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Abstract

In this bachelor’s thesis we study multi-mode effects on the Bose-Einstein condensation (BEC) of photons
in a dye-filled microcavity. The repulsive effective interaction of the photons should increase the conden-
sate size. We show how the condensate radius of the ground state and an excited state depend on this
effective interaction of the photons. We show that the spatial form of the excited state can also decrease
the radius of the ground state. For this effect to occur, we expect a sufficiently large effective interaction.
Comparing our model with experimental data gives us an effective interaction of g̃ = (5.2 ± 2.3) × 10−5.
However, one should interpret this result with care, because better measurements of the photon occupa-
tion numbers are needed before we can reach solid conclusions.

We further investigate rate equations for the BEC of photons to understand the stationary photon
occupation numbers. We find approximated solutions to these rate equations to find the dependence of
the photon occupation numbers on the pump rate which excites the dye molecules in the condensate.
Despite those approximations we estimate critical parameters for which either lasing or saturation of the
photon numbers is expected. We conclude that the rate of decay from the cavity and emission rates
of the dye is very important. From comparing the model with experiment we can conclude that the
approximations are well enough to capture the right trend of real data. However, in the limit of large
photon numbers, the approximations aren’t good enough anymore and a more accurate approach will be
necessary.
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1 Introduction

With the introduction of quantum mechanics in the 20th century, a whole new area of physics was discovered.
Within this new area, a lot of rules were discovered, different from the known rules of classical mechanics.
To find out whether we need to apply the concepts of quantum mechanics Louis de Broglie found a simple
hypothesis. In his rule, he states that a particle has wave-like behavior when the average interparticle distance
is smaller than de Broglie wavelength

λ =
~√

2mkBT
, (1)

with ~ the reduced Planck’s constant, m the mass of the particle, kB Boltzmann’s constant and T the
temperature of the system. One of the cases when this happens is a Bose-Einstein condensate (BEC). In
this state, the de Broglie wavelength of the particles is so large that they overlap and the particles aren’t
distinguishable. BEC was first predicted by A. Einstein [1] and can roughly be defined as the macroscopic
occupation of the ground state at thermal equilibrium. In the recent years BEC’s have been formed using
ultra-cold atomic Bose gases and it is the ideal playground to study macroscopic quantum systems.

1.1 Bose-Einstein condensate of photons

One would expect that the ideal photon gas, associated with blackbody radiation, would show Bose-Einstein
condensation. Photons can indeed be brought into thermal equilibrium in a black box, but at low temper-
atures photons disappear in the cavity walls which implies that the chemical potential is strictly zero. A
macroscopic occupation of the cavity ground state will therefore not occur. It was not until 2010 before a
Bose-Einstein condensate of photons was realized by using a dye-filled optical microcavity [2]. Since then,
interest in this kind of BEC has grown, because of its relatively simple set up. Since 2010, three research
groups have realized a photon BEC [2–4] and the literature on the subject has grown extensively [5].

1.2 Photon-photon interactions

Recent work on the subject focused on the effective interactions for the BEC of photons. The nature of
the interaction isn’t clear yet, so different results for the interaction have been found. Klaers et al. [6]
where the first that claimed to have found an interaction between the photons. For a noninteracting ideal
photon gas, one expects that the condensate size remains the same. However, Klaers et al. [6] measured that
the condensate radius enlarges with an increasing condensate fraction. They explained this by assuming a
repulsive interaction between the photons. Using a theoretical model, based on the Gross-Pitaevskii equation,
they estimate the dimensionless interaction parameter to be g̃ = (7± 3)× 10−4.

Other research groups have also studied the effective interaction. Marelic et al. [7] used a model based on
the quasi-particle dispersion in the condensate and found g̃ = 10−4. They even determined an upper limit of
g̃ ≤ 10−3.

Greveling et al. [4] also looked at the condensate radius and condensate photon number. They even
did this for several dye concentrations from which they concluded that the effective interaction strength
decreases with increasing dye concentration. Their effective interaction, for all dye concentrations, is of the
order g̃ ' 10−2. However, this is more then one order of magnitude larger then what the other groups
estimated.

Besides the experimental determinations of the effective interaction, van der Wurff et al. [8] even tried
to find possible mechanisms for the photon-photon interaction. However, these different theoretical models
yield interaction strengths 10−9 ≤ g̃ ≤ 10−4, which is typically much lower then these of the experimental
research groups.
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1.3 Research question

Inspired by the work of Greveling et al. [4], which determined a much larger effective interaction then the
other research groups, we want to make a model for the effective interaction as well. The reason that their
effective interaction is likely too large is due to the fact that theoretically only the ground state of the photons
is taken into account, while excited states contribute to the experimental measured condensate size as well.
With this in mind we want to improve the description and add the effects of an excited state. This leaves us
with the main research question of this thesis:

• What is the effective photon-photon interaction strength in a Bose-Einstein Condensate of photons
when looking at the condensate radius for the ground state interacting with an excited state?

So the goal of this bachelor’s research is to add the contribution of an excited state. While we derived this
model we had good contact with the research group of Dries van Oosten, which determined the effective
interaction of Greveling et al. [4]. They provided us with the necessary insight in the experiment and with
data to compare our theoretical models with.

As this bachelor’s research proceeded, we encountered certain limits of our theoretical model. We were
able to get the effective interaction from the condensate radius of the ground state and the excited state.
However, we weren’t able to explain the photon occupation numbers of the different states. We found out
which phenomena need to be taken into account to describe these photon numbers. One of this phenomena
is a pump laser which is necessary to realize a BEC of photons. With this insight, we came up with the extra
research question:

• What describes the photon occupation numbers of different states in the BEC of photons and how does
it depend on the pump laser?

1.4 Outline

This thesis can be devided into two different parts. On the one hand, we discuss the effective interaction and
compare this to earlier results. On the other hand, we want to say something about the photon occupation
numbers. The precise layout of the thesis is as follows.

In section 2 we look at some prerequisites. Before we can answer our research question we must understand
the experimental set up. From this, the characteristic equations for a photon BEC follow (section 2.2 and
2.3) and we will find out that the photons behave like massive particles in a two-dimensional harmonic trap.
This can be used later on. At the end of this section, we discuss the results of Greveling et al. [4] for the
effective interaction. As we have said before, we will argue that this estimate of the effective interaction is
too large and this will be the main motivation for this bachelor’s research.

