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Abstract

A system of identical bosons can exhibit a state of matter in which the ground
state is macroscopically occupied. This special state is called Bose-Einstein
condensation, and was predicted by Satyendra Nath Bose and Albert Einstein
in 1924. It took some time before physicists achieved this experimentally, but in
1995 it was done by Eric Cornell and Carl Wieman.

Since photons are also bosonic particles, they should be able to achieve Bose-
Einstein condensation in thermal equilibrium. However this is not as easy for
photons as it is for atoms, since the number of photons depends on the temper-
ature. But in 2010 the group of Martin Weitz in Bonn was able to produce a
photon Bose-Einstein condensate. This was done using a dye-filled microcavity
which is optically pumped.

The same principles are used in our setup. Photons inside the cavity thermalize
with a fluorescent dye through multiple absorption and emission cycles. The ef-
fectively two-dimensional photon gas is trapped by a harmonic potential induced
by the shape of the cavity mirrors. This results in photons with eigenenergies
of the quantum harmonic oscillator. The minimal energy is determined by the
cutoff frequency, set by the cavity length. The thermalization of the photon gas
depends on this cutoff frequency, and the total pump power. Jonathan Keeling
and Peter Kirton developed a theoretical model describing this system and its
thermalization, and simulated it in one dimension.

We simulate the same model, in two dimensions using radially averaged pho-
ton modes. Threshold for Bose-Einstein condensation is determined for differ-
ent cutoff frequencies. Our results show good agreement with those of Keeling
and Kirton, below, at and above threshold. Multimode condensation and gain
clamping of the molecular excitation density are observed above threshold. Com-
parison with experimental data can only be done qualitatively since it currently
is uncalibrated.
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Introduction

1 Introduction

The development of quantum mechanics at the beginning of the 20th century gave a
new perspective to the understanding of physics, especially on the level of (sub)atomic
particles. Moreover the theory also provided a new description of light, in terms of
photons. Light was not only a wave anymore, as in Maxwells theory [1], but could also
be seen as particles. Quantum mechanics also made it possible to develop quantum
statistics, that emerged from the combination with statistical mechanics. In quantum
statistics, indistuingishable particles in thermodynamic equilibrium occupy a certain
set of discrete energy levels. This occupation can take place in two different ways,
whether the particles are bosons or fermions. Fermions are described by Fermi-Dirac
statistics, because they obey the Pauli exclusion principle. This principle states
that identical fermions can not be in the same quantum state [2]. Particles that
do not obey the Pauli exclusion principle are called bosons, and are described by
Bose-Einstein statistics, developed by Satyendra Nath Bose [3] and later extended
by Albert Einstein [4].

Hence identical bosons can occupy the same quantum state. Albert Einstein therefore
predicted a special state of matter for a gas of bosons for sufficiently low temperatures
and/or sufficiently high particle densities. In this special state, called Bose-Einstein
condensation (BEC), a large fraction of the bosons in the gas occupy the lowest
quantum state, or the ground state. This macroscopic occupation of the lowest
energy state of the system can give rise to properties such as superfluidity [5] and
superconductivity [6]. Bose-Einstein condensation was reached experimentally for the
first time by Eric Cornell and Carl Wieman in 1995 [7]. Since then, BEC has been
reached in several systems [8–10]. As photons are also bosonic, one could wonder
whether these particles can also undergo this phase transition. However, photons
are governed by Plank’s law for black body radiation [11] This law states that the
spectral range and the total number of photons emitted by a body depend on the
temperature of that body. So when lowering the temperature of a photon gas, the
total number of photons is not conserved and will also drop. Because these two
parameters can not be set independently, the conditions for achieving BEC can not
be met for a gas of photons. This problem has also occurred in other bosonic systems,
such as exciton-polaritons in a semi-conductor microcavity [10, 12] and magnons in
an Yttrium-iron-garnet (YIG) film [13]. But solutions were found, and condensation
of these (quasi-)particles has been observed.

To achieve conservation of photon number in our setup an interaction medium is
needed. A curved-mirror optical microcavity filled with a dye solution is used to
interact with the photons. The photon gas inside the cavity thermalizes to the
temperature of the dye by multiple absorption and emission cycles. So instead of
photons getting absorbed by the cavity walls, the photons thermalize while conserving
their total number by interaction with the dye. The curvature of the mirrors of the
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cavity induces a harmonic trapping potential, and causes an effective photon mass.
Since the length of the cavity is only a few wavelengths, the system is effectively
two-dimensional. An optical pump is used to tune the total number of photons. The
result is a thermalized two-dimensional gas of massive bosons with conserved partical
number. These are the requisites for Bose-Einstein condensation. A photon BEC was
first observed in Bonn by the group of Martin Weitz in 2010 [14, 15], and our setup
is based on theirs.

An interesting question is how the thermalization of the photon gas depends on the
intensity and size of the pump, and on the so-called cutoff frequency. Jonathan
Keeling and Peter Kirton developed a theoretical model to describe the system and
its thermalization [16]. In this thesis, we investigate their model by simulating it and
comparing it with our experiments. In Section 2 the characteristics of a photon BEC
and the theoretical model are explained. In Section 3 the experimental setup and
simulations are described, and the results are analysed and discussed in Section 4.

2



Theory

2 Theory

2.1 Bose-Einstein Condensation of Photons

The photon condensate is achieved inside an optical microcavity. This bispherical
cavity consists of two mirrors with a dye solution between them, held in place by
capillary forces. The curvature of the mirrors induces a harmonic trapping poten-
tial for the photon gas, the implications of which will be discussed later in this
section. The cavity is pumped by a laserbeam at an angle of 65◦ with respect
to the optical axis, at which there is a transmission maximum through the mir-
rors. See Fig. 2.1 for a schematic view of the cavity. The laser is used as a
photon source, and due to the high reflectivity of the mirrors, the loss of pho-
tons is minimal. The photon gas is thus confined in the cavity, and will reach
thermal equilibrium by multiple absorption and emission cycles, due to which the
dye acts as a heat bath. A more detailed description of this thermalization pro-
cess follows in Section 2.1.3. The dye used here is Rhodamine 6G. This dye is
dissolved in ethylene glycol, at concentrations between 1.5 · 10−3 M and 6 · 10−3 M.

Figure 2.1: A schematic view of the dye-filled
cavity. The curvature of the concave mirrors causes

a harmonic trapping potential. The cavity is
pumped under an angle of 65◦ to get maximal

transmission [15].

The length of the cavity D0 is a few
times the wavelength of the light. This
causes a large frequency spacing be-
tween longitudinal modes, i.e. a large
free spectral range, comparable with the
width of the spectrum shown in Fig.
2.4. This leads to spontaneous emission
of photons of primarly one longitudinal
mode q [15]. Hence the mode number
in the longitudinal direction along the
optical axis is set, which fixes one de-
gree of freedom. This makes the pho-
ton gas effectively two dimensional, with
two degrees of freedom for the transver-
sal modes. So the system can now be
formally described as a two dimensional ideal Bose gas in a harmonic trapping po-
tential, with Bose-Einstein distributed transversal energies [14].

