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Abstract

A magnetic material consists of a large number of coupled magnetic dipoles.
Where does this coupling come from and how do di�erently coupled systems
behave? Performing a Heitler-London calculation shows that the Coulomb inter-
action and the Pauli exclusion principle result in a split of energy levels which in
turn causes the coupling. Which energy level is lowest will determine the type
of magnetisation; ferromagnetic or antiferromagnetic. Combining exact analysis
of the Ising model with mean �eld theory one �nds that phase transitions occur
in ferromagnetic systems as a function of temperature, one-dimensional systems
excluded. At low temperatures a thermal �uctuation will result in a spin wave in
the magnetic material. By viewing the spin wave as a perturbation of the ground
state the Bloch equations are linearised and solved for one-dimensional systems.
�e �nal products are the dispersion relations that describe the motion of spin
waves in di�erently coupled systems.
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1 Introduction
�e refrigerator magnet is one of those seemingly ordinary and o�en whimsical house-
hold items which hides some beautiful quantum physics and is fun to play with. If
classical electromagnetism is to be believed the fridge magnet will only stick to a
fridge at temperatures near absolute zero. �e permanent magnet needs quantum ef-
fects if it has any hope of holding your papers. �e main tool in describing such a
magnet quantum-mechanically is the Heisenberg model which describes the energy
of a large amount of coupled magnetic ions on a la�ice. Based on the coupling one
can distinguish between ferromagnetic and antiferromagnetic materials. What deter-
mines this coupling and how do systems with di�erent coupling behave throughout
the temperature spectrum?
First of all this thesis will dig into the relevance of quantum e�ects when describing
the coupling between magnetic moments. Secondly mean �eld theory and spin wave
theory will be consulted in order to study the behaviour of various magnetic systems
at troughout temperature spectrum. For example words will be devoted to the Ising
model and its behaviour at �nite temperatures which includes phase transitions. Later
the emphasis will be on �nding the ground states and analysing the low energy ex-
citations known as spin waves for a variety of di�erent systems, both ferromagnetic
and antiferromagnetic.

2 Background

2.1 Electromagnetism
As mentioned in the introduction permanent magnets can not be described by clas-
sical electromagnetism. �is section will show that the electromagnetic interaction
between magnetic dipoles is too weak to explain experimental observations.
Magnetisation results from the alignment of magnetic moments arrayed in the mate-
rial which is usually accomplished by applying an external magnetic �eld. A�er re-
moving the magnetic �eld the material remains magnetised. However high tempera-
tures cause random disturbances in the alignment of the magnetic moments, lowering
the material’s net magnetic moment. �e Curie temperature of a magnetic material is
the temperature at which the material loses its magnetic properties. �is temperature
ranges from ∼ 100 K for oxides of metals to ∼ 1000 K for iron. Hence the energy of
the magnetic interaction should be roughly equal to the thermal energy at the Curie
temperature such that the magnetic interaction can only be negated for temperatures
higher than the Curie temperature.
Consider two magnetic dipoles with magnetic moments ~m1 and ~m2 separated by a
distance ~r12. �e magnetic �eld produced by the magnetic dipole moment ~m1 is [1]:

~B1
dip(~r) =

µ0

4π

1

r3
[3(~m1 · r̂)r̂ − ~m1] (1)

�e potential energy of the magnetic dipole moment ~m2 in the magnetic �eld is:

U = −~m2 · ~B1
dip(~r12) =

µ0

4π

1

r312
[~m2 · ~m1 − 3(~m2 · r̂12)(~m1 · r̂12)] (2)
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�e absolute potential energy is at a maximum when ~r12 ‖ ~m1 ‖ ~m2. �e magnitude
of the potential energy can be approximated as:

U =
µ0

2π

m1m2

r312
=

µ0

16π

µ2
B

a3

[
m1

µB

m2

µB

(
2a0
r12

)3
]
≈ µ0

16π

µ2
B

a3

≈ 1 K

(3)

in natural units (kB = 1), where µB is the Bohr magneton and a is the Bohr radius.
�e magnitude of the atomic magnetic moments m1,m2 are of the order of 1µB.
Additionally the distance between electrons in a magnetic material are typically of
the order 2a0. �erefore the term in the square brackets is of order 1.
�e energy of the electromagnetic interaction between atoms is roughly 1 K for all
materials. In comparison the thermal energy is 3/2 T per molecule at temperature
T . �is means that at 1 K the thermal energy would be high enough to break the
magnetic interaction in practically all materials. However in reality this does not
hold. As an example, the Curie temperature for iron is 1042 K [3, p.731]. �is means
the energy required to break the magnetic interaction is many orders of magnitude
higher than the found interaction energy. �is suggests the presence of an interaction
that is stronger than the one described by classical electromagnetism. �e next section
will be devoted to deriving this interaction using quantum mechanics, speci�cally the
Pauli exclusion principle.

2.2 Magnetism
If electromagnetism is not responsible for the behaviour of magnets, then what is? It
turns out that magnetism is a result of the Pauli exclusion principle. �e total wave
function of the quantum system must be antisymmetric under the exchange of two
fermions. �is leads to a spli�ing of energy levels provided there is Coulomb inter-
action. �e ground state is dependent on the type of material and so distinguishes
between ferro- and antiferromagnetic materials.
�e most common derivation of this result is the Heitler and London calculation [3,
p.798]. In this derivation a neutral atom involved in magnetic interaction is pictured
as a nucleus of nuclear charge +Ze together with a single electron at the outermost
orbit (charge−e). �e other Z− 1 electrons screen the nuclear charge perfectly from
the outermost electron resulting in an e�ective nuclear charge of +e.
In a more realistic scenario the e�ective nuclear charge would be higher, especially if
the atom has more than one electron in its highest orbit. Also there would be electron-
electron repulsion which changes the wave function of the outermost electron. De-
spite the approximation the calculation is useful to gain qualitative insight.
�e time-independent Schrödinger equation for one such atom at ~Ri is:

Ĥiφi(~ri) =

[
− h̄2

2m
∇2
i −

e2

4πε0

1

|~ri − ~Ri|

]
φi(~ri) = Eφi(~ri) (4)

where φi(~ri) is the wave function of the outermost electron. Now consider two such
atoms separated by a distance ~R12 = ~R1 − ~R2. �e Hamiltonian for two of these
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atoms at a �nite distance ~R12 is:

Ĥ = Ĥ1 + Ĥ2 +
e2

4πε0

(
1

|~r1 − ~r2|
+

1

|~R12|
− 1

|~r1 − ~R2|
− 1

|~r2 − ~R1|

)
(5)

Besides the terms for the individual atomic contributions, interaction terms are added.
�e �rst term represents the electron-electron repulsion, the second term describes
nuclei repulsion and the �nal two terms each cover the interaction of either electron
with the other nucleus. Because the individual atoms are considered to be identical,
the Hamiltonian is invariant under exchange of electrons. �e total wave function is
the product of the spin- and spatial wave function.

Ψ(~r1, ~r2, σ1, σ2) = φ(~r1, ~r2)χ(σ1, σ2) (6)

According to the Pauli exlusion principle the total wave function should be antisym-
metric under the exchange of electrons i.e. Ψ(~r1, ~r2, σ1, σ2) = −Ψ(~r2, ~r1, σ2, σ1).
Because the Hamiltonian does not explicitly depend on spin all the spin operators
commute with the Hamiltonian. �is means that the eigenfunctions of Ŝ2 and Ŝz
span the spin space of the Hamiltonian:

χ0,0 =
1√
2

(χ↑(σ1)χ↓(σ2)− χ↓(σ1)χ↑(σ2)) S = 0, Sz = 0 (7a)

�is function is the only odd state i.e. the spin singlet.