After we have determined the characteristic equations for a photon BEC, we identify in section 3.1 similar
equations as in Greveling et al. [4] to describe the effective interaction. However, we solve these equations
with a variational ansatz for both sizes of the ground state and an excited state. Our variational parameters
are a direct measure for the condensate radius of these states. Using perturbation theory, we find in section
3.3 solutions for our variational parameters. At the end of this section we will discuss these results and
compare them to the results of Greveling et al. [4]. Furthermore we identify certain limits of our model. This
is the motivation for the next section.

In section 4 we first try to understand the physical phenomena of the BEC of photons including the pump
laser. From this, the equations to describe the photon numbers and the excitation density of the dye, follow
in section 4.2. Because these equations can’t be solved analytical, we try to find approximated solutions for
the equilibrium situation. In section 4.5 we will discuss our results by looking at different limits.

To conclude we compare in section 5 our models with experimental data, provided by the research group
of Dries van Oosten. We apply our models to find an effective interaction. We furthermore see that our
models for the photon occupation numbers capture the right trend and they show that the decay rate from
the cavity is an important parameter in the experiment.
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Figure 1: Schematic picture of the experimental set-up of the Bose-Einstein condensate of photons [6]

2 Prerequisites

In this section we discuss a few concepts of a Bose-Einstein condensate of photons. These will be of great use
in the following sections of this thesis. First of all, we need to understand the experimental set up. From this,
we can identify the dispersion relation of the photons in the condensate. We find that the photons behave
like massive particles in a harmonic potential. At the end of this section, we discuss the effective interaction
as determined by Greveling et al. [4] and argue why this is an overestimation. This is the main motivation
for the next section.

2.1 Experimental set-up

In 2010 Klaers et al. [2] were the first to realize a BEC of photons. They used a dye-filled microcavity
consisting of two spherical curved mirrors with radius of curvature R (see figure 1). These mirrors, placed
opposite of each other, are separated by a distance D0 along the optical axis. This means that at a distance
r from the optical axis, the distance between the two mirrors is given by

D(r) = D0 − 2
(
R−

√
R2 − r2

)
. (2)

Furthermore, the microcavity is filled with a drop of dye. This dye is very important because it thermalizes
the photons via absorption and emission. Photons that leak out of the micro cavity are captured with a
camera and this data can be used to analyze the BEC of photons. The total number of photons in the cavity
is controlled by pumping with a laser with wavelength λ. Table 1 shows typical values for the experimental
parameters.

R 1m
q 8
D0 2× 10−6m
λ 523× 10−9m
m 5.34× 10−36kg
Ω 2.30× 1011s−1

ωcut 3.18× 1015s−1

lHO 9.27× 10−6m

Table 1: Typical values for the experiment.
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2.2 Dispersion relation

To get a macroscopically occupied ground state, which is needed to obtain BEC, the curvature of the mirrors
is very important. Free photons with frequency ω have of course a linear dispersion relation: E = ~ω.
However, in the cavity we can separate the momentum k of the photons into kz along the optical axis of the
mirrors and into kr transversal to this optical axis. If furthermore kz � kr we can approximate the energy
of the photons:

E = ~c∗|k| = ~c
√
k2
z + k2

r ≈ ~c∗
(
kz +

k2
r

2kz

)
, (3)

where c∗ is the speed of light in the dye. The longitudinal momentum should satisfy the boundary condition
kz(r) = qπ/D(r) with q an integer that determines the wavenumber.
For R� r and a fixed quantum number q we get the following approximated energy [2, 6]:

E ≈ mc∗2 +
~2k2

r

2m
+

1

2
mΩ2r2, (4)

where we defined an effective photon mass

m =
~kz(0)

c∗
(5)

and trapping frequency

Ω =
c∗√
D0R/2

. (6)

We can identify the first term with the rest energy [9]. The second term is proportional to the squared
momentum, so we can identify it with the kinetic energy. For the last term, we recognize the harmonic
potential (with trapping frequency Ω) for a massive particle in two spatial dimensions. So, instead of a linear
dispersion relation as with free photons, we get a quadratic relation in r and a rest energy

E0 = mc∗2 = ~kz(0)c∗ = ~ωcut, (7)

where we defined the cutoff frequency as

ωcut = kz(0)c∗. (8)

This means that the momentum kz along the optical axis gives us a nonzero rest energy and we are left with
a two-dimensional system (see figure 2).

2.3 Harmonic Oscillator

Equation (4) gives the energy of the photons in the cavity. We recognized that this equation is the same as
for a massive particle (in this case a boson) in two spatial dimensions in a harmonic potential with trapping
frequency Ω. This means that, in good approximation, the Hamiltionian H for photons in the BEC of light
is given by (in Cartesian coordinates)

H = − ~2

2m
∇2 +

1

2
mΩ2(x2 + y2). (9)

Later on we will use this to choose variational wave functions. Therefore we need the normalized eigenstates
ψmx,my

of the two-dimensional harmonic oscillator [10]:

ψmx,my (x, y) =
Hmx

(
x
lHO

)
Hmy

(
y
lHO

)
e−(x2+y2)/2l2HO

lHO
√
π2mx+mymx!my!

, (10)
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Figure 2: The energy dispersion relation of the trapped photon in the micro cavity as given by equation(4)
[9]. To compare, the dispersion relation of a free photon is added in black. We see that on the optical axis
of the micro cavity (r = 0) the energy of the trapped photon is lowest and given by equation (7)

.

where mx,my are integers, Hn(x) the nth Hermite polynomial and the harmonic oscillator length is given by

lHO =

√
~
mΩ

. (11)

From this, we immediately identify the typical length scale for a BEC of photons. (see table 1).