2.1.1 Dispersion and Energies of the Photon Gas

The energy of a photon is given by E = ~ω, where ~ is the reduced Planck constant
and the angular frequency ω follows from the dispersion relation with the wavevector

k. Separating k in the transversal wavenumber kr =
√
k2
x + k2

y and longitudinal
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wavenumber kz, the photon energy can be written as

E =
~c
n

√
k2
r + k2

z (2.1)

Here c is the speed of light in vacuum and n is the refractive index of the medium.
Due to the curvature of the mirrors the longitudinal mode number kz depends on the
distance r from the optical axis. By the rotational symmetry in the z-direction, we
can assume [14]

kz =
qπ

D(r)
(2.2)

Where D(r) is the cavity length at a distance r from the optical axis, given by

D(r) = D0 − 2(R−
√
R2 − r2) (2.3)

Here D0 = D(0) and R is the radius of curvature of the mirrors. Applying this and
the paraxial approximation (r � R, kr � kz) to Eq. 2.1 gives [14]

Eph(r, kr) ' mph
c2

n2
+

(~kr)2

2mph
+mphr

2 Ω2

2
(2.4)

This expression for the energy of the photons shows some interesting features of the
system. In Eq. 2.4 we have

mph =
π~nq
cD0

(2.5)

which can be seen as the effective photon mass, and

Ω =
c

n
√
D0

R0
2

(2.6)

is the trapping frequency. The energy-momentum relation above is the same as
for non-relativistic massive particles with mass mph in a two-dimensional harmonic
potential. So the curvature of the mirrors indeed induces a harmonic trap. Eq. 2.4
also shows a quadratic dispersion relation for the cavity photons due to the quadratic
dependance on kr, whereas photons in vacuum have linear dispersion, see Fig. 2.2.
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Figure 2.2: The dispersion relation for a photon in the cavity, and for a photon in vacuum [17].

The first term represents the rest energy at r=0, which is

E0 ' mph
c2

n2
=

~ckz(0)

n
(2.7)

using Eq. 2.5 and Eq. 2.2. If we define the cutoff frequency and cutoff wavelength of
the cavity respectively as ωc = ckz(0)/n and λc = 2πc/ωcn = 2π/kz(0), we can write
Eq. 2.7 as

E0 ' ~ωc =
hc

nλc
(2.8)

So the rest energy of these massive photons can be simplified into the expression
above and depends on the length of the cavity, through Eq. 2.2 and Eq. 2.3. Note
that this rest energy can only be reached at the center of the cavity, which is also
expected for massive particles in a harmonic potential.

2.1.2 Quantum Statistical Description of the Photon Gas

Using the well-known solution of the quantum harmonic oscillator [18] we can explore
the energies and their degeneracies, and subsequently the distribution of the photon
gas. The transversal photon energy u = Eph − mph

c2

n2 can be calculated from Eq.
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2.4. However, a particle in a two-dimensional harmonic trap has ofcourse discrete
eigenenergies. The harmonic potential induced by the curvature of the mirrors can
be expressed as [19]

V (r) =
1

2
mphΩ2r2 (2.9)

The transversal eigenenergies um due to this potential are given by

um = ~Ω(mx +my + 1) (2.10)

where m = mx +my and mx,my ∈ N. These eigenenergies have a degeneracy

g(um) = 2
um
~Ω

(2.11)

where the factor 2 comes from the two possible polarisation states of the photons [20].

Due to the potential in Eq. 2.9 and the non-interacting nature of photons the sta-
tistical physics of this system is best described by a two-dimensional inhomogeneous
Bose gas [21]. The thermodynamics of such a system is well-known, and it shows a
phase transition at low temperatures or high number densities [22]. This phase tran-
sition can be explored quantatively by looking at the expected number of photons
occupying a certain transversal energy state um. This occupation number n(um) is
given by the degeneracy g(um) multiplied by the Bose-Einstein distribution

nT,µ(um) =
g(um)

e
um−µ
kBT − 1

(2.12)

with kB the Boltzmann constant, T the temperature of the dye and µ the chemical
potential, defined implicitly by

Nph =
∑
um

nT,µ(um) (2.13)

where Nph is the total (average) number of photons. To solve this sum and calculate
the critical photon number Nc, we explore the thermodynamic limit. In our setup
Ω ' 1011 2πHz and T is around room temperature, so ~Ω is small compared to
kBT . This implies we can treat m and therefore um as continuous variables, turning
the sum in Eq. 2.13 into an integral and the degeneracy into the density of states.
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Evaluating this integral at µ = 0 gives the critical photon number [23]

Nc =
π2

3

(
kBT

~Ω

)2

(2.14)

beyond which the number of photons in the transversal energy states saturates. For
Nph > Nc a macroscopic occupation of the ground state is expected and observed [15],
and so a Bose-Einstein condensate of photons is created. Using the values from
our setup for Ω and T mentioned above, we find Nc ' 105, which can be reached
experimentally.

2.1.3 Thermalization

In order to conserve the total number of photons Nph in the cavity, the photon gas
interacts with a dye solution by thermalization. This thermalization process is the
key for achieving photon BEC. The laser beam entering the cavity acts as a pump, by
exciting the dye molecules. The excited dye molecules will then emit photons, which
get absorbed again by the non-excited dye molecules. By the high reflectivity of the
mirrors, the photon loss is minimal, and the photon gas is confined in the cavity.

Figure 2.3: (a) Energy level scheme of a
Rhodamine 6G molecule with ground state S0 and
excited state S1. The singlets S0,1 are manifolds

containing the rovibronic substates. (b) Equilibrium
reaction between the ground state and excited

molecules due to photon absorption and
emission [14].

The multiple absorption and emission
cycles cause the photons to be in ther-
mal contact with the dye, and adapt its
temperature. These cycles are shown
schematically in Fig. 2.3 in a Jablon-
ski diagram. The manifolds contain
the rovibronic substates of the dye.
The dye used here is Rhodamine 6G,
with the absorption and emission spec-
trum shown in Fig. 2.4. Due to
the femtosecond timescale of the colli-
sions, the rovibronic state of the dye
molecules is almost continuously al-
tered [24]. This process is fast enough
to get absorption and emission at rovi-
bronic states in equilibrium, which im-
plies that the Kennard-Stepanov rela-
tion holds [25, 26]. This relation tells
that absorption α(ω) and emission f(ω)
are related via a Boltzmann factor by
f(ω)/α(ω) ∝ ω3e−~ω/kBT [27]. This re-
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lation will later be used in Section 3.2.2 to construct a function that describes both
absorption and emission.

To look quantatively at the thermalization, rate equations for the number of absorbed
and emitted photons can be written down, using the Einstein coefficients A, B’ and
B for spontaneous emission, stimulated emission and absorption respectively [29].
From these equations the total rate equation for the number of photons n(ω) with
frequency ω can be derived. Realizing that the energy of a photon is just ~ω, results
in a solution for n(ω) that is identical to the occupation number of photons with
energy un given by Eq. 2.12 [14]. The interaction between the dye and the photon
gas thus leads to a thermal distribution equal to a Bose-Einstein distribution (with a
prefactor). Since we already showed in Section 2.1.2 that such a system can undergo
a phase transition into a macroscopic occupation of the ground state, it is hereby
shown through this thermalization process BEC can be achieved.

2800 3000 3200 3400 3600 3800
Frequency ω (2πTHz)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

A
b
so

rp
ti

o
n
/E

m
is

si
o
n
 v

a
lu

e
s 

(l
2 H
O
s
−

1
)

Emission
Absorption
ωZPL = 3456 2πTHz

Figure 2.4: Emission and absorption spectra of Rhodamine 6G, with ωZPL = 3456 2πTHz. The
spectra are derived from data of the group of Rob Nyman, using a cubic-spline fit [28].

The speed and degree of thermalization however depends on the emission and ab-
sorption rates of the photons. The absorption probability of a photon depends on its
energy ~ω, as shown in Fig. 2.4. For frequencies around the absorption and emission
peak, these processes take place fast enough such that thermalization is completed.
Thermalization can break down if absorption and emission cycles are of a timescale
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comparable to 1/κ, where κ is the photon loss rate. This is observed for low enough
photon energies [27]. Looking at Eq. 2.8, it is clear that the minimal photon en-
ergy depends on the cutoff frequency ωc. For ωc far away from the peaks in Fig. 2.4,
(re)absorption is reduced and thus equilibrium or rather complete thermalization, can
not be reached. If the cutoff frequency is near the absorption peak, (re)absorption
enhances and the photons thermalize optimally with the dye. Thus tuning ωc deter-
mines if and how fast the photon gas thermalizes. The cutoff frequency can be tuned
by changing the length of the cavity, which will be discussed in detail in Section 3.1.
For our experiments, ωc ' 3250 2πTHz, lower than the absorption peak.