χ1,0 =
1√
2

(χ↑(σ1)χ↓(σ2) + χ↓(σ1)χ↑(σ2)) S = 1, Sz = 0 (7b)

χ1,1 = χ↑(σ1)χ↑(σ2) S = 1, Sz = 1 (7c)
χ1,−1 = χ↓(σ1)χ↓(σ2) S = 1, Sz = −1 (7d)

�ese functions are even and form the spin triplet. �e spin wave functions of the
Hamiltonian are either odd or even and must be paired with an even or odd spatial
wave function to create an odd total wave function. �erefore the spatial wave func-
tions are:

φs =
1√

2 + 2l2
(φ1(~r1)φ2(~r2) + φ1(~r2)φ2(~r1)) (8a)

φt =
1√

2− 2l2
(φ1(~r1)φ2(~r2)− φ1(~r2)φ2(~r1)) (8b)

where the following shorthand was used for normalisation:

l ≡
∣∣∣∣∫ d~rφ∗1(~r)φ2(~r)

∣∣∣∣ (8c)

�ere are four di�erent total wave functions. �e singlet wave function Ψs = φsχ0,0

which is the product of the even spatial wave function and the spin singlet. �e three
triplet wave functions Ψt = φtχ1,m which are the product of the odd spatial wave
function and one of the spin wave functions from the spin triplet. Because the Hamil-
tonian does not depend on spin the triplet wave functions all have the same energy
(Et). Consequently there are two energy levels, Es and Et, which may or may not be
degenerate. Whether the lowest energy level isEs orEt will determine if the material
is ferromagnetic or antiferromagnetic.
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2.3 Hydrogen (H2)
�e Heitler and London calculation requires some major approximation for most ma-
terials as discussed in the previous section. In the case of hydrogen, where only one
electron is present, none of the approximations apply. As hypothesised in section
2.1 the interaction responsible for magnetism should be stronger than the one de-
scribed by electromagnetism. �e di�erence between the energy levels determines
the strength of the interaction and is referred to as the energy spli�ing. �is section
will focus on completing the Heitler and London calculation for hydrogen. �e end
result will be a numerical value for the energy spli�ing in the case of hydrogen.
Let E be the energy of an isolated hydrogen atom then the Schrödinger equation for
the individual atom becomes:

Ĥiφi(~ri) =

[
− h̄2

2m
∇2
i −

e2

πε0

1

|~ri − ~Ri|

]
φi(~ri) = Eφi(~ri) (9)

�e total Hamiltonian in equation (5) now describes two hydrogen atoms separated by
a distance R12. Since the total Hamiltonian that does not depend on spin, the energy
levels become:

Es =
〈
φs|Ĥ|φs

〉
, Et =

〈
φt|Ĥ|φt

〉
(10)

�e two hydrogen atoms are identical so the Hamiltonian is invariant under the ex-
change of electrons. Using this short-hand for the Coulomb interaction:

U(~r1, ~r2) =
e2

4πε0

(
1

|~r1 − ~r2|
+

1

|~R12|
− 1

|~r1 − ~R2|
− 1

|~r2 − ~R1|

)
(11)

one can calculate the following expressions:〈
φ1(~r1)φ2(~r2)|Ĥ|φ1(~r1)φ2(~r2)

〉
=

∫
d~r1d~r2φ

∗
1(~r1)φ∗2(~r2)Ĥφ1(~r1)φ2(~r2)

=
〈
φ1(~r2)φ2(~r1)|Ĥ|φ1(~r2)φ2(~r1)

〉
=

∫
d~r1d~r2φ

∗
1(~r2)φ∗2(~r1)Ĥφ1(~r2)φ2(~r1)

= 2E +

∫
d~r1d~r2U(~r1, ~r2)|φ1(~r1)|2|φ2(~r2)|2

= 2E + I1

(12)

〈
φ1(~r2)φ2(~r1)|Ĥ|φ1(~r1)φ2(~r2)

〉
=

∫
d~r1d~r2φ

∗
1(~r2)φ∗2(~r1)Ĥφ1(~r1)φ2(~r2)

=
〈
φ1(~r1)φ2(~r2)|Ĥ|φ1(~r2)φ2(~r1)

〉
=

∫
d~r1d~r2φ

∗
1(~r1)φ∗2(~r2)Ĥφ1(~r2)φ2(~r1)

= 2l2E +

∫
d~r1d~r2U(~r2, ~r1)φ∗1(~r1)φ∗2(~r2)φ1(~r2)φ2(~r1)

= 2l2E + I2

(13)

�e integrals I1 and I2 represent the interaction between the atoms and depend only
on the distance between the atoms R12. Notice that these interactions do not exist
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without the Coulomb interaction i.e. if U(~r1, ~r2) = 0 then I1, I2 = 0.
�e energy levels in (10) become:

Es =
〈
φs|Ĥ|φs

〉
= 2

2E + I1 + 2l2E + I2
2 + 2l2

= 2E +
I1 + I2
1 + l2

(14a)

Et =
〈
φt|Ĥ|φt

〉
= 2

2E + I1 − 2l2E − I2
2− 2l2

= 2E +
I1 − I2
1− l2

(14b)

So the energy spli�ing will be:

J ≡ Es − Et =
2I2 − 2l2I1

1− l4
(15)

�is also shows that if there is no Coulomb interaction (U(~r1, ~r2) = 0) there will be
no energy spli�ing.
�e ground state spatial wave function of an isolated hydrogen atom is known to be:

φi(~ri) =
1√
πa3

e−|~ri−
~Ri|/a0 (16)

with eigenenergy E = −13.6 eV ≈ 1.6 · 105K. �e energy spli�ing can be calcu-
lated numerically and depends only on the distance R12. �e graph in �gure 1 shows
the value of the energy spli�ing for hydrogen for di�erent values of R12. �e energy
spli�ing is negative, so the singlet state is the ground state. �erefore a hydrogen
molecule is an example of an antiferromagnet, the spins of the two electrons are op-
positely aligned.
�e typical distance between two hydrogen atoms in a hydrogen molecule is 1.4 a0.

At this distance the energy spli�ing is J ≈ −6.6 · 104K. �e coupling is four orders
of magnitude stronger than the coupling described by electromagnetism making it a
more plausible explanation for magnetic behaviour. In comparison the energy split-
ting of iron is roughly J ≈ 175 K which is two orders of magnitude smaller than that
of hydrogen. So does the Heitler and London calculation overestimate the coupling if
done for iron instead of hydrogen? Not necessarily, the di�erence between hydrogen
and iron can be explained by outlining the following discrepancies. First of all the
Heitler-London calculation works less well in the case of iron since more approxi-
mations are required. A big factor in the approximations are the electron screening
e�ects. For instance, iron naturally has two electrons in its outermost shell while only
one is considered in the calculation. Consequently the other electron does not screen
the nucleus as much as it would when in a lower shell. Additionally the calculation
assumes that all electrons in lower shells screen the nucleus perfectly, i.e. each elec-
tron reduces the e�ective nuclear charge by e. In reality they do not. Together these
e�ects contribute to a higher e�ective nuclear charge and thus a stronger coupling.
Secondly the typical atom spacing between iron atoms is roughly 5.4 a0 [10] which is
larger than it is between hydrogen atoms (1.4 a0) thus based on this one would expect
a much lower energy spli�ing. At the end of the day the two e�ects should amount
to a energy spli�ing of roughly 175 K, however a complete calculation is beyond the
scope of this thesis.
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Figure 1: �e energy spli�ing for the hydrogen molecule as a function of the distance
between the hydrogen atoms. �e red dot represents the point on the graph speci�c
to hydrogen with R12 = 1.4a0 and J = −66000K

2.4 Spin Hamiltonian
�e Hamiltonian in equation (5) is one that acts only on the spatial degrees of freedom
of the system. �ere exists however an equivalent expression that instead acts only
on the spin degrees of freedom of the electrons. Such a Hamiltonian is referred to as
a spin Hamiltonian. �is section is devoted to showing that the two representations
are equivalent. �e spin Hamiltonian also forms the basis for the Heisenberg model
which will be derived shortly a�er.