2.4 Effective interaction using the ground state

If we look at equation (10) we expect that the size of the condensate remains the same if the number of
condensed photons changes and is equal to the harmonic oscillator length lHO. However, it was measured
that the condensate radius increases for larger condensate fractions [6]. The above Hamiltonian is the
approximated equation to describe the BEC of light. A first simple improvement of this equation is to include
a contact interaction for the particles (as essentially for long length scales every interaction is approximately
a contact interaction). For BEC’s the Gross-Pitaevskii equation is the common equation to include this
interaction and to describe the ground state wave function ψ(r) [6]. In van der Wurff et al. [8] and Greveling
et al. [4] this contact interaction of the BEC of light was included via the following energy functional for the
macroscopic wavefunction φ0:

Ω[φ0(r)] =

∫
drφ0(r)∗

(
~2

2m
∇2 +

1

2
mΩ2|r|2 − µ+

g

2
|φ0(r)|2

)
φ0(r), (12)

where g is the coupling constant and µ the chemical potential. Here r denotes the two-dimensional position.
They solved this equation with a variational ansatz similar to the ground state of the harmonic oscillator
length:

φ0(r) =
√
N0

1√
πq

exp
(
−|r|2/2q2

)
, (13)

where the harmonic oscillator length lHO has been replaced by the variational parameter q, which describes
the width of the condensate.
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c [mM] g̃
1.50 (12.4± 1.3)× 10−2

6.00 (4.1± 0.3)× 10−2

10.5 (1.5± 0.1)× 10−2

14.9 (2.0± 0.1)× 10−2

Table 2: Dimensionless effective interaction g̃ for several dye concentrations [4].

Note that φ0 has the following normalization condition for N0 particles in the ground state:∫
dr|φ0(r)|2 = N0. (14)

Solving the energy functional variational, they found that the condensate radius was given by

Rc := qmin = lHO
4

√
1 +

g̃N0

2π
, (15)

where they defined the dimensionless interaction strength

g̃ =
mg

~2
. (16)

Note that for small N0 the condensate radius is close to the harmonic oscillator length lHO. By fitting
equation (15) with the data, g̃ can be determined (see figure 3). The results of Greveling et al. [4] for g̃ are
listed in table 2 for several dye-concentrations. As discussed in section 1.2 we see that they found an effective
interaction strength which is more then one order of magnitude larger than in previously experiments [6–8].

An explanation of this is that they measured the radius of the condensate and only assumed that the
ground state was involved in the measurements. However, BEC’s have always thermally occupied excited
states and it is likely they contribute to the measured condensate size as well. When a too large condensate
size is measured, it would therefore implicate that the effective interaction in table 2 is too large. This will
be the motivation for the following section.

Figure 3: The condensate radius Rc as function of the number of condensate photons N0. The dimensionless
effective interaction g̃ is determined for several dye concentrations by fitting equation (15) to the data [4].
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3 Condensate size as a measure for the interaction

As discussed in the previous section, the effective contact interactions of Greveling et al. [4] is likely an
overestimation. In this section we will derive similar equations as equation (12) to describe the effective
interaction for the ground state and an excited state. After that, we try to solve this with a variational
ansatz for the ground and excited states. Our variational parameters are a direct measure for the condensate
radius of the states. Because we can’t find an analytical solutions we will use perturbation theory which can
be done up to 11th order. At the end of this section we will discuss our theoretical results. Moreover, we find
limits to our model, which is the motivation for the next section.

3.1 Hartree-Fock approximation for two states

To derive equation (12) (which included a contact interaction for the ground state) one can use the Hartree-
Fock approximation. To include the contact interaction for an excited state as well, we can use the Hartree-
Fock approximation again to derive the following equations [11]:

Ω0 =

∫
drψ∗0(r)

[
− ~2

2m
∇2 + V (r)− µ+

g

2
|ψ0(r)|2 + 2g|ψ1(r)|2

]
ψ0(r) (17)

E1 =

∫
drψ∗1(r)

[
− ~2

2m
∇2 + V (r) + g|ψ1(r)|2 + 2g|ψ0(r)|2

]
ψ1(r) (18)

with µ the chemical potential. These equations are energy functionals for the ground state ψ0 and the excited
state ψ1. The potential V (r) is of course given by the harmonic trap:

V (r) =
1

2
mΩ2|r|2 (19)

where the effective mass m and the trap frequency Ω are discussed in section 2.2. The difference of g2 |ψ0(r)|2
and g|ψ1(r)|2 comes from the symmetric two-particle wave function, needed for bosons. Note furthermore
the exchange terms 2g|ψ1(r)|2 and 2g|ψ0(r)|2 for equations (17) and (18) respectively.

3.2 Variational approach

We solve these equations variational [10]. To do this we have to choose our wave functions carefully. In
sections 2.2 and 2.3 we discussed that in good approximation the external potential for a BEC of light looks
like that of the harmonic oscillator. In the above equations we only added a contact interaction, which is
presumable small [6]. A good choice for our variational wave functions would therefore be functions that are
a small deviation of the eigenstates of the harmonic oscillator. From the experiment, we know that modes like
the nx = ny = 0 and the nx = ny = 1 can be measured separately. We discussed earlier that the condensate
size increases when more particles are in the BEC. So, it is a good approach to choose variational parameters
which are a measure for the size. Therefore we start with the following variational ansatz:

ψ0(x, y) =
√
N0 ·

1√
πq0

exp{−(x2 + y2)/q2
0} (20)

ψ1(x, y) =
√
N1 ·

2√
πq3

1

xy exp{−(x2 + y2)/q2
1} (21)

Of course, we don’t expect that the two wave functions have the same size. That’s why we defined the
variational parameters q0 and q1. These parameters are a direct measure of the size of these wave functions.
Note that ψ0 is the same wave function for the ground state as in section 2.4. The wave functions are
normalized to the number of photons N0 in the ground state and the number of photons N1 in the excited
state respectively.
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Now solving the integrals of equations (17) and (18) for these wave functions gives:

Ω̃0 =
N0

2q̃2
0

+
1

2
N0q̃

2
0 − µ̃N0 +

g̃N2
0

4πq̃2
0

+
2g̃N0N1q̃

4
0

π(q̃2
0 + q̃2

1)3
, (22)

Ẽ1 =
3N1

2q̃2
1

+
3

2
N1q̃

2
1 +

9g̃N2
1

32πq̃2
1

+
2g̃N0N1q̃

4
0

π(q̃2
0 + q̃2

1)3
, (23)

where we defined the dimensionless parameters

q̃0 =
q0

lHO
, q̃1 =

q1

lHO
, g̃ =

mg

~2
,

µ̃ =
µ

~ω
, Ω̃0 =

Ω

~ω
, Ẽ1 =

E1

~ω
.