2.2 Theoretical Model

Jonathan Keeling and Peter Kirton have developed a theoretical model to describe
the variation in the occupation of the photon modes and the density of excited dye
molecules, and their dependence on pump spot size, intensity and cutoff wavelength.
This section is based on their work in [16] and [30].

2.2.1 Γ(±δ) and Photon Modes

As described in Section 2.1.2 and 2.1.3 the thermalization process by multiple absorp-
tion and emission cycles is key to achieve BEC of photons. This is shown schemati-
cally in Fig. 2.5 (a). As derived in [14], this process results in Eq. 2.12, the expected
occupation number for the transversal photon energies in the cavity. The thermaliza-
tion depends on the absorption and emission rates of the Rhodamine 6G molecules. It
is therefore clear that these rates play an important role in whether or not equilibrium
in the occupation density is reached. In general, absorption and emission for a singlet
energy state of Rhodamine 6G depend on the rovibronic substates, depicted in Fig.
2.3. In earlier work [31], Keeling and Kirton eliminated these substates adiabatically,
leading to a total function Γ(±δ) for absorption and emission rates of the photon
modes, in which rovibrational effects are included implicitly. Here δ = ω − ωZPL is
the detuning of the photon mode with frequency ω from the Zero Phonon Line (ZPL)
of the dye molecules, shown as ωZPL in Fig. 2.4. The construction of Γ(±δ) out of
experimental data for absorption and emission will be discussed in Section 3.2.2. In
terms of this function, the Kennard-Stepanov relation is now given by

Γ(δ) = Γ(−δ)eβδ (2.15)

where β = (kBT )−1 [31].

To describe the interaction between the dye and the photons in a proper way, ev-
ery photon in the cavity needs to be described by a wavefunction ψ(r). Since we
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m

m

(a) (b)

Figure 2.5: (a) Schematic view of the interaction in the cavity. Γ↑ and Γ↓ represent the absorption and
emission of photons respectively, and κ is the photon loss rate. (b) The Gauss-Hermite eigenfunctions

of the quantum harmonic oscillator. [16]

consider the cases with only one longitudinal mode q, whose constant effect can be
absorbed in Γ(±δ) [16], we can focus on the transversal modes in the cavity. These
wavefunctions or photon modes are determined by the harmonic potential of the
cavity. This gives the eigenenergies from Eq. 2.10 and the Gauss-Hermite eigenfunc-
tions as eigenstates [18], as depicted in Fig. 2.5. The photon modes ψm(r) are thus
two-dimensional Gauss-Hermite functions, with corresponding frequencies ωm. These
frequencies are harmonically spaced and determined by the longitudinal energy E0 in
Eq. 2.8 and transversal energy um in Eq. 2.10, which give ωm = ωc+Ω(mx+my+1)
where m = mx +my. Now we can write down the transversal photon modes for this
system in general form, normalised in two dimensions

ψm(r) =
Hmx( x

lHO
)Hmy(

y
lHO

)e−r
2/2l2HO

lHO

√
π2mx+mymx!my!

(2.16)

Here Hm(x) is the mth Hermite polynomial [18], r = |r|, and lHO is the harmonic
oscillator length, defined by

lHO =

√
~

mphΩ
=

√
λc

4πn
4

√
qRλc
n

(2.17)

This is the characteristic length scale of our system, and we will express all lengths in
units of lHO and d-dimensional (number)densities in units of l−dHO. Since the harmonic
oscillator length depends on mph, it also implicitly depends on the cutoff wavelength
λc by Eq. 2.5. The cutoff wavelength thus also sets all parameters that are expressed
in terms of lHO.
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2.2.2 Rate Equations

Now we have described the tools and important features of our system, we can work
out rate equations for the photon occupations and excited dye molecules. Keeling
and Kirton first introduce a ’master equation’ to represent the time evolution of the
density of photons ρ̂ in the cavity. These kind of differential equations are used to
describe the time evolution of a system that can be modelled as being in a certain
probabilistic combination of a discrete set of states [32]. In this case, the different
states are the photon modes and their energies, and the master equation describing
their occupation density is given by

∂tρ̂ =M0[ρ̂] +Mint[ρ̂] (2.18)

Here M0[ρ̂] represents the bare part of the time evolution, containing decay and
pump effects. The termMint[ρ̂] describes the photon-dye molecule interaction. From
this master equation, coupled equations of motion for the photon correlation matrix
[n]m,m′ and density of excited dye molecules f(r) can be derived, within the semiclas-
sical approximation [31]. To compare the model with experiments, these equations
need to be simulated and steady state results should be derived. In order to do simu-
lations f(r) is discretized on a grid of Nr points, and we include the first Nm photon
modes. Since [n]m,m′ is thereby a Nm ×Nm matrix, this results in N2

m +Nr coupled
equations of motion that need to be solved. According to Keeling and Kirton 150
ps of simulated time requires four hours of computation time [16]. This makes it
unpractical to numerically produce steady state results and look at their dependence
on pump spot size, intensity and cutoff wavelength.

Therefore the ”diagonal approximation” is introduced. The second term Mint[ρ̂] in
Eq. 2.18 describes not only molecule-photon interactions, but also includes coher-
ence between different photon modes. The diagonal approximation neglects this inter-
mode coherence, which results inMint[ρ̂] =Mdiag

int [ρ̂] containing only molecule-photon
interaction. This approximation is thus valid in the regime of small coherence between
photon modes. The N2

m+Nr coupled equations for [n]m,m′ and f(r) can also be sim-
plified using this approach. The photon correlation matrix [n]m,m′ becomes diagonal
because every off-diagonal term describes coherence between different modes, which
is neglected. The remaining diagonal elements nm = [n]m,m are equivalent to the
population of photons in mode m. Defining the overlap matrix as f ≡

∫
ddrf(r)Ψ(r)

makes diagonalization possible by the fact that [Ψ(r)]m,m′ ≡ ψm(r)ψm′(r). This
results in diagonal overlap elements given by

fm ≡ [f]m,m =

∫
ddrf(r)|ψm(r)|2 (2.19)

Realising that f(r) is the density of excited dye molecules, fm is identical to the
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probability that a photon in mode m is ’close to’ an excited dye molecule. These
terms thus play an important role in the probability of a photon interacting with a dye
molecule through absorption or emission. The diagonalization of [n]m,m′ leaves only
Nm terms for the photon mode population, resulting in Nm +Nr coupled equations,
given by

∂tnm = ρ0Γ(−δm)fm(nm + 1)− [κ+ ρ0Γ(δm)(1− fm)]nm (2.20)

∂tf(r) = −Γtot
↓ ({nm}, r)f(r) + Γtot

↑ ({nm}, r)(1− f(r)) (2.21)

Here ρ0 is the density of dye molecules in the solvent, and κ is the decay rate of the
photon modes by mirror loss (assumed constant for all modes). The other terms will
be clarified below. These equations can be understood from basic physical principles
of emission and absorption. The rate of change of nm, the occupation of photon
mode m, in time in Eq. 2.20 depends on the amount of photons in mode m that
are emitted or absorped by dye molecules. The first term represents two emission
processes, which increase the number of photons in that mode. Spontaneous emission
in mode m is given by the probability that such a photon will be emitted, which is just
the product of the molecule density ρ0, the overlap term fm for an excited molecule
and the emission rate Γ(−δm) of the dye at mode frequency ωm. Stimulated emission
is represented by the same factor, multiplied by the already existing photons nm due
to the nature of this process. The second term in Eq. 2.20 represents the loss of
photons in mode m, following from decay and absorption. The decay term −κnm is
obvious. Absorption has the same structure as stimulated emission, the probability
that a photon will be absorbed multiplied by the number of photons in that mode.
This probability is now given by the product of ρ0, the overlapterm 1 − fm for a
ground state dye molecule and the absorption rate Γ(δm).

