‖ = 1

5. 〈Ex, x〉 ≥ 0 for any x ∈H .

Proof. 1)⇒ 2) : Assume E to be a projection. Let x, y ∈H . Then x = x1 + x2 and y = y1 + y2

with x1, y1 ∈ ker(E) = (ran(E))⊥ and x2, y2 ∈ (ker(E))⊥ = ran(E). Therefore if x2 ∈ ker(E)⊥,
we can find a sequence (xn)n ⊆H such that Exn → x2 as n→∞. Then we find that

〈Ex, y〉 = 〈Ex2, y〉 = lim
n→∞
〈EExn, y〉 = lim

n→∞
〈Exn, y〉 = lim

n→∞
(〈Exn, y1〉+ 〈Exn, y2〉)

Because y1 ∈ ran(E)⊥, we find that 〈Exn, y1〉 = 0. Therefore we conclude

〈Ex, y〉 = lim
n→∞
〈Exn, y2〉 = 〈x2, y2〉
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We could do the same reasoning for y, and we see that 〈x,Ey〉 = 〈x2, y2〉. So we find 〈Ex, y〉 =
〈x,Ey〉 for x, y ∈H . Therefore, E is self-adjoint.

2)⇒ 3) : There should be no surprises here, it is true by definition.
3)⇒ 1) : Let E be a normal operator. Note that for any x ∈H we have

‖Ex‖2 = 〈Ex,Ex〉 = 〈E∗Ex, x〉 = 〈EE∗x, x〉 = 〈E∗x,E∗x〉 = ‖E∗x‖2

So ker(E) = ker(E∗). By Corollary 2.2.8 we have ker(E∗) = ran(E)⊥, and so E is a projection.
1) ⇒ 4) : If x ∈ H we have ‖Ex‖2 = 〈Ex,Ex〉 = 〈Ex, x〉 ≤ ‖Ex‖‖x‖ because E is

self-adjoint. So ‖Ex‖ ≤ ‖x‖ for x ∈ H . On the other hand, if y ∈ ran(E), then there exists a
z ∈H such that y = Ez. Then

‖Ey‖ = ‖E(Ez)‖ = ‖Ez‖ = ‖y‖

So this concludes that ‖E‖ = 1.
4)⇒ 1) : Let x ∈ (ker(E))⊥. Because ker(E) = ran(I −E), we have x−Ex ∈ ker(E). This

means that 0 = 〈x − Ex, x〉 = ‖x‖2 − 〈Ex, x〉 and thus ‖x‖2 = 〈Ex, x〉 ≤ ‖Ex‖‖x‖ ≤ ‖x‖2.
Therefore the inequality signs must be an equality sign. So we conclude that for any x ∈ (ker(E))⊥

we have ‖Ex‖2 = ‖x‖2 = 〈Ex, x〉. But then we can conclude that

‖x− Ex‖2 = ‖x‖2 + ‖Ex‖2 − 2Re(〈Ex, x〉) = 0

Thus we find x ∈ ker(I − E) = ran(E) and so (ker(E))⊥ ⊆ ran(E).
On the other hand, let y ∈ ran(E). So we can write y = y1 + y2 with y1 ∈ ker(E) and

y2 ∈ (ker(E))⊥. Then y2 ∈ ran(E), and so Ey2 = y2. So y = Ey = Ey2 = y2 and so
y ∈ (ker(E))⊥. So E is a projection.

1)⇒ 5) : Let E be a projection. Then by previous statements E = E∗, and thus is

0 ≤ ‖Ex‖2 = 〈Ex,Ex〉 = 〈E2x, x〉 = 〈Ex, x〉

for any x ∈H . So 〈Ex, x〉 ≥ 0
5) ⇒ 1) : Let x ∈ ran(E) and y ∈ ker(E). Then 0 ≤ 〈E(x + y), x + y〉 = 〈x, x〉 + 〈x, y〉.

Thus −‖x‖2 ≤ 〈x, y〉. Assume there exists x and y such that 〈x, y〉 = λ 6= 0. Then certainly if
z = µy for µ ∈ C \ {0} gives 〈x, z〉 = µ−1〈x, y〉 6= 0. Thus, define µ = −2λ−1‖x‖2, we find
〈x, y〉 = −2λ−1‖x‖2λ = −2‖x‖2, and thus we find ‖x‖2 ≤ −2‖x‖2 which is a contradiction. Thus
〈x, y〉 = 0 for any x ∈ ran(E) and y ∈ ker(E). Hence E is a projection.

For our definition of a spectral measure, we first need to introduce some topologies defined on
B(H ).

Definition 3.2.4. If H is a Hilbert space, we define the weak operator topology (WOT) on B(H )
as the locally convex topology given by the seminorms {px,y|x, y ∈H }where px,y(A) = |〈Ax, y〉|.
The strong operator topology (SOT) is the topology defined on B(H ) by the family of seminorms
{px|x ∈H }, where px(A) = ‖Ax‖.

The next proposition gives some properties of these topologies. Because they do not give a lot
of insight in the problem we are working with, we will omit the proof.
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Proposition 3.2.5. Let H be a Hilbert space, and (Aj)j a sequence in B(H ). Then

1. Aj → A (WOT) if and only if 〈Ajx, y〉 → 〈Ax, y〉 for any x, y ∈H

2. If sup{‖Aj‖} < ∞ and A ⊆ H a subset such that span(A ) = H , then Aj → A (WOT)
if and only if 〈Ajx, y〉 → 〈Ax, y〉 for any x, y ∈ A

3. Aj → A (SOT) if and only if ‖Ajx− Ax‖ → 0 for any x ∈H

4. If sup{‖Aj‖} <∞ and A ⊆H such that span(A ) = H , then Aj → A (SOT) if and only
if ‖Ajx− Ax‖ → 0 for any x ∈ A

5. If H is separable, then the WOT and SOT are metrizable on bounded subsets of B(H )

With all the previous definitions, we can finally define a spectral measure. Remember that a
σ-algebra A of a setX , is a collection of subsets ofX such that ∅ ∈ A , ifA ∈ A thenX\A ∈ A ,
and finally if (Aj)j∈I ⊆ A is a countable sequence of sets, then

⋃
j∈I Aj ∈ A . IfX is a topological

space, then the Borel σ-algebra is defined as the σ-algebra generated by all open subsets of X .

Definition 3.2.6. Let X be a set, A a σ-algebra of X , and H a Hilbert space. We define a spectral
measure for (X,A ,H ) as a function E : A → B(H ) such that:

1. For any set A ∈ A we have E(A) is a projection.

2. E(∅) = 0 and E(X) = I .

3. If A,B ∈ A then E(A ∩B) = E(A)E(B).

4. If (Aj)j is a pairwise disjoint sequence of sets in A , then

E

(
∞⋃
j=1

Aj

)
=
∞∑
j=1

E(Aj)

Remark 3.2.7. We need to say a few things about the last part of the definition. It is not a priori
clear that the sum of part 4 of the definition converges at all. We will show that the sum does
converge with respect to the strong operator. First we note that if A,B are disjoint, we have that
A ∩ B = ∅ and so by part 2 and 3, we see that 0 = E(A)E(B) = E(A ∩ B) = E(B)E(A), and
so the projections have orthogonal ranges. With the following claim we can conclude that part 4 of
the definition is unambiguous, if (E(An))n is a sequence of projections with orthogonal ranges.

Claim 1. For any sequence of projections (Ej)j with pairwise orthogonal ranges, we have that∑n
j=1En → E (SOT) where E is the projection with ran(E) = ⊕j∈Nran(Ej). We write E =∑∞
j=1Ej .
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Proof. Let 0 6= x ∈ H be given. First we show that the sum converges (SOT). We do this by
constructing a orthonormal set, and then use the identity of Parseval. Define

A :=

{
Ejx

‖Ejx‖
| j ∈ N and ‖Ejx‖ 6= 0

}
We claim A is an orthonormal set. For take any y, z ∈ A, then there exists j, k ∈ N such that
〈y, z〉 = 1

‖Ejx‖‖Ekx‖
〈Ejx,Ekx〉. Since Ej is a projection, it is self adjoint. But Ej and Ek have

orthogonal ranges, so 〈Ejx,Ekx〉 = 0. So A is an orthogonal set. It should be clear that any vector
in A has norm 1. Therefore A is an orthonormal system, and thus we can extend A such that it
becomes a orthonormal basis, call it A′. Then by Parseval’s Identity, we see

‖x‖2 =
∑
y∈A′
|〈x, y〉|2 ≥

∑
y∈A

|〈x, y〉|2 =
∑
A

1

‖Ejx‖2
|〈x,Ejx〉|2 =

∞∑
j=1

‖Ejx‖2

by using that Ej is self-adjoint and idempotent. So we see that
∑∞

j=1 ‖Ejx‖2 ≤ ‖x‖2.
We note that ‖

∑n
j=1Ejx‖2 =

∑n
j=1 ‖Ejx‖2 because of the orthogonality of ran(Ej). There-

fore we see that ‖
∑∞

j=1Ejx‖2 =
∑∞

j=1 ‖Ejx‖2 ≤ ‖x‖2 and so the series
∑

j Ej converges (SOT)
to a unique operator. We also proved that

∑∞
j=1 Ej is a bounded operator, and linear. Note that

the range of this operator is ⊕ran(Ej). Also EjEk = EkEj = 0 for any j 6= k, and therefore
we conclude (

∑n
j=1 Ej)

2 =
∑n

j=1 E
2
j =

∑n
j=1Ej , and so

∑∞
j=1Ej is idempotent. Finally, since∑n

j=1Ej is self adjoint, and 〈·, ·〉 is continuous, we have that
∑∞

j=1Ej is self adjoint, and thus a
projection.

Example 3.2.8. Let X be a compact space, A the Borel σ-algebra, and H = L2(X,µ) where µ
is a Borel measure. Then define E : A → B(H ) by E(A) = χA, the characteristic function on
A. Then E is a spectral measure on (X,A , L2(X,µ)). �

Example 3.2.9. Let X be any set, A = P(X): the power set of X , and H is a separable Hilbert
space. Because H is separable, we can find a countable orthonormal basis (ej)j . Fix a sequence
(xn)n in X . For any A ∈ A , define E(A) as the projection upon span{ej|xj ∈ A}. Then E is a
spectral measure. �

Definition 3.2.10. Let X be any set, and A be a σ-algebra on X . If µ is a measure on (X,A ) and
A ∈ A , we define the variation of µ, denoted |µ|, by

|µ|(A) = sup

{
m∑
j=1

|µ(Ej)| | (Ej)mj is a measurable partition of A

}
(9)

We define the total variation of µ as ‖µ‖ = |µ|(X)

The name spectral measure suggests that this operator is some sort of measure. Indeed, the
spectral measure gives rise to a measure, as the following lemma shows.

Lemma 3.2.11. If E is a spectral measure for (X,A ,H ) and x, y ∈H , then

Ex,y(A) := 〈E(A)x, y〉 (10)

defines a (complex-valued) measure on A . Additionally, ‖Ex,y‖ ≤ ‖x‖‖y‖.
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Proof. Of course, Ex,y(∅) = 〈0, y〉 = 0. Next, take a countable sequence (Aj)j∈I ⊆ A of pairwise
disjoint sets. Then we have

Ex,y

(
∞⋃
j=1

Aj

)
=

〈
E

(
∞⋃
j=1

Aj

)
x, y

〉
=

〈
∞∑
j=1

E(Aj)x, y

〉
=
∞∑
j=1

〈E(Aj)x, y〉 =
∞∑
j=1

Ex,y(Aj)

So Ex,y is a measure. Next, if A1, A2, . . . , An are pairwise disjoint sets in A , let aj ∈ C such that
|aj| = 1 and |〈E(Aj)x, y〉| = aj〈E(Aj)x, y〉. Then

n∑
j=1

|Ex,y(Aj)| =
n∑
j=1

aj〈E(Aj)x, y〉 =

〈
n∑
j=1

E(Aj)ajx, y

〉
≤

∥∥∥∥∥
n∑
j=1

E(Aj)ajx

∥∥∥∥∥ ‖y‖
But note that the set {E(Aj)ajx| 1 ≤ j ≤ n} is a finite set of orthogonal vectors, because

(E(Aj)) is a sequence of pairwise orthogonal projections. Thus∥∥∥∥∥∑
j

E(Aj)ajx

∥∥∥∥∥
2

=
∑
j

‖E(Aj)x‖2 =

∥∥∥∥∥∑
j

E(Aj)x

∥∥∥∥∥
2

=

∥∥∥∥∥E(
∞⋃
j=1

Aj)x

∥∥∥∥∥
2

≤ ‖x‖2

Hence
∑

j |Ex,y(Aj)| ≤ ‖x‖‖y‖. So ‖Ex,y‖ ≤ ‖x‖‖y‖.

Now that we know that there exists a measure, we can use the tools of Measure Theory. Espe-
cially, we can integrate functions with respect to this measure. This will help us define the integral
over the spectral measure itself. It turns out that if we integrate a bounded function with respect
to this measure, we can find a bounded linear operator such that the inner product of this bounded
linear operator can be described as the integral over this function. In order to prove this, we need a
lemma.

Definition 3.2.12. If H ,K are Hilbert spaces, a function f : H ×K → K is called a sesquilinear
form if for x, y ∈H , φ, ψ ∈ K and α, β ∈ K,

1. f(αx+ βy, φ) = αf(x, φ) + βf(y, φ)

2. f(x, αφ+ βφ) = αf(x, φ) + βf(x, ψ)

We say f is bounded, if sup‖x‖,‖φ‖≤1{‖f(x, φ)‖} = M <∞. The constant M is called a bound of
f

Lemma 3.2.13. Let H ,K be Hilbert spaces. If f : H ×K → K is a bounded sesquilinear form
with bound M , then there exist unique operators A ∈ B(H ,K ) and B ∈ B(K ,H ) such that

f(x, φ) = 〈Ax, φ〉 = 〈x,Bφ〉

for all x ∈H and φ ∈ K . Additionally ‖A‖, ‖B‖ ≤M .

Proof. We will only prove the existence of A. The existence of A is showed in a similar way.
Let φ ∈ K . Then fφ : H → K, x 7→ f(x, φ) is a bounded linear functional. By the Riesz
Representation Theorem, there exists a unique y ∈ H such that fφ(x) = 〈x, y〉. Define the
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operator B : K → H by Bφ = y. So fφ(x) = 〈x,Bφ〉. By uniqueness of y, we have a well-
defined operator. Additionally, by uniqueness of the Riesz Representation Theorem, B is a linear
operator. Finally, the Riesz Representation Theorem also tells us that ‖fφ‖ = ‖y‖ and thus:

‖B‖ = sup
‖φ‖≤1

‖Bφ‖ = sup
‖φ‖≤1

‖fφ‖ = sup
‖x‖,‖φ‖≤1

‖fφ(x)‖ = M

So B ∈ B(K ,H ) and ‖B‖ ≤M .
Next, assume there is another B2 ∈ B(K ,H ) which has these properties. Then f(x, φ) =

〈x,Bφ〉 = 〈x,B2φ〉, so 〈x, (B − B2)φ〉 = 0. This is true for any x ∈H so (B − B2)φ = 0. This
again is true for any φ ∈ K and so B = B2. So B is unique.

Proposition 3.2.14. If E is a spectral measure for (X,A ,H ) and φ : X → C is a bounded
A -measurable function, then there is a unique operator I(φ) ∈ B(H ) such that if ε > 0 and
{A1, . . . , An} is an A -partition of X with sup{|φ(x) − φ(x′)| |x, x′ ∈ Ak} < ε for 1 ≤ k ≤ n,
then for any xk ∈ Ak we have

‖I(φ)−
n∑
k=1

φ(xk)E(Ak)‖ < ε

Proof. Define B(x, y) =
∫
φ(z)d〈E(z)x, y〉 for x, y ∈ H . By Lemma 3.2.11, we can see that B

is a sesquilinear form with |B(x, y)| ≤ ‖φ‖∞‖x‖‖y‖. Thus by Lemma 3.2.13 there exists a unique
operator I(φ) such that B(x, y) = 〈I(φ)x, y〉.