Experimentally, one has only control over the pump laser to change the total number of photons N = N0+N1.
However, it isn’t possible to tune N0 and N1 separately. The total number N isn’t easy to determine because
only a fraction of the particles leak out of the cavity and are captured on the camera. Therefore we could
add an unknown scaling parameter, or rewrite our equations in terms of the well-defined polarization

p =
N1 −N0

N0 +N1
. (24)

Rewriting equations (22) and (23) in terms of p and N gives:

Ω̃0 =
N

2

[
1− p
2q̃2

0

+
1

2
(1− p)q̃2

0 − µ̃(1− p) +
g̃N(1− p)2

8πq̃2
0

+
g̃N(1− p2)q̃4

0

π(q̃2
0 + q̃2

1)3

]
, (25)

Ẽ1 =
N

2

[
3(1 + p)

2q̃2
1

+
3

2
(1 + p)q̃2

1 +
9g̃N(1 + p)2

64πq̃2
1

+
g̃N(1− p2)q̃4

0

π(q̃2
0 + q̃2

1)3

]
. (26)

By using the variational principle we should minimize these equations with respect to q̃0 and q̃1. However,
it is not possible to find an analytical solution for q̃0 and q̃1. Nevertheless, note that the unknown g̃ and the
not so easy to measure N are now packed into one unknown g̃N . In the next subsection we will use this fact
to find a solution for q̃0 and q̃1.

3.3 Solution

Because the above equations have no analytical solutions we use perturbation theory to find a solution [10].

Therefore we write q̃0 and q̃1 as a power series in the unknown g̃N , with coefficients q
(i)
0 and q

(i)
1 for 0 ≤ i <∞:

q̃0 =

∞∑
i=0

q
(i)
0 (g̃N)i, (27)

q̃1 =

∞∑
i=0

q
(i)
1 (g̃N)i. (28)

Up to second order this gives

q̃0 = 1 +
1− 3p

32π
g̃N − 3(1− 6p+ 9p2)

2048π2
(g̃N)2 +O((g̃N)3), (29)

q̃1 = 1 +
7− p
128π

g̃N − 3(49− 14p+ p2)

32768π2
(g̃N)2 +O((g̃N)3). (30)

Note that for the linear term we have q
(1)
0,1 ' 10−2 and for the second term q

(1)
0,1 ' 10−3. So, even for g̃N

of the order of 1, the lengths are just small modifications of the harmonic oscillator length. It is possible
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(a) (b)

Figure 4: Condensate radius q̃0 and q̃1 (scaled in units of the harmonic oscillator length lHO) of the ground
state and excited state respectively as function of g̃N for several values of the polarization p. (a) For low
values of p, the radius increases for larger total numbers. However, for p ≥ 1

3 the condensate radius decreases
for increasing total numbers. (b) The radius of the excited state gets smaller for increasing polarization.

to go up to 11th order, but these higher orders are even smaller then the ones just given. However, for fine
convergence of the results, we will use the answers for 11th order from now on.

Let’s take a better look at our solutions. In figure 4a we see q̃0 for various values of the polarization p.
First we notice the almost linear behavior of q̃0, which we expected. For low values of the polarization we see
that, as mentioned before in the different studies [4, 6], the condensate radius increases for larger condensate
numbers. However, for more particles in the excited state, the condensate radius q̃0 of the ground state
decreases. If p ≥ 1

3 we see that q̃0 becomes smaller then 1. This means that when many particles are in the
excited state with respect to the number of particles in the ground state, we get a ground state size which is
even smaller then the harmonic oscillator length lHO. This is a consequence of the repulsive interaction. We
will discuss this effect in the next subsection. Furthermore, we notice that for this polarization the condensate
radius decreases for increasing condensate numbers.

If we look at figure 4b we see also that for more particles in the excited state, the condensation radius q̃1

of the excited state gets smaller. This is a result of the repulsive interaction as well. However, as happened
with q̃0, there is no polarization for which q̃1 decreases for larger total numbers.

3.4 Discussion

We have seen now what our solutions of the condensate radius q̃0 and q̃1 for the different values of polarization
look like. To understand what happens for the different values of polarization and what it has to do with
the repulsive interaction of the photons, we need to take a look at the spatial form of our variational ansatz.
In figure 5 we have plotted |ψ0|2 (in yellow) and |ψ1|2 (in red) for different values of the polarization. We
can divide our discussion into two situations. On the one hand, polarizations p ≤ 1

3 where the ground state
increases for larger g̃N . On the other hand, polarizations p ≥ 1

3 where the ground state size decreases.

3.4.1 Small polarization (p ≤ 1
3)

First notice that for small values of polarization, the ground state is relatively more peaked then the excited
state (figures 5a and 5b). The repulsive interaction of the photons has as a consequence that the wave
function of the ground state (which is a Gaussian centered at the origin), presses the excited state outside.
So this repulsive interaction between the photons not only results in a larger radius q0 for the ground state
(at least for p ≤ 1

3 ), but it results also in a larger radius q1 of the excited state (see also figure 4), because
this state is pressed away from the ground state.
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(a) (b) (c) (d)

Figure 5: Relative plots of |ψ0|2 (in yellow) and |ψ1|2 (in red) for different values of polarization (see also
equations (20) and (21)): (a) p = −0.5, (b) p = 0.2, (c) p = 0.5 and (d) p = 0.7.

3.4.2 Large polarization (p ≥ 1
3)

For larger polarization though, the excited state has a spatial form which is relatively more peaked then the
ground state (figures 5c and 5d). The quadrupole form of the excited state, presses the photons in the ground
state closer together. When enough photons are in the excited state (this happens when p ≥ 1

3 ), equations
(29) and (30) even predict a decreasing radius q0, smaller then the harmonic oscillator length lHO for the
ground state. The reason we didn’t find a decreasing q1 as we did for q0, is because the quadrupole form of
the excited state lies outside the Gaussian form of the ground state. So, when more particles are add in the
excited state, it still has room to expand.

3.4.3 Comparison with one mode

We can compare our results with the condensate radius Rc found in section 2.4 used by Greveling et al. [4].
First of all, we should obtain the same results for the polarization p = −1. Then N1 = 0 and the effect of the
excited state vanishes, so it shouldn’t alter the condensate radius. In figure 6a, q̃0 is plotted up to 2nd and
11th together with the analytical result Rc. From the figure, we determine that our solution for q̃0 converges
to the analytical result Rc when more terms are added. It is good to say that the convergence is slowest for
the extreme polarization p = −1.