�e spin Hamiltonian for the two atoms is of the form [3]:

Ĥspin = α+ β(Ŝ1 · Ŝ2) = α+ 1
2β(Ŝ2 − Ŝ2

1 − Ŝ2
2) (17)

where α and β are constants, Ŝi are the spin angular momentum operators of the
individual spin-1/2 systems i.e. the outermost electrons and Ŝ = Ŝ1 + Ŝ2 is the
total angular momentum operator. As mentioned in section 2.2, the eigenfunctions
in equation (7) form a basis of the 4-dimensional spin space of the Hamiltonian. For
any of the eigenfunctions the spin operators of the individual systems satisfy Ŝi =
1
2 ( 1

2 + 1) = 3
4 . �erefore one can rewrite the spin Hamiltonian as:

Ĥspin = α+ 1
2β(Ŝ2 − 3

2 ) (18)

When the spin Hamiltonian acts on the singlet state one �nds an energy of Es =
α − 3

4β, whereas for the triplet state Et = α + 1
4β. �e goal is to choose α and β

such that the spin Hamiltonian gives identical results as the Hamiltonian in equation
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(5). With a simple calculation one �nds:

Ĥspin =
3Et − Es

4
+ (Et − Es)(Ŝ1 · Ŝ2) (19)

Because the two representations act identically on a basis of states they must do so
on all states i.e. they are equivalent. �is formulation of the Hamiltonian shows the
proportionality on spin as in the Heisenberg model.

Ĥspin ∝ −J(Ŝ1 · Ŝ2) (20)

Where J = (Es−Et) is the energy spli�ing introduced in (15), here and a�er known
as the coupling constant.

2.5 Heisenberg model
�e Heisenberg model describes the energy of a large number of spins placed on a
n-dimensional la�ice. It does not necessarily describe the behaviour of a tangible
system, instead it is a tool to study the fundamental behaviour of such a system at a
qualitative level. �e model is o�en used in the �eld of statistical mechanics to study
phase transitions of ordered systems, such as ferromagnets. Without making any
assumptions concerning the la�ice, the most general form of the Heisenberg model
concerning spatial coupling is:

H = −1

2

∑
i,j

(JxijŜ
x
i Ŝ

x
j + JyijŜ

y
i Ŝ

y
j + JzijŜ

z
i Ŝ

z
j ) (21)

where the sums run over all spins and periodic boundary conditions apply. �e
factor 1

2 is included to compensate for the double counting of pairs. Additionally
J ∼ 10 000 K so the system has the right energy scale to describe the Curie temper-
ature. �e Heisenberg model is a generalisation of the spin Hamiltonian in (20). Note
that the coupling constant may vary from pair to pair, and must satisfy Jij = Jji. In
this thesis pairs of non-neighbouring spins are neglected because, in the treated cases,
the coupling decreases exponentially with distance similar to the hydrogen case (see
�gure 1). In the event that coupling between non-neighbouring spins does become
important the system becomes more complicated as do all the consequent calcula-
tions.
�e Heisenberg model in (21) is not the most general formulation of the Heisenberg
model concerning spin symmetry. For instance the following one-dimensional model
allows for direction-dependent coupling and is referred to as the XYZ-model.

H =
∑
i

(JxŜ
x
i Ŝ

x
i+1 + JyŜ

y
i Ŝ

y
i+1 + JzŜ

z
i Ŝ

z
i+1) (22)

where Jx, Jy, Jz are coupling constants in the di�erent directions. Two types of sys-
tems which are o�en studied are the cases where either Jx, Jy, Jz > 0 or Jx, Jy, Jz <
0. In the la�er case one deals with a ferromagnet where, in the ground state, all
spins are orientated in the same direction. Whereas in the antiferromagnetic case,
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Jx, Jy, Jz > 0, the ground state is a singlet of total spin ~S =
∑
i
~Si. Finally there are

the XXZ-model (Jx = Jy) and the fully isotropic XXX-model (Jx = Jy = Jz). �ese
models will be used later to study spin waves in one dimension. Each of the models
have there analogies in higher dimensions.

3 Ising model
�e Ising model is another special version of the Heisenberg model. �e model de-
scribes a system of spins that can solely point along one direction. By convention the
�xed direction is chosen to be along the z-axis. Every spin in the system must point
along this direction, so either up or down. In essence the Ising model is the extreme
case of the XYZ-model where Jx, Jy � Jz ≡ J , so pu�ing Jx, Jy = 0 in (22) gives:

H = −J
∑
〈i,j〉

Ŝzi Ŝ
z
j (23)

where the sum runs only over nearest neighbour pairs (notation: 〈i, j〉). �e model
is used to study a variety of systems such as biological membranes, protein folding
and social systems [6, 7, 8]. In this section it will be used to study phase transitions
in ferromagnets.
A ferromagnet exhibits a phase transition if at some �nite temperature Tc it goes
from an ordered state to a disordered state in a non-smooth fashion. What exactly
this means will be discussed throughout this chapter. Intuitively the system is in a
disordered state if all spins are orientated randomly and in an ordered state if this is
not the case. To make this more precise consider the average magnetisation of the
system de�ned as follows:

m =
1

N

N∑
i=1

Ŝzi (24)

where N is the total number of spins. �e average magnetisation is used to param-
eterise the phase transition. Plo�ing the average magnetisation as a function of the
temperature will show how the system behaves and whether or not a phase transition
occurs. �e ground state of the ferromagnetic system described by (23) is the state in
which all spins are aligned and the average magnetisation is m = ±1 6= 0. At high
temperatures the system is in a disordered state because of thermal �uctuations so
the average magnetisation is m = 0. �is means that the ferromagnetic system is
in two di�erent states at either end of the temperature spectrum. However this does
not necessarily mean that there is a phase transition as will be illustrated by the next
example.

3.1 One-dimensional ferromagnet
Consider a one-dimensional ferromagnet i.e. N particles on a one-dimensional la�ice
described by the Ising model. At �rst assume no periodic boundary conditions. �e
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Hamiltonian for this system is:

H = −J
N−1∑
i=1

Ŝzi Ŝ
z
i+1 (25)

where, because this is a ferromagnet, J > 0. Hence the system is in the ground state
when all spins are aligned (see �gure 2a). Now introduce a single defect then, to min-
imise the energy, a whole row of spins will change direction (see �gure 2b). Since at
�nite temperature some spins will be �ipped the system will be divided into clusters
of aligned spins. For a speci�cally long chain the average magnetisation is expected
to be zero, so the system is always in a disordered state (m = 0) at �nite temperature.
Although not hard proof this strongly indicates that there is no phase transition as a
function of temperature because a phase transition must always occur at some �nite
temperature Tc.