Next, let {A1, . . . , An} be an A -partition satisfying the requirements. If y, z ∈H and xk ∈ Ak
for 1 ≤ k ≤ n then

|〈I(φ)y, z〉 −
n∑
k=1

φ(xk)〈E(Ak)y, z〉| = |
n∑
k=1

∫
Ak

(φ(x)− φ(xk)) d〈E(x)y, z〉|

≤
n∑
k=1

∫
Ak

|φ(x)− φ(xk)| d|〈E(x)y, z〉|

≤ ε

n∑
k=1

∫
Ak

d|〈E(x)y, z〉| ≤ ε‖y‖‖z‖

This is true for any y, z ∈H , thus we see that ‖I(φ)−
∑n

k=1 φ(xk)E(Ak)‖ < ε.

The operator I(φ) obtained in the previous proposition, is called the integral of φ with respect
to the spectral measure E and is denoted as I(φ) =

∫
X
φdE. The given proof given of Proposition

3.2.14 also implies for y, z ∈H and φ a bounded A -measurable function, that

〈
(∫

X

φdE

)
y, z〉 =

∫
X

φ(x) d〈E(x)y, z〉 =

∫
X

φ(x) dEy,z(x) (11)



3 SPECTRAL THEOREM FOR BOUNDED NORMAL OPERATORS 21

3.3 Spectral measure and representation of bounded measurable functions
Now that we introduced integrating with respect to a spectral measure, we prove that there is a 1-1
corespondence between spectral measures and representations of the set of bounded measurable
functions. And as it turns out, the spectral theorem for bounded, normal operators is a consequence
of this correspondence.

Definition 3.3.1. Let X and Y be two sets, and A , B be two σ-algebras on X , Y respectively.
If f : X → Y is a function, we say f is measurable if f−1(B) ∈ A for every B ∈ B. We call
a function f : X → C A -measurable if f is measurable with respect to the spaces X and C,
equipped with A and the Borel σ-algebra respectively.

Definition 3.3.2. Let A be a σ-algebra defined on some set X . We define B(X,A ) as the set of
bounded A -measurable functions f : X → C.

Remark 3.3.3. If we equip B(X,A ) with the norm ‖f‖∞ = sup{|f(x)| |x ∈ X}, then B(X,A )
becomes a Banach algebra. If we additionally define the mapping f ∗(x) := f(x) then B(X,A )
becomes a C∗-algebra.

Note that the integral with respect to a spectral measure E is a mapping from B(X,A ) into
B(H ). This raises the question whether the integral over a spectral measure is a representation.
And indeed, it is, as we will prove in the following theorem:

Theorem 3.3.4. [1, Prop. IX.1.12, p. 258] If E is a spectral measure for (X,A ,H ) and ρ :
B(X,A ) → B(H ) is defined as ρ(φ) =

∫
φdE, then ρ is a representation of the C∗− algebra

B(X,A ) and ρ(φ) is a bounded normal operator for every φ ∈ B(X,A ).

Proof. First of all, we see that ρ is linear, for let φ, ψ ∈ B(X,A ), then ρ(φ+ψ) =
∫
X

(φ+ψ)dE.
Let λ ∈ C and x, y ∈H . Then

〈
(∫

X

(φ+ λψ)dE

)
x, y〉 =

∫
X

(φ(z) + λψ(z)) d〈E(z)x, y〉

=

∫
X

φ(z)d〈E(z)x, y〉+ λ

∫
X

ψ(z)d〈E(z)x, y〉

= 〈ρ(φ)x, y〉+ 〈λρ(ψ)x, y〉

This is true for all x, y ∈H , and so we can conclude that ρ is linear.
Next, let φ ∈ B(X,A ). Then for x, y ∈H we find

〈ρ(φ)∗x, y〉 = 〈x, ρ(φ)y〉 = 〈ρ(φ)y, x〉 =

∫
X

φ(z)d〈E(z)y, x〉 =

∫
X

φ(z)d〈E(z)x, y〉 = 〈ρ(φ)x, y〉

because E is a self-adjoint operator. This again is true for any x, y ∈H , so ρ(φ)∗ = ρ(φ).
Finally, we need to prove that ρ is multiplicative. Let φ, ψ ∈ B(X,A ). Let ε > 0 and choose

an A -partition {A1, . . . , An} of X such that sup{|f(x) − f(x′)| |x, x′ ∈ Ak} < ε for 1 ≤ k ≤ n
and f = φ, ψ or φψ.

We claim that such a partition always exists. Because φ is bounded, we can find r > 0 such
that φ(X) ⊆ B(0, r) := {z ∈ C| |z| ≤ r}. Consider the collection of sets {B(x, ε) | x ∈ φ(X)}.
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This is an open cover of B(0, r). Because B(0, r) is compact, there exists a finite subcover of this
collection. So there exists finitely many points x1, . . . , xk such that B(0, r) ⊆ ∪kj=1B(xj, ε). By
construction of this cover, it holds that if φ(y1), φ(y2) ∈ B(xj, ε) then |φ(y1)− φ(y2)| < ε. Define
the set

Bj := B(xj, ε) \

(
k⋃

i=1,i 6=j

B(xi, ε)

)
Then we note that Bj is a Borel set, in other words Bj is an element of the Borel σ-algebra.

Additionally, define the sets

Cij = B(xi, ε) ∩B(xj, ε) i 6= j

Then Cij is a Borel set as well, and so we see that the collection

Cφ := {B1, . . . , Bk, C11, . . . C1k, . . . , C(k−1)k}

is a partition of Borel sets of B(0, r). Rename all the sets such that Cφ = {U1, . . . , Um} for some
m ∈ N. Because φ is A -measurable, φ−1(Ui) ∈ A for 1 ≤ i ≤ m. Then for any x, y ∈ φ−1(Ui)
we find |φ(x) − φ(y)| < ε. Also note that the collection Bφ := {φ−1(U1), . . . , φ−1(Um)} is an
A -partition of X . So we found our partition. We can do this for ψ and φψ as well, and choose the
common refinement of the associated partitions Bφ, Bψ and Bφψ.

Hence if x ∈ Ak for 1 ≤ k ≤ n, by Proposition 3.2.14:∥∥∥∥∥
∫
X

f dE −
n∑
j=1

f(xk)E(Ak)

∥∥∥∥∥ < ε

for f = φ, ψ or φψ. Thus, using the triangle inequality, we find:∥∥∥∥∫
X

φψdE −
(∫

X

φdE

)(∫
X

ψdE

)∥∥∥∥ ≤
∥∥∥∥∥
∫
X

φψdE −
n∑
k=1

φ(xk)ψ(xk)E(Ak)

∥∥∥∥∥
+

∥∥∥∥∥
n∑
k=1

φ(xk)ψ(xk)E(Ak)−

(
n∑
i=1

φ(xi)E(Ai)

)(
n∑
j=1

ψ(xj)E(Aj)

)∥∥∥∥∥
+

∥∥∥∥∥
(

n∑
i=1

φ(xi)E(Ai)

)(
n∑
j=1

ψ(xj)E(Aj)

)
−
(∫

X

φ dE

)(∫
X

ψ dE

)∥∥∥∥∥
Note that the first term on the right is smaller than ε. Additionally, E(Ai)E(Aj) = E(Ai ∩Aj) and
{A1, . . . , An} is a partition, so Ai ∩ Aj = ∅. Therefore, the middle term is zero, and we are left
with
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∥∥∥∥∫
X

φψdE −
(∫

X

φ dE

)(∫
X

ψ dE

)∥∥∥∥
< ε+

∥∥∥∥∥
(

n∑
i=1

φ(xi)E(Ai)

)(
n∑
j=1

ψ(xj)E(Aj)

)
−
(∫

X

φ dE

)(∫
X

ψ dE

)∥∥∥∥∥
≤ ε+

∥∥∥∥∥
(

n∑
i=1

φ(xi)E(Ai)

)(
n∑
j=1

ψ(xj)E(Aj)−
∫
X

ψdE

)∥∥∥∥∥
+

∥∥∥∥∥
(

n∑
i=1

φ(xi)E(Ai)−
∫
X

φdE

)(∫
X

ψdE

)∥∥∥∥∥ ≤ ε(1 + ‖φ‖+ ‖ψ‖) ≤ εM

Here M = (1 + ‖φ‖+ ‖ψ‖). Since ε is arbitrary, we find that

ρ(φψ) =

∫
φψdE =

(∫
φdE

)(∫
ψdE

)
= ρ(φ)ρ(ψ)

We conclude that ρ is a representation of B(X,A ). The fact that ρ(φ) is a normal operator imme-
diately follows from earlier computations.

Corollary 3.3.5. If X is a compact Hausdorff space and E is a spectral measure defined on the
Borel subsets of X , then ρ : C(X) → B(H ) defined as ρ(u) =

∫
udE is a representation of the

C∗-algebra C(X).

So if we have a spectral measure and the set of continuous functions on X , we know that
integration with respect to this spectral measure will give us a representation. Is the converse also
true? If we start with a representation of the continuous functions, that this will give us a spectral
measure? The answer is yes, and we will use the rest of this section to prove this theorem. But
before we do this, we need a version of the Riesz Representation Theorem. We will not prove this
version, for it will be a long proof that would not give us any insights in how spectral measures
work.

Definition 3.3.6. Let X be a locally compact space equipped with the Borel σ-algebra A . A
regular Borel measure is a mapping µ : A → C such that:

1. The mapping µ is a complex-valued measure.

2. Let ε > 0 and let A ∈ A . Then there exists a compact set K ⊆ A and an open set U ⊇ A
such that |µ|(U \K) < ε.

We write M(X) for the space of all regular Borel measures on X .

We note that if we equip M(X) with the norm ‖µ‖ = |µ|(X) then M(X) becomes a normed
space.

Theorem 3.3.7. (Variant of the Riesz-Representation Theorem)[1, Thm. C.18, p. 383] Let X be a
locally compact Hausdorff space, and µ ∈M(X). Define Fµ : C0(X)→ C by

Fµ(f) =

∫
f dµ

Then Fµ ∈ C0(X)′ and the mapping µ 7→ Fµ is an isometric isomorphism of M(X) onto C0(X)′.
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In this theorem, C0(X) is the space of continuous functions f : X → C such that f vanishes at
infinty. In other words, the space K = {x ∈ X | |f(x)| ≥ ε} is compact for every ε > 0. We also
note that C ′0(X) is the dual space of C0(X).

Definition 3.3.8. If V is a normed space, we define the weak∗ topology on V ′ as the topology
defined by the seminorms {px|x ∈ V } where

px(x
′) = |x′(x)|

Here V ′ is the dual space of V

Lemma 3.3.9. [1, Prop. V.4.1, p. 131], Prop.V.4.1, pg.131) If V is a normed space, then the unit
ball in V is weak∗ dense in the unit ball in V ′′.

For a proof, we refer to [1, P rop. V.4.1, p. 131]. Finally we can state, and prove, the other
inclusion we already mentioned.

Theorem 3.3.10. [1, Thm. IX.1.14, p. 259] Let X be a compact Hausdorff space. If ρ : C(X) →
B(H ) is a representation, there exists a unique spectral measure E defined on the Borel subsets
of X such that for all x, y ∈H the measure 〈E(·)x, y〉 = Ex,y is a regular measure and

ρ(u) =

∫
u dE (12)

for every u ∈ C(X).

Proof. First we note that X is compact. Therefore C(X) ≡ C0(X). Let x, y ∈ H . Then the
mapping u 7→ 〈ρ(u)x, y〉 is a bounded linear operator on C(X) with norm ≤ ‖x‖‖y‖. Thus by
Theorem 3.3.7, there exists a unique measure µx,y ∈M(X) such that

〈ρ(u)x, y〉 =

∫
X

u dµx,y (13)

for all u ∈ C0(X). Because µx,y is uniquely defined, we see that the mapping (x, y) 7→ µx,y is
a sesquilinear mapping. Also ‖µx,y‖ ≤ ‖x‖‖y‖. Let A be the Borel σ-algebra of X , and let
φ ∈ B(X,A ) be fixed. Define the map [x, y] :=

∫
φ dµx,y. Then [·, ·] is a sesquilinear mapping

and
|[x, y]| ≤ ‖φ‖∞‖µx,y‖ ≤ ‖φ‖∞‖x‖‖y‖

Hence by Lemma 3.2.13 there exists a unique operator A such that [x, y] = 〈Ax, y〉 with ‖A‖ ≤
‖φ‖∞. We write A = ρ̃(φ). Then ρ̃ : B(X,A ) → B(H ) is a well-defined function with
‖ρ̃(φ)‖ ≤ ‖φ‖∞. Thus, by definition of [·, ·] we have for x, y ∈H

〈ρ̃(φ)x, y〉 =

∫
X

φ dµx,y (14)

Next, we want to prove that this ρ̃ is a representation of B(X,A ). First we note that ρ̃|C(X) =
ρ by comparing Equations (13) and (14). Next, it is easy to see that ρ̃ is linear, by Equation
(14). Next, if φ ∈ B(X,A ), we can consider φ ∈ M(X)′(= C ′′(X)), with the correspondence
µ 7→

∫
φ dµ. By Lemma 3.3.9, the set {u ∈ C(X) |‖u‖ ≤ ‖φ‖} lies weak∗ dense in the set
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{L ∈ (M(X))′ |‖L‖ ≤ ‖φ‖}. Thus there exists a sequence (ui)i in C(X) such that ‖ui‖ ≤ ‖φ‖
for all ui and

∫
ui dµ →

∫
φ dµ for every µ ∈ M(X). If ψ ∈ B(X,A ) and µ ∈ M(X) then

ψµ ∈ M(X). So
∫
uiψ dµ →

∫
φψ dµ for any ψ ∈ B(X,A ) and µ ∈ M(X). Thus, by Lemma

3.2.5 we have
∫
uiψ dµ→

∫
φψ dµ (WOT) for all ψ ∈ B(X,A ). In particular, for φ ∈ B(X,A )

and ψ ∈ C(X) we find

ρ̃(φψ) = lim
WOT,j→∞

ρ̃(uiψ) = lim
WOT,j→∞

ρ(uiψ)

= lim
WOT,j→∞

ρ(ui)ρ(ψ) = lim
WOT,j→∞

ρ̃(ui)ρ(ψ) = ρ̃(φ)ρ(ψ)

Hence ρ̃(uiψ) = ρ(ui)ρ̃(ψ) for any ψ ∈ B(X,A ) and ui ∈ C(X). Since ρ̃(ui) → ρ̃(φ) (WOT)
and ρ̃(uiψ)→ ρ̃(φψ) (WOT), it implies

ρ̃(φψ) = ρ̃(φ)ρ̃(ψ)

for φ, ψ ∈ B(X,A ).
To prove that ρ̃(φ)∗ = ρ̃(φ), consider φ ∈ B(X,A ) and let (ui)i be the sequence obtained in

previous paragraph. If µ ∈ M(X) we define the measure µ as µ(A) := µ(A). Because ρ(ui) →
ρ̃(φ) (WOT) we find ρ(ui)

∗ → ρ̃(φ)∗ (WOT). So∫
ui dµ =

∫
ui dµ→

∫
φdµ =

∫
φdµ

is true for any measure µ. Therefore we can conclude that ρ(ui) → ρ̃(φ). We know that ρ is a
representation, so ρ(ui) = ρ(ui)

∗. Hence ρ(ui)
∗ = ρ(ui) → ρ̃(φ). Because the weak operator

topology is Hausdorff, limits are unique. So ρ̃(φ)∗ = ρ̃(φ). So ρ̃ is a representation.
For any Borel subset A of X define the operator E(A) := ρ̃(χA), where χA is the characteristic

function on A. We show that E is a spectral measure. Let A be some Borel subset of X . Then
E(A)2 = ρ̃(χA)ρ̃(χA) = ρ̃(χA) = E(A). So E(A) is a idempotent on H . Additionally, E(A)∗ =
ρ̃(χA)∗ = ρ̃(χA) = E(A), so E(A) is self-adjoint. So by Lemma 3.2.3 E(A) is a projection for A
a Borel subset of X .