If we look at figure 5, we see that the excited state lies around the ground state. Because in Greveling
et al. [4] this state was also included in the ground state they clearly found a too large condensation radius.
As we discussed earlier, this implicates indeed a too large effective interaction.

However, what is the difference between the model for Rc and our model for two states when one is
able to measure the radius q0 of the ground state without the disturbance of the excited state? Because we
expect a polarization higher then p = −1, our model predicts that the condensate radius of the ground state
won’t expand as fast as was predicted by equation (15) for Rc (see also figure 4). This means that when one
measures only q0 and fits this to the equation of Rc he finds another effective interaction g̃ then when he fits
it to our model for two states. The difference of these two models is shown in figure 6b. In this figure we
plotted for fixed N0 the difference of the effective interaction ∆g̃ = g̃one − g̃two as function of p. Here g̃one is
the effective interaction when q0 is fitted to Rc and g̃two the effective interaction which follows from fitting
q0 to our model for two states. We did this for several values of q̃0. Not that this works until p exceeds the
critical value 1

3 because then our model for two states predicts that q0 is even smaller then the harmonic
oscillator length lHO. We conclude that when one can measure the radius of the ground state separately, our
model for two states predicts a larger effective interaction then the model Rc for one state.

3.4.4 Limits of the model

For now, when we know p, q0,1 and N our model (equations (29) and (30)) gives us a way to determine the
effective interaction g̃ (see also section 5). These are all parameters which can be experimental determined.
As we saw above, q0 and q1 are strongly dependent on the polarization. Therefore, it would be nice if we
could say something about this. However, without knowing the effective interaction, our model isn’t sufficient
to say something about the polarization yet. This leaves us with our second research question: what describes
the photon occupation numbers of different states in the BEC of light and how does it depend on the pump
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(a) (b)

Figure 6: (a) Plot of q̃0 for p = −1 up to 2nd and 11th order together with the analytical result Rc. (b)
The effective interaction ∆g̃ = g̃one − g̃two as function of p for fixed N0. Here g̃one is the effective interaction
when q0 is fitted to Rc and g̃two the effective interaction fitted to our model for two states.

laser? First of all, we expect that the profile and the rate of the pump laser must be taken into account
before we can understand the polarization. This is because the pump sets the total number N of photons in
the system. Besides, the pump rate could cause one state to increase relative to the other. To include this,
we need to have a better understanding of the pump laser and how it effects the distribution of the different
states.

3.5 Conclusion

We have found a way, when N0 and N1 are known, to obtain the dimensionless effective interaction g̃ from
the radii q0 and q1 of the ground state and the excited state, respectively. The quadrupole form of the excited
state decreases the radius of the ground state. We identified the critical value p ≥ 1

3 , where this effect is so
large that the radius of the ground state even gets smaller then the harmonic oscillator length lHO. On the
other hand, the radius of the excited state is always increased by the Gaussian form of the ground state which
presses the excited state away from the origin. Of course, inclusion of another excited state may change this
conclusion. When one is able to measure q0 without the disturbance of the excited state, our model predicts
a larger effective interaction than the model Rc for one state. However, we still expect a smaller effective
interaction then Greveling et al. [4] because as discussed, they measured a condensate radius which was too
large. Finally, we identified that our model isn’t able to describe the photon numbers of the different states.
We will look at this in the next section.
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(a) (b)

Figure 7: (a) The absorption and emission spectra for the dye. Both are normalized to their peak value and
the ZPL is the wavelength at which they are equal [5]. (b) schematic picture of the different rates for the
photons [12]

4 Photon numbers

As discussed at the end of the previous section, we are not able to predict the polarization yet. In this
section we will look how the pump laser effects the polarization. Before we do this, we explore the physically
important phenomena of the photon condensate. From this, one can derive equations which describe the
photon number and the excitation density of the dye molecules. We discuss these equation to understand
how the phenomena of the condensate are linked together. After that, we make certain approximations to
find solutions of our equations. At the end of this section, we will discuss these results and look at the
dependence of the photon occupation numbers on the pump laser.

4.1 Physical understanding of the condensate

In the condensate, equilibrium is reached as the photons are absorbed and emitted by the dye molecules
[2]. Of course, we can predict the polarization by complete knowledge of how the photons interact with the
dye. However, the dye molecules have complex optical spectra and therefore complete knowledge of the dye
is unfeasible. In this subsection we will identify the basic physics to understand the phenomena that are
important for the photon condensate. In figure 7b a schematic picture of these phenomena is given.

4.1.1 Absorption and emission rates of the dye

Despite this incomplete knowledge of the dye, one can treat the molecules as a two-level system with two
electronic states, the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital
(LUMO). Because these levels are dressed by ladders we can identify absorption and emission rates Γ(δm)
and Γ(−δm) respectively [12]. Here δm is the detuning, of state m in the photon system, from the Zero
Phonon Line (ZPL) of the dye molecule:

δm = εm − εZPL (31)

As discussed, the photon states are in good approximation given by the eigenstates of the Harmonic oscillator
(equation (10)). This means that m = mx +my and as discussed in section 2.2 we can write

εm = E0 + (mx +my + 1)~Ω, (32)

where E0 = ~ωcut is the rest energy. Typical spectra of absorption and emission for the dye are shown in
figure 7a. The absorption and emission rates follow the Kennard-Stepanov relation [5, 12]. This relation is
dictated by a principle of detailed balance, namely

Γ(δm)

Γ(−δm)
= eβδm . (33)
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4.1.2 Cavity and non-cavity decay rates of the dye

Photons can leave the system in two ways. First of all, photons leak out of the cavity. These photons are
captured on the camera and can be used to analyze the condensate. We assume that every mode m has the
same cavity decay rate κ. On the other hand, dye molecules can have a non-cavity decay rate, because they
decay into other states than the confined cavity modes. Because they aren’t interesting to us anymore we
don’t have to specify these states. It is therefore enough to denote this by the non-cavity decay rate Γ↓.

4.1.3 Pumping rate

To make up for the non-cavity decay rate Γ↓ of the dye molecules, they are excited with a pump laser. We
denote the pumping rate by Γ↑(r). The coordinate dependence r is included because not only its rate is
important, but also the profile of the pump. In this section we will use a Gaussian pump spot, centered at
the origin:

Γ↑(r) = Γ↑e
−r2/2σ2

, (34)

where Γ↑ is the actual rate and σ is the spot size. Of course, in the following equations other pump spots
can be used.