In Eq. 2.21, the change in the excitation density f(r) decreases by emission and
increases by absorption. The term −Γtot

↓ ({nm}, r)f(r) describes the total decay of

excited dye molecules, and Γtot
↑ ({nm}, r)(1 − f(r)) is the total excitation of ground

state dye molecules, which have density 1−f(r). Here Γtot
↓ ({nm}, r) and Γtot

↑ ({nm}, r)
are the total decay and excitation rates respectively given by

Γtot
↓ ({nm}, r) = Γ↓ +

∑
m

|ψm(r)|2Γ(−δm)(nm + 1) (2.22)

Γtot
↑ ({nm}, r) = Γ↑(r) +

∑
m

|ψm(r)|2Γ(δm)nm (2.23)

Decay of excited molecules occurs through non-cavity decay Γ↓ to rovibrational states
of the dye that do not take part in the thermalization process, and through stimulated
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and spontaneous emission of photons. This is the same as for nm, except for the sum
over the photon modes |ψm(r)|2 instead of the integrated overlap terms fm. This
indicates where in the cavity emission takes place, which is required as f(r) depends
on position. Excitation of ground state molecules happens by the pump laser, which
is modelled by the pump rate Γ↑(r), and by absorption of photons, that has the same
structure as the emission term in Eq. 2.22.

This number of equations can be solved numerically in a reasonable time for simulated
time in the order of microseconds. This allows numerically exploration of the steady
state. In Section 2.3 some of the results deduced by Keeling and Kirton are shown,
and in Section 4 our own results will be presented.

2.3 Steady State Results

First, we impose a Gaussian pump spot

Γ↑(r) =
Γint
↑

(2πσ2
p)
d/2

e
− r2

2σ2
p (2.24)

with size σp, total integrated intensity Γint
↑ and d the dimension. Using this shape

for the pump spot, some steady state results can be derived [16].

2.3.1 Far Below Threshold

First we look at pumping far below threshold, i.e. without condensation. In this
regime, both nm and f(r) stay relatively small, because there is more photon loss
and decay of excited molecules. This gives a condition for the pump spot, given by
Γ↑(r = 0)� Γ↓. Using this condition, the steady state of Eq. 2.20 and Eq. 2.21 far
below threshold can be written as

nm ' fm
Γ(−δm)

Γ(δm) + κ
ρ0

f(r) '
Γ↑(r)

Γtot
↓ ({nm = 0}, r)

(2.25)

If also κ
ρ0
� 1 and the Kennard-Stepanov relation Γ(δm) = Γ(−δm)eβδm is obeyed

(which we assume), then the expression for nm simplifies to nm = fme
−βδm . The first

condition represent relatively low photon loss (but still high decay of excited molecules
to keep the first condition), such that reabsorption occurs multiple times before a
photon is lost. Obeying the KS-relation means that absorption and emission occurs
through a thermal process. Both these conditions thus result in a well thermalized
photon gas, and therefore are equilibrium conditions.

13
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We can explore this equilibrium a bit further. For large pump spots, i.e. large σp
with respect to the spatial extension of the photon modes, the overlap terms fm can

be approximated as fm '
Γint
↑

Γ↓(2πσ2
p)d/2

[16]. This results in a total photon number (per

unit power) depending on pump spot size

Nph

Γint
↑
'
∑

m fme
−βδm

Γint
↑

'
∑

m e
−βδm

Γ↓(2πσ2
p)
d/2

(2.26)

Hence for large pump spots, the number of photons per unit power is proportional
to σdp in equilibrium.

2.3.2 At Threshold

Now the behaviour at threshold can be explored. The threshold condition for con-
densation of mode m is derived in [31], and is given by

nm =
kBT

~Ω
∼
√
Nph (2.27)

where the last relation follows from Eq. 2.14. Achieving threshold requires a certain
pumping power, denoted by Γint

↑,thres. Its value follows from time-evolving Eq. 2.20-
2.23. This is done by Keeling and Kirton for d = 1 due to computationally expensive
calculations for d = 2. In equilibrium the threshold condition becomes Γ↑(r = 0) =
Γ↓e

βδc where δc = ωc− ωZPL using the equilibrium conditions mentioned before [31].
This follows from the fact that the effective chemical potential µeff(r) = ωZPL +

kBT log
(

Γ↑(r)
Γ↓

)
reaches the lowest possible photon mode ωc in this case [30]. So the

threshold pump power in thermal equilibrium is

Γint
↑,eqbm =

√
2πσpΓ↓e

βδc (2.28)

The results of implying the threshold condition in Eq. 2.27 for different values of ωc
are shown in Fig. 2.6, together with the equilibrium result. Here the different lines
correspond to certain values of Γmax = max[Γ(δ)] (red is lowest, turqoise is highest).
Note however that in experiments Γmax is determined by the spectrum of the dye,
and can only be tuned in the given units by changing lHO, so by changing ωc.

This figure stresses the influence of ωc on the system. The dashed line shows the
equilibrium threshold pump power. At small ωc the absorption and emission processes
are too slow compared to cavity loss κ, which results in an increasing threshold power.
For large ωc the thermalization is fast enough to get close to thermal equilibrium,
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Figure 2.6: (a) Threshold pump power Γint
↑,thres as a function of cutoff frequency ωc, for different values

of Γmax. The dashed line is the equilibrium result Γint
↑,eqbm. (b) Ratio of Γint

↑,thres and Γint
↑,eqbm, in the

regime accentuated in (a). These simulations are performed in 1-D with Nm = 200 modes and
Nr = 300 points [16].

which is seen by the exponential increase of Γint
↑,thres in Fig. 2.6(a). Physically this

seems odd, since for faster thermalization one would expect to reach threshold easier.
However this trend follows from the equilibrium threshold condition in Eq. 2.28,
which is approached when ωc gets closer to ωZPL. This gives of course a limitation
on possible experiments, and thus ωc will be in the regime of Fig. 2.6(b). This
figure also clearly shows an asymptotic approach to Γint

↑,eqbm, as is expected when the
system gets near thermal equilibrium. Another interesting feature is the minimum
in Fig. 2.6(a), which represents the easiest condensation point. This minimum is
tuned by the cavity photon loss κ and Γmax, and thus one of these parameters could
be extracted using this point. This would be extremely useful for experiments, since
κ is calculated using mirror reflection, while measuring it would give a much better
result.

2.3.3 Above Threshold

At last, the steady state above threshold is studied. In equilibrium, the effective
chemical potential locks at µeff(r) = ωc. This occurs at threshold, and will remain
the same above threshold. The general steady state result for the excitation density
f(r) by putting the time derivative to zero is

f(r) =
Γtot
↑ ({nm}, r)

Γtot
↓ ({nm}, r) + Γtot

↑ ({nm}, r)
(2.29)

Through Γtot
↑ ({nm}, r) this depends on the tunable parameter Γint

↑ , see Eq. 2.23. If
nm follows a Bose-Einstein distribution with chemical potential µeff and Γ(δ) obeys
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the KS-relation, which are both equilibrium conditions, then Γ(−δm)(nm + 1) =
Γ(δm)nme

βµ holds. Since we are in equilibrium in the regime above threshold, ab-
sorption and emission rates are much larger than non-cavity decay rate and pumping
rate, i.e.