Additionally, because χ∅ = 0 and χX = I we have E(∅) = 0 and E(X) = I . Next let A,B be
Borel subsets. Then E(A ∩ B) = ρ̃(χA∩B) = ρ̃(χAχB) = E(A)E(B). And finally, let (Ai)i be a
pairwise disjoint sequence of Borel sets and set Λn =

⋃∞
k=n+1Ak. Because ρ̃ is a representation,

we use induction to see that E is finitely additive. Thus, for x ∈H , we find

∥∥∥∥∥E(
∞⋃
k=1

Ak)x−
n∑
k=1

E(Ak)x

∥∥∥∥∥
2

= 〈E(Λn)x,E(Λn)x〉

= 〈E(Λn)x, x〉
= 〈ρ̃(χΛn)x, x〉

=

∫
χΛn dµx,x

=
∞∑

k=n+1

µx,x(Λn)
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The last sum clearly goes to 0 as n→∞. Therefore, E is a spectral measure.
Now that we have constructed a spectral measure, we need to prove ρ(u) =

∫
u dE. If ρ̃(φ) =∫

φ dE for any φ ∈ B(X,A ), then surely it is true for u ∈ C(X). Fix φ ∈ B(X,A ) and ε > 0.
If {A1, . . . , An} is any Borel partition of X such that sup{|φ(x) − φ(x′)| |x, x′ ∈ Ak} < ε for
1 ≤ k ≤ n. Then we find ‖φ −

∑n
k=1 φ(xk)χAk‖∞ < ε for any choice of x ∈ Ak. Because

‖ρ̃‖ = 1, we have ‖ρ̃(φ) −
∑n

k=1 φ(xk)E(Ak)‖ < ε. We use Proposition 3.2.14 to conclude
ρ̃(φ) =

∫
φ dE for any φ ∈ B(X,A ).

The only thing left, is to show that E is the unique measure such that ρ(u) =
∫
u dE for

φ ∈ C(X). First we proof the uniqueness of E for ρ̃. Assume there exists another spectral measure
F such that ρ̃(φ) =

∫
φ dF . Then

∫
φ dE =

∫
φ dF . Let A be some Borel subset. Then

E(A) =
∫
χA dE =

∫
χA dF = F (A). So E(A) = F (A) for any Borel subset, so E = F .

Now consider any spectral measureG such that ρ(u) =
∫
u dG for u ∈ C(X). Consider a Borel

set A. By previous paragraph, there exists a sequence (ui)i in C(X) such that
∫
ui dµ→

∫
χA dµ

for every µ ∈M(X). So surely for the measures Ex,y and Gx,y for x, y ∈H . This results in

〈E(A)x, y〉 = 〈
(∫

X

χAdE

)
x, y〉 =

∫
X

χA(z) d〈E(z)x, y〉 = lim
i→∞

∫
X

ui(z) d〈E(z)x, y〉

= lim
i→∞

∫
X

ui d〈G(z)x, y〉 =

∫
X

χA d〈G(z)x, y〉 = 〈
(∫

X

χA dG

)
x, y〉 = 〈G(A)x, y〉

This is true for any x, y ∈H and thus E(A) = G(A). So it is uniquely determined.

3.4 The spectral theorem for bounded normal operators
With Theorem 3.3.10 we can give the proof of the spectral theorem in the bounded case. We
consider a specific C∗-algebra with a specific representation and apply the previous theorem, and
we find the spectral theorem.

Before we prove the spectral theorem, we give some theorems regarding C∗-algebras. These
theorems are needed for the proof of the spectral theorem. We will not prove these theorems
however, because they do not give much insight in the proof of the spectral theorem itself.

Definition 3.4.1. If A be a C∗-algebra over K and a ∈ A , we define the C∗-algebra generated by
a as

C∗(a) := {p(a, a∗)|p(z, z) is a polynomial}

Example 3.4.2. Let A be a C∗-algebra, and let a ∈ A a normal element (in other words, aa∗ =
a∗a). Then C∗(a) is an abelian C∗-algebra. For example, if A = B(H ) for some Hilbert space
H , and N ∈ B(H ) is a normal operator, then C∗(N) is an abelian C∗-algebra. �

Definition 3.4.3. Let A be a C∗-algebra over K with identity and a ∈ A . We say a is invertible,
if there exists x, y ∈ A such that xa = 1 = ay.

We also define the spectrum of a, denoted σA (a), as

σA (a) := {λ ∈ K|(a− λ1) is not invertible in A }

Proposition 3.4.4. [1, Prop. VIII.1.4, p. 235] Let A and B be C∗-algebras over K with a common
identity and norm such that B ⊆ A . If a ∈ B then σA (a) = σB(a).
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Theorem 3.4.5. (The Stone-Weierstraß Theorem)[1, Thm. V.8.1, p. 145] If X is compact and A is
a closed subalgebra of C(X) such that

1. Id ∈ A ,

2. If x, y ∈ X and x 6= y, then there is an f ∈ A such that f(x) 6= f(y),

3. If f ∈ A then f ∈ A ,

then A = C(X).

We also need another tool called the functional calculus. In order to introduce the functional
calculus, we introduce the notion of a maximal ideal space.

Definition 3.4.6. Let A be an abelian C∗-algebra over K. Let

Σ = {h : A → C| h is a non-zero homomorphism}

If we equip Σ with the smallest topology such that for every b ∈ A the mapping evb : Σ → C,
h 7→ h(b) is continuous, we call Σ the maximal ideal space.

Maximal ideal spaces have some interesting properties. One of these properties is the following
theorem.

Theorem 3.4.7. [1, Thm. VIII.2.1, p. 236] Let A is a C∗-algebra, and let a ∈ A be a normal
element (so aa∗ = a∗a). Consider C∗(a), and Σ the maximal ideal space of C∗(a). Then the
mapping γ : C∗(a)→ C(Σ) given by x 7→ evx is an isometric ∗-isomorphism.

So we see that C∗(a) is isomorphic to C(Σ). Additionally, the have another theorem which
tells us that we can construct a homeomorphism between Σ and σC∗(a)(a).

Proposition 3.4.8. [1, Prop. VIII.2.3, p. 237] Let A be a C∗-algebra, and let a ∈ A be a normal
element. If B := C∗(a), and Σ the maximal ideal space of C∗(a), then the map eva : Σ→ σB(a)
given by eva(h) = h(a) is a homeomorphism. Additionally, if p(z, z) is a polynomial in z and z
and γ : B → C(Σ) is as in Theorem 3.4.7, then γ(p(a, a∗)) = p ◦ eva.

Now, we note that if eva : Σ→ σA (a) is defined as in Proposition 3.4.8, we can define (eva)
∗ :

C(σA (a))→ C(Σ) by (eva)
∗(f) = f ◦ eva. Then this is an isometric ∗-isomorphism because eva

is a homeomorphism. Therefore, by the last part of previous proposition, γ(p(a, a∗)) = (eva)
∗(p).

Of course, any polynomial is just a function on σ(a), and therefore we can define the mapping
ρ : C(σA (a))→ C∗(a) by ρ = γ−1 ◦ (eva)

∗, such that the following diagram commutes.

C(σA (a)) C(Σ)

C∗(a)

γ

ρ
(eva)∗

Note that if p ∈ C(σC∗(a)(a)) is a polynomial in z and z, then ρ(p(z, z)) = p(a, a∗). In
particular, ρ(z) = a.
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Definition 3.4.9. Let A be a C∗-algebra over K with identity, and let a ∈ A be a normal element.
Define ρ : C(σ(a)→ C∗(a) as in the previous diagram. If f ∈ C(σ(a)) we define

f(a) := ρ(f)

The mapping f 7→ f(a) of C(σA (a))→ A is called the functional calculus for a.

Theorem 3.4.10. [1, Thm. VIII.2.6, p. 238] Let ρ be the functional calculus of a. Then ρ :
C(σC∗(a)(a))→ C∗(a) is an isometric ∗-isomorphism.

Finally, we can state and prove the spectral theorem for bounded, normal operators.

Theorem 3.4.11 (The spectral theorem for bounded, normal operators). [1, Thm IX.2.2, p. 263]
Let H be a Hilbert space, and N ∈ B(H ) be a normal operator. Then there exists a unique
regular spectral measure E on the Borel subsets of σ(N) (here σ(N) is defined as in Definition
2.3.3) such that:

1. N =
∫
σ(N)

z dE(z).

2. If A is a nonempty relatively open subset of σ(N), E(A) 6= 0.

3. If T ∈ B(H ), then TN = NT and TN∗ = N∗T if and only if TE(A) = E(A)T for every
Borel subset A of σ(N).

Proof. 1): We consider the set A = C∗(N), the C∗-algebra generated by N . In other words,
A is the closure of the set of all polynomials in N and N∗. Then, by Theorem 3.4.9 there exists
an isometric ∗-isomorphism ρ : C(σA (N)) → A ⊆ B(H ) ‘given by ρ(u) = u(N). Here
σ(N) = {λ ∈ C|(N − λ)is not invertible in C∗(N)}. So this is a representation of C(σA (N)).
Because I ∈ C∗(N) and I ∈ B(H ), we use Proposition 3.4.4 to conclude that σA (N) = σ(N)
where σ(N) is the spectrum of N as defined in Definition 2.3.3. So ρ : C(σ(N)) → A is a
representation.

Since N is bounded, σ(N) is compact, and so we conclude by Theorem 3.3.10, that there
exists a unique regular spectral measure E defined on the Borel subsets of σ(N) such that ρ(u) =∫
σ(N)

u dE for all u ∈ C(σ(N)). In particular, it holds for u(z) = z. Then

N =

∫
σ(N)

z dE(z)

.
2): Next, let A be some nonempty relatively open subset of σ(N). Then we can find a nonzero

continuous function u on σ(N) such that 0 ≤ u ≤ χA. It follows then that ‖E(A)‖ = ‖ρ̃(χA)‖ ≥
‖ρ̃(u)‖ > 0. The last inequality is because ρ is a ∗-isomorphism. So E(A) 6= 0.

3)⇒: Let T ∈ B(H ) such that TN = NT and TN∗ = N∗T . Consider the set

C := {u ∈ C(σ(N)) |Tρ(u) = ρ(u)T}

Then it easily follows that Tp(N,N∗) = p(N,N∗)T for any polynomial p ∈ C[z, z]. So the
set of polynomials is a subset of C . Because the polynomials are point-separating, we find by
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Theorem 3.4.5 that {p(z, z)} = C(σ(N)). But we just concluded {p(z, z)} ⊆ C , so C(σ(N)) =
{p(z, z)} ⊆ C ⊆ C(σ(N)). Therefore C = C(σ(N)). So we conclude that Tρ(u) = ρ(u)T for
any u ∈ C(σ(N)). In other words Tu(N) = u(N)T .

Define the following set

D := {A ⊆ σ(N)| A is a Borel set and TE(A) = E(A)T}

It follows quite easily from the definition of a spectral measure that A is a σ-algebra.
If G is an open set in σ(N), then there exists a sequence (un)n of positive continuous functions

on σ(N) such that un(z) ↑ χG(z) as n → ∞ pointwise for all z ∈ σ(N). This means that for
x, y ∈H :

〈TE(G)x, y〉 = 〈E(G)x, T ∗y〉 =

∫
σ(N)

χG(z) d〈E(z)x, T ∗y〉

= lim
n→∞

∫
σ(N)

un(z) d〈E(z)x, T ∗y〉

= lim
n→∞
〈un(N)x, T ∗y〉 = lim

n→∞
〈Tun(N)x, y〉 = lim

n→∞
〈un(N)Tx, y〉

= lim
n→∞

∫
σ(N)

un(z) d〈E(z)Tx, y〉 = 〈E(G)Tx, y〉

Here we used the Lebesgue Dominated Convergence Theorem, to move the limit out of the integral.
This is true for any x, y ∈ H , and so G ∈ D . But this means that every open subset is in D , and
thus A is the Borel σ-algebra. Therefore if A is a Borel subset, E(A)T = TE(A).

3) ⇐: Assume that for every Borel subset A of σ(N), we have E(A)T = TE(A). Then we
have 〈E(A)Tx, y〉 = 〈TE(A)x, y〉 = 〈E(A)x, T ∗y〉. In other words we have that

〈NTx, y〉 =

∫
σ(N)

z d〈E(z)Tx, y〉 =

∫
σ(N)

z d〈E(z)x, T ∗y〉 = 〈Nx, T ∗y〉 = 〈TNx, y〉

This is true for any x, y ∈ H , so NT = TN . We can do the same trick to see N∗T = TN∗. This
concludes part 3.

The spectral measure E obtained by the spectral theorem, is called the spectral measure for
N . It is also common to say: Let N =

∫
σ(N)

λ dE(λ) be the spectral decomposition of N . We
indirectly use Theorem 3.4.11 to find this E.

Remark 3.4.12. If we look at Theorem 3.4.11, it seems like this theorem tells us that N can be
‘diagonalized’, in a sense that N is an ‘infinite dimensional matrix’ with the ‘eigenvalues’ on its
diagonal. Intuitively it feels correct, in the finite dimensional case the spectral theorem reduces to
this exact case.

Example 3.4.13. Consider a finite dimensional Hilbert space H , say dim(H ) = n. Let N ∈
B(H ) be a normal operator, so with respect to some orthonormal basis is N some matrix with
complex coefficients such that N∗N = NN∗. Because H is of dimension n, we have that
|σ(N)| ≤ n. Therefore, we can enumerate the eigenvalues of A, say σ(N) = {λ1, λ2, . . . , λk}
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with k := |σ(N)| ≤ n. We can use Theorem 3.4.11 to gain the spectral measure E of N . There-
fore, we find that for any x, y ∈H :

〈Nx, y〉 =

∫
σ(N)

λ d〈E(λ)x, y〉 =
k∑
i=1

λi 〈E({λi})x, y〉 = 〈
k∑
i=1

λiE({λi})x, y〉 (x, y ∈H )

Therefore N =
∑k

i=1 λiE({λi}), with E({λi}) some projection operator.
But what is E({λi}) exactly? We know it is a projection operator. Since N is normal, we

have NN∗ = N∗N , and so by part 3 of Theorem 3.4.11, E({λi})N = NE({λi}). Next, consider
x ∈H . Then

NE({λi})x = E({λi})Nx = E({λi})

(
k∑
j=1

λjE({λj})

)
x = E({λi})λiE({λi})x = λiE({λi})x

because E is a spectral measure. So we see that ran(E({λi})) ⊆ Eλi , where Eλi is the eigenspace
of the eigenvalue λi. On the other hand, if x ∈ Eλi , then Nx = λix. Thus for 1 ≤ j ≤ n

E({λj})Nx = E({λj})

(
k∑
i=1

λiE({λi})

)
x = λjE({λj})x

= λiE({λj})x

So if λj 6= λi, then we must have E({λi})x = 0. If λj = λi, then we see that Nx = λiE({λi})x =
λix, so x ∈ ran(E({λi})). Therefore we see that E(λi) is the projection onto the eigenspace Eλi .