4.2 Photon numbers and excitation density

Now that we understand the processes that take place in the photon system, we can link them together and
try to understand the polarization. In the theoretical work of Keeling and Kirton [12], the above parameters
are connected into coupled equations that describe the number nm of photons in state m and the excitation
density f(r) of the dye molecules:

∂nm
∂t

= ρ0Γ(−δm)fm(nm + 1)− [κ+ ρ0Γ(δm)(1− fm)]nm (35)

∂f(r)

∂t
= −Γtot

↓ ({nm}, r)f(r) + Γtot
↑ ({nm}, r)(1− f(r)) (36)

where ρ0 is the density of dye molecules. The equations are coupled via the fractions fm for the different
states m defined by

fm =

∫
drf(r)|ψm(r)|2, (37)

and the total rates

Γtot
↓ ({nm}, r) = Γ↓ +

∑
m

|ψm(r)|2Γ(−δm)(nm + 1), (38)

Γtot
↑ ({nm}, r) = Γ↑(r) +

∑
m

|ψm(r)|2Γ(δm)nm. (39)

Although we gave the equations without derivation, we can still have a look and try to understand the
physics behind them. First of all, equation (35) describes the occupation of the different photon states. As
we discussed above, the photons interact with the dye via absorption and emission and these processes alter
the photon occupation numbers nm. Only the fraction fm of excited dye molecules can emit a photon and
when a dye molecule emits a photon of state m, the number nm is increased by 1. This results in the term
fm(nm + 1). Multiplying this with the rate of emission Γ(−δm) and the dye density ρ0, yields the change
in time for the emission. However, absorption of one of the nm photons in state m can only happen for the
fraction 1−fm of dye molecules. Therefore, we get for absorption rate Γ(δm), the term −ρ0Γ(δm)(1−fm)nm
(we get a minus sign because the photon is absorbed by a dye molecule). Because all photons have the same
cavity decay rate κ, the term −κnm speaks for itself.
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Equation (36) describes the excitation density. The density f(r) of excited dye molecules is decreased
by Γtot

↓ ({nm}, r) which is given in equation (38). As expected, two things can happen. On the one hand,
emission into cavity modes which is indicates by the sum over the states m. This emission has for state m
rate Γ(−δm) and just as above, the number nm of state m is increased by one. On the other hand, decay
into other states than the confined cavity states can happen, which we denoted earlier by the rate Γ↓. The
excitation density increases by exciting the fraction 1− f(r). This happens with rate Γtot

↑ ({nm}, r) given in
equation (39). It is the sum of the absorption rates Γ(δm) and the pump rate Γ↑(r). The non-excited dye
molecules can be excited by absorbing one of the nm photons from the condensate. The total absorption
density is of course given by multiplying with |ψm|2 and taking the sum over m.

4.3 Equilibrium

The equations above can’t be solved analytical. However, we are interested in the equilibrium situation and
in that case the equations simplify. In the equilibrium situation, one can set:

∂nm
∂t

= 0 and
∂f(r)

∂t
= 0. (40)

From this, we can solve equations (35) and (36) for nm and f(r), leading to

nm =
ρ0Γ(−δm)fm

κ− ρ0Γ(−δm)fm + ρ0Γ(δm)(1− fm)
, (41)

f(r) =
Γtot
↑ ({nm}, r)

Γtot
↑ ({nm}, r) + Γtot

↓ ({nm}, r)
. (42)

The rates Γ(±δm) should follow the principle of detailed balance given in equation (33). This gives for the
photon occupation numbers

nm =
1

κ
ρ0Γ(−δm)fm

+ 1−fm
fm

eβδm − 1
. (43)

Note that we obtained a equilibrium distribution which looks similar to the Bose-Einstein distribution.

4.4 Large pump spot and background decay

The above equations for f(r) and nm don’t have analytical solutions for the harmonic-oscillator eigenstates.
However, it is still interesting to look at some limits. First of all, we look at the case that the background
decay rate Γ↓ is much larger then the emission rates Γ(−δm) for the different modes. In this case we get

Γtot
↓ ({nm}, r) ≈ Γ↓. (44)

Secondly, we look at the limit of a large pump rate. So the excitation of the dye molecules happens mainly
by the pump spot. This gives:

Γtot
↑ ({nm}, r) ≈ Γ↑(r) (45)

The last approximation we want to add is that of a large pump spot size σ � lHO. Then, the Gaussian
pump looks almost constant with respect to the wave functions ψm. With this we can simply compute fm as

fm =

∫
drf(r)|ψmr|2 ≈

∫
dr

Γ↑
Γ↑ + Γ↓

|ψm(r)|2 =
Γ↑

Γ↑ + Γ↓
, (46)

where we used the normalization condition of ψm(r). Note that the excitation fractions fm are independent
of m. Physically, this means that the pump laser excites the dye molecules evenly for the different states.
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We obtain now

nm =
1

ηm
(Γ↑+Γ↓)

Γ↑
+

Γ↓
Γ↑
eβδm − 1

, (47)

where we defined the quantity

ηm =
κ

ρ0Γ(−δm)
. (48)

We see that with above limits the numbers nm only differ by the emission rate Γ(−δm) and the detuning δm
with respect to the ZPL.

4.5 Discussion

Now we have found some results for the photon occupation numbers nm it’s time to interpret them. We are
interested in the dependence on the pump rate, because this is experimentally the parameter to control the
number of photons in the condensate. To fully understand the dependence on the pump and which other
parameters are important it’s good to look at some limits.

4.5.1 No cavity decay

Let’s first have a look at the ideal situation of zero cavity decay. This happens when κ → 0 and we get a
distribution of nm that looks very similar to a Bose-Einstein distribution

nm =
1

Γ↓
Γ↑
eβδm − 1

, (49)

where the condition for a Bose-Einstein distribution is the following:

Γ↓
Γ↑
eβδm = eβ(εm−µ), (50)

with µ the chemical potential of the dye molecules. Solving this for µ gives, using δm = εm − ηZPL

µ = εZPL + kbT log

(
Γ↑
Γ↓

)
. (51)

When µ reaches the lowest photon energy E0 + ~Ω from below, a Bose-Einstein condensate is realized [5].
This happens for the pump rate

Γ↑ = Γ↓e
βδcut , (52)

with δcut the detuning of the lowest energy E0 + ~Ω with respect to the ZPL. This rate is also known
as the threshold pump rate because at this pump rate Bose-Einstein condensation sets in and we get a
macroscopically occupied ground state.