∑
m

|ψm(r)|2Γ(−δm)(nm + 1)� Γ↓ (2.30)∑
m

|ψm(r)|2Γ(δm)nm � Γ↑(r) (2.31)

These conditions require large Γ(±δ), since everything else is fixed. Applying this to
the steady state result in Eq. 2.29 gives

f(r) =
1

e−βµeff + 1
=

1

e−βδc + 1
(2.32)

Hence f(r) saturates at this distribution, which we denote by fE . The excitation
density thus becomes uniform above threshold in equilibrium, for a fixed ωc. This
kind of saturation of f(r) is also observed for lasers [33], and is known as ’gain
clamping’. Hence for a photon BEC, chemical potential locking is equivalent to the
laser concept of gain clamping. This effect is seen in simulations and shown in Fig.
2.7(a).

0

0.005

0.01

Ex
ci

te
d 

fra
ct

io
n:

 f(
r) (a)

Γmax=5kHzℓHO

f(r)
fP(r)

fE
-10 0 10

r/ℓHO

n m

Mode, m

(b)
Data
Eqbm.

1

103

106

0 5 10 15 20

Figure 2.7: (a) Excitation density f(r) of the dye molecules in 1-D for Γmax = 5 kHzlHO and
ωc = 3200 2πTHz. fP (r) is the value set by the pump and fE the clamped value. Imperfect gain

clamping is seen in f(r). (b) Population of photon modes nm together with an equilibrium
Bose-Einstein distribution, on logarithmic scale. This shows multimode condensation due to imperfect

gain clamping. Simulations are again performed with Nm = 200 modes and Nr = 300 points [16].

However, clamping of the gain profile f(r) is not perfect in this case. The condensed
mode(s) are macroscopically occupied, which leads to a disturbance in the steady
state result for f(r), because emission and absorption rates are the highest for these
modes. So Γ(±δ) is only high enough for the condensed modes, which restricts gain
clamping to these modes. Since condensed mode(s) are concentrated at the center of
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the harmonic trap, gain clamping is spatially restricted. So gain clamping is in this
case imperfect, which is called spatial hole burning in laser terminology. As we only
consider one longitudinal mode, hole burning occurs in transverse direction in the
photon BEC. This can lead to multimode condensation. Because f(r) is not uniform
by its restriction, other modes can reach the threshold condition in Eq. 2.27 without
being clamped. Multimode condensation is also seen in simulations, shown in Fig.
2.7(b). These effects also result in imperfect thermal equilibrium.

17



Setup

3 Setup

Now that we have discussed the theoretical background of the system and the model
describing it, we will show our experimental setup and describe our simulations.

3.1 Experimental Setup

The heart of the setup is the dye-filled microcavity. The function of this cavity is
already discussed extensively in Section 2.1. The cavity mirrors have a reflectivity
of 99.9985%. Both mirrors are curved in a spherical shape with a radius of R = 1
m, and are a distance D0 (see Eq. 2.3) apart. In our setup D0 = qλc/2n is around
1.5µm [19]. This leads to a trapping frequency of Ω ' 1011 2πHz.
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Figure 3.1: Schematic view of the setup used in our lab. Condensation is reached in the cavity by
pumping with a laser. The light leaking from the mirrors is captured and send through multiple lenses

and a beam splitter, and finally imaged on a CCD camera.
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The microcavity is filled with Rhodamine 6G dissolved in ethylene-glycol, at concen-
trations 1.5·10−3 M and 6·10−3 M. The refractive index of the solution n = 1.43. The
dye solution stays in the cavity by capillary forces. As can be seen in Fig. 3.1, the
cavity is pumped by a green laser at 532 nm. This laser is pulsed by an AOM with
a pulse length of 500 nm, and send through multiple lenses and mirrors to achieve
the appropriate spot size. The thermalization process of the photon gas will now
start, by which Bose-Einstein condensation can be achieved. The laserbeam enters
the cavity at an angle of 65◦, to reach a transmission maximum of 97% [19].

Since the mirrors are not perfectly reflective, some light will leak out. The photon
loss rate is given by κ = Ploss/t, where Ploss = 1 − 0.9999852 is the probability a
photon will leak out of the cavity in a time t = 2D0

c/n = qλc
c that it takes to traverse

the cavity twice. This results in κ = (1 − 0.9999852)c/qλc, which is around 2 THz
in our setup. This leaking light is used to produce an image. On the left side in
Fig. 3.1 it is send through mirrors and lenses, and a moveable mirror to measure
the spectrum with a spectrometer. Later the light gets split by a beam splitter.
One part is imaged directly on the CCD camera, and the other part is send through
a diffraction grating. This diffraction grating spectrally separates the image, such
that different photon modes get imaged at a different position, depending on their
frequency. This is depicted in Fig. 3.2. Here we see the thermal cloud of photons
below and above threshold, on the left and right side respectively. The yellow cone
can be identified as the photon condensate. Below the separated photon modes can
be seen, with the ground state on the left.

Figure 3.2: Image of the photon gas below and above
threshold. The yellow pit is the photon condensate. The

figure below shows the image send through the diffraction
grating, which produces spectrally separated modes.

The light leaking through the
other mirror also gets imaged on
the CCD camera, to compare
the amount of leaking through
both mirrors. Furthermore, an-
other laser beam is added to the
setup. This red laser in Fig. 3.1
is a HeNe-laser, that enters the
cavity on the optical axis. Its
wavelength is around 632 nm,
which is far above the high re-
flectivity range of the mirrors.
This laser beam is imaged on
another CCD camera. Due to
the curvature of the cavity mir-
rors, the image shows Newton
rings [34]. The radius of these

HeNe-rings depends on the cavity length D0. By setting a value for the radius of the
inner ring, the cavitylength can be tuned and stabilized by comparing and changing
the radius of the inner ring, using a piezo driver.
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3.2 Simulations

To numerically solve the set of coupled equations in Eq. 2.20-2.23, we simulate them
in Python using an adaptive time-step Runge-Kutta method. The Runge-Kutta
methods are iterative methods used to solve temporal discretized ordinary differential
equations [35]. This is done by using the scipy.integrate.ode class with dopri5 as
integrator. This integrator is an explicit Runge-Kutta method of order 4/5, and
makes use of an adaptive time-step, which can be set by choosing the maximum of
internally defined steps that are used [36].

3.2.1 Two Dimensional Radially Averaged Simulations

Keeling and Kirton have used the same method [16], and produced steady state
results in one dimension for Nm = 200 modes and Nx = 300 grid points. For our
simulations, we will also use Nm = 200 modes. However, our simulations will be
in two dimensions using radially averaged photon modes. This means that the two
dimensional transverse photon modes given in Eq. 2.16 will be averaged over their
positions (x, y) for a certain distance r =

√
x2 + y2 from the center of the cavity. By

the cylindrical symmetry of the cavity, this approximation is valid. This will make
the calculations less computationally expensive. These new modes are of course
normalized again, and will be denoted by ρm(rn).

Since the photon modes are radially averaged, all other positionally dependent pa-
rameters should satisfy this condition too. The discretized grid consists of Nr = 531
points describing a distance r from the cavity center, with a constant separating
distance dr. As mentioned in Section 2.2, we express all lengths in the harmonic
oscillator length lHO ' 1µm and all densities in l−2

HO. The spatial grid extends to 35
lHO, which is comparable with the spatial extension of the photon modes observed
in the experiment. Hence the excitation density f(r) is now also discretized on this
new grid. The density of dye molecules ρ0 is now a 2-D number density, given by
ρ0 = [R6G]NAD0l

2
HO where [R6G] is the concentration of Rhodamine 6G molecules

in the solution and NA ' 6 · 1023 is Avogadro’s number. For parameters in our setup
this results in ρ0 ' 8.8 · 107l−2

HO.