So in short, we see that N is diagonalized into projections onto the eigenspace of each eigen-
vectors. We knew already that this was possible from linear algebra, but it is good to see that the
spectral theorem gives the same result as we would have expect it would give. �

The next theorem and corollary seem innocent, yet are important. We will consider the conse-
quences of this corollary in Section 5.

Theorem 3.4.14 (Theorem of Fuglede). [3, p. 35] Let A,B ∈ B(H ) be two normal operators. If
AB = BA then BA∗ = A∗B.

Corollary 3.4.15. (Corollary of Theorem 3.4.11) LetA,B ∈ B(H ) be two normal operators, and
let EA, EB be the spectral measures for A,B respectively. If AB = BA, then for any two Borel
sets U, V we have EA(U)EB(V ) = EB(V )EA(U).

Proof. Let A,B ∈ B(H ). By previous Theorem, we see that if AB = BA, then A∗B = BA∗

and AB∗ = B∗A. Also A∗B∗ = B∗A∗. Because AB = BA and A∗B = BA∗, we use part 3) of
Theorem 3.4.11 to conclude that for any Borel set U we have EA(U)B = BEA(U). Additionally,
EA(U) is a projection, thus self-adjoint. So

EA(U)B∗ = EA(U)∗B∗ = (BEA(U))∗ = (EA(U)B)∗ = B∗EA(U)∗ = B∗EA(U)

By the same theorem, we see that for any Borel set V , we have EA(U)EB(V ) = EB(V )EA(U).
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4 Spectral Theorem for unbounded self-adjoint operators
We return to general operators. For self-adjoint operators, a similar spectral theorem exists for
unbounded operators. We will prove this in this section. We start with a useful tool to prove the
spectral theorem for self-adjoint operators: the Cayley transform. After that, we will prove the
spectral theorem for unbounded, self-adjoint operators. The reader who is already familiar with
the spectral theorem for self-adjoint operators, can read on to the theorem of Nelson which will be
discussed in Section 5.

4.1 The Cayley transform
To introduce the Cayley transform, we define the function f : R→ C by

f(z) =
z − i
z + i

(15)

It is clear f(0) = −1 and f(1) = −i. In fact, f(R) = S \ {1} where S := {z ∈ C| |z| = 1}.
The inverse of f is given by g : S \ {1} → R

g(z) = i
z + 1

z − 1
(16)

So, if A is a self-adjoint operator we have σ(A) ⊆ R, so f(σ(A)) ⊆ S \ {1}. We know that a
bounded, unitary operator U has the property that σ(U) ⊆ S. So this raises the question, is f(A) a
bounded, unitary operator? The answer is yes, and f(A) is called the Cayley transform.

Theorem 4.1.1 (The Cayley transform). [1, Thm. X.3.1, p. 317]

1. If A is a closed densely defined symmetric operator with deficiency subspaces L±, and if
U : H →H is defined by letting U = 0 on L+ and

U := (A− i)(A+ i)−1 (17)

on L ⊥
+ , then U is a partial isometry with initial space L ⊥

+ , final space L ⊥
− and such that

(I − U)(L ⊥
+ ) is dense in H

2. If U is a partial isometry with initial space M and final space N , and such that (I−U)(M )
is dense in H , then

A := i(I + U)(I − U)−1 (18)

is a densely defined closed symmetric operator with deficiency subspaces L+ = M⊥ and
L ⊥
− = N ⊥.

3. If A is given as in 1) and U is defined by Equation (17), then A and U satisfy Equation (18).
If U is given as in 2) and A is defined by Equation (18), then A and U satisfy Equation (17).
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Proof. 1): Let A as in the theorem. By Lemma 2.4.10 part 3), we have ran(A± i) is closed. Hence
L ⊥
± = ran(A± i). By the same Lemma, we also have ker(A+ i) = (0), and therefore (A+ i)−1 is

well defined on L ⊥
+ . Note that (A + i)−1(L+) ⊆ Dom(A). In this way, the operator in Equation

(17) makes sense and is well-defined. If y ∈ L ⊥
+ , then there exists a unique x ∈ Dom(A) such

that y = (A+ i)x. Then we get, by Lemma 2.4.10:

‖Uy‖2 = ‖(A− i)x‖2 = ‖Ax‖2 + ‖x‖2 = ‖(A+ i)x‖2 = ‖y‖2

Therefore we conclude that U is a partial isometry, with initial space L ⊥
+ and final space

ran(U) = ran(A− i) = L ⊥
−

The only thing we need to show, is that (I − U)(L ⊥
+ ) is dense in H . If y ∈ L ⊥

+ , there exists a
unique x ∈ Dom(A) such that y = (A+ i)x. Hence

(I − U)y = y − (A− i)x = (A+ i)x− (A− i)x = 2ix

So (I − U)(L ⊥
+ ) = Dom(A). Because A is densely defined, (I − U)(L ⊥

+ ) is dense in H .
2): Now assume U is the partial isometry as in the theorem. Let x ∈ ker(I − U), then Ux = x

and so ‖Ux‖ = ‖x‖. Hence x ∈M = (ker(U))⊥. It is easy to see that U∗U is a projection upon
the initial space of U , in this case M . Therefore, we see that

x = U∗Ux = U∗x

Therefore we have x ∈ ker(I − U∗). So we see x ∈ ker(I − U∗) = [ran(I − U)]⊥ ⊆
[(I − U)(M )]⊥ = (0) by assumption. Therefore x = 0 and I − U is injective.

Define D := (I − U)(M ). Then I − U is bijective on D and so (I − U)−1 can be defined on
D . Because I − U is bounded on M , we have gra((I − U)|M ) is closed and so gra((I − U)−1) is
closed. Hence, if we define the linear operator A := i(I + U)(I − U)−1 we find A is closed and
densely defined, with domain D .

To prove that A is symmetric, consider φ, ψ ∈ D . Then there exist x, y ∈ M such that
φ = (I − U)x and ψ = (I − U)y. Hence we find

〈Aφ, ψ〉 = 〈i(I + U)x, (I − U)y〉 = i (〈x, y〉+ 〈Ux, y〉 − 〈x, Uy〉 − 〈Ux, Uy〉)

Next we note that x, y ∈ M , so 〈Ux, Uy〉 = 〈x, y〉. So we find 〈Aφ, ψ〉 = i(〈Ux, y〉 − 〈x, Uy〉).
If we consider 〈φ,Aψ〉 we get

〈φ,Aψ〉 = 〈(I − U)x, i(I + U)y〉 = −i (〈x, y〉 − 〈Ux, y〉+ 〈x, Uy〉 − 〈Ux, Uy〉) = 〈Aφ, ψ〉

So A is symmetric.
Finally, we need to prove that L+ = M⊥ and L− = N ⊥. It is sufficient to show M =

ran(A + i) and N = ran(A − i) because A is closed and symmetric. Consider x ∈ M , and
define y = (I − U)x. Then (A + i)y = Ay + iy = i(I + U)x + i(I − U)x = 2ix. Therefore
x ∈ ran(A + i). On the other hand if φ ∈ ran(A + i), then there exists ψ ∈ D such that
φ = (A + i)ψ. Since ψ ∈ D there exists a ϕ ∈ M such that ψ = (I − U)ϕ. This results in
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φ = Aψ + iψ = i(I + U)ϕ+ i(I − U)ϕ = 2iϕ. So φ ∈M . Thus M = ran(A+ i) By changing
the plus into a minus at A+ i, we see that ran(A− i) = ran(U) = N .

3): If A is given as in 1) and U as in Equation (17). Let y ∈ (I − U)(L ⊥
+ ). It is equivalent

to say that there exists x ∈ L ⊥
+ such that y = (I − U)x. Because x ∈ L ⊥

+ = ran(A + i) it is
equivalent to say that there exists z ∈ Dom(A) such that x = (A+ i)z. Therefore, we find

y = x− Ux = (A+ i)z − (A− i)z = 2iz

Hence z = 1
2i
y. Therefore Dom(A) = Dom(i(I + U)(I − U)−1). Next we see that

i(I + U)(I − U)−1y = i(I + U)x = ix+ iUx

= i(A+ i)z + i(A− i)z = 2iAz = Ay

So A = i(I + U)(I − U)−1.
Now assume U is given as in 2) and A as in Equation (18). If φ ∈ ran(A + i) there exists a

ψ ∈ Dom(A) such that φ = (A + i)ψ. Since Dom(A) = (I − U)(M ), it is equivalent to say that
there exists ϕ ∈M such that ψ = (I − U)ϕ. Therefore

φ = (A+ i)ψ = Aψ + iψ = i(I + U)ϕ+ i(I − U)ϕ = 2iϕ

Thus we see φ = 2iϕ. So we find for φ ∈ ran(A+ i):

(A− i)(A+ i)−1φ = (A+ i)ψ = Aψ + iψ = (i(I + U)ϕ) + i(I − U)ϕ = 2iUϕ = Uφ

Hence U = (A− i)(A+ i)−1.

Definition 4.1.2. IfA is a densely defined closed symmetric operator, the partial isometryU defined
in Theorem 4.1.1 is called the Cayley transform of A.

Corollary 4.1.3. If A is a self-adjoint operator and U is its Cayley transform, then U is a unitary
operator with ker(I − U) = (0) and (I − U)(H ) lies dense in H . Conversely, if U is a unitary
operator such that 1 /∈ σp(U) and (I − U)(H ) lies dense in H , then the operator A defined by
Theorem 4.1.1 is self-adjoint.

Proof. Note that A is self-adjoint if and only if L± = 0. A partial isometry is a unitary operator
if and only if its initial space and its final space are H . Therefore if A is self-adjoint, then U is a
unitary operator such that (I − U)(H ) lies dense in H . By the first part of the proof of part 2) of
Theorem 4.1.1 we find that ker(I − U) = (0).

If U is a unitary operator such that ker(I − U) = (0) and (I − U)(H ) lies dense, we can
immediately use the second part of Theorem 4.1.1 to conclude the second part.

4.2 The spectral theorem for unbounded self-adjoint operators
The main goal of this section, is to give the spectral theorem for self-adjoint operators. In short, we
know that if A is a self-adjoint operator, and therefore we can transform it to a bounded, unitary
operator U by the Cayley transform. Since U is a bounded, normal operator, we know that there
exists a unique spectral measure EU such that U =

∫
λ dEU(λ). Then we transform back to find

the unique spectral measure for A.
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But before we give the spectral theorem for self-adjoint operators, we wish to know how to
integrate any measurable function with respect to a spectral measure. The reason why we wish to
know this, is that the function f : σ(A)→ C given by f(z) = z may not be bounded anymore, and
so Proposition 3.2.14 does not hold anymore.

Proposition 4.2.1. [4, Prop. 10.1, p. 202] Let E be a spectral measure for (X,A ,H ) and let
f : X → C be an A -measurable function (so not necessarily bounded). Define the subspace
Wf ⊂H by

Wf :=

{
x ∈H |

∫
X

|f(λ)|2d〈E(λ)x, x〉 <∞
}

(19)

Then there exists a unique (not necessarily bounded) operator A on H with domain Wf , with the
property that

〈Ax, x〉 =

∫
X

f(λ) d〈E(λ)x, x〉 (20)

for all x ∈ Wf . This unique operator will be denoted as
∫
X
f dE and has domain Wf . Sometimes

we will write Wf = Dom(
∫
X
f dE). This operator also satisfies the following equation for all

x ∈ Wf ∥∥∥∥(∫
X

f dE

)
x

∥∥∥∥2

=

∫
X

|f |2(λ) d〈E(λ)x, x〉 (21)

Remark 4.2.2. It should be noted that if f is a bounded function, Wf = H and this coincides with
our definition of

∫
f dE and so the only case we need to consider is when f is not bounded.

In order to prove Proposition 4.2.1, we consider another proposition. After this proposition is
proved, the previous Proposition immediately follows.

Proposition 4.2.3. [4, Prop. 10.2, p. 203] LetE be a spectral measure on (X,A ,H ), f : X → C
be an A -measurable function and Wf as in Equation 19. Then

1. The space Wf is a dense linear subspace of H , and the mapping Qf : Wf → C given by

Qf (x) =

∫
X

f(λ) d〈E(λ)x, x〉

is a mapping such that Qf (λx) = |λ|2Qf (x) for x ∈ Wf and λ ∈ C, and such that the
mapping Lf : Wf ×Wf → C defined by

Lf (y, x) :=
1

2
(Qf (x+ y)−Qf (x)−Qf (y)) +

i

2
(Q(x+ iy)−Q(x)−Q(iy))

is a sesquilinear form.

2. If x, y ∈ Wf we have

|Lf (x, y)| ≤ ‖y‖

√∫
X

|f(λ)|2 d〈E(λ)x, x〉 (22)
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3. For each x ∈ Wf there is a unique z ∈ H such that Lf (y, x) = 〈y, z〉 for all y ∈ Wf .
Additionally, the mapping x 7→ z is linear and for all y ∈ Wf we have

‖z‖2 =

∫
X

|f(λ)|2 d〈E(λ)x, x〉

Proof. 1): We note that if f is a bounded measurable function, then Wf = H because of Theorem
3.3.4 and therefore

∫
f dE is a bounded operator. Then the rest of part 1) is automatically true.

Next let f be unbounded. First we prove thatWf is a dense linear subspace of H . It is clear that
if x ∈ Wf , then for µ ∈ C we find

∫
X
|f(λ)|2 d〈E(λ)µx, µx〉 = |µ|2

∫
X
|f(λ)|2 d〈E(λ)x, x〉 <∞.

So µx ∈ Wf . Next, if x, y ∈ Wf then we get that, since for any set A ∈ A we have E(A) is a
projection. So we find

〈E(A)(x+ y), x+ y〉 = ‖E(A)(x+ y)‖2 ≤ (‖E(A)x‖+ ‖E(A)y‖)2

≤ 2(‖E(A)x‖2 + ‖E(A)y‖2) = 2〈E(A)x, x〉+ 2〈E(A)y, y〉

So the measure 〈E(·)(x + y), (x + y)〉 can be bounded by the other two measures. Therefore we
see∫

X

|f(λ)|2 d〈E(λ)(x+ y), x+ y〉 ≤ 2

∫
X

|f(λ)|2 d〈E(λ)x, x〉+ 2

∫
X

|f(λ)|2 d〈E(λ)y, y〉

So x+ y ∈ Wf , and so Wf is a linear subspace of H .
Next we prove that Wf lies dense in H . Consider the sets An = {x ∈ X| |f(x)| ≤ n}. Then

if x ∈ ran(E(An)) there exists y ∈ H such that x = E(An)y. It follows then that 0 = E(∅)y =
E((X \ An) ∩ An)y = E(X \ An)x and thus is 〈E(X \ An)x, x〉 = 0. Therefore we find∫

X

|f(z)|2 d〈E(z)x, x〉 =

∫
An

|f(z)|2 d〈E(z)x, x〉 ≤ n2〈E(An)x, x〉 <∞ (23)

So x ∈ Wf . Thus ran(E(An)) ⊆ Wf . Because ∪n∈NAn = X , we see that the union of the ranges
of E(An) are dense in H , and for each An the range is contained in Wf . So Wf lies dense in H .