4.5.2 Small pump rate

In the limit of small pump rate
Γ↓
Γ↑
� 1, the photon number is approximately given by

nm ≈
Γ↑
Γ↓

1

ηm + eβδm
. (53)

When also ηm � eβδm , so the cavity decay κ is relatively small with respect to the emission rates, we get

nm ≈
Γ↑
Γ↓
e−βδm . (54)

From the Boltzmann factor that arises, we conclude that we are left with a classical thermal photon distri-
bution. However, when the cavity decay is relatively large, ηm � eβδm , the thermalization fails. The reason
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for this is that κ is larger then the emission rate. So the emitted photons are likely to immediately leave the
cavity and there is no time for the photons to thermalize. In this regime we obtain

nm ≈
Γ↑
ηmΓ↓

. (55)

This shows the great dependence of the nm on ηm. We will explore this dependence further in a moment.
Note that in both cases the number of photons grow linear with the pump rate Γ↑.

4.5.3 Threshold pump rate

Above we found the threshold pump rate at which Bose-Einstein condensation is realized for the ideal situation
with no cavity decay κ. However, when κ can’t be ignored, we expect that the laser must pump harder to
compensate for the cavity loss. When the denominator of equation (43) (almost) vanishes, we get of course
macroscopically occupied states. This happens for the threshold pump power

Γtresh
↑ = Γ↓

eβδm + ηm
1− ηm

. (56)

Let’s have a look at the dependence of ηm. For ηm = 0 we get the same result of equation (52). In figure
8 we plotted nm as a function of the pump rate Γ↑. The blue and red lines are values of ηm < 1. We see
that as the pump rate increases the photon number diverges. This phenomena is called lasing. When ηm is
just below one, equation (56) predicts that lasing only sets in for very large pump rates. This is expected
because in that case the cavity decay is so large that almost every emitted photon by the dye molecules leaves
immediately the cavity. Furthermore, it shouldn’t come as a surprise that this threshold pump rate will be
greater when the background decay Γ↓ is large. The vertical lines show the threshold pump rate for which
the denominator of equation (43) has vanished.

0

1

2

3

4

5

G

n
m

Figure 8: We see the photon occupation numbers nm as function of the pump rate Γ↑ for several values of
ηm. For ηm ≤ 1 lasing is observed, which is shown by the blue and red lines. The yellow line is the case in
which ηm = 1. Then, the photon number is linear with the pump rate. For larger ηm, the photon number
converges to a fixed value.
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For the critical value ηm = 1 the denominator can’t vanish and the photon number is linear in the pump rate
and given by

nm =
Γ↑

Γ↓(1 + eβδm)
. (57)

This is shown by the yellow line. When ηm ≥ 1, we get photon occupation numbers that converge to a finite
value. This is shown by the green and the light blue lines. This asymptote is equal to

nm →
1

ηm − 1
. (58)

So for ηm slightly above 1, we still can get macroscopically occupied states. Note furthermore, that once the
threshold pump rate is exceeded for a state with ηm < 1, the denominater of equation (43) gets negative and so
the photon number for this state makes no sense anymore. We expect that in these cases our approximations
aren’t valid anymore and it’s likely that the emission/absorption rates and the spatial form of the states (see
equations (38) and (39)) must be taken into account. This has been confirmed in Keeling and Kirton [12]
where they also looked just above threshold. They observed for these limits phenomena as gain clamping of
the excitation density and spatial hole burning.

4.6 Conclusion

In this section we discussed the physically phenomena in the cavity which led to the definition of several rates.
We linked these rates together via coupled rate equations. These equations describe the photon occupation
numbers of the states and the excitation density of the dye molecules. Although these equations don’t have
an analytic solution, they gave us much insight in the important things to describe the photon distribution.

Nevertheless, we tried to solve the equation in equilibrium with certain approximations. These approx-
imations from section 4.4 gave some insight in what should happen when the background decay and pump
rate is much larger then the emission and absorption rates. In this case we found that for small pump rates
the photon occupation numbers depend linear on the pump rate. If this linear behavior is thermal depends on
the energy of the photon state. We also derived the chemical potential at which Bose-Einstein condensation
sets in for the ideal case of no cavity decay. Inspired by this, we tried to find critical pump rates for which
this also happens when cavity decay is important. We found a result which was strongly dependent on the
ratio of emission of the dye molecules and cavity decay. When the cavity decay is relatively small, we expect
lasing for the photon state. However, when the cavity decay is relatively larger, the emitted photons will
leave the cavity before they can thermalize and the photon number reaches a finite value. From this we can
conclude that not only the dependence on the pump rate is important for the photon occupation numbers,
but also the cavity decay and the emission and absorption rates of the dye. When in the experiment the
cavity decay can be tuned we expect that both lasing and finite photon occupation numbers can be observed.

In the case of lasing, when the threshold pump rates is exceeded, our model isn’t valid anymore. This is
likely due to the fact we didn’t fully include the emission/absorption rates and ignored the spatial form of
the cavity modes.
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(a) (b)

Figure 9: Typical measurements on the Bose-Einstein condensate. Photons that leak out of the cavity are
captured with a camera. The color and intensity of the pictures are parameters for the different modes and
number of photons in the system respectively. The condensate radius can be measured from these pictures
in units of pixels. On the left we see a measurement for the ground state and on the right, the excited state
is measured.

5 Comparison with experiment

In this section, we compare our theoretical results from the previous two sections with experimental data.
In section 3 we found equations for the condensate radius q̃0 and q̃1 of our variational ansatz for the ground
state ψ0 and the excited state ψ1 respectively. Fitting the equation for q̃0 to the data, we find an effective
interaction g̃ = (5.2± 2.3)× 10−5.

5.1 Results

Like discussed in section 2.1 measurements can be done because photons leak out of the micro cavity. These
photons are captured on a CCD camera and from the color and intensity of the image one can determine
how many particles are in a particular state. In figure 9 typical measurement are shown for (a) the ground
state and (b) the excited state. Changing the rate of the pump laser gives different data points.