(a) One of the two ground states of the one-
dimensional ferromagnetic Ising model

(b) An excited state with the lowest energy
above the ground state energy. Because
there are no periodic boundary conditions
a whole column of spins �ip to minimise
the energy of the system.

Figure 2: �e ground state and an excited state of the one-dimensional ferromagnet
without periodic boundary conditions.

(a) An excited state with the lowest energy
above the ground state energy. Only one
spin is �ipped.

(b) Another excited state of with the lowest
energy above the ground state energy. An
arbitrary number of spins is �ipped.

Figure 3: Two excited states of the one-dimensional ferromagnet with periodic bound-
ary conditions that have the same energy.

�e question remains however: what happens when one does assume periodic bound-
ary conditions? �e ground state will remain identical, however when one spin �ips
around there is no longer the guarantee that a whole column will �ip as this does not
lower the energy any more. Does this mean that only one spin �ips at a time? Not
necessarily, the length of the column that �ips with the spin is arbitrary. �is follows
from the fundamental assumption of statistical mechanics which says that when a
closed system is in equilibrium all microstates are equally likely. �e microstates the
axiom speaks of are the con�gurations of the system. Consequently, at a �xed energy,
any possible con�guration of the system is equally likely. For example the energies of
�gure 3a and 3b are the same, thus both states are equally likely. Not only these two
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examples, but any state that has exactly two antiparallel pairs. Since all these states
are equally probable the expected average magnetisation is again zero at �nite tem-
perature. Drawing the same conclusions as before this suggests no phase transition
asa function of temperature in the one-dimensional case [4]. A mathematical proof for
this result can be derived by calculating the free energy of the one-dimensional Ising
model exactly using the transfer matrix method. Doing this will result in a smooth ex-
pression for the free energy as a function of temperature. However phase transitions
must occur in a non-smooth fashion, hence there is no phase transition as a function
of temperature.

4 Mean �eld theory
�e Ising model has not been solved analytically for more than two dimensions. As
ever the goal is to describe real materials so it would be nice to solve the three-
dimensional case and compare theory to experiment. Another way to describe a fer-
romagnetic system is mean �eld theory. It studies the system by considering a single
isolated spin in a mean magnetic �eld generated by the rest of the spins, hence the
name. To make the idea of mean �eld theory more discrete consider a n-dimensional
ferromagnet with periodic boundary conditions. By the philosophy of mean �eld the-
ory the Hamiltonian for this system can be wri�en as:

H = −
∑
i

~Heff
~̂Si (26)

where the sum is over all spins each in a �eld ~Heff generated by all other spins. When
the system is in an ordered state the �eld ~Heff for each spin is strong and points along
the same direction as each spin hence the energy is low as, expected from the ground
state. When the system is in a disordered state the average magnetisation is zero. �e
�eld ~Heff generated by all other spins is weak but is antiparallel to the spin that is
being isolated. As a result the energy will be high. �is brings to light one of the limi-
tation of mean �eld theory; it does not accommodate well for local interactions. Mean
�eld theory does not weigh the contribution of individual spins to the e�ective �eld
Heff . Even in the disordered state the system is o�en divided in clusters of aligned
spins. When considering a spin in such a cluster mean �eld theory does not distin-
guish between a neighbouring spin or a spin far away. �is in contrast to the models
treated so far which only took into account neighbouring spins. Consequently, in a
system where the mean �eld is zero, mean �eld theory predicts no correlation be-
tween individual spins. Unfortunately the aggregation of spins pointing in the same
direction primarily happens near phase transitions, where the system is most inter-
esting.
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4.1 Mean �eld theory of the Ising model
Consider a n-dimensional ferromagnet described by the Ising model1:

H = −J
∑
〈i,j〉

Ŝzi Ŝ
z
j = −J

∑
〈i,j〉

ŜiŜj (27)

where J > 0. �e goal is to rewrite the Hamiltonian in (27) to one as in equation
(26). For large N the e�ective �elds are practically the same for each spin. Using this
approximation only one expression for the e�ective �eld is required. Also we can
rewrite:

Ŝi =
〈
Ŝ
〉

+ (Ŝi −
〈
Ŝ
〉
) =

〈
Ŝ
〉

+ δŜi (28)

where m ≡
〈
Ŝ
〉

is the average magnetisation of the system and δŜi = (Ŝi −
〈
Ŝ
〉
) is

the (small) di�erence between the spin Si and the mean. �en, keeping things up to
�rst order, one obtains:

ŜiŜj = (
〈
Ŝ
〉

+ δŜi)(
〈
Ŝ
〉

+ δŜj) ≈
〈
Ŝ
〉2

+
〈
Ŝ
〉
(δŜi + δŜj)

= −
〈
Ŝ
〉2

+
〈
Ŝ
〉
(Ŝi + Ŝj)

(29)

�is provides a way to rewrite equation (27). Let z be the number of nearest neigh-
bours andN the total number of particles then, taking care not to double count pairs,
one obtains:

H = −J
∑
〈i,j〉

ŜiŜj

= −J
∑
〈i,j〉

(
−
〈
Ŝ
〉2

+
〈
Ŝ
〉
(Ŝi + Ŝj))

)
=
JNz

2

〈
Ŝ
〉2 − Jz

2

〈
Ŝ
〉∑

i

2Ŝi

=
H̃Nm

2
− H̃

∑
i

Ŝi

(30)

where H̃ = Jz
〈
Ŝ
〉

= Jzm is the e�ective �eld as in (26). Due to the restriction of
the Ising model to nearest neighbour interactions the e�ective �eld is only created
by the nearest neighbours of each spin instead of all other spins in the system. �e
constant term can be ignored for now because it will not be important in deriving
the qualitative results for this system. �e relevant progress resulting from this mean

1I will omit the superscripts to ease the notation
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�eld approach appears when calculating the mean magnetisation:

m ≡
〈
Ŝi
〉

=

∑
S1

∑
S2
. . .
∑
SN

Ŝie
−βH∑

S1

∑
S2
. . .
∑
SN

e−βH

=
e−βH̃Nm/2

∏N
j=1

(∑
Sj
Ŝie

βH̃Ŝj

)
e−βH̃Nm/2

∏N
i=1

(∑
Sj
eβH̃Ŝj

)
=

2N cosh(βH̃)N−1 sinh(βH̃)

2N cosh(βH̃)N

=
sinh(βH̃)

cosh(βH̃)
= tanh(βJzm)

(31)

where β = 1/(kBT ). �is self-consistent expression has either one or three solutions
depending on the value of βJz. In the high temperature limit βJz ≤ 1 there is only
one solution: m = 0, the disordered state. At lower temperatures, βJz > 1, there are
three solutions: m = 0 and m = ±m̃. �e additional solutions m = ±m̃ are a result
of the up/down symmetry of the system and correspond to ordered states (see �gure
4). It turns out that these ordered states are actually ground states of the system at low

Figure 4: �e graphs ofm (gray line) and tanh(βJzm) (black line) as a function ofm
for di�erent values of βJz (temperatures). When βJz ≤ 1 there is one intersection
at m = 0. When βJz > 1 there are two additional intersections at m = ±m̃.

temperatures2. Figure 5 shows the average magnetisation as a function of temperature
in the case of iron. �e average magnetisation decreases continuously from m = 1 at
low temperatures until it reaches zero at the Curie temperature (1042 K) and remains
zero therea�er. At the Curie temperature the system transitions from an ordered
state (m 6= 0) to a disordered state (m = 0) in a non-smooth way, hence a phase
transition occurs. Such a phase transition as in iron is categorised as a continuous
phase transition. �e temperature at which this transition occurs is given by Tc =
Jz, such that βcJz = 1. �is expression allows for the calculation of the coupling
constant for iron on a three-dimensional cubic la�ice (z = 6) from the experimental
value for the Curie temperature (Tc ∼ 1000 K): J ∼ 175 K. �is is the value that was
used in section 2.3 to compare to the coupling constant for hydrogen.