Define the function fn := χAnf where χAn is the characteristic function on An. Then fn is
a bounded function on X , and fn+1 ≥ fn. Therefore, using Lebesgue dominated convergence
theorem

lim
n→∞

∫
X

|fn(z)|2 d〈E(z)x, x〉 =

∫
X

lim
n→∞

|fn(z)|2 d〈E(z)x, x〉 =

∫
X

|f(z)|2 d〈E(z)x, x〉

or in other words limn→∞Qfn(x) = Qf (x). Therefore

Qf (λx) = lim
n→∞

Qfn(λx) = |λ|2 lim
n→∞

Qfn(x) = |λ|2Qf (x)

The other part of 1) is analogous.
2): First, let f be bounded. Then we know for x, y ∈ H that Lf (y, x) = 〈y,

(∫
X
f(λ) dE

)
x〉

and thus

|Lf (x, y)| ≤ ‖y‖
∥∥∥∥(∫

X

f(λ) dE(λ)

)
x

∥∥∥∥ = ‖y‖ ·

√∫
X

|f(λ)|2 d〈E(λ)x, x〉
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Next, let f be unbounded and x, y ∈ Wf . We note that Lf (y, x) = limn→∞ Lfn(y, x) because
Qf (z) = limn→∞Qfn(z) for all z ∈ Wf . Therefore we see, again using Lebesgue dominated
convergence theorem:

|Lf (y, x)| = lim
n→∞

|Lfn(y, x)| = lim
n→∞

∣∣∣∣〈y,(∫
X

fn dE

)
x

〉∣∣∣∣ ≤ lim
n→∞

∥∥∥∥(∫
X

fn(λ) dE(λ)

)
x

∥∥∥∥ ‖y‖
= lim

n→∞
‖y‖ ·

√∫
X

|fn(λ)|2 d〈E(λ)x, x〉

= ‖y‖

√∫
X

|f(λ)|2 d〈E(λ)x, x〉

For the last inequality sign is because of Equation (23) and continuity of the square root. So we
see that part 2 is also true.

3): First, let f be bounded. Then we already found a unique operator which does exactly this,
see Proposition 3.2.14. Therefore the only interesting part is f unbounded. Because Equation 22
is true for any x ∈ Wf , we conclude that if we consider x ∈ Wf to be fixed, we have that the
mapping Lx : y 7→ L(y, x) is bounded and linear. By Remark 2.1.2, we can extend this operator
to a bounded operator L̃x(y) such that L̃x(y) = L(y, x) for y ∈ Wf . Because L̃x is a bounded
functional, we find by the Riesz Representation Theorem that there exists a unique z ∈ H such
that L̃x = 〈·, z〉. If y ∈ Wf we find:

L(y, x) = L̃x(y) = 〈y, z〉

We note that fn is bounded, so
∫
X
fn dE is a bounded operator. Therefore we find for n,m ∈ N:∥∥∥∥∫

X

fn dEx−
∫
X

fm dEx

∥∥∥∥2

=

∥∥∥∥∫
X

fn − fm dEx

∥∥∥∥
=

∫
X

|fn(z)− fm(z)| d〈E(z)x, x〉

Because
∫
X
|f(z)|2 d〈E(z)x, x〉 <∞ we get by Lebesgue dominated theorem

lim
n→∞

∫
X

|fn(z)|2 d〈E(z)x, x〉 =

∫
X

|f(z)| d〈E(z)x, x〉

and so (
∫
X
fn dEx)n is a Cauchy sequence. Therefore the series converges. Define the vector

ξ := limn→∞
∫
X
fn dEx. W find then

〈y, ξ〉 = lim
n→∞
〈y,
∫
X

fn dEx〉 = lim
n→∞

Lfn(y, x) = Lf (y, x) = 〈y, z〉

Because y ∈ Wf , and Wf lies dense in H , we find that z = limn→∞
∫
X
fn dEx. Then we find

‖z‖2 = lim
n→∞

‖
∫
X

fn dEx‖2 = lim
n→∞

∫
X

|fn(z)|2 d〈E(z)x, x〉

=

∫
X

|f(z)| d〈E(z)x, x〉

Therefore ‖z‖2 =
∫
X
|f(z)| d〈E(z)x, x〉.
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By construction, we see that we get the same result as for the bounded case, only with a domain
we need to take into account. For if f : X → C and x ∈ Wf and y ∈H , we find〈(∫

X

f dE

)
x, y

〉
=

∫
X

f(z) d 〈E(z)x, y〉

Theorem 4.2.4. [4, Thm. 10.30, p. 223] Let g as in Equation 16. If A is a self-adjoint operator on
H , and U is its Cayley transform, define for the set U ⊆ σ(A) the operator

EA(U) := EU(g−1(U))

Then EA is a spectral measure and

A =

∫
σ(A)

λ dEA

Here EU is the spectral measure of the bounded operator U .

Proof. Define for any Borel set B of σ(A) the mapping EA(B) := EU(g−1(B)). We must show
that this is indeed a spectral measure. Let B be a Borel set of σ(A). Observe g : S \ {1} → R is
a homeomorphism. Hence, g preserves the Borel sets. Therefore, g is a measurable function and
g−1(B) is a Borel set of σ(U). Therefore EA(B) is a spectral measure, because EU(g−1(B)) is a
spectral measure.

For any x ∈ Dom(A) and y ∈H , let BA be a Borel set in σ(A) and BU be a Borel set in σ(U).
Then define the measures

EA
x,y(BA) := 〈EA(BA)x, y〉 = 〈EU(g−1(BA))x, y〉 EU

x,y(BU) := 〈EU(BU)x, y〉

We see that EA
x,y(BA) = EU

x,y(g
−1(BA)). By the abstract change of coordinates, we find for any

measurable function u : σ(A)→ C∫
σ(A)

u dEA
x,y =

∫
σ(U)

u ◦ g dEU
x,y (24)

For a proof of the abstract change of coordinates, we refer to [8, p. 154]. We know that

〈Ax, y〉 = 〈g(U)x, y〉 =

∫
σ(U)

g(λ) dEU
x,y(λ) =

∫
σ(U)

(Id ◦ g)(λ) dEU
x,y(λ)

and so using Equation (24) we find that

〈Ax, y〉 =

∫
σ(A)

λ dEA
x,y(λ) =

∫
σ(A)

λ d〈EA(λ)x, y〉 = 〈
(∫

σ(A)

λ dEA(λ)

)
x, y〉

This again is true for any y ∈H , and so we find

Ax =

(∫
σ(A)

λ dEA(λ)

)
x (x ∈ Dom(A)) (25)

Thus the equality holds.
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Theorem 4.2.5 (The spectral theorem for unbounded self-adjoint operators). ([4, Thm. 10.4, p.
205] Let A be a self-adjoint operator on H . Then there exists a unique spectral measure EA on
the Borel subsets of σ(A) such that:

1. A =
∫
σ(A)

λ dEA(λ)

2. If B is a Borel set of R, and B ∩ σ(A) = ∅ then EA(B) = ∅. Additionally if B is an open
subset of R and B ∩ σ(A) 6= ∅ then EA(B) 6= 0

3. Let T ∈ B(H ). If TA ⊆ AT then T (
∫
φ dEA) ⊆ (

∫
φ dEA)T for any Borel measurable

function φ.

Proof. 1): By Theorem 4.2.4 we found a measure such that A =
∫
λ dEA(λ). The only thing

we need to prove, is uniqueness. Let EA be the spectral measure found in Theorem 4.2.4 and EU
the spectral measure of the Cayley transform of A, denoted U . Let P be another spectral measure
such that A =

∫
σ(A)

λ dP (λ). Then we define PU(B) := P (f−1(B)) for B a Borel set in S \ {1},
where f is defined as in Equation (15). Then by the same argument as in previous theorem, PU is
a spectral measure on S \ {1}. Also, we see that

U = f(A) =

∫
σ(A)

f(λ) dP (λ)

Let x, y ∈H , BA a Borel set of σ(A) and BU a Borel set of σ(U). Define the following measures

PA
x,y(BA) = 〈P (BA)x, y〉 PU

x,y(BU) = 〈PU(BU)x, y〉 = 〈P (f−1(BU))x, y〉

We note again that PU
x,y(BU) = PA

x,y(f
−1(BU)), and so again, we find for any measurable function

u : σ(U)→ C: ∫
σ(U)

u(λ) dPU
x,y =

∫
σ(A)

u ◦ f dPA
x,y (26)

And so, by the same reasoning as in Theorem 4.2.4, we conclude that U =
∫
σ(U)

z dPU(z). But
we know, by Theorem 3.4.11, that there exists a unique spectral measure such that U =

∫
z dEU .

Therefore PU = EU . Transforming back gives us that EA = P . So EA is the unique spectral
measure.

2): LetB be a Borel set of R such thatB∩σ(A) = ∅. Then g−1(B)∩σ(U) = g−1(B∩σ(A)) =
g−1(∅) = ∅. Therefore we can conclude

EA(B) = EU(g−1(B)) = EU(g−1(σ(U) ∩B)) = EU(∅) = 0

On the other hand, if B is open and B ∩ σ(A) 6= ∅, then g−1(B) is open and g−1(B) ∩ σ(U) 6= ∅.
Therefore EA(B) = EU(g−1(B)) 6= 0 by Theorem 3.4.11.

3) Let T ∈ B(H ). If TA ⊆ AT then TA = AT on Dom(A). Therefore we have (A± i)T =
T (A±i) on Dom(A). Thus we can conclude (A+i)−1T = T (A+i)−1, and thus we have TU = UT
where U is given by Equation (17). Because U∗ = U−1 = (A + i)(A − i)−1, we also conclude
TU∗ = U∗T by the same argument. By Theorem 3.4.11 we have EU(B)T = TEU(B) for any
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Borel subset of σ(U). Thus EA(C)T = TEA(C) for any Borel subset C of σ(A), by construction
of EA. Therefore we get, for any x, y ∈H :

〈EA(C)Tx, y〉 = 〈TEA(C)x, y〉 = 〈EA(C)x, T ∗y〉

Consider any measurable function φ : σ(A) → C, and define the operator Zφ :=
∫
φ dEA.

This operator is well defined by Proposition 4.2.1 with domain Wφ. Therefore consider x ∈ Wφ

and y ∈H . We find

〈ZφTx, y〉 =

∫
σ(A)

φ(z) d〈EA(z)Tx, y〉

=

∫
σ(A)

φ(z) d〈EA(z)x, T ∗y〉 = 〈Zφx, T ∗y〉 = 〈TZφx, y〉

This is true for any y ∈ H , and therefore we find ZφTx = TZφx for x ∈ Wf . We conclude that
T (
∫
φ dEA) ⊆ (

∫
φ dEA)T .

If we combine the spectral theorem and Theorem 4.2.1, we find that we can integrate any
measurable function over the spectral measure of A. Therefore, if φ : σ(A) → C is a measurable
function, and A is a self-adjoint operator with spectral measure EA, we define

φ(A) :=

∫
σ(A)

φ(λ) dEA(λ) (27)

In fact, the mapping φ 7→
∫
φ dEA has a lot of properties we already know for the bounded variant.

The following lemma sums them up. Because the proof is just some computations, and would not
give a lot of insight, we omit the proof. For a proof, see for example [10, p. 78].

Lemma 4.2.6. [1, Thm. 4.10, p. 323] If (X,A ) is a measurable space, H a Hilbert space, and E
is a spectral measure for (X,A ,H ), let Φ(X,A ) be the algebra of all A -measurable functions
φ : X → C. Then for φ, ψ ∈ Φ(X,A ):

1. the operator
∫
X
φ dE is closed,

2.
(∫

X
φ dE

)∗
=
∫
X
φ dE,

3.
(∫

X
φ dE

) (∫
ψ dE

)
⊆
∫
X
φψ dE and Dom(

(∫
X
φ dE

) (∫
ψ dE

)
) = Wφ ∩ Wψ with

Wφ,Wψ as in Equation 19,

4. If ψ is bounded,
(∫

X
φ dE

) (∫
X
ψ dE

)
=
(∫

X
ψ dE

) (∫
X
φ dE

)
=
∫
X
φψ dE,

5.
(∫

X
φ dE

)∗ (∫
X
φ dE

)
=
∫
X
|φ|2 dE.
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5 Theorem of Nelson

5.1 The theorem of Nelson
Now we have the tools to start working on the theorem of Nelson. The theorem of Nelson is es-
pecially interesting, because it tells us that if two self-adjoint operators A and B commute on a
special dense linear subset, and when some operator is essentially self-adjoint, then for any mea-
surable functions f and g we have f(A) and g(B) also commute. In Nelson’s paper, Nelson was
inspired by analytic vectors and Lie-theory to prove this theorem [5, Cor. 9.2, p. 603]. We will
however prove it by using elementary analysis. But first we need a definition of commuting.

Definition 5.1.1. LetA,B be two linear operators on a Hilbert space H . We sayA andB commute
if ABx = BAx for every x ∈ Dom(AB) ∩ Dom(BA). If A and B are self-adjoint, we say A and
B commute strongly if the spectral measures EA and EB, of A and B respectively, commute.

It appears commutation of the spectral measures seem to imply something, for the term strongly
commuting suggests that this form of commutation is stronger than normal commutation. And
in fact, if the spectral measures commute, then all possible operators created by integrating two
measurable functions with respect to these measures also commute. The following proposition and
its proof are my own work and have not been taken from the literature.

Proposition 5.1.2. Let (X,A ) and (Y,B) be two measurable spaces, and H a Hilbert space. Let
EX be a spectral measure for (X,A ,H ) and EY a spectral measure for (Y,B,H ).

If EX(U) and EY (V ) commute for any U ∈ A and V ∈ B, then for any A -measurable
function f : X → C and any B-measurable function g : Y → C we have(∫

X

f dEX

)(∫
Y

g dEY

)
x =

(∫
Y

g dEY

)(∫
X

f dEX

)
x

for any x ∈ Dom(
∫
X
f dEX

∫
Y
g dEY ) ∩ Dom(

∫
Y
g dEY

∫
X
f dEX). In other words,

∫
X
f dEX

and
∫
Y
g dEY commute.

Proof. We start with a claim.

Claim 1.
∫
Y
g dEY commutes with EX(U) for any U ∈ A on Dom(

∫
Y
g dEY ).

Proof. Take x ∈ Dom(
∫
Y
g dEY ). Then we find that for any V ∈ B and y ∈H :

〈EY (V )EX(U)x, y〉 = 〈EX(U)EY (V )x, y〉 = 〈EY (V )x,EX(U)y〉

Therefore we immediately find that

〈EX(U)

(∫
Y

g dEY

)
x, y〉 = 〈

(∫
Y

g dEY

)
x,EX(U)y〉

=

∫
Y

g(z) d〈EY (z)x,EX(U)y〉

=

∫
Y

g d〈EY (z)EX(U)x, y〉

= 〈
(∫

Y

g dEY

)
EX(U)x, y〉
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Since this is true for any y ∈ H , we have that
(∫

Y
g dEY

)
EX(U) = EX(U)

(∫
Y
g dEY

)
on

Dom(
∫
Y
g dEY ).

Next, we want to do this for f and g. We work in a similar way as in the previous claim. Let
x ∈ Dom(

∫
X
f dEX

∫
Y
g dEY ) ∩ Dom(

∫
Y
g dEY

∫
X
f dEX), and y ∈ Dom((

∫
g dEY )∗). Then

for any U ∈ B we find the equation〈
EX(U)

(∫
Y

g dEY

)
x, y

〉
=

〈(∫
Y

g dEY

)
EX(U)x, y

〉
=

〈
EX(U)x,

(∫
Y

g dEY

)∗
y

〉
And so we find that the following holds

〈(∫
X

f dEX

)(∫
Y

g dEY

)
x, y

〉
=

∫
X

f(z) d

〈
EX(z)

(∫
Y

g dEY

)
x, y

〉
=

∫
X

f d

〈
EX(z)x,

(∫
Y

g dEY

)∗
y

〉
=

〈(∫
X

f dEX

)
x,

(∫
Y

g dEY

)∗
y

〉
=

〈(∫
Y

g dEY

)(∫
X

f dEX

)
x, y

〉

This is only true for any y ∈ Dom((
∫
Y
g dEY )∗). Because EY is a spectral measure, by Lemma

4.2.6 we have that (
∫
Y
g dEY )∗ =

∫
Y
g dEY . By Proposition 4.2.3 we find that the domain of∫

Y
g dEY lies dense in H .
So let y ∈ H . Then there exists a sequence (yn)n ⊆ Dom(

∫
Y
g dEY ) such that yn → y.