Another important parameter is the overlap fm for photon mode m, given by Eq.
2.19. Due to the shape of the cavity this integral can easiest be calculated in cylin-
drical coordinates. Since both f(r, φ, z) and ρm(r, φ, z) are radially averaged, they
are independent of φ and z, integrating out a factor of 2πD0. Since the grid is dis-
cretized, the remaining integral over r becomes a summation over Nr points. This
gives

fm = 2πD0

∑
1≤n≤Nr

f(rn)ρm(rn)rndr (3.1)
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This is in fact nothing else than the inner product between a matrix 2πrnρmn where
ρmn = ρm(rn) and a vector fn = f(rn), which results in a vector fm. Note that the
overlap terms are dimensionless.

Furthermore a Gaussian pumpspot Γ↑(r) is used, with width σp = 10lHO which is
also used approximately in experiments.

3.2.2 Construction of Γ(δ)

All parameters to solve Eq. 2.20-2.23 are now known or can be calculated, except
the total absorption and emission function Γ(δ). This total spectrum contains the
effects of all ro-vibrational modes, as explained in Section 2.2. This function can be
constructed from experimental data for emission and absorption of Rhodamine 6G
in ethylene-glycol. To compare our results with the results of [16], we use the same
method as described in their appendix.

Experimental data from the group of R. Nyman [28] is used. Absorption data is given
in terms of cross sections in m2 and measured at multiple concentrations. Emission
data is given in terms of counts, both for angular frequencies between 2723 2πTHz
and 3918 2πTHz. Some data points are filtered out because these are at high frequen-
cies (small wavelengths), where noise is significant. The absorption data for a dye
concentration is used at a certain wavelength interval, since the spectrometer has a
different optimal range for different concentrations. The emission data contains some
peaks due to stray light, which are also left out. The remaining data is interpolated
using a cubic-spline fit Γabs.,exp(ω) and Γem.,exp(ω) for the absorption and emission
data respectively.

To produce a single function describing both absorption and emission, the data should
be given in the same units. To write the absorption cross sections as absorption rates,
they are multiplied by c/4n, where c is the speed of light and n the refractive in-
dex of the dye-solution. Looking at the units in Eq. 2.20, we can derive that for
our 2-D simulations [Γ(δ)] = l2HOs

−1. Therefore we divide the absorption rates by
D0l

2
HO, eliminating the z-dimension and resulting in the right units for our simula-

tions. To obtain the same units for the emission data, another technique is used.
Absorption and emission should be the same on the Zero Phonon Line. So we nor-
malize Γem.,exp(ω) such that Γem.,exp(ωZPL) = Γabs.,exp(ωZPL). The resulting fits for
absorption and emission are shown in Fig. 2.4.

To combine these fits in one function, the weighted sum of both is taken, resulting in
a total experimental function Γexp(δ) = (Γabs.,exp(δ) + Γem.,exp(δ))/2. This function
is however not consistent with the Kennard-Stepanov relation in Eq. 2.15, which
is assumed to hold [14]. Furthermore, noise is significant for large negative δ, since
Γexp(δ) is small there. To take out both problems, a new function is constructed

21



Setup

Γ(δ) =
1 + y(δ)

2
Γexp(δ) +

1− y(δ)

2
Γexp(−δ)eβδ (3.2)

where y(δ) = (2/π) arctan(~δ/kBT ) is a smooth interpolating function between −1
and +1, such that Γ(δ) ' Γexp(−δ)eβδ which is above the noise for large negative δ.
It can easily be checked that this function satisfies the Kennard-Stepanov relation.
Therefore this Γ(δ) is the total function that will be used in the simulations to describe
both emission and absorption rates. It is shown in Fig. 3.3, as a function of ω to
compare with Fig. 2.4.

We now have all the tools to numerically solve the rate equations. In Section 4 steady
state results will be showed, and compared with the results of Keeling and Kirton
and our own measurements.
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Figure 3.3: Total function Γ(δ) describing emission and absorption rates, constructed with
experimental data. It is plotted as a function of ω to compare with Fig. 2.4. The dashed line shows the

Zero Phonon Line ωZPL.

22



Results

4 Results

4.1 Measurements and Settings

First we will describe the experiments performed in our lab, to explain the parameters
used in the simulations. The results of these measurements will be used to compare
with simulated results.

Experiments are performed in the setup described in Section 3.1, with the same
parameters and dye concentrations of 1.5 · 10−3 M and 6 · 10−3 M. Multiple sets of
measurements are done, each with a different cutoff wavelength λc, which is of course
directly related to the cutoff frequency ωc through Eq. 2.8. For our experiments
λc = [592 nm, 576 nm, 586 nm], performed in the same order. The pump spot does
not have a well-defined radius σp, since earlier experiments have shown a difference
in x- and y-radius of the pumpspot. Since this value is mostly between 7 and 13lHO,
we take σp = 10lHO for our simulations. Furthermore the pump spot is not controlled
by a simple on/off switch, but it needs some time to increase to its total intensity
Γint
↑ , and to decrease to zero. The time this process needs is about 50 ns. This is

of course not included in simulations. At this moment, a new setup is build using a
Pockels cell to solve this problem in the pumplaser. Measurements are done using
an interleave power ramp, where pump power is increased and decreased every step.
This is to exclude cumulative effects in each measurement. By the AOMs in the
setup, the continuous light is cut in pulses of 500 ns. As this is much shorter than
the integration time of the camera, all the measured values are effectively integrated
over this period.

The settings of our simulations are based on the experiments. The used concentra-
tions are the same, although most simulations will be done for 1.5 ·10−3 M. From now
on we take this concentration for our simulations, unless stated otherwise. We assume
a temperature T = 300 K, pumpspot size σp = 10lHO and Γ↓ = 250 MHz [16, 37].
Other parameters are mentioned in Section 3. We use Nm = 200 photon modes and
Nr = 531 grid points. The simulations are performed over a time tfin = 500 ns,
the same as a pulse length in the experiment, and a timestep dt = 5 ns for which a
result is produced. The maximum of internally defined steps is N = 4000. Hence the
simulation can take timesteps as small as 1.25 ps. Since the interaction between the
photons and dye molecules occurs in the order of picoseconds [14], this is small enough
to time-evolve the system accurately. The simulated results are also integrated over
the period of 500 ns, and time-averaged to compare with our experimental results.
In the following sections, results are shown for multiple cutoff frequencies and total
pump intensities, to obtain results below, at and above threshold.
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4.2 Far Below Threshold

Before comparing our simulated results with the results of Keeling and Kirton or
with any measurements, we first want to check if the results of our simulations make
physical sense. Therefore we look at our simulations far below threshold pumping. In
Section 2.3 steady state results far below threshold are theoretically derived from Eq.
2.20-2.23. These results are given by Eq. 2.25. To simulate far below threshold, we
set Γint

↑ = 105 l2HO Hz � Γint
↑,eqbm � 2πσpΓ↓ where the inequality ensures that we are

far below threshold. Furthermore we set ωc = 3200 2πTHz and use a concentration
of 1.5 · 10−3 M. The result is shown in Fig. 4.1.
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Figure 4.1: Simulated and theoretical results far below
threshold. The excitation densities totally overlap, and mode

occupations only differ significantly for the lowest modes.

The molecular excitation den-
sity f(r) is the same for both
theoretical and simulated re-
sult. The photon mode occu-
pations nm only show a signifi-
cant deviation from the theoret-
ical result for the lowest modes.
However the theoretical result
shows a higher occupation of
the first mode than the zeroth
one. Far below threshold, the
pump rate is so small with re-
spect to the photon and non-
cavity molecule loss rate, that
reaching thermal equilibrium is
highly unlikely. Therefore Bose-
Einstein distribution of the pho-
tons can not be expected. How-
ever, since energies are very low
we should still expect higher occupation of the ground state than the first excited
state. So this seems to be a flaw in the theoretical approximation. We can thus
conclude that our simulations are accurate.