2A derivation of this result can be found in appendix A
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Interestingly this result is acquired without assumptions concerning the dimension
of the system. �e dimension of the system enters the problem through the variable z
(the number of nearest-neighbours). However as was discussed in section 3.1 there is
no phase transition in the one-dimensional case, but mean �eld theory says otherwise.
Hence mean �eld theory fails in one dimension.

Figure 5: �e continuous phase transition in iron. At low temperatures the system is in
an ordered state, at high temperatures it is in a disordered state. �e phase transition
occurs at Tc = 1042 K.

5 Ground states of general systems
Up until now the Heisenberg model has only been treated in the extreme case; the
Ising model. Although the Ising model has been useful in introducing new concepts
such as mean magnetisation, phase transitions and mean �eld theory it will now make
way for more general systems. �e Ising model is cast aside because it does not allow
for the existence of spin waves. Spin waves are low energy perturbations from the
ground state so it is bene�cial to �nd the ground states of the general systems so that
we may use these ground states to study spin waves in the next section.

5.1 Ferromagnetic Heisenberg model
First of all consider the Heisenberg model on a la�ice:

H = −1

2

∑
i,j

(JxijŜ
x
i Ŝ

x
j + JyijŜ

y
i Ŝ

y
j + JzijŜ

z
i Ŝ

z
j ) (32)

where the sum runs over all sites, not just nearest-neighbour pairs and periodic bound-
ary conditions apply. Later it will be assumed that Jkij > 0. Notice that no restric-
tion are made to the dimension of the system. Introduce the raising and lowering
operator Ŝ+

i = Ŝxi + iŜyi and Ŝ−i = Ŝxi − iŜyi , hence Ŝxi = (Ŝ+
i + Ŝ−i )/2 and
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Ŝyi = −i(Ŝ+
i − Ŝ

−
i )/2. Equation (32) reduces to:

H = −1

2

∑
i,j

(
Jxij

Ŝ+
i + Ŝ−i

2

Ŝ+
j + Ŝ−j

2
− Jyij

Ŝ+
i − Ŝ

−
i

2

Ŝ+
j − Ŝ

−
j

2
+ JzijŜ

z
i Ŝ

z
j

)

= −1

2

∑
i,j

(
∆+
ij

Ŝ−i Ŝ
+
j + Ŝ+

i Ŝ
−
j

2
+ ∆−ij

Ŝ+
i Ŝ

+
j + Ŝ−i Ŝ

−
j

2
+ JzijŜ

z
i Ŝ

z
j

)
(33)

where ∆±ij = (Jxij ± J
y
ij)/2. �e ground states of the ferromagnetic Ising model are

the fully polarised states i.e. the total spin is maximal and all spins are aligned along
the z-direction. For example3:

|ψ
〉

= |S, S
〉
1
|S, S

〉
2
. . . |S, S

〉
N

(34)

�is leads to:

H|ψ
〉

= −1

2

∑
i,j

(
0 + 0 + 0 + ∆−ij

Ŝ−i Ŝ
−
j

2
|ψ
〉

+ JzijŜ
z
i Ŝ

z
j |ψ
〉)

= −1

2

∑
i,j

(
S∆−ij

[
. . . |S, S − 1

〉
i
. . . |S, S − 1

〉
j

+ . . .
]

+ S2Jzij |ψ
〉) (35)

�e �rst three terms vanish because Ŝ+
i |S, S

〉
i

= 0 for all i. Taking the limiting case
Jxij , J

y
ij � Jzij one �nds that |ψ

〉
is indeed an eigenstate. A second scenario in which

|ψ
〉

is an eigenstate of H presents itself when ∆−ij = 0 or equivalently Jxij = Jyij
for all i, j turning the model into a XXZ-model. Sticking to the la�er scenario for a
moment denote by H0 the Heisenberg model for which Jxij = Jyij for all i, j. De�ne

the total spin: ~̂S =
∑
i
~̂Si then one also �nds that:

[Ŝz,H] = −1

2

∑
i,j

∑
k

[
Ŝzk , J

x
ijŜ

x
i Ŝ

x
j + JyijŜ

y
i Ŝ

y
j + JzijŜ

z
i Ŝ

z
j

]
= −1

2

∑
i,j,k

Jxij(Ŝ
x
i [Ŝzk , Ŝ

x
j ] + [Ŝzk , Ŝ

x
i ]Ŝxj ) + Jyij(Ŝ

y
i [Ŝzk , Ŝ

y
j ] + [Ŝzk , Ŝ

y
i ]Ŝyj )

= −1

2

∑
i,j,k

Jxij(Ŝ
x
i δkjiŜ

y
j + δkiiŜ

y
i Ŝ

x
j )− Jyij(iŜ

y
i δkjŜ

x
j + iδkiŜ

x
i Ŝ

y
j )

= − i
2

∑
i,j

Jxij(Ŝ
x
i Ŝ

y
j − Ŝ

y
i Ŝ

x
j )− i

2

∑
i,j

Jyij(Ŝ
y
i Ŝ

x
j − Ŝxi Ŝ

y
j )

= −i
∑
i,j

∆−ij(Ŝ
x
i Ŝ

y
i − Ŝ

y
i Ŝ

x
j )

(36)
3�e notation that is used is: |Stot,m

〉
i

where Stot is the total spin and m is the spin along the
z-direction.
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Hence [Ŝz,H0] = 0 and analogously [Ŝx,H0] = 0, [Ŝy,H0]=0. �erefore H0 com-
mutes with ~̂S2 and Ŝz ; thus shares a common basis of eigenstates with ~̂S2 and Ŝz . In
addition this means thatH0 is invariant under rotations in spin space. Consequently
every state that is fully polarised is an eigenstate of H0. In a spin-1/2 system there
are exactly two fully polarised states: up-and down states. �e eigenenergy for any of
the polarised states is E = − 1

2S
2
∑
i,j J

z
ij . On the other hand the expectation value〈

φ|H0|φ
〉

for an arbitrary product state: |φ
〉

= |S,m1

〉
1
. . . |S,mN

〉
N

is:

〈
φ|H0|φ

〉
= −1

2

∑
i,j

(
∆+
ij

〈
φ|Ŝ−i Ŝ

+
j |φ

〉
2

+ ∆+
ij

〈
φ|Ŝ+

i Ŝ
−
j |φ

〉
2

+ Jzij
〈
φ|Ŝzi Ŝzj |φ

〉)

= −1

2

∑
i,j

(
0 + 0 + Jzij

〈
φ|Ŝzi Ŝzj |φ

〉)
= −1

2

∑
i,j

mimjJ
z
ij

(37)

where the �rst term vanishes because |φ
〉

and Ŝ−i Ŝ
+
j |φ

〉
are orthogonal and in a sim-

ilar fashion the second term vanishes as well. Up to this point the derivation holds
for general Jzij . Considering systems with Jzij ≥ 0 for all i, j one �nds that:

〈
φ|H0|φ

〉
= −1

2

∑
i,j

mimjJ
z
ij ≥ −

1

2
S2
∑
i,j

Jzij =
〈
ψ|H0|ψ

〉
(38)

�e product states |φ
〉

form a basis and thus for every state the energy is larger than:〈
ψ|H0|ψ

〉
; the energy of the fully polarised states. �erefore the state |ψ

〉
and all

other fully polarised states are ground states ofH0 when Jzij > 0. Notice that in this
derivation no assumptions are made concerning the dimension of the system. How-
ever one can show that exclusively in the one-dimensional case there is no ordered
state [5]. In section 6.1 the goal is to apply spin wave theory to one-dimensional sys-
tems to �nd the low energy excited states. To this end it will be assumed that the
ground state is a fully polarised state i.e. an ordered state. Avoiding this assumption
would require spin wave analysis of higher dimensional models. While this is pos-
sible, it is quite involved and provides no further qualitative insight since the results
are qualitatively no di�erent than those that will be derived from the one-dimensional
case using this assumption.
Returning to the general case in (32) one �nds that the ground states are not so easily
discovered when ∆−ij 6= 0.