Because the inner product is continuous, we find:〈(∫
X

f dEX

)(∫
Y

g dEY

)
x, y

〉
= lim

n→∞

〈(∫
X

f dEX

)(∫
Y

g dEY

)
x, yn

〉
= lim

n→∞

〈(∫
Y

g dEY

)(∫
X

f dEX

)
x, yn

〉
=

〈(∫
Y

g dEY

)(∫
X

f dEX

)
x, y

〉
Again, this is true for any y ∈H . And therefore we conclude that(∫

X

f dEX

)(∫
Y

g dEY

)
x =

(∫
Y

g dEY

)(∫
X

f dEX

)
x

for any x ∈ Dom(
∫
X
f dEX

∫
X
g dEY ) ∩Dom(

∫
Y
g dEY

∫
f dEX)
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This result looks promising. If we consider two strongly commuting self-adjoint operators A
and B, then not only do these operators commute, we also find that An and Bn commute for any
n ∈ N, and the operators eA and B2 − B commute. So if the spectral measures commute, we
see that a lot of operators commute. Therefore, we wish to investigate whether two self-adjoint
operators strongly commute.

Because of Corollary 3.4.15 and the spectral theorem for bounded operators (Theorem 3.4.11),
we see that the spectral measures of two bounded self-adjoint operators A and B commute if and
only if A and B commute. Therefore, if A and B commute, then they automatically commute
strongly.

Additionally, if A is a self-adjoint operator, and B is a bounded self-adjoint operator, they
strongly commute as well.

Lemma 5.1.3. Let A be a self-adjoint operator and let B be a bounded self-adjoint operator. If A
and B commute on Dom(A), then A and B strongly commute

Proof. SinceA andB commute on Dom(A), then by the spectral theorem for unbounded operators
(Theorem 4.2.5) we find that B and (

∫
φ dEA) commute. Taking φ = χU for any Borel subset

U ⊆ σ(A) we see this immediately tells us that EA(U)B = BEA(U). Then using the spectral
theorem for bounded, normal operators, we see that the spectral measures commute. In other
words, A and B commute strongly.

But when both A and B are unbounded, this correspondence does not need to hold anymore.
However, Nelson’s theorem will give us one criterium to show that two self-adjoint operators
strongly commute. The rest of this section will be dedicated to stating the theorem of Nelson
and proving it.

Definition 5.1.4. Let A be a linear operator on H , and let D be a subset of Dom(A). We say D
is a core of A if D lies dense in Dom(A) with respect to the graph norm, where the graph norm is
given as in Lemma 2.1.10.

Remark 5.1.5. Note that if A is closable, we find that if D is a core of A, then A|D = A. If A is
closed, then it tells us A|D = A. If A is self-adjoint, then A|D is essentially self-adjoint.

Cores can be useful, because some of the properties of an operator can be seen if we only look
at a core. So we can find some properties of the operator, without using the whole domain. We
will be using cores as well to prove the theorem of Nelson. First we note an interesting result that
characterizes whenever two self-adjoint operators strongly commute. The proof is also not based
on literature.

Lemma 5.1.6. Let H be a Hilbert space, and A,B be self-adjoint operators on H . Then the
following assertions are equivalent:

1. A and B strongly commute,

2. For all z ∈ C \ R the operator (A+ z)−1 commutes with B,

3. The operators (A+ i)−1 and (A− i)−1 commute with B.
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Proof. 1) ⇒ 2): Assume that A and B commute strongly. We note that (A + z)−1 = f(A) with
f : σ(A) → C is given by f(x) = 1

x+z
. Since σ(A) ⊂ R and z ∈ C \ R, we have that f(x) is a

continuous function, and therefore measurable. We use Proposition 5.1.2 to conclude that (A+z)−1

and B commutes for z ∈ C \ R.
2)⇒ 3): If (A+ z)−1 and B commute for any z ∈ C \ R, then it is surely true for z = ±i.
3) ⇒ 1): Let (A ± i)−1 and B commute. So (A ± i)−1B ⊆ B(A ± i)−1. Because A is a

self-adjoint operator, we have (A± i)−1 is a bounded operator. Therefore, by the spectral theorem
for unbounded operators, Theorem 4.2.5, we find that (A±i)−1

(∫
φ dEB

)
⊆
(∫

φ dEB
)

(A±i)−1

for any Borel measurable function φ. We note that if V ⊆ C is a Borel set, then

EB(V )(A± i)−1 =

(∫
χV dEB

)
(A± i)−1 = (A± i)−1(

(∫
χV dEB

)
) = (A± i)−1EB(V )

Therefore we see that EB(V )x = (A − i)−1EB(V )(A − i)x for any x ∈ Dom(A). Hence we
can conclude

(A− i)(A+ i)−1EB(V ) = (A− i)EB(V )(A+ i)−1 = (A− i)EB(V )(A− i)−1(A− i)(A+ i)−1

= (A− i)(A− i)−1EB(V )(A− i)(A+ i)−1

= EB(V )(A− i)(A+ i)−1

Hence we can conclude that EB(V ) commutes with U ; the Cayley transform of A. We can do
the same trick to prove that EB(V ) commutes with U∗. Because U is a bounded operator, we
use the spectral theorem for bounded operators, Theorem 3.4.11, to conclude that for any Borel set
W ⊆ C thatEB(V )EU(W ) = EU(W )EB(V ) whereEU is the spectral measure for U . Because the
spectral measure ofA is defined asEA(W ) = EU(g−1(W )), we immediately seeEA(W )EB(V ) =
EB(V )EA(W ). So A and B commute strongly.

Next, we will prove two theorems. These theorems are the core of the proof of Nelson’s theo-
rem, and if we have proven these two, then the theorem of Nelson will follow directly.

Remark 5.1.7. We want to adress the notion that the two upcoming lemmas are based on [9, Lm.
1, p. 365], but is slightly changed. In our version, we do not need Dom(B) ⊆ Dom(A), but instead
assume that the linear subspace D has the additional property that D ⊆ Dom(A) ∩ Dom(B). The
proof of these lemmas will also differ slightly.

Lemma 5.1.8. [9, Lm. 1, p. 365] Let A be a self-adjoint operator, and B a symmetric operator.
Suppose that there exists a linear subspace D ⊂ Dom(AB) ∩ Dom(BA) ∩ Dom(A) ∩ Dom(B)
such that

1. ABx = BAx for any x ∈ D ,

2. D is a core for A and B,

3. ‖Bx‖ ≤ λ‖(A+ i)x‖ for all x ∈ D and some λ > 0.

Then B is essentially self-adjoint and B and A strongly commute.

Proof. We start the proof with a claim:
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Claim 1. There exists a C ∈ B(H ) such that Bx = C(A+ i)x for x ∈ D .

Proof. We note that i /∈ σ(A), so A + i is boundedly invertible. Define the subspace H0 :=
(A+ i)(D). Thus for any x ∈ D there exists a y ∈H0 such that x = (A+ i)−1y. Thus we have

‖Bx‖ = ‖B(A+ i)−1y‖ ≤ λ‖(A+ i)(A+ i)−1y‖ = λ‖y‖

because of the assumption. Define C := B(A + i)−1 on H0, then ‖Cy‖ ≤ λ‖y‖ for all y ∈ H0.
So C is a bounded operator on H0. By Remark 2.1.2 we can extend C in such a way that C
becomes a bounded operator on H with C = B(A+ i)−1 on H0. We conclude that if x ∈ D then
Bx = B(A+ i)−1(A+ i)x = C(A+ i)x.

So we have Bx = C(A+ i)x for any x ∈ D . Because D is a core of B, we have B∗ = (B|D)∗

where B|D denotes the operator B with domain D . We then find

B∗ = (B|D)∗ = (C(A+ i)|D)∗ = (C(A+ i))∗ = (A− i)C∗

Define the operator |A− i| := ((A− i)∗(A− i))1/2. In other words,

|A− i| =
∫
σ(A)

√
(λ+ i)(λ− i) dE(λ) =

∫ √
λ2 + 1 dE(λ)

where E is the spectral measure of A. We note that Dom(
∫
σ(A)

1√
λ2+1

dE) = H . Because√
λ2 + 1 > 1 for any λ ∈ R, we find for x ∈H ,∫

σ(A)

∣∣∣∣ 1

λ2 + 1

∣∣∣∣ d〈E(λ)x, x〉 ≤
∫
σ(A)

1 d〈E(λ)x, x〉 = 〈x, x〉

Therefore Dom(
∫

1√
λ2+1

dE) = H . Additionally, we find∥∥∥∥(∫
σ(A)

1√
λ2 + 1

dE

)
x

∥∥∥∥2

=

∫
σ(A)

1

λ2 + 1
d〈E(λ)x, x〉 ≤ ‖x‖2

Therefore we see that |A − i|−1 :=
∫
σ(A)

1√
λ2+1

dE is a bounded operator defined on H with
norm ‖|A− i|−1‖ ≤ 1. Also note by Lemma 4.2.6 that

(
|A− i|−1

)∗
=

(∫
σ(A)

1√
λ2 + 1

dE

)∗
=

∫
σ(A)

1√
λ2 + 1

dE = |A− i|−1

So |A− i|−1 is a bounded, self-adjoint operator.
Next consider (A− i)|A− i|−1. Then we find for x ∈H

‖(A− i)|A− i|−1x‖2 =

∥∥∥∥(∫
σ(A)

λ− i√
λ2 + 1

dE(λ)

)
x

∥∥∥∥2

=

∫
σ(A)

λ− i√
λ2 + 1

· λ+ i√
λ2 + 1

d〈E(λ)x, x〉 =

∫
σ(A)

1 d〈E(λ)x, x〉 = ‖x‖2



5 THEOREM OF NELSON 45

Thus ‖(A− i)|A− i|−1‖ = 1 and so (A− i)|A− i|−1 is a bounded operator.
Define F := (A − i)|A − i|−1C∗. Then note that F is a bounded operator. Additionally, by

Lemma 4.2.6 we see that (A± i) =
∫
σ(A)

λ± i dE(λ) and |A− i|−1 commute. Therefore we see

|A− i|F = |A− i|(A− i)|A− i|−1C∗ = |A− i||A− i|−1(A− i)C∗

= (A− i)C∗ = B∗

Because B is a symmetric operator, we have B ⊆ B∗, and so for any x ∈ Dom(B) we have

Bx = B∗x = |A− i|Fx

Therefore, if x ∈ D we find:

(A+ i)Bx = (A+ i)|A− i|Fx = |A− i||A− i|−1(A+ i)|A− i|Fx = |A− i|(A+ i)Fx (28)

We assumed Abx = BAx for x ∈ D . So we find for x ∈ D

(A+ i)Bx = B(A+ i)x = |A− i|F (A+ i)x (29)

Comparing (28) and (29), we see that (A + i)Fx = F (A + i)x for x ∈ D . Since D is a core
for A, (A+ i)(D) lies dense in H . Therefore, if y ∈H , there exists a sequence (yn)n ⊆ D such
that (A+ i)yn → y. Then yn = (A+ i)−1(A+ i)yn → (A+ i)−1y. And so we find

(A+ i)−1Fy = lim
n→∞

(A+ i)−1F (A+ i)yn = lim
n→∞

(A+ i)−1(A+ i)Fyn

= lim
n→∞

Fyn = F (A+ i)−1y

Therefore we find that F and (A + i)−1 commute. Taking adjoints, we see that F ∗ and (A − i)−1

commute. Hence F ∗ commute with |A− i|.
Since F = (A − i)|A − i|−1C∗, we find F ∗ = C((A − i)|A − i|−1)∗ = C(A + i)|A − i|−1.

Remember B = C(A+ i) on D and B is symmetric. Therefore if x ∈ D , we see that the following
holds

Bx = C(A+ i)|A− i|−1|A− i|x = F ∗|A− i|x = |A− i|F ∗x
= B∗x = |A− i|Fx

So F ∗ = F on D . Since D is dense in H and F is bounded, we find F ∗ = F .
Now that we know that F is self-adjoint, we prove that B is self-adjoint. It is sufficient to show

that the deficiency indices are 0. Suppose that B∗x = zx with z = ±i for some x ∈ Dom(B∗).
Because B∗ = |A− i|F , we find Fx = z|A− i|−1x. Then

〈Fx, x〉 = z〈|A− i|−1x, x〉 = z‖|A− i|−1/2x‖

Because F is self-adjoint, the left side of the equation is real. Because z = ±i we conclude
|A − i|−1/2x = 0 and so x = 0. Therefore n+ = n− = 0. So B∗ is self-adjoint, or equivalently
B∗ = B∗∗ = B. So B is essentially self-adjoint.
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Because B = B∗ = |A− i|F and F commutes with (A+ i)−1, we find

(A+ i)−1B = (A+ i)−1|A− i|F = |A− i|F (A+ i)−1 = B(A+ i)−1

on Dom(B∗) = Dom(B). We also know that F ∗ and (A−i)−1 commutes, and F = F ∗. Therefore,
F and (A − i)−1 commute, and thus by the same calculation we conclude that (A − i)−1 and B
commute on Dom(B). By Lemma 5.1.6 we have that A and B are strongly commuting.

Lemma 5.1.9. [9, Lm. 2, p. 366] Let A be a self-adjoint operator, and assume B1, B2 are symmet-
ric operators. Suppose that

1. There exist linear subspaces Di ⊆ Dom(ABi) ∩ Dom(BiA) ∩ Dom(A) ∩ Dom(Bi) for
i = 1, 2 such that ABix = BiAx for all x ∈ Di and such that Di is a core of A and Bi for
i = 1, 2.

2. There exists a linear subspace D12 ⊆ Dom(B1B2) ∩ Dom(B2B1) with D12 ⊆ D1 ∩ D2

such that B1B2x = B2B1x for all x ∈ D12, such that D12 is a core for A and such that
B1(D12) ⊆ D2 and B2(D12) ⊆ D1.

3. ‖Bix‖ ≤ λ‖(A+ i)x‖ for some λ > 0 and for all x ∈ Di for i = 1, 2.

Then B1 and B2 are strongly commuting self-adjoint operators.

Proof. The fact that Bi are self-adjoint, is a consequence of Lemma 5.1.8. Thus we only need to
prove B1 and B2 commute strongly. We use the same notation as in previous proof.

By Lemma 5.1.8, we know that Bi = |A− i|Fi on Di with i = 1, 2. Then we get for x ∈ D12

B1B2x = |A− i|F1|A− i|F2x = |A− i|F1F2|A− i|x
= B2B1x = |A− i|F2|A− i|F1x = |A− i|F2F1|A− i|x

where we used that F = F ∗ commutes with |A − i|. Because ker |A − i| = (0), the previous
calculations implies F1F2|A − i|x = F2F1|A − i|x for any x ∈ D12. Since D12 is a core of A,
|A − i|(D12) lies dense in H . Thus we can conclude that F1F2 = F2F1. Then we consider B1.
Because B1 = |A− i|F1 we get for y ∈ Dom(B1):

F2B1y = F2|A− i|F1y = |A− i|F1F2y = B1F2y

because, again F2 = F ∗2 commutes with |A − i|. Therefore F2 and B1 commute on Dom(B1).
Because F2 ∈ B(H ), F2 commutes with (B1 + i)−1. Therefore, it holds that

B2(B1 + i)−1 = |A− i|F2(B1 + i)−1 = (B1 + i)−1|A− i|F2 = (B1 + i)−1B2

By Lemma 5.1.6 we have that B1 and B2 strongly commute.