5.1.1 Effective interaction

Normally, the lengths q0 and q1 are measured in terms of the amount of pixels captured on the camera.
Equations (27) and (28) for q̃0 and q̃1 however are scaled to the harmonic oscillator length lHO. In figure
10a the experimental data of q0 is plotted against the total number of particles N = N0 + N1. We only
present the data of q0 because the radius q1 of the excited state has a large uncertainty. To scale q0 to the
harmonic oscillator length we note that for one particle in the ground state the length should be equal to
lHO. Therefore we extrapolated the first two data points linearly to one particle and took that length to scale
our data with. We see clearly that for more particles in the condensate, the radius increases. This indicates
a polarization p ≤ 1

3 . And indeed, figure 10c shows even a polarization smaller then zero.
For every data point of figure 10a we have a matching polarization. By fitting every point to equation

(29) we can determine x = g̃N for these points. The results are plotted in figure 10b. We can divide every
g̃N by it’s corresponding value of N which gives us values for g̃. All these values are of the order 10−5 and
the average value gives us an estimate for the effective interaction of

g̃ = (5.2± 2.3)× 10−5. (59)
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Figure 10: Plots of the experimental data. (a) The condensate radius q0 of the ground state plotted against
the total particles N = N0 +N1. Here, q0 is measured in units of pixels captured on the camera. (b) Plot of
q̃0 against the fitted g̃N . (c) Figure of the polarization p against N . (d) The photon numbers N0 and N1

against N .

5.1.2 Photon numbers

In figure 10d, plots of the photon occupation numbers N0 and N1 are shown as a function of N . To obtain
the experimental data, a large Gaussian pump spot was used of about 20 oscillator lengths. So, one of our
approximations of the previous section is fulfilled. To see how well our other approximations are, we can try
to fit the parameters of equation (47) to the data. From Keeling and Kirton [12] we set Γ↓ = 250 × 106.
We know that for small pump rates, the photon numbers depend linear on this pump rate. This looks
indeed satisfied for the first, say 10 data points for N0 and N1. If we expect that at low pump rate the
photon occupation numbers are purely due to thermalization, we can obtain from the slope of these lines and
equation (54) an estimate for the effective parameters αm = Γ↓e

βδm . When we look at the curvature of the
data points, we expect that the curve of N0 is described by η0 slightly above 1. However, for N1 we expect
η1 slightly below 1. Varying these parameters we obtained

α0 = 7.5 ∗ 109, α1 = 7.75× 1010, η0 = 1.00001, η1 = 0.99992.

The result is plotted in figure 11 for both the photon occupation numbers and the polarization. For the
ground state, figure 11a indicates the convergence to an asymptote. For the excited state, the phenomena of
lasing can be seen.
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Figure 11: Experimental data together with the first fits of the theoretical curves for the (a) photon numbers
N0 and N1 and (b) the polarization as function of the total photon number N .

5.2 Discussion

The obtained dimensionless effective interaction is of the order g̃ ' 10−5. Let’s first compare this with the
results of Greveling et al. [4], which we discussed in section 2.4. The effective interaction they found was of
the order g̃ ' 10−2, so at first sight it looks our effective interaction is much smaller. In Klaers et al. [6] they
determined also an effective interaction by looking at the condensate radius of the ground state. They found
g̃ = (7 ± 3) × 10−4 which is a factor 10 larger. This is what we expected beforehand, because we argued
earlier that they measured a too large condensate radius. However, up to this point one has to handle the
result carefully and shouldn’t make quick conclusions. The number of photons that leak out of the cavity
are a measure for the total number of photons in the states. So only N0 and N1 are relatively well defined
to each other and this was the reason to define the polarization p. It has the result that the value of g̃ can
differ a yet unknown factor. This factor can both increase and decrease g̃. So, only when we know this factor
we can make a solid conclusion for our effective interaction. Calibration of the experimental set up is needed
for N .

The way we found our solutions, with perturbation in g̃N , has as advantage that the values of g̃N from
figure 10b are well defined. This means that although we can’t make a solid solution for g̃, we can conclude
that the pattern shown in the figure indicates a reliable effective interaction.

We tried to fit our theoretical curves for the condensate numbers to the data. Although our results look
far from perfect, our models gave solutions which indicates that we are in the right direction. So, we can still
say a few relevant things about them. First of all, we found the expected strong dependence of the photon
number on the parameter ηm. The estimated values don’t seem to differ much, but their slightly modification
of the critical value 1 gives very different result. Because η0 > 1 we can conclude that for the ground state
the cavity decay rate has slightly the upper hand with respect to the emission rates. Though, this effect
seems small, it changes the photon number a lot and we expect for this state that the photon number will
saturate. For the excited state we have η1 < 1, so the cavity decay rate is slightly inferior to the emission
rate. The effect is that we expect lasing for higher pump rates. However, it doesn’t seem that we are near the
threshold pump rate for which we expect this yet. Furthermore we note that the curves seem to fit for small
N , but when N gets larger our curves don’t fit well anymore. The excited state doesn’t seem to grow as fast
as we expect and the ground state doesn’t seem to converge that well. A likewise effect is that the well in
the polarization isn’t that sharp as what follows from the data. This can either be due to the fact that our
estimates for the fitted parameters need to be better. Or because for large pump rates our approximations
from section 4.4 aren’t valid anymore. Further research need to be taken before we can say more.
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5.3 Conclusion

We have found an effective interaction g̃ = (5.2 ± 2.3) × 10−5 which is a factor 103 smaller then the results
of Greveling et al. [4] discussed in section 2.4. Furthermore it is a factor 10 smaller then the results found in
Klaers et al. [6]. This was what we expected beforehand because we have taken an extra excited state into
account. However, one should interpret this result carefully. As discussed above, g̃ can differ a yet unknown
factor. Calibration of the experimental set up for N is needed to exclude this factor and to make a solid
conclusion. Nevertheless, the values of g̃N , shown in figure 10b, are well defined and can be used later on.
Furthermore, figure 10b shows indeed a reliable interaction.

Our theoretical model for the photon occupation numbers gave a first insight in which effects are the
important ones. From the fitted curves in figure 11 we see our models capture the right trend to explain the
data. It led to the conclusion that cavity decay versus emission rates is very important in the behavior of the
states. It can be the difference for which we expect lasing or saturation of the photon numbers. However, the
curves are far from perfect and we expect that our models need to be improved before we can make better
conclusions about the large pump rate behavior of the photon numbers.
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