5.2 Antiferromagnetic Heisenberg model on bipartite lattices
�e analysis of the previous section holds for general Jij up to equation (37). When
Jij > 0 one �nds that the ground states are the fully polarised states. What happens
when Jij < 0? If Jij < 0 the fully polarised states are still eigenstates of H0 but are
no longer ground states; in fact they have the highest energy of any of the normalised
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states. In order to �nd the ground state one might consider taking the opposite of
the fully polarised states such that all neighbouring spins are oppositely aligned a.k.a.
Néel states. Although this works for the Ising model, it does not �t in general. In
fact �nding the ground state for the general system is really involved. For instance
consider an antiferromagnetic system on a bipartite la�ices. In this context, a bipartite
la�ice is one that can be divided into two disjoint subla�ices, A & B, in such a way
that every la�ice site exclusively interacts with sites from the other subla�ice as is
the case in the one-dimensional la�ice in �gure 6.

Figure 6: A one-dimensional bipartite la�ice divided into two subla�ices A & B.

To show that the Néel states are not the ground states consider the state:

|ψ
〉

=
∏
i∈A
|S, S

〉
i

∏
j∈B
|S,−S

〉
j

(39)

�en:

H|ψ
〉

= −1

2

∑
i,j

(
∆+
ij

S−i S
+
j

2
|ψ
〉

+ 0 + 0 + 0 + JzijS
z
i S

z
j |ψ
〉)

= −
∑
i∈A

∑
j∈B

(
∆+
ij

2S

2

[
. . . |S, S − 1

〉
i
. . . |S,−S + 1

〉
j
. . .
]
− JzijS2|ψ

〉)
(40)

where the middle three terms vanishes either becauseS−j |S,−S
〉
j

= 0 orS+
i |S, S

〉
i

=

0 and i 6= j. �e above equation shows that |ψ
〉

is generally not an eigenstate ofH, as
promised. �e exception is when ∆+

ij = 0 or equivalently Jxij = −Jyij . Recall that up
to this point no assumptions have been made concerning the signs of Jkij . In the event
that ∆+

ij = 0, |ψ
〉

is again an eigenstate of H and one can show, similar to equation
(38), that |ψ

〉
is the ground state for Jzij < 0. However since this model represents

neither a ferromagnet or antiferromagnet it will not be of interest in the remainder of
this thesis.
�e search for the exact ground state of the general antiferromagnetic Heisenberg
model is very much beyond the scope of this thesis. However there are some nontriv-
ial properties of the ground state which are stated in Marshall’s theorem: [9]

Marshall’s theorem (extended by Lieb and Ma�is): for the Heisenberg model on a bi-
partite la�ice with subla�ices of equal size and Jkij < 0 for all i ∈ A and j ∈ B or
i ∈ B and j ∈ A, the ground state |ψ0

〉
is non-degenerate and a singlet of total spin i.e.:

~S|ψ0

〉
= 0 (41)

18



where ~S =
∑
i
~Si. �e proof of the theorem is beyond the scope of this thesis, but

a universal proof can be found in [11]. Do note that the reverse is not automatically
true i.e. a non-degenerate, spin singlet state is not necessarily the ground state as is
evident from the example of the Néel state above. �e theorem gives at least some
idea of the form of the ground state as it must be a spin singlet state. In a spin-1/2
system this is equivalent to having an equal amount of spins up as spins down. �e
non-degeneracy of the ground state in this type of antiferromagnetic systems also
shows another interesting di�erence from ferromagnetic systems where the ground
state is (2S + 1)- degenerate.

6 Spin wave theory
Spin waves are low energy excitations of the ground state and describe the system
at low �nite temperature where the thermal energy is small. �e thermal energy
causes �uctuations in the values of individual spins. �e Heisenberg model predicts
that neighbouring spins will adjust to lower the energy of the system. �is behaviour
causes a chain reaction that propagates through the system in the shape of a spin
wave. �e properties of this wave-like behaviour depend on characteristics of the
system such as coupling strength, ground states and symmetry. We’ll start from the
simplest model: the fully isotropic ferromagnetic Heisenberg model and make it more
complicated along the way by introducing asymmetry. In every instance the goal is
to derive the dispersion relation which will �nalise the full description of the motion
of the spins and the spin wave.

6.1 �e isotropic case
Although one can show that in the one-dimensional ferromagnetic Heisenberg model
there exists no ordered state [5] it is assumed that such a state does exist. Using this
assumption, the results derived from the one-dimensional case are qualitatively no
di�erent from those derived from higher-dimensional systems. However the spin
wave analysis for higher-dimensional systems is more involved while providing no
additional qualitative insight whatsoever.
First consider the isotropic ferromagnetic one-dimensional Heisenberg model:

H = −J
N∑
i=1

~̂Si ~̂Si+1 (42)

where periodic boundary conditions apply. At absolute zero the system is in the
ground state, assume that all spins are aligned i.e. the system is ordered. At �nite
temperature it happens that a single spin changes due to thermal �uctuations. When
this happens the rest of the spins adjust to lower the energy of the system causing the
aforementioned wave-like motion. �e way to derive the equations of motion for a
spin at site i is a mean �eld-like approach. Suppose that in the ground state all spins
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point in the positive z-direction (~Si(t) = (0, 0, S) for all i). �e spin at site i possesses
the magnetic moment ~µi = µ0

~Si and hence the energy−~µi ~Bi =−J ~Si(~Si−1 + ~Si+1)

in the magnetic �eld created by its neighbours ~Bi = J(~Si−1 + ~Si+1)/µ0. Introduce
a perturbation around the ground state at site i. Because the magnetic moment and
magnetic �eld at site i are no longer aligned, a torque ~µi× ~Bi is present on the angular
momentum ~Si resulting in the following equation of motion:

d~Si
dt

= ~µi × ~Bi = J ~Si × (~Si−1 + ~Si+1) (43)

�ese are the so-called Bloch equations. �e behaviour of the spins can be seen as a
perturbation around the ground state i.e. ~Si(t) = (Sxi (t), Syi (t), S) with Sxi (t) and
Syi (t) small. Using this assumption one can linearise the Bloch-equations:

d~Si
dt

= J

 Syi (Szi−1 + Szi+1)− Szi (Syi−1 + Syi+1))
Szi (Sxi−1 + Sxi+1)− Sxi (Szi−1 + Szi+1)
Sxi (Syi−1 + Syi+1)− Syi (Sxi−1 + Sxi+1)

 (44)

d~Si
dt

= J

 Syi (2S)− S(Syi−1 + Syi+1))
S(Sxi−1 + Sxi+1)− Sxi (2S)