4.3 Threshold Determination

To show results at and above threshold for different ωc, we should first determine the
threshold pump power Γint

↑,thres at every cutoff frequency. This is done by implying the
threshold condition in Eq. 2.27 on the ground state for multiple cutoff frequencies,
giving n0 ' 170 as threshold occupation for all cutoffs. This threshold occupation
is almost the same for all ωc since Ω changes barely for different cutoff frequencies.
Simulations are performed using different pump rates, until the threshold occupation
was satisfied. The threshold pump power is also determined for the experiments.
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These pump powers are expressed in terms of the threshold pump power in thermal
equilibrium Γint

↑,eqbm = 2πσ2
pΓ↓e

βδc , which is the same as Eq. 2.28, but now in two
dimensions. The results are shown in Fig. 4.2.
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Figure 4.2: Simulated and experimental results for Γint
↑,thres at different ωc, expressed in Γint

↑,eqbm.

Thermal equilibrium is only reached for fast enough thermalization. Since thermal-
ization is slow for ωc further away from the Zero Phonon Line and vice versa, we
can not expect to be in thermal equilibrium for every cutoff frequency. Therefore
Γint
↑,thres 6= Γint

↑,eqbm, since further away from thermal equilibrium, more pumping is

required to achieve Bose-Einstein condensation. It is thus also clear that Γint
↑,thres

depends on ωc. Since higher cutoff brings us closer to complete thermalization, we
expect to approach Γint

↑,eqbm. This is also seen in Fig. 4.2. Increasing ωc results in
an asymptotical approach of the equilibrium threshold pump power. This is seen for
both simulations and experiments. The experimental data has no dimension because
the pump power in our setup is currently uncalibrated. The experimental data are
scaled such that it can be compared with the simulated results. Quantative claims
about these results are therefore not reliable, but qualitatively there is enough to
say. Both simulated and experimental results show the same asymptotic trend as
depicted in Fig. 2.6(b). This figure shows the results of Keeling and Kirton for their
1-D simulation. This gives another confirmation of the working of our simulations,
since these results are expected to be the same, apart from a constant factor due to
different dimension. Our simulated results are also in the same order of magnitude
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as those shown in Fig. 2.6(b), hence also quantatively they seem comparable.

In Section 2.3 we mentioned the significance of the minimum in Fig. 2.6(a), which
represents the easiest condensation point. This minimum is tuned by the cavity
photon loss κ and Γmax. Since Γmax is set for experiments, tuning this minimum for
different Γint

↑,eqbm could result in a far better approximation of κ. Since we’ve obtained
a similar result for the threshold pump power, κ could be calculated by fitting this
to our data. However, calibration of the pump power is first needed to make such a
fit.

4.4 At Threshold

Now the threshold pump powers are determined, the actual photon occupations and
excitation densities can be looked into. Results at threshold are determined for
ωc = 3180 2πTHz and 3275 2πTHz, corresponding to the cutoff wavelengths λc = 592
nm and 576 nm at which measurements are performed. The threshold pump powers
for these cutoffs are Γint

↑,thres = 8.89 Γint
↑,eqbm and 1.438 Γint

↑,eqbm respectively. The results
for ωc = 3180 2πTHz are compared with experimental data. This is shown in Fig.
4.3 and Fig. 4.4. The green line represents the equilibrium Bose-Einstein distribution
at threshold, where the chemical potential µ = 0.
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Figure 4.3: Simulated and experimental results at threshold for ωc = 3180 2πTHz. The upper figure
shows the excitation density f(r), and the lower shows the mode occupations nm. The green line is an

equilibrium Bose-Einstein distribution at threshold.
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Figure 4.4: Simulated results at threshold for ωc = 3275 2πTHz. The upper figure shows the excitation
density f(r), and the lower shows the mode occupations nm. The green line is an equilibrium

Bose-Einstein distribution at threshold.

The excitation density f(r) shows a distribution expected below and at threshold [37],
larger at smaller distances from the center, also shown in Fig. 2.7 as fP . The sim-
ulated photon mode occupations nm show the same trend as the equilibrium Bose-
Einstein distribution, however it deviates at some modes. At ωc = 3180 2πTHz it
seems to be above equilibrium, while at ωc = 3275 2πTHz it is below equilibrium.
This shows again that thermal equilibrium does in fact depend on the cutoff. Of
course the assumption µ = 0 is not entirely accurate at threshold, since the chemical
potential only approximates zero for Bose-Einstein condensation. A far more notable
deviation is the one between simulations and experiments. The experimentally de-
termined mode occupations are significantly above both simulated and equilibrium
expectations, except for the ground and first excited state. Out of a set of experimen-
tal data showing the pixel counts ordered by the chemical potential of the photons in
the thermal cloud, one result is chosen to compare with simulated results. This ex-
perimental result is chosen by determining the ratio between the occupation of mode
m = 0 and mode m = 1. The one that shows the best agreement with the same ratio
of the simulated result is used. This experimental data is then scaled to the simulated
data, such that the occupation of the ground state is the same. This is done because
the exact number of photons in each mode can currently not be extracted from our
experimental data. Therefore, the simulations and experiments show agreement for
the first two modes, but differ for other modes. Calibration of the experimental data
should be done to improve data selection and make a quantitative analysis possible.
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It is also interesting to look at the dependence of the threshold on concentration.
For larger concentrations, the molecule density ρ0 increases, which speeds up the
thermalization process. Hence smaller threshold pump power is expected. This larger
concentration will however eventually kill the dye faster, since interaction between
dye molecules will become a more important factor. This increases Γ↓ and changes
the emission spectrum of the dye.
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Figure 4.5: Simulated and experimental results at threshold for ωc = 3180 2πTHz for a dye
concentration of 6 · 10−3 M. The upper figure shows the excitation density fr, and the lower shows the

mode occupations nm. The green line is an equilibrium Bose-Einstein distribution at threshold.

Fig. 4.5 shows the result for a concentration of 6 · 10−3 M at threshold for ωc = 3180
2πTHz. The threshold pump power Γint

↑,thres = 2.964 Γint
↑,eqbm here, which is far lower

than for 1.5 · 10−3 M, as expected. This concentration also shows better agreement
with the equilibrium Bose-Einstein distribution at threshold, which also indicates
that better thermal equilibrium is obtained when thermalization occurs faster.

4.5 Above Threshold

Finally, simulations above threshold are done, again for ωc = 3180 2πTHz and 3275
2πTHz. Now the pump powers are chosen such that Γint

↑ > Γint
↑,thres. We used Γint

↑ = 9

Γint
↑,eqbm for ωc = 3180 2πTHz and Γint

↑ = 1.47 Γint
↑,eqbm and 1.5 Γint

↑,eqbm for ωc =
3275 2πTHz. The results are shown in Fig. 4.6-4.8, with again the equilibrium
Bose-Einstein distribution at threshold for comparison. For ωc = 3180 2πTHz also
experimental results are shown.
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Figure 4.6: Simulated results above threshold for ωc = 3180 2πTHz. The upper figure shows the
excitation density fr, showing gain clamping. The lower figure shows the mode occupations nm, showing

multimode condensation. The green line is an equilibrium Bose-Einstein distribution at threshold.
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Figure 4.7: Simulated results above threshold for ωc = 3275 2πTHz. The upper figure shows the
excitation density fr, showing gain clamping. The lower figure shows the mode occupations nm, showing

multimode condensation. The green line is an equilibrium Bose-Einstein distribution at threshold.
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The first two figures already show gain clamping and multimode condensation for
values of Γint

↑ just above threshold. So these effects also occur in our simulations.
The gain clamping can be seen by the flattening in the excitation density, instead of
smoothly growing to a maximum like what happens at threshold. The condensation of
multiple photon modes occurs for both cutoffs, whereas the occupations for ωc = 3275
2πTHz are much larger than for ωc = 3180 2πTHz (note the logarithmic scaling).
This is however hard to compare since the pumping can be harder for the first one.