Now we are ready for the theorem of Nelson. The theorem we are discussing here is slightly
adapted from the one Nelson proved. He proved it for symmetric operators with an dense linear
subset contained in a lot of different domains. We will only be considering self-adjoint operators,
and a slightly different set.
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Theorem 5.1.10 (Theorem of Nelson). [5, Cor. 9.2, p. 603] Let B1, B2 be two self-adjoint opera-
tors on a Hilbert space H , and let D be a dense linear subspace of H such that:

1. D is contained in Dom(Bi) for i = 1, 2,

2. Bi(D) ⊆ D for i = 1, 2,

3. D is a core of B1 and B2

4. B1B2x = B2B1x for all x ∈ D .

If (B2
1 +B2

2)|D is essentially self-adjoint, then B1 and B2 strongly commute.

Proof. We wish to use Lemma 5.1.9 to prove this theorem. Let B1 and B2 be as in Lemma 5.1.9.
Define A := B2

1 +B2
2 |D . Then A is self-adjoint, by assumption. To show that the first requirement

holds, note that D ⊆ Dom(B1) and B1(D) ⊆ D . Therefore D ⊆ Dom(B2
1). By the same

reasoning we find D ⊆ Dom(B2
2). Hence D ⊆ Dom(B2

1 + B2
2) ⊆ Dom(A). Additionally, we

see that A(D) = (B2
1 + B2

2)(D) ⊆ D , and therefore D ⊆ Dom(BjA) and D ⊆ Dom(ABj) for
j = 1, 2. Therefore we see that

D ⊆ Dom(ABj) ∩Dom(BjA) ∩Dom(A) ∩Dom(Bj)

for j = 1, 2. By assumption we also know that B1B2x = B2B1x, and so

AB1x = (B2
1 +B2

2)B1x = B1(B2
1 +B2

2)x = B1Ax

Finally, because (B2
1 + B2

2)|D is essentially self-adjoint, D is a core of B2
1 + B2

2 and so it is a
core of A. By assumption, D is a core of B1 and B2. Therefore the first requirement of Lemma
5.1.9 holds for D1 = D2 = D .

Because B1(D) ⊆ D and D ⊆ Dom(B2), we find D ⊆ Dom(B1B2). By the same reasoning,
D ⊆ Dom(B2B1). Therefore D ⊆ Dom(B1B2) ∩ Dom(B2B1). We conclude that if we define
D12 := D , we also see that the second requirement of Lemma 5.1.9 holds.

Finally, we need to show that ‖Bix‖ ≤ ‖(A + i)x‖ for i = 1, 2 and for all x ∈ D . If we can
show this to be true, then we can use Lemma 5.1.9 and we are done. We will prove the inequality
for B1. We note that if x ∈ D we get

‖(A+ i)x‖2 = ‖(B2
1 +B2

2 + i)x‖2

= 〈
(
B2

1 +B2
2 + i

)
x,
(
B2

1 +B2
2 + i

)
x〉

= ‖(B2
1 + i)x‖2 + ‖B2

2x‖2 + 2Re(〈(B2
1 + i)x,B2

2x〉)
≥ ‖(B2

1 + i)x‖2 + 2Re(〈B2
1x,B

2
2x〉+ i〈x,B2

2x〉)

Because B2(D) ⊆ D we have B1B
2
2x = B2

2B1x, and thus we can conclude

‖(A+ i)x‖2 = ‖(B2
1 + i)x‖2 + 2Re(〈B1x,B1B

2
2x〉+ i〈B2x,B2x〉)

= ‖(B2
1 + i)x‖2 + 2Re(〈B2B1x,B2B1x〉+ i〈B2x,B2x〉)

= ‖(B2
1 + i)x‖2 + 2Re(‖B2B1x‖2 + i‖B2x‖2)

= ‖(B2
1 + i)x‖2 + ‖B2B1x‖2 ≥ ‖(B2

1 + i)x‖2
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So we found ‖(A + i)x‖ ≥ ‖(B2
1 + i)x‖ for x ∈ D . If we can prove ‖(B2

1 + i)x‖ ≥ ‖B1x‖ for
x ∈ D , we are done. Note that B1 is a self-adjoint operator, so B1 =

∫
R λ dE1 where E1 is the

spectral measure of B1. Thus
B1 = B[−1,1] +B∞

where B[−1,1] :=
∫

[−1,1]
λ dE1 and B∞ =

∫
σ(B1)\[−1,1]

λ dE1. Because [−1, 1] and σ(B1) \ [−1, 1]

are disjoint sets, we get that for any Borel set U ⊆ [−1, 1] and any Borel set V ⊂ σ(B1) \ [−1, 1]
that E1(U)E1(V ) = E1(V )E1(U) = 0. Therefore is B[−1,1]B∞ = B∞B[−1,1] = 0. Hence

B2
1 = B2

[−1,1] +B2
∞

Additionally, we note that for any setK ⊆ R we have
∫
K
λ dE(λ) =

∫
σ(B1)

χKλ dE(λ). Therefore
we see that

B∗[−1,1] =

∫
σ(B1)

χ[−1,1]λ dE(λ) =

∫
σ(B1)

χ[−1,1]λ dE(λ) = B[−1,1]

B∗∞ =

∫
σ(B1)

χσ(B1)\[−1,1]λ dE =

∫
σ(B1)

χσ(B1)\[−1,1]λ dE = B∞

Thus B[−1,1] and B∞ are self-adjoint. Therefore we get for x ∈ D

‖B1x‖2 = ‖B[−1,1]x‖2 + ‖B∞x‖2 =

∫
[−1,1]

λ2 d〈E1(λ)x, x〉+

∫
R\[−1,1]

|λ|2 d〈E1(λ)x, x〉

≤ sup
λ∈[−1,1]

{λ} · 〈E1([−1, 1])x, x〉+

∫
R\[−1,1]

|λ|4〈E1(λ)x, x〉

= 〈E1([−1, 1])x, x〉+ ‖B2
∞x‖2 ≤ ‖E1([−1, 1])‖‖x‖2 + ‖B2

∞x‖2

= ‖x‖2 + ‖B2
∞x‖2 ≤ ‖x‖2 + ‖B2

∞x‖2 + ‖B2
[−1,1]x‖2 = ‖(B2

[−1,1] +B2
∞ + i)x‖2

The last equality sign is because B2
1 = B2

[−1,1] + B2
∞ is symmetric, so ‖(B2

1 + i)x‖2 = ‖B2
1x‖2 +

i2‖x‖2. If we read the whole equation, we see that ‖B1x‖2 ≤ ‖(B2
1 + i)x‖2 for x ∈ D . Same holds

for B2 if we swap the 1 for a 2. So we can use Lemma 5.1.9 to conclude that B1 and B2 strongly
commute.

In conclusion, if we can find that we can apply Nelson’s theorem for any two self-adjoint
operators A and B, we know by Proposition 5.1.2 that for any two Borel measurable functions
f : σ(A) → C and g : σ(B) → C we have that f(A) and g(B) commute. We will consider two
examples to apply this to.

6 Position and momentum operators
In this section, we consider two examples. The reader might be familiar with these concepts, for
these operators are being used in Quantum Mechanics.
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6.1 Tempered distributions
Before we formulate the examples, we give the notion of a distribution. Distributions turn out to
be necessary for these examples, because we wish to differentiate functions which are not differen-
tiable by definition. Because the focus of this thesis is not distribution theory, we will prove only
a few theorems. The reference to the proofs is within brackets after the theorem for those who are
interested. The reader who are already familiar with distribution theory and Fourier analysis on
distributions, can continue reading Section 6.3.

Definition 6.1.1. Let X ⊆ Rn. We define D(X) := C∞0 (X); the space of infinitely differentiable
φ : X → C with compact support. A sequence (φj)j ⊆ D(X) is said to converges to φ in D(X),
if:

1. there exists a compact K ⊆ X such that supp(φj) ⊂ K for every j

2. for every multi-index α ∈ Nn the sequence (∂αφj)j converges uniformly on X to ∂αφ

Definition 6.1.2. Let D(X) as in Defintion 6.1.1. We define a distribution on X as a linear map
u : D(X) → C, such that if limj→∞ φj = φ in D(X) then limj→∞ u(φ) = u(φ). We write the
space of distributions as D ′(X).

Lemma 6.1.3. [2, p. 37] Let f ∈ Lloc(X). So f : X → C is locally integrable. Then f can be
interpreted as a distribution via the mapping test· : Lloc(X)→ D ′(X) defined by

(testf)(φ) =

∫
Rn
f(x)φ(x)dx

Most of the times we will omit the test, and say f is a distribution.

Since L2(Rn) ⊆ Lloc(Rn), we know that if u ∈ L2(Rn) then u ∈ D ′(Rn). But does a distribu-
tion come from a function?

Lemma 6.1.4. Let u ∈ D ′(Rn). Then u ∈ L2(Rn) ⇐⇒ there exists a C > 0 such that |u(φ)| ≤
C‖φ‖L2(Rn) for any φ ∈ D(Rn)

Proof. Let u ∈ L2(Rn). So
∫
Rn |u(x)|2dx < ∞. Let φ ∈ D(Rn), then there exists a compact set

K ⊆ Rn such that supp(φ) ⊆ K. We claim that φ ∈ L2(Rn). We see that∫
Rn
|φ(x)|2dx =

∫
K

|φ(x)|2dx ≤ sup
x∈K
{|φ(x)|2}

∫
K

dx <∞

because |φ|2 is a continuous function on K, so it is bounded on K. So φ ∈ L2(Rn). Then we use
Hölder’s inequality to conclude

|u(φ)| =
∣∣∣∣∫

Rn
u(x)φ(x)dx

∣∣∣∣ ≤ ∫
Rn
|u(x)φ(x)|dx = ‖uφ‖L1(Rn) ≤ ‖u‖L2(Rn)‖φ‖L2(Rn)

This is true for any φ ∈ D ′(Rn), so the first part is proven.
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Next, let |u(φ)| ≤ C‖φ‖L2(Rn) for all φ ∈ D(Rn). Because D(Rn) is dense in L2(Rn), it is
possible to extend u to a bounded functional ũ on L2(Rn). Hence by the Riesz Representation
Theorem, there exists a unique g ∈ L2(Rn) such that ũ = 〈·, g〉. So for φ ∈ D(Rn) we have

ũ(φ) = u(φ) = 〈φ, g〉 =

∫
Rn
φ(x)g(x)dx = (test g)(φ)

So u = test g, and thus u ∈ L2(Rn).

If f is a continuously differentiable function on X ⊆ Rn, then

(test∂jf)(φ) =

∫
X

∂f

∂xi
φ dx = −

∫
X

f
∂φ

∂xi
dx = −(testf)(∂jφ)

because the boundary term is absent, as φ(x) = 0 for sufficiently large x. Motivated by this, we
define a differentiation for distributions:

Definition 6.1.5. If X ⊆ Rn, we define for an arbitrary distribution u on X:

∂ju(φ) = −u(∂jφ) (1 ≤ j ≤ n, φ ∈ D(X))

Here ∂j := ∂
∂xj

, the differential operator with respect to the jth component.

With this notion any distribution, and thus any locally integrable function, is infinitely differ-
entiable. This definition of differentiable is consistent with our regular definition of differentiation
on functions; in other words, if f is continuously differentiable, then test(∂jf) = ∂j(testf) for
1 ≤ j ≤ n.

6.2 Fourier transform
Now that we have introduced the basics of distribution theory, we can talk about Fourier transforms.
In order to do so, we first introduce the space on which Fourier transform acts.

Definition 6.2.1. A function φ on Rn is said to be rapidly decreasing if for every multi-index
β ∈ Nn the function x 7→ xβφ(x) is bounded on Rn. We define S = S (Rn) as the space of all
φ ∈ C∞(Rn) such that ∂αφ is rapidly decreasing for every multi-index α. This space is called the
space of Schwartz-functions.

If (φj)j is a sequence in S and φ ∈ S , then φj is said to converge to φ in S if for all multi-
indices α, β the sequence of functions

(
xβ∂αφj

)
j

converges uniformly on all of Rn to xβ∂αφ.

Definition 6.2.2. We define a tempered distribution as a linear mapping u : S (Rn) → C in such
a way that if limn→∞ φn = φ in S (Rn), then limn→∞ u(φn) = u(φ). The space of tempered
distributions is denoted by S ′(Rn) = S ′.

We say that a sequence (uj)j ⊆ S ′(Rn) converges to u in S ′(Rn), denoted limj→∞ uj = u, if
u ∈ S ′(Rn) and limj→∞ uj(φ) = u(φ) for every φ ∈ S (Rn). In other words, if (uj)j converges
pointwise to u ∈ S ′(Rn).
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With this new definition, we have D(Rn) ⊆ S (Rn) ⊆ C∞(Rn). Since D(R) lies dense
in C∞(Rn), we have that S (Rn) lies dense in C∞(Rn). Also note that the identity mapping
Id : D(Rn) → S is continuous. Additionally, we have the continuous inclusion S ′ ⊂ D ′(Rn)
(see [2, p. 189] for example).

Definition 6.2.3. On S we define the Fourier transform F : S (Rn)→ S (Rn), by

(Fφ)(ξ) =

∫
Rn
e−i〈ξ,x〉Rnφ(x)dx

where 〈ξ, x〉Rn =
∑n

i=1 ξixi, the standard inner product on Rn.

Since φ is a rapidly decreasing function, this integral is well defined for any ξ ∈ Rn. One of the
more promising features of the Fourier transform is that differential operators are transformed into
polynomial operators and the other way around, as the following lemma shows. We define:

Dj := −i∂j (1 ≤ j ≤ n) (30)

Then we can use this definition to state the lemma.

Lemma 6.2.4. [2, p. 183] The Fourier transform F : u 7→ Fu defines a continuous linear
mapping from S (Rn) to S (Rn). For every 1 ≤ j ≤ n, φ ∈ S (Rn) and ξ, a ∈ Rn we have

F (Djφ)(ξ) = ξjF (φ)(ξ) F (xjφ)(ξ) = −DjF (φ)(ξ)

Example 6.2.5. For a ∈ C with Re(a) > 0 we define ua(x) = e−ax
2/2 for x ∈ R. Then surely,

ua ∈ S (R). Thus Fua ∈ S (R). Note that Dua = iaxua, and so taking the Fourier transform on
both sides gives:

DFua = F (−xua) = F (i
1

a
Dua) = i

1

a
ξFua

This is an ordinary differential equation, and thus we get Fua = A(a)u 1
a

withA(a) = (Fua)(0) =∫
R ua(x)dx =

√
2π
a

. So in conclusion Fua(ξ) =
√

2π
a
e−

ξ2

2a .
By this, we see that, if we apply F again, we get

F (Fua) = F (A(a)u 1
a
) = A(a)Fu 1

a
= A(a)B(a)ua

with B(a) =
∫
R u 1

a
(x)dx =

∫
R e
−x

2

2a =
√

2πa. So we see that FFua = 2πua �

Note that for this example, we got the inverse of this particular Fourier transform. But the
example is not unique, as the following theorem states

Theorem 6.2.6. [2, Thm. 14.13, p. 185] The Fourier transform F : S (Rn) → S (Rn) is
bijective, with inverse F−1 = (2π)−nS ◦ F = (2π)−nF ◦ S, where S : S (Rn) → S (Rn),
S(φ)(x) = φ(−x). This can be written as, for φ ∈ S (Rn) and x ∈ Rn:

φ(x) =
1

(2π)n

∫
Rn
ei〈ξ,x〉RnFφ(ξ)dξ (31)
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Now that we have some theorems about the Fourier transforms on S , we continue to define the
Fourier transform on S ′.