0

 (45)

�e right hand side of the last equation had only non-linear terms and thus becomes
zero when linearised. �e linearised Bloch-equations can be solved using the follow-
ing ansatz:

Sxn(t) = uei(nka−ωt)

Syn(t) = vei(nka−ωt)

Szn(t) = S

(46)

where u and v are (small) constants, k is the wave vector and a is the la�ice constant.
Filling this ansatz into equation (44) one �nds the following eigenvalue equation:

− iω
(
u
v

)
= JS

(
0 2− e−ika − eika

−2 + e−ika + eika 0

)(
u
v

)
(47)

Solving this equation and taking only the positive root one �nds the following dis-
persion relation4:

− ω2 + J2S2(2− e−ika − eika)2 = 0

ω2 = 4J2S2(1− cos ka)2

ω(k) = 2JS(1− cos ka)

(48)

�e corresponding eigenvector is u = A, v = −iA with A the (real) amplitude of
the initial perturbation. �is dispersion relation relates the wave number k to the
frequency of the motion ω. A plot of the dispersion relation is shown in �gure 7. �e

4�e negative root describes the motion in opposite direction
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Figure 7: �e dispersion relation in natural units (a = 1) for the spin wave in an
isotropic one-dimensional ferromagnet.

physical motion of a spin at site i is a counter-clockwise precession around the z-axis
with amplitude A and frequency ω(k) i.e.

Sxn(t) = Re(Aei(nka−ω(k)t)) = A cos(kna− ω(k)t)

Syn(t) = Re(iAei(nka−ω(k)t)) = −A sin(kna− ω(k)t)

Szn(t) = S

(49)

�e spins at neighbouring sites are out of phase by ka. �e motion of the chain of
spins can be identi�ed with the motion of a row of identical spinning tops precessing
around their z-axes with a constant phase di�erence between neighbours. Please do
keep in mind that this result is derived from the linearised Bloch equations and thus
requires A to be small.
�e actual waveform can be found by connecting the spins at neighbouring la�ice
sites as in �gure 8a where the spins are represented by arrows. For the purpose of a
clear demonstration the amplitude does not satisfy the requirement A � a (instead
A ∼ 0.4a) used in the linearisation of the Bloch equations. �erefore the wave is not
perfectly sinusoidal but is more reminiscent of a cycloid curve. Figure 8b shows a spin
wave when A � a which is a sinusoidal wave. �e wave will travel in the positive
x-direction with frequency f = ω(k)/(2π) where k is determined by the direction of
the initial perturbation.

6.2 �e anisotropic case
�e spin wave analysis from the previous section can be generalised to the anistropic
case. As a stepping stone �rst consider the case with a single direction being distinct:

Ĥ = −J
N∑
i=1

(Ŝxi Ŝ
x
i+1 + Ŝyi Ŝ

y
i+1 + ∆Ŝzi Ŝ

z
i+1) (50)

where ∆ ≥ 1, because if ∆ < 1 the coupling in the z-direction would no longer
be the strongest and hence the ground state would be di�erent i.e. all spins would
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(a) A spin wave (red line) with amplitude
A ∼ 0.4a in an array of 10 spins where
the spins are represented by arrows.

(b) A spin wave when A � a = 1 and
k = π/3

point along the x- or y-direction. In the event that ∆ = 1 the model reduces to the
isotropic model discussed in the previous section. If ∆ → ∞ the model becomes
a one-dimensional Ising model where a perturbation like the one described in the
previous section is not even possible since all spins are parallel to the z-axis at all
time. Because ∆ ≥ 1 the ground state is identical that of the isotropic case; the fully
polarised state ~Si(t) = (0, 0, S) for all i. �is time, the spin at site i has to have the
energy:

− ~µi ~Bi = −J(Sxi (Sxi−1 + Sxi+1) + Syi (Syi−1 + Syi+1) + ∆Szi (Szi−1 + Szi+1)) (51)

where µi = µ0
~Si. Hence the magnetic �eld produced by the neighbours should be:

~Bi =
J

µ0

 Sxi−1 + Sxi+1

Syi−1 + Syi+1

∆(Szi−1 + Szi+1)

 (52)

From equation (43) one can now determine the Bloch equations of motion for the
anisotropic case:

d~Si
dt

= J

 Syi (∆(Szi−1 + Szi+1))− Szi (Syi−1 + Syi+1))
Szi (Sxi−1 + Sxi+1)− Sxi (∆(Szi−1 + Szi+1))
Sxi (Syi−1 + Syi+1)− Syi (Sxi−1 + Sxi+1)

 (53)

�ese Bloch equations can be linearised by using the same ansatz as in the isotropic
model i.e. ~Si(t) = (Sxi (t), Syi (t), S) with Sxi (t) and Syi (t) small.

d~Si
dt

= J

 Syi (2∆S)− S(Syi−1 + Syi+1))
S(Sxi−1 + Sxi+1)− Sxi (2∆S)

0

 (54)

Using the ansatz as in (46) one �nds the following dispersion relation:

ω(k) = 2JS(∆− cos ka) (55)

�e dispersion relation in the above equation is plo�ed in �gure 9 for di�erent values
of ∆. �e overall motion of the spins will remain the same i.e. precession around the
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z-axis like spinning tops as in (49). �e only di�erence is the angular frequency with
which the motion takes place. �e parameter ∆ can be seen as the tuning peg on a
guitar; the higher ∆, the higher the tension in the guitar string, the higher the fre-
quency when the string gets plucked. As expected se�ing ∆ to 1 returns the isotropic
dispersion relation. At the beginning of this section it was suggested that the de-
scribed perturbations could not take place in the limit ∆ → ∞. �is is clear from
the dispersion relation as well; the frequency diverges for ∆→∞ meaning that the
energy needed to excite a spin wave would be in�nite. Alternatively, using the guitar
string analogy, one can not pluck an in�nitely tight guitar string5.

Figure 9: �e dispersion relation for the spin wave in an anisotropic one-dimensional
ferromagnet.

5I realise the metaphor does not hold in practice as the guitar string would break long before reaching
in�nite tension.
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6.3 �e antiferromagnetic case
So far all systems discussed in this section have been ferromagnetic. Now it is time
to take a step back and look at the antiferromagnetic system described by:

Ĥ = −J
N∑
i=1

~̂Si ~̂Si+1 (56)

where J < 0. �e exact ground state of such a general antiferromagnetic system is
more complex than one might expect at �rst glance. However there is a more straight-
forward alternative: the Néel state i.e. the ground state of the antiferromagnetic Ising
model from section 3. It was shown in the section 5.2 that the Néel state is actually not
the ground state of the system, it is not even an eigenstate. Nevertheless it is a good
enough approximation to the ground state to apply perturbation theory and retrieve
the spin waves. �e neighbouring spins in the Néel state are oppositely aligned and
by convention point along the z-axis. A perturbation from the Néel state causes, as
in the ferromagnet, a spin wave. �e derivation of the Bloch equations is completely
identical to that of the isotropic ferromagnetic case:

d~Si
dt

= J

 Syi (Szi−1 + Szi+1)− Szi (Syi−1 + Syi+1))
Szi (Sxi−1 + Sxi+1)− Sxi (Szi−1 + Szi+1)
Sxi (Syi−1 + Syi+1)− Syi (Sxi−1 + Sxi+1)

 (57)

where J < 0. Since, in the Néel state, the system is an alternating array of ”up”-
and ”down” spins the perturbation from the ground state of each spin is described by:
~Si(t) = (Sxi (t), Syi (t), (−1)iS) with Sxi (t) and Syi (t) small. �is ansatz can be used
to linearise the Bloch-equations:

d~Si
dt

= (−1)i−1J

 Syi (2S) + S(Syi−1 + Syi+1))
−S(Sxi−1 + Sxi+1)− Sxi (2S)

0

 (58)

Make the following ansatz for the case that n is even:

Sxn(t) = Aei(kna−ωt)

Syn(t) = −iAei(kna−ωt)

Sxn+1(t) = Bei(kna−ωt)

Syn+1(t) = −iBei(kna−ωt)

(59)

Filling this ansatz into the equations of motion for even and odd i one �nds two equa-
tions:

iωA = JS(−2iA− 2iB cos(ka)) (60a)

iωB = −JS(−2iB − 2iA cos(ka)) (60b)

Combining these two equations into one eigenvalue equation gives:

ω

(
A
B

)
= 2JS

(
−1 − cos(ka)

cos(ka) 1

)(
A
B

)
(61)
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�e characteristic equation now results in the positive dispersion relation as plo�ed
in �gure 10.