The experimental data shown in Fig. 4.6 shows the same discrepancy as at threshold.
Again, the ground and first excited state show good agreement with simulations, but
this does not hold for other modes. This is again due to the way the data is selected.
Therefore a better selection procedure should be used and the experimental data
should be calibrated.
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Figure 4.8: Simulated results far above threshold for ωc = 3275 2πTHz. The upper figure shows the
excitation density fr, which shows spatially restricted gain clamping. The lower figure shows the mode

occupations nm, showing multimode condensation. The green line is an equilibrium Bose-Einstein
distribution at threshold.

The last figure shows results for ωc = 3275 2πTHz far above threshold at Γint
↑ = 1.5

Γint
↑,eqbm. Here the effect of gain clamping and multimode condensation is even more

present. Occupation of other condensed modes is at the order of the occupation of
the ground state. Therefore we even see a dip in the excitation density f(r), which
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is increasing to the normal density outside the spatial extension of the condensed
modes. This clearly shows the spatial restriction of the gain clamping. Hence the
gain clamping is indeed imperfect due to macroscopically populated modes, as shown
and derived by Keeling and Kirton [16].
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5 Conclusion

We have explored the thermalization of a photon Bose-Einstein condensation in a
dye filled microcavity. This thermalization depends on the total pump power and
the cutoff frequency, which is determined by the length of the cavity. Using our
simulations of the theoretical model developed by Keeling and Kirton, the photon
mode occupations and density of excited molecules are investigated. We improved
their simulations by using radially averaged photon modes in two dimensions, and
studied the results below, at and above threshold.

The results show the same features as their simulations, showing an agreement be-
tween the 1-D and 2-D simulations. These results contain the threshold pump powers
for different cutoffs, and interesting effects above threshold like multimode conden-
sation and gain clamping.

The mode occupations however do not seem to be in good agreement with experi-
ments. This is due to experimental calibration and data selection problems, which
should be solved in the future. One way to select data more carefully would be to
look at the thermal tail of simulations and measurements instead of the occupation
of the first modes.

The simulations can however be used to explore interesting areas within this subject.
The position of the pumpspot could be changed, or a positionally dependent κ could
be imposed. This could be interesting, since the threshold minimum depends on this
photon loss, which is crucial to the experiment. Therefore accurately determining
this parameter would be of great use to experiments.
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Appendix A : Python Code for Simulations

These are the most important parts of the Python code for simulating the rate
equations. Parameters and analysis of the absorption and emission data are omitted.1

import numpy as np
import s c ipy . i n t e g r a t e as i n t e g r a t e
import matp lo t l i b . pyplot as p l t
import s c ipy . i n t e r p o l a t e
import csv
from s c ipy . i n t e g r a t e import ode

r = np . load ( ’ t h e o r e t i c a l p r o f i l e s r a d i i . npy ’ )
#Grid po in t s f o r the s imula t ion , in r a d i a l d i r e c t i o n ( in lHO)
rhos = np . load ( ’ t h e o r e t i c a l p r o f i l e s . npy ’ )
#Rad ia l l y averaged ho e i g en s t a t e s , 0 to 35 lHO
dr = r [1]− r [ 0 ] #in lHO

for m in np . arange ( rhos . shape [ 0 ] ) : #Normaliz ing wave funct ions
rhos [m]/= np .sum( 2 .* pi * rhos [m]* r *dr )

degm = 2 .* (m+1.) #Degeneracy o f the e i g enene r g i e s o f the harmonic
#o s c i l l a t o r , f a c t o r 2 due to p o l a r i z a t i o n

def wm(m) : #The f r e qu en c i e s o f the ( r a d i a l l y averaged ) photon modes m
return wc + (m+1.)* t r a p f r e q

dm = wm(m) − wzpl #Detuning o f the photon modes , in sˆ−1

#Gaussian pumpspot ( pumping ra t e o f the molecu les )
pump = ( gammaint / ( 2 .* pi * sigmap **2 . ) )* np . exp (−0.5*( r / sigmap ) * *2 . )

#The t o t a l ab sorp t i on / emiss ion ra t e s as func t i on o f detuning ,
#gammaexp( de t ) i s the func t i on determined from exper imenta l data ,
#and smth ( de t ) i s a arctan .
def gamma( det ) :

return ((1 .+ smth ( det ) ) / 2 . ) * gammaexp( det ) + ((1.− smth ( det ) ) / 2 . )
*gammaexp(−det )*np . exp ( det *hbar /(kB*T) )

1For the 2-D averaged photon modes contact Dr. D. van Oosten: D.vanOosten@uu.nl
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#The o v e r l a p i n t e g r a l s f o r the e x c i t a t i o n den s i t y and photon modes ,
#as an array (no un i t ) !
def o v e r l a p i n t ( f , l i j s t ) :

modes = [ ]
for i in l i j s t :

modes . append (np .sum( r * f * rhos [ i ] ) )
return np . array ( modes )

#Rate equa t ions f o r photon mode occupat ion nm and
#e x c i t a t i o n den s i t y f ( r )
def ratenm ( t , x ) :

n = x [ 0 : n length ]
f = x [ n length : n length+f l e n g t h ]
fm = o v e r l a p i n t ( f ,m)*2 .* pi *dr
return rho0*gamma(−1.0*dm)* fm*(n+1) −

( kappa + rho0*gamma(dm)*(1−fm ) )*n

def r a t e f r ( t , x ) :
n = x [ 0 : n length ]
f = x [ n length : n length+f l e n g t h ]
sum1 = np . z e r o s ( f l e n g t h )
sum2 = np . z e r o s ( f l e n g t h )
for i in m: #Note the degenerac i e s

sum1+= rhos [ i ]*gamma(−1.0*dm[ i ] ) * degm [ i ] * ( n [ i ]+1)
sum2+= rhos [ i ]*gamma(dm[ i ] ) * degm [ i ]*n [ i ]

return −(gammad + sum1)* f + (pump + sum2)*(1− f )

#Put the ra t e equa t i ons t o g e t h e r to ge t one s o l u t i o n
def ratex ( t , x ) :

return np . concatenate ( ( ratenm ( t , x ) , r a t e f r ( t , x ) ) )

#Parameters f o r the ode s o l v e r
s t a r t v a l u e s = F
N = 4000
t f i n = 500 .*10 .** ( −9 . )
dt= 5 .*10 .** ( −9 . )
t s t e p s = int ( t f i n /dt )
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#ODE so l v e r
s o l v e r = ode ( ratex )
s o l v e r . s e t i n t e g r a t o r ( ’ dopr i5 ’ , ns teps=N)
s o l v e r . s e t i n i t i a l v a l u e ( s t a r t v a l u e s , 0 )

s o l u t i o n=np . z e ro s ( (732 , t s t e p s +1)) #make an ’ empty ’ l i s t and f i l l
#t h i s wi th the s o l u t i o n s ( f o r every t imes t ep )
idx=0

while s o l v e r . s u c c e s s f u l ( ) and s o l v e r . t < t f i n :
s o l u t i o n [ 0 , idx ]= s o l v e r . t+dt
s o l u t i o n [ 1 : , idx ] = s o l v e r . i n t e g r a t e ( s o l v e r . t+dt )
idx+=1
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