Definition 6.2.7. If u ∈ S ′, we define its Fourier transform Fu ∈ S ′ as, for φ ∈ S ,

Fu(φ) = u(Fφ)

Note that this definition coincides with the definition we gave for φ ∈ S ⊂ S ′ in Definition
6.2.3. For if we consider φ ∈ S as a distribution, we have

(Fφ)(ψ) = φ(Fψ) =

∫
Rn
φ(ξ)Fψ(ξ)dξ

=

∫
Rn
φ(ξ)

∫
Rn
e−i〈ξ,x〉Rnψ(x)dxdξ

=

∫
Rn

∫
Rn
e−i〈ξ,x〉Rnφ(ξ)ψ(x)dξdx =

∫
Rn

(Fφ)(x)ψ(x)dx

As it happens a lot in the theory of distributions, many theorems that hold for functions, also apply
(although slightly adjusted) for distributions. The most important in case of Fourier theory is the
next theorem.

Theorem 6.2.8. [2, Thm. 14.14, p. 191] For every u ∈ S (Rn) we have Fu ∈ S ′(Rn). The
mapping F : u 7→ Fu is a continuous linear mapping from S ′(Rn) to S ′(Rn) . Also, for every
u ∈ S ′(Rn) and 1 ≤ j ≤ n we have

F (Dju) = ξjFu

F (xju) = −DjFu

Finally, F : S ′(Rn)→ S ′(Rn) is bijective with inverse equal to (2π)−nF ◦ S ′ = (2π)−nS ′ ◦F
where S ′ : S ′ → S ′ by S ′(u) = u ◦ S with S as in Lemma 6.2.6.

Lemma 6.2.9. [2, p. 190] We have the following inclusions:

D(Rn) ⊆ S (Rn) ⊆ L2(Rn) ⊆ S ′(Rn)

These inclusions are also continuous, or in other words, convergence in one space includes con-
vergence in the bigger space.

Fourier Theory turns out to be useful to study L2(Rn). In fact, with the notion of distributions
we get that the Fourier transform is a unitary isomorphism.

Theorem 6.2.10. [2, Thm. 14.32, p. 196] If u belongs to L2(Rn), then Fu ∈ L2(Rn). Also, if
φ, ψ ∈ L2(Rn) then

〈Fφ,Fψ〉L2(Rn) = 〈φ, ψ〉L2(Rn)

It follows that the restriction of F̃ := (2π)n/2F to L2(Rn) defines a unitary isomorphism on
L2(Rn).

Corollary 6.2.11. Let u ∈ L2(Rn).
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1. If xju ∈ L2(Rn), then Dj(F (u)) ∈ L2(Rn).

2. If Dju ∈ L2(Rn), then xjF (u) ∈ L2(R).

Proof. 1): Let ι : L2(Rn)→ S ′(Rn) be the inclusion mapping. Then

ι(F (xju)) = F (ι(xju)) = F (xjι(u)) = −DjF (ι(u)) = −Djι(F (u)) = ι(−DjF (u))

Therefore we can conclude ι(F (xju)) = ι(−DjF (u)) in S (Rn). Therefore, F (xju) = −DF (u)
in L2. So DjF (u) ∈ L2(R).

2): Let ι be the inclusion map again. Then we see

ι(F (Dju)) = F (ι(Dju)) = F (Dj(ι(u))) = xjF (ι(u)) = xjι(F (u)) = ι(xjF (u))

So ι(F (Dju)) = ι(xjF (u)) in S ′(Rn). Therefore, F (Dju) = xjF (u) and xjF (u) ∈ L2(Rn).

6.3 Position and momentum operators
After quite some distribution theory, we finally consider the two examples. These operators are
important in the quantum mechanics.

First, we consider the Hilbert space H = L2(Rn). Consider f ∈ H . In the classical sense,
the derivative of f may or may not exist. For example, let B := B(0, r) be an open ball of Rn

of radius r centered around the origin. Then χB ∈ L2(Rn) but the derivative is not well defined
everywhere. Nevertheless, the derivative does exist if we consider χB in a distributional sense, by
Definition 6.1.5. The only problem with this way of doing it, is that the derivative might not be a
function itself, but rather a distribution. And if it is a function, this function might not be square
integrable. Thus the operator ∂j : L2(Rn) → L2(Rn) has a certain domain on which it is defined.
We are now ready for the definition of the momentum and position operators in L2(Rn). First we
consider n = 1:

Definition 6.3.1. Let H = L2(R), and define the linear operator p̂ : H → H by p̂(u) = i d
dx
u.

The domain on which this operator is defined is

Dom(p̂) = {f ∈ L2(R)| i d
dx
f ∈ L2(R) in the distributional sense}

This operator is called the momentum operator.

By Example 2.1.4 we also need a domain for the operator that is defined as x̂.

Definition 6.3.2. Let H = L2(R). Define the linear operator x̂ : H → H by x̂(u) = xu. The
domain on which this operator is defined is Dom(x̂) = {f ∈ L2(R)|xf ∈ L2(R)}.

Our first goal is to show that both x̂ and p̂ are self-adjoint. We start with the operator x̂.

Lemma 6.3.3. The operator x̂ is a self-adjoint operator



6 POSITION AND MOMENTUM OPERATORS 54

Proof. First, we must show that Dom(x̂) lies dense in L2(R). Note that D(R) ⊆ Dom(x̂) ⊆
L2(R). Since D(R) lies dense in L2(R) we have that Dom(x̂) lies dense in L2(R).

Next, we note that if f, g ∈ Dom(x̂), we have

〈x̂(f), g〉 =

∫
R
xf(x)g(x)dx =

∫
R
f(x)xg(x)dx = 〈f, x̂(g)〉

So x̂ is symmetric. Thus the only thing left to show is Dom(x̂) = Dom(x̂∗). Since x̂ is symmetric,
we know by Lemma 2.4.5 that x̂ ⊆ x̂∗. Therefore Dom(x̂) ⊆ Dom(x̂∗).

On the other hand, given f ∈ Dom(x̂∗), we have that the mapping φ 7→ 〈x̂(φ), f〉 is a bounded
linear functional op Dom(x̂). Thus, there exists a C > 0 such that for any φ ∈ Dom(x̂) we
have |〈x̂(φ), f〉| ≤ C‖φ‖L2(R). This is surely true for φ ∈ D(R). Also note that f ∈ L2(R), so
f, f ∈ Lloc(R), and thus xf ∈ Lloc(R). And so the distribution test(xf) = xf is well defined.
Thus

xf(φ) =

∫
R
φ(x)(xf)(x)dx =

∫
R
xφ(x)f(x)dx = 〈x̂(φ), f〉

Therefore, |xf(φ)| = |〈x̂(φ), f〉| ≤ C‖φ‖L2 . Then, by Lemma 6.1.4 we find that xf ∈ L2(R). But
this means that f ∈ Dom(x̂). So Dom(x̂) = Dom(x̂∗), and thus is x̂ self-adjoint

Next, we look at the linear operator p̂.

Lemma 6.3.4. p̂ is self-adjoint.

Proof. We consider the following claim.

Claim 1. F (Dom(x̂)) = Dom(p̂).

Proof. Consider f ∈ Dom(x̂). Then xf ∈ L2(R) and thus F (xf) ∈ L2(R). By Lemma 6.2.4
we see F (xf) = −DF (f). So −i d

dx
F (f) ∈ L2(R) and so F (f) ∈ Dom(p̂). For the other

inclusion, we follow the same reasoning, only now backwards.

First we prove that p̂ is symmetric. Consider f, g ∈ Dom(p̂). Then there exists h ∈ Dom(x̂)
such that F (h) = f . Then, by Corollary 6.2.11,

〈p̂(f), g〉 = 〈p̂(Fh), g〉 = 〈F (x̂(h)), g〉
= 〈x̂(h),F−1g〉 = 〈h, x̂(F−1g)〉
= 〈h, x̂ ◦ S ◦Fg)〉 = 〈h,−S ◦ x̂ ◦F (g)〉
= 〈h,F−1(p̂(g))〉 = 〈F (h), p̂(g)〉 = 〈f, p̂(g)〉

So p̂ is symmetric. Next, let f ∈ Dom(p̂∗). Then the mapping g 7→ 〈p̂(g), f〉 is bounded for
g ∈ Dom(p̂). Because g ∈ Dom(p̂), there is a h ∈ Dom(x̂) such that F (h) = g. Therefore it is
equivalent to say that h 7→ 〈p̂(Fh), f〉 is bounded for h ∈ Dom(x̂). But note that

〈p̂(Fh), f〉 = 〈F (x̂(h)), f〉 = 〈x̂(h),F−1f〉

So the mapping h 7→ 〈x̂(h),F−1f〉 is bounded on Dom(x̂). Therefore we can conclude F−1f ∈
Dom(x̂∗) = Dom(x̂). But now, f ∈ F (Dom(x̂)) = Dom(p̂). So p̂ is self-adjoint.
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One might ask whether we can generalize this to Rn. In fact, we can. Before we do so, we
generalize the operators we are discussing to L2(Rn).

Definition 6.3.5. Let H = L2(Rn), and define the linear operator p̂j : Dom(p̂j) → L2(Rn) by
p̂j(u) = i∂ju for j = 1, . . . , n. The domain on which this operator is defined is

Dom(p̂j) = {f ∈ L2| i∂jf ∈ L2 in the distributional sense}

This operator is called the momentum operator in the j-th direction.
Also define x̂j : Dom(x̂j)→ L2(Rn) by x̂j(u) = xju where xj : Rn → R, (x1, . . . , xn) 7→ xj .

The domain on which this operator is defined, is given by

Dom(x̂j) = {f ∈ L2(Rn)| xjf ∈ L2}

This operator is called the position operator in the j-th direction.

Lemma 6.3.6. The operator x̂j is self-adjoint for j = 1, . . . , n.

Proof. Change R to Rn in the proof of Lemma 6.3.3.

Corollary 6.3.7. The operator p̂j is a self-adjoint operator for j = 1, . . . , n.

Proof. By changing R to Rn in Lemma 6.3.4 and using Lemma 6.2.4, we see that it easily follows
from these two lemmas.

Now that we know of x̂j and p̂j are self-adjoint, we know they have a unique spectral measure.
In fact, we can easily see what the spectral measure for x̂ is.

Lemma 6.3.8. Equip R with the Borel σ-algebra, denoted A . Define the operator E : A →
B(L2(R)) by E(A)(f) = χAf where χA is the characteristic function of the set A. Then E is a
spectral measure, and ∫

σ(R)

λ dE(λ) = x̂

Proof. We first prove that E is a spectral measure. Let A ⊆ R be a Borel set. If f ∈ L2(Rn) we
have E(A)E(A)f = χAχAf = χAf = E(A)f . Thus E(A)2 = E(A). Next we note that for any
f ∈ L2 we have 〈E(A)f, f〉 =

∫
χA(x)|f(x)|2dx =

∫
A
|f(x)|2dx ≥ 0. By Lemma 3.2.3 we have

that E(A) is a projection for any Borel set A ⊆ R.
Next, E(∅) = 0 and E(R) = I . Next, if A,B are Borel sets, then E(A ∩ B)f = χA∩Bf =

χAχBf = E(A)E(B)f for any f ∈ L2(R). And finally, if {An}n is a collection of pairwise
disjoint sets, then E(∪nAn)f = χ∪nAnf = (χA1 + χA2 + · · · )f =

∑∞
i=1 χAif because the Ai are

pairwise disjoint. Therefore, E is a spectral measure.
Next, note that for any Borel set A we have 〈E(A)f, g〉 =

∫
A
f(x)g(x)dx. Therefore, we see

that if f ∈ Dom(x̂) and g ∈ L2(R) we have

〈x̂(f), g〉 =

∫
R
xf(x)g(x) dx =

∫
R
x d〈E(x)f, g〉

Because x̂ is self-adjoint, there exists only one spectral measure such that this is true. Thus we see
that E is the spectral measure for x̂.
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We see that if we consider L2(Rn), the spectral measure of x̂j is Ej(A)f = χRj−1×A×Rn−jf . It
is easy to check that these spectral measures commute. Therefore x̂i and x̂j strongly commute for
1 ≤ i, j ≤ n. However, we wish to show this using Nelson’s theorem.

Corollary 6.3.9. Consider L2(Rn). Then the operators x̂j and x̂k commute strongly for all j, k.

Proof. Let i, j be given. We start with a claim

Claim 1. x̂2
j + x̂2

k is self-adjoint on L2(Rn).

Proof. The proof is the exact same proof as the proof of the self-adjointness of x̂ in Lemma 6.3.3,
where we replace x̂ by x̂2

j + x̂2
k, and R by Rn.

Next, we note that D(Rn) lies dense in L2(Rn), and D(Rn) ⊆ Dom(x̂2
j + x̂2

k). Hence D(Rn)
lies dense in Dom(x̂2

j + x̂2
k). Therefore we have that D(Rn) is a core of x̂2

j + x̂2
k. Also note that

x̂l(D(Rn)) ⊆ D(Rn) for l = j, k. On D(Rn), we have that

x̂jx̂kφ(x) = xjxkφ(x) = x̂kx̂jφ(x) (φ ∈ D(Rn))

Because x̂2
j + x̂2

k is self-adjoint, we have that (x̂2
j + x̂2

k)|D(Rn) is essentially self-adjoint. Therefore
we can use the theorem of Nelson to conclude that x̂j and x̂k strongly commute.

Finally, we consider p̂j , and try to find if the same holds as well.

Corollary 6.3.10. Consider L2(Rn). Then p̂j and p̂k commute strongly for all i, j.

Proof. First we prove that p̂2
j + p̂2

k is self-adjoint. This proof is analogous to the proof of Lemma
6.3.4, so we will omit it. We replace x̂ and p̂ with x̂2

j + x̂2
k and p̂2

j + p̂2
k, and note that the Fourier

transform is linear.
Next, we use the same reasoning as in previous corollary to conclude that p̂j and p̂k strongly

commute.

Remember that strongly commuting of two operators resulted in the commutation of two mea-
surable functions f and g as in Proposition 5.1.2.

Example 6.3.11. Define the functions f : σ(x̂1) → C by f(x) = ex and g : σ(x̂2) → C by
g(y) = |x|. Because x̂1 and x̂2 commute strongly, we find that f(x̂1) = ex̂1 and g(x̂2) = |x̂2|
commute. �

Example 6.3.12. The same can be done for p̂1 and p̂2, because they strongly commute as well. So
for example, the operators ei∂1 and sin(i∂2) commute. �



REFERENCES I

References
[1] J. B. Conway. A course in Functional Analysis. Springer, New York, 2 edition, 1990. ISBN

0387972455.

[2] J. J. Duistermaat and J. A. C. Kolk. Distributions: Theory and Applications. Springer, New
York, 2010. ISBN 9780817646721.

[3] B. Fuglede. A Commutativity Theorem for Normal Operators, volume 36. National Academy
of Sciences, 1950.

[4] B. C. Hall. Quantum Theory for Mathematicians. Springer, New York, 2013. ISBN
9781461471165.

[5] E. Nelson. Analytic Vectors, volume 70. Annals of Mathematics, 1959.

[6] M. Reed and B. Simon. Methods of Modern Mathematical Physics Volume II: Fourier Anal-
ysis, Self-adjointness. Acadamic Press Inc., New York, 1975. ISBN 0125850026.

[7] B. P. Rynne and M. A. Youngson. Linear Functional Analysis. Springer, New York, 2008.
ISBN 9781852332570.

[8] R. L. Schilling. Measures, Integrals and Martingales. Cambridge University Press, Cam-
bridge, 2 edition, 2017. ISBN 9781316620243.
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