ω2 − (2JS)2 + (2JS)2 cos(ka)2 = 0

ω2 = (2JS)2(1− cos(ka)2)

ω = 2JS| sin(ka)|
(62)

Figure 10: �e positive dispersion relation of the one-dimensional isotropic antiferro-
magnet.

First of all an important di�erence to note between this dispersion relation and the
one for a ferromagnetic system is its behaviour for small k. �e dispersion relation
in (62) is linear for small k whereas the dispersion relation in (48) goes like k2 in this
regime.

(a) A small piece of a one-dimensional an-
tiferromagnetic system in which one can
distinguish between two subla�ices (dark
and light) each with their own spin wave.

(b) �e two spin waves that present in the
subla�ices of the one-dimensional antifer-
romagnetic system.

Figure 11: Spin waves in a one-dimensional antiferromagnetic system with k = π/3
and B = A(2−

√
3)

�e eigenvector corresponding to the positive dispersion relation is:

(A,B) = C(−1 + sin(ka), cos(ka)) (63)
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where C is a real number. �e motion of a spin at site i is again a circular precessing
motion with frequency ω for all i. �e main di�erence with the ferromagnetic case
is that the amplitude of the motion is no longer the same for all spins. One can di-
vide the one-dimensional la�ice into two subla�ices; one containing all the odd num-
bered la�ice sites and the other containing all even numbered la�ice sites (see �gure
11a). At odd numbered la�ice sites the circular motion of a spin has an amplitude
|B| = | − 1 + sin(ka)| and spins point ’downwards’ while at even numbered la�ice
sites the amplitude is equal to |A| = | cos(ka)| and spins point ’upwards’. Either sub-
la�ice produces a spin-wave with frequency f = ω(k)/(2π) and the corresponding
amplitude (see �gure 11b).

7 Discussion
What is the origin of coupling between magnetic moments and what role play quan-
tum e�ects in the interaction? How do magnetic systems with di�erent coupling
behave at various temperatures?

Two neutral atoms su�ciently close to each other will interact due to Coulomb in-
teraction. As a result of Pauli’s exlusion principle the total wave function needs to
be antisymmetric under exchange of electrons. A direct consequence is the spli�ing
of energy levels, which in turn causes the coupling. If the spin singlet has the lowest
energy the coupling constant will be negative and one deals with an antiferromag-
netic system. Conversely a ferromagnetic system has a positive coupling constant
which implies that the spin triplet has the lowest energy. In the case of hydrogen
the coupling constant is J ≈ −6.6 · 104K which is su�ciently strong to describe the
experimentally observed properties of a magnetic system.

�e Heisenberg model is a formulation of the Hamiltonian of a composite system
such that it only acts on the spin degrees of freedom of the system. One of the special
cases of the Heisenberg model is the Ising model. One-dimensional systems described
by the Ising model have no mean magnetisation at �nite temperature and therefore
can not undergo a phase transition. Mean �eld theory shows that the one-dimensional
case is the exception rather than the rule as higher dimensional ferromagnetic systems
do undergo a phase transition at a �nite critical temperature. �e critical temperature
for ferromagnetic systems is linearly dependent on the coupling constant.
A general one-dimensional ferromagnetic system does not immediately lose its mean
magnetisation at �nite temperature. Instead when a low energy thermal �uctuation
occurs other magnetic moments will adjust producing a wave-like motion through the
medium known as a spin wave. Solving the linear Bloch equations results in a disper-
sion relation that describes the angular motion of the spins and thus the propagation
of the spin wave. For ferromagnetic systems the frequency grows quadratically as a
function of the wave vector in the regime of small wave vectors. For small perturba-
tions the spin wave is approximately sinusoidal with a frequency f = ω(k)/(2π) ∼
k2.
�e ground state of the homogeneous antiferromagnetic Heisenberg model is not the
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Néel state; the ground state of the corresponding Ising model. Marshall’s theorem
does give a general idea of the form of the ground state; it is non-degenerate and a
singlet of total spin. Spin waves in antiferromagnetic systems are produced on both
subla�ices and propagate with the same frequency but di�erent amplitudes corre-
lated as −1 + sin(ka) : cos(ka). An important di�erence with the ferromagnetic
systems is that the dispersion relation behaves linearly for small wave vectors instead
of quadratically.

8 Conclusion
In one-dimensional ferromagnetic- and antiferromagnetic systems a low energy ther-
mal �uctuation manifests itself as a spin wave. Spin waves are perturbations from the
ground state and are approximately sinusoidal. �e dispersion relation for the motion
of the spins and the spin wave is quadratic for ferromagnetic systems while linear for
antiferromagnetic systems in the regime of small wave vectors. In antiferromagnetic
systems the wave-like motion is di�erent on both subla�ices; the frequency is iden-
tical, but the amplitude is not.
�e spin wave analysis in this thesis has been restricted to small amplitudes and one-
dimensional systems. A more complete theory about spin waves would include a more
in depth study of the non-linear Bloch equations as to include larger �uctuations. It
would also be interesting to know how magnetic systems behave at higher tempera-
tures, for example room temperature. In conclusion more research will be needed to
fully understand those whimsical refrigerator magnets.
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Appendices
A Ground state of the ferromagnetic Ising model
�e ground states of the Ising model are the ordered states with mean magnetisation:
m = ±m̃ because they correspond to a minimum in the free energy. �e free energy
as a function of the mean magnetisation is:

F = − 1

β
log(Z)

= − 1

β
log

(∑
S1

∑
S2

. . .
∑
SN

e−βH

)

= − 1

β
log
(
e−βH̃Nm/2(eβH̃N + e−βH̃N )

)
= −N

β

(
log(2 cosh(βH̃))− 1

2
βH̃m

)
(64)

where H̃ = Jzm. �e di�erence in the free energy between an ordered state (m = m̃)
and a disordered state (m = 0) is:

∆F = F |m=m̃ − F |m=0 =

∫ m̃

0

dF

dm
dm

= −N
β

∫ m̃

0

(
2 sinh(βJzm)

2 cosh(βJzm)
βJz − βJzm

)
dm

= JzN

∫ m̃

0

(m− tanh(βJzm)) dm

(65)

Going back to the graphical solution in �gure 4 it follows that the integral is negative
because the area under the line is smaller than the area under the tanh function be-
tween m = 0 and m = m̃. �erefore the free energy is smaller when m = m̃. Due to
symmetry the same is true for m = −m̃. Hence at absolute zero the system is in an
ordered state.
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